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Abstract. A new necessary and sufficient condition for the existence of an m-th root of a nilpotent matrix

in terms of the multiplicities of Jordan blocks is obtained and expressed as a system of linear equations with
nonnegative integer entries which is suitable for computer programming. Thus, computation of the Jordan

form of the m-th power of a nilpotent matrix is reduced to a single matrix multiplication; conversely, the
existence of an m-th root of a nilpotent matrix is reduced to the existence of a nonnegative integer solution

to the corresponding system of linear equations. Further, an erroneous result in the literature on the total

number of Jordan blocks of a nilpotent matrix having an m-th root is corrected and generalized. Moreover,
for a singular matrix having an m-th root with a pair of nilpotent Jordan blocks of sizes s and l, a new

m-th root is constructed by replacing that pair by another one of sizes s + i and l − i, for special s, l, i.

This method applies to solutions of a system of linear equations having a special matrix of coefficients. In
addition, for a matrix A over an arbitrary field that is a sum of two commuting matrices, several results for

the existence of m-th roots of Ak are obtained.

1. INTRODUCTION

All matrices are assumed to be over a field k and of size d× d unless stated otherwise. We investigate m-th

roots of matrices for an integer m > 1. Since all nonsingular complex matrices have m-th roots, the problem

of existence of an m-th root for a singular complex matrix is reduced to considering a nilpotent one. Section

3 is devoted to our results on nilpotent matrices that have m-th roots or are rootless which constitutes the

bulk of this article.

There has been continued interest on m-th roots of matrices even though sixth and seventh sections in

Chapter VIII are devoted to the extraction of m-th roots in nonsingular and singular cases, respectively, in

Gantmacher’s book [2] dated 1959. Among the articles studying the roots of matrices or rootless matrices,

we want to mention [5], [10], [11], [7], [8], [3], [9] in chronological order. More references can be found

in [4] especially for square roots. For the use of matrix roots in medical imaging or more information on

m-th roots, or Jordan forms, see [1]. Various characterizations of nilpotent matrices having an m-th root

are found, one uses the sequence of the sizes of Jordan blocks of the matrix [5], another one uses the ascent

sequence of the matrix [7], and another uses ai’s, where ai is the multiplicity of the Jordan blocks of size i in

the Jordan canonical form of the matrix [8]. Our initial inspiration for this article comes from Psarrakos’s

article on m-th roots of complex matrices [7] followed by Schwaiger’s work on rootless nilpotent matrices

[8]. Noticing that there is a mistake in Schwaiger’s Theorem 1 (2) [8] that we could correct gave the final

motivation to write this article. The erroneous statement and a counterexample is given in Remark 3.4. Our

Corollary 3.3 (4) of Theorem 1.1 gives a more general result correcting the erroneous statement and the other

Date: September 14, 2022.

2010 Mathematics Subject Classification. Primary 15A21; Secondary 15A24, 15A06, 15A16, 15B36, 15B05.
Key words and phrases. Jordan canonical form, Roots of nilpotent matrices, Rootless matrices, system of linear Diophantine

equations, Nonnegative integer solutions.

1



2 SEMRA ÖZTÜRK

parts provide similar statements. Theorem 1.1 is obtained by a slight modification of Proposition 3.1 in [6].

a = (a1, . . . , ad), or a = (a1, . . . , at) if the nilpotency t of A is explicit, where ai is the multiplicity of the

nilpotent Jordan block [ji] of size i in the Jordan canonical form of A, that is, A ∼ diag([jt]
(at), . . . , [j1](a1))

where ∼ denotes the similarity relation between matrices and diag(X1, . . . , Xk) denotes a block diagonal

matrix with the matrices Xi’s as diagonal blocks.

Theorem 1.1. Suppose that A is a nonzero d × d nilpotent matrix over a field, with Jordan type a =

(a1, . . . , ad), and m is an integer with 1 < m < d, then A has an m-th root if and only if there exist

nonnegative integers b1, . . . , bd satisfying

ai = mbim +

m−1∑
j=1

j
[
b(i−1)m+j + b(i+1)m−j

]
for 1 ≤ i ≤ d, (1)

where bj is defined as 0 for j>d. In particular, if b = (b1, . . . , bd) is the Jordan type for an m-th root B of

A, and t, s are the nilpotencies of A, B, respectively, then

at =

m∑
j=1

jb(t−1)m+j , where bj = 0 for j > d if tm > d, (2)

(t−1)m + 1 ≤ s ≤ tm, and t ≤ q + 1 if d = qm + r, where 0 ≤ r < m.

Theorem 1.1 is proved in Section 3 and has many implications, namely, Corollaries 3.3, 3.5, 3.6, 3.11, 3.12,

3.13, 3.14. The equations (1) and (2) become very easy to use when expressed as a matrix equation. In

Corollary 3.6 we write these equations in two equivalent matrix equations with nonnegative integer entries.

One of the equations is of the form MbT = aT , where M is a special matrix with entries 0, 1, 2, . . . ,m. We

can regard M as an additive function from the additive semigroup of d-tuples Nd to itself, where N is the

set of all nonnegative integers. If a d-tuple a in Nd is fixed and A is any nilpotent matrix of Jordan type a,

then A has an m-th root if and only if a is in the image of this function and the set of all preimages of a is

the set of all possible Jordan types of m-th roots of A. The equation MbT = aT provides a new insight and

a new easy algorithm to use in computer calculations of the Jordan form of the m-th power of a nilpotent

matrix from that of the matrix by a single matrix multiplication. The matrix M carries the information on

the splittings of the Jordan block sizes after taking the m-th power and avoids eigenvector computations.

Conversely, when a nilpotent matrix A with the Jordan type a is given, if a solution b with all nonnegative

integer entries exists, then b is the Jordan type of an m-th root of A. That is, the existence of an m-th root

of A is reduced to finding a nonnegative integer solution b to MbT = aT . The crucial point here is that the

system MbT = aT is always consistent as a system of linear equations and has free variables; however, there

is no guarantee that there will be a nonnegative integer solution; for matrices having no third roots, see

Examples 3.2 (3) and 3.10. Thus, whenever a method is developed to find all nonnegative integer solutions

b of the system of linear Diophantine equations MbT = aT , we will have all possible Jordan types of m-th

roots of a nilpotent matrix A with the Jordan type a. Due to the lack of a general method for determining

the existence of nonnegative integer solutions, and a lack of a method for finding all nonnegative integer

solutions to a system of linear Diophantine equations when there is one, we give many examples in Corollary

3.11, Corollary 3.14 of Jordan types of a nilpotent matrix and an m-th root of it. We give many examples

of rootless matrices in Corollary 3.13.

We point out the relevance of several of the corollaries of Theorem 1.1 with the results in the articles

mentioned above. Corollary 3.5 (5) implies that the set of all m-th roots of diag([jt], [jt−1](m−1)) is a

singleton set; hence, it is contractible. This provides an example of an extreme case of Theorem 1.2 in [9]

stating that the set of all m-th roots of a nilpotent complex matrix is path-connected. Corollary 3.5 (1)
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provides a stronger result than the second statement in Psarrakos’s Theorem 3.2 [7] which is stated in the

Preliminaries. The parts (3) and (4) of Corollary 3.5 give many conditions implying rootlessness. In fact,

there are rootless and not rootless matrices of any nilpotency t > 2 for 2t ≤ d and there is no rootless

nilpotent matrix of nilpotency 2 when d > 2 by Corollary 3.12 which is analogous to Theorem 2 in [8].

Section 4 contains proofs of the results for not necessarily nilpotent matrices stated below. In the first part,

we use Proposition 3.1 to obtain Theorem 1.2. For a singular matrix A over a field containing all eigenvalues

of A, the Jordan canonical form is JA = diag(R,N) where R is nonsingular (or zero if A is nilpotent) and

N is nilpotent. We refer to N as the nilpotent part of A.

Theorem 1.2. Let m > 1, k ≥ 0, u, s, l, i ≥ 1 be integers satisfying

0 ≤ mk ≤ s < s + i ≤ m(k + 1) and 0 ≤ mk ≤ l − i < l ≤ m(k + 1),

E be any square matrix. Let b and c be the Jordan types of the nilpotent parts of B and C, respectively,

where

B = diag(E, [js]
(u), [jl]

(u)), and C = diag(E, [js+i]
(u), [jl−i]

(u)).

Then Bm ∼ Cm and b and c have the same entries except for cs = bs − u, cl = bl − u, cs+i = bs+i + u,

cl−i = bl−i + u.

Theorem 1.2 gives a method of obtaining new m-th roots from a given m-th root B of a singular matrix A

provided that there is a pair of special size nilpotent Jordan blocks, say s and l, in the Jordan canonical

form of B. Namely, a new m-th root is produced by replacing each such pair with the ones of sizes s + i,

and l− i, for special s, l and i, see Example 4.2. In a similar manner, new solutions for the matrix equation

MxT = aT of Corollary 3.6 can be obtained from a solution x having xs > 0, xl > 0 for s and l satisfying

the hypothesis of that theorem, see Example 4.3.

In the second part of Section 4, we prove Theorem 1.3 which is about the existence of m-th roots of Ak, for

A = E +F where E and F are commuting matrices over various k, see Corollary 4.4 where k is the complex

numbers.

Theorem 1.3. Suppose that A = E + F is a d× d matrix over a field k and m > 1 is a fixed integer.

(1) If KL = LK where K and L are n-th roots of E and F , respectively, then A has an n-th root

provided that char(k) = p > 0 and n = pm for some m, or char(k) = 0 and LK = 0.

(2) If EF = FE = 0, F is nilpotent of nilpotency t and Ek has an m-th root for k ≥ t, then Ak has an

m-th root for any k ≥ t. In particular, if the field k is the complex numbers, the hypothesis that Ek

has an m-th root for k ≥ t can be replaced by E is diagonalizable or nonsingular.

2. PRELIMINARIES

This section contains an introduction to the existence problem of m-th roots of matrices for a positive integer

m, and the preliminary lemmas about nilpotent matrices. The property of having m-th roots is invariant

under the similarity relation of matrices. Hence, we can assume that A is in the Jordan canonical form,

JA, whenever it exists. For nilpotent matrices over any field, the Jordan canonical form exists as the only

eigenvalue is 0. All nonsingular complex matrices have m-th roots for any m and the sizes of the Jordan

blocks of the matrix and its m-th roots are the same, see pages 231–232 in[2]. However, a singular matrix

has an m-th root if the elementary divisors of the matrix form an “admissible system”, roughly speaking,

the splittings are compatible, see page 238 in [2]. The problem of existence of an m-th root of a nonzero
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nonnilpotent complex matrix A is reduced to considering a nilpotent matrix, because JA = diag(R,N),

where R is nonsingular (or zero if A is nilpotent) and N is nilpotent. Recall that for a nilpotent matrix X

with entries in a field, the nilpotency is n provided that Xn = 0 and Xn−1 6= 0; equivalently, n is the size of

the largest Jordan block in its Jordan canonical form JX . That is, if we denote the multiplicity of the upper

triangular k × k nilpotent Jordan block [jk] by xk, for k = 1, . . . , n, we wrte

JX = diag([jn](xn), [jn−1](xn−1), . . . , [j2](x2), [j1](x1)) = x1[j1]⊕ · · · ⊕ xn[jn]

when taking k-th power of a matrx to avoid notation like ([js]
(xs))k we use the latter one.

A matrix is called rootless if it has no m-th root for any m > 1. An example of a rootless matrix is [jk], see

Corollary 3.5 (3), however, the diagonal block matrix diag([jk](2)) is not rootless as it is similar to [j2k]2,

see Proposition 2.3. The fact that diag([jk](2)) has a square root similar to [j2k] demonstrates that there

is a splitting of the Jordan block sizes after taking powers of nilpotent matrices which is the source of the

problem for the existence of m-th roots of nilpotent matrices.

In Theorem 3.2 in [7] Psarrakos proves the following. “A complex matrix A has an m-th root if and only

if the ascent sequence d1 ≥ d2 ≥ · · · of A has no more than one element between mk and m(k + 1) for

every integer k ≥ 0, where di is the number of Jordan blocks of size at least i. Moreover, if A is singular

and d2 > 0, then for every integer m > d1, A has no m-th roots.” He also gives a construction for an m-th

root of a nilpotent matrix when it exists. Higham and Lin refine the first part of Psarrakos’s Theorem for

real matrices in Theorem 2.3 [3]. The sixth section of Otero’s article [5] and [8] are devoted to nilpotent

matrices. Theorem 13 in [5] and Schwaiger’s Theorem 1 (1) in [8] give a necessary and sufficient condition

for a nilpotent matrix to have an m-th root. Otero uses the sequence e1 ≥ e2 ≥ · · · of the exponents of

the elementary divisors of the matrix (i.e, the sizes of the Jordan blocks occurring in the Jordan canonical

form of the matrix), Schwaiger uses the ai’s where ai(= di − di−1) is the number of Jordan blocks of size i

in the Jordan canonical form of the matrix. We also use ai’s in our main theorem, Theorem 1.1 which can

be viewed as a refinement of Schwaiger’s Theorem 1 (1) in [8].

We start by a lemma relating m and d, and the nilpotency t of a nilpotent matrix A having an m-th root.

Lemma 2.1. If A is a nonzero d × d nilpotent matrix having an m-th root for some m > 1, then m < d.

Moreover, m ≤ d− t + 1, where t is the nilpotency index of A.

Proof. Let B be an m-th root for A. Since B is nilpotent of size d× d, the characteristic polynomial of B is

of degree d, Bd = 0. Since Bm = A 6= 0, we have m < d. The second statement is proved in [11] in Theorem

3.2. �

The following lemmas are essentially from [6]; we state them here with the necessary modifications. Their

proofs are obtained from the indicated ones in [6], mainly by replacing ps, pr, and pt with the m, t and s of

this article, respectively.

Lemma 2.2. Suppose that X is a d×d nilpotent matrix with nilpotency t and of Jordan type x = (x1, . . . , xt).

If the nilpotency of X is not known, replace t with d in this lemma. Then

(1) rank(Xi) =

t−i∑
k=1

kxi+k for 0 ≤ i < t.

(2) xi = rank(Xi−1)− 2 rank(Xi) + rank(Xi+1) for 1 ≤ i < t.
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(3)

l∑
i=k

xi = rank(Xk−1)− rank(Xk)− rank(X l) + rank(X l+1) for 1 ≤ k, and k + 2 ≤ l ≤ t;

in particular,

t∑
i=1

xi = d− rank(X).

Proof. (1), (2) and (3) follow from Main Lemma (1), (2), (4) in [6], respectively. �

The following classical result can be obtained using Lemma 2.2 (2), we use it in the proof of Proposition 3.1.

It is the main ingredient for determining the Jordan type of the m-th power of a matrix in [5], [8] and [9].

Proposition 2.3. For positive integers m < s, with s = km + r for some k ≥ 1 and 0 ≤ r < m, it holds

that

[js]
m = [jkm+r]m ∼ (m− r)[jk]⊕ r[jk+1];

in particular,

[jkm]m ∼ m[jk].

In other words, for positive integers s,m and k with km ≤ s ≤ (k + 1)m, it holds that

[js]
m ∼ ((k + 1)m− s)[jk]⊕ (s− km)[jk+1].

Proof. For positive integers m < s, with s = km + r for some k ≥ 1 and 0 ≤ r < m, we compute the

Jordan type x = (x1, . . . , xs) of X = [js]
m using Lemma 2.2 (2). Since [jn]l is the zero matrix for l ≥ n and

rank([jn]l) = n− l for 1 ≤ l < n, we have Xk+1 = [jkm+r]km+m = 0, and rank(Xk) = rank([jkm+r]km) = r,

rank(Xk−1) = rank([jkm+r]km−m) = m + r. Therefore, by Lemma 2.2 (2) we obtain

xk+1 = rank(Xk) = r and xk = rank(Xk−1)− 2 rank(Xk) = m− r.

Since X is s× s and (k + 1)r + k(m− r) = km + r = s, there is no room for any other Jordan blocks, that

is, x1 = x2 = . . . = xk−1 = 0. Hence, [jkm+r]m is similar to (m − r)[jk] ⊕ r[jk+] as claimed. The second

statement is an alternative form of writing the same result avoiding the computation of the remainder r in

the division of s by m. �

Lemma 2.4. Suppose that A is a nonzero d × d nilpotent matrix and B is an m-th root of A with 1 <

m < d, a = (a1, . . . , ad), b = (b1, . . . , bd) are the Jordan types and t and s are the nilpotencies of A and B,

respectively. If d = qm + r for some q ≥ 1 and 0 ≤ r < m, then we have the following:

(1) ai = mbim +

m−1∑
j=1

j
[
b(i−1)m+j + b(i+1)m−j

]
for 1 ≤ i ≤ q − 1 and

aq = b(q−1)m+1 + 2b(q−1)m+2 + · · ·+ (m− 1)b(q−1)m+m−1 + mbqm

+ (m− 1)bqm+1 + (m− 2)bqm+2 + · · ·+ (m− r)bqm+r,

aq+1 = bqm+1 + 2bqm+2 + · · ·+ rbqm+r.

(2) at = b(t−1)m+1 + 2b(t−1)m+2 + · · · + (m − 1)b(t−1)m+m−1 + mbtm, where bi = 0 for s < i ≤ tm,

implying t ≤ (t− 1)m + 1 ≤ s ≤ tm.

(3) In general, t ≤ q + 1. If s = mk for some k, then t = k, if s = mk + l for some k ≥ 1, 0 < l < m,

then t = k + 1.
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Proof. (1) By Lemma 2.2 (2) and (1), we have

ai = rank((Bm)i−1)− 2 rank((Bm)i) + rank((Bm)i+1)

= bmi−m+1 + 2bmi−m+2 + · · ·+ (m− 1)bmi−1 + mbmi

+ (m− 1)bmi+1 + · · ·+ 2bmi+m−2 + bmi+m−1,

where the second equality is due to the coefficients of bd, bd−1,..., bmi+m adding up to zero. When d = qm+r

for some q ≥ 1, and for some 0 ≤ r < m, we have

aq = b(q−1)m+1 + 2b(q−1)m+2 + · · ·+ (m− 1)b(q−1)m+m−1 + mbqm

+ (m− 1)bqm+1 + (m− 2)bqm+2 + · · ·+ (m− r)bqm+r,

aq+1 = bqm+1 + 2bqm+2 + · · ·+ rbqm+r.

(2) Since at+1 = 0, by (1) at takes the given form. Since at 6= 0 and bi’s are nonnegative there is j in the set

{(t− 1)m + 1, (t− 1)m + 2, . . . , (t− 1)m + m− 1, tm} such that bj 6= 0. Hence (t− 1)m ≤ s ≤ tm.

(3) By part (1) we have t ≤ q + 1. Since 0 6= A = Bm, we have 1 < t and m < s. Since Btm = At = 0 and

B(t−1)m = At−1 6= 0, we have (t− 1)m + 1 ≤ s ≤ tm. By part (1), if s = km, then 0 6= bs = bkm appears as

the last term in ak, and ai = 0, for i ≥ k+ 1, that is t = k, if s = km+ l, with 0 < l < m, then t = k+ 1. �

See Example 3.2 (1) and (2) for the examples of tm ≤ d and d ≤ tm, respectively.

Lemma 2.5. Suppose that A is a nonzero d× d nilpotent matrix, B is an m-th root of A with 1 < m < d,

and a = (a1, . . . , ad), b = (b1, . . . , bd) are the Jordan types of A and B, respectively. Then

(1) if m divides

m−1∑
j=1

jb(i−1)m+j, or ai−1 = 0, then m divides

d∑
j=i

aj .

(2) if ai−1 = al+1 = 0, then

l∑
j=i

aj = m

lm−im∑
j=0

bim+j for 1 < i ≤ l < d;

in particular, if i = l, then ai = mbim.

Proof. Note that (2) follows from (1). For (1), without loss of generality, assume that the nilpotency of A is

t and write the ai’s using Lemma 2.4 as follows:

ai−1 = bim−2m+1 + 2bim−2m+2 + . . . + mb(i−1)m

+ (m− 1)bim−m+1 + . . . + 2bim−m+m−2 + bim−1,

ai = bim−m+1 + 2bim−m+2 + . . . + (m− 1)bim−1 + mbim

+ (m− 1)bim+1 + . . . + 2bim+m−2 + bim+m−1,

ai+1 = bim+1 + 2bim+m−2 + . . . + (m− 1)bim+m−1 + mb(i+1)m

+ (m− 1)bim+m+1 + . . . + 2bim+2m−2 + bim+2m−1,

...

at−1 = btm−2m+1 + 2btm−2m+2 + . . . + (m− 1)b(t−1)m−1 + mb(t−1)m

+ (m− 1)btm−m+1 + (m− 2)btm−m+2 + . . . + btm−1,

at = btm−m+1 + 2btm−m+2 + . . . + (m− 1)btm−1 + mbtm.
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The pattern for the coefficients of bj ’s in ai’s is very useful. Observe that in a1, . . . , at, the numbers

b1, . . . , bm−1 appear only in a1 with respective coefficients 1, . . . ,m − 1, and bim appears only in ai with

coefficient m, for i = 1, . . . , t. However, the remaining bj ’s appear twice, one in ai and the other in ai+1 for

some i with coefficients adding up to m. The sum
∑m−1

j=1 jb(i−1)m+j in the hypothesis of (1) is the sum of the

first m− 1 terms of the equation for ai above and it is is 0 if ai−1 = 0. Thus, if m divides
∑m−1

j=1 jb(i−1)m+j

or ai−1 = 0, then m divides
∑d

j=i aj . �

The equations listed in the proof of Lemma 2.5 are essentially from the proof of Main Lemma in [6]; we

include them here with the necessary modifications, by replacing ps, pr, pt in [6] with the m, t, s of this

article, respectively.

3. JORDAN TYPE of m-th ROOT/POWER, ROOTLESSNESS for NILPOTENT MATRICES

This section is devoted to our results on nilpotent matrices that have m-th roots or are rootless. Before

proving our main theorem, Theorem 1.1, we give a result on nilpotent Jordan blocks which is used in Thereom

1.2. It is a generalization of Lemma 1.3 in [9] (the case i = 1 is Lemma 1.3 [9]) and it is of general interest.

Proposition 3.1. For nonnegative integers k ≥ 0,m > 1, and s, l, i ≥ 1 satisfying

0 ≤ mk ≤ s < s + i ≤ m(k + 1) and 0 ≤ mk ≤ l − i < l ≤ m(k + 1),

it holds that ([js]⊕ [jl])
m ∼ ([js+i]⊕ [jl−i])

m.

Proof. Suppose the nonnegative integers k ≥ 0,m > 1, and s, l, i ≥ 1 satisfy 0 ≤ mk ≤ s < s + i ≤
m(k + 1) and 0 ≤ mk ≤ l − i < l ≤ m(k + 1). Note that, for square matrices X and Y we have

(X ⊕ Y )m = Xm ⊕ Y m. Hence, calculating [js]
m, [jl]

m, [js+i]
m, [jl−i]

m by Proposition 2.3 and adding the

multiplicities of [jk] and [jk+1] for each side of the similarity symbol in the statement gives the result. �

3.1. Theorem 1.1 and several corollaries.

Proof of Theorem 1.1. Suppose that A is nilpotent of nilpotency t having the Jordan type a and has an m-th

root B with the Jordan type b and nilpotency s. We compute the Jordan type a = (a1, . . . , ad) of A which

is the m-th power of a nilpotent matrix B having the Jordan type b = (b1, . . . , bd) using the formula for ai
given in Lemma 2.2 (2) and it turns out that ai can be written as a special linear combination of bj ’s with

coefficients 0, 1, 2, . . . ,m as in Lemma 2.4. The inequalities with the nilpotencies s, t are also given by Lemma

2.4. Conversely, suppose that there exist nonnegative integers b1, . . . , bd satisfying the equations given in

(1), set B = diag([jd](bd), [jd−1](bd−1), . . . , [j2](b2), [j1](b1)). Since having an m-th root is a similarity-invariant

property, the result follows from

A ∼ diag([jd](ad), [jd−1](ad−1), . . . , [j2](a2), [j1](a1)) ∼ Bm.

�

Example 3.2 (Immediate applications of Theorem 1.1). Suppose that A is a d×d nonzero nilpotent matrix

of nilpotency t with Jordan type a = (a1, . . . , at), and B is a third root of A, of nilpotency s and Jordan
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type b = (b1, . . . , bs). Assume that t ≤ 4. By Theorem 1.1 we have 4 ≤ s ≤ 12, and
a1 = b1 + 2b2 + 3b3 + 2b4 + b5,

a2 = b4 + 2b5 + 3b6 + 2b7 + b8,

a3 = b7 + 2b8 + 3b9 + 2b10 + b11,

a4 = b10 + 2b11 + 3b12,

(3)

where bi = 0 for all i with s < i ≤ 12. The system of linear equations in (3) can be written as MbT = aT ,

where

M =


1 2 3 2 1 0 0 0 0 0 0 0
0 0 0 1 2 3 2 1 0 0 0 0
0 0 0 0 0 0 1 2 3 2 1 0
0 0 0 0 0 0 0 0 0 1 2 3

 . (4)

Clearly, d = a1 + 2a2 + 3a3 + 4a4. It is possible that d ≥ tm = 3t or d ≤ tm = 3t as shown in (1) and (2)

below, respectively.

(1) Let b = (b1, . . . , b12) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0). Then the product MbT gives that a = (0, 0, 4, 2);

hence, t = 4, and d = 20 ≥ tm = 12.

(2) Let b = (b1, . . . , b12) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0). Then the product MbT gives that a = (0, 0, 2, 1);

hence, t = 4, and d = 10 ≤ tm = 12.

(3) Let a = (a1, a2, a3, a4) = (0, 0, 1, 1). Since a4 = 1, b10 = 1, and b11 = b12 = 0. Then 1 = a3 ≥ 2b10 = 2 is

a contradiction; hence, A cannot have any third root.

(4) Let b = (1, 1, 1, 1). Hence, s = 4. In this case, due to the fact that bi = 0 for i = 5, 6, . . . , 12, the 4× 12

matrix M can be reduced to a 4× 4 matrix by deleting the columns 5, 6, . . . , 12. Then a = (8, 1, 0, 0); hence,

t = 2 and tm = 6 ≤ 10 = d. Thus, the equations in (3) can be be used as long as t ≤ 4 and s ≤ 12.

We collect many implications of Theorem 1.1 in the following two corollaries.

Corollary 3.3. Let m be an integer with 1 < m < d. Suppose that A is a nonzero d × d nilpotent matrix

over a field having an m-th root B, with Jordan types a = (a1, . . . , ad) and b = (b1, . . . , bd), respectively.

Then the following hold.

(1)

d∑
j=1

aj ≥ m; more generally, if

d∑
j=i

aj > 0, then

d∑
j=i

aj ≥ m for i = 1, . . . , d.

(2) If ai−1 · ai · ai+1 6= 0 for some i = 2, . . . , d− 1, then at least one of ai−1 + ai or ai + ai+1 is greater

than m.

(3) If ai−1 = 0 = ak+1 for some i, k with 2 ≤ i ≤ k ≤ d− 1, then m divides

k∑
j=i

aj;

in particular, if i = k, then m divides ai.

(4) If ai = 0 for some i with 1 ≤ i ≤ d−1, or, alternatively, if m divides

m−1∑
j=1

jbim−m+j, then m divides

the sum

d∑
j=i

aj.
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Proof. Consider the equations for ai’s written in the proof of Lemma 2.5 keeping in mind the nonnegativity

of all bj ’s. Since A is nonzero, its nilpotency t ≥ 2. Hence, at > 0 for some t ≥ 2 implying a1+a2+ · · ·+ad =

a1 + · · ·+ at > 0.

(1) If only at 6= 0 in a2 + · · ·+ at, then at−1 = 0; hence, at = mbtm > 0. Thus a1 + a2 + a3 + · · ·+ at ≥ m. If

a1 + · · ·+ at has more than one nonzero term, then there are two cases, at−1 is zero or nonzero. If at−1 6= 0,

then as noted in the proof of Lemma 2.5, at−1 + at ≥ m. Hence, a1 + a2 + a3 + · · ·+ at ≥ at−1 + at ≥ m. If

at−1 = 0, then at = mbtm > 0 which implies a1 + a2 + a3 + · · ·+ at ≥ at = mbtm ≥ m. A similar argument

works for the second half of the statement.

(2) If ai−1, ai, ai+1 are nonzero, then either ai−1 + ai ≥ m, or ai + ai+1 ≥ m as noted in the proof of Lemma

2.5.

The parts (3) and (4) are implied by Lemma 2.5 (2) and (1), respectively. �

Remark 3.4 (Counterexample to an erroneous statement). Theorem 1 (2) in [8] states that “If a nilpotent

matrix A has an m-th root, then m divides the total number of Jordan blocks in the Jordan form of A.”

This is not true in general. As a counterexample, let A = diag([j2], [j1](6)), that is, a = (6, 1). Consider

B = diag([j4], [j3], [j1]). Then B3 ∼ A by Proposition 2.3, i.e., A has a third root. However, m = 3 does not

divide the number of Jordan blocks of A which is 7. Corollary 3.3 (4) provides a more general statement and

an alternative one to the erroneous statement. The other parts of Corollary 3.3 provide similar statements.

The third inequality in Corollary 3.5 (1) provides a stronger statement than the second statement of Psar-

rakos’s Theorem 3.2 in [7] stated in the Preliminaries by removing the hypothesis d2 > 0.

Corollary 3.5. Suppose that A is a nonzero d× d nilpotent matrix over a field, with Jordan type a, rank r

and nilpotency t.

(1) A cannot have an m-th root whenever m ≥ d, or m > d− t + 1, or m > d− r.

(2) If A has an m-th root and a contains the sequence e, 1, f , then e ≥ m− 1 or f ≥ m− 1.

(3) If a contains the sequence 0, 1, 0, or at−1 = 0 and at = 1, then A is rootless.

In particular, A = [jd] is rootless.

(4) If A has no square root and a contains the sequence 1, 1, 1, then A is rootless.

(5) If a = (a1, . . . , at) = (∗, . . . , ∗, 0, e, 1), then A may have only (e + 1)-th roots. In particular,

diag([jt], [jt−1](m−1)) has only m-th roots, and every m-th root is similar to [j(t−1)m+1].

Proof. (1) The first and second inequalities follow from Lemma 2.1. By Lemma 2.2 (3) we have d − r =

a1 + · · ·+ ad. Therefore, if A has an m-th root, then Corollary 3.3 (1) implies d− r ≥ m proving the third

inequality.

For (2)–(5), consider the equations for ai’s written in the proof of Lemma 2.5 keeping in mind the nonnega-

tivity of all bj ’s.

(2) Set the equations for ai−1, ai and ai+1 equal to e, 1 and f respectively. Since bj ’s are nonnegative,

the only way to get ai = 1 is either the first term bim−m+1 = 1 and the remaining bj ’s are zero, i.e.,

bim−m+2 = bim−m+3 = bim−m+4 = · · · = bim+m−1 = 0, or, the last term bim+m−1 = 1 and the remaining

bj ’s are zero, i.e., bim−m+1 = bim−m+2 = bim−m+3 = bim−m+4 = · · · bim+m−2 = 0. If bim−m+1 = 1, then

ai−1 ≥ m− 1. If bim+m−1 = 1, then ai+1 ≥ m− 1.
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(3) By part (1) we know (0, 1, 0) = (ai−1, ai, ai+1) is not a possibility. Similarly, one can see that (at−1, at) 6=
(0, 1).

(4) The consecutive multiplicities ai−1, ai, ai+1 are all 1 only when m = 2.

(5) Assume that A has an m-th root for some integer m ≥ 2. Consider the equations at−2 = 0, at−1 =

e, at = 1. The equality at = 1 is true only when btm−m+1 = 1 and btm−m+2 = btm−m+3 = · · · = btm = 0.

Since the coefficient of btm−m+1 in at−1 is m − 1, we must have e = m − 1 and btm−2m+1, btm−2m+2,

btm−2m+3, . . . , btm−1 are all zero except for btm−m+1 = 1. Thus m = e + 1. In the particular case that

a = (a1, . . . , at) = (0, . . . , 0,m−1, 1), the only possible solution for b is (b1, . . . , btm−m+1) = (0, . . . , 0, 1). �

3.2. Characterization of existence of an m-th root for a nilpotent matrix by two equivalent

matrix equations. The necessary and sufficient conditions of Theorem 1.1 for the existence of an m-th

root for a nilpotent matrix can be written as a system of linear equations MbT = aT as in Example 3.2

which can equivalently be written as the matrix equation:
b1 b2 b3 b4 b5
b4 b5 b6 b7 b8
b7 b8 b9 b10 b11
b10 b11 b12 0 0

 [ 1 2 3 2 1
]T

=
[
a1 a2 a3 a4

]T
. (5)

Note that b3i appears in ai for i = 1, 2, 3, 4. The 4× 12 matrix M with entries 0, 1, 2, 3 in Example 3.2 can

be reduced to a 4× s matrix by deleting the last 12− s columns if the nilpotency s of B is known because

of the equalities bs+1 = · · · = b12 = 0. Namely, when s = 10 as in the parts (1) and (2), the equations for

a3 and a4 becomes shorter; a3 = b7 + 2b8 + 3b9 + 2b10, and a4 = b10, see the equations in (3). Deleting the

rows after the t-th one reduces M to a t× s matrix.

In general, if d = mq + r, for some r with 0 ≤ r < m, then t ≤ q + 1 by the equations (1) and (2). The

numbers a1, . . . , aq, and aq+1 can be zero depending on the nilpotencies t and s. It may be of interest to

find an m-th root B of specific nilpotency s provided that (t− 1)m + 1 ≤ s ≤ tm holds; see Example 3.10.

Corollary 3.6 giving the general forms of (4) and (5) is as follows.

Corollary 3.6. Suppose that B is a d × d matrix with the Jordan type b = (b1, . . . , bd). For 1 < m < d,

where d = qm+ r for some q ≥ 1, 0 ≤ r < m, and A = Bm with the Jordan type a = (a1, . . . , ad), there is a

(q+1)×d matrix M with nonnegative entries 0, 1, 2, . . . ,m satisfying MbT = aT , where M = (R1, . . . , Rd)T ,

for i = 1, 2, . . . , q − 1,

Ri = ( 0, . . . , 0︸ ︷︷ ︸
(i−1)m times

, 1, 2, . . . ,m− 2,m− 1,m,m− 1,m− 2, . . . , 2, 1, 0, 0, . . . ),

Rq = ( 0, . . . , 0︸ ︷︷ ︸
(q−1)m times

, 1, 2, . . . ,m− 2,m− 1,m,m− 1,m− 2, . . . ,m− (r − 1),m− r),

Rq+1 = (0, . . . , 0︸ ︷︷ ︸
qm times

, 1, 2, . . . , r − 1, r).
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That is, M is an echelon matrix as shown, where the entries not written are all zeroes:

M =

1st block of m columns︷ ︸︸ ︷

1 2 · · · m

2nd block of m columns︷ ︸︸ ︷
m− 1 · · · 1 0

1 · · · m− 1 m

3rd block of m columns︷ ︸︸ ︷
m− 1 · · · 1 0

1 · · · m− 1 m
· · ·

· · ·

(q−1)-th block of m columns︷ ︸︸ ︷

m− 1 · · · 1 0
1 · · · m− 1 m

q-th block of m columns︷ ︸︸ ︷

m− 1 · · · 1 0
1 · · · m− 1 m

r columns︷ ︸︸ ︷

m− 1 · · · m− (r − 1) m− r
1 · · · r − 1 r


.

The matrix M can be reduced to a (q+1)×s matrix by deleting the last d−s columns, where s the nilpotency

of B. The matrix M can be reduced to a t × d matrix by deleting the last q + 1 − t rows, where t is the

nilpotency of A and satisfies (t− 1)m + 1 ≤ d.

The matrix M can be reduced to a t× s matrix with (t− 1)m + 1 ≤ s ≤ tm, where t, s are the nilpotencies

of A and B, respectively. In this case, the matrix equation MbT = aT is equivalent to the matrix equation

B′(1, 2, . . . ,m− 1,m,m− 1, . . . 2, 1)T = aT

where B′ is t× (2m− 1) matrix with nonnegative entries in the set {0, b1, b2, . . . , bd} as follows:

B′ =


b1 b2 · · · bm−1

B

bm
b2m

...
btm

B

0 · · · 0

 , B =


bm+1 bm+2 bm+3 · · · b2m−1
b2m+1 b2m+2 b2m+3 · · · b3m−1

...
...

...
...

...
b(t−2)m+1 b(t−2)m+2 b(t−2)m+3 · · · b(t−1)m−1
b(t−1)m+1 b(t−1)m+2 b(t−1)m+3 · · · btm−1


where B is a (t− 1)× (m− 1) matrix; with bd+1, bd+2, . . . , btm defined as 0 if tm > d.

Proof. If A = Bm and t is the nilpotency of A, then by Theorem 1.1, the equation at = b(t−1)m+1 +

2b(t−1)m+2 + · · · + (m − 1)b(t−1)m+m−1 + mbtm 6= 0 implies that at least one of its terms is nonzero. The

greatest index s for which bs 6= 0 is the nilpotency of B; hence, (t − 1)m + 1 ≤ s ≤ tm. In addition,

Ak = (Bm)k = (Bk)m = 0 implies that t ≤ s ≤ tm. Since s ≤ tm, bi = 0 for s ≤ i ≤ d, there is no need to

include them in the matrices. �

Remark 3.7. Note that when a is given and we look for a solution b with nonnegative entries to MbT = aT ,

there is no guarantee that there will be such a solution, regardless of the fact that the system is consistent and

has many free variables. See Example 3.2 (3), and Example 3.10 where no third root exists for a nilpotent

A. See Corollary 3.11 where an m-th root of smallest nilpotency which is an m-th root of A is obtained

provided that a satisfies some conditions.
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3.3. Computing Jordan type of m-th power/root of a nilpotent matrix by MbT = aT . Consider

the matrix equation MbT = aT given in Corollary 3.6, where b and a are the Jordan types of B and Bm = A,

respectively. The size of M reduces naturally to t × d, d × s, t × s, where t and s are the nilpotencies of

A and B, respectively. Computing the Jordan form of the m-th power is reduced to multiplying M by b

without any reference to eigenvectors. Thus, MbT = aT provides an alternative easy algorithm for computer

computations of the Jordan canonical forms of the m-th power of a nilpotent matrix when the eigenvectors

are not needed. Conversely, the existence of an m-th root for a matrix with Jordan type a is reduced to the

existence of a nonnegative integer solution b to the equation, this can be implemented by computers as well.

We should note here that when there is a solution with a pair of Jordan blocks of special sizes, Theorem 1.2

gives a method of producing other solutions with a different Jordan type which can also be implemented by

computers.

Example 3.8 (Computing the Jordan type of the third power of a matrix). If B is a 16 × 16 nilpotent

matrix with Jordan type b = (1, 1, 1, 0, 2), then B is of nilpotency 5 and d = 16. The Jordan type of B3 is

obtained by the matrix multiplication suggested by Corollary 3.6. Namely, consider the 4× 5 submatrix of

M by taking the first five columns of M in Example 3.2. Then the nilpotency of B3 is at most 2 since the

last two rows of the matrix are zero. Multiplying that matrix with b = (1, 1, 1, 0, 2) gives the Jordan type of

B3 as (8, 4, 0, 0), and B3 is of nilpotency 2.

Example 3.9 (Matrices with no third roots). In Example 3.2 (3) there is a Jordan type a for which no

nonnegative solution b exists to MbT = aT . For another example, let A be of Jordan type a = (1, 1, 2, 1).

There is no b satisfying the equation (3). Hence A cannot have a third root.

It may be desirable to specify the nilpotency s of an m-th root of a nilpotent matrix of nilpotency t provided

that (t− 1)m + 1 ≤ s ≤ tm, see Theorem 1.1.

Example 3.10 (Matrix having a third root of nilpotency 11 but not 10). Suppose that A is a nilpotent

matrix with nilpotency t = 4 and has a third root B of nilpotency s. Then 10 ≤ s ≤ 12. Assume that s = 10.

We can write the Jordan type of A as a = (a1, . . . , a4) and the Jordan type of B as b = (b1, . . . , b10). Note

that d ≥ 10 and a4 ≥ 1. By Theorem 1.1 a3 = b7 + 2b8 + 3b9 + 2b10, a4 = b10. Hence, a3 ≥ 2a4 implying a

contradiction for a = (0, 0, 1, 2) because a3 = 1 6≥ 2a4 = 4. Therefore, A has no third root of nilpotency 10.

However, A has a third root B of nilpotency 11 which has the Jordan type b = (b1, . . . , b11) = (0, . . . , 0, 1)

as it satisfies the equations in (3).

Corollary 3.11. Suppose that A is a nilpotent matrix of nilpotency t and of Jordan type a. For j =

0, 1, . . . , t− 1, define bi = 0 for i 6= jm + 1 and

bjm+1 =

t−j∑
k=1

(−1)k−1(m− 1)k−1ak+j . (6)

If bjm+1 ≥ 0 for j = 0, 1, . . . , t − 1, and
∑(t−1)m+1

i=1 ibi =
∑t

i=1 iai, then A has an m-th root B of smallest

possible nilpotency (t− 1)m + 1 whose Jordan type is b = (b1, . . . , b(t−1)m+1).

Proof. If B is an m-th root of nilpotency s of A, then the smallest s is (t−1)m+1 by Theorem 1.1 and there

is a t× s matrix M of rank t satisfying MbT = aT by Corollary 3.6. The leading entry of M in the j + 1-th

row is at the column jm + 1 for j = 0, 1, . . . , t − 1. Reducing the augmented matrix [M | aT ] so that the

only nonzero term in the columns of leading entries is 1 and letting the free variables bi = 0 for i 6= jm + 1,

j = 0, 1, . . . , t − 1 gives the equations in (6), in particular b(t−1)m+1 = at ≥ 1. Whenever a = (a1, . . . , at)
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makes bjm+1 ≥ 0 for j = 0, 1, . . . , t − 1, any matrix B with Jordan type b = (b1, . . . , b(t−1)m+1) is an m-th

root of A. �

3.4. There are rootless and not rootless nilpotent d× d matrices of nilpotency t for 2t ≤ d. By

Lemma 2.2 (3), the rank r of a d × d nilpotent matrix of nilpotency t with Jordan type a = (a1, . . . , at) is

r = d− (a1 + a2 + · · ·+ at). Corollary 3.12 is an analog of Theorem 2 in [8] replacing rank with nilpotency.

Corollary 3.12. Let 0 6= A be a d× d nilpotent matrix of nilpotency t.

(1) For 2 < t ≤ d, there is A which is rootless.

(2) For 2t ≤ d, there is A which is not rootless.

Proof. Since t is the degree of the minimal polynomial of A, t ≤ d. Since A is nonzero t ≥ 2; hence, 2 ≤ t ≤ d.

(1) When t = d, A = [jd] is rootless by Proposition 2.3. Assume that 2 < t < d. Consider the matrix

A = diag([jt], [j1](d−t)) (of nilpotency t and rank r = t− 1). The result follows by Corollary 3.5 (3) because

at = 1 and at−1 = 0 and t ≥ 3.

(2) Assume that 2t ≤ d. The matrix A = diag([jt]
(2), [j1](d−2t)) (is of rank r = 2t − 2) is similar to the

square of diag([j2t], [j1](d−2t)) by Proposition 2.3; hence, A is not rootless of nilpotency t. �

The rootless matrices in the proof of Corollary 3.12 (1) have rank less than nilpotency. This need not be

the case as several parts the following corollary show. To produce rootless matrices, we can use Corollary

3.6. We arrange a nonnegative a such that MbT = aT has no nonnegative integer solution b.

Corollary 3.13. Let A be a nonzero d× d nilpotent matrix over a field, of nilpotency t, of rank r.

(1) For 2 < k ≤ d ≤ 2k, the matrix A = diag([jk], [jd−k]) is rootless of nilpotency t = k with r = d− 2.

(2) For 3 < k ≤ d−2, the matrix diag([jd−k], [jk−1], [j1]) is rootless of nilpotency t = d−2 with r = d−3.

(3) For 0 ≤ k ≤ d−2, the matrix diag([jd−k], [j1](k)) is rootless of nilpotency t = d−k with r = d−k−1.

(4) For 3 < k ≤ d−2, the matrix diag([jd−k], [j2], [j1](k−2)) is rootless of nilpotency t = d−k with t = r.

Proof. Write a = (a1, . . . , at) of A and argue as in the proof of Corollary 3.5. �

In Corollary 3.14, in addition to the ones in the proof of Corollary 3.12 (2), we give more examples of Jordan

types of A and B, where B is an m-th root of A.

Corollary 3.14. Let 1 < m < d be integers and A be a d × d nilpotent matrix of nilpotency t having an

m-th root B with respective Jordan types a and b.

(1) For t = 2 and a = (a1, a2) = (q + r(m− 1), r) (A is of rank r), where r is a nonnegative integer, an

example for b is b = (b1, . . . , bm+1) = (q, 0, . . . , 0, r) (B is of rank mr).

(2) For t = 2 and A has a = (a1, a2) = (q,mk) (A is of rank mk), an example for b is b =

(b1, . . . , b2m−1, b2m) = (q, 0, . . . , 0, k) (B is of rank (2m− 1)k).
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(3) For t = 3 and a = (a1, a2, a3) = (2q, p(m − 1), p) (A is of rank k(m + 1)), where k is a non-

negative integer, an example for b is b = (b1, . . . , b2m+1) = (2q, 0, . . . , 0, k) (of rank 2km), or

b = (b1, . . . , b2m+1) = (0, q, 0, . . . , 0, k) (B is of rank 2km + q).

(4) For 4 ≤ t ≤ d and t = 2n for some n ≥ 1, and a = (a1, . . . , at) = ((m− 1)k1, k1, . . . , (m− 1)kn, kn)

(A is of rank
∑n

i=1(2(i − 1)m + 1)ki), where k1, . . . , kn are nonnegative, an example for b is

b = (b1, . . . , b(t−1)m+1) =

( 0, .., 0︸ ︷︷ ︸
m times

, k1, 0, .., 0︸ ︷︷ ︸
2m−1 times

, k2, 0, .., 0︸ ︷︷ ︸
2m−1 times

, k3, . . . , 0, .., 0︸ ︷︷ ︸
2m−1 times

, kn−1 0, .., 0︸ ︷︷ ︸
2m−1 times

, kn) (B is of rank
∑n

i=1(2i− 1)mki).

(5) For 4 ≤ t ≤ d and t = 2n + 1 for some n ≥ 1, and a = (a1, . . . , at) =

(0, (m− 1)k1, k1, . . . , (m− 1)kn, kn) (A is of rank
∑n

i=1(2i− 1)m+ 1)ki), where k1, . . . , kn are non-

negative, an example for b is b = (b1, . . . , b(t−1)m+1) =

(0, · · · , 0︸ ︷︷ ︸
2m times

, k1, 0, .., 0︸ ︷︷ ︸
2m−1 times

, k2, 0, .., 0︸ ︷︷ ︸
2m−1 times

, k3, . . . , 0, .., 0︸ ︷︷ ︸
2m−1 times

, kn−1 0, .., 0︸ ︷︷ ︸
2m−1 times

, kn) (B is of rank
∑n

i=1 2imki).

Proof. In (1)–(5) a and b satisfy the equations given in Theorem 1.1. �

4. RESULTS for NOT NECESSARILY NILPOTENT MATRICES

4.1. New m-th roots with different Jordan type from a special m-th root of a singular matrix.

The key observation used in the proof of Theorem 1.2 is Proposition 3.1. Since it is on nilpotent matrices,

it is given in Section 3.

Proof of Theorem 1.2. Let m > 1, k ≥ 0, u, s, l, i ≥ 1 be integers satisfying

0 ≤ mk ≤ s < s + i ≤ m(k + 1) and 0 ≤ mk ≤ l − i < l ≤ m(k + 1),

E be any square matrix. Let b and c be the Jordan types of the nilpotent parts of B and C, respectively,

where

B = diag(E, [js]
(u), [jl]

(u)) and C = diag(E, [js+i]
(u), [jl−i]

(u)).

Permuting the blocks of a block diagonal matrix produces a similar matrix, that is, X(u)⊕Y (u) ∼ (X⊕Y )(u).

Hence,

B ∼ diag(E, ([js]⊕ [jl])
(u)) and C ∼ diag(E, ([js+i]⊕ [jl−i])

(u)),

implying that

Bm ∼ diag(Em, (([js]⊕ [jl])
m)(u)) and Cm ∼ diag(Em, (([js+i]⊕ [jl−i])

m)(u)).

By Proposition 3.1, we obtain

[js]
m ⊕ [jl]

m = ([js]⊕ [jl])
m ∼ ([js+i]⊕ [jl−i])

m = [js+i]
m ⊕ [jl−i]

m.

Hence, for any positive integer u, we have

(([js]⊕ [jl])
m)(u) ∼ (([js+i]⊕ [jl−i])

m)(u).

By the transitivity of the similarity relation we obtain Bm ∼ Cm.
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Under the given hypotheses, the Jordan type b of the nilpotent part of B is (b1, . . . , bn) for some n with

bs ≥ u and bl ≥ u, and the Jordan type c of the nilpotent part of C is (c1, . . . , ck) for some k with cs+i ≥ u

and cl−i ≥ u. The Jordan type c has the same entries as b except for the following

cs = bs − u, cl = bl − u, cs+i = bs+i + u and cl−i = bl−i + u. �

Remark 4.1. Theorem 1.2 gives a method to produce other m-th roots of a singular matrix from a given m-th

root having a pair special size Jordan blocks. Let s, l, k, i satisfying the hypothesis of Theorem 1.2 and B =

diag(E, [js]
(u), [jl]

(u)) be an m-th root of A. Let b = (b1, . . . , bn) be the Jordan type of the nilpotent part of B

and u := min{bs, bl} Then u ≥ 1, and A = Bm ∼ Cm by Theorem 1.2 where C = diag(E, [js+i]
(u), [jl−i]

(u)).

Hence, A has an m-th root similar to C as well. Another interpretation of Theorem 1.2 is for solutions of

MxT = aT , where M is the matrix given in Corollary 3.6.

Example 4.2 (New m-th root from a special one). Let B be a 3rd root of some nilpotent matrix A.

Assume that the Jordan type of B is b = (0, 0, 0, 1, 3, 0, 0, 0, 0, 1), that is, B ∼ diag([j4], [j5], E), where

E = [j10] ⊕ 2[j5]. By multiplying b with the submatrix obtained by deleting the last two columns of the

matrix M given in the equation (4) we obtain the Jordan type of A as a = (5, 7, 2, 1). By Theorem 1.2,

(diag([j4], [j5], E))3 ∼ (diag([j6], [j3], E))3, where u = 1, s = 4, l = 5, i = 2, k = 1. Hence, s + i = 6,

l− i = 3, and C is another 3rd root with c = (0, 0, 1, 0, 2, 1, 0, 0, 0, 1), that is, c3 = b3 +1 = 1, c4 = b4−1 = 0,

c5 = b5 − 1 = 2. The Jordan type of C3 is (5, 7, 2, 1) which can be obtained by multiplying c with the

submatrix obtained by deleting the last two columns of the matrix M given in the equation (4) as well.

Example 4.3 (New solution for MxT = aT from a special one). Let M be the matrix given in (4), and

a = (5, 7, 2, 1). Then x = (0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 0, 0), and x = (0, 0, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0) are solutions to

MxT = aT by Example 4.2, where the second one is obtained from the first one using Theorem 1.2.

4.2. Sum of commuting matrices over various fields. Our Theorem 1.3 below is independent from

the rest and does not require much preliminary work. It is based on some observations on the sum of

two commuting matrices using the binomial theorem. Namely, if E and F are commuting matrices over

a field k. If char(k) = p > 0, then (E + F )p
k

= Epk

+ F pk

. If char(k) = 0, and EF = FE = 0, then

(E + F )n = En + Fn for any integer n ≥ 1. Several nice consequences of these facts in relation to m-th

roots are given in Theorem 1.3.

Proof of Theorem 1.3. Suppose that A = E +F is a d× d matrix over a field k and m > 1 is a fixed integer.

(1) Assume that K,L are commuting m-th roots of E and F , respectively. If char(k) = p > 0, the hypothesis

KL = LK implies that A = Kpm

+ Lpm

= (K + L)p
m

by the modulo p binomial theorem. If char(k) = 0,

the hypothesis KL = LK = 0 implies that (K + L)m = Km + Lm = E + F = A by the binomial theorem.

Hence, K + L is an n-th root for A where n = pm if char(k) = p > 0.

(2) Assume that EF = FE = 0, F is nilpotent of nilpotency t and Ek has an m-th root for k ≥ t.

Since EF = FE = 0, and F k = 0 for k ≥ t, by the binomial theorem we obtain Ak = (E + F )k = Ek.

Hence, the result follows. If E is diagonalizable (or nonsingular), then all powers of E are diagonalizable (or

nonsingular). Thus, Ak = Ek is diagonalizable (or nonsingular) for any k ≥ t. Clearly, every diagonalizable

complex matrix has an m-th root. When k is the complex numbers the nonsingularity of E implies that of

Ek; hence, Ek has an m-th root for any k ≥ t by the equation (89) in Chapter VIII of [2]. �

Recall that the Jordan canonical form JA of a matrix A having its eigenvalues in the field is unique up

to the order of diagonal blocks. Let D be the diagonal matrix with same diagonal elements as JA, and

N = JA − D. Then A ∼ D + N = JA, where DN = ND. Hence, A = PJAP
−1 = PDP−1 + PNP−1



16 SEMRA ÖZTÜRK

can be written uniquely up to the order of diagonal blocks as a sum of two commuting matrices one of

which is diagonalizable matrix and the other is nilpotent. If A is nonsingular, then D is nonsingular; hence,

D + N = D(I + D−1N) and A = PDP−1P (I + D−1N)P−1. We obtain the following corollary of Thorem

1.3.

Corollary 4.4. Suppose that A = D + N is a d × d complex matrix, where D is diagonalizable and N is

nilpotent of nilpotency t.

(1) If ND = DN = 0, then Ak has an m-th root for any k ≥ t and any m > 1.

(2) If A is nonsingular, B and C are commuting m-th roots of D and (I + D−1N), respectively, then

BC is an m-th root of A.

Proof. (1) Since ND = DN = 0, and Nk = 0 for k ≥ t, Ak = (D+N)k = Dk. Diagonalizable matrices over

complex numbers have m-roots for any m > 1. Hence, for any k ≥ t, Ak = Dk have an m-th root for any

m > 1.

(2) Since BC = CB, we have (BC)m = BmCm = D(I + D−1N) = A. �

Example 4.5. Let A = D + N where D = diag(0, e, f, 0) and N = [j4]3. Since N2 = 0, A2 = D2. Then

diag(0, e′, f ′, 0) is an m-th root of A2 = D2 where e′ and f ′ are some m-th roots of e and f , respectively, for

any m > 1.
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