COMMUTING NILPOTENT OPERATORS AND MAXIMAL RANK

SEMRA ÖZTÜRK KAPTANOĞLU

Abstract

Let X, \tilde{X} be commuting nilpotent matrices over k with nilpotency p^{t}, where k is an algebraically closed field of positive characteristic p. We show that if $X-\widetilde{X}$ is a certain linear combination of products of commuting nilpotent matrices, then X is of maximal rank if and only if \widetilde{X} is of maximal rank.

1. Introduction

Let X be a nilpotent $d \times d$ matrix over a field of characteristic $p>0$ having nilpotency p^{t}, i.e. $X^{p^{t}}=0, X^{p^{t}-1} \neq 0$. The Jordan type, J-type (X), of X is defined as

$$
J \text {-type }(X)=\eta_{p^{t}}\left[p^{t}\right] \oplus \eta_{p^{t}-1}\left[p^{t}-1\right] \oplus \cdots \oplus \eta_{1}[1],
$$

where [i] denotes the Jordan block of size $i \times i$ corresponding to the eigenvalue 0 and η_{i} denotes the multiplicity of $[i]$ in the Jordan canonical form of X.

A nilpotent matrix with nilpotency p^{t} is said to be of maximal rank (or of maximal Jordan type) if its Jordan canonical form consists only of Jordan blocks of size p^{t}, that is, its Jordan type is $\eta_{p^{t}}\left[p^{t}\right] \oplus 0\left[p^{t}-1\right] \oplus \cdots \oplus 0[1]$. Thus the largest possible rank that a $d \times d$ matrix of nilpotency p^{t} can attain is $d \frac{p^{t}-1}{p^{t}}$.
Main Theorem. Let X, X_{1}, \ldots, X_{s} be $d \times d$ pairwise commuting nilpotent matrices over a field of characteristic p with nilpotencies $p^{n}, p^{n_{1}}, \ldots, p^{n_{s}}$ respectively, where $n \geq n_{1} \geq n_{2} \geq \cdots \geq n_{s}$. Let $f \in k\left[t_{1}, \ldots, t_{s}\right]$ be a polynomial having no constant or linear terms and $\widetilde{X}=X+f\left(X_{1}, \ldots, X_{s}\right)$. Then the matrix X is of maximal rank if and only if the matrix \widetilde{X} is of maximal rank.

An $d \times d$ nilpotent matrix with nilpotency p^{t} represents the action of $g-1$ on a k-vector space of dimension d for the group $\langle g\rangle \cong C_{p^{t}}$. In other words, it represents a $k\left[C_{p^{t}}\right]$-module of k-dimension d. Note also that a $k\left[C_{p^{t}}\right]$-module is free if and only if the matrix representing the action of $g-1$ is of maximal rank. Therefore Main Theorem is a restatement of Theorem 3.2.

Let $k[G]$ denote the group algebra of the group G, and C_{n} denote the cyclic group of order n. There has been studies of $k[G]$-modules in terms of the Jordan type of the restriction of the module to subalgebras of $k[G]$ that are of the form $k\left[C_{p}\right] \cong k[x] /\left(x^{p}\right)$ even though it it is not referred as Jordan type; when the group G is an elementary abelian p-group, i.e. $G \cong\left(C_{p}\right)^{\times n}$, in [Da] Dade gave a criterion to determine the freeness of a $k[G]$-module in terms of certain $k\left[C_{p}\right]$'s, in [$\mathbf{C a}$ Carlson introduced the rank variety for a $k[G]$-module when G is an elementary abelian p-group. Generalizations of Carlson's work to infinitesimal group schemes, and finite group schemes can be found in $[\mathbf{S F B}],[\mathbf{F P}]$ respectively. In $[\mathbf{S F P}]$ generic and maximal Jordan types for modules are studied; this is followed by [CFP] where modules of constant Jordan type are introduced; exact category of modules of constant Jordan type are studied in [CF]. Studying modules by way of Jordan types is an active research area. Recently this type of study has been generalized to include the restrictions to subalgebras of $k[G]$ that are of the form $k\left[C_{p^{t}}\right]$ for $t \geq 1$, which in turn led to the definition of modules of constant p-power Jordan type when G is an abelian p-group in $[\mathbf{K a}]$.

2. Preliminaries

We first give two lemmas from the literature; the first one is for determining the freeness of a $k[G]$-module, the second one is a result on binomial coefficients mod- p.

Let H be a finite group. The element $\nu_{H}:=\sum_{h \in H} h$ of $k[H]$ is referred as the norm element of the group algebra $k[H]$. Note that if $H=\langle g\rangle$, where g is of order p^{m}, then $\nu_{H}=(g-1)^{p^{m}-1}$ and $\nu_{\left\langle g^{\left.p^{(m-1)}\right\rangle}\right\rangle}=\left(g^{p^{(m-1)}}-1\right)^{p-1}=(g-1)^{p^{m}-p^{(m-1)}}$.

Lemma 2.1. Let P be a finite p-group, and M be a finitely generated $k[P]$-module. Then $\operatorname{dim}_{k}\left(\nu_{P} M\right) \leq \frac{1}{|P|} \operatorname{dim}_{k}(M)$. Moreover, the following are equivalent.
(i) $\operatorname{dim}_{k}\left(\nu_{P} M\right)=\frac{\operatorname{dim}_{k}(M)}{|P|}$.
(ii) M is a free $k[P]$-module.

In particular, if $P=\langle g\rangle$ is of order p^{m}, then the following are equivalent.
(iii) $\operatorname{dim}_{k}\left((g-1)^{p^{m}-1} M\right)=\frac{\operatorname{dim}_{k}(M)}{p^{m}}$.
(iv) $\operatorname{dim}_{k}((g-1) M)=\left(p^{m}-1\right) \frac{\operatorname{dim}_{k}(M)}{p^{m}}$.
(v) $\operatorname{ker}(g-1$ on $M)=(g-1)^{p^{m}-1} M$.
(vi) $\operatorname{ker}\left((g-1)^{p^{m}-1}\right.$ on $\left.M\right)=(g-1) M$.

Proof. The equivalences can be derived from the Jordan form of the matrix representing the action of $g-1$ on M and the equivalent definitions of freeness.

Lemma 2.2. Let a, b be elements of a commutative k-algebra with $\operatorname{char}(k)=p>0$, and m be a positive integer. Then

$$
(a+b)^{p^{m}-1}=a^{p^{m}-1}-a^{p^{m}-2} b+\cdots-a b^{p^{m}-2}+b^{p^{m}-1} .
$$

Proof. It is known that the binomial coefficients satisfy the following congruence; $\binom{p^{n}-1}{j} \equiv(-1)^{j} \bmod (p)$.

3. Proof of the Main Theorem

First we prove a lemma using the lemmas given in the Preliminaries. It is the key result in the proof of the Main Theorem. It is a generalization of Proposition 2.2 of $[\mathbf{F P}]$ which is a generalization of Lemma 6.4 of $[\mathbf{C a}]$, and also of Proposition 3.1 of $[\mathbf{F r}]$.

Lemma 3.1. Let x, y, z be pairwise commuting nilpotent operators on $M=k^{d}$ where k is a field of characteristic p. Suppose that the nilpotencies of x, y, z are $p^{m_{0}}, p^{m_{1}}$, l, respectively, where $m_{0} \geq m_{1}$ and $l \geq 1$. Then M is free as a $k\left[C_{p^{m_{0}}}\right]$ module where the action of $g-1$ on M is given by x if and only if M is free as a $k\left[C_{p^{m_{0}}}\right]$-module where the action of $g-1$ on M is given by $x+y z$ for a generator g of $C_{p^{m_{0}}}$.

Proof. Note that $m_{0} \geq m_{1}$ and k is a field of characteristic $p,(x+y z)^{p^{m_{0}}}=0$.
\Longrightarrow : Suppose that M is free as a $k\left[C_{p^{m_{0}}}\right]$-module where the action of $g-1$ on M is given by x. By Lemma 2.1 (v), this means that $\operatorname{ker}(x)$ on M is equal to $x^{p^{m_{0}}-1} M$ as well as $\operatorname{ker}\left(x^{p^{m_{0}}-1}\right)$ on M is equal to $x M$. Let $N=\operatorname{ker}(x+y z) /(x+y z)^{p^{m_{0}}-1} M$. To show M is free as a $k\left[C_{p^{m_{0}}}\right]$-module where the action of $g-1$ on M is given by $x+y z$, we need to show that $N=0$. Consider the action of z on N.

Claim: The action of z on N is injective. Suppose $m \in \operatorname{ker}(x+y z)$ and $z m \in$ $(x+y z)^{p^{m_{0}}-1} M$. It suffices to show that $m \in(x+y z)^{p^{m}-1} M$. By the hypothesis $x m=-y z m$ and $z m=(x+y z)^{p^{m_{0}}-1} n$ for some $n \in M$. Hence by Lemma 2.2 we have

$$
x m=-y\left(x^{p^{m_{0}}-1}-x^{p^{m_{0}}-2} y z+\cdots-x(y z)^{p^{m_{0}}-2}+(y z)^{p^{m_{0}}-1}\right) n .
$$

Since $y^{p^{m_{0}}}=0, x m=-y\left(x^{p^{m_{0}}-1}-x^{p^{m_{0}}-2} y z+\cdots-x(y z)^{p^{m_{0}}-2}\right) n$. Factoring x gives $x m=-y x\left(x^{p^{m_{0}}-2}-x^{p^{m_{0}}-3} y z+\cdots-(y z)^{p^{m_{0}}-2}\right) n$; thus

$$
m+y\left(x^{p^{m_{0}}-2}-x^{p^{m_{0}}-3} y z+\cdots-(y z)^{p^{m_{0}}-2}\right) n \in \operatorname{ker}(x) .
$$

Since $\operatorname{ker}(x)=x^{p^{m_{0}}-1} M, m=x^{p^{m_{0}}-1} s-y\left(x^{p^{m_{0}}-2}-x^{p^{m_{0}}-3} y z+\cdots-(y z)^{p^{m_{0}}-2}\right) n$ for some $s \in M$. Multiplying m by z in the last equation and using the fact that $z m=(x+y z)^{p^{m_{0}}-1} n$ for some $n \in M$, we obtain that $n-z s \in \operatorname{ker}\left(x^{p^{m_{0}}-1}\right)$. Thus
$n=x t+z s$ for some $t \in M$ as $\operatorname{ker}\left(x^{p^{m}-1}\right)=x M$ by Lemma 2.1 (vi). It follows that $m=(x+y z)^{p^{m} 0}-1(s-y t)$, hence the claim is proved.

Since z is nilpotent, and injective on N, we conclude that $N=0$.
\Longleftarrow Let $x^{\prime}=x+y z, y^{\prime}=-y, z^{\prime}=z$. Arguing as in the proof of the other direction with with $x^{\prime}, y^{\prime}, z^{\prime}$ instead of x, y, z, respectively, we get the desired result. Namely, if M is free as a $k\left[C_{p^{m_{0}}}\right]$-module where the action of $g-1$ on M is given by $x^{\prime}=x+y z$ then M is free as a $k\left[C_{p^{m_{0}}}\right]$-module where the action of $g-1$ on M is given by $x^{\prime}+y^{\prime} z^{\prime}=x$.

Using Lemma 3.1 we prove the following generalization of Lemma 6.4 in [SFB].
Theorem 3.2. Let x, x_{1}, \ldots, x_{s} be pairwise commuting nilpotent operators on $M=$ k^{d} such that the nilpotencies of x, x_{1}, \ldots, x_{s} are $p^{n}, p^{n_{1}}, \ldots, p^{n_{s}}$ respectively, where $n \geq n_{1} \geq n_{2} \geq \cdots n_{s}$, and k is a field of characteristic p. Let $f \in k\left[t_{1}, \ldots, t_{s}\right]$ be a polynomial having no constant or linear terms and $\widetilde{x}=x+f\left(x_{1}, \ldots, x_{s}\right)$. Then M is free as a $k\left[C_{p^{m_{0}}}\right]$-module where the action of $g-1$ on M is given by x if and only if M is free as a $k\left[C_{p^{m_{0}}}\right]$-module where the action of $g-1$ on M is given by \widetilde{x}, for a generator g of $C_{p^{m_{0}}}$.

Proof. Note that $f\left(x_{1}, \ldots, x_{s}\right)=\sum_{j=1}^{s} x_{j} y_{j}$ where $y_{j}=f_{j}\left(x_{1}, \ldots, x_{s}\right)$ for some $f_{j} \in k\left[t_{1}, \ldots, t_{s}\right]$ having no constant term, for $j=1, \ldots, s$, and also y_{j} is nilpotent. First apply Lemma 3.1 to the triple x, x_{1}, y_{1}, then to the triple $x+x_{1} y_{1}, x_{2}, y_{2}$, and finally to the triple $x+x_{1} y_{1}+\cdots+x_{s-1} y_{s-1}, x_{s}, y_{s}$. Then the statement follows.

As noted in the introduction Main Theorem is a restatement of Theorem 3.2.

References

[Ca] J. F. Carlson, The varieties and the cohomology ring of a module, J. Algebra 85 (1983), 104-143.
[Da] E. Dade, Endo-permutation modules over p-groups II, Ann. of Math. 108 (1978), 317-346.
[CF] J. F. Carlson, E. Friedlander, Exact category of modules of constant Jordan type, preprint
[CFP] J. F. Carlson, E. Friedlander, J. Pevtsova, Modules of constant Jordan type, J. Reine Angew. Math. 614 (2008), 191-234.
[Fr] R. Farnsteiner, Support varieties, p-points and Jordan type, University of Bielefeld, Lecture Series April 2007.
[FP] E. Friedlander, J. Pevtsova, Representation theoretic support spaces for finite group schemes, Amer. J. Math. 127 (2005), 379-420.
[FPe] E. Friedlander, J. Pevtsova, Erratum to:Representation-theoretic support spaces for finite group schemes, Amer. J. Math. 128 (2006), 1067-1068.
[Ka] S. Ö. Kaptanoğlu, p-power points and modules of constant p-power Jordan type, preprint
[SFB] A. Suslin, E. Friedlander, C. Bendel, Support varieties for infinitsimal group schemes, J. Amer. Math. Soc. 10 (1997), 729-759.
[SFP] A. Suslin, E. F. Friedlander, J. Pevtsova, Generic and maximal Jordan types, Invent. Math. 168 (2007), 485-522.

Department of Mathematics, Middle East Technical University, Ankara 06531, Turkey
E-mail address: sozkap@metu.edu.tr

