EQUILIBRIUM OF A DEFORMABLE BODY

External loads

Concentrated force

force

Linear distributed
load idealization



Internal resultant loadings

 Define resultant force (Fz) and
moment (Mg,) in 3D:

— Normal force, N
— Shear force, V
— Torsional moment or torque, T

— Bending moment, M
MR”
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EQUILIBRIUM OF A DEFORMABLE BODY

Internal resultant loadings _
For coplanar loadings:

 For coplanar loadings: Apply S F. = 0 to solve for N

* Normal force, N Apply 3 F, =0 to solve for V
* Shear force, V Apply ¥ M= 0 to solve for M
* Bending moment, M
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STRESS Concept of stress

 Consider AA in figure below
 Small finite force, AF acts on AA

e AsAMA—0,AF—0

e But stress (AF / AA) = finite limit (oo)




STRESS

Normal stress
* Intensity of force, or force per unit area, acting normal

to AA
e Symbol used for normal stress, is o (sigma)
_ lim AFZ
727 ms0 AA

Tensile stress: normal force “pulls” or “stretches” the
area element AA

Compressive stress: normal force “pushes” or
“compresses” area element AA



STRESS

Shear stress

* Intensity of force, or force per unit area, acting tangent to
AA

* Symbol used for normal stress is T (tau)

lim AFx
T M0 AA




AVERAGE NORMAL STRESS IN AXIALLY LOADED BAR
Examples of axially loaded bar
e Usually long and slender structural members
* Truss members, hangers, bolts
* Prismatic means all the cross sections are the same

F

Internal torce

W then neglect area
effect of W
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AVERAGE NORMAL STRESS IN AXIALLY LOADED BAR

Assumptions

1. Uniform deformation: Bar remains straight before and after
load is applied, and cross section remains flat or plane
during deformation

2. In order for uniform deformation, force F be applied along
centroidal axis of cross section



1.4 AVERAGE NORMAL STRESS IN AXIALLY LOADED BAR

Average normal stress distribution

F;
+T FRzzzsz IdF:IAO'dA 4

o = average normal stress at any

point on cross sectional area
F;= internal resultant normal force
A = x-sectional area of the bar
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EXAMPLE

Bar width = 35 mm, thickness = 10 mm

Determine max. average normal stress in bar when
subjected to loading shown.

A
12 ki

B ouN
e '- ‘ = 5 L
i~ ' i i v 2
h_._. — ] H r‘l T 4—
Y .'J'L_- -#,L, oy
' 0 kN 4 kN
A5 mm



EXAMPLE (SOLN)

Internal loading

12 kKN —— e F; =12 kN
9 kN
- F-P 3
12 kKN -— ) | | g [ = 30 KN
9 kN

Fy= 22 kN <=

Normal force diagram

F; [kN)

By inspection, largest

g 22 kN

loading area is BC, > ]
where F; =30 kN

I D
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EXAMPLE (SOLN)

Average normal stress

F 30(103) N
%= A = (0.035m)0.010m) o>/ MPa
10 mm-,
L
fk%—» A kM
15 |1|1-||--‘*”'j “-§5.7 MPa

()
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AVERAGE SHEAR STRESS

13

Shear stress is the stress component that act in the
plane of the sectioned area.

Consider a force F acting to the bar

For rigid supports, and F is large enough, bar will deform
and fail along the planes identified by AB and CD

Free-body diagram indicates that shear force, V = F/2 be
applied at both sections to ensure equilibrium




AVERAGE SHEAR STRESS

Average shear stress over each sectionis:
v l

Twe = 4

-
-
—

T, = average shear stress at
section, assumed to be same

at each pt on the section l

V =internal resultant shear force at
section determined from
equations of equilibrium

A = area of section

-,



AVERAGE SHEAR STRESS

e Shear stress is the stress component that act in the
plane of the sectioned area.

 Consider a force F acting to the bar

 Forrigid supports, and F is large enough, bar will
deform and fail along the planes identified by AB and
CD

 Free-body diagram indicates that shear force, V = F/2
be applied at both sections to ensure equilibrium F
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AVERAGE SHEAR STRESS

Average shear stress over each section is:

-
-
—

T, = average shear stress at
section, assumed to be same

at each pt on the section l

V =internal resultant shear force at
section determined from
equations of equilibrium

A = area of section

-,



DEFORMATION
STRAIN

To simplify study of deformation

« Assume lines to be very short and located in
neighborhood of a point, and

e Take into account the orientation of the line
segment at the point



Normal strain

 Defined as the elongation or contraction of a line
segment per unit of length

« Consider line AB in figure below
» After deformation, As changes to As’

Undelormed body Deformed body

(@) ()
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Normal strain
» Defining average normal strain using &,,, (epsilon)

As — As’

avg —

As
*AsAs>0,As">0

lim As - As’

&= B—A along n A




Mechanical Properties of Materials
Tension& Compression Test

 Strength of a material can only be determined by
experiment

* One test used by engineers is the tension or
compression test

* This test is used primarily to determine the
relationship between the average normal stress
and average normal strain in common engineering
materials, such as metals, ceramics, polymers
and composites
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TENSION & COMPRESSION TEST

Performing the tension or compression test

« Specimen of material is made into “standard” shape
and size

 Before testing, 2 small punch marks identified along
specimen’s length

« Measurements are taken of both specimen’s initial x-
sectional area A, and gauge-length distance L,;
between the two marks

« Seat the specimen into a testing machine shown
below dn= 13 mm

(VYT I, l AVPIITITYTD

.

™ i il
21 Lp=531mm



TENSION & COMPRESSION TEST

Performing the tension or compression test
« Seat the specimen into a testing machine shown

below I
movable — gl
L 1 e
The machine will stretch specimen crosshead m im mi o, B -
at slow constant rate until H o] dial
breaking point tension ———f—— : o
: : AR . TR T
At frequent intervals during test, _ I‘ _ l e, _7_:::_' | and load
data is recorded of the applied S T L mmmem | contols
load F. : s
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STRESS-STRAIN

* A stress-strain diagram is obtained by plotting the
various values of the stress and corresponding
strain in the specimen

Conventional stress-strain diagram

 Using recorded data, we can determine nominal or
engineering stress by

Assumption: Stress is constant over the x-section and throughout region between
gauge points

23



Conventional Stress-Strain Diagram

« Likewise, nominal or engineering strain is found
directly from strain gauge reading, or by

Assumption: Strain is constant throughout region between gauge points

By plotting o (ordinate) against € (abscissa), we get a conventional stress-
strain diagram

24



STRESS-STRAIN DIAGRAM

Conventional stress-strain diagram

» Figure shows the characteristic stress-strain diagram for steel, a commonly used material for
structural members and mechanical elements
- true fracture siress

[

%

— uliamate

T SUESS | fracnure

l-_r proportional limit ,-‘f- SAFC5S
4 ~elasuc hm

e icld stres

elastic | yielding sirain necking
e icn hardening
elastic pMastic behavior

behavior

Conventiomal snd tmee stress-strain dingrams
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Conventional stress-strain diagram

n},ﬂ rue fraciure siress
— ultimate
Elastic behavior. % B fracture
A straight line . proportional lmit f siress
Stress is proportional to strain, i.e., linearly elastic ¢ elastic Limat
Upper stress limit, or proportional limit; c,, Cdi].f icld stres

If load is removed upon reaching elastic limit,
specimen will return to its original shape

3
clastic | yvielding slrain necking
reeion hardening
elastic astic behavior
behavior

Conventional and tree stress-strain diagrams
for ductile material (steel) (ol 0 scabe)



Conventional stress-strain diaaram
ir

[

9
Yielding.
Material deforms permanently; yielding;
plastic deformation
Yield stress, o, %
)

Once yield point reached, specimen continues to

elongate (strain) without any increase in load c?‘
¢
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rue fraciure siress

— ultninate
slress

proportional lim
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reLion hardening
clastic astic behavior

behavior

Conventional and tree stress-sirain diagrams
for ductile material (steel) (ol 1o scale)




Conventional stress-strain diagram

a
3 rue fraclure siress
i —

Strain hardening.
Ultimate stress, o,

While specimen is elongating, its x- &
sectional area will decrease

ullimate
shress

elastic it
oy ield stres

elagtic | icldin B a1y ) neckin
regiomn & g haldu:?rllnh'lg 2
' clastic l' | plastic hehavior i

Conventional and tree stress-strain diagrams
- for ductile material (steel) (not 10 scale)



Conventional stress-strain diagram

F true fracture stress
£
Necking.
At ultimate stress, x-sectional area — ultimate
begins to decrease in a localized a slress
region ] fracture
: ' a I
T proportional limat l'/- Bt
f ~elaste Hmit
oy ield stres

As a result, a constriction or “neck” tendsto Ty
form in this region as specimen elongates
further

. . n:la'slis: ln:l'n:lin z;Ll"ﬂiI] nn:u.:Ein
Specimen finally breaks at fracture stress, o; reicn L £ hardening :
elastic [rls_mi-l: hehavior
behavior

Conventiomal and tree stress-strain diagrams

., for ductile material (steel) (md o scale)



Conventional stress-strain diagram

Necking.
Specimen finally breaks at fracture
stress, oF
:r'ﬂ true fraciure siress
T
— ullimate
% Hio fraciure
Necking Failure of a o proportional limit Irf SIrcss

- elastic limit
icld stres

duetile material
[ﬂ.] [h.:' ':iu'

£
clastic | yvielding slrain necking
FE i hardening
elastic Mastic behavior
behavior

Conventional and tree stress-strain diagrams
for ductile material (steel) (mod (o scale)
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Percent elongation is the specimen’s fracture
strain expressed as a percent

L—L,
LO
* Percent reduction in area is defined within
necking region as

Percent elongation = (100%)

A, - A,
A (100%)

Percent reduction 1n area =



HOOKE'S LAW

Most engineering materials exhibit a linear relationship
between stress and strain with the elastic region

Discovered by Robert Hooke in 1676 using springs, known
as Hooke’s law

o=FL¢&

* E represents the constant of proportionality, also called
the modulus of elasticity or Young’s modulus

* E has units of stress, i.e., pascals, MPa or GPa.
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EXAMPLE

Bar is made of A-36 steel and behaves elastically.
Determine change in its length

F= 80 kN

S, -

“T‘.’ i |
100 mm \ i



Normal stress in the bar is

o.= _ I =16.0(10% Pa
A

From tables, E , = 200 GPa, strain in z-direction 18

£ = % =80(10-%) mm/mm

St

Axial elongation of the bar is,

5. = eL.=[80(10-6)](1.5 m) = —25.6 um/m



TORSION

e Jorsion is a moment that twists/deforms a member
about its longitudinal axis

« By observation, if angle of rotation is small, length
of shaft and its radius remain unchanged

Circles remain
circular ’

~ Longitudinal
lines become
twisted

Radial lines
remain straight

Before deformation

(a) After deformation
35 (b)



Ic

max ]
Torque on shaft determined from P = Tw,
B 21N
“ =760

T . = Max. shear stress in shaft, at the outer surface

T = resultant internal torque acting at x-section, from method of
sections & equation of moment equilibrium applied about
longitudinal axis

J = polar moment of inertia at x-sectional area
¢ = outer radius pf the shaft



