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1 Alphabets, strings, languages

• An alphabet is a finite set of symbols.

E.g. the Roman alphabet {a, . . . ,z}, {a,b}, {0,1},. . .

• A string over an alphabet is a finite sequence of symbols from that alphabet.

• The empty string consists of zero symbols. We will denote it by the symbol
‘ε’.1

Examples of strings on alphabet {a,b} are ε , a, abbaba, . . .

The symbols u,v,w,x,y,z are used to name strings – therefore we avoid them
as symbols of alphabets.

• The set of all strings – including ε– over an alphabet Σ is denoted by Σ∗.

• The length of a string w is denoted by |w|.

• The concatenation of two strings w and v is formed by sequencing the
strings in the given order; it is denoted as wv, w ◦ v, or w_v. Concatena-
tion is associative: (xy)z = x(yz), and εw = wε = w.

• A string v is a substring of a string w, if there exists strings x and y such that
w = xvy. Either or both of x and y can be ε .

• The reverse of a string w, denoted as wR, is defined as follows:

Definition 1.1 (Reverse of a string).
i. If w = ε , then wR = w.

ii. If w = va for some a ∈ Σ, then wR = avR.

• The notation wn stands for concatenating w to itself for n times. w0 = ε ,
w1 = w, w2 = ww, and so on.

• A language is a set of strings over a certain alphabet.

1Sudkamp uses ‘λ ’ for the empty string, you may also encounter ‘e’ or other symbols in other
books. As ‘λ ’ has another ubiquitous use in computer science and linguistics, I will use ‘ε’.

• Therefore a language L on an alphabet Σ is a subset of Σ∗.

Exercise 1.2.
Which of the following are languages?

ε {ε} /0 Σ Σ
∗

• Some examples over Σ = {a,b}:

{b,aa,ab}

{w ∈ Σ
∗ | w has equal number of a’s and b’s}

{w ∈ Σ
∗ | w = wR}

2 Some operations on languages

• Given that languages are sets, ordinary set operations union, intersection
and difference are defined for languages. For the moment we are interested
in the union operation.

• There also are operations specific to languages. One is concatenation of
languages. Given any languages L1 and L2 over Σ, their concatenation, des-
ignated as L1 ◦L2, L_

1 L2, or simply L1L2, is defined as follows:

L1L2 = {w ∈ Σ
∗ | w = xy, for some x ∈ L1 and y ∈ L2} (1)

Exercise 2.1.
Let L1 = {w ∈ {0,1}∗ | w has an even number of 0’s} and
L2 = {w ∈ {0,1}∗ | w starts with a 0 followed by any number of 1’s}.
Which language is L1L2?

• Our final and third operation is closure (or star, or Kleene closure) of a
language L, denoted as L∗, which is the set of expressions formed by con-
catenating zero or more strings from L. Formally,

L∗ = {w ∈ Σ
∗ | w = w1w2 . . .wk for some k ≥ 0 where w1,w2, . . .wk ∈ L}
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or,

L∗ =
∞⋃

i=0

Li

where L0 = {ε}, L1 = L, and, Li = LL · · ·L, with i-many Ls

• We write L+ in place of LL∗, which is:

L∗ = {w ∈ Σ
∗ | w = w1w2 . . .wk for some k ≥ 1 where w1,w2, . . .wk ∈ L}

Exercise 2.2.
Compute L∗ for (i) L = {0,1}; (ii) L is the set of strings of 0’s, and (iii) L = /0.

3 Finite representation of languages

• In the theory of computation and its applications we are interested in repre-
senting languages of our interest with finite means. This is easy when the
language is finite, but it is a challenge for nonfinite languages.

• One method is constructing an inductive definition:

Example 3.1 (Inductive definition of a language).
The language L over {a,b}, where each string begins with an a and has an
even length.

i. aa and ab ∈ L.

ii. If w ∈ L, then waa, wab, wba, wbb ∈ L.

iii. Nothing other than the strings obtained via i. and ii. above are in L.

Exercise 3.2.
Write an inductive definition for the language L over {a,b} in which every
occurrence of b is immediately preceded by an a.

• Now let us see a more transparent and direct way of specifying the above
languages. This method involves applying the operations set union, concate-
nation and closure on sets.

Example 3.3.
The language L over {a,b} which has bb as a substring can be defined as
{a,b}∗{bb}{a,b}∗.
Exercise 3.4.

i. Define the language L over {a,b} whose strings either start with aa or
end with bb.

ii. Define the language L over {a,b} whose strings have an even length.
Also define for odd length.

iii. Define the language L over {0,1} whose strings have two or three oc-
currences of 1 the second and third of which are not consecutive.

4 Regular languages

• Another central point of interest in the theory of computation is classes of
languages – the set of all languages that share a certain mathematically speci-
fiable property.

• The first class we will look at is the class (or set) of regular languages (or
regular sets).

Definition 4.1 (Regular Languages).
Given an alphabet Σ:

1. /0 is a regular language.

2. For any symbol a ∈ Σ, {a} is a regular language.

3. If A and B are regular languages, so is A∪B.

4. If A and B are regular languages, so is AB.

5. If A is a regular language, so is A∗.

6. Nothing is a regular language unless it fits the above definition.

• In other words, a language is regular if it can be constructed from unit lan-
guages like {a}, {b} etc. and the empty language /0 by the repeated applica-
tion of union, concatenation and closure.
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Example 4.2.
Show that the following languages are regular.

1. L = {x ∈ {a,b}∗ | x contains an odd number of b’s}
2. L = {x ∈ {a,b}∗ | x contains exactly two or three b’s}

• Regular expressions are notational devices to represent regular languages.

Definition 4.3 (Regular Expressions).
For each regular expression E, the language denoted by it is designated as
L(E). The set of regular expressions can be inductively defined as follows.

1. The constants ε and /0 are regular expressions, where L(ε) = {ε} and
L( /0) = /0.

2. If a is a symbol, a is a regular expression, where L(a) = {a}.
3. If E and F are regular expressions, so is E ∪ F , where L(E ∪ F) =

L(E)∪L(F).

4. If E and F are regular expressions, so is EF , where L(EF)=L(E)L(F).

5. If E is a regular expression, so is E∗, where L(E∗) = L(E)∗

6. If E is a regular expression, so is (E), where L((E)) = L(E)

7. If E is a regular expression, then it can be shown to be so by 1–6.

Example 4.4.
Let us write a regular expression for the set of strings that consist of alternat-
ing 0’s and 1’s.

Example 4.5.
Write regular expressions for the following languages:

1. The set of strings over alphabet {a,b,c} containing at least one a and
at least one b.

2. The set of strings of 0’s and 1’s whose tenth symbol from the right end
is 1.

3. The set of strings of 0’s and 1’s with at most one pair of consecutive
1’s.

4. The set of strings of 0’s and 1’s with no substring 111.

Self study

Sudkamp (1997), Chapter 2 covers most of the material here. Beware that the book
uses ‘λ ’ where we use ‘ε’.

References

Sudkamp, T. A. (1997). Languages and Machines: An Introduction to the Theory
of Computer Science. Addison-Wesley, Reading, MA, 2nd edition edition.
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