A note on a theorem of Dwyer and Wilkerson

By
Semra Öztürk Kaptanoğlu

Abstract

We prove a version of Theorem 2.3 in [1] for the non-elementary abelian group $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}, n \geqq 2$. Roughly, we describe the equivariant cohomology of (union of) fixed point sets as the unstable part of the equivariant cohomology of the space localized with respect to suitable elements of the cohomology ring of $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}$.

Introduction. There are many results in the literature for structures related to elementary abelian p-groups that fail for abelian p-groups. This article arose in finding out the use of being elementary in Theorem 2.3 in [1]. Mainly we use their terminology and notation in this article; some of the exceptions are that G denotes an abelian p-group, E denotes an elementary abelian p-group, and H_{G}^{*} denotes $H^{*}(B G)$. The coefficients are in \mathbb{F}_{p} for any cohomology. Dwyer and Wilkerson used Hsiang's generalization of what they call "localization theorem of Borel-Atiyah-Segal-Quillen" to prove that the unstable part $\mathscr{U} n\left(S_{K}^{-1} H_{E}^{*}(X)\right)$ of the $\mathscr{A}_{p}-S_{K}^{-1} H_{E}^{*}$-module $S_{K}^{-1} H_{E}^{*}(X)$ is isomorphic to $H_{E}^{*}\left(X^{K}\right)$, where $K \leqq E$ and \mathscr{A}_{p} is the \mathbb{F}_{p}-algebra generated by mod p Steenrod operations. We observe that some of their lemmas can be modified for the non-elementary abelian group $G_{n}=\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}, n \geqq 2$, and obtain an analogue of their theorem. Recall that an action on a G-space X is called semi-free if the isotropy subgroup G_{x} is G or 1 for all $x \in X$.

Theorem. For $n \geqq 2$, let $G_{n}=\left\langle e, g \mid e^{2}=g^{2^{n}}=1, e g=g e\right\rangle>E=\left\langle e, g^{2^{n-1}}\right\rangle$ with the cohomology groups $H_{G_{n}}^{*}=\mathbb{F}_{2}\left[t_{1}, \theta_{n}\right] \otimes \Lambda\left(v_{n}\right)$ and $H_{E}^{*}=\mathbb{F}_{2}\left[t_{1}, t_{n}\right]$, and let X be a finite $G_{n}-C W$-complex. In parts (iii) and (iv) assume also at least one $\mathbb{Z}_{2^{n}}$-subgroup of G_{n} acts semifreely on X. Then
(i) $H_{G_{n}}^{*}\left(X^{e 9^{n-1}}, X^{E}\right) \stackrel{\cong}{\cong} \mathscr{U n}\left(H_{G_{n}}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}^{2} \theta_{n}}\right]\right)$,
(ii) $H_{G_{n}}^{*}\left(X^{e} \cup X^{e g^{2 n-1}}, X^{E}\right) \xrightarrow{\cong} \mathscr{U n}\left(H_{G_{n}}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}}\right]\right)$,
(iii) $H_{G_{n}}^{*}\left(X^{2^{2^{n-1}}} \cup X^{e g^{2 n-1}}, X^{E}\right) \xrightarrow{\cong} \mathscr{U n}\left(H_{G_{n}}^{*}\left(X, X^{E}\right)\left[\frac{1}{\theta_{n}}\right]\right)$,
(iv) $H_{G_{n}}^{*}\left(X^{g^{2^{n-1}}} \cup X^{e}, X^{E}\right) \xrightarrow{\cong} \mathscr{U n}\left(H_{G_{n}}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}^{2}+\theta_{n}}\right]\right)$.

Preliminaries. As in [2] for a multiplicative set $S \supset\{1\}$ contained in the center of H_{G}^{*} and a G-CW-complex X, define $\left.X^{S}=\left\{x \in X: \operatorname{ker}\left(\operatorname{res}_{G, G_{x}} H_{G}^{*} \longrightarrow H_{G_{x}}^{*}\right)\right\} \cap S=\emptyset\right\}$, where G_{x} is the isotropy subgroup of x. For $K \leqq E$, let S_{K} be the multiplicative subset of $H_{E}^{*} \backslash \sqrt{(0)}$ generated by $\beta(u)$ where $u \in H_{E}^{1}$ and restricts nontrivially to H_{K}^{*}. Note that X^{a} is determined by where the superscript a lies in, either a is in H_{G}^{*} or in G. For $g \in G, X^{\langle g\rangle}=X^{g}$ so we write X^{g}, for $r \in H_{G}^{*}, S_{r}=\left\{r^{i}: i \geqq 0\right\}$ and we write X^{r} for $X^{S_{r}}$.

Proposition 1. Let G be a compact Lie group, X a compact G-space, and $Y \subseteq X$ be G-invariant subspace. If $S \subset H_{G}^{*}$ is a multiplicative system and $i:\left(X^{S}, Y^{S}\right) \hookrightarrow(X, Y)$ is the inclusion, then the localized restriction homomorphism $\rho^{-1}=S^{-1} i^{*}: S^{-1} H_{G}^{*}(X, Y) \longrightarrow$ $S^{-1} H_{G}^{*}\left(X^{S}, Y^{S}\right)$ is an isomorphism.

Proof. Since localization is an exact functor, the long exact sequence of a pair in cohomology remains exact after localizing with respect to S. Then use Theorem III.1 in [2] and the 5 -Lemma to obtain the required isomorphism.

Let $M=\oplus_{i} \geqq 0 M^{i}$ be an \mathscr{A}_{2}-module where M^{i} denotes elements of degree i in $M . M$ is called unstable if the dimension axiom is satisfied, i.e., if $\mathrm{Sq}^{i} \cdot m=\mathrm{Sq}^{i}(m)=0$ for $i>\operatorname{dim}(m)$ and for all homogeneous $m \in M$. The largest unstable submodule of M is denoted by $\mathscr{U n}(M)$.

Let R be the unstable \mathscr{A}_{2}-module $H_{\mathbb{Z}_{4}}^{*}=\mathbb{F}_{2}[\tau] \otimes \Lambda(u)$, where the polynomial generator τ is in R^{2} and the exterior algebra generator u is in R^{1}. The \mathscr{A}_{2}-module structure of R induces an action on the localization $S_{\tau}^{-1} R=R\left[\frac{1}{\tau}\right]$ of R so that $R\left[\frac{1}{\tau}\right]$ is an $\mathscr{A}_{2}-R\left[\frac{1}{\tau}\right]$-module which is no longer unstable as an \mathscr{A}_{2}-module. Note that for $i \geqq 0, \mathrm{Sq}^{i}\left(\frac{1}{\tau}\right)=0$ if i is odd and $\mathrm{Sq}^{i}\left(\frac{1}{\tau}\right)=\tau^{(i / 2)-1}$ if i is even.

Let $R_{n}=H_{\mathbb{Z}_{2^{n}}}^{*}=\mathbb{F}_{2}\left[\theta_{n}\right] \otimes \Lambda\left(u_{n}\right)$ for $n>2$ and $R_{2}=H_{\mathbb{Z}_{4}}^{*}=\mathbb{F}_{2}[\tau] \otimes \Lambda(u)$ to simplify notation. First we recall a well known result which makes it possible to reduce the problem to a simpler case. It can be verified using the Bockstein operator β induced by the short exact coefficient sequence $0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0$.

Lemma 2. $R_{n} \cong R_{2}$ as \mathscr{A}_{2}-algebras for all $n \geqq 2$.
Lemma 3. Let N be an unstable \mathscr{A}_{2}-module. Then $\eta: R_{2} \otimes N \longrightarrow \mathscr{U n}\left(\left(R_{2} \otimes N\right)\left[\frac{1}{\tau}\right]\right)$ defined by $\eta(x)=\frac{x}{1}$ is an isomorphism of algebras and \mathscr{A}_{2}-modules.

Proof. We will use R for R_{2}.
Assertion. If $\frac{z}{\tau} \in \mathscr{U n}\left((R \otimes N)\left[\frac{1}{\tau}\right]\right)$ for $z \in R \otimes N$, then there exists $y \in R \otimes N$ such that $\frac{z}{\tau}=\frac{y}{1}$. Suppose the assertion is true. If $\frac{x}{\tau^{l}} \in \mathscr{U n}\left((R \otimes N)\left[\frac{1}{\tau}\right]\right)$, then $\frac{x}{\tau^{l-1}}, \frac{x}{\tau^{l-2}}, \ldots, \frac{x}{\tau} \in \mathscr{U n}\left((R \otimes N)\left[\frac{1}{\tau}\right]\right)$. By applying the assertion we first obtain y_{1}, then y_{2}, and y_{3}, \ldots, y_{l} in $R \otimes N$ such that $\frac{x}{\tau}=\frac{y_{1}}{1}, \frac{x}{\tau^{2}}=\frac{y_{1}}{\tau}=\frac{y_{2}}{1}, \ldots, \frac{x}{\tau^{l}}=\frac{y_{l-1}}{1}=\eta\left(y_{l}\right)$. Hence η is surjective. Injectivity follows from the fact that τ is not a zero divisor.

Proof of the assertion. Let $\frac{z}{\tau} \in \mathscr{U n}\left((R \otimes N)\left[\frac{1}{\tau}\right]\right)$, where $z \in R \otimes N$. There are $d, q \in \mathbb{N}, \quad n_{i}, m_{i} \in N \quad$ such that $z=\tau^{d} \otimes n_{d}+\cdots+\tau \otimes n_{1}+1 \otimes n_{0}+u \tau^{q} \otimes m_{q}+u \tau^{q-1} \otimes$ $m_{q-1}+\cdots+u \tau \otimes m_{1}+u \otimes m_{0}$ where nonzero n_{i} 's are \mathbb{F}_{2}-linearly independent, so are the nonzero m_{i} 's. Then

$$
\begin{aligned}
& \frac{z}{\tau}-\left(\frac{\tau^{d-1}}{1} \otimes n_{d}+\cdots+\frac{\tau}{1} \otimes n_{2}+\frac{1}{1} \otimes n_{1}+\frac{u \tau^{q-1}}{1} \otimes m_{q}+\cdots+\frac{u}{1} \otimes m_{1}\right) \\
& \quad=\frac{1}{\tau} \otimes n_{0}+\frac{u}{\tau} \otimes m_{0}
\end{aligned}
$$

is unstable as a sum of finitely many unstable elements. Therefore $\mathrm{Sq}^{k}\left(\frac{1}{\tau} \otimes n_{0}+\frac{u}{\tau} \otimes m_{0}\right)=\frac{0}{1} \quad$ for $\quad k>\operatorname{dim}\left(\frac{z}{\tau}\right), \quad$ hence $\quad \mathrm{Sq}^{k}\left(\frac{1}{\tau} \otimes n_{0}\right)=\mathrm{Sq}^{k}\left(\frac{u}{\tau} \otimes m_{0}\right)$ $=u \mathrm{Sq}^{k}\left(\frac{1}{\tau} \otimes m_{0}\right) \quad$ in $\quad(R \otimes N)\left[\frac{1}{\tau}\right] \quad$ and $\quad \mathrm{Sq}^{k}\left(\frac{u}{\tau} \otimes n_{0}\right)=u \mathrm{Sq}^{k}\left(\frac{1}{\tau} \otimes n_{0}\right)=$ $u\left(u \mathrm{Sq}^{k}\left(\frac{1}{\tau} \otimes m_{0}\right)\right)=\frac{0}{1}$. In particular for an even $k>\operatorname{dim}\left(\frac{z}{\tau}\right)$, we have

$$
\begin{aligned}
\mathrm{Sq}^{k}\left(\frac{u}{\tau} \otimes n_{0}\right)= & \frac{u}{\tau} \otimes \mathrm{Sq}^{k}\left(n_{0}\right)+u \otimes \mathrm{Sq}^{k-2}\left(n_{0}\right) \\
& +u \tau \otimes \mathrm{Sq}^{k-4}\left(n_{0}\right)+\cdots+u \tau^{k / 2-2} \otimes \mathrm{Sq}^{2}\left(n_{0}\right)+u \tau^{k / 2-1} \otimes n_{0}=\frac{0}{1}
\end{aligned}
$$

Then there is an $r \geqq 0$ such that

$$
\begin{aligned}
\tau^{r-1} & \otimes \mathrm{Sq}^{k}\left(n_{0}\right)+\tau^{r} u \otimes \mathrm{Sq}^{k-2}\left(n_{0}\right)+u \tau^{r+1} \otimes \mathrm{Sq}^{k-4}\left(n_{0}\right)+\cdots \\
& +u \tau^{k / 2-2+r} \otimes \mathrm{Sq}^{2}\left(n_{0}\right)+u \tau^{k / 2-1+r} \otimes n_{0}=0
\end{aligned}
$$

Since the sets $\left\{\mathrm{Sq}^{i}\left(n_{0}\right) \mid i \in \mathbb{N}, \mathrm{Sq}^{i}\left(n_{0}\right) \neq 0\right\}$ and $\left\{u \tau^{j} \mid j \in \mathbb{N}\right\}$ consist of \mathbb{F}_{2}-linearly independent elements, the previous equation implies $n_{0}=0$ which in turn implies $\mathrm{Sq}^{k}\left(\frac{u}{\tau} \otimes m_{0}\right)=\frac{0}{1}$. Using this equation in similar arguments as for n_{0} we obtain $m_{0}=0$. Therefore $z=\tau y$ and $\eta(y)=\frac{z}{\tau}$, where

$$
\begin{aligned}
y=\tau^{d-1} \otimes n_{d}+\cdots+\tau \otimes n_{2} & +1 \otimes n_{1}+u \tau^{q-1} \otimes m_{q}+\cdots+u \tau \otimes m_{2} \\
& +u \otimes m_{1} \in R \otimes N .
\end{aligned}
$$

When $G=\mathbb{Z}_{2^{n}}, n \geqq 2$, one cannot capture the fixed point sets of various subgroups of G in a G-space X by localizations. For there is only one polynomial generator θ_{n} in $H_{G}^{*}=k\left[\theta_{n}\right] \otimes \Lambda\left(v_{n}\right)$ which determines only $X^{\mathbb{Z}_{2}}=X^{\theta_{n}}$. So the assumption that G acts semi-freely on X is natural in the following.

Proposition 4. Suppose that $\mathbb{Z}_{2^{n}}$ acts semi-freely on a $\mathbb{Z}_{2^{n}}$-CW-complex X. Then we have

$$
\mathscr{U n}\left(H_{\mathbb{Z}_{2^{n}}}^{*}(X)\left[\frac{1}{\theta_{n}}\right]\right) \cong H_{\mathbb{Z}_{2^{n}}}^{*}\left(X^{\mathbb{Z}_{2^{n}}}\right) \text { and } H^{*}\left(X^{\mathbb{Z}_{2^{n}}}\right) \cong \mathbb{F}_{2} \otimes_{H_{\mathbb{Z}_{2}}^{*}} \mathscr{U} n\left(H_{\mathbb{Z}_{2^{n}}}^{*}(X)\left[\frac{1}{\theta_{n}}\right]\right) .
$$

Proof. The hypothesis implies that $X^{\mathbb{Z}_{2}}=X^{\mathbb{Z}_{2} n}$. Then the first isomorphism follows from Lemma 3 , because $H_{\mathbb{Z}_{2^{n}}}^{*}(X)\left[\frac{1}{\theta_{n}}\right] \cong H_{\mathbb{Z}_{2^{n}}}^{*}\left(X^{\theta_{n}}\right)\left[\frac{1}{\theta_{n}}\right]$ by the localization theorem and
$X^{\theta_{n}}=X^{\mathbb{Z}_{2}}$, where $\mathbb{Z}_{2} \leqq \mathbb{Z}_{2^{n}}$. The second isomorphism is true because $H_{\mathbb{Z}_{2^{n}}}^{*}\left(X^{\mathbb{Z}_{2^{n}}}\right) \cong H^{*}\left(X^{\mathbb{Z}_{2^{n}}}\right) \otimes H_{\mathbb{Z}_{2^{n}}}^{*}$.

Proof of the Theorem. For $G_{n}=\left\langle e, g \mid e^{2}=g^{2^{n}}=1, e g=g e\right\rangle$ with $n \geqq 2$, there is a unique maximal elementary abelian subgroup $E=\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\left\langle e, g^{2^{n-1}}\right\rangle$ which contains all \mathbb{Z}_{2}-subgroups of G_{n}, namely, $\langle e\rangle,\left\langle e g^{2^{n-1}}\right\rangle$, and $\left\langle g^{2^{n-1}}\right\rangle$. Thus the singular set of a G_{n}-space X is $\mathscr{S}_{G_{n}}(X)=X^{e} \cup X^{e 9^{q^{n-1}}} \cup X^{g^{2^{n-1}}}$, where any two of the sets on the right intersect at X^{E}. If $\langle g\rangle$ (similarly $\langle e g\rangle$) acts semi-freely on X, then $X^{g^{g^{n-1}}}=X^{g}$ and $X^{G_{n}}=X^{e} \cap X^{g}=$ $X^{e} \cap X^{g^{2 n-1}}=X^{E} ; \quad$ in addition since $X^{g^{2^{n-1}}} \supset X^{e g}$ we obtain $X^{g} \supset X^{e g} ;$ hence $X^{e g}=X^{g} \cap X^{e g}=X^{G_{n}}$. By Lemma 2, $H_{G_{n}}^{*}$ is isomorphic to $H_{\mathbb{Z}_{2} \times \mathbb{Z}_{4}}^{*} \cong H_{\mathbb{Z}_{2}}^{*} \otimes H_{\mathbb{Z}_{4}}^{*}:=$ $\mathbb{F}_{2}\left[t_{1}\right] \otimes R_{2} \quad$ as \mathscr{A}_{2}-algebras. Set $H_{2}^{*} \cong \mathbb{F}_{2}\left[t_{1}, t_{n}\right]$. Then $\operatorname{res}_{G_{n}, E}\left(t_{1}\right)=t_{1}, \quad \operatorname{res}_{G, E}\left(\theta_{n}\right)=t_{n}^{2}$, $\operatorname{res}_{G, E}\left(v_{n}\right)=0$; and $X^{t_{1}}=X^{e} \cup X^{e g^{2 n-1}}, \quad X^{\theta_{n}}=X^{e g^{n-1}} \cup X^{9^{2-1}}, \quad X_{1}^{t_{1}^{2} \theta_{n}}=X^{e g^{g^{n-1}}, \quad \text { moreover }}$ $X^{T_{2}}=X^{E}$, where $T_{2}=t_{1}^{2} \theta_{n}\left(t_{1}^{2}+\theta_{n}\right)$. Therefore $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}$ behaves exactly like $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. So it is sufficient to prove the Theorem for $n=2$.

Theorem'. Let $G=\left\langle e, f \mid e^{2}=f^{4}=1, e f=f e\right\rangle>E=\left\langle e, f^{2}\right\rangle$ and X be a finite $G-C W$ complex. In parts (iii) and (iv) assume also at least one \mathbb{Z}_{4}-subgroup of G acts semi-freely on X. Then
(i) $H_{G}^{*}\left(X^{e f^{2}}, X^{E}\right) \xrightarrow{\cong} \operatorname{Un}\left(H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}^{2} \tau}\right]\right)$,
(ii) $H_{G}^{*}\left(X^{e} \cup X^{e f^{2}}, X^{E}\right) \xrightarrow{\cong} \mathscr{U n}\left(H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}}\right]\right)$,
(iii) $H_{G}^{*}\left(X^{f^{2}} \cup X^{e f^{2}}, X^{E}\right) \xrightarrow{\cong} \mathscr{U n}\left(H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{\tau}\right]\right)$,
(iv) $H_{G}^{*}\left(X^{f^{2}} \cup X^{e}, X^{E}\right) \xrightarrow{\cong} \mathscr{U n}\left(H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}^{2}+\tau}\right]\right)$.

Proof. For r, s in a multiplicative system $S \subset H_{G}^{*}$ we have $X^{r s}=X^{r} \cap X^{s}$. In particular, $X_{t_{1}^{2} \tau}=X^{e f^{2}}, \quad X^{t_{1}}=X^{e} \cup X^{e f^{2}}, \quad X^{\tau}=X^{f^{2}} \cup X^{e f^{2}} \quad$ and $\quad X^{t_{1}^{2}+\tau}=X^{f^{2}} \cup X^{e} . \quad$ Moreover $X^{e} \cap X^{e f^{2}}=X^{e} \cap X^{f^{2}}=X^{E}$ and $\left(X^{E}\right)^{r}=X^{E}$ for $r \in S$. If $X^{r}=X^{A} \cup X^{B}$ for some subgroups A, B of G with $X^{A} \cap X^{B}=X^{E}$, then $H_{G}^{*}\left(X^{r}, X^{E}\right)=H_{G}^{*}\left(X^{A}, X^{E}\right) \oplus H_{G}^{*}\left(X^{B}, X^{E}\right)$. Also when $G \cong A \times G / A$ for some $A \leqq G$ with $X^{A} \supseteqq X^{E}$, we have $H_{G}^{*}\left(X^{A}, X^{E}\right) \cong$ $H_{G / A}^{*}\left(X^{A}, X^{E}\right) \otimes H_{A}^{*}$. Note that $H_{G / A}^{*}\left(X^{A}, X^{E}\right)$ is a trivial H_{A}^{*}-module. We can write $G \cong\langle e\rangle \times\langle f\rangle \cong\left\langle e f^{2}\right\rangle \times\langle f\rangle \cong\left\langle e f^{2}\right\rangle \times\langle e f\rangle$. However $G \cong\left\langle f^{2}\right\rangle \times K$ for any $K<G$ because f^{2} is a non-generator of G as $\left\langle f^{2}\right\rangle$ is the Frattini subgroup of G. Therefore for parts (iii) and (iv) we will make use of the hypothesis $X^{f^{2}}=X^{\mathbb{Z}_{4}}$ in order to write $H_{G}^{*}\left(X^{f^{2}}, X^{E}\right)=$ $H_{G}^{*}\left(X^{A}, X^{E}\right) \cong H_{G / A}^{*}\left(X^{A}, X^{E}\right) \otimes H_{A}^{*}$, where $A=\mathbb{Z}_{4}$ is the \mathbb{Z}_{4}-subgroup of G acting semifreely on X.

By Proposition 1, for $r \in S$, the inclusion $\left(X^{r}, X^{E}\right) \hookrightarrow\left(X, X^{E}\right)$ induces an isomorphism in the localized equivariant cohomology rings $H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{r}\right] \cong H_{G}^{*}\left(X^{r}, X^{E}\right)\left[\frac{1}{r}\right]$. In particular,
(i) $H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}^{2} \tau}\right] \cong H_{G /\left\langle e f^{2}\right\rangle}^{*}\left(X^{e f^{2}}, X^{E}\right) \otimes\left(H_{\left\langle e f^{2}\right\rangle}^{*}\left[\frac{1}{t_{3}^{4}}\right]\right)$,
(ii) $H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}}\right] \cong H_{G /\langle e\rangle}^{*}\left(X^{e}, X^{E}\right) \otimes\left(H_{\langle e\rangle}^{*}\left[\frac{1}{t_{1}}\right]\right) \oplus H_{G /\left\langle e f^{2}\right\rangle}^{*}\left(X^{e f^{2}}, X^{E}\right) \otimes\left(H_{\left\langle e f^{2}\right\rangle}^{*}\left[\frac{1}{t_{3}}\right]\right)$,
(iii) $H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{\tau}\right] \cong H_{G / \mathbb{Z}_{4}}^{*}\left(X^{\mathbb{Z}_{4}}, X^{E}\right) \otimes\left(H_{\mathbb{Z}_{4}}^{*}\left[\frac{1}{\tau}\right]\right) \oplus H_{G /\left\langle e f^{2}\right\rangle}^{*}\left(X^{e f^{2}}, X^{E}\right) \otimes\left(H_{\left\langle e f^{2}\right\rangle}^{*}\left[\frac{1}{t_{3}^{2}}\right]\right)$,
(iv) $H_{G}^{*}\left(X, X^{E}\right)\left[\frac{1}{t_{1}^{2}+\tau}\right] \cong H_{G / \mathbb{Z}_{4}}^{*}\left(X^{\mathbb{Z}_{4}}, X^{E}\right) \otimes\left(H_{\mathbb{Z}_{4}}^{*}\left[\frac{1}{\tau}\right]\right) \oplus H_{G /\langle e\rangle}^{*}\left(X^{e}, X^{E}\right) \otimes\left(H_{\langle e\rangle}^{*}\left[\frac{1}{t_{1}^{2}}\right]\right)$.

Also, note that $\mathscr{U}\left(N \otimes S^{-1} R\right) \cong \mathscr{U n}\left(N \otimes T^{-1} R\right)$ for any non-trivial multiplicative subsets S and T in R with $S \supseteqq T$. Therefore it remains to show that $\mathscr{U} n\left(\left(N \otimes H_{A}^{*}\right)\left[\frac{1}{r}\right]\right) \cong N \otimes H_{A}^{*}$, where N is an unstable $\mathscr{A}_{2}-H_{A}^{*}$-module which is trivial as an H_{A}^{*}-module and r is the polynomial generator in the cohomology ring H_{A}^{*}. We have $r \in H_{A}^{1}$ if $A \cong \mathbb{Z}_{2}, r \in H_{A}^{2}$ if $A \cong \mathbb{Z}_{4}$. Hence the desired isomorphisms are true by Proposition 3.6 in [1] when $A \cong \mathbb{Z}_{2}$, and by Lemma 3 when $A \cong \mathbb{Z}_{4}$.

This work represents a part of the author's Ph.D. thesis completed under the supervision of Professor Amir H. Assadi. The author wishes to thank Professor A. H. Assadi for useful suggestions and comments.

References

[1] W. G. Dwyer and C. W. Wilkerson, Smith Theory Revisited. Ann. of Math. 127, 191-198 (1988).
[2] W. Y. Hsiang, Cohomology Theory of Topological Transformation Groups. Ergeb. Math. Grenzgeb. 85, Berlin-New York 1975.

Eingegangen am 7. 5. 1999*)
Anschriften des Autors:
Semra Öztürk Kaptanoğlu
Mathematics Department
University of Wisconsin-Madison
Wisconsin 53706
USA
Current Address:
Mathematics Department
Middle East Technical University
Ankara 06531
Turkey
Fax: 90-312-210-1282

[^0]
[^0]: *) Eine überarbeitete Fassung ging am 13. 4. 2000 ein.

