1 Introduction

- Thus far we have mainly dealt with language recognizers, which are devices to recognize whether a given string belongs to a language or not.
- There are also language generators, which generate all and only the grammatical sentences of a language.
- Let us look at the regular expression $a(a^* \cup b^*)b$ from the generation perspective:

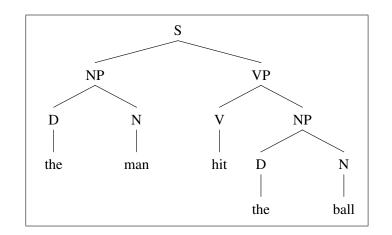
First output an *a*, then either output a number of a's or a number of b's, then output a *b*, and stop.

- Let's see a generator a context-free grammar for a tiny fragment of English:
 - i. $S \rightarrow NP + VP$
 - ii. $NP \rightarrow D + N$
 - iii. $VP \rightarrow V + NP$
 - iv. $D \rightarrow the$
 - v. $N \rightarrow man, ball, etc.$
 - vi. $V \rightarrow hit, took, etc.$
- A leftmost¹ derivation of the string the + man + hit + the + ball:

Derivation Rules S $S \rightarrow NP + VP$ NP + VP $NP \rightarrow D + N$ $VP \rightarrow V + NP$ D + N + VPD + N + V + NP $D \rightarrow the$

the $+N + V + NP$	$N \rightarrow man$
the $+man + V + NP$	$V \rightarrow hit$
the $+man + hit + NP$	$NP \rightarrow D + N$
the $+man + hit + D + N$	$D \rightarrow the$
the + man + hit + the + N	$N \rightarrow ball$

the + man + hit + the + ball



- The parse tree (constituent structure) contains less information than the derivation (Why?).
- A terminal string σ covered by a single node X is a constituent of type X.
- The terminal string covered by the root node is the **yield** of the parse tree.

Exercise 1.1.

Context Free Grammars and Languages

Introduce new rules to the grammar so that it can handle modification of NPs and VPs by PPs.

¹In every step of the derivation, you expand the leftmost nonterminal in the current string. The notion of rightmost derivation is defined similarly.

2 Formal Definition

Definition 2.1.

A context-free grammar G is a quadruple $\langle V_N, V_T, R, S \rangle$ where

 V_N is the set of **non-terminal** symbols,

 V_T is the set of **terminal** symbols,

R (the set of **rules**) is a finite subset of $V_N \times (V_N \cup V_T)^*$,

 $S \in V_N$ is the **start** symbol.

For any $A \in V_N$ and $u \in (V_N \cup V_T)^*$, we write $A \to u$ whenever $\langle A, u \rangle \in R$.

For any $u, v \in (V_N \cup V_T)^*$, we write $u \Rightarrow v$ if and only if there are strings $x, y \in (V_N \cup V_T)^*$ such that u = xAy, v = xty, and $A \rightarrow t$.

We say that a string *t* is **generated** by a grammar $G = \langle V_N, V_T, R, S \rangle$ if and only if there exists a sequence of the form:

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n \Rightarrow t$$

for $n \ge 0$ and $w_i \in (V_T \cup V_N)^*$.

The language generated by a grammar *G*, denoted as L(G), is the set $\{w \in V_T^* \mid w \text{ is generated by } G\}$.

A language *A* is a context-free language if and only if there exists some context-free grammar *G* such that A = L(G).

Example 2.2.

Write context-free grammars for the languages:

(a) $a(a^* \cup b^*)b$

(b) $\{ww^R \mid w \in \{a, b\}^*\}$

(c) $\{w \in \{a,b\}^* \mid w = w^R\}$ (d) $\{a^n b^m a^n \mid n, m \ge 1\}$

(e) $\{a^n b^n a^m b^m \mid n, m \ge 1\}$

(f) $\{a^n b^m c^m d^{2n} \mid n, m \ge 1\}$

(g) $\{a^n b^m \mid 0 \le n \le m \le 2n\}$

(h) Set of strings with exactly two *b*'s.

- (i) \dots with at least two *b*'s.
- (j) ... with an even length.
- (k) ... with an even number of b's.
- (1) ... with a positive even number of b's.

3 CFLs and Regular Languages (FALs)

- Not every context-free language is a regular language. (We have already seen this through counterexamples.)
- Every regular language is a context-free language (proof by *direct construc- tion*).
- **Direct Construction:** For any deterministic finite state machine $M = \langle K, \Sigma, \delta, q_1, F \rangle$, you can construct a context-free grammar $G_M = \langle K, \Sigma, R, q_0 \rangle$ with

$$R = \{q \to ap \mid \delta(q,a) = p\} \cup \{q \to \varepsilon \mid q \in F\}$$

such that $L(M) = L(G_M)$.

- Such grammars are called regular grammars.
- A regular language can be generated by a non-regular but context-free grammar.

4 Closure Properties of CFLs

Union:

Given two context-free grammars $G_1 = \langle V_{N_1}, V_{T_1}, R_1, S_1 \rangle$ and $G_2 = \langle V_{N_2}, V_{T_2}, R_2, S_2 \rangle$ form the grammar $G = \langle V_N, V_T, R, S \rangle$ in the following way,

- i. If the non-terminals of G_1 and G_2 are not disjoint, make them so (e.g. by putting primes to those of G_2).
- ii. Let $R = \{S \rightarrow S_1, S \rightarrow S_2\} \cup R_1 \cup R_2$.

G will generate all and only the strings that are generated by G_1 or G_2 , or both, namely $L(G) = L(G_1) \cup L(G_2)$. Therefore, CFL's are closed under union.

Concatenation:

The method of constructing *G* from G_1 and G_2 is the same except that $R = \{S \rightarrow S_1 S_2\} \cup R_1 \cup R_2$.

Kleene star:

Given a context-free grammar $G = \langle V_N, V_T, R, S \rangle$ one can construct a grammar G' that generates $L(G)^*$ in the following way:

- i. Let S' be the start symbol of G'.
- ii. Let $R' = \{S' \rightarrow S'S, S' \rightarrow \varepsilon\} \cup R$.
- CFLs are *not* closed under *intersection* and *complementation*.
- Intersection of a CFL with a FAL is a CFL.