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Abstract. Let k[G] be the group algebra, where G is a finite abelian p-group

and k is a field of characteristic p. A complete classification of finitely generated
k[G]-modules is available only when G is cyclic, Cpn , or C2 × C2. Tackling

the first interesting case, namely modules over k[C2 × C4], some structure
theorems revealing the differences between elementary and non-elementary

abelian group cases are obtained. The shifted cyclic subgroups of k[C2 × C4]

are characterized. Using the direct sum decompositions of the restrictions
of a k[C2 × C2]-module M to shifted cyclic subgroups we define the set of

multiplicities of M . It is an invariant richer than the rank variety. Certain

types of k[C2 × C4]-modules having the same rank variety as k[C2 × C2]-
modules can be detected by the set of multiplicities, where C2 × C2 is the

unique maximal elementary abelian subgroup of C2 × C4.

1. Introduction

Let M be a finitely generated k[G]-module, where G is a finite group of order

divisible by p and k is a field of characteristic p > 0. The cyclic group of order n is

denoted by Cn. When M is considered as a module over a subalgebra k[A] of k[G]

for a subgroup A of the group of units of k[G], we write M↓A, and refer to it as the

restriction of M to k[A] (or A) or simply as the restricted module . Some properties

of a k[G]-module M , such as complexity, are detected by M↓E as E runs through

elementary abelian subgroups of G; see [AE], [Kr]. Theorems of this nature are

referred to as detection theorems.

The rather rich theory for modules over an elementary abelian p-group E is not

of much use when the group is non-elementary abelian. An essential motivation

for this work was to clearify the reasons for that by presenting a detailed study

of modules over the smallest non-elementary abelian 2-group C2 × C4 via their

restrictions to various subalgebras of k[C2 × C4] and k[C2 × C2] where C2 × C2 is
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the unique maximal elementary abelian subgroup of C2 × C4. Given the fact that

k[C2 × C4] is of wild representation type [Be1, p. 114] what we provide in this

article as structure theorems is essential for studying modules over it. It should be

noted here that the only abelian non-cyclic p-group whose indecomposable modules

are classified is the group C2 × C2; [Ba], [HeRe], [Co]. There are infinitely many

non-isomorphic indecomposable k[C2 × C2]-modules.

The work of Carlson defining the rank variety for a module over an elementary

abelian p-group is the main source of inspiration for this study [Ca]. However, what

we achieve is the result of our new approach; namely, rather than just focusing on

whether the restrictions of a k[E]-module are free or not as Carlson does, we further

take into account the direct sum decomposition of the restrictions of a k[C2 ×C4]-

module to preserve more information so that the module may be characterized by

that information. The direct sum decompositions of the restrictrictions of a kG-

module at p-points, roughly speaking order p-subgroups, where G is a finite group

scheme are studied througly by Friedlander, Suslin and Pevtsova in [FP], [FP1],

[SFP]. Examples in an earlier version of this work [Ka1] were mentioned in [SFP].

They consider only cyclic subgroups of order p whereas we consider cyclic subgroups

of order pn, n ≥ 1. As a result, we can distinguish some modules which are not

possible to distinguish by considering only order p subgroups.

The restrictions we consider are M ↓〈1+x〉 for x in the Jacobson radical JG, or

simply J , of the group algebra k[G]. The structure theorems, Theorems 4.1, 4.3,

4.5, reveal the structure of the restrictions M ↓〈1+x〉 for various x. They provide

a good insight why modules over elementary abelian groups behave better than

modules over non-elementary abelian groups, and indicate what type of changes in

the hypotheses lead to similar results when the group is non-elementary abelian.

One consequence is the characterization of the shifted cyclic subgroups of k[C2×C4],

see (7).

By the formula provided in Corollary 2.2, it is not difficult to compute the

multiplicities of i-dimensional indecomposable summands of M↓〈1+x〉. Hence the

direct sum decomposition of M ↓〈1+x〉 can be determined for any x in J without

much difficulty. This leads us to define a new computable invariant, NG(M), for a

k[G]-module M called the set of multiplicities of M where G is an abelian p-group
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see (3). This definition becomes very useful when the group is C2 × C2 since the

domain of definition, J/J2, coincides with that of the rank variety, see Definition

1.5. Recovering the rank variety from the set of multiplicities is very easy.

Even though it is not discussed in this paper, we can state that when G is

C2 ×C2 ×C2 or C3 ×C3 the domain of definition of NG(M) becomes J/J3 rather

than J/J2. That also justifies our choice of groups for this study.

Our detection theorems, Theorems 5.1 and 5.3, are applications of this invari-

ant. They show that certain types of modules can be identified by their set of

multiplicities. There is a geometric interpretation of the multiplicities of the inde-

composable summands of M↓C when M is a “realizable” k[G]-module and C is a

cyclic 2-subgroup of a group G [Ka].

In order to state our main results we need to introduce our notation and defi-

nitions some of which are similar to the ones in [Ca]. In doing this we also recall

some results from the literature to put our results into the proper context. Recall

that the notions of projectivity, injectivity and freeness coincide for modules over

k[G] when G is a p-group and k is a field of characteristic p.

The key result concerning the restricted modules M↓〈1+x〉 is Dade’s Lemma [Da,

Lemma 11.8] when the group E is an elementary abelian p-group.

Dade’s Lemma 1.1. Suppose E is an elementary abelian p-group of order pn

generated by e1, . . . , en, k is an algebraicaly closed field of caharacteristic p, and M

is a finitely generated k[E]-module. Then, M is free if and only if M↓〈1+x〉 is free

for all x of the form α1(e1 − 1) + . . . αn(en − 1) where (α1, . . . , αn) ∈ kn.

Another result in these lines is the following (Lemma 6.4 in [Ca]).

Theorem 1.2. Let M be a k[E]-module, and x, y in J\J2 such that x ≡ y

(mod J2). Then M↓〈1+x〉 is free if and only if M↓〈1+y〉 is free.

Definition 1.3. A (cyclic) subgroup S of the units of k[G] is called a shifted (cyclic)

subgroup of k[G] whenever k[G]↓S is free as a k[S]-module.

Dade’s Lemma allowed Carlson to define the shifted cyclic subgroups for an

elementary abelian p-group E. In our notation they are the subgroups 〈1 + x〉 of
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k[E], where x is in J\J2. Dade’s Lemma together with Theorem 1.2 made the

definition of V r
E(M), the rank variety of M well defined. It consists of points x in

J/J2 for which M↓〈1+x〉 is not free together with the point zero.

In order to describe the shifted cyclic subgroups of k[C2×C4] explicitly, we need

to introduce notation for the generators of the group C2 × C4.

Notation 1.4. Except in Section 2, in the rest of this article, G denotes the

group C2 × C4 generated by e, f of orders 2 and 4, respectively; E denotes its

unique elementary abelian subgroup C2×C2. Consider the ideals J(2) ⊃ J(3) of kG

contained in J2 so that

J/J(2) ∼= k(e− 1)⊕ k(f − 1)⊕ k(f − 1)2 ∼= k3,

J/J(3) ∼= k(e− 1)⊕ k(f − 1)⊕ k(f − 1)2 ⊕ k(f − 1)3 ∼= k4.
(1)

We omit the bars to simplify the notation. When M ↓〈1+x〉 and M ↓〈1+y〉 have

the same indecomposable summands (up to isomorphism) together with the same

multiplicities, that is, when x and y have the same Jordan canonical form, we write

M↓〈1+x〉≡ M↓〈1+y〉

for x, y in J provided that k〈1 + x〉 and k〈1 + y〉 are isomorphic subalgebras.

Our main structure theorems are as folows.

Theorem 4.1. (i) If x ∈ J , then k[G]↓〈1+x〉 is free if and only if x 6∈ J(2).

(ii) If M is a k[G]-module, then M is free if and only if the restriction M↓〈1+x〉

is free for all x in J\J(2).

The first part of Theorem 4.1 is the analogue of [Ca, Lemma 6.1]. By that

the shifted cyclic subgroups of k[G] can be written in the form 〈1 + x〉 for any x

in J/J(2), see Remark 4.2. The second part of Theorem 4.1 is the counterpart of

Dade’s Lemma.

Theorem 4.3. Let M be a k[G]-module, x, y in J\J(2), and x ≡ y (mod J(2)).

(i) If x2 is not zero, then M↓〈1+x〉≡ M↓〈1+y〉.

(ii) M↓〈1+x〉 is free if and only if M↓〈1+y〉 is free.

The second part of the above theorem implies that the freeness of M↓〈1+x〉 is well

defined modulo J(2). In other words, J/J(2) for G is the analogue of the J/J2 for
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the elementary abelian groups. In the terminology of [FP] this amounts to showing

that 〈1+x〉 and 〈1+y〉 are in the same equivalence class as |〈1+x〉|-points of k[G].

Moreover, by Theorem 4.5 the Jordan form of x is well defined modulo J(3).

Theorem4.5. Let M be a k[G]-module, x, y be in J\J2, and x ≡ y (mod J(3)).

Then

M↓〈1+x〉≡ M↓〈1+y〉 .

The analogue of Theorem 4.5 for the group E is given below.

Theorem 4.7. Let M be a k[E]-module and let x, y be in J\J2 such that x ≡ y

(mod J2). Then

M↓〈1+x〉≡ M↓〈1+y〉 .

Due to the fact that all indecomposable k[C2]-modules, up to isomorphism, are

k and k[C2], M↓〈1+x〉∼= (k)η1(x)⊕ (k[〈1+x〉])η2(x) when 〈1+x〉 is isomorphic to C2.

Thus the pair η(x) = (η1(x), η2(x)) consisting of the multiplicities of the inde-

composable summands describes the restricted module M↓〈1+x〉 up to isomorphism

completely and ηi(x)’s are easy to compute by the formula given in Corollary 2.2(i).

Definition 1.5. For a k[E]-module M , the set of multiplicities is defined as

NE(M) =
{ [

x; η(x)
] ∣∣ x ∈ J/J2\0

}
,

it is well defined by Theorem 4.7.

The rank variety V r
E(M) can be recovered from the set of multiplicities NE(M)

easily, see Remark 4.4.

Definition 1.6. A k[H]-module M is called an isotypical k[H]-module (of type N)

whenever M is isomorphic to m copies of an indecomposable k[H]-module N for

some m ≥ 1.

Theorem 5.1. If M is a finitely generated isotypical k[E]-module, then NE(M)

determines M completely (up to isomorphism) except that isotypical modules of type

Ωn(k) and of type Ω−n(k) can not be distinguished, where Ωn(k) denotes the n-th

Heller shift (or n-th syzygy) of the trivial module k.
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Following the definition and notation given in [Be2, p. 190], for ζ in H l(H; k), Lζ

denotes the kernel of the k[H]-homomorphism that represents the image of ζ under

the isomorphism H l(H; k) ∼= Homk[H](Ωl(k), k) ; see (4). We write Lζ instead of

Lζ when the group is G.

We set the cohomology algebras as follows:

H∗(G; k) = k[t1, τ ]⊗ Λ(v), and ζα = α2t
2
1 + α1τ,

H∗(E; k) = k[t1, t2], and ξα = α2t1 + α1t2,
(2)

where α = (α1, α2) is in k2\{(0, 0)}, and t1, t2, v are of degree 1, and τ is of

degree 2. It can be shown that the rank varieties of the modules Lζα
and of the

induced modules Lξα↑G
E are the same; namely, the line through α and the origin.

However, restrictions of these modules to the shifted cyclic subgroup 〈uα〉 of k[E]

corresponding to the point α are have different decompositions. Thus these modules

can be distinguished by their sets of multiplicities when considered as modules over

E, see (9) for the computation of NE(Lξn
α
).

Theorem 5.3. If M is a finitely generated isotypical k[G]-module of type Lζn
α

or

induced from an isotypical k[E]-module of type Lξn
α
, then M is completely deter-

mined (up to isomorphism) by its set of multiplicities NE(M↓E) when considered

as a k[E]-module.

As the last theorem of the introduction we state a well known theorem due to

Chouinard [Ch] used several times in the article.

Theorem 1.7. (Chouinard) Let H be a finite group, M be a k[H]-module. Then

M is a free k[H]-module if and only if M↓A is a free k[A]-module for all elementary

abelian p-subgroups of H.

The proofs of our theorems are self-contained and use linear algebra methods and

basic homological algebra techniques. Section 2 is devoted to results that are valid

for any abelian p-group. Thereafter G is the group C2 × C4. Section 3 consists

of preliminary lemmas for k[C2 × C4]-modules. Section 4 contains the structure

theorems. Section 5 is devoted to examples and applications of our multiplicities

set which are referred as detection theorems.
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2. General Results on Restrictions of Modules

In this section, G denotes an abelian p-group. When G is the cyclic p-group of

order pn, the list of indecomposable k[G]-modules (up to isomorphism) is given by

the i-dimensional vector spaces which are ideals of k[G], namely, the Jpn−i, for i in

{1, . . . , pn}. Hence for any abelian p-group G, a finitely generated k[G]-module M ,

and x in JG\J2
G with k〈1 + x〉 ∼= k[Cpn ] we have the direct sum decomposition

M↓〈1+x〉∼= (k)η1(x) ⊕ (Jpn−2)η2(x) ⊕ · · · ⊕ (J)ηpn−1(x) ⊕ (k〈1 + x〉)ηpn (x)

where ηi(x), or simply ηi, denotes the multiplicity of the i-dimensional indecom-

posable summands of M↓〈1+x〉, and J = J〈1+x〉. Thus the module M↓〈1+x〉 can be

represented by η(x) = (η1(x), . . . , ηpn(x)). These ηi(x)’s are easy to compute by

our formula given in Corollary 2.2, however it is not clear how to find the suitable

ideal, say IG, such that, congruence modulo IG implies the equality η(x) = η(y) for

x and y in J . If such an ideal is determined, then the set of multiplicities NG(M)

will be well-defined over J/IG, where

(3) NG(M) =
{ [

x; η(x)
] ∣∣ x ∈ J/IG\0

}
.

For NC2×C4(M) see Remark 4.6(2).

Lemma 2.1. Let X be a d × d nilpotent matrix over a field F and ηt denote the

number of t× t Jordan blocks in the Jordan form of X. Then

(i) ηt = rank(Xt−1)− 2 rank(Xt) + rank(Xt+1) for t ≥ 1;

(ii) the number of Jordan blocks in X of dimension less than or equal to t is

rank(X0)− rank(X)− rank(Xt) + rank(Xt+1),

the number of those of dimension greater than t is rank(Xt)−rank(Xt+1).

The proof of Lemma 2.1 depends on the fact that

rank([jt]r) =

{
t− r, if r < t,
0, if r ≥ t,

where [jt] denotes the t × t Jordan matrix belonging to the eigenvalue zero. The

following are immediate corollaries of Lemma 2.1.
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Corollary 2.2. Let G be an abelian group whose order is divisible by p, and M

be a k[G]-module. If x is in J and 〈1 + x〉 is a cyclic subgroup of k[G] such that

k〈1 + x〉 is isomorphic to k[Cps ], then

(i) M ↓〈1+x〉∼= (k)η1 ⊕ (Jps−2)η2 ⊕ (Jps−3)η3 ⊕ · · · ⊕ (J2)ηps−2 ⊕ (J)ηps−1 ⊕

(k[Cps ])ηps , where

ηi = dim(xi−1M)− 2 dim(xiM) + dim(xi+1M);

(ii) the number of indecomposable summands of M↓〈1+x〉 of dimension less than

or equal to t is dim(M)− dim(xM)− dim(xtM) + dim(xt+1M),

the number of those of dimension greater than t is dim(xtM)−dim(xt+1M).

In particular, the number of non-free indecomposable summands of M↓〈1+x〉

is equal to dim(M)−dim(xM)−dim(xps−1M) = dim(M 〈1+x〉)−dim(xps−1M).

(iii) M ↓〈1+x〉 is free if and only if dim(xM) = ps−1
ps dim(M) if and only if

dim(xps−1M) = dim(M)
ps if and only if dim(xM)+dim(xps−1M) = dim(M).

Corollary 2.3. If G is an abelian group whose order is divisible by p, M is a

k[G]-module, and x, y are in J , then the following are equivalent.

(i) The restrictions M↓〈1+x〉 and M↓〈1+y〉 have the same decomposition.

(ii) For all i, ηi(x) and ηi(y) are the same.

(iii) For all i, dim(xiM) and dim(yiM) are the same.

Remark 2.4. Note that the number of non-free indecomposable summands of M↓〈1+x〉

is equal to the dimension of the Tate cohomology group

Ĥ0(〈1 + x〉;M↓〈1+x〉).

Let 〈u〉 be a shifted cyclic subgroup of G and let ζ be in Hn(G; k). Denote the

image of ζ under the restriction map resG
〈u〉 by ζ↓〈u〉. When ζ is zero, Lζ is defined

as Ωn(k)⊕Ω1(k); otherwise Lζ is the kernel of a k[G]-homomorphism ζ̂ representing

ζ, i.e. it fits in the following short exact sequence

(4) 0 −→ Lζ −→ Ωn(k)
ζ̂−−→ k −→ 0.

For more information on Ωn, Ω−n, and Lζ , we refer to [Be2, p. 190]. We write

Ωn
G(k) if the group needs to be indicated.
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Lemma 2.5. Let G be an abelian p-group, 〈u〉 be a shifted cyclic subgroup of k[G]

and ζ be in Hn(G; k)\0. Then Ωm
〈u〉

∼= Ωi
〈u〉(k) where i is 0, or 1 if m is even, or

odd respectively. The following isomorphisms hold:

(i) Ωn
G(k)↓〈u〉∼= Ωn

〈u〉(k) ⊕ (k〈u〉)s for some s in N. The same is true if n is

replaced by −n.

(ii) For some s and l in N,

(Lζ)↓〈u〉∼=

{
Lζ↓〈u〉 ⊕ (k〈u〉)s, if ζ↓〈u〉 6= 0,
Ωn
〈u〉(k)⊕ Ω1

〈u〉(k)⊕ (k〈u〉)l, if ζ↓〈u〉= 0.

Proof. (i) follows from the definitions of Ωn(k), Ω−n(k), and shifted cyclic sub-

groups, and the property that a short exact sequence remains short exact when

restricted to k〈u〉. (ii) follows from the definition of Lζ and part (i). �

3. Restrictions of k[C2 × C4]-Modules

Here we return to the group G = C2 × C4. This section is devoted to answers

to various questions that naturally arise in studying a k[G]-module through its

restricitions to shifted cyclic subgroups. In the rest of this section, B is the following

basis

(5) B = {1, e−1, f−1, f2−1, (f−1)3, (e−1)(f−1), (e−1)(f−1)2, (e−1)(f−1)3}.

Some properties of the nilpotent elements of the group algebra k[G] are given in

Lemma 3.1, Theorem 3.2, and Lemma 3.3.

The norm element νH of a group algebra k[H] is the sum of all elements of H.

When H is a cyclic group generated by h of order pn the norm element νH =
∑

g∈H g

can also be expressed as (h− 1)pn−1.

Lemma 3.1. Let x, y be in J\0 and x ≡ y (mod J2). Then the following hold.

(i) x4 = 0, and x2 = a(f2 − 1) for some a in k.

(ii) If x is in J2, then x2 = 0.

(iii) If x is in J3, then xJ2 = 0.

(iv) x3 = 0 if and only if x2 = 0.

(v) x2 = 0 if and only if 〈1 + x〉 ∼= C2(≤ k[G]).

(vi) x2 6= 0 if and only if 〈1 + x〉 ∼= C4(≤ k[G]).

(vii) x2 6= 0 if and only if k[〈1 + x〉] ∼= k[C4].
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(viii) k〈1 + x〉 is a direct summand of k[G]↓〈1+x〉.

(ix) x2 = y2, x3 = 0 iff y3 = 0, 〈1 + x〉 ∼= 〈1 + y〉, and k〈1 + x〉 ∼= k〈1 + y〉.

Proof. Write x and y using the basis B given in (5) as

x = a(e− 1) + b(f − 1) + c(f − 1)2 + r1ν<f> + r2(e− 1)(f − 1) + r3νE + r4νG

(6)

y = a(e− 1) + b(f − 1) + c(f − 1)2 + s1ν<f> + s2(e− 1)(f − 1) + s3νE + s4νG

for some a, b, c, ri, si in k. Then we have

x2 = b2(f2 − 1) and x3 = ab2νE + b3ν<f> + r2b
2νG.

It is clear that the coefficient b plays a significant role. Proofs of (i)–(ix) are now

easy verifications. �

The restricted module k[G]↓〈f2〉 is free as 〈f2〉 is a subgroup of G. However,

(f − 1)2 is zero in J/J2. Thus it is clear that we need a substitute for J/J2 to

extend Dade’s Lemma. By Lemma 3.1 the non-zero elements of J are of two types

depending on whether their square is zero or not. The set of elements of J whose

square is zero is denoted by JE , that is, JE = JE⊕J(2) = k(e−1)⊕k(f2−1)⊕J(2),

where J(2) is as given in (1).

Theorem 3.2. Let x, y be in JE\J(2) such that x ≡ y (mod J(2)). There is a unit

u = 1 + n with n in JE\J(2) such that if Ex = 〈u, 1 + x〉 and Ey = 〈u, 1 + y〉, then

(i) the groups Ex, Ey are shifted subgroups of k[G] which are isomorphic to E,

(ii) the group algebras k[E], k[Ex], k[Ey] are isomorphic subalgebras of k[G].

Proof. (i) By hypothesis, x = x + J(2) is non-zero. Then there is an n in JE such

that {x, n} is a basis for JE/J(2). We can write x and y as in (6) with b = 0. Let

n = ne(e− 1) + nf2(f − 1)2 + n1(f − 1)3 + n2(e− 1)(f − 1) + n3νE + n4νG,

where ne, nf2 , ni are in k. By hypothesis, (a, c) and (ne, nf2) are not equal to (0, 0).

Moreover, x and n are k-linearly independent modulo J(2). This is true if and only if

anf2−cne is non-zero. Since the field is of characteristic 2, anf2 +cne = anf2−cne

is non-zero. Hence

nx = (anf2 + cne)
(
1 +

an1 + cn2 + r1ne + r2nf2

anf2 + cne
(f − 1)

)
νE
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is not zero. Set

vx = 1 +
an1 + cn2 + r1ne + r2nf2

anf2 + cne
(f − 1).

It is clear that vx is a unit in k[G]. Since n is in J(2), we have n2 = 0 by Lemma

3.1 (ii). Therefore u = 1 + n is a unit of order 2 in k[G]. Note also that u(1 + x) =

1 + x + n + xn is a unit in k[G] different from 1 + x and 1 + n. Then we obtain

that Ex = 〈u, 1 + x〉 is isomorphic to E, and that k[Ex] = k ⊕ kn ⊕ kx ⊕ knx is

contained in k[G], where nx = νEx
is non-zero. We also have

νEx
k[G] = kνEx

+ k(f − 1)νEx
= kvxνE + kvxνG,

which has dimension 2 as a vector space; hence the restriction k[G]↓Ex
is free.

Similarly for y, the element

vy = 1 +
an1 + cn2 + s1ne + s2nf2

anf2 + cne
(f − 1)

is in k[G]. Then νEy
= (anf2 + cne)vyνE is non-zero and k[G]↓Ey

is free.

(ii) Define φx : k[Ex] −→ k[E] by

φx(u) = 1 + ne(e− 1) + nf2(f2 − 1) + n3νE ,

φx(1 + x) = 1 + a(e− 1) + c(f2 − 1) + r3νE .

Then φx(νEx) = (anf2+cne)νE is non-zero. Hence φx is an isomorphism of group al-

gebras. For similarly defined φy, we have the equivalence φx(x) ≡ φy(y) (mod J2
E).

Thus we have the following equalities and isomorphisms

JE/J2
E = kφx(n)⊕ kφx(x) = kφy(n)⊕ kφy(y) ∼= JEx

/J2
Ex

∼= JEy
/J2

Ey
.

�

Lemma 3.3. Let x be in J .

(i) If x2 is non-zero, then J(2) is contained in xJ .

(ii) If x is not in J2, then J(3) is contained in xJ .

Proof. Write x as in (6). Under the hypothesies of (i) or (ii) xJ contains (e− 1)J

and (f − 1)J .

(i) The hypothesis that x2 is non-zero implies that b is non-zero; then J(2) is a

subset of (f − 1)J .
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(ii) By hypothesis, we have (a, b) different than (0, 0). If b is not zero, then the

first part implies the result, because J(3) is contained in J(2). If a is not zero, then

J(3) is a subset of (e− 1)J . �

The following corollary is a special case of Lemma 2.5 and is essential for proving

Theorems 5.1 and 5.3. The cohomology algebras are as given in (2) and

H∗(C2; k) = k[t], H∗(C4; k) = k[τ ]⊗ Λ(v).

We also write k〈g〉 instead of k[〈g〉] for simplicity.

Corollary 3.4. (i) The Heller shift Ωn
C2

(k) and L0 are isomorphic to k for

all n while Lt is zero.

(ii) The dimensions of Ωn
E(k) and Lξm are 2n + 1 and 2m, respectively, where

ξ is in H1(E; k). Moreover, the following isomorphisms hold:

Ωn
E(k)↓〈uβ〉 (k) ∼= Ωn

〈uβ〉(k)⊕ (k〈uβ〉)n ∼= k ⊕ (k〈uβ〉)n

and

(Lξm
α

)↓〈uβ〉
∼=

{
(k〈uβ〉)m, if k{β} 6= k{α} iff ξm

α ↓〈uβ〉 6= 0,
(k)2 ⊕ (k〈uβ〉)m−1, if k{β} = k{α} iff ξm

α ↓〈uβ〉= 0.

(iii) When the group is C4, Lτ is the zero module, and the Heller shifts are

Ωn
C4

(k) ∼=

{
k, if n is even,
Ω1

C4
(k) ∼= JC4 , if n is odd.

(iv) When the group is G, the dimensions of the Heller shifts and Lζ ’s for ζ

Hn(G; k) are as follows:

dim(Ωn
G(k)) =

{
4n + 1, if n is even,
4n + 3, if n is odd,

and

dim(Lζ) = dim(Ωn
G(k))− 1.

When Lζ is restricted to E, it takes the form

Lζ↓E
∼=

{
Lζ↓E

⊕ (k[E])n/2, if n is even,
Lζ↓E

⊕ (k[E])(n+1)/2, if n is odd.

For ζα in degree 2, the restrictions of Lζα
to the shifted cyclic subgroups

〈Cγ〉 of k[G] take the forms

Lζm
α
↓〈Cγ〉

∼=

{
(k〈Cγ〉)4m, if ζm

α ↓〈Cγ〉 6= 0,
(k)2 ⊕ (k〈Cγ〉)4m−1, if ζm

α ↓〈Cγ〉= 0,
where 〈Cγ〉 ∼= C2,
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and

Lζm
α
↓〈Cγ〉

∼=

{
(k〈Cγ〉)2m, if ζm

α ↓〈Cγ〉 6= 0,
k ⊕ Ω1

〈Cγ〉(k)⊕ (k〈Cγ〉)2m−1, if ζm
α ↓〈Cγ〉= 0,

where 〈Cγ〉 ∼= C4.

Proof. (i) and (iii) follow from the fact that the minimal k[Cpn ]-free resolution of

k is of the form

· · · −→ k[Cpn ] −→ k[Cpn ] −→ k −→ 0

for any p and n.

(ii) follows from the classification of k[E]-modules (see [Ca]) and the definitions

of Ωn(k) and Lζ .

(iv) follows from the fact that the minimal k[G]-free resolution of k is of the form

· · · −→ (k[G])3 −→ (k[G])2 −→ (k[G])1 −→ k −→ 0,

and the definitions of Ωn(k) and Lζ . �

4. Structure Theorems

In this section we prove our theorems for modules over k[G] and k[E] for our

fixed group G = C2 × C4 and its unique elementary subgroup E = C2 × C2.

Theorems 4.1 and 4.3 contain generalizations of Dade’s Lemma and Carlson’s

analoguous theorems for modules over elementary abelian p-groups. Theorems 4.5

and 4.7 guarantee the well-definedness of the set of multiplicities of a module over

k[G] and k[E], respectively. In the proofs we use Corollary 2.2 or 2.3 to determine

whether a module is free or not, and Lemmas 3.1, 3.3 for the properties of the

elements of J . We use the notation of (6) for x in J .

Theorem 4.1. (i) If x ∈ J , then k[G]↓〈1+x〉 is free if and only if x 6∈ J(2).

(ii) If M is a k[G]-module, then M is free if and only if the restriction M↓〈1+x〉

is free for all x in J\J(2).

Proof. Note that x is not in J(2) if and only if (a, b, c) in (6) is not equal to (0, 0, 0).

(i) By Corollary 2.2 (iii) k[G]↓〈1+x〉 is free if and only if dim(xk[G]) is 4 or 6

depending on b is zero or not, respectively. Computing the rank of the matrix rep-

resenting x shows that this dimension requirement is satisfied as (a, b, c) 6= (0, 0, 0).

(ii) Suppose M is a free k[G]-module and x ∈ J . By (i) k[G]↓〈1+x〉 is free if

and only if x 6∈ J(2), hence M ↓〈1+x〉 is free for all x 6∈ J(2). Conversely assume
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that M ↓〈1+x〉 is free for all x ∈ J\J(2). As usual, let E denote the maximal

elementary abelian subgroup of G. Since JE ⊂ J and J2
E ⊂ J(2), M↓〈1+z〉 is free

for all z ∈ JE\J2
E . Then by Dade’s Lemma M↓E is a free module. Hence M is a

free k[G]-module by Chouinard’s Theorem, Theorem 1.7, as E is the only maximal

elementary abelian subgroup of G. �

Remark 4.2. The first part of the above theorem implies that the shifted cyclic

subgroups of k[G] are of the form 〈1 + x〉 for any x̄ in J/J(2). If the natural one-

to-one correspondance between k3 and J/J(2) is used (see (1)), then shifted cyclic

subgroups of G can also be defined as 〈Cγ〉 for each γ = (γ1, γ2, γ3) in k3, where

(7) Cγ = 1 + γ1(e− 1) + γ2(f − 1) + γ3(f2 − 1).

Obviously, 〈Cγ〉 is isomorphic to C4 if and only if γ2 is not zero; otherwise, it is

isomorphic to C2. When γ2 is non-zero, then 〈C2
γ〉 is 〈1+γ2

2(f2−1)〉. It is clear that

the lines through the origin in k3, parametrize the shifted cyclic subgroups of k[G].

However note that the points (0, 1, 1, ) and (0, 1, 0) give the same group algebra,

k[〈1+f−1+f2−1〉] = k〈1+f−1〉] = k〈f〉]. Thus we can use points of k3 and J/J(2)

interchangebly to write the shifted cyclic subgroups of k[G]. The latter definition

is consistent with Carlson’s definition of shifted cyclic subgroups of k[E], namely,

〈uα〉 for α = (α1, α2) in k2, where uα = 1+α1(e−1)+α2(f2−1). The muliplicities

set in this notation can be written as NE(M) =
{ [

α; η(uα − 1)
] ∣∣ α ∈ k2\0

}
.

Theorem 4.3. Let M be a k[G]-module, x, y be in J\J(2), and x ≡ y (mod J(2)).

(i) If x2 is not zero, then M↓〈1+x〉≡ M↓〈1+y〉.

(ii) M↓〈1+x〉 is free if and only if M↓〈1+y〉 is free.

Proof. Since x is not in J(2) (a, b, c) of (6) is not equal to (0, 0, 0), hence x ≡ y

(mod J2).

(i) Since x2 is not zero, Lemma 3.3 implies that J(2) is contained in xJ . Then

y = x(1− r) for some r in J as x− y is in J(2). This proves the claim because 1− r

is a unit.

(ii) The assumption x ≡ y (mod J(2)) implies that x2 = y2 (see Lemma 3.1 (ix)).

In the case x2 is non-zero, Theorem 4.3 (i) implies that M↓〈1+x〉≡ M↓〈1+y〉. This,

of course, implies that M↓〈1+x〉 is free if and only if M↓〈1+y〉 is free.
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In the case x2 is zero, without loss of generality we can write x = a(e − 1) +

c(f2−1) and y = x+w where w ∈ J(2). Note that y2 = 0 and we can write w = q ·r

for some q, r in J with q2 = 0, r4 = 0.

Let zM denote the map form M to M given by zM (m) = z ·m for all m in M ,

z in J .

Suppose M↓〈1+x〉 is free. Since x2 = 0, we have ker(xM ) = xM .

Claim: M↓〈1+y〉 is free. Let N = ker(yM )/yM , y = qr with q2 = 0, r4 = 0 as

written above. It remains to show that N = 0. Consider the map rN : N −→ N ,

multiplication by r. Let m̄ be in ker(rN ). Then we have m in ker(yM ) and rm in

yM . Thus, ym = (x + qr)m = 0 and rm = yn for some n in M . Since q2 = 0, we

obtain xm = −qrm = qrm = q(x+ qr)n = xqn. Hence m+ qn is in ker(xM ). Thus

m + qn = xs for some s in M . Multiplying the last equation by r we obtain that

rm = rqn+ rxs. We had rm = yn = xn+ qrn above, hence rxs = xrs = xn. Thus

n−rs is in ker(xM ) = xM . Hence we can write n = rs+xt for some t in M . We have

m = qn+xs = q(rs+xt)+xs = qrs+qxt+xs+q2rt = (x+qr)(s−qt) = y(s−qt).

Thus m̄ = 0̄, showing that rN is injective. On the other hand r is nilpotent, this

forces N to be zero which proves the claim.

Similarly, M↓〈1+y〉 is free implies that M↓〈1+x〉 is free. �

Remark 4.4. Suppose M is a k[G]-module. Then

V r
E(M↓E) = {0} ∪

{
x ∈ JE/J2

E

∣∣ η2(x) 6= dim(M)/2
}
.

The restriction M ↓〈Cγ〉 is free if and only if the restriction M ↓〈C2
γ〉 is free by

Chouinard’s Theorem, Theorem 1.7, which holds if and only if the restriction M↓〈f2〉

is free. Note that 〈1 + f2〉 is the shifted cyclic subgroup of k[E] corresponding to

the point (0, 1).

Theorem 4.5. Let M be a k[G]-module, x, y be in J\J2, and x ≡ y (mod J(3)).

Then

M↓〈1+x〉≡ M↓〈1+y〉 .

Proof. By Lemma 3.3, we know that J(3) is contained in xJ . Then y = x(1− r) for

some r in J as x− y belongs to J(3). This proves the claim as 1− r is a unit. �
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Remarks 4.6. (1) The hypothesis x2 6= 0 in Theorem 4.3 (i) can be replaced by

any one of the (a) – (e) : (a) xy = 0 and x2 = 0, (b) x ≡ y (mod kνE ⊕kνG), (c)

M↓〈e〉 or M↓〈f〉 or M↓〈f2〉 is the trivial module, (d) M↓〈f〉 has no free summands,

(e) (e− 1)(f − 1)M = 0.

(2) Note that Theorem 4.5 makes it clear that the set of multiplicities is well-

defined for a k[G]-module when we take IG = J(3) in equation (3). That is, for a

k[G]-module M , its set of multiplicities is defined as

NG(M) =
{ [

x; η1(x), η2(x), η3(x), η4(x)
] ∣∣ x ∈ J/J(3)\0

}
,

note that η3(x) = η4(x) = 0 for x in J with x2 = 0. Further, we define a filtration

of it by the subsets

N i
G(M) =

{ [
x; η1(x), η2(x), η3(x), η4(x)

] ∣∣ 0 6= x ∈ J/J(3), ηj(x) = 0 for j ≥ i
}

.

It is obvious that N i
G(M) form a nested sequence

(8) N 1
G(M) ⊂ N 2

G(M) ⊂ N 3
G(M) ⊂ N 4

G(M),

and N i
G(M)\N i+1

G (M) gives those x’s for which M ↓〈1+x〉 has only i-dimensional

indecomposable summands. Recall that the Loewy length of a non-free indecom-

posable k[G]-module is at most 4, and the Loewy length of M is i if and only if ηi(x)

is non-zero for some x in J\J2, which in turn holds if and only if NG(M) = N i
G(M).

For a non-free k[G]-module M , we can write NG(M) = ∪iN i
G(M).

The analogue of Theorem 4.5 for the group E is given below which shows that

IE = J2, see (3) for the definition of IE .

Theorem 4.7. Let M be a k[E]-module and let x, y be in J\J2 such that x ≡ y

(mod J2). Then

M↓〈1+x〉≡ M↓〈1+y〉 .

Proof. Recall that E = 〈e, f2〉. Without loss of generality, assume that M is non-

free and indecomposable. Then the number of k[E]-free summands in M is zero;

equivalently (e− 1)(f2 − 1)M = J2M = 0. Therefore xm = ym for all m in M as

(x− y)m is in J2M ; thus M↓〈1+x〉≡ M↓〈1+y〉. �
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5. Detection Theorems and Examples

This section is devoted to the applications of our definitions and theorems. These

theorems are based on the observation that, when restricted to 〈1 + x〉, the inde-

composable k[E]-module Lζ have either two copies of the trivial module k or none,

see (9) below. The proofs uses only Corollary 3.4, and Theorem4.7.

Theorem 5.1. If M is a finitely generated isotypical k[E]-module, then NE(M)

determines M completely (up to isomorphism) except that isotypical modules of type

Ωn(k) and of type Ω−n(k) can not be distinguished, where Ωn(k) denotes the n-th

Heller shift of the trivial module k.

Proof. By the classification of k[E]-modules given in [Ca], a finitely generated

indecomposable k[E]-module is isomorphic to one of the following: k, k[E], Ωn(k),

Ω−n(k), or Lζn
α

for each [α] in P1
k, where α = (α1, α2) is in k2\0, and n is a positive

integer. The modules given have dimensions 1, 4, 2n+1, 2n+1, and 2n, respectively,

as vector spaces over k. Thus an isotypical k[E]-module M is isomorphic to m copies

of one of the modules listed for some positive integer m. First we compute the set

of multiplicities of each of the modules listed, then multiplying each multiplicity by

m gives the set of multiplicities of M . We have the obvious isomorphisms

k↓〈uβ〉
∼= k and k[E]↓〈uβ〉

∼= (k〈uβ〉)2,

where uβ is a shifted cyclic subgroup of k[E] and β is in k2\{0}. Therefore we have

NE(k) =
{ [

β; 1, 0
] ∣∣ β ∈ k2\0

}
and NE(k[E]) =

{ [
β; 0, 2

] ∣∣ β ∈ k2\0
}

.

By Corollary 3.4 (ii), we know that the restrictions Ωn(k)↓〈uβ〉 and Ω−n(k)↓〈uβ〉

are both isomorphic to k ⊕ (k[〈uβ〉])n. Hence the set of multiplicities for any two

of them is { (β; 1, n) | β ∈ k2\0 }. Therefore they cannot be distinguished by the

set of multiplicities. By Corollary 3.4, we have the isomorphisms

Lξn
α
↓〈uα〉

∼= (k)2 ⊕ (k[C2])(n−1) and Lξn
α
↓〈uβ〉

∼= (k[C2])n

for β not in k{α} which is the rank variety V r
E(L(ζα)n) of L(ζα)n . Hence

(9) NE(L(ξα)n) =
{ [

α; 2, n− 1
] }

∪
{ [

(s, l); 0, n
] ∣∣ (s, l) ∈ k2\{0, α}

}
.

Therefore the possibilities for NE(M) are

(i)
{

[α;m, 0]
∣∣ α ∈ k2\0

}
,
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(ii)
{

[α; 0, 2m]
∣∣ α ∈ k2\0

}
,

(iii)
{

[α;m,mn]
∣∣ α ∈ k2\0

}
,

(iv)
{

[α; 2m,mn−m]
}
∪

{
[(s, l); 0,mn]

∣∣ (s, l) ∈ k2\{0, α}
}
.

It is clear what the module should be in the first two cases. The third one implies

M is either m copies of Ωn
E(k) or Ω−n

E (k). In the fourth case, η1 can be zero or

non-zero. In this case, m = η1/2 and n = (2η2 + η1)/η1 for the non-zero η1 and

the corresponding η2. In each case m can be determined easily. Thus NE(M)

determines M (up to isomorphism) in each case. �

Examples 5.2. Let M be a k[E]-module. Item 2) below shows that if the hy-

pothesis isotypical is removed from Theorem 5.1, then its conclusion is no longer

true.

1) Let M = (Lt31
)2 and M ′ = (Lt21

)3 be k[E]-modules. Then by Corollary 3.4,

M and M ′ are both of dimension 12 and they have the same rank variety, namely,

the line k{(0, 1)}. However, [(0, 1); 4, 4] is in NE(M) and [(0, c); 6, 3] is in NE(M ′).

Thus their set of multiplicities are not the same.

2) Let M = Lt21+t22
⊕ Lt51

and M ′ = Lt41+t42
⊕ Lt31

be two periodic k[E]-modules

that are not isotypical. Then by Corollary 3.4, M and M ′ are both of dimension

14, they have the same rank variety, and they have the same set of multiplicities,

namely,{ [
(1, 1); 2, 6

]
,
[
(0, 1); 2, 6

] }
∪

{ [
(s, l); 0, 7

] ∣∣ (s, l) ∈ k2\k{(1, 1)} ∪ k{(0, 1)}
}

.

Theorem 5.3. If M is a finitely generated isotypical k[G]-module of type Lζn
α

or

induced from an isotypical k[E]-module of type Lξn
α
, then M is completely deter-

mined (up to isomorphism) by its set of multiplicities NE(M↓E) when considered

as a k[E]-module.

Proof. Let α = (α1, α2) be in k2 and d = dim(M). Then the shifted cyclic subgroup

< uα > is isomorphic to C2. Suppose that M is m copies of L(α2t21+α1τ)n for some

m and α in k2\0. By Corollary 3.4 (iv), we know dim(M) = m(4(2n)) = 8mn, and

for ζ = (α2t
2
1 + α1t

2
2)

n, we have the isomorphisms

M↓E
∼= (Lζ)m ⊕ (k[E])mn, M↓〈uα〉

∼= (k)2m ⊕ (k[C2])4mn−m, M↓〈uβ〉
∼= (k[C2])4mn.
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Hence

NE(M↓E) =
{ [

α; 2m, 4mn−m
] }

∪
{ [

β; 0, 4mn
] ∣∣ β ∈ k2\{α, 0}

}
.

Using the information on the non-free part, we obtain m = η1/2, n = 2η2 + η1/4η1,

and dim(M) = 8mn. Note that |G/E| = 2; then for

M ∼= (L(α2t1+α1t2)n)m ↑G
E , we have M↓k[E]

∼= (L(α2t21+α1t22)
n)2m,

where m and α are in k2\0. By Corollary 3.4 (iv), we know dim(M↓E) = 4mn =

dim(M), and for ζ = (α2t
2
1 + α1t

2
2)

n, we have the isomorphisms

M↓E
∼= (Lζ)2m, M↓〈uα〉

∼= ((k)2 ⊕ (k[C2])n−1)2m, M↓〈uβ〉
∼= (k[C2])2mn.

Thus

NE(M↓E) =
{ [

α; 4m, 2mn− 2m
] }
∪

{ [
β; 0, 2mn

] ∣∣ β ∈ k2\{α, 0}
}

.

Using the information on the non-free part, we obtain m = η1/4, n = 2η2 + η1/η1,

and d = 4mn. In each case, n and m, and hence M are determined (up to isomor-

phism) by NE(M↓E). �

Examples 5.4. If we drop the hypothesis isotypical, then Theorem 5.3 fails, see

the items 1) and 2) below.

1) Let M = Lt41+τ2 ⊕ Lt41
and M ′ = Lt21+τ ⊕ Lt61

. By Corollary 3.4, we know

that they are both of dimension 32, and we have the isomorphisms

M↓E
∼= Lt41+t42

⊕ (k[E])2 ⊕Lt41
⊕ (k[E])2, M ′↓E

∼= Lt21+t22
⊕ k[E]⊕Lt61

⊕ (k[E])3.

Their rank variety as a module over k[E] is a union k{(1, 1)} ∪ k{(0, 1)} of two

lines. In addition, their sets of multiplicities are both equal to{ [
(0, c); 2, 15

]
,
[
(c, c); 2, 15

] ∣∣ c ∈ k\0
}

∪
{ [

(s, l); 0, 16
] ∣∣ (s, l) ∈ k2\k{(1, 1)} ∪ k{(0, 1)}

}
.

2) Let M = Lt41+t42
↑G

E ⊕Lt31
↑G

E and M ′ = Lt21+t22
↑G

E ⊕Lt51
↑G

E . Since |G/E| = 2,

we have the isomorphisms

M↓E
∼= (Lt41+t42

)2 ⊕ (Lt31
)2 and M ′↓E

∼= (Lt21+t22
)2 ⊕ (Lt51

)2.

By Corollary 3.4 (ii), we know that M and M ′ are of dimension 28, and their rank

variety as a module over k[E] is the union of two lines, namely, k{(1, 1)}∪k{(0, 1)}.
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In addition, their sets of multiplicities are both equal to the set{ [
(0, c); 4, 12

]
, ((c, c); 4, 12)

∣∣ c ∈ k\0
}

∪
{ [

(s, l); 0, 14
] ∣∣ (s, l) ∈ k2\k{(1, 1)} ∪ k{(0, 1)}

}
.

3) There are non-isomorphic indecomposable k[G]-modules M and M ′ such that

their restriction to k[E] are isomorphic, hence NE(M) = NE(M ′). Let M =

Ω1(Lt21
) and M ′ = Lt21

. We know that M ′ is of period 2, hence M is not isomorphic

to M ′. They both are isomorphic to Lt21
⊕ k[E] when restricted to k[E].
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