EXERCISE SET #6

In the case of a degenerate or separable kernel K(s,t) as

$$\mathbf{K}(\mathbf{s},\mathbf{t}) = \sum_{i=1}^{n} \mathbf{a}_{i}(\mathbf{s})\mathbf{b}_{i}(\mathbf{t})$$

where the functions $a_1(s),...,a_n(s)$ and the functions $b_1(s),...,b_n(s)$ are linearly independent, the Fredholm integral equation of the 2nd kind

$$g(s) = f(s) + \lambda \int K(s,t)g(t)dt$$

becomes

$$g(s) = f(s) + \lambda \sum_{i=1}^{n} a_i(s) \int b_i(t)g(t)dt .$$

The problem then reduces to finding the quantites c_i where

$$c_i = \int b_i(t)g(t)dt$$

such that

$$g(s) = f(s) + \lambda \sum_{i=1}^{n} c_i a_i(s)$$
.

Introducing the notation

$$f_i = \int b_i(t)f(t)dt$$
, $a_{ik} = \int b_i(t)a_k(t)dt$

the problem further reduces to a system of n algebraic equations for the unknowns c_i ,

$$c_i - \lambda \sum\nolimits_{k=1}^n a_{ik} c_k = f_i$$

The determinant $D(\lambda)$ of this system is

$$D(\lambda) = \begin{vmatrix} 1 - \lambda a_{11} & -\lambda a_{12} & \dots & -\lambda a_{1n} \\ -\lambda a_{21} & 1 - \lambda a_{22} & \dots & -\lambda a_{2n} \\ \vdots & & & \\ -\lambda a_{n1} & -\lambda a_{n2} & \dots & 1 - \lambda a_{nn} \end{vmatrix}$$

which is s a polynomial in $\boldsymbol{\lambda}$ of degree at most n. Note that

(i) $D(0) = I_n$,

(ii) For all values of λ for which $D(\lambda) \neq 0$, the algebraic system, and thereby the integral equation, has a unique solution.

(iii) For all values of λ for which $D(\lambda) = 0$, the algebraic system, and the integral equation, either is insoluble or has an infinite number of solutions.

(iv) Setting $\lambda = 1/\mu$, we have the eigenvalue problem of matrix theory where they are given by the polynomial $D(\lambda) = 0$. They are also the eigenvalues of the integral equation with the corresponding solution g(s) being the eigenfunction.

The inverse of the integral equation is defined by

$$g(s) = f(s) + \lambda \int \Gamma(s, t : \lambda) f(t) dt$$

where the function $\Gamma(s,t;\lambda)$ is the resolvent (or reciprocal) kernel that is given by

$$\Gamma(s,t;\lambda) = D(s,t;\lambda)/D(\lambda)$$

with

$$D(s,t;\lambda) = \begin{vmatrix} 0 & a_1(s) & a_2(s) & \dots & a_n(s) \\ b_1(t) & 1 - \lambda a_{11} & -\lambda a_{12} & \dots & -\lambda a_{1n} \\ b_2(t) & -\lambda a_{21} & 1 - \lambda a_{22} & \dots & -\lambda a_{2n} \\ \vdots & & & \\ b_n(t) & -\lambda a_{n1} & -\lambda a_{n2} & \dots & 1 - \lambda a_{nn} \end{vmatrix}$$

Note that the roots of the equation $D(\lambda) = 0$, i.e. the eigenvalues of the kernel K(s,t), are the singular points of $\Gamma(s,t;\lambda)$.

Fredholm Alternative Theorem

(i) Either the nonhomogeneous Fredholm integral equation

$$g(s) = f(s) + \lambda \int K(s, t)g(t)dt$$

with a separable kernel and fixed λ possesses one and only one (unique) solution g(s) for arbitrary square-integrable functions f(s) and K(s,t), or

(ii) the nonhomogeneous integral equation has a solution if and only if the given function f(s) satisfies the r orthogonality conditions

$$(f, \psi_{0i}) \equiv \int f(s)\psi_{0i}(s)ds = 0, \quad i = 1, 2, ..., r$$

where the solution is determined only up to an additive linear combination $\sum_{i=1}^{r} C_i g_{0i}$.

Here, g_{0i} stands for r linearly independent solutions of the homogeneous equation

$$g(s) = \lambda \int K(s,t)g(t)dt$$

while ψ_{0i} stands for r linearly independent solutions of the transposed homogeneous equation

$$\psi(s) = \lambda \int K(t,s)\psi(t)dt$$
.

Note that alternative (i) occurs for values of λ for which $D(\lambda) \neq 0$, in which case the homogeneous equation (f = 0) has only the trivial solution g = 0.

Analogy of System of Linear Equations

Consider a linear system of n equations in m unknowns represented in the matrix form

$$A X = B$$

$$n \times m m \times 1 n \times 1$$

and consider the matrix A as composed of m column vectors $C_i \in \mathbf{R}^n$, i = 1, 2, ..., m, and n row vectors $R_j \in \mathbf{R}^m$, j = 1, 2, ..., n, that is,

	$\left[C_{1} \right]$	C_2	•••	C _m			$\left[\mathbf{R}_{1} \right]$	\rightarrow	 \rightarrow	ĺ
A =	\downarrow	\downarrow	•••	\downarrow	0.5	A =	R ₂	\rightarrow	 \rightarrow	
	:	:		:	0I		:	:	:	•
	L ↓	\downarrow		\downarrow			R _n	\rightarrow	 \rightarrow	

Some notes:

(i) The column space of A, span $\{C_1, C_2, ..., C_m\} \subseteq \mathbf{R}^n$, and the row space of A, span $\{R_1, R_2, ..., R_n\} \subseteq \mathbf{R}^m$, have the same dimension, called rank of A, say r,

dim {span { $C_1, C_2, ..., C_m$ }} = dim {span { $R_1, R_2, ..., R_n$ } } = r

which is equal to the number of linearly independent column and row vectors, respectively.

(ii) Since column and row spaces of A are subspaces of \mathbf{R}^n and \mathbf{R}^m , respectively, $r \le \min\{n, m\}$.

(iii) The solution space of the homogeneous system AX = 0 form a subpace of \mathbf{R}^{m} , called the kernel of A,

$$\ker \{A\} = \dim \{X \mid AX = 0\} = \dim \{\operatorname{span} \{X_{01}, X_{02}, ..., X_{0p}\}\} \equiv p = m - r$$

which is the orthogonal complement to the row space of A in \mathbf{R}^{m} , because

$$AX = \begin{bmatrix} R_1 \rightarrow \dots \rightarrow \\ R_2 \rightarrow \dots \rightarrow \\ \vdots & \vdots & \vdots \\ R_n \rightarrow \dots & - \end{bmatrix} X = \begin{bmatrix} R_1 \cdot X \\ R_1 \cdot X \\ \vdots \\ R_1 \cdot X \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

(iv) The solution space to the transposed homogeneous system $A^T Y = 0$ form a subpace of \mathbf{R}^n , called the kernel of A^T ,

$$\ker \left\{ \mathbf{A}^{\mathrm{T}} \right\} = \dim \left\{ \mathbf{Y} \mid \mathbf{A}^{\mathrm{T}} \mathbf{Y} = \mathbf{0} \right\} = \dim \left\{ \operatorname{span} \left\{ \mathbf{Y}_{01}, \mathbf{Y}_{02}, \dots, \mathbf{Y}_{0q} \right\} \right\} \equiv q = n - r$$

which is the orthogonal complement to the column space of A in \mathbf{R}^n , because

$$\mathbf{A}^{\mathrm{T}}\mathbf{Y} = \begin{bmatrix} \mathbf{C}_{1} \rightarrow \dots \rightarrow \\ \mathbf{C}_{2} \rightarrow \dots \rightarrow \\ \vdots & \vdots & \vdots \\ \mathbf{C}_{\mathrm{m}} \rightarrow \dots \rightarrow \end{bmatrix} \mathbf{Y} = \begin{bmatrix} \mathbf{C}_{1} \cdot \mathbf{Y} \\ \mathbf{C}_{2} \cdot \mathbf{Y} \\ \vdots \\ \mathbf{C}_{\mathrm{m}} \cdot \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

(v) (Fredholm Alternative) The nonhomogeneous system AX = B has a solution if and only if B is in the column space of A, that is,

$$AX = \begin{bmatrix} C_1 & C_2 & \dots & C_m \\ \downarrow & \downarrow & \dots & \downarrow \\ \vdots & \vdots & & \vdots \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix} X = x_1 C_1 + x_2 C_2 + \dots + x_m C_m = B$$

or it is in the orthogonal complement of the kernel of A^T , that is, B satisfies the q = n - r constraints, $B \cdot Y_{0i} = 0$, i = 1, 2, ..., q.

1. Consider the integral equation

$$g(s) = f(s) + \lambda \int_0^1 K(s, t)g(t)dt$$

and show that for the kernels given below the system determinant $D(\lambda)$ has the given expression.

- (a) $K(s,t) = \pm 1 \& D(\lambda) = 1 \mp \lambda$.
- (b) K(s,t) = st & D(λ) = 1- $\lambda/3$.
- (c) K(s,t) = $s^2 + t^2 \& D(\lambda) = 1 2\lambda/3 4\lambda^2/45$.
- 2. Invert the integral equation

$$g(s) = f(s) + \lambda \int_0^{2\pi} (\sin s \cos t) g(t) dt.$$

Ans.: $g(s) = f(s) + \int_0^{2\pi} \Gamma(s,t;\lambda) f(t) dt$ where $\Gamma(s,t;\lambda) = \lambda \sin s \cos t$.

3. Find the resolvent kernel for the integral equation

$$g(s) = f(s) + \lambda \int_{-1}^{1} (st + s^2t^2)g(t)dt$$
.

Ans.: $\Gamma(s,t;\lambda) = \frac{st}{1-2\lambda/3} + \frac{s^2t^2}{1-2\lambda/5}$.

4. Solve the homogeneous Fredholm integral equation

$$g(s) = \lambda \int_0^1 (e^s e^t) g(t) dt \, .$$

Ans.: Nontrivial solution $g(s) = 2ce^{s}/(e^{2}-1)$ for $\lambda = 2/(e^{2}-1)$.

5. Find the eigenvalues and eigenfunctions of the homogeneous integral equation

$$g(s) = \lambda \int_1^2 \left[st + (1/st) \right] g(t) dt .$$

Ans.: The eigenvalues $\lambda_{1,2} = \frac{1}{2}(17 \mp \sqrt{265})$.

6. Show that the integral equation

$$g(s) = f(s) + (1/\pi) \int_0^{2\pi} \sin(s+t)g(t) dt$$

possesses no solution for f(s) = s, but that it possesses infinitely many solutions when f(s) = 1. Ans.: $g_0(s) = \psi_0(s) = \sin(s) + \cos(s)$ and for a solution $\int_0^{2\pi} (\sin(t) + \cos(t)) f(t) dt = 0$.

7. Solve the integral equation

$$g(s) = f(s) + \lambda \int_0^{2\pi} \cos(s+t)g(t)dt$$

and find the condition that f(s) must satisfy in order that this equation has a solution when λ is an eigenvalue. Obtain the general solution if $f(s) = \sin s$, considering all possible cases. Ans.: $\lambda_1 = 1/\pi$ and $\int_0^{2\pi} \cos(t)f(t)dt = 0$ & $\lambda_1 = -1/\pi$ and $\int_0^{2\pi} \sin(t)f(t)dt = 0$. For $\lambda_1 = 1/\pi$ and $f(s) = \sin s$, we have $g(s) = \frac{1}{2}\sin s + c\cos(s)$ where c is an arbitrary constant.

8. Show that the integral equation

$$g(s) = \lambda \int_0^{\pi} (\sin s \sin 2t) g(t) dt$$

has no eigenvalues. Ans.: $D(\lambda) = 1$.

9. Solve the integral equation

$$g(s) = 1 + \lambda \int_{-\pi}^{\pi} e^{i\omega(s-t)} g(t) dt$$

considering separately all the exceptional cases.

Ans.: For $\lambda \neq 1/2\pi$: $g(s) = 1 + \frac{2\pi\lambda}{1-2\pi\lambda}$ when $\omega = 0$; g(s) = 1 when $0 \neq \omega \in \mathbb{Z}$; $g(s) = 1 + \frac{2\lambda\sin(\omega\pi)}{\omega(1-2\pi\lambda)}e^{i\omega s}$ when $\omega \notin \mathbb{Z}$. For $\lambda = 1/2\pi$: $g(s) = 1 + \frac{ce^{i\omega s}}{2\pi}$ when $0 \neq \omega \in \mathbb{Z}$; no solution when $\omega = 0$ and $\omega \notin \mathbb{Z}$.

10. In the integral equation

$$g(s) = s^2 + \lambda \int_0^1 \sin(st)g(t)dt$$

replace sin(st) by the first two terms of its power-series development

$$\sin(st) = st - \frac{1}{3!}(st)^3 + \dots$$

and obtain an approximate solution.

11. In the integral equation

$$g(s) = e^{s} - s - \int_{0}^{1} s(e^{st} - 1)g(t)dt$$

replace the kernel by the first three terms of its power-series development

$$\mathbf{K}(\mathbf{s}, \mathbf{t}) = \mathbf{s}(\mathbf{e}^{\mathbf{s}\mathbf{t}} - 1) \approx \mathbf{s}^{2}\mathbf{t} + \frac{1}{2}\mathbf{s}^{3}\mathbf{t}^{2} + \frac{1}{6}\mathbf{s}^{4}\mathbf{t}^{3}$$

and obtain an approximate solution.