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Abstract- We define a near-orthogonal set of channel vectors
as one that meets certain SIR and SNR guarantees. The prob-
ability of finding a near-orthogonal set in a pool of n users is
characterized. We identify a phase transition phenomenon in
channel geometry whereby this probability transitions from 0 to
1 as k, the number of users that have been examined, increases.
It is shown that after this transition the probability of failing to
find such a set behaves like e(k-'"). The rate at which SNR and
SIR can be scaled while we remain above this threshold is also
characterized. The existence results we provide are not specific
to the MIMO scheduling problem, but apply to the more general
setting of finding a near-orthogonal set in a random collection
of isotropic vectors. The proofs make use of new tight bounds
we develop to bound the surface content of spherical caps in
arbitrary dimensions. Broader implications of these results are
discussed. Specifically, in the case of zero-forcing the best sum
rate achievable increases at a rate on the order of log log n.

I. INTRODUCTION
Developing efficient wireless multiuser communication sys-

tems is a problem of substantial interest. An example for such
a system is the wireless downlink (as depicted in Figure 1)
where independent data streams need to be transmitted to
users that are geographically distributed. It is well known
that using multiple antennas can greatly increase the capacity
of the broadcast channel [1]. Multiplexing users (precoding
multiple users' data at the same time) can potentially further
increase the throughput of the downlink system. Time variation
in the channel states of users leads to the question of which
users to choose to encode at a given time to satisfy some
overall time-averaged performance criterion. Hence the MIMO
broadcast channel contains a quite rich joint scheduling and
multiplexing problem when the number of users n is larger
than the number of antennas Tn. A large number of mostly
heuristic approaches have been proposed [2]-[5] to explore
this multiplexing/scheduling problem space.

This paper has been motivated by the seemingly prohibitive
complexity of this joint scheduling/multiplexing problem. In
a MIMO channel with choice over users, one expects to
improve a particular performance criterion as a larger and
larger user pool is searched. This could be maximizing total
throughput (or sum rate), for example. The complexity of such
an optimization is dominated by the underlying search for
the best (possibly ordered) user subset to multiplex across
the transmitter array, which must be performed each time the
system changes state. To reduce this complexity, one may limit
the search to a smaller pool of users while ensuring that a

channel set that will be found in this restricted pool is close
to optimal with high probability.
We shall define near mutually orthogonal sets to be sets

with certain SIR and SNR guarantees. The central goal of the
paper is to characterize the probability of finding such a set in
a pool of n users. We will show that the probability exhibits a
quite sharp transition from 0 to 1 with increasing n, which is
a consequence of a phase transition phenomenon in channel
geometry. We will obtain upper bounds on the rate at which
the SNR and SIR guarantees can be increased while maintaing
a high probability that a set with those guarantees exists. More
specifically, as a function of the number of users, k, that have
been examined, the probability of finding a near-orthogonal
set passes through a threshold, after which it behaves like
O(k-m). This behavior is depicted in Figure 2 for different
SIR specifications.
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Fig. 1. The MIMO downlink system overview

An outline of the rest of this paper is as follows. We describe
our model for the problem in Section II. In section III, near-
orthogonal sets are defined, and through examining their geo-
metric properties, the existence probabilities are characterized.
To this end, we develop and make use of new tight bounds on
the surface content of spherical caps in arbitrary dimensions.
Finally, Section IV discusses the broader implications of these
results, such as characterizing the throughput of certain low-
complexity multiplexing/scheduling techniques such as zero
forcing (i.e., interference nulling).

II. SYSTEM MODEL

We consider a broadcast channel with an m-antenna trans-
mitter and n uncoordinated receivers each having a single
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Fig. 2. The probability of finding, among k independent channels, a
subset meeting a target SIR requirement. The SIR is lower-bounded by
(l/lAJ)(E1p- )-'

receive antenna. We will denote this set of n users by U
{ 1, 2, ... ., n} and let A C U be an arbitrary subset of users. We
will assume the standard input-output model for the channel.
Let x E C'm be the transmitted signal vector and hi C m

be the channel of the ith user. Further, let HA be the channel
matrix of the set of users A and let x and y be the input and
output respectively. We further assume the channel vectors hi
are distributed as iid complex Gaussian n-vectors. Under the
assumption of complex circularly symmetric Gaussian noise
we have,

Y [. = HAX + n whereHA

and ni - VC(0, 1). An upper bound on the input covariance is

assumed, which corresponds to an total input power constraint
of P.

In many applications one is interested in finding, a set A
that maximizes some objective function that depends strongly
on HA. This optimization in general may be very complex,
since the user sets do not have an obvious structure. However,
if the channel vectors in the set are orthogonal, multiplexing
is trivial. More generally, near-orthogonal vectors allow zero-
forcing. beamforming or other multiplexers to perform well.
In the following section we examine near orthogonal sets as
an approximation to any optimal multiplexing set.

III. NEAR-ORTHOGONAL SETS
In the following, we examine the probability that there is a

set A c U that is near-orthogonal. We will begin by making
the definition of an e-orthogonal set, present a geometric
interpretation of such a set and discuss some special properties.
We will then examine the question of existence of such a set
among n independently formed random channels.

Consider the collection of sets S3

S, {A Ih-h I< Eand p-<lhi 112< ,Vi#7 A}
(1)

Note for a given p-, as e decreases toward 0, the channel
vectors of any set in Se are increasingly orthogonal. Any set
in Se will thus be called an e-orthogonal set. A geometric
interpretation is depicted in Figure 3. One can think of any
e-orthogonal set as a set of points that lie in the spherical shell
between radii p- and p+ such that any two points form an

angle no smaller than 0O,p, where

0 p- COS-I (j e) (2)

From (1), the interference between any two users in a near-

orthogonal set is upper-bounded by E, and therefore the SIR
for any user is lower-bounded by p-/(jAIE). Near-orthogonal
sets have been defined in similar ways in [6], [7]. What may
seem unusual in the present definition is the upper-bound p+
on channel norms. Indeed, if there was only a single transmit
antenna or if the scheduler was constrained to select at most
one user at a time (i.e. , JAI 1) such as in [8], limiting
oneself to a bounded channel gain would certainly result in a
loss.

However, when JAI > 1, since a user with a larger
channel gain can cause a large interference on other users,
the constraint p+ is not by itself a certain restriction. In fact,
it is a useful technical constraint in answering the question of
main interest: How fast can p- (hence the SNR guarantee)
and p+ increase as a function of n for a given e while Se
is still non-empty with probability 1 as n tends to infinity?
The later part of this section will make this existence question
precise.

A. Probabilitv of e-orthogonality and New Bounds on the
Content of Spherical Caps
We first derive bounds on the probability that any set is

e-orthogonal and use this to further bound the probability of
existence of an c-orthogonal set in a pool of n independent
channel vectors. Define for a set A of size 1

pE = Pr(A C S,) (3)

to be the probability that the set is c-orthogonal. Note that we
can rewrite pe as

P IPE -Ps PI (4)
where p, is the probability that a point falls in the spherical
shell defined by the parameters p- and p+ and PI is the
conditional probability that the set is e-orthogonal given that
all the points in the set are inside the spherical shell (Figure
3).
We can lower bound pI by pessimistically assuming all

channels to have norm p+, yielding

P_l> Pr (lhjhji < + Vi #j{jp- < llhkl2<p+} Vk

where h1 = hi/llhill2 and is uniformly distributed on the unit
sphere in Ct". Now, Pi is simply the probability that each hi
falls outside of the cone of half angle 063,p and apex hi. Let,
S&(0; 2rn) be the probability of falling in a cone of half angle
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Fig. 3. The geometry of the near-optimal selection procedure
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Fig. 4. Bounds on the probability 5c (0, 8). The new estimates solid; estimates
from [9] dashed; exact expression dotted

0 in in complex dimensions as seen in Figure 3. Then, from
[9]

ic(0; 2im) - 2m(8) (6)
Q2m(7)

where Q2mn(8) is the area of the spherical cap of half angle 8
in 2rm dimensions.

In [9], Shannon provides bounds on 6,(8; m). While the
bounds of [9] are very tight at small 0, they diverge for
the larger values of 0 which are of interest to us here. This
is due to the fact that large half angles corresponds to low
interference. Therefore, we need new estimates on the surface
area of spherical caps and their intersection. Below, we provide
new upper and lower bounds. Our new bounds are tight for
both 08 0 and 0 = ir/2 and strictly increasing for 8 c (0, 2).

First define the function c(8; s, 3) to be

c(0;s i _ sin:S0and let 'm- - 2r___
7r ~~~~mF(M2)

Then we have the following theorem.
Theorem 1: [ 10] Let 6,(8, ri) be the density of a spherical

cap of half angle 0 on the unit m sphere. Then, if 3 > m-1
and s- then2VJ rrl-2

6,(0, m) > c(8; s, 13)

Furthermore, if s < '29 and 0 < a . (sQs then

6,(O nl) < c(0; s, )

The full proof of this theorem is quite lengthy, but es-
sentially follows the following outline. We guess a function
c(8;s,9/3), and consider the error term Dm = 6c(,inm) -
c(8; s, 3). Then c(H; s, /3) is an upper bound if the error term
Dm is negative over a the compact interval of interest. Further,
if Dm is zero on the end-points of the interval then Dm must
be decreasing at the left end point and increasing at the right
endpoint to be an upper bound. Furthermore, if its derivative
has exactly one root in this interval, then the error term can
never cross zero and is thus an upper bound over the entire
interval. The full derivation and other bounds can be found in
[10], [11].
A comparison of these bounds using the optimal exponents

can be seen in figure 4. Note that these bounds do not diverge

at 0 =z. We can use these bounds and a method similar to the
method of exhaustion used in [9] to lower bound pI. That is,
we can lower bound the probability that a set is e-orthogonal
by first placing a single point and deleting all points on the
sphere that are within an angle less than 09,p of the first. Now,
the set is e-orthogonal if every point falls outside the spherical
caps about all other points in the set. Using the union bound,
we obtain the following lemma:
Lemma 1: Let 6, p-,p+I JR+ and E <p±+. Then,

P1 > (1 - (I1-)61(8,,P 2,2n))' 1 (7)
Certainly, there is some angle 00 such that the RHS of

equation 7 is 0, such that the bound is not useful for 0 > 00.
However, it should be clear that for any 0 <0K,p < v/2 that
P1 > 0. Obtaining tighter bounds for P1 is the subject of
ongoing work.
B. Existence Probability of a Near-Orthogonal Set

Using the new bounds on spherical caps we address the
probability that Se is non empty. To start, we define the
indicator random variable

1A- {O
if A e Se
otherwise (8)

Iwhich is one if A is c-orthogonal and consider the random
variable

XIl- , 1A
A:jAI=I

(9)

which counts the number of E-orthogonal sets. Note that the
random variables 1A are not independent. Dependence of IA
and 1 es occurs when A n 3 :8 0. We will employ the concept
of a dependency graph which has been widely used in the
areas of geometric graphs and combinatorial probability [12]
for which the condition Anq3 z 0 is a special case. A graph G
with vertex set V - V(G) is a dependency graph of the family
of random variables {1A}AEV if for any two disjoint subsets
of V, say A, B C V, the two sub-families {1A}AGA and
{IIA}.AEB are independent. Clearly our independent Gaussian
vectors fit this criterion.

Thieorem 2: [13] Let Pl(U) be the collection of all un-
ordered sets of size 1 on n items and let

X= E 1A
A-4P1 (U)

(10)
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where {1A} is a family of Bernoulli random variables with
Pr (IA = 1) = p, which are independent if An 13 0. Then,

Pr(X = O) < exp (-max{2p2 Ln 8p ()}) (11)

Theorem 2 can be employed to address the probability of
existence of an e-orthogonal set. First, we take a slightly
different exponent than the one in Theorem 2 so that the bound
is continuous. Let,

E(p, l) max 2P2-8pY -Y ) (12)

Now, we use Theorem 2 to bound the probability that there is
an e-orthogonal set.

Theorem 3: Let 6, p- p+ Cz E+. Then if e < p

Pr(N(' > O) > Pr(N. > I)-cl (1 + ps (e-E(PI ')1)) n

where cl = exp 2pj(1- 1) if E(pl, ) and c1
otherwise.

Proof: Note by conditioning on the number of users that
fall in the spherical shell defined by p- and p+ we have,

Pr(SE > 0)
n

= Z Pr (Np = j) Pr (Xi > OINp = j)
j=l

>E p)ps (i1- cje-iE(PI,1))

= Pr (Np > 1)
n

cl E (7) (psePE(Pl)) (1-s)

> Pr (Np > 1)-ci(cl 6-EP± ± (1-Ps))

where the constant c1 appears by bounding L J by n1-1

Theorem 3 provides a lower bound on the probability the
there is an E-orthogonal set. That is, it provides a lower bound
on the probability that we can meet any given SIR and SNR
targets. We now use these bounds to examine the rate at which
one can grow the SNR and still expect a non-zero probability.

C Scaling Laws for Near-Orthogontal Selection
Recall that is our ultimate goal to use the bound of Theorem

3 for user selection. In the following section we will show that
the constraint on channel norms can grow at a rate at most
login for Pr( S,I > 0) > 0. Before we develop that result, let
us discuss for a moment its implications: It implies that SNR
increases at most on the order of log in, which will correspond
to sum-rate increasing on the order of at most loglogn. As
such, if we have that Pr(ISJ > 0) > 1 - 6 for some small 6
we will have to examine exponentially more users to realize
a relatively small gain in rate. We will call ns(e) a threshold
if for some given 6 > 0, we have Pr(IS,j > 0) < 1 - 6
for n < gn while Pr(ISj > 0) > 1 - 6 for n > n6. From

examining, Theorem 3, it is easy to see that n6 is finite for
P1 > 0 and ps > 0 and that the threshold can be sharp.

The sharpness of this threshold has two possible explana-
tions. First, the number of points that fall in a spherical shell
follows a binomial distribution which is known to exhibit a
thresholding behavior [12]. Secondly, it is reasonable to expect
that there will additionally be a rapid emergence of an c-
orthogonal set since it can be roughly modeled by the existence
of a clique of size m in a binomial random graph [6], [14]. It is
difficult to invert the bound of Theorem 3 to fully characterize
n,5. It is useful, however, to consider the level surfaces where
the bound of Theorem 3 is equal to 6. This level surface can
be seen plotted as a function of e in the case of four transmit
antennas in Figure 5.

The existence of such a threshold implies that the search
among the set of n users for a set to maximize the objective
function can be restricted to 'n6 users. This is very significant,
of course, in reducing algorithm complexity, and moreover, it
does not result in an appreciable loss in throughput provided
that p+ and p- can be increased sufficiently fast, which is
what we address next.
Lemma 2: Let mp+(n) - clog(n) and np-(n)

log(n) - d where c > 1 and d > 0. Then,

2rm (ed - 1) < lin np, < 2rned
n-Coo

Further, if logn = O(p (T1)) then

limi npS = 0n-oo
Proof: See appendix I.

We can now state our main result.
Theorem 4: Let O, be fixed. Then if, P1 > 0 then we

can achieve a probability of failure 6(n) = e(n-m) with
rnp-(n) log(n) - log(log(n) + 1)

Proof: First note that for a Binomial random variable,
say N, we have the Chernoff bound [12]

Pr(N > I) >1)-exp (np >)2

if 1 < np - EN. Thus,

log(P( = )) (nps) (14)

Now applying lemma 2, for sufficiently large n

log (p( ))> m (ed -1
Substituting d log(log(n) + 1) proves that with this choice
of p- we have Pr(Np = 0) = O(n-m). We additionally have

Pr(Np = 0) = (1 -ps)n > exp np.

using the inequality 1 - x > exp -x [12]. Repeating the
argument above, Pr(Np = 0) is easily shown to be Q(n-Tn).

.
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Fig. 5. An example of using E-orthogonal selection for a 4 transmit antenna system with p- = 1 and p+ = 2 and zero forcing precoding. (a) The level
curves for the lower bound on the probability of existence for 6 = 0.1. (b) The lower bound on the expected throughput of selecting 2 users for various E.

The simulated throughput using optimal selection can be seen above the convex hull of these bounds

Corollary 1: The sequence mp+(n) = logn and
mp-(n) = logn - log(log(n) + 1) achieve a threshold n,.
Further, for any 0 < 0,,r < ' and probability of failure
0 < < 1 we can achieve as n oo

p (n)
p+ (n)

We note that the discussion, theorem and corollary say

something fundamental about multiple antenna channels in
which we can construct our channel matrix. That is in a

channel with choice we can, for sufficiently large n, consider
only channel vectors with norms of the order log(n) and for
any target interference we can achieve a rapidly decaying
probability of failure.

IV. DISCUSSION AND CONCLUSIONS

The probability of existence of a near-orthogonal subset
among n independently formed m-dimensional complex cir-
cularly symmetric channel vectors have been bounded in
the previous section. It is evident from the bounds and the
empirical results exhibited in Figure 2 that for any given
O", the probability of finding an c-orthogonal set of channels
quickly jumps to 1. This phase transition behavior has direct
application to algorithm design for scheduling in the MIMO
broadcast channel. Indeed, we have shown that any algorithm
that tries to approximate the optimal set using say k users

and a criterion based inner products and norms of the channel
vectors will have a small probability of success if k < n,s.
However, if the same algorithm is employed in the scenario
where k > n6, then we can expect a high probability of
success.

The threshold n6 also has a valuable application in provid-
ing lower bounds for the expected rate of any multiplexer in
a channel with choice. If we have that n > n6, then we can

randomly choose any set of users A E Se and expect good
performance. To be more precise, let frate be the sum rate

expression for a given multiplexer. Then, we can use our SIR
and SNR guarantees to provide simple bounds for frate(A),
say fbnd(SNR, SIR). Then,

Emaxfrate(A) > E max frate(-A) (15)
A AES,

> Pr(ISJ > 0)fbnd(SNR, SIR) (16)
> (1-6(n))fbnd(SNR, SIR) (17)

We can further optimize the above bound over the param-

eters c, p- and p+. In the case of zero forcing multiplexing,
with power constraint P, using the results from [61, it is easy

to show that for large n [10]

fbnd = mlog I + SNR (- 1 )m) (18)

Note that there is a tradeoff between the probability of exis-
tence and the SIR constraint in (17). That is, the probability of
existence is decreasing in SIR while the rate function of (18)
is increasing in SIR. An example of how one may achieve
a good point on this trade-off (in the case of zero-forcing
precoding and four transmit antennas) can be seen in Figure
5. Part (a) of the figure provides contours of equal existence
probability 0.9. The curves show that to find an e-orthogonal
set with this probability we must either select only pairs of
users (IAI = 2) or have e/p+ > 0.8. Clearly, then, a high rate
(i.e. small e) requires taking JAI = 2 in this example.
One would like to take c at the knee of the level contour.

Such an c not only guarantees high rate at a low number of
users (which lowers complexity, and, when the number of
users can vary, provides robust performance.) The effect of
choosing a large e is exhibited on part (b) of the figure where
for e = 0.98, the probability quickly jumps to one, but the
rate remains a small constant for practically all n thereafter.
Alternatively, if e is taken to be too small then the existence
probability will be too low, as seen in the c = 0.2 curve: the
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Fig. 6. The empirical average rate of optimal zero forcing multiplexing and
dirty paper coding with nominal SNR = P of 10dB

climb in rate indicates that the probability of existence is still
increasing.

Now, note that in the right hand side of (18) the SNR
is multiplied by a constant that reflects the effects of our

choice of target SIR on the expected rate under zero forcing
multiplexing. We expect this term to vary depending, on how
we choose to multiplex our signal. Thus, if we can not grow

the SIR to infinity faster than log n we expect there to be
an asymptotic SNR gap in the expected rate under different
multiplexers. Figure 6 bears on this question. We continue to
explore this using the improved bounds presented in Theorem
1.

APPENDIX I
ACHIEVABLE RATES FOR CHANNEL SCALING

We now prove the rate at which one can hope to scale
channel norms and asymptotically have a non-zero probability.
In this direction note that from Alzer's bound [15] we have
for nm > 1

< tYsf(,n, X) < (1 -_-_)
where slc- (1 + rm)-1/m and

I tS
(sf(n, x) = F(I ) tm-le-tdt

So,
9 + ilXm _ X+Sp
Ps > e-SP -(-e

E (2m) (_1)i+1 (e-ip- eisi P
j=0 i

Now we note that in order for the bound to be non-zero we

must have p- < sip+ so that the probability is non-zero.

However, implicit in the proof of the bound given in [15] if
we replace the constant sl in the lower bound by any number
s e (se, 1) then there exists a x* such that

(1 e-x)m <. f(m, x)

for all x C [x*, 00). So, asymptotically we can replace the
constant si by 1 - e for any e such that 1 > e > 0. Now,

taking s < 1 and p+(n) = clogn and p-(n) = log n - d
yields

2m

Ps >E
j=o
m

>E
j=O
2m

_E
j=o

(2m) (_1 )j+1 (e-i log n+jd -jcs log n

(2) ( +i log n (ejd e-(c51)logn)

(2m) (-1)3+1n-3(njd -j(s-l)

(19)
Thus for cs < 1 as n -4 oc then npri -)-oc Further, for cs >
1 as n -* oo then 2m(ed_-1) < np8 < 2med where the lower
bound corresponds to cs 1 and the upper bound corresponds
to cs oc. From the above derivation (interchanging the role
of s in the upper and lower bound ) it should be clear that if
log(n) = o(p-(n)), then

lim np, -- 0
nflo00
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