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Abstract. We study finitely generated modules over k[G] for a finite abelian

p-group G with p dividing the char(k) is p, through restrictions to certain
subalgebras of k[G]. Mail we obtained the following:

We define p-power points, shifted cyclic p-power order subgroups of k[G]
and give characterizations of these. We define modules of constant pt-Jordan

type, constant pt-power-Jordan type as generalizations of modules of constant

Jordan type, and pt-support, non-maximal pt-support spaces. We obtain a
filtration of modules of constant Jordan type with modules of constant p-power

Jordan type as the last term and give examples of non-isomorphic modules of

constant p-power Jordan type having the same constant Jordan type.

1. Introduction

Let G be a finite group, k be an algebraically closed field of characteristic p > 0,

and M be a finitely generated module over the group algebra k[G]. The restriction

of M to a subalgebra k[H] of k[G] is denoted by M↓H where H is a subgroup of

the group of units of k[G]. Recall that for a p-group G, a projective k[G]-module is

a free k[G]-module. The following two theorems from late 70’s show that studying

modules via restrictions is a powerful tool.

Chouinard’s Theorem [Ch]. Let G be a finite group. Then M is a projective k[G]-

module if and only if M↓E is a projective k[E]-module for every elementary abelian

p-subgroup E of G.

Dade’s Lemma [Da, Lemma 11.8]. Let E = 〈e1, . . . , en〉 be an elementary abelian

p-group of order pn and xα = α1(e1 − 1) + · · ·+ αn(en − 1). Then M is a projec-

tive k[E]-module if and only if M↓〈1+xα〉 is a projective k[〈1 + xα〉]-module for all

α = (α1, . . . , αn) ∈ kn.

Dade’s Lemma initiated further study of modules via restrictions to certain sub-

groups of the unit group of k[E]. It is one of the foundations of the rank variety

V r
E(M) of a k[E]-module M for an elementary abelian p-group E defined by Carlson
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[Ca] as the set

V r
E(M) = {0} ∪ {α ∈ kn | M↓〈1+xα〉 is not free}.

The group 〈1 + xα〉 appearing in Dade’s Lemma and also in the definition of rank

variety is called a shifted cyclic subgroup of k[E] in [Ca]. For an abelian p-group G,

we define a shifted (cyclic p-power) subgroup H of k[G] as a (cyclic, p-power order)

subgroup of the unit group of k[G] provided that k[G] is free as a k[H]-module.

The rank variety is generalized to restricted Lie algebras [FPa], [FPa1]; infini-

tesimal groups [SFB], [SFB1]; finite group schemes [FP]. In [FP], shifted cyclic

subgroups are generalized to p-points for group schemes. When G is a finite abelian

p-group, a p-point is the same as a flat point defined in [Fa]. In a subsequent recent

work, modules of constant Jordan type for finite group schemes are introduced by

Carlson, Friedlander and Pevtsova [CFP]. The common theme in all of these is

that a k[G]-module is studied via the Krull-Schmidt decomposition, equivalently

the Jordan block decomposition, of the restrictions of the module to subalgebras

isomorphic to the group algebra of a cyclic group of order p, namely k[X]/Xp. In

fact, for a module the set of Jordan types is first defined in [Oz] as a local invariant

consisting of the multiplicities of the Jordan blocks in the Jordan canonical form of

the matrix of the module at shifted cyclic subgroups of abelian p-groups of small

rank with a particular emphasis on the group C2×C4, and its Carlson modules

Lζ ’s. Using Jordan decompositions at shifted cylic subgroups referred as the set of

multiplicities, it is shown in [Ka] that certain type of k[C2×C4]-modules having the

same k-dimension and variety, such as (Lζn
α
)m and (Lζm

α
)n for ζα in the polynomial

part of H2(C2×C4; k), can be distinguished. Moreover, for a k[C2×C4]-module and

a Moore space X realizing M , a geometric interpretation of the multiplicities in the

Jordan decompostion of M↓C in terms of the Betti numbers of the fixed point set

XC for a cyclic subgroup C is given in [Ka2].

In this article, we study k[G]-modules via the restrictions to subalgebras iso-

morphic to k[X]/Xpt

, for t = 1, . . . ,m, instead of only t = 1, for a finite abelian

p-group G of exponent pm. We generalize the notion of p-points of [FP] to p-power

points of degree t (or simply pt-points) in 3.4. As a natural consequence we define

modules of constant pt-Jordan type, modules of constant pt-power Jordan type, see

4.1, and denote the sets of these modules by Ct(G) , Ct(G) respectively. We refer to

modules of constant pm-power Jordan type simply as modules of constant p-power

Jordan type. We obtain a decreasing filtration of modules of constant Jordan type
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having the set of modules of constant p-power Jordan type as the last term:

C1
G ⊇ C2

G ⊇ · · · ⊇ Cm
G .

Endotrivial k[G]-modules, k[G]-modules with equal image property are examples of

constant p-power Jordan type modules as disscussed in Section 4. For an example

of a module in Ct
G but not in Ct+1

G see 4.4. Since changing the algebra k[X]/Xp

to k[X]/Xpt

makes no change in the arguments showing that modules of constant

Jordan type are closed under taking direct sums and tensor products in [CFP], we

also have that Ct
G, and hence Ct

G are closed under direct sums and tensor products.

Our approach of considering p-power points allows us to distinguish modules that

are not distinguishable by considering only p-points as demonstrated in Examples

4.9–4.11. We generalize some results/definitions of [Ca], [FP], [FPS], [Ka].

We need to introduce some notation before stating our theorems. Let JG (or

simply J when there is no ambiguity) denote the Jacobson radical of k[G]. It is

known that for an elementary abelian p-group E, if x is a non-zero element of J2
E

then k[E] is not free as a k[〈1 + x〉]-module [Ca, Lemma 6.1]. However, when the

group G is not elementary abelian, k[G] is certainly free as a k[〈gp〉]-module for any

g in G of order p2 or greater and gp− 1 = (g− 1)p is in J2
G. This leads us to define

the pseudo-radical-square J(2) as a substitute for J2
E so that gp − 1 6∈ J(2); see 2.5.

We write J = L ⊕ J(2) and x = xL + xJ(2) for x ∈ J with xL ∈ L , xJ(2) ∈ J(2).

Although J(2) is not necessarily an ideal, J(2) and its vector space complement L in

J are closed under the Frobenius homomorphism F given by F (a) = ap. Our main

theorems, Theorem 3.2 and Theorem 3.5, are generalizations of Lemma 6.1 and

6.4 in [Ca] and also those of Theorem 4.1 and Theorem 4.3 in [Ka] respectively.

Theorem 3.2 gives a characterization of p-power points and shifted cyclic subgroups

of k[G].

Theorem 3.2. Suppose that G is an abelian p-group and 0 6= x ∈ JG. Then

k[G] is free as a k[〈1 + x〉]-module if and only if x|〈1+x〉|/p 6∈ J(2) if and only if

|〈1 + xL〉| = |〈1 + x〉|.

It is not difficult to find examples of k[G]-modules M , such that for x and y

in JG\J2
G with x ≡ y (mod J2

G), the direct sum decompositions, i.e., the Jordan

types, of M↓〈1+x〉 and M↓〈1+y〉 are not the same. This phenomenon does not occur

when G = C2×C2 and x is a 2-point, or when G = C2×C4 and x is a 4-point [Ka],

i.e., the Jordan type at x is independent of xJ(2) . In general, for the elements x, y of
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P t(G) with x ≡ y mod (J(2)), we show by Theorem 3.5 that for a k[G]-module of

k-dimension divisible by pt, the Jordan block decomposition of the matrix of x on

M is of maximal possible Jordan type if and only if the Jordan block decompositon

of the matrix of y on M is of maximal possible Jordan type.

Theorem 3.5. Let x, y be in P t(G) and M be a finitely generated k[G]-module.

If x ≡ y mod (J(2)), then M↓〈1+x〉 is free if and only if M↓〈1+y〉 is free.

By Theorem 3.5 we are able to define an equivalence relation on P t(G) by setting

x ∼ y if and only if M↓〈1+x〉 is free if and only if M↓〈1+y〉 is free for every finitely

generated k[G]-module M . We denote the quotient set of this relation by Pt(G).

Thus, by Theorem 3.5 there are surjective maps

J/J(2) −→ Pt(G) and P t(G)/J(2)t −→ Pt(G).

When G is elementary abelian the fist map is shown to be a bijection by Carlson

[Ca], however when the group is non-elementary abelian that map has a non-

trivial kernel, see 3.7. Also, for x ∈ J it is immediate that x is a pt-point if

and only if xpt−i

is a pi-point, and there is a map F i : Pt(G) −→ Pt−i(G) for

i = 1, . . . ,m, where F is the Frobenius homomorphism. Obviously there is a one

to one correspondence of P1(G) with P (G) as well as of P (G) with Proj|G|, where

|G| is the cohomological support variety of G; see [FP], [Ca], [AS], [Qu]. Thus

there are maps J/J(2) −→ Pt(G) −→ P1(G) −→ Proj|G|. At this point for each

t, t = 1 . . . , m, it is natural to define the pt-support space Pt(G)M , and the pt-

non-maximal support space Γt(G)M for any finitely generated k[G]-module M as

follows:

Pt(G)M = { [x] ∈ Pt(G) | M↓〈1+x〉 is not free } and

Γt(G)M = { [x] ∈ Pt(G) | M↓〈1+y〉 is not of maximal

Jordan type for some representative y of [x] }
with the partial order on Jordan types given by the usual dominance order as in

[FPS]. Since M↓〈1+x〉 is not free if and only if dimk(xM) 6= dimk(M)
|〈1+x〉| (|〈1+x〉|− 1),

Pt(G)M generalizes Carlson’s rank variety from modules over elementary abelian p-

groups to any abelian p-group. Changing the algebra k[X]/Xp to k[X]/Xpt

makes

no difference in the arguments for t = 1 in [CFP], hence we deduce that M↓〈1+y〉

has the same Jordan type as M↓〈1+x〉 provided that x, y are equivalent pt-points

and M ↓〈1+x〉 has maximal Jordan type, for each t = 1, . . . ,m. Thus Γt(G)M is

well-defined. Moreover, we have the analogous set inclusions

Γt(G)M ⊆ Pt(G)M ⊆ Pt(G),
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where the first inclusion is equality if and only if the second set inclusion is proper.

Furthermore, Γt(G)M = ∅ if and only if M is of constant pt-Jordan type, i.e., M is

in Ct
G, and Γ1(G)M = · · · = Γt(G)M = ∅ if and only if M is of constant pt-power

Jordan type, i.e., M is in Ct
G. Taking direct sum commutes with restriction, hence

we have

Pt(G)M⊕N = Pt(G)M ∪ Pt(G)N .

Since freeness at a pt-point x is determined by the p-point xp(t−1)
, by Lemma 3.9

in [FP] we have

Pt(G)M⊗N = Pt(G)M ∩ Pt(G)N .

We expect also that

Γt(G)M⊕N = Γt(G)M ∪ Γt(G)N ,

and since G has a unique maximal elementary abelian subgroup we expect that

Γt(G)M⊗N = (Γt(G)M ∪ Γt(G)N ) ∩ (Pt(G)M ∩ Pt(G)N ).

In the t = 1 case, Pt(G), Γt(G) are well-studied and they have further structures.

For instance, P (G) of [FP] is a variety known as the support variety, its subvarieties

P (G)M are the closed sets of the Zariski topology on P (G) for M a k[G]-module,

Γ(G)M is a closed subset of P (G)M , and there is a scheme structure on the pojec-

tivized cohomological support variety Proj|G|; see [Ca], [FP], [FPS] et al. The

analogous properties remain to be explored in our setting for t > 1, as well as the

above-mentioned filtration of modules of constant Jordan type.

The outline of the article is as follows. Preliminary results are in the second

section, main theorems are proved in the third section, modules of constant p-power

Jordan type and the main examples of the article constitute the fourth section.

I thank very much an anonymous referee for valuable suggestions improving the

article.

2. Preliminary Results

We first include two well known results from the literature, then include two

lemmas which are given in [Ca] when the group is an elementary abelian p-group.

Then we define the pseudo-radical-square J(2) of k[G] and prove a lemma involving

the elements of J(2). After that we give our preliminary results that are used in the

next section.
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Let H be a finite group, the element νH :=
∑

h∈H h of k[H] is referred as the

norm element of the group algebra k[H]. When P is a finite p-group the group al-

gebra k[P ] is a local ring with the unique maximal ideal JP and the unique minimal

left ideal kνP . Also the notions of freeness, projectivity, and injectivity coincide

for k[P ]-modules. In the following lemma we list several equivalent conditions for

determining the freeness of a k[P ]-module.

Lemma 2.1. Let P be a finite p-group, and M be a finitely generated k[P ]-module.

Then dimk(νP M) ≤ 1
|P | dimk(M). Moreover, the following are equivalent.

(i) dimk(νP M) = dimk(M)
|P | .

(ii) M is a free k[P ]-module.

In particular, if P = 〈g〉 is of order pt, then the following are equivalent.

(iii) dimk((g − 1)pt−1M) = dimk(M)
pt .

(iv) dimk((g − 1)M) = (pt − 1)dimk(M)
pt .

(v) dimk((gp(t−1) − 1)p−1M) = dimk(M)
p .

(vi) ker(g − 1 on M) = (g − 1)pt−1M .

(vii) ker((g − 1)pt−1 on M) = (g − 1)M .

Proof. The first part follows from Lemma 5.10.2 in [Be] as dimk(νP M) is the

number of free summands in the decomposition of M . The second part follows

from the fist part using the fact that for P = 〈g〉 of order pt, νP = (g − 1)pt−1 and

ν〈gp(t−1) 〉 = (gp(t−1) − 1)p−1 = (g − 1)pt−p(t−1)
. �

The following lemma is used in the proof of Theorem 3.2, it is mod-p binomial

theorem as it is well known that the binomial coefficients satisfy the congruence( pn − 1
j

)
≡ (−1)j .

Lemma 2.2. Let a, b be elements of a commutative k-algebra with char(k) = p > 0,

and m be a positive integer. Then

(a + b)pm−1 = apm−1 − apm−2b + · · · − abpm−2 + bpm−1.

Some useful properties of the elements of the Jacobson radical JG of k[G] are

summarized in the following lemma. They can be seen easily from the mod-p

binomial theorem as the binomial coefficient
( pn

j

)
≡ 0 for j ≤ pn − 1.

Lemma 2.3. Let x be a non-zero element of JG.

(i) |〈1 + x〉| = pt for some t = 1, . . . ,m (recall that the exponent of G is pm).
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(ii) 〈1 + x〉 = Cpt if and only if xpt

= 0 and xp(t−1) 6= 0.

(iii) |〈1 + xpl〉| = p if and only if xpl+1
= 0 and xpl 6= 0.

(iv) dimk(k[〈1 + x〉]) = pt if and only if xpt

= 0 and xpt−1 6= 0.

(v) dimk(k[〈1 + xp(t−1)〉]) = p if and only if xpt

= 0 and xpt−p(t−1) 6= 0.

(vi) If k[〈1 + x〉] ∼= k[Cpt ] then k[〈1 + xp(t−1)〉] ∼= k[Cp].

Note that the converse of the statement (vi) of Lemma 2.3 is not true true in

general, see Example 2.7 (1), (2).

Notation 2.4. Let G = 〈g1, . . . , gr〉 be a an abelian p-group of p-rank r and of

exponent pm with 〈gi〉 ∼= Cpni for i = 1, . . . , r with n1 ≤ · · · ≤ nr = m. The unique

maximal elementary abelian p-subgroup E of G can be written as E = 〈e1, . . . , er〉
with ei = gp(ni−1)

i for i = 1, . . . , r. Define the shifted basis for k[G] as the set

B = { (g1 − 1)i1 · · · (gr − 1)ir | ij = 0, 1, . . . , pnj − 1, j = 1, . . . , r}

together with the lexicographic order. In addition, taking (gi − 1)pni−t

= 0, for

t > ni and i = 1, . . . , r, we define the subspaces

Lt = k(g1 − 1)pn1−t

⊕ · · · ⊕ k(gr − 1)pnr−t

and N t = L1 ⊕ · · · ⊕ Lt\L1 ⊕ · · · ⊕ Lt−1

for t = 1, . . . ,m. Also we set L = L1 ⊕ · · · ⊕ Lm.

Note that Lt = ker{F t : J −→ J} ∩ {(gi − 1)pij | i = 1, . . . , r, ij = 1, . . . , ni − 1}.
We write x = xU + xV with xU in U and xV in V when x is in a subspace U ⊕ V .

Definition 2.5. The pseudo-radical-square J(2) of k[G] is the k-subspace of J2
G

spanned by the elements in the set

B\({1} ∪ { (g1 − 1)pi1
, . . . , (gr − 1)pir | ij = 0, 1, . . . , ni − 1, j = 1, . . . , r}).

Let J(2)t
denote the elements of J(2) which have nilpotency at most pt, i.e.,

J(2)t
= ker{F t : J(2) −→ J(2)}

and

JG = L⊕ J(2).

Remark 2.6. Since (gi − 1)pt 6∈ JG · JE , for any t = 1, . . . , ni − 1, we have the

following inclusions

J2
G ⊇ J(2) ⊇ JG · JE ⊇ J2

E ,

which all become equalities when the group G is elementary abelian. Although the

middle inclusion is equality for the non-elementary abelian 2-group G = C2×C4,
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it is a proper inclusion in most cases; even for G = 〈g〉 ∼= C9, we have (g − 1)2 in

J(2)\JG · JE . It should be noted that

JG/J(2) ⊇ JE/J2
E and JG/J(2) ∼= L ∼= ⊕r

i=1 ⊕
ni−1
ij=0 J

〈gp
ij

i 〉
/J2

〈gp
ij

i 〉
.

In the particular cases, namely, p = 2 and m ≤ 2 the space J(2) is an ideal of k[G]

even though it is not even a subring of k[G] in general. For some results involving

the elements of J(2) see Proposition 3.1, Theorem 3.2, Lemma 2.8, Lemma 2.10.

The following example provides counterexamples to several expectations. Namely,

parts (1), and (2) provide examples showing that the converse of Lemma 2.3 (vi)

is not true. Part (4) provides a counterexample to the converse of Proposition

3.1 and to that of Theorem 3.2. Parts (1), (2), (3) provide examples of x with

|〈1 + x〉| ∼= Cpt but k[〈1 + x〉] 6∼= k[Cpt ].

Example 2.7. Let G = 〈g, h〉 be an abelian 3-group where g, h are of orders 3, 27

respectively. In each case x ∈ JG.

(1) Let x = (g − 1)2 + (h − 1)4. Then x ∈ J(2), x3 ∈ J(2) and 〈1 + x3〉 ∼= C3,

〈1 + x〉 ∼= C9. Moreover k[〈1 + x3〉] ∼= k[C3] but k[〈1 + x〉] 6∼= k[C9].

(2) Let x = (h−1)4 +(h−1)9. Then x 6∈ J(2) but x3 ∈ J(2), and 〈1+x3〉 ∼= C3,

〈1 + x〉 ∼= C9. Moreover k[〈1 + x3〉] ∼= k[C3] but k[〈1 + x〉] 6∼= k[C9].

(3) Let x = (h− 1)2 + (h− 1)7. Then x ∈ J(2), however x2 = (h− 1)4 + 2(h−
1)9 + (h − 1)14 6∈ J(2), x3 = (h − 1)6 ∈ J(2), and x9 = (h − 1)18 ∈ J(2).

We have 〈1 + x9〉 ∼= C3, and 〈1 + x〉 ∼= C27, but k[〈1 + x9〉] 6∼= k[C3],

k[〈1 + x〉] 6∼= k[C27].

(4) Let x = (g − 1) + (h − 1)4. Then x 6∈ J(2), x3 = (h − 1)12 ∈ J(2), x6 6= 0,

x8 6= 0 and 〈1 + x〉 ∼= C9. Hence k[〈1 + x〉] ∼= k[C9] and k[〈1 + x3〉] ∼= k[C3].

The following lemma is an easy consequence of the definitions of L, J(2) and the

properties of elements of JG given in Lemma 2.3.

Lemma 2.8. Suppose that 0 6= x ∈ JG = L⊕ J(2).

(i) If x ∈ J(2) then xpi ∈ J(2) for i ≥ 0, similarly if x ∈ L then xpi ∈ L.

(ii) Suppose that x = xL + xJ(2) and |〈1 + x〉| = pt. Then xpt−1 6∈ J(2) if and

only if |〈1 + xL〉| = |〈1 + x〉|.

Next we prove a crutial technical lemma to be used in the proofs of Proposition

3.1 and Theorem 3.2. Setting up some notation to simplify its presentation is useful.
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Notation 2.9. In order to simplify the notation in Lemma 2.10 we define in JG the

elements

µj =
r∏

i=1,i 6=j

(ei − 1) and µ = (ej − 1)µj .

Note that µ and µj are in JE as well, moreover νE =
∑

g∈E g = µp−1; recall that

E is the unique maximal elementary abelian p-subgroup of G.

Lemma 2.10. Suppose that z ∈ J(2), zpt

= 0, and w = zp(t−1) 6= 0. Then the fol-

lowing equalities hold for the elementary abelian subgroup A = 〈e1, . . . , er, 1+w〉 of

the units of k[G], and uα = 1+
∑r

i=1 αi(ei−1)+αr+1w where α = (α1, . . . , αr+1) ∈
kr+1 with αj 6= 0 for some j ∈ {1, . . . , r}.

(i) (uα − 1)p−1µp−1
j = cjv

p−1
j (ej − 1)p−1µp−1

j for some non-zero cj ∈ k

and a unit vj = 1 + xj ∈ k[G].

(ii) νAj′ = (uα − 1)p−1µp−1
j = uj(ej − 1)p−1µp−1

j = ujνE for some unit uj ∈
k[G] for the group Aj′ = 〈e1, . . . , ej−1, ej+1, . . . , er, uα〉.

(iii) νA = 0.

Proof. Define (gi − 1)pni−t

= gi − 1 if ni ≤ t. Since z ∈ JG = k[G](g1 − 1) + . . . +

k[G](gr − 1) and zpt

= 0,

z ∈ k[G](g1 − 1)p(n1−t)
+ · · ·+ k[G](gr − 1)p(nr−t)

.

Thus we can write z =
∑r

i=1 ρi(gi−1)p(ni−t)
for some ρ1, . . . , ρr in JG, not all zero,

as z ∈ J(2). Then

w =
r∑

i=1

ρp(t−1)

i (ei − 1),

not all ρpt−1

i are zero. Moreover, whenever i 6= j, we have (ei − 1)µp−1
j = 0 for

i = 1, . . . , r. Thus

(1) wµp−1
j = ρp(t−1)

j (ej − 1)µp−1
j ,

and hence

(uα − 1)µp−1
j =

( r∑
i=1

αi(ei − 1) + αr+1w
)
µp−1

j

= µp−1
j αj(ej − 1) + αr+1ρ

p(t−1)

j (ej − 1)µp−1
j

= (αj + αr+1ρ
p(t−1)

j )(ej − 1)µp−1
j .
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Observe that

(uα − 1)2µp−1
j =

[
(αj + αr+1ρ

p(t−1)

j )(ej − 1)
]
(uα − 1)µp−1

j

=
[
(αj + αr+1ρ

p(t−1)

j )(ej − 1)
]2

µp−1
j ,

and finally,

(uα − 1)p−1µp−1
j = [µp−1

j αj(ej − 1) + αr+1ρ
p(t−1)

j (ej − 1)](uα − 1)µp−1
j

=
[
(αj + αr+1ρ

p(t−1)

j )(ej − 1)
]p−1

µp−1
j .

Set v′j = (αj + αr+1ρ
p(t−1)

j ). Since αj 6= 0, v′j is a unit in k[G].

Letting vj = α−1
j v′j proves part (i) of the lemma. Part (ii) follows from the

definitions.

For (iii): Using equation (1), we obtain

w2µp−1
j = (ρp(t−1)

j (ej − 1))wµp−1
j = (ρp(t−1)

j (ej − 1))2µp−1
j ,

and finally,

wp−1µp−1
j = (ρp(t−1)

j (ej − 1))p−1µp−1
j .

Therefore

νA = (ej − 1)p−1wp−1µp−1
j = (ej − 1)2(p−1)

(
ρp(t−1)

j

)p−1
µp−1

j = 0

as 2p− 2 ≥ p for any prime number p and (ej − 1)p = 0. �

Proposition 2.11. Let x, v, z be pairwise commuting nilpotent operators on M =

kd for k a field of characteristic p. Suppose that the nilpotencies of x, v, z are p,

p, l, respectively, l ≥ 1 Then M is free as a k[Cp]-module where the action of g− 1

on M is given by x if and only if M is free as a k[Cp]-module where the action of

g − 1 on M is given by x + vz for a generator g of Cp.

Proof. Follows from Proposition 2.2 of [FP] which is a generalization of Lemma 6.4

of [Ca]. In the statement of Proposition 2.2 of [FP] z is assumed to have nilpotency

pr instead of l. We observed that the proof uses only that z is nilpotent. �

3. Main Theorems

Let G be an abelian p-group and E be its unique maximal elementary abelian

p-subgroup with generators given in Notation 2.4. In order to show that a module

is free we will use Lemma 2.1 or Dade’s Lemma, or sometimes the equivalent of

Dade’s Lemma, namely, V r
E(M) = 0.
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When G is an elementary abelian p-group Proposition 3.1 is Lemma 6.1 in [Ca].

The proof we give here is based on the proof of Lemma 6.1 in [Ca] and Lemma

2.10. Rougly speaking, the role of νH′ in [Ca] is played by u · νH′ where u is a unit

of k[G].

Proposition 3.1. Suppose G is an abelian p-group and z ∈ J(2)\{0}. Then k[G]

is not free as a k[〈1 + z〉]-module.

Proof. Let z ∈ J(2) with z 6= 0. Since J(2) is contained in JG, z is nilpotent. By

Lemma 2.3, (i) and (ii) 〈1 + z〉 ∼= Cpt for some positive integer t, and zp(t−1) 6= 0.

By Chouinard’s theorem it suffices to show that k[G] is not free as a k[〈1 + zpt−1〉]-
module. To simplify the notation we set set w = zp(t−1)

.

Since wp = 0, by Lemma 2.3 (iv) we have that k[〈1 + w〉] ∼= k[Cp] if and only

if wp−1 6= 0. If wp−1 = 0, then dimk(k[〈1 + w〉]) < p, however dimk k[G] is

pl for some l. Thus k[G] cannot be free as a k[〈1 + w〉]-module. Hence we can

assume that wp−1 6= 0, thus k[〈1 + w〉] ∼= k[Cp]. (Note that it is still possible that

k[〈1 + z〉] 6∼= k[Cpt ], see 2.7 (1).) Let H = 〈f1, . . . , fr+1〉 be an elementary abelian

p-group of order pr+1. Define an action of H on k[G] as follows; fim = eim for all

i = 1, . . . , r, and fr+1m = (1 + w)m for all m ∈ k[G].

Claim: V r
H(k[G]) = k{(0, . . . , 0, 1)} ⊆ kr+1.

Since ν〈f1,...,fr〉k[G] = νEk[G], and k[G]↓E is free as a k[E]-module (E is a sub-

group of G) we have k[G] ↓〈f1,...,fr〉 is free. Hence by Dade’s Lemma none of

α = (α1, . . . , αr, 0) ∈ kr+1\0 is in V r
H(k[G]).

Let α = (α1, . . . , αr+1) ∈ kr+1 with αj 6= 0 for some j = 1, . . . , r,

uα = 1 +
r+1∑
i=1

αi(fi − 1) and u′α = 1 +
r∑

i=1

αi(ei − 1) + αr+1w.

Then 〈uα〉 and 〈u′α〉 are shifted cyclic subgroups of k[H] and k[A] respectively

where A = 〈e1, . . . , er, 1 + w〉. To show k[G]↓〈uα〉 is free it suffices to show that

k[G]↓Hj′ is free where Hj′ = 〈f1, . . . , fj−1, fj+1, . . . , fr, uα〉. By Lemma 2.10(ii)

νAj′ = ujνE for some unit uj and the subgroup Aj′ = 〈e1, . . . , ej−1, ej+1, . . . , er, u
′
α〉

of k[G]. Since νHj′k[G] = νAj′k[G] and k[G]↓E is free, we obtain that k[G]↓Hj′ is

free. Thus k[G]↓〈uα〉 is free. Therefore α 6∈ V r
H(k[G]) for α = (α1, . . . , αr+1) with

αj 6= 0 for some j = 1, . . . , r. Thus V r
H(k[G]) ⊆ k{(0, . . . , 0, 1)} ⊆ kr+1.

On the other hand νA = 0 by Lemma 2.10(iii). Hence νHk[G] = νAk[G] = 0.

Therefore k[G] is not free as a k[H]-module. Thus V r
H(k[G]) 6= 0. Then V r

H(k[G]) =
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k{(0, . . . , 0, 1)}. This proves the Claim. The statement that k[G] is not free as a

k[〈1 + w〉]-module follows from the Claim. �

It can happen that even if x 6∈ J(2), k[G]↓〈1+x〉 is not free. That is, the converse

of Proposition 3.1 is not true. Let G and x be as in Example 2.7 (4). We have

x 6∈ J(2), but x3 ∈ J(2). Thus k[G]↓〈1+x3〉 is not free by the above propostion (or

as dim(x6k[G]) = 9 < 27 = |G|/3), hence k[G]↓〈1+x〉 is not free by Chouinard’s

Theorem. Observe that, xL = g − 1 and |〈1 + xL〉| = 3 whereas |〈1 + x〉| = 9. The

next theorem gives a necessary and sufficient condition for the equality |〈1+xL〉| =
|〈1 + x〉|.

Theorem 3.2. Suppose that G is an abelian p-group and x ∈ JG. Then k[G] is

free as a k[〈1+x〉]-module if and only if x|〈1+x〉|/p 6∈ J(2) if and only if |〈1+xL〉| =
|〈1 + x〉|.

Proof. Suppose x ∈ J . By Lemma 2.3 (ii) we know that 〈1 + x〉 ∼= Cpt for some

t ≥ 0, and xpt

= 0, xp(t−1) 6= 0. Define (gi − 1)p(ni−t)
= (gi − 1) when ni − t ≤ 0,

and y = xpt−1
. As in Lemma 2.10, since

x ∈ k[G](g1 − 1)p(n1−t)
+ · · ·+ k[G](gr − 1)p(nr−t)

,

we can write

x = s1(g1 − 1)p(n1−t)
+ · · ·+ sr(gr − 1)p(nr−t)

for some s1, . . . , sr in k[G]. Taking p(t−1)-th power gives

y = xp(t−1)
= sp(t−1)

1 (g1 − 1)p(n1−1)
+ · · ·+ sp(t−1)

r (gr − 1)p(nr−1)
.

To simplify the notation write s′i = sp(t−1)

i for i = 1, . . . , r. Then

y = s′1(e1 − 1) + · · ·+ s′r(er − 1).

⇐=: Assume that y 6∈ J(2). The assumption y 6∈ J(2) implies that there exists a j

in {1, . . . , r} such that sj = aj+wj for some non-zero aj ∈ k, and wj ∈ J . Thus s′j =

a′j +w′
j for a non-zero a′j = ap(t−1)

j ∈ k, and w′
j = wp(t−1)

j ∈ J . Define an elementary

abelian subgroup of units of k[G] as Kj = 〈e1, . . . , ej−1, ej+1, . . . , er, 1 + y〉. Note

that Kj
∼= E and νE = µp−1 where µ is as defined in Notation 2.9.

Claim: νKj = apt−p(t−1)

j vjνE for some unit vj in k[G]. We argue as in the proof

of Lemma 2.10. Note that (ei − 1)µp−1
j = 0 for i = 1, . . . , r except for i 6= j. Then

yµp−1
j = s′j(ej − 1)µp−1

j .
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Hence y2µp−1
j = (s′j(ej − 1))2µp−1

j and eventually

νKj
= yp−1µp−1

j = (s′j(ej − 1))p−1µp−1
j = (s′j)

p−1µp−1 = (s′j)
p−1νE .

Since s′j = a′j + w′
j , Lemma 2.2 implies that

(s′j)
p−1 = (a′j)

p−1 + (p− 1)(a′j)
p−2w′

j+

(a′j)
p−3(w′

j)
2 + (p− 1)(a′j)

p−4(w′
j)

3 + · · ·+ (p− 1)a′j(w
′
j)

p−2 + (w′
j)

p−1.

Therefore (s′j)
p−1 = (a′j)

p−1(1 + zj) for some zj ∈ J . Letting vj = 1 + zj proves

the Claim.

Using the Claim we obtain that νKj
k[G] = νEk[G], and hence

dim(νKj
k[G]) = dim(νEk[G]).

Therefore k[G] is a free k[Kj ]-module by Lemma 2.1. Since 〈1 + y〉 is a subgroup

of Kj , k[G] is free as a k[〈1 + y〉]-module.

=⇒: Assume that k[G] is free as k[〈1+x〉]-module. Then k[G] is free as k[〈1+y〉]-
module by Chouinard’s Theorem. Therefore y 6∈ J(2) by Proposition 3.1. The last

assertion of the theorem is true by Lemma 2.8 (ii). �

Corollary 3.3. Let x ∈ J . Then x is a pt-point if and only if xpt−1
is a p-point.

In the special case of G = C2×C4, for x in J , x is in J(2) if and only if x|〈1+x〉|/2

is in J(2) [Ka]. However this is no longer the case for groups of higher order, such

as C2×C8 or C3×C27, see 2.7 (2), (4).

Although we work with finite abelian p-groups we make some of our definitions

in the more general setting of finite group schemes. For a finite group scheme G,

following the notation of [FP], k[G] denotes the coordinate ring of G, kG denotes

the k-linear dual algebra of k[G].

Definition 3.4. Let G be a finite group scheme over k. A flat map φ : k[X]/(Xpt

) −→
kG of algebras is called a pt-point or a p-power point of degree t of kG if φ factors

through kC for some abelian unipotent subgroup scheme C of G. A p-power point

(or a p∗-point) is a p-power point of degree t for some t.

When t = 1 the above definition is given in [FP]. For a finite abelian p-group

G, x in JG, a positive integer t, by Theorem 3.2 we have that x is a pt-point or

a p-power point of degree t of k[G] provided that 〈1 + x〉 ∼= Cpt and xp(t−1)
is not

in J(2). A p-power point or a p∗-point, is a pt-point for some t. That is, x is a

p-power point if and only if 〈1 + x〉 is a shifted cyclic subgroup. The set of all
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p-power points of degree t in k[G] is denoted by P t(G). The set of all pt-points of

k[G] for all t = 1, . . . ,m is denoted by P ∗(G). Denote by St(G) and S∗(G) the

sets of all shifted cyclic subgroups of order pt and of all shifted cyclic subgroups of

k[G], respectively. For N t given in 2.4, J(2)t
given in 2.5 we have

P ∗(G) = {x ∈ J | x|〈1+x〉|/p 6∈ J(2)}, S∗(G) = {〈1 + x〉 | x ∈ P ∗(G)},

P t(G) = {x ∈ J | x|〈1+x〉|/p 6∈ J(2) and 〈1 + x〉 ∼= Cpt}, or P t(G) = N t ⊕ J(2)t

and

St(G) = {〈1 + x〉 | x ∈ P t(G)}.

The following theorem is a generalization of Lemma 6.4 in [Ca] and also of

Lemma 1.5 (1) in [Fa], as well as Theorem 4.3 in [Ka].

Theorem 3.5. Let x, y be in P t(G) and M be a finitely generated k[G]-module.

If x ≡ y mod (J(2)), then M↓〈1+x〉 is free if and only if M↓〈1+y〉 is free.

Proof. By the hypothesis x ≡ y mod (J(2)) we can write y = x+w where w ∈ J(2).

Since x, y are in P t(G), the nilpotencies of x and y are pt, wpt

= 0, xp(t−1) 6∈ J(2),

yp(t−1) 6∈ J(2). By Chouinard’s Theorem it suffices to show that M ↓〈1+xp(t−1) 〉 is

free if and only if M ↓〈1+yp(t−1) 〉 is free. By Lemma 2.8 (i) we know xp(t−1) ≡

yp(t−1)
mod (J(2)). Also, the nilpotencies of xp(t−1)

and yp(t−1)
are p, and wp(t−1)

is

nilpotent. Since wpt

= 0, we have w ∈ (g1−1)p(n1−t)
JG+· · ·+(gr−1)p(nr−t)

JG. We

can write w = x1y1 + · · ·+xryr for some x1, . . . , xr, y1, . . . , yr in JG not necessarily

distinct, xi ∈ (gi − 1)p(ni−t)
. Since (wp(t−1)

)p = 0, we can write wp(t−1)
= v1z1 +

· · · + vszs where vi is p-nilpotent, and zi is nilpotent for i = 1, . . . , s, for some

s ≤ r. The statement then follows by the repeated application of Proposition 2.11.

Namely, first apply it to the triple xp(t−1)
, v1, z1, then to the triple xp(t−1)

+ v1z1,

v2, z2, and finally to the triple xp(t−1)
+ v1z1 + · · ·+ vs−1zs−1, vs, zs, to obtain that

M↓〈1+xp(t−1) 〉 is free if and only if M↓〈1+yp(t−1) 〉 is free. �

Definition 3.6. Define an equivalence relation on P t(G) by setting x ∼ y if and

only if M ↓〈1+x〉 is free if and only if M ↓〈1+y〉 is free for every finitely generated

k[G]-module M . Let Pt(G) denote the quotient set of this relation.

By Theorem 3.5 the map P t(G)/J(2)t −→ Pt(G) taking x̄ to [x] is well-defined

and surjective but not necessarily injective as shown by the example in the remark

below. Thus the converse of Theorem 3.5 is not necessarily true.
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Remark 3.7. Note that there is a one to one correspondence with P1(G) and P (G)

of [FP]. When the group is elementary abelian we can state it as follows; the

lines through the origin in J/J2 correspond to the equivalence classes of shifted

cyclic subgroups [Ca]. However when the group G is non-elementary abelian the

map from J/J(2) to Pt(G) given by x̄ −→ [xL1 + · · · + xLt ] is only surjective not

necessarily injective. For an example having non-trivial kernel consider the smallest

non-elementary abelian 2-group G = C2×C4 with generators g, h of degrees 2, 4

respectively. We have

P1(G) = {[a(g − 1) + b(h− 1)2 + w] | (a, b) 6= (0, 0), a, b ∈ k, w ∈ J(2)},

P2(G) = {[a(g − 1) + b(h− 1)2 + c(h− 1) + w] | c 6= 0, a, b, c ∈ k, w ∈ J(2)}.

The distinct, non-collinear points α = (0, 1, 1), and β = (0, 0, 1) of k3 ∼= J/J(2) ∼=
k(e − 1) + k(f − 1)2 + k(f − 1) give rise to the same group algebra k[〈1 + xα〉] =

k[〈1 + xβ〉] for xα = f − 1 + (f − 1)2, xβ = f − 1 in P 2(G). Therefore the

correspondence between the lines through the origin in k3 ∼= J/J(2) and the shifted

cyclic subgroups of k[G] is not one-to-one for a non-elementary abelian p-group.

This example also shows that x ∼ y does not imply x ≡ y mod (J(2)).

When the group G is elementary abelian Proposition 3.8, 3.9 are proved in [Ca,

Lemma 2.23, Lemma 6.3]. Although they are not explicitly referred in this article

we included them to show that shifted subgroups behave as ordinary subgroups of

G in some respect.

Proposition 3.8. Let G be an abelian p-group, H be a p-subgroup of the group

Units(k[G]), and M , S be finitely generated k[G]-modules. If the restriction M↓H

is free, then the restriction (M ⊗ S)↓H is free.

Proof. Let H be a p-subgroup of the group Units(k[G]). Note that the assertion is

trivially true if H is a subgroup of G. We proceed by induction on the dimension

of S, set d = dim(S). If d is equal to 1, then M ⊗S ∼= M hence there is nothing to

show. Suppose d is bigger than 1. Since G is a p-group, there exists a submodule

N in S with the property that N is isomorphic to the trivial module k. Then the

restrictions (M ⊗N)↓H and (M ⊗ (S/N))↓H are free by the induction hypothesis.

Thus the short exact sequence

0 −→ (M ⊗N)↓H−→ (M ⊗ S)↓H−→ (M ⊗ (S/N))↓H−→ 0

is split exact. Therefore the restriction (M ⊗ S)↓H is free. �
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Proposition 3.9. Let G be an abelian p-group and H be a p-subgroup of the group

Units(k[G]). The following are equivalent.

(i) The restricted module k[G]↓H is free.

(ii) There exists a k[G]-module M such that the restricted module M↓H is free.

Proof. It is obvious that (i) implies (ii). For the converse; assume that M is a k[G]-

module which is free as a k[H]-module. Then by Proposition 3.8 we know that

the restriction (M ⊗ k[G])↓H is free. On the other hand, the module M ⊗ k[G] is

necessarily free as a k[G]-module. Hence (M ⊗k[G])↓H
∼= (⊕rk[G])↓H for some r as

k[H]-modules, and consequently (⊕rk[G])↓H
∼= ⊕sk[H] for some s as k[H]-modules.

The conclusion that k[G]↓H is free follows from Krull-Schmidt Theorem since k[H]

is an indecomposable k[H]-module due to the fact that H is a p-group. �

4. Modules of constant p-power Jordan type

Let G be an abelian p-group and E be its unique maximal elementary abelian p-

subgroup with generators given in Notation 2.4 as usual. The immediate examples

of k[G]-modules of constant p-power Jordan type are k and k[G]. The modules

Lζα
, known as Carlson modules, are not of constant Jordan type hence not of

constant p-power Jordan type, for their definition see [Be2]. Because they are free

at every point except α [Ca]. When G is elementary abelian modules of constant

Jordan type and modules of constant p-power Jordan type coincide as there are

only cyclic subgroups of order p. Let 〈g〉 ∼= Cpt , and define J0
〈g〉 = k[〈g〉] and

J〈g〉 = Rad(k[〈g〉]). It is well-known that J i
〈g〉 is an indecomposable k[〈g〉]-module

of dimk(J i
〈g〉) = pt− i for i = 0, 1, . . . , pt−1, and any indecomposable k[〈g〉]-module

is isomorphic to one of them. Note that Jpt−1
〈g〉

∼= kν〈g〉 is the trivial module. Hence,

for a pt-point x of k[G] and a k[G]-module M , we have

M↓〈1+x〉∼=
pt−1∑
l=0

(J l
〈1+x〉)

ηpt−l(x),

where ηi(x) is the number of i-dimensional indecomposable summands of M↓〈1+x〉.

Thus the decomposition of M↓〈1+x〉 can be represented by

ηt = ηpt [pt] + · · ·+ η1[1].

That is, a k[〈1+x〉]-module M is completely determined by the Jordan canonical

form of the matrix representing the action of x on M which we refer as the Jordan

type of M at x as in [CFP]. When x is a pt-point, ηpt [pt] + · · ·+ η1[1] denotes the
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Jordan type of x where [i] denotes the Jordan block of size i × i, ηi denotes the

number of [i]. The formula given below is used to compute ηi provided that the

matrix X representing the action of x is known

ηi = rank(Xi−1)− 2 rank(Xi) + rank(Xi+1).

Definition 4.1. The Jordan type of M at a pt-point x, or the pt-Jordan type of M

at a pt-point x, denoted by pt-Jtype(M↓〈1+x〉), is defined as ηt. We say that M is of

constant pt-Jordan type, and refer to ηt as the pt-Jordan type of M , provided that

pt-Jtype(M↓〈1+x〉) is the same for every x in P t(G). In that case we simply write

pt-Jtype(M). We say M is of constant pt-power Jordan type, if M is of constant

pl-Jordan type for all l = 1, . . . , t. A module of constant pm-power Jordan type is

referred as a module of constant p-power-Jordan type for simplicity.

The above definition could be made for any G-module M for a finite group scheme

G over k as well by requiring pt-Jordan type of M to be the same at every pt-point

of G as defined in 3.4.

Remark 4.2. There is no reason for the i-times repeated Frobenius map F i :

Pt(G) −→ Pt−i(G) to be surjective or injective for any i = 1, . . . ,m. In par-

ticular, F from Pt(G) to Pt−1(G) is not surjective. Thus, although the pt-Jordan

type of x determines the pt−1-Jordan type of xp, we cannot say that a module of

constant pt-Jordan type is necessarily a module of constant pt−1-Jordan type, see

4.3 for an example.

Example 4.3. Let C3×C9 = 〈g, h〉 where g, h are of orders 3, 9 respectively, and

let ↙ denote the action of g − 1 and ↘ denote the action of h − 1 on M . Let M

be the k[C3×C9]-module given by Figure 1. It can be computed that

9-JType(M↓〈h〉) = [3] + [2] + [1],

3-JType(M↓〈h3〉) = 6[1],

3-JType(M↓〈g〉) = [3] + [2] + [1].

Obviously M is not of constant 3-type, whereas it can be shown that M is of

constant 9-Jordan type. That is M is in C2
G but not in C1

G (so that it is not in C2
G).

4.1. A Filtration for Modules of Constant Jordan Type. There is a de-

creasing filtration of modules of constant Jordan type having the set of modules of

constant p-power Jordan type as the last term;

(2) C1
G ⊇ C2

G ⊇ · · · ⊇ Cm
G
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with Ct
G denoting the set of all k[G]-modules of constant pl-Jordan type for l =

1, 2, . . . , t. For an example of a module in Ct
G but not in Ct+1

G see Example 4.4.

Note that a k[G]-module M is of constant pt-power Jordan type if and only if

Γi(G)M = ∅ for i = 1, . . . , t, see Introduction for the definition of Γi(G)M .

Example 4.4. There is a k[C4×C4]-module M which is of constant 2-Jordan type,

but not of constant 4-Jordan type, i.e., M ∈ C1
G\C2

G. Let C4×C4 = 〈g, h〉 where g,

h are of order 4. Let ↙ denote the action of g−1 and ↘ denote the action of h−1

on M , and M be given by the diagram in Figure 2. It can be computed that

2-JType(M) = [2] + 5[1], and

4-JType(M↓〈h〉) = [3] + [2] + 2[1], whereas

4-JType(M↓〈g〉) = [3] + 2[2].

It is desirable to obtain a method of constructing examples of modules which are

in Ci
G \ C

i+1
G firstly for a given i, for the group Cpm×Cpm , eventually for any finite

abelian p-group.

4.2. Endotrivial Modules. As shown by Dade in [Da] the indecomposable en-

dotrivial modules for k[G] are of the form Ωn
G(k) for n ∈ Z where Ωn

G(k) is the n-th

Heller shift of the trivial k[G]-module k. These modules have the property that

Ωn
G(k)↓〈1+x〉∼= Ωn

〈1+x〉(k)⊕ free for any p-power point x. Hence their Jordan type is

l[pt] + 1[1] or l[pt] + 1[pt − 1]

for some l respectively for even n and odd n. This proves the following theorem.
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Theorem 4.5. Endotrivial k[G]-modules are are of constant p-power Jordan type.

4.3. Modules with Equal Image Property. Inspired by the definition of mod-

ules of constant image property given in [CF] for elementary abelian p-groups we

adopt the definition to our setting as follows. These modules are renamed as mod-

ules of equal image property in the subsequent work [CFS].

Definition 4.6. A k[G]-module M is said to have the equal images property if

xM = yM for all x, y in P t(G) for all t = 1, . . . ,m.

The following theorem follows from the definitions.

Theorem 4.7. k[G]-modules of equal images property are modules of constant p-

power Jordan type.

4.4. Examples of Constant p-power Jordan Type Modules. Recall that a

k[G]-module M is of constant pt-power Jordan type if and only if Γi(G)M = ∅ for

i = 1, . . . , t.

Definition 4.8. Two constant pt-power Jordan type modules M and M ′ are called

pt-power Jordan type equivalent provided that M↓〈1+x〉 has the same decomposition

as M ′↓〈1+x〉 for all x in P i(G), for i = 1, . . . , t. When M and M ′ are pm-power

Jordan type equivalent we simply call them as Jordan type equivalent. Let J t
G

denote the quotient set of the equivalence relation ∼ defined on Ct
G by setting

M ∼ M ′ if and only if M and M ′ are pt-power Jordan type equivalent.

In Examples 4.9-4.11 we present a pair of non-isomorphic k[G]-modules M , M ′

of constant p-power Jordan type such that [M ] and [M ′] are the same as elements

of J i
G but [M ] and [M ′] are not the same as elements of J i+1

G , for G = C2×C4,

C8×C8 and C4×C4. In each case let the group G = 〈g, h〉 and let ↙ denote the

action of g − 1, and ↘ denote the action of h− 1 in the figures.

Example 4.9. There are non isomorphic k[C2×C4]-modules M and M ′, given in

Figure 3 and Figure 4 respectively. Each one of them is of constant 2-power Jordan

type, i.e., M has constant 2-Jtype and has constant 4-Jtype, similarly for M ′. But

M and M ′ have different Jordan types at 4-points even though they have the same

Jordan type at 2-points. That is, [M ] = [M ′] in J 1
G but [M ] 6= [M ′] in J 2

G. Hence

M and M ′ are necessarily of constant Jordan type with the same Jordan type (at

2-points) so that M and M ′ are not distinguishable if, only 2-points are used. It
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can be computed that

4-JType(M) = 2[4] + 1[2] and

4-JType(M ′) = 2[4] + 2[1],

2-JType(M) = 2-Jype(M ′) = 4[2] + 2[1].

Example 4.10. There are non isomorphic k[C8×C8]-modules M and M ′, given

in Figure 5, Figure 6 respectively, which are of constant 2-power Jordan type, but

have different Jordan types at 8-points, even though they have the same Jordan

type at 2-points and 4-points. That is, [M ] = [M ′] in J 1
G, [M ] = [M ′] in J 2

G, but

[M ] 6= [M ′] in J 3
G. It can be computed that

2-JType(M) = 2-JType(M ′) = 12[1],

4-JType(M) = 4-JType(M ′) = 3[2] + 6[1],

8-JType(M) = 3[3] + [2] + [1], but 8-JType(M ′) = [4] + [3] + 2[2] + [1] .

Example 4.11. There are non isomorphic k[C4×C4]-modules M and M ′ which

are of constant 2-power Jordan type, but having different Jordan types at 4-points,

and having the same Jordan type at 2-points. That is, [M ] = [M ′] in J 1
G, but

[M ] 6= [M ′] in J 2
G. (M and M ′ are necessarily of constant Jordan type with the

same Jordan type.) Note that we can use the modules M and M ′ of the previous

example given in Figure 5 and Figure 6 even though the groups are not the same.

It can be computed that
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2-JType(M) = 2-JType(M ′) = 3[2] + 6[1],

4-JType(M) = 3[3] + [2] + [1], but 4-JType(M ′) = [4] + [3] + 2[2] + [1].

This example shows also that the Jordan type at an 8-point of the previous example

is the Jordan type at a 4-point of this example, and similarly, the Jordan type at a

4-point of the previous example is the Jordan type at a 2-point of this example.
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