
COGS 501 – Formal Languages and Linguistics Finite Automata Fall 2015

1 Abstract machines

• Basic components of a computer: (i) central processing unit; (ii) memory;
(iii) input-output devices.

• We are concerned with abstract machines, i.e. mathematical descriptions of
computing machinery.

2 Deterministic finite automata

• A dfa consists of a reading head, a tape and a finite control.

• The tape consists of squares which can hold a symbol.

• The finite control consists of a set of finite states and an indicator which
shows the current state of the automaton.

• The reading head starts at the leftmost position on the tape. At each turn
the reading head advances one square right reading the symbol in its starting
position, and the finite control updates the state of the machine according to
a transition function which maps pairs of symbols and states to states.

Definition 2.1 (Deterministic finite automaton).
A dfa is a quintuple 〈Q,Σ,δ ,q0,F〉 where

Q is a set of states,

Σ is an alphabet,
q0 ∈ Q is the initial state,

F ⊆ Q is the set of final states.

and δ , the transition function, is a function from Q×Σ to Q.

Exercise 2.2.

Take the fa M = 〈{q0,q1},{a,b},δ ,q0,{q0}〉 where δ is,

q σ δ (q,σ)

q0 a q0
q0 b q1
q1 a q1
q1 b q0

Trace the processing of the string aabba by M.

• As made clear by example 2.2 at a certain point of the operation of an fa, in
which state the fa will end up when it runs out of input is entirely determined
by the current state and the string to be read ahead.

Call (q,w) a configuration of an fa M, where q is the current state and w is
the string on the tape including the current symbol and what lies to the right
of it.

For an fa M = 〈Q,Σ,δ ,q0,F〉 the relation yields in one step, defined over
set of configurations and designated with |=M, is such that,

(q,w) |=M (q′,w′) iff w = σw′ for some σ ∈ Σ and δ (q,σ) = q′

The relation yields, designated as |=∗M, is the reflexive transitive closure of
|=M,

An fa M = 〈Q,Σ,δ ,q0,F〉 accepts a string w ∈ Σ∗ iff (q0,w) |=∗M (qn,ε) for
some qn ∈ F .

The language accepted by M, designated L(M) is the set of strings accepted
by M.

• Fa can be conveniently represented by directed graphs called state diagrams.
Let’s draw a state diagram for the language accepted by the fa in example 2.2.

Exercise 2.3.
Draw the state diagrams of an accepting dfa for each language below:

1. {w∈{a,b} | each a in w is immediately preceeded and immediately followed by b}.

Umut Özge Draft – November 8, 2015 Page 1/2



COGS 501 – Formal Languages and Linguistics Finite Automata Fall 2015

2. {w ∈ {a,b} | w has abab as a substring}.
3. {w ∈ {a,b} | w has odd number of a’s and an even number of b’s}.
4. {w ∈ {a,b} | w has both ab and ba as substrings}.
5. {w ∈ {a,b} | w does not contain three consecutive b’s}.
6. (ab∪aba)∗

3 Non-deterministic finite automata

• A non-deterministic finite automaton extends the notion of dfa in the fol-
lowing respects:

i. δ is no longer required to be a function;

ii. empty transitions are allowed, i.e. the finite control is allowed to ad-
vance the state without reading any symbol from the input tape;

ii. transitions are not limited to symbols, an nfa can read w ∈ Σ∗.

Exercise 3.1.
Provide an nfa for each language of exercise 2.3.

• Finite automata M1 and M2 are equivalent if and only if L(M1) = L(M2).

Theorem 3.2.
For each non-deterministic finite automaton there exists an equivalent deter-
ministic finite automaton.

4 Equivalence of FALs and regular languages

• Finite automata and regular expressions are two alternative ways of charac-
terizing the same class of languages.

Theorem 4.1 (Kleene).
A set of strings is a finite automaton language if and only if it is a regular
language.

• We will prove by induction only the regular expression-to-finite automaton
side of the theorem:

– We start by showing that the three basic regular expressions, /0, ε and
the unit language a for an arbitrary symbol a, have equivalent NFAs.

– Then we show that finite automata are closed under union, concatena-
tion and closure.

Self study

Sudkamp (1997), Chapter 6 up to Section 6.4 covers most of what we have seen so
far. At certain points there are references to context-free grammars; ignore them
for now. You may have difficulty in understanding some formal definitions in the
book, concentrate on the examples.

References

Sudkamp, T. A. (1997). Languages and Machines: An Introduction to the Theory
of Computer Science. Addison-Wesley, Reading, MA, 2nd edition edition.

Umut Özge Draft – November 8, 2015 Page 2/2


