There will be 29 lectures given by the instructors, each lasting 2 class hours. Besides these lectures, there will be recitations, 2 hours per week, during which extra problems will be solved and quizzes will be given by the assistants.
The section and page numbers below are from the textbook, Calculus, James Stewart, 5th ed., 2003. The actual timing of the lectures may differ slightly from section to section because of the holidays, but the total number will be the same.
Lecture 1 | § 1.1 Four Ways to Represent a Function -- p11 § 1.2 Mathematical Models: A Catalog of Essential Functions -- p25 § 1.3 New Functions from Old Functions -- p38 |
Lecture 2 | § 2.1 The Tangent and Velocity Problems -- p65
§ 2.2 The Limit of a Function -- p70 |
Lecture 3 | § 2.3 Calculating Limits Using the Limit Laws -- p82
§ 2.4 The Precise Definition of a Limit -- p92 (Part I) |
Lecture 4 | § 2.4 The Precise Definition of a Limit -- p92 (Part II) § 2.5 Continuity -- p102 |
Lecture 5 | § 2.6 Tangents, Velocities, and Other Rates of Change -- p112 § 3.1 Derivatives -- p127 § 3.2 The Derivative as a Function -- p134 |
Lecture 6 | § 3.3 Differentiation Formulas -- p145
§ 3.5 Derivatives of Trigonometric Functions -- p169 |
Lecture 7 | § 3.6 The Chain Rule -- p175
§ 3.7 Implicit Differentiation -- p184 |
Lecture 8 | § 3.8 Higher Derivatives -- p190 § 3.9 Related Rates -- p198 |
Lecture 9 | § 3.10 Linear Approximations and Differentials -- p205 § 4.1 Maximum and Minimum Values -- p223 |
October 29 Holiday (Cumhuriyet Bayramı) | |
Lecture 10 | § 4.2 The Mean Value Theorem -- p234
§ 4.3 How Derivatives Affect the Shape of a Graph -- p240 |
Midterm 1: Tuesday, November 3, 17:40 (up to § 4.1) | |
Lecture 11 | § 4.4 Limits at Infinity; Horizontal Asymptotes -- p249 |
Lecture 12 | § 4.5 Summary of Curve Sketching -- p263 |
Lecture 13 | § 4.7 Optimization Problems -- p278 |
Lecture 14 | § 4.9 Newton's Method -- p294 § 4.10 Anti-derivatives -- p300 |
Lecture 15 | § 5.1 Areas and Distances -- p315 § 5.2 The Definite Integral -- p326 |
Lecture 16 | § 5.3 The Fundamental Theorem of Calculus -- p340 § 5.4 Indefinite Integrals and the Net Change Theorem -- p350 |
Lecture 17 | § 5.5 The Substitution Rule -- p360 § 6.1 Areas between Curves -- p375 § 6.5 Average Value of a Function -- p402 |
November 27-30 Holiday (Kurban Bayramı) | |
Lecture 18 | § 6.2 Volume -- p382
§ 6.3 Volumes by Cylindrical Shells -- p393 |
Lecture 19 | § 7.1 Inverse Functions -- p413
§ 7.2 Exponential Functions and Their Derivatives -- p421 § 7.2* The Natural Logarithmic Function -- p451 |
Midterm 2: Tuesday, December 8, 17:40 | |
Lecture 20 | § 7.3 Logarithmic Functions -- p434
§ 7.3* The Natural Exponential Function -- p460 § 7.4 Derivatives of Logarithmic Functions -- p441 § 7.4* General Logarithmic and Exponential Functions -- p467 |
Lecture 21 | § 7.5 Inverse Trigonometric Functions -- p477
§ 7.6 Hyperbolic Functions -- p486 (Reading Assignment) § 7.7 Indeterminate Forms and l'Hôpital's rule -- p493 |
Lecture 22 | § 8.1 Integration by Parts -- p511 |
Lecture 23 | § 8.4 Integration of Rational Functions by Partial Fractions -- p532 (Part I) |
Lecture 24 | § 8.2 Trigonometric Integrals -- p518 |
Lecture 25 | § 8.3 Trigonometric Substitution -- p525 |
Lecture 26 | § 8.4 Integration of Rational Functions by Partial
Fractions -- p532 (Part II) § 8.5 Strategy for Integration -- p541 |
Lecture 27 | § 8.7 Approximate Integration -- p554 § 8.8 Improper Integrals -- p566 |
Lecture 28 | § 9.1 Arc Length -- p583
|
Lecture 29 | § 9.2 Area of a Surface of Revolution -- p590 |