556 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 24, NO. 3, JUNE 2015

Advanced MEMS Process for Wafer Level
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Abstract— This paper reports a novel and inherently simple
fabrication process, so-called advanced MEMS (aMEMS) process,
that is developed for high-yield and reliable manufacturing of
wafer-level hermetic encapsulated MEMS devices. The process
enables lead transfer using vertical feedthroughs formed on an
Silicon-On-Insulator (SOI) wafer without requiring any complex
via-refill or trench-refill processes. It requires only seven masks to
fabricate the hermetically capped sensors with an experimentally
verified process yield of above 80%. Hermetic encapsulation is
achieved by Au-Si eutectic bonding at 400 °C, and the pressure
inside the encapsulated cavity has been characterized to be as
low as 1 mTorr with successfully activated thin-film getters. The
pressure inside the encapsulated cavity can also be adjusted in the
range of 1 mTorr-5 Torr by various combinations of outgassing
and gettering options in order to satisfy the requirements of
different applications. The package pressure is being monitored
for the selected chips and is observed to be stable below 10 mTorr
since their fabrication about 10 months ago. The shear strengths
of several packages are measured to be as high as 30 MPa with
average shear strength of 22 MPa, indicating a mechanically
strong bonding. The robustness of the packages is tested by
thermal cycling between 100 °C and 25 °C, and absolutely no
degradation is observed in the hermeticity and the package pres-
sure. The package pressure is also verified to remain unchanged
after storing the packages at a high storage temperature of
150 °C for 24 h. Furthermore, the packaged chips are observed to
withstand a high temperature shock test performed at 300 °C for
5 min, at the end of which the characteristics of the encapsulated
sensor indicates that the package still remains hermetic (no
detectable leaks) and also the package pressure remains constant
at ~20 mTorr. [2014-0338]

Index Terms— Microelectromechanical systems (MEMS),
wafer level hermetic encapsulation, Au-Si eutectic bonding,
vertical feedthroughs, advanced MEMS process (aMEMS).
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I. INTRODUCTION

HE PROGRESS in the microelectromechanical sys-

tems (MEMS) has a great potential for the development
of smart, small-sized, low cost, and reliable sensors for a
large variety of industrial applications. Some of these MEMS
devices such as the pressure and gas flow sensors have a
direct physical contact to the outside world, whereas a great
variety of the MEMS devices such as the inertial sensors,
resonators, and infrared detectors must be isolated from oper-
ating environment by encapsulating them in the hermetically
sealed packages [1], [2]. Therefore, hermetic encapsulation is
essential for many MEMS devices, and is a major obstacle for
successful commercialization.

Hermetic encapsulation can be achieved either at the die
or wafer level. Die level encapsulation requires individual
process for each MEMS device, which not only increases the
packaging cost and labor time but also decreases the process
yield and reliability. Wafer level encapsulation provides a
better solution in all the above aspects, by encapsulating all
the MEMS devices located on the wafer simultaneously by
using well-known techniques, such as thin film encapsula-
tion or wafer bonding [3]. Thin film encapsulation requires
deposition of various thin films on top of MEMS sensor
wafer, forming a thin but hermetically-sealed capping layer.
This technique provides a low-cost packaging solution that
eliminates the need for a separate cap wafer and bonding
equipment [4]-[7]. However, it typically requires additional
mechanical protection [7] in order to increase the robustness
of the thin capping layer, and is also not compatible
with conventional getter deposition techniques, limiting the
cavity pressure to levels that are not sufficient for many
MEMS devices. On the other hand, hermetic sealing by
wafer bonding employs a separate cap wafer for the sealing
purposes, which provides perfect mechanical robustness for
the protection of encapsulated MEMS sensors, and also allows
very low package pressures with the use of thin film getters.

Encapsulation, however, is just the first half of the packaging
process, whereas the second half is the transfer of electrically
conductive leads of the MEMS sensor to the outside world
without degrading the hermeticity of the encapsulation.
A widely used encapsulation method is the bonding of
sensor and cap wafers with the help of glass-frit, which
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is successful in sealing step heights caused by laterally
transferred sensor leads; however, it requires high bonding
temperatures (>430°C) and wide bond rings (>150um) [8].
The temperature and bonding area can be reduced with the use
of metal-based sealing alloys [9]-[11] instead of the glass-frit
material; however, these metals must then be isolated from
the electrical leads of the structures by an additional dielectric
layer, increasing the complexity and cost of the process
especially when the leads are laterally transferred to outside
of the package. Moreover, the step coverage of metal-based
alloys is not as good as the glass-frit, since the thickness of
these alloys is typically limited to few micrometers, mostly
due to their high stress. There are also examples of vertically-
transferred sensor leads in the literature [12]-[18]. These
approaches typically require the drilling of the silicon or
glass substrates by using a laser [12], DRIE [13]-[15], or wet
etching [16], [17] and then hermetic filling of these trenches
with thermal oxidation [15], metal bumps/patterning [16], [17],
glass reflow [13], [14], or metal electroplating [12], [18].
Therefore, they either suffer complex process steps
such as void-free hermetic-filling of the feedthrough
openings [12], [15] or trench-refill processes [13], [16], [18].
Another challenge with the vertical feedthrough processes is
to ensure precise control of the thicknesses and the relative
offsets of the sealing material, sensor leads, sealing regions,
and vertical feedthroughs [18], in order to achieve the sealing
and the lead transfer simultaneously.

In summary, it is desirable to achieve wafer-level hermetic
encapsulation of MEMS devices, preferably enabling low
process temperatures, eliminating any step-coverage issues by
employing vertical feedthroughs, and yet being simple, high-
yield, and robust. This paper reports such a wafer level her-
metic encapsulation process, called as the Advanced MEMS
(aMEMS) process, which meets the abovementioned require-
ments by using an Silicon-On-Insulator (SOI) cap that is
micromachined with the well-known and widely-used MEMS
fabrication techniques [19], [20]. The proposed method has
been successfully demonstrated to be completed by only seven
fabrication masks including the masks for the sensor fabri-
cation, to have a packaging yield above 80% deduced from
the experiments performed on a number of fabricated wafers,
and to provide cavity pressures as low as 1 mTorr which is
observed to remain stable below 10 mTorr since the fabrication
of the first prototypes around 10 months ago. The packages
fabricated with the proposed method are also experimentally
verified to be mechanically and thermally robust, as they
successfully pass harsh shear and temperature tests without a
detectable degradation in the leak rate and package pressure.

II. PACKAGE DESIGN AND FABRICATION
A. Package Design

Fig. 1 shows the three-dimensional (3D) view of a sample
MEMS structure encapsulated with the proposed aMEMS
process. The SOI cap wafer forms the sealing wall as well
as the package roof surrounding the MEMS structure, and it
is bonded to the glass substrate with the help of a metal sealing
material. The sealing material and sensor leads can be formed

Metal leads of
Sealing sensor

feedthrough material

Fig. 1. Three-dimensional (3D) view of the aMEMS process.

using the same metal without requiring an additional mask.
Sensor leads are pressed by conductive vertical feedthroughs
formed on the SOI cap wafer, and signal transfer is achieved
through the wire bonds connected to the exposed faces of the
vertical feedthroughs as in [21], eliminating the need for via-
refill or trench-refill process steps.

B. Fabrication

Fig. 2 shows the major fabrication steps for the aMEMS
process. The proposed process requires only seven masks
to fabricate the hermetically-capped sensors and starts with
an SOI wafer on which the via openings are formed by a
KOH wet etching process (Fig. 2-a). The handle layer of the
SOI wafer not only defines the thickness of the package roof
in Figure 1 but also specifies the dimensions of the vertical
feedthroughs. The 30 nm/300 nm Cr/Au pad metals are formed
inside the via openings by using the lift-off technique for wire
bonding purposes (Fig. 2-b). The sealing walls and vertical
feedthroughs are both made of highly doped silicon, and
they are simultaneously formed by etching the device layer
of the SOI cap wafer with DRIE (Fig. 2-c). The thickness
of the device silicon layer determines the cavity depth. Two
different cavity depths are selected in this study, as 100 xm
and 300 um, in order to check the effect of different cavity
volumes on the package pressure. Finally, thin film getters are
deposited inside the cavities by using a custom designed and
formed shadow mask. The getter material consists of 1 xm
thick 4.3 mm x 2.6 mm titanium film which can be deposited
either with evaporation or sputtering techniques. The titanium
getter is inherently activated during the wafer level encap-
sulation process with Au-Si eutectic bonding, improving the
package pressure.

The corresponding sensor wafer in Fig. 2-d is fabricated
by using a modified silicon-on-glass (M-SOG) technology as
in [22], where 35 um thick silicon resonators are suspended
over the glass substrate. The sealing material and the sensor
leads are formed simultaneously using a 30 nm/150 nm thick
Cr/Au metal layer. This ensures simultaneous Au-Si eutectic
bonding between “the sealing material and the sealing wall”
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Fig. 2. Major fabrication flow for the aMEMS process. a) Formation of
via on the handle layer with KOH. b) Pad metals are formed after etching
the buried oxide with lift off. ¢) Simultaneous formation of sealing walls and
vertical feedthroughs on the device layer with DRIE, and the deposition of thin
film getter. d) Fabrication of MEMS sensor wafer using M-SOG technology.
e) Wafer level hermetic encapsulation with Au-Si eutectic bonding.
f) Wire bonding for the signal transfer.

as well as “the sensor leads and the vertical feedthroughs”
during the final encapsulation step, as shown in Fig. 2-e.
The Au-Si eutectic bonding is performed at 400°C by using a

Vrtical
feedthrou_ghs

Fig. 3. Photographs of hermetically packaged dies from the top (on the left)
and bottom (on the right) faces, fabricated using the aMEMS process.

Fig. 4. The magnified view of the sealing region, vertical feedthroughs,
thin-film getters, and the encapsulated sensor as seen through the bottom face
of the packaged chip.

bond pressure around 3 MPa. After the encapsulation process,
the vertical feedthroughs are simply accessed by wire bonds,
eliminating any need for via-refill as shown in Fig. 2-f [21].

C. Fabrication Results

Fig. 3 shows the photographs of hermetically packaged
dies from the top and bottom faces, fabricated using the
aMEMS process. The die size of the hermetically sealed
packages is 5.9 mm x 6 mm for this particular design.
Fig. 4 presents the magnified view of the sealing region, thin-
film getter, encapsulated sensor, and vertical feedthroughs,
as seen through the bottom face of the packaged chip.
The amount of the Au-Si eutectic flow can be adjusted by
optimizing the bonding pressure. Fig. 5 shows the wirebonds
that are used to electrically connect the pads of a fabricated
chip to the pads of a ceramic package.

Fig. 6 presents the SEM pictures of the MEMS devices
fabricated using the aMEMS process, showing the details
of the vertical feedthroughs, sealing walls, via openings,
and encapsulated sensor. The current pitch size of the
fabricated vertical feedthroughs and via openings is selected
to be 700 um, in order to stay on the safe side during the
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Ceramic package

Fig. 5. The photograph of a fabricated chip mounted in a ceramic package.

initial demonstration of the concept. This pitch size can be
easily reduced down to 350 um by reducing the thickness
of the handle layer of the SOI cap wafer [23], [24]. Further
reduction is also possible as described in [24].

III. CHARACTERIZATION RESULTS

Various tests are performed on the packages fabricated
with the aMEMS process in order to measure the vertical
feedthrough resistance, package pressure, production yield,
bonding strength, and thermal robustness.

A. Vertical Feedthrough Resistance

The feedthrough resistance is a critical parameter for
various MEMS applications, and it should be low enough to
prevent any loss during the signal transfer from the sensor to
the outside world. As the vertical feedthroughs are made by
etching the device silicon layer of the SOI wafer in this study,
the SOI device layer is selected to be low resistive silicon
(<0.005 Q.cm); this layer is then bonded to the metal leads of
the sensor forming a low resistive Au-Si ohmic contact. The
electrical resistance of the vertical feedthrough is measured
using the setup in Fig.7. The measurements include the total
feedthrough, contact, and line resistance, which adds up
to 150Q2. Feedthrough resistance can be easily estimated from
the doping level of silicon and the dimensions of the vertical
feedthroughs, which is in less than 1Q. Similarly, the line
resistance is estimated to be less than 5Q. Subtracting the
theoretical values of the line and feedthrough resistances from
the total resistance measurement leaves a contact resistance
in the order of 60-150Q2 which is acceptable for a large
variety of MEMS applications that do not require RF and
higher frequencies. This value is believed to be improved by
optimizing the bonding recipe.

B. Package Pressure

The package pressure is measured by tracking the quality
factors of benchmark resonators encapsulated with the aMEMS
process.

EEm  100pm METUMEMS 9/28/2012
00kV LEI LM WD 12mm 3:57:44 PM

Via openings

W— 100pm METUMEMS 8/26/2013
5.0kV LEI LM WD 12mm 5:25:41 BM

opening

N 100pm JEOL 12/7/2013
5.0kv LEI M WD 12mm 3:56:51 PM

Fig. 6. SEM pictures of the MEMS devices fabricated using the aMEMS
process, showing the details of the vertical feedthroughs, sealing walls, via
openings, and encapsulated sensor.

The quality factor directly depends on the air damping
that provides a direct measure of the pressure change
inside the encapsulated cavity. The resonators on the
MEMS sensor wafer are characterized before and after the
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Fig. 7. Measurement setup for the vertical feedthrough resistance.
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Fig. 8. Test results of the fabricated prototypes: (a) Variation of the quality 10 mTorr and 42% belng as low as 1 mTorr, owing to the

factor of the MEMS resonator tested at different pressure levels in a controlled
pressure environment before the wafer-level packaging process. (b) Resonance
characteristics of a MEMS resonator before and after wafer-level packaging,
showing a measured quality factor of 125,255 corresponding to a cavity
pressure around 1 mTorr with the help of successfully activated thin-film
getters.

encapsulation process. First, the uncapped MEMS sensor
wafer is placed inside a controlled pressure chamber where the
pressure can be adjusted in the range of 10 uTorr to 10 Torr.
The resonance characteristics of the resonators located

custom-developed and successfully-activated getter material.
The failure in the hermeticity of the packages may be due to
two reasons. The first failure mode, maybe the most dominant,
is the quality of the Au-Si eutectic bonds. Any failure occurred
during the patterning of the Cr/Au bond ring may affect
the quality of the Au-Si eutectic bonding and degrade the
hermeticity of the packages. Even if the Cr/Au bond ring
is properly patterned, sealing may not be very strong due to
a contamination across the sealing area. The second failure
mode is the via openings. If there is a failure occurred during
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TABLE I
SUMMARY OF WAFER LEVEL HERMETIC ENCAPSULATION AS WELL AS
THE YIELD ANALYSIS OF DIFFERENT MEMS SENSOR WAFERS USING
DIFFERENT OUTGASSING AND GETTERING OPTIONS

Bond# Outgas/Getter Cavity Pressure Range  Yield
Volume
1 No/No 4.8 mm’ 3-5 Torr 87%
2 1 hour@300°C/No 4.8 mm 1-3 Torr 92%
3 10 hours@300°C/No 4.8 mm’  0.15 Torr-1.5 Torr  82%
4 1 hour@300°C/Yes 4.8 mm’ ~1 mTorr 91%
5 No/Yes 4.8 mm’ 1-50 mTorr 92%
6 No/Yes 1.6 mm’ 1-50 mTorr 87%

the patterning of the via openings with KOH, it results in a
micro-leak which prevents the hermetic sealing. The packag-
ing yield can be increased by further optimizing the Au-Si
eutectic bonding recipe. Although a very high bonding yield
is obtained with this technology, it may be further increased
by adjusting the bond temperature and force.

Table 1 presents the robustness of the wafer level encap-
sulation process as well as the yield analysis for different
MEMS sensor wafers capped by using different outgassing and
gettering options. The hermetic packaging is performed using
an EVG wafer bonder having a bond chamber that is pumped
down to pressure levels around 10 uTorr. Still, the pressures
inside the cavities are measured to be as high as 5 Torr after
the bonding, if neither an outgassing step nor thin-film getters
are used. Outgassing is the desorption of the gas molecules
from the devices encapsulated in vacuum cavities. It has a
more significant effect on the micro-sealed cavities since they
are not continuously pumped and have a high surface to
volume ratio. A way of minimizing this effect is to do an
additional heat treatment for the outgassing inside the bond
chamber before the actual encapsulation process. In this work,
different outgassing periods at a fixed temperature of 300°C
are used before the encapsulation process. Although the
outgassing step enhanced the vacuum levels, still the package
pressures are measured to be limited to 150 mTorr or higher
without using any thin-film getters. Best results achieved in
Bond#4 of Table 1, for which both outgassing and gettering
options are used and the package pressures are measured to
be around 1 mTorr for 91% of the tested sensors on this
particular 4” wafer. Pressures in the range of 1 to 50 mTorr
are achieved by the use of thin-film getters with a yield of
95%, even without any outgassing step prior to the encapsu-
lation process. It should be reminded that getters are thin-
films or alloys that react with the trapped gases in order
to improve the package pressure. The getter material is
capable of pumping the outgassing material until its capac-
ity is reached, irrespective of the cavity volume. Therefore,
similar cavity pressures are obtained for sensors encapsu-
lated with 100 um (cavity volume: 1.6mm?) and 300 xm
(cavity volume: 4.8mm?>) deep cavities. The cavity pressures
can be coarsely set to different levels ranging from 1 mTorr
up to 5 Torr, simply by varying the outgassing period and
utilization of the getter material, enabling the proposed method
be used for various types of MEMS devices with different
package pressure requirements.
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Days after packaging

Fig. 10. Quality factor change over time for three different packaged chips.
The pressure inside the cavities is observed to be lower than 10 mTorr for
almost 10 months since the first prototypes has been fabricated.

Furthermore, there exist several vacuum levels in a packaged
wafer. The reason may be due to the differences in the thin-film
getter activation. Each die contains identical getter material
with identical dimensions, but somehow it may show different
activation characteristics which result in the different package
pressure levels. Another reason may be the different outgassing
characteristics of different dies. Although all dies are subjected
to the same process steps and materials, their outgassing rates
may be different. If the outgassing causes the release of non-
getterable gases into the cavity, they cannot be absorbed by
thin film getters and this results in different cavity pressures.
As seen in the Table 1, the combination of outgassing and thin-
film getters (Bond#4) provides a better pressure uniformity
compared to the others. With this option, the effect undesired
gases are prevented and more uniform package pressure can
be obtained.

Fig. 10 presents the variation of the quality factors of
resonators encapsulated in randomly selected three packages,
and monitored within a period more than 10 months. The
pressures inside all the three packages are observed to remain
lower than 10 mTorr within this period. The lowest measured
Q-factor in Figure 10 is above 115,000. Referring back to
the data in Figure 8, this Q-factor value corresponds to a
cavity pressure below 10 mTorr for all of the 3 dies monitored
during the ten month period. The reduction of the Q-factors
in Figure 10 corresponds to a change from an initial pressure
around 1 mTorr to a stabilized pressure less than 10 mTorr
within 150 days. This result shows that the proposed packaging
method achieves a stable cavity pressure below 10 mTorr,
which is sufficient for many applications.

C. Bonding Strength

The mechanical robustness of the packaged chips is
evaluated by shear tests. Shear tests are performed for several
packaged chips by using a conventional shear test tool.
Fig. 11 presents the shear test results of 6 different packaged
chips. The measured shear strengths of all chips are above
17 MPa with an average strength of 22 MPa, indicating a
mechanically strong bond. Fig. 12 shows the photographs
of cap and sensor chips separated from each other during
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Fig. 11. Shear test results of 6 different packaged chips. The measured shear
strengths of all chips are above 17 MPa with an average strength of 22 MPa,
indicating a mechanically strong bonding.
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Fig. 12.  Photographs of cap and sensor chips separated from each other
during shear test. The Au-Si eutectic bonding interface is observed to
withstand the shear test, as either the silicon cap or the glass substrate is
broken, but not the bonding interface. This verifies that the Au-Si eutectic
bonding strength is above 17 MPa.

the shear test. The strength of the Au-Si eutectic bonding
interface is believed to be higher than the values in Figure 11,
since the cap and sensor chips could not be separated from
the bonding interface, but rather they are broken from other
structural regions.

D. Thermal Robustness and Reliability

Thermo-mechanical robustness and reliability of the
packaged chips are tested by thermal cycling, high temperature
storage, and ultra-high temperature shock tests. At least two
samples are subjected to each test in order to be sure from the
accuracy of the results. Before each test, the resonators are
tested similar to the initial vacuum characterization and their
quality factors are extracted from the resonance characteristics.
Then, packaged chips are subjected to the reliability tests.
After the test, the quality factors of the resonators are again
extracted by re-testing the resonators and compared with the
initial values. The packaged chips are subjected to cyclic
thermal shock tests between 100°C and 25°C for 5 cycles
with 10 minute duration at each temperature and instant
movements between hot and cold states. Fig. 13 presents the
resonance characteristics of a packaged resonator die before
and after the thermal cycling tests. The quality factor of the
MEMS resonator was initially measured as 87,759 whereas
it was 87,762 after the thermal cycling test. As the package
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Fig. 13. Resonance characteristics of a packaged resonator before and after

thermal cycling test in between 25°C and 100°C for 5 cycles with 10 minute
duration for each cycle. No degradation is observed in the hermeticity of the
packages at the end of this period.
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Fig. 14. Resonance characteristics of a packaged resonator die before and
after high temperature storage test. Packaged chip is kept at 150°C for 24 hours
for the high temperature storage test. The quality factor of a particular MEMS
resonator was initially measured as 64,504 whereas it was 62,426 after the
high temperature test, verifying that there is no change in the package vacuum
and it is still below 25 mTorr.

pressure remains unchanged, it is verified that the hermeticity
of the packages are preserved at the end of this test.

Next, high temperature storage tests are performed on the
fabricated packages by keeping them at 150°C for a period
of 24 hours. Fig. 14 shows the resonance characteristics of
a packaged MEMS resonator die before and after the high
temperature storage test. The quality factor of the resonator is
measured to be reduced from 64,504 to 62,426 after the high
temperature test. Such a reduction corresponds to a pressure
change less than 1 mTorr at around 25 mTorr nominal package
pressure. Finally, two of the packaged chips are subjected
to a very high temperature shock test performed at 300°C
for 5 minutes. The selected temperature value push the thermal
robustness limit of the chips, and is still sufficiently far from
the theoretical re-melting temperature (~363°C) of the Au-Si
eutectic bonds. Fig. 15 presents the resonance characteristics
of a sample resonator die before and after the high temperature
shock test performed at 300°C for 5 minutes. Q values,
and therefore, package pressures are measured to be almost
unchanged before and after the test. This shows that a short
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Fig. 15. Resonance characteristics of a packaged resonator die before and

after the ultra-high temperature shock test performed at 300°C for 5 minutes.
The hermeticity of the packaged chip withstands 300°C and mechanical
failures such as crack initiation are not detected even after this test.

duration at high temperature does not degrade the hermeticity
of the chips packaged with the aMEMS process.
IV. CONCLUSIONS

This study reports the extended results of an inher-
ently simple, high-yield, reliable, mechanically and thermally
robust wafer level hermetic encapsulation process, called
as the advanced MEMS (aMEMS) process, developed at
the METU-MEMS Research and Applications Center. The
process employs vertical feedthroughs in order to eliminate
step-coverage issues in conventional encapsulation methods,
and yet does not require any complex via-fill and trench-
refill process steps. The hermetic encapsulation is achieved by
Au-Si eutectic bonding at 400°C, although it can be extended
to other metal alloys. The fabricated prototypes are verified
to be operational with cavity pressures as low as 1 mTorr
with the use of thin-film getters. The cavity pressure can
be coarsely tuned in the range from 1 mTorr up to 5 Torr
by using proper combinations of outgassing steps and the
getter material. The average packaging yield is around 90%
for all different bonding trials at various process conditions.
The package pressure is being monitored to remain stable
below 10 mTorr for a period of 10 months until now. The
mechanical strength of the packages has been checked with the
conventional shear tests and measured to be as high as 30 MPa,
indicating a mechanically-strong bonding. The robustness of
the packages is also verified with thermal cycling, high
temperature storage, and high temperature shock tests. No
change has been observed in the package pressure after
subjecting the packaged chips to thermal cycling tests between
100°C to 25°C for 5 cycles with 10 minute duration at each
temperature step. The hermeticity of the packages is also
verified to be preserved after storing the packages at 150°C
for 24 hours, or applying a very high temperature shock as
high as 300°C for 5 minutes. In conclusion, the proposed
packaging method provides a new, simple, high-yield, reliable,
and robust solution for the wafer-level hermetic packaging of
various MEMS devices.
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