Announcements

                                                                                                                                                                      

Fall 2016

Middle East Technical University

Electrical and Electronics Engineering Department

 

EE  201

CIRCUIT THEORY I

 

Instructors

 

    Section 1:  Çağatay Candan,  EZ-11A  

    Section 2:  Yeşim Serinağaoğlu,  DZ-03

    Section 3:  Zafer Ünver,  D-207   

    Section 4:  Sencer Koç, D-212

   Section 5:  Özlem Aydın Çivi, C-202

     

Reference Texts

 

1.    Fundamentals of Electric Circuits, C. K. Alexander and M. N. O. Sadiku,

       McGraw-Hill Book Company.

 

2.    Electric Circuits, J. W. Nilsson and S. A. Riedel,

       Pearson Prentice Hall.

3.    Linear and Nonlinear Circuits, L. O. Chua, C. A. Desoer, E. S. Kuh,

McGraw-Hill Book Company.

 

Grading

 

Two midterm examinations (30% each) and final examination (40%).

 

Final Examination Policy

 

A student

      i.              missing any midterm exam without a valid excuse,

     ii.              ii. having an average of less than 20 over 100 in the two midterm examinations

will not be admitted to the final examination and will receive the NA grade.

Students who are graded with "NA" will not be eligible for the Resit Examination.

 

Course Outline

 

I.   Basic Concepts (8 Hrs.)  

 

1.   Introduction

      Electrical components/devices and electric circuits; circuit variables.

      Analysis and design. Modeling, model elements and model circuits.

2.   Lumped Elements and Lumped Circuits

      Current, Kirchhoff´s Current Law (KCL), current equations.

      Voltage, Kirchhoff´s Voltage Law (KVL), voltage equations.

      Terminal  equations, schematic representations.

3.   Interconnection Equations

      Branch voltage and branch current, power and energy.

      Circuit gaphs, circuit matrices.

      Independent current and independent voltage equations.

      Tellegen´s Theorem. Duality.

4.   Branch Relations

      Linear/nonlinear and time-invariant/time-varying relations.

      One-port and multi-port circuits.

5.   Basic Lumped Elements

      Waveforms. Independent voltage and independent current sources.

      Resistors, capacitors, inductors.

      Dependent sources, ideal transformers, coupled inductors.

      Classification of elements: resistive/dynamic, linear/nonlinear,

 time-invariant/time-varying, passive/active elements.

6.   Circuit Analysis

      Classification of circuits: resistive/dynamic, linear/nonlinear,

      time-invariant/time-varying, passive/active circuits.

      Formulation of circuits: inputs, outputs, formulation variables;

      formulation and output equations.

      Solution of formulation equations.

 

II. Linear Time-Invariant Resistive Circuits (12 Hrs.)

 

1.   Linear Time-Invariant (LTI) Resistive Elements

      LTI resistors; series and parallel connections; delta-wye transformation.

      LTI dependent sources. Ideal transformers.

2.   Analysis Methods

      Node, modified node and mesh analysis methods.

      Linearity and time-invariance; superposition.

3.   One-Port Circuits

       Input resistances of LTI one-ports.

      Thevenin/Norton equivalent circuits. Maximum power transfer.

4.   Two-Port Circuits

       Resistance, conductance, hybrid and chain parameters. Reciprocity.

5.   Symmetric Circuits

 

III. Time-Varying and Nonlinear Resistive Circuits (4 Hrs.)
 

1.   Linear Time-Varying Resistive Elements and Circuits

2.   Nonlinear Resistive Elements and Circuits

      Analysis of resistive circuits with a single nonlinear resistor; load line.

      Small-signal analysis.

3.   Piecewise-Linear Resistive Circuits

      Analysis and design of one-ports made of ideal diodes, constant sources and 

      LTI  passive resistors.

 

IV. Operational Amplifier Circuits (8 Hrs.)

 

1.    Operational Amplifiers

Finite-gain/infinite-gain ideal operational amplifier (op-amp) models.

2.    Basic Op-Amp Circuits

Buffer circuit; inverting and noninverting amplifiers.

Feedback, stability.

Summing and difference amplifiers.

3.    More Realistic Op-Amp Models

       Input and output resistances; common-mode-rejection-ratio.

4.    Miscellaneous Resistive Op-Amp Circuits

Circuits with one or more op-amps, with or without nonlinear resistors.

 

V. Dynamic Elements (6 Hrs.)

 

1.    Ramp, Step and Impulse Functions

2.    Capacitors

       LTI capacitors; initial condition models; series and parallel connections;

       delta-wye transformation.

       Simple circuits made of LTI passive capacitors, independent sources and/or switches.

       Time-varying and nonlinear capacitors.

3.    Inductors

4.    Coupled Inductors

       LTI coupled inductors; initial condition models; series and parallel connections of  

       branches; equivalent models.

       Time-varying and nonlinear coupled inductors.

 

VI. First Order Circuits (12 Hrs.) 

 

1.   First Order Linear Differential Equations with Constant Coefficients

      Homogeneous solution; exponential function; bounded/unbounded solutions.

      Particular solution. Complete solution. Zero-input and zero-state solutions.

      Linearity and time-invariance of solutions. Convolution integral.

2.   Simple LTI RC Circuit

      State variable, state equation.

      Natural response; natural frequency, bounded/unbounded responses.

      Forced response; responses to constant and sinusoidal excitations.

      Transient and steady-state responses.  Step, pulse, ramp, and impulse responses.

3.   Simple LTI RL Circuit

4.   Analysis of Miscellaneous LTI First Order Circuits

      Circuits with one or more dynamic elements, with or without switches.

5.   Piecewise-Linear First Order Circuits

6.   Time-Varying and Nonlinear First Order Circuits

 

VII. Simple Second Order Circuits (6 Hrs.)   

 

1.   Second  Order Linear Differential Equations with Constant Coefficients

      Homogeneous solution; bounded/unbounded  solutions;

      overdamped, critically damped, underdamped and lossless cases.

      Particular solution. Complete solution. Zero-input and zero-state solutions.

      Linearity and time-invariance of solutions. Convolution integral.

2.   Parallel LTI RLC Circuit

      State variables, state equation, second order differential equation formulation.

      Natural response; natural frequencies, bounded/unbounded responses. 

      Forced response; responses to constant and sinusoidal excitations.

      Transient and steady-state  responses.  Step and impulse responses.

3.   Series LTI RLC Circuit

4.   Miscellaneous Simple Second Order Circuits