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CHAPTER 9

Statistical Modelling

The previous chapters were concerned with basic mechanisms and theory that govern
the propagation of radio waves in space. In those discussions, the propagation medium
is considered to be a time invariant channel. This is not true in real life and there are
many physical phenomena that cause variations in the received signal. The variations of
meteorological conditions, motion of the scatterers, solar activities are among the main
reasons of such variations.

In many cases, even though the medium is time invariant, the radio waves are also subject
to distortion. A rectangular transmitted pulse will have a distorted shape at receiver due to
the change in the velocity of propagation with frequency.

Such effects depend on too many parameters and a simple theoretical model is not avail-
able to predict the results. Instead, some empirical models are developed either by fitting
curves to measured data or by statistical and analytical studies on model problems. Our
purpose in this chapter is to understand such phenomena and methods used to analyze and
alleviate such problems.

9.1. Fading

In many cases the total signal at the receiver is a sum of several rays. As the medium
changes with time, the distance covered by various rays changes continuously which results
in a change in the phase of each ray component. When the waves are in phase they will
add and otherwise they will tend to cancel each other. As a result the signal amplitude and
phase will change in a random manner. This is called fading. The fading may vary with
time, geographical position and/or radio frequency, and the attenuation factor is modelled
as a random process.

9.1.1. Fading in Time. Fading may either be fast or slow depending on the rate at
which the amplitude and phase of the signal changes at a single location in space. The
coherence time of a signal is defined as the minimum time required for the signal to become
uncorrelated from its previous value. Consider a random signal s (f) with mean y (f) and
variance o (t) which may be functions of time. The auto-correlation function of s is defined
as

R (t1,t9) = E{s(t1) s* (t9)} (9.1.1)

where I {-} denotes the ensemble average operator. If the process s (t) is wide sense sta-
tionary, its mean and variance are independent of time, and the auto-correlation depends
only on the difference 7 = t; — t3. The auto-correlation function is Hermitian symmetric,
Le., Ry (1) = R* (—7) and therefore R, (0) is real. Furthermore, it satisfies the property

|Rs (T)] < Rs(0). (9.1.2)
145



146 9. STATISTICAL MODELLING

For a practical signal, the value of 7 for which | R, (7)| decays to a small fraction of R, (0) is
defined as the coherence time of the signal. The rate of fading is determined by comparing
the coherence time of the signal to the rate of change of the channel.

Slow fading: occurs when the change of rate of the channel characteristics are slow
as compared to the coherence time of the signal. Slow fading is typically caused by
shadowing, where a large obstruction obscures the main signal path. The amplitude
change caused by shadowing is often modeled using a log-normal distribution with
a standard deviation according to the log-distance path loss model.

Fast fading: occurs if the channel changes much faster than the coherence time of
the signal.

9.1.2. Fading in Space. With a fixed transmitter, if we measure the signal strength at
different locations, we will observe that the signal strength changes as a function of location.
We define the cross-correlation between the signals at two different locations as

p(ry,re) = E{s (t)s5(t)} (9.1.3)

where F {-} denotes the time average operator, and s (f) and sy () denote the signal at
positions ry and ry, respectively. If the process is wide sense stationary in space, the spatial
cross-correlation is a function of distance I = |r; — ry| between the two locations. As in the
case of auto-correlation function, p (0) is real, and |p (7)] has its maximum at I = 0. If we use
two antennas located at different positions, the signals received by the antennas will become
practically uncorrelated as the distance between them is increased. We may arbitrarily set
a level for |p (1)| below which we say that the signals are uncorrelated. The corresponding
length [ can be defined as correlation length.

The scale of fading for is determined by comparing the variation rate in space (correlation
length) to the wavelength. It is possible to identify three fading scales.

Small scale fading: is the variations of signal in a distance about half the wavelength
and is due to multipath propagation in the vicinity of the mobile or the base-station.
The statistical distribution of the signal measured on this scale is typically found to
be Ricean, if a line-of-sight path exists, or Rayleigh otherwise.

Middle scale fading: is observed when the received signal is averaged over a sector
whose dimensions are of the order of 10)g or so. The signal so obtained is known
as the local mean signal. The local mean can also be considered as a random
variable which is a function of position. The variations in the local mean signal
is the middle scale fading. These variations are caused by the random variations
in the environment such as building heights, gaps between buildings, differences
in building design and construction materials, and the presence of trees and other
moving objects. The signal undergoes many reflections and/or refractions each of
which appear as a multiplicative term in the attenuation factor. Since these effects
are independent, the resulting attenuation factor is the product of many independent
random terms. This gives rise to log-normal statistics from the central limit theorem.

Large scale fading: is due to path dependence of the received signal and describes
the gross variations of the area mean with distance from the transmitter. This scale
of fading is due to the spreading of the wave front in space over the given environ-
ment. The fading in this scale is commonly described by the general properties of
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the propagation path. Obviously, the long term average of the signal at a constant
distance from the transmitter will be different in rural, urban, mountainous, sea,
etc. environments.

9.1.3. Fading in Frequency. As the carrier frequency of a signal is varied, the magni-
tude of the change in amplitude will vary. This is basically due to the dependence of phase
on frequency. The coherence bandwidth measures the separation in frequency after which
two signals will experience uncorrelated fading.

Flat fading: occurs if the coherence bandwidth of the channel is larger than the
bandwidth of the signal. In this case, all frequency components of the signal will
experience the same magnitude of fading. In this case the signal amplitude is de-
creased but the signal will not be distorted.

Frequency selective fading: occurs if the coherence bandwidth of the channel is
smaller than the bandwidth of the signal. Different frequency components of the
signal therefore experience de-correlated fading. This will cause distortion in the
signal.

One may think that a frequency selective fading channel is more problematic than the
flat fading channel. However, in a flat fading channel, when a deep fade occurs the signal is
completely lost. On the other hand, it is highly unlikely that all parts of the signal will be
simultaneously affected by a deep fade in a frequency selective fading channel, since different
frequency components of the signal are affected independently. This may be exploited in

certain modulation schemes such as OFDM and CDMA.

9.2. Statistical Description

When the signal strength changes with time (or in space), we need to introduce suit-
able definitions for the average signal level and the variations of the signal strength. Most
commonly, the average signal level is described by the median signal strength, which is the
level that is exceeded half of the time. For fading in space, this level becomes the level
that is exceeded at half of the locations of interest. Although it gives an idea about the
average level, the median signal does not show how deep the fading is. Two signals having
the same median signal strength may be subject to fading with different depths. One way
to describe the fading depth is to specify one or more levels which are exceeded during a
given percentage of time. We will us the notation F (g) to denote the level that is exceeded
during ¢% of the time (or at g% of the locations). A complete description can only be done
by specilying I (g) for all ¢ values between 0 and 100. This is equivalent to specifying the
cumulative distribution function (cdf). An equivalent description of the field would be to
give the probability density function (pdf) of the random value of the signal strength. How-
ever, this is not always possible in practice. The fading depth is generally measured as the

difference of F (10) and £ (90), i.e.,
Fading depth = F (10) — £ (90) . (9.2.1)

Since the signal strength is a random process, specifying its probability distribution is
not enough. One must also specify the rate of change of signals in time. Typically this is
done by giving the number of crossings per unit time. Again, this single parameter does not
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completely describe the process. Generally, instead of giving a complete description, only
the second order statistics of the process, i.e., its auto-correlation function is specified.

There are several probability distributions that are commonly used to describe the fading.
The most commonly encountered probability distribution is the normal distribution. The
reason 1is that, most of the physical phenomena is a result of several independent random
effects. The central limit theorem then tells us that the resulting process will have a normal
distribution. As mentioned previously, in many cases the field at a receiver location is the
sum of different waves arriving at the receiver through different paths. The total field can
be written in time domain as

£(t) = i £, (1) (9.2.2)

where
En(t) = Apcos[wet + k- T+, (9.2.3)

where w, is the carrier frequency, k,, is the wave vector, A, is the amplitude, and v, is
the phase of the nth wave. After some trigonometric manipulations, the total signal can be
written as

E(t) =Re{[I(t)+jQ ()] ™"} =1 (t) cosw.t — Q () sinwt (9.2.4)

where [ () and @ (t) are the in-phase and quadrature components, respectively, and can be
written as

L(t) =" Ay cos(wel + ), (9.2.5)
Qt) = Aysin (wel + ) (9.2.6)

where o, = k, - v + 1,,. In this derivation, we have ignored any Doppler shift that may
be caused due to moving scatterers. The phase angle v,, may have any value between zero
and 27 and 1s generally assumed to be uniformly distributed. If N is sufficiently large, then
by central limit theorem I (t) and @ (¢) are independent Gaussian random processes which
are completely characterized by their mean value and auto-correlation function. When v, is
uniformly distributed, the mean values of the in-phase and quadrature components are both
zero which, in turn, implies that &€ (¢) is also zero mean:

(I)={Q)=(€@)=0 (9.2.7)

where (-) denotes ensemble average. Furthermore, it can be shown that (12 (¢)) = (Q* (¢))
and (I (t) Q (t)) = 0. The envelope of the received total electric field is |€ (£)| = /1% () + Q2 (¢
and at a fixed time instant, it will have a Rayleigh distribution.

The pdf of a real random variable Z with normal distribution is given by

1 (z— )’
p(z) = Joro exp <_W> (9.2.8)
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where p, and 02 are the mean and variance of Z. The pdf of a Rayleigh distributed random
variable R is

p0) = o (s ) u () 9.29)

o2

where u (r) is the unit step function. The mean and variance of R are given by

> 2 r? T
)= [ G (57 ) ir = [57 (6:2.10)
) [oe] 7"3 7"2 )

It is customary to choose the variances of I (¢) and Q (¢) as 6%/2. Then the variance of the
envelope is 02 which is the mean power of the received field.

The above derivation corresponds to a propagation path which does not have a direct
path. When a direct path exists, the phase of the direct path will not be a random variable,
instead it will be a constant. The mean value of the direct path signal will no more be zero
and the total field will have a Ricean distribution (sometimes called a non-central Rayleigh
distribution). The pdf of a Ricean distributed random variable R with (R?) = ¢* + 1% is

2r r? 4 1?2 2ry
p(r)= 5 OXP <— o > Iy <—> . (9.2.12)

Another commonly encountered distribution in propagation is the log-normal distribu-
tion. A random variable whose logarithm is normally distributed is said to have a log-normal
distribution. If X is a random variable with a normal distribution, then ¥ = exp(X) has
a log-normal distribution; likewise, if Y is log-normally distributed, then X = log(Y) is
normally distributed. This occurs when a single ray is affected by many independent mul-

tiplicative factors. For example, if a ray undergoes several reflections before arriving the
receiver, the received signal will have a log-normal distribution, since the reflection coeffi-
cient at each reflection point can be considered independent random variables. The pdf of a
random variable R with log-normal distribution is

p(r)= ! exp (—M> u(r). (9.2.13)

ro\2m 202

For log-normal distribution the raw moments are
(R) = 37+ (R?) = 2427, (9.2.14)

All the above distributions have at most two parameters. Therefore, specifying the
median signal level and fading depth will completely characterize the distribution of the
signal at a given time instant. For example, for Rayleigh fading which has a single parameter,
if the median level is I (50) = F,, we can write

Em e r? E2?,
/0 o2 &XP <—@> dr =1—exp <—@> =0.5 (9.2.15)
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which can be solved for o2 to give
2
o? = Lo :
2In2

The F (¢q) values can be written similarly as

£ 2 £ (g
/0 o2 &P <—@> dr =1—exp <— 557 > =1—g¢q (9.2.17)

and we find

| Ing | 1ogiq
B =B ——— = ——. 9.2.18
(4) In2 logo 2 ( )

Then, the fading depth can be calculated as

Fy=E(10) — E(90) = E, <\/ Lo \/bgm <10/9>> = 1.433E,,. (9.2.19)

(9.2.16)

logo 2 logo 2

For a Rayleigh fading channel, (9.2.18) shows that, if we want to secure communication for

q% of the time, we should increase the field strength by a factor of \/— log, 9/ logy 2 above
the median level.

9.3. Empirical Path Loss Models

In many cases, it is very difficult to obtain a simple expression for path loss by using theo-
retical and analytical derivations. For example, in urban areas, there are too many scatterers
that affect the propagation. Furthermore, many of these scatterers are in constant motion.
In such cases empirical models, which are themselves based on measurements performed in
similar environments and /or on theoretical models are used. In the next few sections we will
present some empirical models that are useful in predicting the median signal strength for
various environments.

9.3.1. Okumura-Hata Model. The Okumura-Hata model is a fully empirical pre-
diction method, [62] that is commonly used in mobile systems, i.e., a propagation path
consisting of a fixed base station and a mobile receiver. This model is based entirely on an
extensive series of measurements made in and around Tokyo city over the frequency interval
200 MHz to 2 GHz. There is no attempt to base the predictions on a physical model. Origi-
nally, the prediction was done by using a set of graphs. Later most important graphs were
expressed by approximate formulas, [63].

The method divides the prediction area into three different clutter and terrain categories.
These are:

Open areas: that contain no tall trees or buildings in path, plot of land cleared for
300 — 400 m ahead, like farmlands.

Suburban areas: that are typically villages or highways scattered with trees and
houses, containing some obstacles but not very congested.

Urban areas: which define built-up cities or large towns with large buildings and
houses with two or more storeys, or larger villages with close houses and tall, thickly
grown trees.
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The median path loss is given by

Suburban Lso (dB) = A+ Blog,g R — C
Open Lso (dB) = A+ Blogyg R — D (9.3.1)
Urban Lso (dB) = A+ Blogyg R — E

where
A = 69.55 + 26.16 log,, f. — 13.821logyo hs (9.3.2a)
B =449 — 6.551ogo hy (9.3.2b)
fA\T?

=2 lloglo <2—8>1 +5.4 (9.3.2¢)
D = 4.78 (logyo f.)” + 18.33log, f. + 40.94 (9.3.2d)
E =3.2]logy, (11.75hm)]2 —4.97  for large cities and f. > 300 MHz (9.3.2¢)
E =8.29 log,, (1.54hm)]2 — 1.1 for large cities and fc < 300 MHz (9.3.2f)
E = (1.1logyy fo — 0.7) hyy, — (1.56l0gy f- — 0.8)  for medium to small citi(es )

9.3.2¢

In these expressions, h; is the base station antenna height in m, h,, is the mobile station
antenna height in m, f. is the communication frequency in MHz, R is the distance of
the mobile to the base station in km. This model gives a path loss model with a range
dependency R~ where n = B/10. Typically this number is a little less than 4 and decreases
as the base station height is increased. The model is valid only for 150 MHz < f. < 1500 MHz,
30m < hy, <200m, 1m < h,, < 10m and R > 1km.

9.3.2. COST-231 Hata Model. The Okumura-Hata model for medium to small cities
has been extended to cover the band 1500 MHz < f, < 2000 MHz, [64]. The formula is

Lso (dB) = F + Blog,, R — E+ G (9.3.3)
where

F and B are as defined in (9.3.2) for medium to small cities and

(9.3.5)

o= 0 dB for medium-sized cities and suburban areas
| 3 dB for metropolitan areas

9.3.3. Other Models. There are many other models for median path loss calculations.
We will not discuss these models here since the idea is to give an understanding of the
approach and not the details of the calculations. We will, however, give a small list of more
commonly referred models in the literature. The details of these models can be found, for
example, in [65] and [66].

Among these models we may mention the Walfish model, [67] which is a model that
is based on theoretical calculations. A similar model is the Tkegami model, [68]. Later,
based on extensive measurement campaigns in several European cities, COST-231 Action
came up with an empirical model by combining the formulations of Walfish and Ikegami.

The model, designated by COST-231 Walfish-Tkegami model, is applicable when the urban
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area has buildings of roughly the same heights and separation over the frequency range
800 —2000 MHz, base station height range of 4 — 50 m, mobile station height range of 1 —3m,
and distance range of 20m — 5km. Models for calculation of rooftop diffraction, and flat
edge model which takes the buildings as prismatic structures have also been proposed. The
Longley-Rice model is a path loss (median) prediction model over irregular terrain suitable
for coverage prediction in rural type of environments, and basically covers what has been
discussed in the first six chapters.

9.4. Coverage Calculations

In broadcasting, base station applications and radar, an important thing is to determine
the coverage area of the transmitter, especially in the planning of such systems. The coverage
area is defined as that region for which the received signal strength exceeds a particular
threshold for a particular percentage of time. For example, FCC provides F'(50,50) curves
which gives the estimated field strength exceeded at 50% of the potential receiver locations
for 50% of the time, at a receiving antenna height of 9m. Such curves can be used to obtain
coverage diagrams.

In GSM application determination of the coverage area of a base station is quite im-
portant. Such a calculation is best explained by way of an example. Let us assume that
the threshold signal level is z¢ (dBm) which is determined by the sensitivity of a typical
GSM receiver. For given system parameters such as frequency, antenna heights, gains, and
transmitter power, the median signal level can be written as

w50 (r) dB = A(R) — 10n10g10% (9.4.1)

where R is a reference distance and A (R) is the median signal level at » = R. This means
that the median signal strength follows a =" distance dependence, where n is the path loss
exponent. The term A (R) depends on the system parameters. Let us also assume that the
path loss (in dB) has a log-normal distribution. Then the signal strength is also log-normal
and the signal P at a certain location can be written as

X =a5+07 (9.4.2)

where 7 is a zero mean, unit variance (Gaussian random variable, and o defines the standard
deviation of the signal strength (or equivalently the path loss). The pdf of the signal is then

1 (z — x50)°
p(x) = oo exp [_T] . (9.4.3)

Therefore, at a location a distance r away from the transmitter, the probability that X
exceeds the threshold level zq is given by

P(X > z) = P, (r) = /:p (z) do = % - %erf <%> (9.4.4)

where

erf (z) = % /0 e (9.4.5)
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Since x5 1s a function of r, this probability is also a function of r. Let us consider a circular
area centered about the transmitter with radius R. The fraction of locations that the signal
will exceed the threshold within this area is given by

A, —/ / rdrdgb—RQ/ Py, (r)rdr (9.4.6)

-1 R#/ et (220 ) ar (9.4.7

Let us define a = (w0 — A(R)) /v20 and 8 = (10nlogye) /v/20. The integral can be

evaluated using integration by parts and the result is

1

L LA dr = Ler(a)— - ’ —( + 41 1)2(%4&
R2 ) rer (8% nRO o= 261‘ (8% RQ\/’]_T ) rexp (8% nR .

= 1erf () — %GQ_Q% [1 — erf <1 — Oéﬁ)] (9.4.9)

2
Using this result in (9.4.7) gives

A, = %ll—erf(oz)—l—e%g_l <1_erf<1_o‘ﬁ>>] (9.4.10)
Py, (R) + %e R l1 — erf <1 _ﬁo‘ﬁ >] . (9.4.11)

As a numerical example, assume that 0 = 9 dB, and n = 3. In (9.4.1) if we choose R as
the distance for which A (R) = x50 = o, we have & = 0. Then we get

A = P (R)+ ;el‘z l1 — erf <;>1 (9.4.12)

= P, (R)+ K (B). (9.4.13)

Note that K (3) is always positive. This equation tells us if R is the distance at which z59 =
T, 1.€., hall of the points on the boundary of the circle exceeds the threshold (P, (R) = 1/2),
then the fraction of points with signal strength exceeding the threshold inside the circle will
be greater than 50%. For example if o = 9 dB, and n = 3, we have 8 = 1.024 and A, = 0.72
. So, if half of the points on the circumference of a circle of radius R exceeds the threshold,
72% of the points inside the circle will exceed the threshold.

If we want to determine the radius for which a given percentage of the points inside
the circle will exceed the threshold, we have to solve the problem backwards. Note that 3
depends only on the path loss model parameters o and n. Once these values are given, we
can calculate K () in (9.4.12). Then, since A, is specified, we can determine P, (R) from
which, using (9.4.4), we can find g — z509. For example, let us again assume that n = 3 and
o = 9 dB. Furthermore, with the given frequency, antenna heights, gains, and transmitter
power we calculate A (5km) = —70 dBm. This means that x50 = —70 dBm at a distance of
5km. Suppose also that we want a 90% coverage, i.e., the threshold level must be exceeded
at 90% of the locations. We have

K (8) :i 5 [1—erf <;>1 —0.217
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which gives
Py (R)=0.9 —0.217 = 0.683.

Using (9.4.4) we find o« = —0.337 or z59 = o + 4.285. The typical receiver sensitivity is
—100 dBm, and we set zg to this level. Thus, we need z59 = —95.715 dBm. Using (9.4.1)

we get
T
—95.715 = —70 — 301 —
Oglo 1km

which gives r = 7.2 km.

9.5. Examples

EXAMPLE 38. Considering a frequency of 1.8 GHz, hy, = 20m, h,, = 2m, determine the
path loss at a distance of R = 2km in suburban areas, using Okumura-Hata and COST-251
Hata models.

SOLUTION 38. The validity region of the Okumura-Hata model does not include 1300 MHz.
Stall, with this model we would have

A = 69.55 4 26.161og,, f. — 13.821og,, hy = 136.7,
B = 449 —6.55log;, hy = 36.4,
IAYE
¢ = 2 [log10 <28>1 +54=11.0.
The median path loss s then given as
Lso (dB) = 136.7 4 36.4log,,2 — 11.9 = 135.8 dB.
For the COST-231 Hata model we have
B = 449 —6.55l1og, hy = 36.4,
E = 3.2[log,, (11.75h,)]> — 4.97 = 6.0,
F = 46.34 33.9logy fo — 13.821og o hy = 138.7,
G = 0.
The median path loss is then
Lso (dB) = 138.7 4+ 36.41log,, 2 — 6 = 143.7 dB.

Note that the results of the two models differ by 7.9 dB. Since Okumura-Hata model is not
valid for 1800 MHz, we should use the result of COST-231 Hata model.

ExXAMPLE 39. Determine the median path loss at a frequency of 900 MHz for base station
antenna height of hy, = 40m, mobile station antenna height of h,, = 2m, and a distance of
R = 2km in a large city. How much the result would differ in a medium city?

SOLUTION 39. For these parameters we should use the Okumura-Hata model. We have
= 69.55 + 26.16log,y fo — 13.82log g hy = 124.7,

= 44.9 — 6.55log o hy = 34. 4,

— 3.2[logyo (11.75h,,)]" — 4.97 = 1.0 for large cities,

= (1.1logyy fe — 0.7) hyp — (1.5610g,, fo — 0.8) = 1.3 for medium to small cities.

Sl c RV
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Then the median path loss is

Lso (dB) = 134.0  for large cities,

Lso (dB) = 133.8  for medium to small cities.
The difference is 0.25 dB.

EXAMPLE 40. Suppose that the propagation in a certain region has r—2 dependence with
a log-normal distribution with o =9 dB. For a certain system, the 90% coverage area has a
radius of bkm. If we increase the transmitter power by 10 dB, what will be the radius of the
new 90% coverage area?

SOLUTION 40. From the given values we calculate 5 = 1.024 and K () = 0.217. Using
(9.4.12) we find Py, (R) = A, — K (8) = 0.9 — 0.217 = 0.683. Solving

1 1 —

we find xog— x50 = —1.428 dB. Increasing the transmitter power by 10 dB increases xsg by the
same amount and the new value of xg— 59 becomes —11.428 dB. Since we are again looking
for 90% coverage radius, we must find the new distance Ry for which P, (R;) = 0.683 or
equivalently we must solve

o — Tr0 (Rl) = —1.428.

The propagation model is
r
zso (1) = A (R) — 10nlogy, ik

Increasing the transmitter power increases A (R) by the same amount. That is we need to
solve
5km R

Thus the new 90% coverage radius will be Ry = 10.8km. Note that the previous calculations
are not necessary and only given to explain that the problem is to find the new radius that
will give the same value of xsg. In fact, the only paramelers necessary to solve this problem
is the attenuation model (i.e., the value of n) and the amount of increase in the transmitter
power. Fven the actual value of coverage percentage is not necessary, since the coverage
percentage 18 required to be same in the two cases.

ExamprLE 41. With the parameters of Fxample 40, how much the transmitter power
should be increased to ensure a 99.9% coverage for the same area of radius 5km?

SOLUTION 41. From calculations of Fxample 40, we find Py, for 99.9% coverage to be
Py (R)=A.— K () =0.999 — 0.217 = 0.782.
Solving

1 1 o — Tro
P, (5km)=—-——erf | ———
(olan) = =t (275,2)
we determine xg — Tso = —2.337 18 required. Thus, we need to increase xsg by 2.337 — 1.
428 = 0.909 dB, which is the required increase in the transmilter power.



