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JORDAN TYPES OF COMMUTING NILPOTENT MATRICES

Semra Öztürk

Abstract. Let A and B be matrices which are polynomials in r pairwise

commuting nilpotent matrices over a field. We give a sufficient condition

for the null space of Ai to equal that of Bi for all i, in particular, for A
and B to be similar.

1. Introduction

Let X be a nilpotent d×d matrix of nilpotency n, that is Xn = 0, Xn−1 6= 0,
and let [a] denote the a×a Jordan block with 0’s on the main diagonal and 1’s
on the superdiagonal. We write JX = m1[a1]⊕· · ·⊕mt[at] with n ≥ a1 > · · · >
at ≥ 1, whenever the Jordan canonical form of X consists of mi many [ai]’s
for mi ≥ 1 for i = 1, . . . , t and refer to JX as the Jordan type of X. In other
words, JX represents the similarity class of X. We say that X is of maximal
Jordan type whenever JX = m[n] (here m = d/n necessarily). If X is a matrix
representing the action of g− 1 on a finitely generated k[〈g〉]-module V , where
the field k is of characteristic p, JX is referred as the Jordan type of the module
V , that determines the decomposition of V as a direct sum of indecomposable
k[〈g〉]-modules. Note that V is of maximal Jordan type if and only if V is
isomorphic to (k[〈g〉])m for some integer m ≥ 1. The Jordan type is used to
define the class of modules of constant Jordan type in [1]. In [5], by examining
the Jordan types of powers of a nilpotent matrix we verified several conjectures
stated in [1] for the subclass of restricted modules of constant Jordan type,
we also stated many similar conjectures. Our Theorem below emerged from
that framework and it is of interest by itself. It is a generalization of the main
results of [2] and [3].

The null space of a matrix C, the solution space of Cv = 0, is denoted
by null(C), the dimension of C is referred as the nullity of C. The following
Lemma is crucial in the proof of Theorem. It is proved easily by induction and
it is of interest by itself.
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Lemma. Suppose C and D are commuting matrices with null(C) = null(D).
Then null(Ci) = null(Di) for i ≥ 2. In particular, if C and D are commuting
nilpotent matrices with null(C) = null(D), then C and D are similar.

Theorem. Let X1, . . . , Xr be r pairwise commuting nilpotent matrices over
a field k and ni be the nilpotency of Xi with 2 ≤ n1 ≤ · · · ≤ nr. If A,
B are f(X1, . . . , Xr), g(X1, . . . , Xr) respectively, for the polynomials f, g in
k[x1, . . . , xr] having at least one linear term and no constant term, and f ≡ g
(mod Is) where I = (x1, . . . , xr) and s = n2 + · · ·+ nr − r + 2, then null(Ai) =
null(Bi) for all i ≥ 1. In particular, A and B are similar.

The special case of Theorem with k ⊇ Fp, r = 2, n1 = n2 = p, hence s = p,
is Corollary 3 in [3]. The proofs in this article are in spirit parallel to the ones
in [3]. The Main Theorem in [2] is a variation of this Theorem with a much
weaker conclusion, namely, A is of maximal Jordan type if and only if B is
of maximal Jordan type. Besides, the proof of that theorem in [2] is module
theoretic.

Remark 1.1. The integer s in Theorem is the smallest lower bound to guarantee
the conclusion as the following example shows. Let

X =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and Y =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

.

Then XY = Y X = 0, X and Y are of nilpotencies 2 and 4 respectively, and
hence s = 4. Let f(x, y) = x, g(x, y) = x+ y3, with no constant term, at least
one linear term and f ≡ g (mod I3) where I = (x, y) ⊂ k[x, y] and A = f(X,Y ),
B = g(X,Y ). However rank(A) = 1, rank(B) = rank(X + Y 3) = 2. Hence
null(A) 6= null(B). Hence, congruence modulo I3 = Is−1 is not sufficient.

2. Proof of Lemma

We repeatedly use the hypothesise CD = DC and null(C) = null(D) in the
proof. Note that null(C) = null(D) is equivalent to the statement that Cw = 0
if and only if Dw = 0 for any d× 1 vector w. Suppose that C2v = 0. We have;
C(Cv) = 0 if and only if 0 = D(Cv) = C(Dv) if and only if D(Dv) = D2v = 0.
Therefore the statement is true for i = 2. Suppose null(Cl) = null(Dl) for
some l ≥ 2. Then, Cl+1v = C(Clv) = 0 if and only if D(Clv) = Cl(Dv) = 0
if and only if Dl(Dv) = Dl+1v = 0. Hence the statement null(Ci) = null(Di)
holds for i ≥ 2 by induction.

Suppose further that C and D are nilpotent. As shown in [3] for nilpotent
matrix C of nilpotency n, the Jordan type JC = m1[a1] ⊕ · · · ⊕ mt[at] with
n ≥ a1 > · · · > at ≥ 1 is determined completely by the ranks of the powers
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of the matrix, namely, mi = rank(Ci−1) − 2 rank(Ci) + rank(Ci+1). Thus, if
null(C) = null(D), then the nullities and hence the ranks of C and D are the
same. By the first part of Lemma we obtain that the ranks of Ci and Di are
the same for all i ≥ 1. Hence JC = JD, that is, C and D are similar.

3. Proof of Theorem

The arguments in the proof of Theorem are in spirit parallel to the ones
in [3], but they are much more tedious even though we introduced “generic
elements” to make the proof more clear. Reading the proof of Theorem 1 in
[3] in advance may shed light into the following one.

Suppose X1, . . . , Xr are nilpotent and commute pairwise with Xi of nilpo-
tency ni and 2 ≤ n1 ≤ · · · ≤ nr. Suppose further that f, g ∈ k[x1, . . . , xr]
are polynomials having no constant term, having at least one linear term
and f ≡ g (mod Is) for I = (x1, . . . , xr) and s = n2 + · · ·+ nr − r + 2, A =
f(X1, . . . , Xr), B = g(X1, . . . , Xr). By Lemma, it remains to show that
null(A) = null(B). Since the situation is symmetric with respect to A and
B, it suffices to prove only one inclusion, say, null(A) ⊆ null(B).

At first, we make several observations while introducing some notation. Let
J be the ideal (X1, . . . , Xr) in the ring Matd(k) of d × d matices. The ideal
J t, for t ≥ 1, consists of all k-linear combinations of Xt1

1 · · ·Xtr
r with integers

ni − 1 ≥ ti ≥ 0 and t1 + · · ·+ tr ≥ t. Hence, for τ = (n1 − 1) + · · ·+ (nr − 1)
we have

(1) Jτ = kXn1−1
1 · · ·Xnr−1

r and Jτ+1 = 0.

On the other hand, by the hypothesise on f and g, we can write B =
A + w(X1, . . . , Xr) with A = a1X1 + · · · + arXr + c(X1, . . . , Xr) with aj 6= 0
for some j ∈ {1, . . . , r}, where the polynomial c(x1, . . . , xr) = 0 or it consists of
terms of degree at least 2, and the polynomial w(x1, . . . , xr) consists of terms
of degrees at least s. Without loss of generality assume that aq 6= 0.

For the purposes of the proof it is sufficient to work with ‘generic elements’

instead of specific ones. Let the symbol [· · · ]M−j represent

Xn1−1−m1
1 · · · ̂

X
nq−1−mq
q · · ·Xnr−1−mr

r ∈ JM−j

and refer to it as a generic element where M = n1 + · · ·+ n̂q + · · ·+ nr − r + 1

= τ−nq+1 and j = m1+ · · ·+m̂q+ · · ·+mr with mi ∈ {0, 1, . . . , ni−2}. Note
that the exponent of Xi in [· · · ]M−j is at least one for i 6= q. When j = 0 the
only possibility for anymi is 0. Thus, [· · · ]M is the uniquely determined element

Xn1−1
1 · · · X̂nq−1

q · · ·Xnr−1
r ∈ JM and it is annihilated by X1,. . . , X̂q,. . . , Xr.

However [· · · ]M−j is not uniquely determined for j ≥ 1, it represents as many
elements as the number of possibilities for positive integers m1, . . . , m̂q, . . . ,mr

with mi ∈ {0, . . . , ni − 2} such that j = m1 + · · · + m̂q + · · · + mr. For
instance, when j = 1 there are exactly r − 1 possibilities; 1 = j = mi for
i = 1, . . . , q̂, . . . , r.
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Claim 1: null(A) ⊆ null(B).
Suppose that Av = 0 for some non-zero vector v. Then

(2) −(a1X1 + · · ·+ arXr)v = c(X1, . . . , Xr)v ∈ J2v, and

(3) Bv = w(X1, . . . , Xr)v ∈ Jsv.
Hence, showing Jsv = 0 is sufficient to prove Claim 1. We will use aq 6= 0
together with the generic elements [· · · ]M−j and induction on l to show Jτ−lv =
0 for l ∈ {−1, 0, . . . , n1 − 2}. Recall that s = τ − n1 + 2. For 0 ≤ l ≤ n1 − 2,
we have s ≤ τ − l ≤ τ . The case l = n1− 2 gives the desired Jsv = 0. The first
step of the induction, namely Jτ+1 = 0, is true by equation (1). Suppose that
Jτ−tv = 0 for some t ∈ {−1, 0, 1, . . . , n1 − 3}.

Claim 2: Jτ−(t+1)v = 0.
Notice that for Xt1

1 . . . Xtr
r ∈ Jτ−t−1, if ti < ni−t−2 for some i ∈ {1, . . . , r},

then

τ − t− 1 ≤ t1 + · · ·+ tr < (n1 − 1) + · · ·+ (nr − 1)− t− 1 = τ − t− 1,

which is a contradiction. Hence ti ≥ ni− t−2 ≥ n1− t−2 for all i ∈ {1, . . . , r}.
In particular, Xn1−t−2

1 · · ·Xnr−t−2
r is a factor of every element of Jτ−t−1. In

addition, the induction hypothesis t ≤ n1 − 3 implies ti ≥ 1.
Let B be a basis for Jτ−t−1 consisting of elements of the form Xt1

1 . . . Xtr
r

such that C ⊂ B is a basis for Jτ−t. Due to the induction hypothesis that
Jτ−tv = 0, the proof of Claim 2 is reduced to showing βv = 0 for every
β in B \ C. Let B0,B1, . . . ,Bt+1 be the subsets of B forming a partition of
B \ C such that the general form of an element βj of Bj is given by βj :=
Xm+j
q [· · · ]M−j ∈ Jτ−t−1 where m = nq − t− 2 is the lower bound for nq and

[· · · ]M−j is a generic element as described above. It should be noted that m ≥ 1
and mi ∈ {0, 1, . . . , t+ 1} due to the induction hypothesis t ≤ n1 − 3.

The proof of Claim 2 is now reduced to another induction, namely, to show
that Bl annihilates v for l = 0, . . . , t + 1. Note that B0 = {β0} where β0 =
Xm
q [· · · ]M ∈ Jτ−t−1. Multiplying the equation (2) by the unique element

Xm−1
q [· · · ]M ∈ Jτ−t−2 gives that

−aqXm
q [· · · ]Mv = −aqβ0v = Xm−1

q [· · · ]Mc(X1, . . . , Xr) ∈ Jτ−tv = 0.

Since aq 6= 0, we obtain the desired β0v = 0. Assume that Bk−1 annihilates v
for some k ∈ {1, . . . , t+ 1}.

Claim 3: Bk annihilates v.
Note that multiplying a fixed generic element Xm+k−1

q [· · · ]M−k ∈ Jτ−t−2 by

Xi for i ∈ {1, . . . , q̂, . . . , r} gives a generic element Xm+k−1
q [· · · ]M−k−1 belong-

ing to Bk−1. Thus the left hand side of the equation (2), after multiplication
by a generic element Xm+k−1

q [· · · ]M−k, becomes

−
(
aqX

m+k
q [· · · ]M−k + k-linear combinations of elements of Bk−1

)
v

= − aqXm+k
q [· · · ]M−kv,
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where the equality is due to the induction hypothesis that Bk−1 annihilates
v. Meanwhile the right hand side of the equation (2) after multiplication by a
generic element Xm+k−1

q [· · · ]M−k ∈ Jτ−t−2 belongs to Jτ−tv, hence it is 0 by

the previous induction hypothesis that Jτ−tv = 0. Since aq 6= 0, we obtain the
desired Xm+k

q [· · · ]M−kv = 0. Therefore Bk annihilates v which proves Claim

3. Thus, all B1, . . . ,Bt+1 and hence Jτ−t−1 annihilates v proving Claim 2.
Therefore Claim 1 and hence Theorem is proved.

4. Corollary

A natural application of Theorem is for modules over group algebras of finite
p-groups where the field k is of characteristic p. Let G = Cpe1 × · · · × Cper be
an abelian p-group of rank r with generators gi of order pei , e1 ≤ · · · ≤ er,
s = pe2 + · · ·+ per − r + 2, and V be a finitely generated k[G]-module, let Xi

denote the action of the gi − 1 on V . Since (gi − 1)p
ei

= gp
ei

i − 1p
ei

= 0, Xi

is nilpotent with nilpotency at most pei . Let I denote the Jacobson radical
of k[G]. Furthermore, for a ∈ I\I2, we write V ↓〈1+a〉 when a k[G]-module V
is regarded as a k[〈1 + a〉]-module. We obtain a straightforward corollary of
Theorem.

Corollary. If V is a k[G]-module and a, b are elements of I\I2 with a ≡ b
(mod Is), then the null spaces of ai and bi are the same when considered as
nilpotent operators on V for all i = 1, . . . ,m. In particular, the Jordan types
of V ↓〈1+a〉 and V ↓〈1+b〉 are the same.

The Jordan type of V ↓〈1+a〉 is well defined modulo Is by Corollary. The
number s is not small, for the special case of V ↓〈1+a〉 being of maximal Jordan

type we introduced a subspace J(2) in [4] with I ⊇ J(2) ⊇ Is and showed that
V ↓〈1+a〉 is of maximal Jordan type if and only if V ↓〈1+b〉 is of maximal Jordan

type for a ≡ b (mod J(2)), see Theorem 3.5 in [4]. When the group G is an
elementary abelian p-group, namely, G = Cp×· · ·×Cp, the space J(2) coincides
with I2 where I is the Jacobson radical of k[G].
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