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Chapter 1

Small Signal Analysis

1.1 Introducing Small Signal Approximation

In various engineering problems, there can be a small amplitude AC signal accom-
panied with a much larger amplitude DC signal. For example, the DC source (a
battery) can be used to bias the transistors of a radio. In addition to the DC volt-
ages, the signal received from the antenna having a range on the order of milivolts
also appears in the system. The design goal of such a system can be the amplification
of the signal of interest to a reasonable voltage level.

In this section, we present the small signal approximation for resistive circuits.
This topic is particularly important for the amplifier design applications.

A very good engineering question is how we define the smallness. It should be
remembered that, a small voltage for an high voltage engineer is any voltage less
than 1000 V; while any voltage greater than 1 V can be beyond the reach of an
electronic engineer. Therefore smallness and largeness is only applicable with in a
context and we should always keep in mind that the adjectives such as small, large,
fast, efficient are used for a comparison with something else. So whenever somebody
tosses you an adjective, ask him or her with respect to what!

For our purposes, a signal is considered to be small if the accompanying DC
signal is at least an order of magnitude larger. This is just a rule of thumb. A small
signal example can be given as vs(t) = 3 + 0.1 cos(ωt) V. Figure 1.1 shows how this
signal should like on an oscilloscope screen.
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Figure 1.1: A typical input for small signal analysis.

1.2 Small Signal Analysis

We present the topic through an example. We are given the circuit shown in Fig-
ure 1.2 for analysis. The circuit contains a non-linear component.
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Figure 1.2: An example for small signal analysis

The DC source in the circuit has the amplitude of 2 V and the AC source
has the amplitude of 1/20 V. The small signal assumption could be valid for the
given circuit. We use the word “could”, since the voltage variation (or the amount
of voltage swing) across the non-linear component is critical for the success of small
signal approximation. We have more to say on this topic at the later parts of this
chapter.

To proceed ahead, we find the Thevenin equivalent circuit seen by the non-
linear component and then re-check whether the small signal approximation is ap-
plicable or not. Without much difficulty, we can get the Thevenin circuit as in
Figure 1.3. The Thevenin circuit shows that the AC component of input seen by
the non-linear element is reduced to 0.1 sin(ωt). Therefore the voltage swing over
the non-linear element is limited to 0.2 volts in peak-to-peak.
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Figure 1.3: Left: The equivalent circuit seen by the nonlinear element. Right:
Operating characteristics of the non-linear element and the load lines.

From Figure 1.3, the iNL can be written in two different ways:

iNL
(load line)

=
vs(t)− VNL

6

(non-linear comp.)
=

{
1
16
V 2
NL, VNL ≥ 0

0, other
(1.1)

The first equality (with the label “load line”) is written by noting the circuit
configuration. It is clear that for any VNL voltage, the Thevenin circuit outputs
iNL amount of current. The second equality follows from the operating curve or the
(i, v) characteristics of the non-linear component. As you should remember from
earlier chapters (!!!), the (i, v) characteristics show the valid current-voltage pairs of
that component.

By solving for VNL from (1.1), we can get the solution of the circuit for any t.
At this point, the problem can be considered as solved; but we prefer to spend some
more energy on the problem and examine the implications of the smallness on the
solution.

In Figure 1.3, the (i, v) characteristic of the non-linear component (blue curve)
and three straight lines are given. The straight lines are called the load lines. If the
non-linear element is considered as the load then iNL is the load current and the
load current can be written as

iNL
(load line)

=
vs(t)− VNL

6
(1.2)
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Here vs(t) = 2 + 0.1 sin(ωt), as also noted in Figure 1.3. When vs(t) = 2 V, that is
at the time instants of t = {0, π/ω, 2π/ω, 3π/ω, . . .}, the load line is the one in the
middle (shown with green). For these time instants, the solution for the (VNL, iNL)
is the intersection of the blue curve and the green curve. This point is marked as
the operating point.

The input can take the maximum value of vs(t) = 2.1 V. The maximum is
achieved for t = π/2+{0, 2π/ω, 4π/ω, 6π/ω, . . .}. The load line at these time instants
is shown with the red color (the top line among the three). The third line with cyan
color is the load line for vs(t) = 1.9 V for t = 3π/2 + {0, 2π/ω, 4π/ω, 6π/ω, . . .}.

It is clear that for any time instant, the solution for (VNL, iNL) is a point
in between the interesection of (cyan-blue) and (red-blue) lines. The solution is a
periodic function with a period identical to the period of the input.

Let’s exactly calculate the solution for vs(t) = 2 V. According to Figure 1.3,
the solution should be roughly VNL ≈ 1.3, iNL ≈ 0.12. In order to get the exact
values, we use (1.1). Let’s assume than VNL at the solution is greater than zero.
Then the equation (1.1) reduces to

iNL =
2− VNL

6
=

1

16
V 2
NL, provided that VNL ≥ 0.(1.3)

From the last equation, we can write 3
8
V 2
NL + VNL − 2 = 0 and find the candidate

solutions as VNL = {−4, 4
3
}. Since it is assumed that VNL ≥ 0, VNL = 4

3
is the only

possible solution.

When VNL = 4/3, iNL becomes 1
9
. Our initial guesses from read from graph

turned out to be quite good. By repeating the process for every possible Vs in
[1.9, 2.1], we can get the solution for all t values. Even tough, this approach is
feasible with a digital calculator; it is not very informative especially when you need
to have a rough understanding of the problem which is highly desired in the design
problems.

Small Signal Approximation: The approximation is based on the following
idea. The input vs(t) has a narrow voltage swing, for that voltage swing it can be
possible to approximate the non-linear function with a simpler function.

The small signal approximation uses the tangent line at the operating point as
the approximation. In other words, the non-linear characteristics is approximated
with a line tangent to the characteristics at the operating point.

The tangent approximation can be calculated as follows:

îNL = iOP
NL +

d f(VNL)

dVNL

y
VNL=V OP

NL

(V̂NL − V OP
NL )(1.4)

The variables with hat show the (i, v) characteristics of the approximation. It should
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be that by calculus veterans that this equation is the equation of the line tangent
to the curve at the point of (V OP

NL , iOP
NL).
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Figure 1.4: Left: The non-linear element and its approximation. Right: The ap-
proximation around the operating point.

The dotted line in Figure 1.4 shows the tangent approximation. In our exam-
ple, the operating point is (V OP

NL , iOP
NL) = (4

3
, 1
9
). The tangent to the function 1

16
V 2
NL

at the point of VNL = 4
3
has the slope of 1

6
. Hence, the dotted line can be formed by

writing the equation of a line having a slope of 1
6
and passing through (4

3
, 1
9
).

It should be noted from the right hand side of Figure 1.4 that the approxima-
tion is remarkably accurate. This is due to smoothness of the non-linear function.
Polynomials such as quadratic functions are “nice” functions in terms of approxima-
tions. The only other function nicer than the polynomials is the constant function
in the sense of approximation. (Here is the pedestrian way of sorting functions in
the increasing order of smoothness: Lp functions, bounded functions, continuous
functions, functions satisfying Lipschitz condition, differentiable functions, n-times
differentiable functions, infinitely differentiable functions, analytic functions, entire
functions, polynomials of restricted degree and constants, [1, Sec1.4].)
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With the tangent approximation, it is possible to write the solution by finding
the intersection of the straight lines. This is much easier than solving non-linear
equations, but we suggest even a better approach. To show this approach, we first
find an equivalent circuit component for the line approximating the non-linearity.

Figure 1.5 shows the non-linear (i, v) characteristics and its approximation.
The question is “What is the circuit component having the (i, v) characteristics
shown with the dotted lines ?” This should be familiar question for the readers of
earlier chapters. The component is a resistor in series with a voltage source. The
value of the voltage source is the x-axis intercept. (Why?)
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Figure 1.5: Left: The non-linearity and its tangent approximation. Right: The
circuit representation of the approximation

Now we are done. Figure 1.6 shows the small signal analysis steps. At the
first step, we replace the non-linear element with its small signal approximation (the
tangent approximation). Once the non-linearity is replaced, we are left with a good
looking circuit. This circuit can be analyzed using any method, but we would like
to emphasize the application of superposition principle as shown in Figure 1.6.

The superposition is applied for the DC and AC sources. The solution for the
DC part is iNL(DC) =

(2−2/3)
12

= 1/9 and vNL(DC) = 2/3 + 6 × 1/9 = 4/3. Hence
the DC part of the solution is identical of the operating point. This should not be
surprising. (Why?)

Let’s find the AC part of the solution. The superposition circuit for the AC
part immediately lends the solution as

vNL(AC) = 0.05 sin(ωt).(1.5)
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Figure 1.6: Stages of Small Signal Analysis

The complete solution of the problem via small signal approximation is:

vNL(t) =
4

3
+ 0.05 sin(ωt)V(1.6)

Before concluding, we would like to note that the superposition circuit for
the AC solution is called the small signal circuit. In the small signal circuit, the
non-linear component is approximated with a resistor whose value is determined
from the slope of non-linear component at the operating point. This resistance is
called the small signal resistance. This is the effective resistance that the AC part
of the input confronts. It should be clear that the small signal resistance is set by
the DC part of the input in conjuction with the non-linearity and the other circuit
components. Hence if you change the operating point, the small signal resistance
also changes.

This chapter presents the concept of small signal analysis. In many other
problems, the smallness of a parameter or a signal can be well utilized to present
an intuitive and informative solution. Hence, it can be a good practice to consider
the approximation of a non-linearity with a suitable linear function, i.e. the Taylor
series. This is how the small signal resistance concept has been formulated.
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