BETTI NUMBERS OF FIXED POINT SETS AND MULTIPLICITIES OF INDECOMPOSABLE SUMMANDS

SEMRA ÖZTÜRK KAPTANOĞLU

(Received 5 September 2001; revised 4 February 2002)

Communicated by S. Gradde

Abstract

Let G be a finite group of even order, k be a field of characteristic 2 , and M be a finitely generated $k G$-module. If M is realized by a compact G-Moore space X, then the Betti numbers of the fixed point set $X^{C_{n}}$ and the multiplicities of indecomposable summands of M considered as a $k C_{n}$-module are related via a localization theorem in equivariant cohomology, where C_{n} is a cyclic subgroup of G of order n. Explicit formulas are given for $n=2$ and $n=4$.

2000 Mathematics subject classification: primary 55M35; secondary 20 C 05.
Keywords and phrases: Betti number, fixed point set, Moore space, realizable module, multiplicity, indecomposable summand, localization, equivariant cohomology.

0. Introduction

Throughout the paper G denotes a finite group of order divisible by a prime p, A a subgroup of G, k a field of characteristic p, J the Jacobson radical of the group algebra $k G, M$ a finitely generated $k G$-module, X a G-space, and X^{A} the fixed point set of A in X. Topological spaces with a G-action give rise to G-modules; for example, the cohomology group $H^{i}(X ; k)$ with k-coefficients is a finitely generated $k G$-module for $i \geq 0$ provided that X is a compact G-space. Equivariant cohomology $H_{G}^{*}(X ; k)$ of X is defined as the cohomology $H^{*}\left(X_{G} ; k\right)$ of the Borel construction $X_{G}=(X \times E G) / G$ of X. When X is a point, we simply write H_{G}^{*} for $H_{G}^{*}(X ; k)$ which is the same as $H^{*}(G ; k)$. The constant map from X to a one-point space induces an H_{C}^{*}-module structure on $H_{G}^{*}(X ; k)$. When G is an elementary abelian p-group and X is finitedimensional, the inclusion map $j:\left(X^{G}, x_{0}\right) \hookrightarrow\left(X, x_{0}\right)$ induces an isomorphism in the localized equivariant cohomology of H_{G}^{*}-modules ([Qu]). A simply connected
G-space X is called a G-Moore space if $H^{i}\left(X, x_{0} ; k\right)=0$ for all i except for some fixed $n \geq 2$. A $k G$-module M is called realizable (in dimension n) if there exists a G-Moore space X whose cohomology in dimension n is M for some $n \geq 2$.

Suppose that M is a $k G$-module realized by X in dimension n. Then $M \downarrow_{k A}$, M considered as a $k A$-module, is also realized by X, and $H^{*}(A ; M)$ is isomorphic to the equivariant cohomology ring $H_{A}^{*+n}\left(X, x_{0} ; k\right)$. Combining this with the above isomorphism obtained by localization, of course for a 'nice' A or a 'nice' A-action (for example A acting semi-freely on X, that is, the isotropy subgroups being either A or $\{1\}$), we observe that the multiplicities of the indecomposable modules appearing in the decomposition of $M \downarrow_{k A}$ have a geometric interpretation in terms of the total Betti number β of the fixed point set X^{A}.

THEOREM. Let G be a finite group oforder divisible by 2, and C be a cyclic subgroup of G. Suppose that M is realized in dimension n by a compact space X. Then the following can be stated for the total Betti number β and the Euler characteristic χ of the fixed point set X^{C} of C :
(a) If $C \cong \mathbb{Z}_{2}$, then $\beta\left(X^{C}\right)=\eta_{1}+1$, where $M \downarrow_{k C} \cong(k)^{\eta_{1}} \oplus(k C)^{\eta_{2}}$.
(b) If $C \cong \mathbb{Z}_{4}$ and C acts semi-freely on X, then
(i) $\beta^{\text {odd }}\left(X^{C}\right)$ is η_{1} or η_{3} if n is odd or if n is even, respectively, and $\beta\left(X^{c}\right)=$ $\eta_{1}+\eta_{3}+1$
(ii) $\chi\left(X^{c}\right)=(-1)^{n}\left(\eta_{1}-\eta_{3}\right)+1$,
where $M \downarrow_{k C} \cong(k)^{\eta_{1}} \oplus\left(J^{2}\right)^{\eta_{2}} \oplus(J)^{\eta_{3}} \oplus(k C)^{\eta_{4}}$.
The restriction on the order of the cyclic subgroup C to be 2 or 4 in the theorem is due to the fact that for large orders that are powers of a prime $p \geq 2$, one could still obtain an isomorphism $H_{C}^{*}\left(X^{C}, x_{0} ; k\right)[1 / t] \cong H^{*}\left(C ; M \downarrow_{k C}\right)[1 / t]$. However, interpreting the right hand side of the isomorphism to obtain a similar formula is not possible without such restrictions.

A corollary of the theorem is given in the discussion section.

1. Proof of Theorem

DEFINITION. Let S be a multiplicative subset of the polynomial part of H_{G}^{*} containing $1 \in H_{G}^{*}$, and G_{x} be the isotropy subgroup consisting of all $g \in G$ with $g x=x$. Define $X^{S}=\left\{x \in X: \operatorname{ker}\left\{\right.\right.$ res : $\left.\left.H_{G}^{*} \rightarrow H_{G_{x}}^{*}\right\} \cap S=\emptyset\right\}$ following [Hs].

In some cases X^{S} turns out to be the same as the fixed point set X^{A} for some $A \leq G$; see [DW].

Proposition 1. Let G be a compact Lie group, X be a compact G-space, and $Y \subseteq X$ be a G-invariant subspace. Let $S \subset H_{G}^{*}$ be a multiplicative system. Then the localized homomorphism

$$
\rho^{-1}=S^{-1} i^{*}: S^{-1} H_{G}^{*}(X, Y) \rightarrow S^{-1} H_{G}^{*}\left(X^{S}, Y^{S}\right)
$$

is an isomorphism, where i^{*} is the induced map in G-equivariant cohomology by the inclusion map $i:\left(X^{S}, Y^{S}\right) \hookrightarrow(X, Y)$.

PROOF. Recall that localization is an exact functor, and $\rho=S^{-1} i_{G}^{*}: S^{-1} H_{G}^{*}(X) \rightarrow$ $S^{-1} H_{G}^{*}\left(X^{S}\right)$ is an isomorphism, where i_{G}^{*} is the map induced by the inclusion i : $X^{S} \hookrightarrow X$ in G-equivariant cohomology. Apply [Hs, Theorem III.1] to the long exact sequence of a pair in cohomology. The result then follows by the Five-Lemma.

Proposition 2. Let M be a $k G$-module realized by X in dimension n. Then $H_{G}^{*+n}\left(X, x_{0} ; k\right) \cong H^{*}(G ; M)$.

Proof. Consider the Serre spectral sequence for the fibration $\left(X, x_{0}\right)_{G}=\left(\left(X, x_{0}\right) \times\right.$ $E G) / G \rightarrow E G / G=B G$ with fiber $\left(X, x_{0}\right)$. Here $E G$ is a contractible space on which G acts (fixed-point) freely. The spectral sequence has $E_{2}^{p, q}$-term equal to $H^{p}\left(G ; H^{q}\left(X, x_{0} ; k\right)\right)$. For $q \neq n$, we have $H^{q}\left(X, x_{0} ; k\right)=0$; then $E_{2}^{p . q}=0$ for $q \neq n$. Hence the sequence contains only one line and collapses. It follows that $E_{2}^{p, n}=$ $H^{p}\left(G ; H^{n}\left(X, x_{0} ; k\right)\right) \cong H^{p}(G ; M)$. Therefore $H_{G}^{*+n}\left(X, x_{0}\right):=H^{*+n}\left(\left(X, x_{0}\right)_{G} ; k\right) \cong$ $H^{*}(G ; M)$.

Proof of Theorem. Without loss of generality we may assume that X^{G} is nonempty; so let x_{0} be in $X^{G} \subseteq X^{K}$ for $K \leq G$. Also X is a K-Moore space with $H^{*}\left(X ; x_{0}\right) \cong M \downarrow_{k K}$ for $K \leq G$. Hence $H_{K}^{*+n}\left(X, x_{0}\right) \cong H^{*}\left(K ; M \downarrow_{k K}\right)$ by Proposition 2.
(a) Let $H_{C}^{*}=H^{*}(C ; k)=k[t]$. By Proposition 1 , localization with respect to $S=\left\{t^{i}: i \geq 0\right\}$ gives $H_{C}^{*}\left(X, x_{0}\right)[1 / t] \cong H_{C}^{*}\left(X^{C}, x_{0}\right)[1 / t]$. Since res ${ }_{c .01}(t)=$ 0 , we have $k[1 / t]=0$. Hence η_{2} disappears after localization and we obtain $\operatorname{dim}_{k} H^{*}\left(X^{c}, x_{0} ; k\right)=\beta\left(X^{C}\right)-1=\eta_{1}$, that is, $\beta\left(X^{C}\right)=\eta_{1}+1$.
(b) It is sufficient to prove only (i) since $\chi\left(X^{C}\right)=\beta^{\text {even }}\left(X^{C}\right)-\beta^{\text {odd }}\left(X^{C}\right)$. Let $C_{2} \leq$ C and $C_{2} \cong \mathbb{Z}_{2}$; let also $H_{C}^{*}=k\left[\tau^{\prime}\right] \otimes \wedge\left(v^{\prime}\right)$ and $H_{C_{2}}^{*}=k[t]$. Thus res ${ }_{c . c_{2}}\left(\tau^{\prime}\right)=t^{2}$. We have $H^{*}\left(C ; M \downarrow_{k C}\right) \cong\left(H_{C}^{*}\right)^{\eta_{1}} \oplus\left(H_{C_{2}}^{*}\right)^{\eta_{2}} \oplus\left(H^{*}(C ; J)\right)^{\eta_{3}} \oplus(k)^{\eta_{4}}$ since $J^{2} \cong k\left[C / C_{2}\right] \cong$ $k \uparrow_{k C_{2}}^{k C}$ and Shapiro's Lemma implies $H_{C_{2}}^{*} \cong H^{*}\left(C ; J^{2}\right)$. Applying Proposition 1 with the multiplicative set $S=\left\{\left(\tau^{\prime}\right)^{i}: i \geq 0\right\}$ gives $H_{C}^{*}\left(X^{C_{2}}, x_{0}\right)\left[1 / \tau^{\prime}\right] \cong H_{C}^{*}\left(X, x_{0}\right)\left[1 / \tau^{\prime}\right]$. The term with η_{4} disappears after localization as in part (a). Hence

$$
H_{C}^{*}\left(X^{C_{2}}, x_{0}\right)\left[\frac{1}{\tau^{\prime}}\right] \cong\left(H_{C}^{*}\left[\frac{1}{\tau^{\prime}}\right]\right)^{\eta_{1}} \oplus\left(H_{C_{2}}^{*}\left[\frac{1}{t^{2}}\right]\right)^{\eta_{2}} \oplus\left(H^{*}(C ; J)\left[\frac{1}{\tau^{\prime}}\right]\right)^{\eta_{3}}
$$

The hypothesis that C acts semi-freely on X implies $X^{C}=X^{C_{2}}$. Write $\hat{H}_{C}^{*}=H_{C}^{*}\left[1 / \tau^{\prime}\right]$ and $\hat{H}_{C_{2}}^{*}[1 / t]$. Then

$$
\begin{equation*}
\left(\hat{H}_{C}^{*-n}\right)^{\eta_{1}} \oplus\left(\hat{H}_{C_{2}}^{*-n}\right)^{\eta_{2}} \oplus\left(H^{*-n}(C ; J)\left[\frac{1}{\tau^{\prime}}\right]\right)^{\eta_{3}} \cong H^{*}\left(X^{C}, x_{0}\right) \otimes \hat{H}_{C}^{*} \tag{*}
\end{equation*}
$$

Since $H^{i}(C ; J) \cong H^{i-1}(C ; k)=H_{C}^{i-1}$ for $i \geq 2$ and $H_{C}^{\text {odd }}=v^{\prime} H_{C}^{\text {even }}$, we get $H^{i}(C ; J) \cdot v^{\prime}=0$ for i even. Also $H_{C_{2}}^{*} \cdot v^{\prime}=H_{C_{2}}^{*} \cdot \operatorname{res}_{C . C_{2}}\left(v^{\prime}\right)=H_{C_{2}}^{*} \cdot 0=0$. Then (*) becomes

$$
\left(\hat{H}_{C}^{l-n} \cdot v^{\prime}\right)^{n_{1}} \oplus\left(\hat{H}_{C}^{l-n-1} \cdot v^{\prime}\right)^{\eta_{3}} \cong \sum_{i \geq 0, i \text { even }}^{l} H^{l-i}\left(X^{C}, x_{0}\right) \otimes \hat{H}_{C}^{i} \cdot v^{\prime}
$$

In particular,

$$
\sum_{j \geq 0, j \text { even }}^{l} H^{l-j}\left(X^{c}, x_{0}\right) \otimes \hat{H}_{C}^{j} \cdot v^{\prime} \cong \begin{cases}(k)^{\eta_{3}}, & \text { if } l-n \text { is odd } \\ (k)^{\eta_{1}}, & \text { if } l-n \text { is even } .\end{cases}
$$

Choose an integer $l>\operatorname{Hom} \operatorname{dim}\left(X^{C}\right)$. For l even and l odd, we respectively obtain that

$$
\beta^{\text {even }}\left(X^{c}\right)= \begin{cases}\eta_{3}+1, & \text { if } n \text { is odd } \\ \eta_{1}+1, & \text { if } n \text { is even }\end{cases}
$$

and

$$
\beta^{\text {odd }}\left(X^{C}\right)= \begin{cases}\eta_{1}, & \text { if } n \text { is odd } \\ \eta_{3}, & \text { if } n \text { is even }\end{cases}
$$

This completes the proof of the theorem.

2. Discussion

The theorem of the paper is more meaningful when put in the context of the realization problem referred to in the literature as Steenrod's Problem, and/or in the classification problem of some category of $k G$-modules when G contains cyclic subgroups of order 2 and/or 4. (See the corollary below.) When G is a cyclic p group of order p^{n}, all indecomposable $k G$-modules (up to isomorphism) are given by the powers of the Jacobson radical, namely, the ideals $J^{p^{n-i}}$ of k-dimension i for $i=1, \ldots, p^{n}$. However, when G contains $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ there are infinitely many indecomposable $k G$-modules ($[\mathrm{Hi}]$). Due to the lack of a classification for $k G$ modules when $G \supseteq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ except for $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, considering the restrictions $M \downarrow_{k A}$ for various subgroups A in G to obtain information on M is a fundamental technique
n modular representation theory. For example, the complexity of a $k G$-module, n particular, the cohomology $H^{*}(G ; k)$ of the trivial $k G$-module k is 'detected' on maximal elementary abelian subgroups of G by theorems due to Quillen [Qu], Zhouinard [Ch], and Alperin-Evens [AIEv]. See [Ka] for another detection theorem when $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. Furthermore, it is possible to obtain information on a $\cdot k E$-module M by considering $M \downarrow_{k(1+x)}$ for $x \in J \backslash J^{2}$ of $k E$, where E is an elementary abelian刀-group [Ca]. See also [W].

Some partial results on Steenrod's Problem are as follows. All $k \mathbb{Z}_{p^{m}}$-modules are ealizable (see [Ar]) and all realizable $k \mathbb{Z}_{2} \times \mathbb{Z}_{2}$-modules are described in [BeHa]. When $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is a normal Sylow subgroup of a finite group G, a $k G$-module M is ealizable if and only if $M \downarrow_{k \mathbb{Z}_{2} \times \mathbb{Z}_{2}}$ is realizable ([Cn]). When G contains $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, there are $k G$-modules that are not realizable (see [Vo, Cs, As1, As2, BeHa]). Compare our :heorem with [As3, Theorem 2.2], which states that the total Betti number $\beta\left(X^{A}\right)$ of a 'nice' Moore space X realizing a $k E$-module M is equal to the $\operatorname{rank}\left(\mathscr{F}_{A}\right)$, where \mathscr{F}_{A} is the characteristic sheaf of X and A is a subgroup of the elementary abelian p-group E.

The simplest group for which one can attack the classification problem or the realization problem for $k G$-modules is $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ due to the fact that it contains $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ as its unique maximal elementary abelian subgroup and that the classification of $k \mathbb{Z}_{2} \times \mathbb{Z}_{2}$-modules is known. As mentioned above, a 'detection' theorem supporting the first expectation is given in [Ka]. For the latter, we can only give a necessary condition for a $k \mathbb{Z}_{2} \times \mathbb{Z}_{4}$-module M to be realizable by combining [Cs, Proposition II] and [Se, Proposition 1]: Let M be a $k \mathbb{Z}_{2} \times \mathbb{Z}_{4}$-module. If $M \downarrow_{k \mathbb{Z}_{2} \times \mathbb{Z}_{2}}$ is realizable by X, then the rank variety $V_{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}^{r}\left(M \downarrow_{k \mathbb{Z}_{2} \times \mathbb{Z}_{2}}\right)$ (see [Ca]) is a union of \mathbb{F}_{2}-rational lines in k^{2}. Therefore for a realizable $k \mathbb{Z}_{2} \times \mathbb{Z}_{4}$-module M, we obtain that $M \downarrow_{k S}$ is free for every shifted cyclic subgroup S of $k \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ except possibly for cyclic subgroups of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. This can be used to construct non-realizable modules. Consider the induced $k \mathbb{Z}_{2} \times \mathbb{Z}_{4}$-module $M_{\alpha}=k \otimes_{k\left(u_{q}\right)} k \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ for $\alpha \in k^{2}$. It can be seen easily by Mackey's formula that $V_{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}^{r}\left(M_{\alpha} \downarrow_{k \mathbb{Z}_{2} \times \mathbb{Z}_{2}}\right)=k\{\alpha\}$ for $\alpha \in k^{2}$. Therefore, M_{α} is not realizable if α is not an \mathbb{F}_{2}-rational point.

The Theorem of this paper and the necessary condition mentioned above gives the following.

COROLLARY. Let $G=\left\langle e, f: e^{2}=f^{4}=e f e f^{3}=1\right\rangle \supset E=\left\langle e, f^{2}\right\rangle$. If M is a non-free indecomposable $k G$-module realized by X, then M is a periodic $k G$ module, and $M \downarrow_{k\left(1+\alpha_{1}(e-1)+\alpha_{2}\left(f^{2}-1\right)\right)}$ is a free $k\left\langle 1+\alpha_{1}(e-1)+\alpha_{2}\left(f^{2}-1\right)\right\rangle$-module for $\left(\alpha_{1}, \alpha_{2}\right) \in k^{2}$ except possibly for $\left(\alpha_{1}, \alpha_{2}\right) \in k\{(1,0)\} \cup k\{(0,1)\} \cup k\{(1,1)\}$. Moreover, if $M \downarrow_{k(g)}$ is a free $k\langle g\rangle$-module for $g \in\left\{e, f^{2}\right.$, ef $\left.f^{2}\right\}$, then $X^{\langle g\rangle}$ is homotopic to a point.

Proof. The necessary condition given above for the realizability of a module M implies that $V=V_{E}^{r}\left(M \downarrow_{k E}\right) \subseteq k\{(1,0)\} \cup k\{(0,1)\} \cup k\{(1,1)\}$. This forces M to
be periodic as it is indecomposable and non-free. In addition, since $k\left\langle 1+\alpha_{1}(e-\right.$ 1) $\left.+\alpha_{2}\left(f^{2}-1\right)\right\rangle$ for $\alpha \in\{(1,0)\} \cup k\{(0,1)\} \cup k\{(1,1)\}$ corresponds to $k\langle g\rangle$ for some $g \in\left\{e, f^{2}, e f^{2}\right\}$, it follows that $M \downarrow_{\langle g\rangle}$ is not free for at most one $g \in\left\{e, f^{2}, e f^{2}\right\}$. Suppose $M \downarrow_{(g)}$ is a free $k\langle g\rangle$-module with $g \in\left\{e, f^{2}, e f^{2}\right\}$. Then it has no trivial summands, that is, $\eta_{1}=0$. Hence $\beta\left(X^{\langle 8\rangle}\right)=1$ by the theorem, and this implies that $X^{(g)}$ is homotopic to a point.

CONJECTURE. If M is a finitely generated periodic $k \mathbb{Z}_{2} \times \mathbb{Z}_{4}$-module, then M is realizable.

Acknowledgement

I am indebted to Professor A. Assadi for introducing this subject and sharing ideas with me.

References

[AIEv] J. L. Alperin and L. Evens, 'Representations, resolutions, and Quillen's dimension theorem', J. Pure Appl. Algebra 144 (1981), 1-9.
[Ar] J.E. Arnold, 'On Steenrod's problem for cyclic p-groups’,Canad. J. Math. 29(1977), 421-428.
[Asl] A. H. Assadi, 'Varieties in finite transformation groups', Bull. Amer. Math. Soc. 19 (1998), 459-463.
[As2] —, Homotopy actions and cohomology of finite transformation groups, Lecture Notes in Math. 1217 (Springer, Berlin, 1986), pp. 26-57.
[As3] ——, 'Algebraic geometric invariants for homotopy actions', in: Prospects in topology (Princeton, 1994), Ann. of Math. Stud. 138 (Princeton Univ. Press, Princeton, 1995) pp. 13-27.
[BeHa] D. Benson and N. Habbager, 'Varieties for modules and a problem of Steenrod', J. Pure Appl. Algebra 44 (1987), 13-34.
[Ca] J. F. Carlson, 'The variety and the cohomology ring of a module', J. Algebra 85 (1983), 104-143.
[Ch] L. Chouinard, 'Projectivity and relative projectivity for group rings', J. Pure Appl. Algebra 7 (1976), 287-302.
[Cn] M. Chen, 'The Postnikov tower and the Steenrod problem', Proc. Amer. Math. Soc. 129 (2001), 1825-1831.
[Cs] G. Carlsson, 'A counterexample to a conjecture of Steenrod’, Invent. Math. 64 (1981), 171-174.
[DW] W. G. Dwyer and C. W. Wilkerson, 'Smith theory revisited', Ann. of Math. (2) 127 (1988), 191-198.
[Hi] D. G. Higman, 'Indecomposable representations at characteristic p', Duke Math. J. 21 (1954), 377-381.
[Hs] W. Y. Hsiang, Cohomology theory of topological transformation groups (Springer, Berlin, 1975).
[Ka] S. Ö. Kaptanoğlu, 'A detection theorem for $k \mathbb{Z}_{2} \times \mathbb{Z}_{4}$-modules via shifted cyclic subgroups', (preprint).
[Qu] D. Quillen, 'The spectrum of an equivariant cohomology ring I, II', Ann. of Math. (2) 94 (1971), 549-602.
[Se] J. P. Serre, 'Sur la dimension cohomologique des groupes profinis', Topology 3 (1965), 413420.
[Vo] P. Vogel, 'A solution to the Steenrod problem for G-Moore spaces', K-Theory 1 (1987), 325-335.
[W] W. W. Wheeler, 'The generic module theory', J. Algebra 183 (1996), 205-228.
Mathematics Department
Middle East Technical University
Ankara 06531
Turkey
e-mail: semra@arf.math.metu.edu.tr

