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CHAPTER 9Statistical ModellingThe previous chapters were concerned with basic mechanisms and theory that governthe propagation of radio waves in space. In those discussions, the propagation mediumis considered to be a time invariant channel. This is not true in real life and there aremany physical phenomena that cause variations in the received signal. The variations ofmeteorological conditions, motion of the scatterers, solar activities are among the mainreasons of such variations.In many cases, even though the medium is time invariant, the radio waves are also subjectto distortion. A rectangular transmitted pulse will have a distorted shape at receiver due tothe change in the velocity of propagation with frequency.Such effects depend on too many parameters and a simple theoretical model is not avail-able to predict the results. Instead, some empirical models are developed either by fittingcurves to measured data or by statistical and analytical studies on model problems. Ourpurpose in this chapter is to understand such phenomena and methods used to analyze andalleviate such problems. 9.1. FadingIn many cases the total signal at the receiver is a sum of several rays. As the mediumchanges with time, the distance covered by various rays changes continuously which resultsin a change in the phase of each ray component. When the waves are in phase they willadd and otherwise they will tend to cancel each other. As a result the signal amplitude andphase will change in a random manner. This is called fading. The fading may vary withtime, geographical position and/or radio frequency, and the attenuation factor is modelledas a random process.9.1.1. Fading in Time. Fading may either be fast or slow depending on the rate atwhich the amplitude and phase of the signal changes at a single location in space. Thecoherence time of a signal is defined as the minimum time required for the signal to becomeuncorrelated from its previous value. Consider a random signal s (t) with mean µ (t) andvariance σ2 (t) which may be functions of time. The auto-correlation function of s is definedas Rs (t1, t2) = E {s (t1) s∗ (t2)} (9.1.1)where E {·} denotes the ensemble average operator. If the process s (t) is wide sense sta-tionary, its mean and variance are independent of time, and the auto-correlation dependsonly on the difference τ = t1 − t2. The auto-correlation function is Hermitian symmetric,i.e., Rs (τ ) = R∗s (−τ ) and therefore Rs (0) is real. Furthermore, it satisfies the property|Rs (τ)| ≤ Rs (0) . (9.1.2)145



146 9. STATISTICAL MODELLINGFor a practical signal, the value of τ for which |Rs (τ )| decays to a small fraction of Rs (0) isdefined as the coherence time of the signal. The rate of fading is determined by comparingthe coherence time of the signal to the rate of change of the channel.Slow fading: occurs when the change of rate of the channel characteristics are slowas compared to the coherence time of the signal. Slow fading is typically caused byshadowing, where a large obstruction obscures the main signal path. The amplitudechange caused by shadowing is often modeled using a log-normal distribution witha standard deviation according to the log-distance path loss model.Fast fading: occurs if the channel changes much faster than the coherence time ofthe signal.9.1.2. Fading in Space. With a fixed transmitter, if we measure the signal strength atdifferent locations, we will observe that the signal strength changes as a function of location.We define the cross-correlation between the signals at two different locations asρ (r1, r2) = E {s1 (t) s∗2 (t)} (9.1.3)where E {·} denotes the time average operator, and s1 (t) and s2 (t) denote the signal atpositions r1 and r2, respectively. If the process is wide sense stationary in space, the spatialcross-correlation is a function of distance l = |r1 − r2| between the two locations. As in thecase of auto-correlation function, ρ (0) is real, and |ρ (l)| has its maximum at l = 0. If we usetwo antennas located at different positions, the signals received by the antennas will becomepractically uncorrelated as the distance between them is increased. We may arbitrarily seta level for |ρ (l)| below which we say that the signals are uncorrelated. The correspondinglength l can be defined as correlation length.The scale of fading for is determined by comparing the variation rate in space (correlationlength) to the wavelength. It is possible to identify three fading scales.Small scale fading: is the variations of signal in a distance about half the wavelengthand is due to multipath propagation in the vicinity of the mobile or the base-station.The statistical distribution of the signal measured on this scale is typically found tobe Ricean, if a line-of-sight path exists, or Rayleigh otherwise.Middle scale fading: is observed when the received signal is averaged over a sectorwhose dimensions are of the order of 10λ0 or so. The signal so obtained is knownas the local mean signal. The local mean can also be considered as a randomvariable which is a function of position. The variations in the local mean signalis the middle scale fading. These variations are caused by the random variationsin the environment such as building heights, gaps between buildings, differencesin building design and construction materials, and the presence of trees and othermoving objects. The signal undergoes many reflections and/or refractions each ofwhich appear as a multiplicative term in the attenuation factor. Since these effectsare independent, the resulting attenuation factor is the product of many independentrandom terms. This gives rise to log-normal statistics from the central limit theorem.Large scale fading: is due to path dependence of the received signal and describesthe gross variations of the area mean with distance from the transmitter. This scaleof fading is due to the spreading of the wave front in space over the given environ-ment. The fading in this scale is commonly described by the general properties of



9.2. STATISTICAL DESCRIPTION 147the propagation path. Obviously, the long term average of the signal at a constantdistance from the transmitter will be different in rural, urban, mountainous, sea,etc. environments.9.1.3. Fading in Frequency. As the carrier frequency of a signal is varied, the magni-tude of the change in amplitude will vary. This is basically due to the dependence of phaseon frequency. The coherence bandwidth measures the separation in frequency after whichtwo signals will experience uncorrelated fading.Flat fading: occurs if the coherence bandwidth of the channel is larger than thebandwidth of the signal. In this case, all frequency components of the signal willexperience the same magnitude of fading. In this case the signal amplitude is de-creased but the signal will not be distorted.Frequency selective fading: occurs if the coherence bandwidth of the channel issmaller than the bandwidth of the signal. Different frequency components of thesignal therefore experience de-correlated fading. This will cause distortion in thesignal.One may think that a frequency selective fading channel is more problematic than theflat fading channel. However, in a flat fading channel, when a deep fade occurs the signal iscompletely lost. On the other hand, it is highly unlikely that all parts of the signal will besimultaneously affected by a deep fade in a frequency selective fading channel, since differentfrequency components of the signal are affected independently. This may be exploited incertain modulation schemes such as OFDM and CDMA.9.2. Statistical DescriptionWhen the signal strength changes with time (or in space), we need to introduce suit-able definitions for the average signal level and the variations of the signal strength. Mostcommonly, the average signal level is described by the median signal strength, which is thelevel that is exceeded half of the time. For fading in space, this level becomes the levelthat is exceeded at half of the locations of interest. Although it gives an idea about theaverage level, the median signal does not show how deep the fading is. Two signals havingthe same median signal strength may be subject to fading with different depths. One wayto describe the fading depth is to specify one or more levels which are exceeded during agiven percentage of time. We will us the notation E (q) to denote the level that is exceededduring q% of the time (or at q% of the locations). A complete description can only be doneby specifying E (q) for all q values between 0 and 100. This is equivalent to specifying thecumulative distribution function (cdf). An equivalent description of the field would be togive the probability density function (pdf) of the random value of the signal strength. How-ever, this is not always possible in practice. The fading depth is generally measured as thedifference of E (10) and E (90), i.e.,Fading depth = E (10)− E (90) . (9.2.1)Since the signal strength is a random process, specifying its probability distribution isnot enough. One must also specify the rate of change of signals in time. Typically this isdone by giving the number of crossings per unit time. Again, this single parameter does not



148 9. STATISTICAL MODELLINGcompletely describe the process. Generally, instead of giving a complete description, onlythe second order statistics of the process, i.e., its auto-correlation function is specified.There are several probability distributions that are commonly used to describe the fading.The most commonly encountered probability distribution is the normal distribution. Thereason is that, most of the physical phenomena is a result of several independent randomeffects. The central limit theorem then tells us that the resulting process will have a normaldistribution. As mentioned previously, in many cases the field at a receiver location is thesum of different waves arriving at the receiver through different paths. The total field canbe written in time domain asE (t) = N∑n=1 En (t) (9.2.2)where En (t) = An cos [ωct+ kn · r+ ψn] (9.2.3)where ωc is the carrier frequency, kn is the wave vector, An is the amplitude, and ψn isthe phase of the nth wave. After some trigonometric manipulations, the total signal can bewritten asE (t) = Re{[I (t) + jQ (t)] ejωct} = I (t) cosωct−Q (t) sinωt (9.2.4)where I (t) and Q (t) are the in-phase and quadrature components, respectively, and can bewritten asI (t) = N∑n=1An cos (ωct+ αn) , (9.2.5)Q (t) = N∑n=1An sin (ωct+ αn) (9.2.6)where αn = kn · r + ψn. In this derivation, we have ignored any Doppler shift that maybe caused due to moving scatterers. The phase angle ψn may have any value between zeroand 2π and is generally assumed to be uniformly distributed. If N is sufficiently large, thenby central limit theorem I (t) and Q (t) are independent Gaussian random processes whichare completely characterized by their mean value and auto-correlation function. When ψn isuniformly distributed, the mean values of the in-phase and quadrature components are bothzero which, in turn, implies that E (t) is also zero mean:〈I (t)〉 = 〈Q (t)〉 = 〈E (t)〉 = 0 (9.2.7)where 〈·〉 denotes ensemble average. Furthermore, it can be shown that 〈I2 (t)〉 = 〈Q2 (t)〉and 〈I (t)Q (t)〉 = 0. The envelope of the received total electric field is |E (t)| =√I2 (t) +Q2 (t)and at a fixed time instant, it will have a Rayleigh distribution.The pdf of a real random variable Z with normal distribution is given byp (z) = 1√2πσ exp(−(z − µ)22σ2 ) (9.2.8)



9.2. STATISTICAL DESCRIPTION 149where µ, and σ2 are the mean and variance of Z. The pdf of a Rayleigh distributed randomvariable R isp (r) = rσ2 exp(− r22σ2)u (r) (9.2.9)where u (r) is the unit step function. The mean and variance of R are given by〈R〉 = ∫ ∞0 r2σ2 exp(− r22σ2) dr =√π2σ, (9.2.10)〈R2〉 = ∫ ∞0 r3σ2 exp(− r22σ2) dr = 2σ2. (9.2.11)It is customary to choose the variances of I (t) and Q (t) as σ2/2. Then the variance of theenvelope is σ2 which is the mean power of the received field.The above derivation corresponds to a propagation path which does not have a directpath. When a direct path exists, the phase of the direct path will not be a random variable,instead it will be a constant. The mean value of the direct path signal will no more be zeroand the total field will have a Ricean distribution (sometimes called a non-central Rayleighdistribution). The pdf of a Ricean distributed random variable R with 〈R2〉 = σ2 + ν2 isp (r) = 2rσ2 exp(−r2 + ν2σ2 ) I0(2rνσ2 ) . (9.2.12)Another commonly encountered distribution in propagation is the log-normal distribu-tion. A random variable whose logarithm is normally distributed is said to have a log-normaldistribution. If X is a random variable with a normal distribution, then Y = exp(X) hasa log-normal distribution; likewise, if Y is log-normally distributed, then X = log(Y ) isnormally distributed. This occurs when a single ray is affected by many independent mul-tiplicative factors. For example, if a ray undergoes several reflections before arriving thereceiver, the received signal will have a log-normal distribution, since the reflection coeffi-cient at each reflection point can be considered independent random variables. The pdf of arandom variable R with log-normal distribution isp (r) = 1rσ√2π exp(−(ln r − µ)22σ2 )u (r) . (9.2.13)For log-normal distribution the raw moments are〈R〉 = e 12σ2+µ; 〈R2〉 = e2µ+2σ2. (9.2.14)All the above distributions have at most two parameters. Therefore, specifying themedian signal level and fading depth will completely characterize the distribution of thesignal at a given time instant. For example, for Rayleigh fading which has a single parameter,if the median level is E (50) = Em we can write∫ Em0 rσ2 exp(− r22σ2) dr = 1 − exp(−E2m2σ2) = 0.5 (9.2.15)



150 9. STATISTICAL MODELLINGwhich can be solved for σ2 to giveσ2 = E2m2 ln 2 . (9.2.16)The E (q) values can be written similarly as∫ E(q)0 rσ2 exp(− r22σ2) dr = 1− exp(−E2 (q)2σ2 ) = 1 − q (9.2.17)and we findE (q) = Em√− ln qln 2 = Em√− log10 qlog10 2 . (9.2.18)Then, the fading depth can be calculated asFd = E (10)−E (90) = Em(√ 1log10 2 −√ log10 (10/9)log10 2 ) = 1.433Em. (9.2.19)For a Rayleigh fading channel, (9.2.18) shows that, if we want to secure communication forq% of the time, we should increase the field strength by a factor of √− log10 q/ log10 2 abovethe median level. 9.3. Empirical Path Loss ModelsIn many cases, it is very difficult to obtain a simple expression for path loss by using theo-retical and analytical derivations. For example, in urban areas, there are too many scatterersthat affect the propagation. Furthermore, many of these scatterers are in constant motion.In such cases empirical models, which are themselves based on measurements performed insimilar environments and/or on theoretical models are used. In the next few sections we willpresent some empirical models that are useful in predicting the median signal strength forvarious environments.9.3.1. Okumura-Hata Model. The Okumura—Hata model is a fully empirical pre-diction method, [62] that is commonly used in mobile systems, i.e., a propagation pathconsisting of a fixed base station and a mobile receiver. This model is based entirely on anextensive series of measurements made in and around Tokyo city over the frequency interval200MHz to 2GHz. There is no attempt to base the predictions on a physical model. Origi-nally, the prediction was done by using a set of graphs. Later most important graphs wereexpressed by approximate formulas, [63].The method divides the prediction area into three different clutter and terrain categories.These are:Open areas: that contain no tall trees or buildings in path, plot of land cleared for300− 400m ahead, like farmlands.Suburban areas: that are typically villages or highways scattered with trees andhouses, containing some obstacles but not very congested.Urban areas: which define built-up cities or large towns with large buildings andhouses with two or more storeys, or larger villages with close houses and tall, thicklygrown trees.



9.3. EMPIRICAL PATH LOSS MODELS 151The median path loss is given bySuburban L50 (dB) = A+B log10R − COpen L50 (dB) = A+B log10R −DUrban L50 (dB) = A+B log10R− E (9.3.1)where A = 69.55 + 26.16 log10 fc − 13.82 log10 hb (9.3.2a)B = 44.9− 6.55 log10 hb (9.3.2b)C = 2 [log10( fc28)]2 + 5.4 (9.3.2c)D = 4.78 (log10 fc)2 + 18.33 log10 fc + 40.94 (9.3.2d)E = 3.2 [log10 (11.75hm)]2 − 4.97 for large cities and fc ≥ 300MHz (9.3.2e)E = 8.29 [log10 (1.54hm)]2 − 1.1 for large cities and fc < 300MHz (9.3.2f)E = (1.1 log10 fc − 0.7) hm − (1.56 log10 fc − 0.8) for medium to small cities(9.3.2g)In these expressions, hb is the base station antenna height in m, hm is the mobile stationantenna height in m, fc is the communication frequency in MHz, R is the distance ofthe mobile to the base station in km. This model gives a path loss model with a rangedependency R−n where n = B/10. Typically this number is a little less than 4 and decreasesas the base station height is increased. The model is valid only for 150MHz≤ fc ≤ 1500MHz,30m ≤ hb ≤ 200m, 1m < hm < 10m and R > 1 km.9.3.2. COST-231 Hata Model. The Okumura—Hata model for medium to small citieshas been extended to cover the band 1500MHz < fc < 2000MHz, [64]. The formula isL50 (dB) = F +B log10R − E +G (9.3.3)where F = 46.3 + 33.9 log10 fc − 13.82 log10 hb. (9.3.4)E and B are as defined in (9.3.2) for medium to small cities andG = { 0 dB for medium-sized cities and suburban areas3 dB for metropolitan areas (9.3.5)9.3.3. Other Models. There are many other models for median path loss calculations.We will not discuss these models here since the idea is to give an understanding of theapproach and not the details of the calculations. We will, however, give a small list of morecommonly referred models in the literature. The details of these models can be found, forexample, in [65] and [66].Among these models we may mention the Walfish model, [67] which is a model thatis based on theoretical calculations. A similar model is the Ikegami model, [68]. Later,based on extensive measurement campaigns in several European cities, COST-231 Actioncame up with an empirical model by combining the formulations of Walfish and Ikegami.The model, designated by COST-231 Walfish-Ikegami model, is applicable when the urban



152 9. STATISTICAL MODELLINGarea has buildings of roughly the same heights and separation over the frequency range800−2000MHz, base station height range of 4−50m, mobile station height range of 1−3m,and distance range of 20m − 5 km. Models for calculation of rooftop diffraction, and flatedge model which takes the buildings as prismatic structures have also been proposed. TheLongley-Rice model is a path loss (median) prediction model over irregular terrain suitablefor coverage prediction in rural type of environments, and basically covers what has beendiscussed in the first six chapters.9.4. Coverage CalculationsIn broadcasting, base station applications and radar, an important thing is to determinethe coverage area of the transmitter, especially in the planning of such systems. The coveragearea is defined as that region for which the received signal strength exceeds a particularthreshold for a particular percentage of time. For example, FCC provides F (50, 50) curveswhich gives the estimated field strength exceeded at 50% of the potential receiver locationsfor 50% of the time, at a receiving antenna height of 9m. Such curves can be used to obtaincoverage diagrams.In GSM application determination of the coverage area of a base station is quite im-portant. Such a calculation is best explained by way of an example. Let us assume thatthe threshold signal level is x0 (dBm) which is determined by the sensitivity of a typicalGSM receiver. For given system parameters such as frequency, antenna heights, gains, andtransmitter power, the median signal level can be written asx50 (r) dB = A (R)− 10n log10 rR (9.4.1)where R is a reference distance and A (R) is the median signal level at r = R. This meansthat the median signal strength follows a r−n distance dependence, where n is the path lossexponent. The term A (R) depends on the system parameters. Let us also assume that thepath loss (in dB) has a log-normal distribution. Then the signal strength is also log-normaland the signal P at a certain location can be written asX = x50 + σx̃ (9.4.2)where x̃ is a zero mean, unit variance Gaussian random variable, and σ defines the standarddeviation of the signal strength (or equivalently the path loss). The pdf of the signal is thenp (x) = 1√2πσ exp[−(x− x50)22σ2 ] . (9.4.3)Therefore, at a location a distance r away from the transmitter, the probability that Xexceeds the threshold level x0 is given byP (X > x0) = Px0 (r) = ∫ ∞x0 p (x) dx = 12 − 12 erf (x0 − x50√2σ ) (9.4.4)where erf (x) = 2√π ∫ x0 e−u2du. (9.4.5)



9.4. COVERAGE CALCULATIONS 153Since x50 is a function of r, this probability is also a function of r. Let us consider a circulararea centered about the transmitter with radius R. The fraction of locations that the signalwill exceed the threshold within this area is given byAc = 1πR2 ∫ R0 ∫ 2π0 Px0 (r) rdrdφ = 2R2 ∫ R0 Px0 (r) rdr (9.4.6)= 12 − 1R2 ∫ R0 r erf(x0 − x50√2σ ) dr (9.4.7)Let us define α = (x0 −A (R)) /√2σ and β = (10n log10 e) /√2σ. The integral can beevaluated using integration by parts and the result is1R2 ∫ R0 r erf (α+ β ln rR0) dr = 12 erf (α)− βR2√π ∫ R0 r exp [−(α+ β ln rR)2] dr(9.4.8)= 12 erf (α)− 12e− 2αβ−1β2 [1 − erf (1 − αββ )] (9.4.9)Using this result in (9.4.7) givesAc = 12 [1− erf (α) + e− 2αβ−1β2 (1− erf (1 − αββ ))] (9.4.10)= Px0 (R) + 12e− 2αβ−1β2 [1− erf (1− αββ )] . (9.4.11)As a numerical example, assume that σ = 9 dB, and n = 3. In (9.4.1) if we choose R asthe distance for which A (R) = x50 = x0, we have α = 0. Then we getAc = Px0 (R) + 12e 1β2 [1− erf (1β)] (9.4.12)= Px0 (R) +K (β) . (9.4.13)Note that K (β) is always positive. This equation tells us if R is the distance at which x50 =x0, i.e., half of the points on the boundary of the circle exceeds the threshold (Px0 (R) = 1/2),then the fraction of points with signal strength exceeding the threshold inside the circle willbe greater than 50%. For example if σ = 9 dB, and n = 3, we have β = 1. 024 and Ac = 0.72. So, if half of the points on the circumference of a circle of radius R exceeds the threshold,72% of the points inside the circle will exceed the threshold.If we want to determine the radius for which a given percentage of the points insidethe circle will exceed the threshold, we have to solve the problem backwards. Note that βdepends only on the path loss model parameters σ and n. Once these values are given, wecan calculate K (β) in (9.4.12). Then, since Ac is specified, we can determine Px0 (R) fromwhich, using (9.4.4), we can find x0 − x50. For example, let us again assume that n = 3 andσ = 9 dB. Furthermore, with the given frequency, antenna heights, gains, and transmitterpower we calculate A (5 km) = −70 dBm. This means that x50 = −70 dBm at a distance of5 km. Suppose also that we want a 90% coverage, i.e., the threshold level must be exceededat 90% of the locations. We haveK (β) = 12e 1β2 [1− erf( 1β)] = 0.217



154 9. STATISTICAL MODELLINGwhich givesPx0 (R) = 0.9 − 0.217 = 0.683 .Using (9.4.4) we find α = −0.337 or x50 = x0 + 4. 285. The typical receiver sensitivity is−100 dBm, and we set x0 to this level. Thus, we need x50 = −95.715 dBm. Using (9.4.1)we get −95.715 = −70 − 30 log10 r1 kmwhich gives r = 7.2 km. 9.5. ExamplesE������ 38. Considering a frequency of 1.8GHz, hb = 20m, hm = 2m, determine thepath loss at a distance of R = 2km in suburban areas, using Okumura-Hata and COST-231Hata models.S
���

� 38. The validity region of the Okumura-Hata model does not include 1800MHz.Still, with this model we would haveA = 69.55 + 26.16 log10 fc − 13.82 log10 hb = 136.7,B = 44.9− 6.55 log10 hb = 36.4,C = 2 [log10( fc28)]2 + 5.4 = 11.9.The median path loss is then given asL50 (dB) = 136.7 + 36.4 log10 2− 11.9 = 135.8 dB.For the COST-231 Hata model we haveB = 44.9 − 6.55 log10 hb = 36.4,E = 3.2 [log10 (11.75hm)]2 − 4.97 = 6.0,F = 46.3 + 33.9 log10 fc − 13.82 log10 hb = 138.7,G = 0.The median path loss is thenL50 (dB) = 138.7 + 36.4 log10 2− 6 = 143.7 dB.Note that the results of the two models differ by 7. 9 dB. Since Okumura-Hata model is notvalid for 1800MHz, we should use the result of COST-231 Hata model.E������ 39. Determine the median path loss at a frequency of 900MHz for base stationantenna height of hb = 40m, mobile station antenna height of hm = 2m, and a distance ofR = 2 km in a large city. How much the result would differ in a medium city?S
���

� 39. For these parameters we should use the Okumura-Hata model. We haveA = 69.55 + 26.16 log10 fc − 13.82 log10 hb = 124.7,B = 44.9 − 6.55 log10 hb = 34. 4,E = 3.2 [log10 (11.75hm)]2 − 4.97 = 1. 0 for large cities,E = (1.1 log10 fc − 0.7)hm − (1.56 log10 fc − 0.8) = 1.3 for medium to small cities.



9.5. EXAMPLES 155Then the median path loss isL50 (dB) = 134. 0 for large cities,L50 (dB) = 133. 8 for medium to small cities.The difference is 0.25 dB.E������ 40. Suppose that the propagation in a certain region has r−3 dependence witha log-normal distribution with σ = 9 dB. For a certain system, the 90% coverage area has aradius of 5 km. If we increase the transmitter power by 10 dB, what will be the radius of thenew 90% coverage area?S
���

� 40. From the given values we calculate β = 1. 024 and K (β) = 0.217. Using(9.4.12) we find Px0 (R) = Ac −K (β) = 0.9 − 0.217 = 0.683. SolvingPx0 (5 km) = 12 − 12 erf (x0 − x50√2σ )we find x0−x50 = −1. 428 dB. Increasing the transmitter power by 10 dB increases x50 by thesame amount and the new value of x0−x50 becomes −11.428 dB. Since we are again lookingfor 90% coverage radius, we must find the new distance R1 for which Px0 (R1) = 0.683 orequivalently we must solvex0 − x50 (R1) = −1.428.The propagation model isx50 (r) = A (R)− 10n log10 rR.Increasing the transmitter power increases A (R) by the same amount. That is we need tosolve A (R) − 30 log10 5 kmR = A (R) + 10− 30 log10 R1R .Thus the new 90% coverage radius will be R1 = 10.8 km. Note that the previous calculationsare not necessary and only given to explain that the problem is to find the new radius thatwill give the same value of x50. In fact, the only parameters necessary to solve this problemis the attenuation model (i.e., the value of n) and the amount of increase in the transmitterpower. Even the actual value of coverage percentage is not necessary, since the coveragepercentage is required to be same in the two cases.E������ 41. With the parameters of Example 40, how much the transmitter powershould be increased to ensure a 99.9% coverage for the same area of radius 5 km?S
���

� 41. From calculations of Example 40, we find Px0 for 99.9% coverage to bePx0 (R) = Ac −K (β) = 0.999− 0.217 = 0.782 .Solving Px0 (5 km) = 12 − 12 erf (x0 − x50√2σ )we determine x0 − x50 = −2. 337 is required. Thus, we need to increase x50 by 2. 337 − 1.428 = 0.909 dB, which is the required increase in the transmitter power.


