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1 Introduction 
The rigorous and numerically efficient analysis of printed geometries in a mul- 
tilayer medium has been a major research topic in the computational electro- 
magnetics because of the common use of these structures in the monolithic 
microwave integrated circuits and in the design of printed antennas. Some 
numerical techniques like Finite Difference Time Domain (FDTD), Finite El- 
ements Method (FEM), and Method of Moments (MOM) in the spatial and 
spectral domains, are commonly used in the analysis of such planar geome- 
tries. Although the FDTD and FEM are numerically rigorous and versatile, 
they are computationally very expensive. Recently, it has been demonstrated 
that the use of the spatial domain MOM in conjunction with the recently de- 
veloped closed-form Green's functions for the solution of the mixed-potential 
integral equation significantly improves the computationally efficiency(l1-[3]. 
This improvement is due to the elimination of the numerical evaluation of the 
slow-convergent and highly oscillatory Sommerfeld integral by approximating 
it with a finite series of complex functions. This approach results in two- 
dimensional integrals over finite domains with the smooth integrands as the 
MOM matrix elements. In this paper, a technique of reducing the remaining 
double integrals to single integrals is presented and the improvement in the 
computational efficiency is demonstrated for a microstrip line. 

2 Formulation 
The formulation presented herein is applicable to general microstrip geome- 
tries in a multilayer medium where it is assumed that the layers extend to 
infinity in the transverse directions. However, for the sake of illustration, the 
formulation is presented for a microstrip line over a substrate, for which only 
the longitudinal current is assumed to exist. 
The mixed-potential integral equation for the microstrip line can be trans- 
formed into the matrix equation with the use of the well-known MOM proce- 
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dure, and a typical matrix element is given below to help demonstrate the use 
of the formulation; 

where T,,, BZn are the testing and basis functions, respectively, and G$, G, 
are the Green's functions of the vector and scalar potentials, respectively. The 
first inner product of (1) is written explicitly as 

< T=~,G;= * B~~ >= 
SDJ dzdyTrm(z, Y) SDJ dz'd~'G&(z - z'f I - Y')%(Z', Y') (2) 

where DT and DB denote the domains of the testing and basis functions, 
respectively, and the closed-form Green's function G,", is expressed as 

N , - jkJ(r-r')l+(V-U')z+A: 

G & . ( I - ~ , Y - Y ' , z = ~ )  (3) 
i=l ,/(z - z ' ) ~  + (y - y')2 + A: 

with the complex constants c; and A; obtained from the generalized pencil 
of function method which is used to approximate the integrand of the Som- 
merfeld integral in terms of complex exponentials. By changing the order of 
integration, the inner product takes the form of 

J J d u d v  G&(u,v)J J ~ ~ ~ Y T = ~ ( z , Y ) B = ~ ( z - ~ , Y - ~ ) .  (4) 

correlation function (T,,oB.,) 

The basis and testing functions are chosen to be the rooftop functions which are 
triangular functions in the longitudinal direction and uniform in the transverse 
direction. For this choice, the correlation function becomes 

Tzm 8 Bzn = f(u)g(v) ( 5 )  

where f(u) = (a3u3 + azuZ + CYIU + ao) for PIh, < < P 2 B  

g ( v )  = ip { w - w < v < o  o < v < w  
and ao, CYI, (12, a3, PI, f i2 are constants determined by m, n, h, (the half-length 
of the current cell.) Since g ( v )  is a polynomial of degree one, the integral 
with respect to v is chosen to be performed analytically. By substituting the 
correlation function ( 5 )  and the Green's function (3) into (4), the inner-product 
term can be written as 

r 1 
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where R = Jm. The first integral can be integrated analytically by 
using the substitution method, and is given as 

However, the evaluation of the second integral is not straightforward, which re- 
quires e-jkR to be approximated by its Taylor series expansion in two different 
regions[4]. The first region includes the points close to the source, whereas the 
second region is chosen to be the Fraunhofer region starting at the Rayleigh 
distance,RD = 2W2/X. The term e-jkR is expanded around R = 0 in the first 
region and around R = T in the second region where r = d m ,  and the 
number of terms in each region is determined by setting an error criterion. 
Consequently, the integral I2 is obtained analytically as 
Regionl: 0 < T < RD 

dv = In Iv + d-1- jkv, 

Region2: T > RD 

+ ( v m +  rzln lu + d-1) (-: - jq)] . (9) 

The same procedure can be applied to the second inner-product term of (1) 
in which G, has the same functional form as Gtz given in (3). Note that 
the correlation function must be polynomial in form in order for the above 
formulation be applicable. 

3 Results and Conclusion 
In this part of the study, the formulation described above is applied to a mi- 
crostrip line and the improvement in the CPU time, compared to the analysis 
with the double integrals, is observed. The dielectric constant of the medium 
is e, = 4.0, the width of the line W to the thickness of the substrate d ratio 
is 4.0, the thickness of the substrate is 0.02032 cm (=8.0 mils.), the frequency 
is 1 GHz, the length of the line is lOcm, and the source is located 2 cm from 
left. The CPU times are obtained for SUN Sparc 2 system. 
The current distribution on the microstrip line is obtained, first by numeri- 
cally integrating the double integrals (Case l ) ,  Eq. (6), involved in the MOM 
matrix elements, and second by using the equations given above (Case 2), Eqs. 
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(7)-(9). The Gauss quadrature integration algorithm is employed for both the 
double and single integrals with the same number of function evaluation for 
the u-integrations, for the sake of fairness. In addition, the v-integration in 
the first approach is performed with the least possible function evaluations, 
resulting the current distribution with an acceptable error. It is observed from 
Table 1 that the proposed method saves two-third of the computation time for 
large number of basis functions. Next, the number of evaluation points for the 
single integral case is reduced to one-half (Case 3), due to the fact that the 
outer intagrand varies smoother after having integrated the inner integrand 
analytically. Hence, the computation time is reduced approximately to the 
ten percent of the double integration case without sacrificing the accuracy, 
Fig. 1 .  As a result, it is observed that the formulation proposed here saves 
significant amount of computation time. 

# of basis func. I Case 1 I Case 2 I Case 3 
10 I 100.2 I 39.3 I 20.4 
20 I 200.3 I 67.7 I 28 1 ~. -.. . . ~. 

30 1 289.9 I 93.8 1 34.2 
40 I 395.2 1 121.4 1 40.8 

Table 1: CPU times for different number of basis functions. 

- c-.. 1 ...)5... 1 +++a..= 

Figure 1: The current distribution 
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