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Abstract. Let X, X̃ be commuting nilpotent matrices over k with nilpotency

pt, where k is an algebraically closed field of positive characteristic p. We show

that if X−X̃ is a certain linear combination of products of commuting nilpotent

matrices, then X is of maximal rank if and only if X̃ is of maximal rank.

1. Introduction

Let X be a nilpotent d × d matrix over a field of characteristic p > 0 having

nilpotency pt, i.e. Xpt

= 0, Xpt−1 6= 0. The Jordan type, J-type(X), of X is

defined as

J-type(X) = ηpt [pt]⊕ ηpt−1[pt − 1]⊕ · · · ⊕ η1[1],

where [i] denotes the Jordan block of size i × i corresponding to the eigenvalue 0

and ηi denotes the multiplicity of [i] in the Jordan canonical form of X.

A nilpotent matrix with nilpotency pt is said to be of maximal rank (or of

maximal Jordan type) if its Jordan canonical form consists only of Jordan blocks

of size pt, that is, its Jordan type is ηpt [pt]⊕ 0[pt− 1]⊕ · · · ⊕ 0[1]. Thus the largest

possible rank that a d× d matrix of nilpotency pt can attain is dpt−1
pt .

Main Theorem. Let X, X1, . . . , Xs be d×d pairwise commuting nilpotent matrices

over a field of characteristic p with nilpotencies pn, pn1 , . . . , pns respectively, where

n ≥ n1 ≥ n2 ≥ · · · ≥ ns. Let f ∈ k[t1, . . . , ts] be a polynomial having no constant

or linear terms and X̃ = X + f(X1, . . . , Xs). Then the matrix X is of maximal

rank if and only if the matrix X̃ is of maximal rank.

An d× d nilpotent matrix with nilpotency pt represents the action of g− 1 on a

k-vector space of dimension d for the group 〈g〉 ∼= Cpt . In other words, it represents

a k[Cpt ]-module of k-dimension d. Note also that a k[Cpt ]-module is free if and

only if the matrix representing the action of g − 1 is of maximal rank. Therefore

Main Theorem is a restatement of Theorem 3.2.
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Let k[G] denote the group algebra of the group G, and Cn denote the cyclic

group of order n. There has been studies of k[G]-modules in terms of the Jordan

type of the restriction of the module to subalgebras of k[G] that are of the form

k[Cp] ∼= k[x]/(xp) even though it it is not referred as Jordan type; when the group G

is an elementary abelian p-group, i.e. G ∼= (Cp)×n, in [Da] Dade gave a criterion to

determine the freeness of a k[G]-module in terms of certain k[Cp]’s, in [Ca] Carlson

introduced the rank variety for a k[G]-module when G is an elementary abelian

p-group. Generalizations of Carlson’s work to infinitesimal group schemes, and

finite group schemes can be found in [SFB], [FP] respectively. In [SFP] generic

and maximal Jordan types for modules are studied; this is followed by [CFP]

where modules of constant Jordan type are introduced; exact category of modules

of constant Jordan type are studied in [CF]. Studying modules by way of Jordan

types is an active research area. Recently this type of study has been generalized

to include the restrictions to subalgebras of k[G] that are of the form k[Cpt ] for

t ≥ 1, which in turn led to the definition of modules of constant p-power Jordan

type when G is an abelian p-group in [Ka].

2. Preliminaries

We first give two lemmas from the literature; the first one is for determining the

freeness of a k[G]-module, the second one is a result on binomial coefficients mod-p.

Let H be a finite group. The element νH :=
∑

h∈H h of k[H] is referred as the

norm element of the group algebra k[H]. Note that if H = 〈g〉, where g is of order

pm, then νH = (g − 1)pm−1 and ν〈gp(m−1) 〉 = (gp(m−1) − 1)p−1 = (g − 1)pm−p(m−1)
.

Lemma 2.1. Let P be a finite p-group, and M be a finitely generated k[P ]-module.

Then dimk(νP M) ≤ 1
|P | dimk(M). Moreover, the following are equivalent.

(i) dimk(νP M) = dimk(M)
|P | .

(ii) M is a free k[P ]-module.

In particular, if P = 〈g〉 is of order pm, then the following are equivalent.

(iii) dimk((g − 1)pm−1M) = dimk(M)
pm .

(iv) dimk((g − 1)M) = (pm − 1)dimk(M)
pm .

(v) ker(g − 1 on M) = (g − 1)pm−1M .

(vi) ker((g − 1)pm−1 on M) = (g − 1)M .

Proof. The equivalences can be derived from the Jordan form of the matrix repre-

senting the action of g − 1 on M and the equivalent definitions of freeness. �
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Lemma 2.2. Let a, b be elements of a commutative k-algebra with char(k) = p > 0,

and m be a positive integer. Then

(a + b)pm−1 = apm−1 − apm−2b + · · · − abpm−2 + bpm−1.

Proof. It is known that the binomial coefficients satisfy the following congruence;(
pn − 1

j

)
≡ (−1)j mod (p). �

3. Proof of the Main Theorem

First we prove a lemma using the lemmas given in the Preliminaries. It is the

key result in the proof of the Main Theorem. It is a generalization of Proposition

2.2 of [FP] which is a generalization of Lemma 6.4 of [Ca], and also of Proposition

3.1 of [Fr].

Lemma 3.1. Let x, y, z be pairwise commuting nilpotent operators on M = kd

where k is a field of characteristic p. Suppose that the nilpotencies of x, y, z are

pm0 , pm1 , l, respectively, where m0 ≥ m1 and l ≥ 1. Then M is free as a k[Cpm0 ]-

module where the action of g − 1 on M is given by x if and only if M is free as a

k[Cpm0 ]-module where the action of g − 1 on M is given by x + yz for a generator

g of Cpm0 .

Proof. Note that m0 ≥ m1 and k is a field of characteristic p, (x + yz)pm0 = 0.

=⇒: Suppose that M is free as a k[Cpm0 ]-module where the action of g−1 on M

is given by x. By Lemma 2.1 (v), this means that ker(x) on M is equal to xpm0−1M

as well as ker(xpm0−1) on M is equal to xM . Let N = ker(x+yz)/(x+yz)pm0−1M .

To show M is free as a k[Cpm0 ]-module where the action of g− 1 on M is given by

x + yz, we need to show that N = 0. Consider the action of z on N .

Claim: The action of z on N is injective. Suppose m ∈ ker(x + yz) and zm ∈
(x + yz)pm0−1M . It suffices to show that m ∈ (x + yz)pm0−1M . By the hypothesis

xm = −yzm and zm = (x + yz)pm0−1n for some n ∈ M . Hence by Lemma 2.2 we

have

xm = −y(xpm0−1 − xpm0−2yz + · · · − x(yz)pm0−2 + (yz)pm0−1)n.

Since ypm0 = 0, xm = −y(xpm0−1 − xpm0−2yz + · · · − x(yz)pm0−2)n. Factoring x

gives xm = −yx(xpm0−2 − xpm0−3yz + · · · − (yz)pm0−2)n; thus

m + y(xpm0−2 − xpm0−3yz + · · · − (yz)pm0−2)n ∈ ker(x).

Since ker(x) = xpm0−1M , m = xpm0−1s−y(xpm0−2−xpm0−3yz + · · ·− (yz)pm0−2)n

for some s ∈ M . Multiplying m by z in the last equation and using the fact that

zm = (x + yz)pm0−1n for some n ∈ M , we obtain that n− zs ∈ ker(xpm0−1). Thus
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n = xt + zs for some t ∈ M as ker(xpm0−1) = xM by Lemma 2.1 (vi). It follows

that m = (x + yz)pm0−1(s− yt), hence the claim is proved.

Since z is nilpotent, and injective on N , we conclude that N = 0.

⇐= Let x′ = x + yz, y′ = −y, z′ = z. Arguing as in the proof of the other

direction with with x′, y′, z′ instead of x, y, z, respectively, we get the desired

result. Namely, if M is free as a k[Cpm0 ]-module where the action of g− 1 on M is

given by x′ = x + yz then M is free as a k[Cpm0 ]-module where the action of g − 1

on M is given by x′ + y′z′ = x. �

Using Lemma 3.1 we prove the following generalization of Lemma 6.4 in [SFB].

Theorem 3.2. Let x, x1, . . . , xs be pairwise commuting nilpotent operators on M =

kd such that the nilpotencies of x, x1, . . . , xs are pn, pn1 , . . . , pns respectively, where

n ≥ n1 ≥ n2 ≥ · · ·ns, and k is a field of characteristic p. Let f ∈ k[t1, . . . , ts] be

a polynomial having no constant or linear terms and x̃ = x + f(x1, . . . , xs). Then

M is free as a k[Cpm0 ]-module where the action of g− 1 on M is given by x if and

only if M is free as a k[Cpm0 ]-module where the action of g − 1 on M is given by

x̃, for a generator g of Cpm0 .

Proof. Note that f(x1, . . . , xs) =
∑s

j=1 xjyj where yj = fj(x1, . . . , xs) for some

fj ∈ k[t1, . . . , ts] having no constant term, for j = 1, . . . , s, and also yj is nilpotent.

First apply Lemma 3.1 to the triple x, x1, y1, then to the triple x+x1y1, x2, y2, and

finally to the triple x+x1y1+· · ·+xs−1ys−1, xs, ys. Then the statement follows. �

As noted in the introduction Main Theorem is a restatement of Theorem 3.2.

References

[Ca] J. F. Carlson, The varieties and the cohomology ring of a module, J. Algebra 85 (1983),

104–143.

[Da] E. Dade, Endo-permutation modules over p-groups II, Ann. of Math. 108 (1978), 317–346.
[CF] J. F. Carlson, E. Friedlander, Exact category of modules of constant Jordan type, preprint

[CFP] J. F. Carlson, E. Friedlander, J. Pevtsova, Modules of constant Jordan type, J. Reine

Angew. Math. 614 (2008), 191–234.
[Fr] R. Farnsteiner, Support varieties, p-points and Jordan type, University of Bielefeld, Lecture

Series April 2007.

[FP] E. Friedlander, J. Pevtsova, Representation theoretic support spaces for finite group
schemes, Amer. J. Math. 127 (2005), 379–420.

[FPe] E. Friedlander, J. Pevtsova, Erratum to:Representation-theoretic support spaces for finite

group schemes, Amer. J. Math. 128 (2006), 1067–1068.
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