Math 119 | Calculus with Analytic Geometry

There will be 29 lectures given by the instructors, each lasting 2 class hours. Besides these lectures, there will be recitations, 2 hours per week, during which extra problems will be solved and quizzes will be given by the assistants.

The section and page numbers below are from the textbook, Calculus, James Stewart, 5th ed., 2003. The actual timing of the lectures may differ slightly from section to section because of the holidays, but the total number will be the same.

Lecture 1 § 1.1 Four Ways to Represent a Function -- p11
§ 1.2 Mathematical Models: A Catalog of Essential Functions -- p25
§ 1.3 New Functions from Old Functions -- p38
Lecture 2 § 2.1 The Tangent and Velocity Problems -- p65
§ 2.2 The Limit of a Function -- p70
Lecture 3 § 2.3 Calculating Limits Using the Limit Laws -- p82
§ 2.4 The Precise Definition of a Limit -- p92 (Part I)
Lecture 4 § 2.4 The Precise Definition of a Limit -- p92 (Part II)
§ 2.5 Continuity -- p102
Lecture 5 § 2.6 Tangents, Velocities, and Other Rates of Change -- p112
§ 3.1 Derivatives -- p127
§ 3.2 The Derivative as a Function -- p134
Lecture 6 § 3.3 Differentiation Formulas -- p145
§ 3.5 Derivatives of Trigonometric Functions -- p169
Lecture 7 § 3.6 The Chain Rule -- p175
§ 3.7 Implicit Differentiation -- p184
Lecture 8 § 3.8 Higher Derivatives -- p190
§ 3.9 Related Rates -- p198
Lecture 9 § 3.10 Linear Approximations and Differentials -- p205
§ 4.1 Maximum and Minimum Values -- p223
October 29 Holiday (Cumhuriyet Bayramı)
Lecture 10 § 4.2 The Mean Value Theorem -- p234
§ 4.3 How Derivatives Affect the Shape of a Graph -- p240
Midterm 1: Tuesday, November 3, 17:40 (up to § 4.1)
Lecture 11 § 4.4 Limits at Infinity; Horizontal Asymptotes -- p249
Lecture 12 § 4.5 Summary of Curve Sketching -- p263
Lecture 13 § 4.7 Optimization Problems -- p278
Lecture 14 § 4.9 Newton's Method -- p294
§ 4.10 Anti-derivatives -- p300
Lecture 15 § 5.1 Areas and Distances -- p315
§ 5.2 The Definite Integral -- p326
Lecture 16 § 5.3 The Fundamental Theorem of Calculus -- p340
§ 5.4 Indefinite Integrals and the Net Change Theorem -- p350
Lecture 17 § 5.5 The Substitution Rule -- p360
§ 6.1 Areas between Curves -- p375
§ 6.5 Average Value of a Function -- p402
November 27-30 Holiday (Kurban Bayramı)
Lecture 18 § 6.2 Volume -- p382
§ 6.3 Volumes by Cylindrical Shells -- p393
Lecture 19 § 7.1 Inverse Functions -- p413
§ 7.2 Exponential Functions and Their Derivatives -- p421
§ 7.2* The Natural Logarithmic Function -- p451
Midterm 2: Tuesday, December 8, 17:40
Lecture 20 § 7.3 Logarithmic Functions -- p434
§ 7.3* The Natural Exponential Function -- p460
§ 7.4 Derivatives of Logarithmic Functions -- p441
§ 7.4* General Logarithmic and Exponential Functions -- p467
Lecture 21 § 7.5 Inverse Trigonometric Functions -- p477
§ 7.6 Hyperbolic Functions -- p486 (Reading Assignment)
§ 7.7 Indeterminate Forms and l'Hôpital's rule -- p493
Lecture 22 § 8.1 Integration by Parts -- p511
Lecture 23 § 8.4 Integration of Rational Functions by Partial Fractions -- p532 (Part I)
Lecture 24 § 8.2 Trigonometric Integrals -- p518
Lecture 25 § 8.3 Trigonometric Substitution -- p525
Lecture 26 § 8.4 Integration of Rational Functions by Partial Fractions -- p532 (Part II)
§ 8.5 Strategy for Integration -- p541
Lecture 27 § 8.7 Approximate Integration -- p554
§ 8.8 Improper Integrals -- p566
Lecture 28 § 9.1 Arc Length -- p583
Lecture 29 § 9.2 Area of a Surface of Revolution -- p590