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CHAPTER 8Numerical Methods for Propagation CalculationsThe basic problem in propagation calculations is to solve the Maxwell’s equations withsome specified boundary and initial conditions. Basically the problem can be formulated asan integral equation which can be solved by an appropriate numerical method. Althoughsuch a solution is possible in principle, the complexity of the problem is overwhelming. Themain difficulty will be an accurate description of the radio environment which must have asubwavelength accuracy. The second difficulty will be the size of the problem. Assume thatwe want to determine the coverage of a GSM900 base station serving a macrocell of radius1 km. We may take the computational domain as a cylinder of height about 100m which willensure that the upper boundary of the computational domain is sufficiently far away fromany scattering object. If we discretize the volume using cubical grids, the size of the gridshould not exceed a fraction of the wavelength. Let us take the grid size as λ/2, which is thelargest grid size that can be tolerated in a numerical solution. The number of grid pointswill then be approximately πr2h/ (λ/2)3 ≈ 6. 8 × 1010. At each grid point we have threeunknowns corresponding to the components of the electric field which will give 2. 0 × 1011unknowns. With a straightforward numerical method this would require the inversion of 2.0× 1011 by 2. 0× 1011 complex matrix. If we use double precision arithmetic, each entry ofthis matrix will be represented by 16 bytes. The memory required to store this matrix is6. 4 × 1023 bytes or 6. 4 × 1011 Tbytes, a number that exceeds the total storage capacity ofall storage devices available on earth!These calculations show that a direct solution of the vector Maxwell’s equations for prop-agation prediction is practically impossible. The approach is then to use certain simplifyingassumptions which will render the problem tractable. Many different approximations havebeen proposed in the literature. In this chapter, we will discuss only a few approaches thatare more commonly considered in the literature.8.1. Integral Equation MethodsMany different integral equation formulations are possible for the propagation problem,including EFIE, MFIE or mixed formulations. Here we will consider one derivation thatuses the Green’s integral theorem, [54]. We will consider only an elevated vertical electricaldipole over an irregular terrain. Let the vertical component of the electric field be denotedby ψ. Then, assuming a homogeneous atmosphere with unity index of refraction, the fieldψ must satisfy the scalar Helmholtz equation∇2ψ + k20ψ = −Iδ (r) (8.1.1)where I denotes the amplitude of the source. We have chosen a spherical coordinate systemwith origin at the transmitting antenna. At a point P on the surface of the ground, the field133



134 8. NUMERICAL METHODS FOR PROPAGATION CALCULATIONSψ must satisfy the Leontovitch boundary condition∂ψ∂n ∣∣∣∣P = jk0ψ (P )∆ (8.1.2)where ∆ = √(κ − 1)/κ is the normalized surface impedance at point P . Let G (r; r′) be thefree space scalar Green’s function, i.e.,G (r; r′) = e−jk0|r−r′|4π |r− r′| . (8.1.3)Using Green’s second identity we can write∫V (ψ∇2G−G∇2ψ) dV ′ = ∮S (G∂ψ∂n − ψ∂G∂n) dS ′ (8.1.4)where n denotes and outward normal to the surface S bounding the volume V . We choosethe volume V as a hemispherical volume bounded by the ground surface below and a hemi-spherical surface above, excluding a small spherical volume centered the receiver at r. Letr′ denote a point P on the ground.We can consider the surface S as the sum of three surfaces: The ground surface SG, thesmall spherical surface S0 about the receiver, the upper hemisphere S∞ whose radius will betaken as infinitely large. The surface integral over S∞ vanishes due to radiation condition,and the integral over S0 is simply ψ (r). Thus, the surface integral on the right hand side of(8.1.4) becomes∮S (G∂ψ∂n − ψ∂G∂n) dS ′ = ψ (r) + ∫SG (G∂ψ∂n − ψ∂G∂n) dS ′,= ψ (r) + ∫SG (jk0∆ e−jk0|r−r′|4π |r− r′|ψ (r′)− ψ (r′) ∂∂n ( e−jk0|r−r′|4π |r− r′|)) dS ′. (8.1.5)The normal derivative of the Green’s function can be written as∂∂n ( e−jk0|r−r′|4π |r− r′|) = ∂∂ |r− r′| ( e−jk0|r−r′|4π |r− r′|) ∂ |r− r′|∂n , (8.1.6)= −jk0(1 + 1jk0r) e−jk0r4πr ∂ |r− r′|∂n , (8.1.7)and the surface integral becomes∮S (G∂ψ∂n − ψ∂G∂n) dS ′ =ψ (r) + ∫SG jk0 e−jk0|r−r′|4π |r− r′|ψ (r′) [∆+(1 + 1jk0 |r− r′|) ∂ |r− r′|∂n ] dS ′. (8.1.8)Next we consider the volume integral on the left hand side of (8.1.4). Since the Green’sfunction must satisfy the Helmholtz equation, we have∇2G (r; r′) + k20G (r; r′) = −δ (r− r′) (8.1.9)



8.1. INTEGRAL EQUATION METHODS 135which gives ∇2G (r; r′) = −k20G (r; r′) − Iδ (r− r′). But since the point r′ is excluded fromthe volume we can omit the Dirac delta term and write ∇2G (r; r′) = −k20G (r; r′) inside V .Similarly, ∇2ψ can be written from (8.1.1) as∇2ψ (r) = −k20ψ (r)− Iδ (r) . (8.1.10)The volume integral can now be written as∫V (ψ∇2G−G∇2ψ) dV ′ = ∫V G (r; r′) δ (r) dV ′ (8.1.11)= ψ0 (r) (8.1.12)where ψ0 (r) denotes the free space field at the receiver location due to the transmittingantenna which can be written asψ0 (r) = f (r) e−jk0r4πr (8.1.13)where f (r) accounts for the transmitting antenna pattern, and r = |r|. The attenuationfactor is related to the actual field at the receiver, ψ (r) by the relationψ (r) = F (r) e−jk0r4πr . (8.1.14)With these expressions, (8.1.4) becomesψ0 (r) = ψ (r) + ∫SG jk0 e−jk0|r−r′|4π |r− r′|ψ (r′) [∆+(1 + 1jk0 |r− r′|) ∂ |r− r′|∂n ] dS ′.(8.1.15)Using (8.1.13) and (8.1.14) in (8.1.15) yieldsF (r) = f (r)− jk04π ∫SG F (r′) exp [−jk0 (|r− r′|+ r′ − r)]×r|r− r′| r′ [∆+(1 + 1jk0 |r− r′|) ∂ |r− r′|∂n ] dS ′. (8.1.16)This equation is the desired integral equation in the unknown attenuation function F (r).However, the integration over SG is a double integral which increases the size of the problem.Furthermore, the integrand is very oscillatory due to the exp [−jk0 (|r− r′|+ r′ − r)] term.The oscillatory term suggests that a stationary phase approximation is suitable. Projectingthe integration over the earth’s surface onto a horizontal plane and introducing ellipticalcoordinates with foci at the transmitter and the receiver, the method of stationary phaseenables us to reduce the two-dimensional to a one dimensional integral along the line joiningthe transmitter to the receiver. Details of this procedure is explained in [54]. Since thedistances of interest are typically much larger than the wavelength, the term 1/jk0 |r− r′|



136 8. NUMERICAL METHODS FOR PROPAGATION CALCULATIONScan also be neglected. Finally, the integral equation becomesF (x) = f (x)−√jxλ ∫ x0 F (u) exp [−jk0 (|r− r′|+ r′ − r)]×(∆(u) + d |r− r′|dn ) du√u (x− u) . (8.1.17)A numerical solution can be carried out by using the method of moments.8.2. Parabolic EquationThe wave equation is a hyperbolic equation which is generally hard to solve by numericaltechniques. The parabolic equation is an approximation to the wave equation which uses apreferred direction of motion and models the energy propagated in a cone centered aboutthe propagation direction, which is called the paraxial direction. It was first introduced inthe 1940’s, [55], to solve the problem of radio wave propagation around the earth.8.2.1. Derivation of the Parabolic Equation. Consider a plane wave propagating inthe z-direction which is chosen to be along the surface of the earth. We will use a cylindricalcoordinate system (z, φ, x) where z is the distance from the cylindrical axis. Let ψ be anelectromagnetic field component (Eφ or Hφ) which must satisfy the scalar wave equation inthree dimensions, i.e.,∇2ψ + k20n2ψ = 0 (8.2.1)where k0 is the wavenumber in free space and n is the refractive index of the medium whichis a function of position in general. We first use the earth flattening formulation which allowsus to represent the wave equation in cylindrical coordinates with a modified refractive indexm (x, z,φ) = n (x, z,φ) + za. (8.2.2)The wave equation in cylindrical coordinates is then1z ∂∂z (z∂ψ∂z)+ 1z2 ∂2ψ∂φ2 + ∂2ψ∂x2 + k20m2 (x, z)ψ = 0. (8.2.3)If we assume that the field is independent of the angle φ (which is generally a good assumptionif the transmitting antenna has a pattern that is symmetrical about its main beam) we canwrite ∂2ψ∂z2 + ∂2ψ∂x2 + 1x ∂ψ∂x + k20m2 (x, z)ψ = 0. (8.2.4)The unusual choice of coordinate variables is now apparent. The x variable denotes therange and the z variable is height above the earth’s surface.The wave equation in free space has the outgoing solution H(2)0 (kx) which has an asymp-totic expansionH(2)0 (kx) ∼√ 2πkxejπ/4e−jkx. (8.2.5)



8.2. PARABOLIC EQUATION 137Therefore we may assume a solution of the formψ (x, z) = e−jk0x√x u (x, z) . (8.2.6)The rapid phase variation and the expected 1/√x of ψ (x, z) are thus separated from thefunction u (x, z) and therefore it varies slowly in the propagation direction x.Using (8.2.6) in (8.2.4) yields∂2u (x, z)∂z2 + ∂2u (x, z)∂x2 −2jk0∂u (x, z)∂x +k20 (m2 − 1 + 1(2k0x)2)u (x, z) = 0. (8.2.7)As far as we are interested in the fields at points far away from the transmitter, we havek0x ≫ 1 and we can drop the 1/ (2k0x)2 term. Furthermore, the slow variation of thefunction u (x, z) implies∣∣∣∣∂2u (x, z)∂x2 ∣∣∣∣≪ 2k0 ∣∣∣∣∂u (x, z)∂x ∣∣∣∣ (8.2.8)and we can drop the second derivative in x. These assumptions reduce (8.2.7) to∂2u (x, z)∂z2 − 2jk0∂u (x, z)∂x + k20 (m2 − 1)u (x, z) = 0 (8.2.9)which is a parabolic equation since only the first derivative in x appears. This final equationis known as the parabolic equation (PE) for electromagnetic waves.The two basic assumptions we have made in deriving the PE are(1) The field point is many wavelengths away from the source,(2) The change in ∂u/∂x is small over a wavelength.The first condition is not a restriction for propagation calculations. The second condi-tion is generally satisfied for realistic refractive index profiles and within 15 to 20 ◦ abovehorizontal. Modification to the PE to allow the high angle limit is possible, but is muchmore complex and will be omitted in this discussion.8.2.2. Solutions of the PE. The numerical solution of the PE is much easier thanthe original Maxwell’s equations, which is hyperbolic in nature. The solution of the exactequation requires the specification of the boundary conditions on the boundaries of thetwo dimensional computational region. The parabolic equation on the other hand is anopen boundary problem which can be solved by a “marching” technique. That is, the fieldvariation on at a point x+∆x can be determined from a knowledge of the field variation ona constant x surface.8.2.2.1. Finite Difference Solution. Let us assume that the computational domain is dis-cretized as shown in Fig. 8.1. The discretization steps in x and z directions are ∆x and ∆z,respectively. We use the notationup,q = u (p∆x, q∆z)



138 8. NUMERICAL METHODS FOR PROPAGATION CALCULATIONSwhere p and q are integers. Using central difference formula for the second derivative in zand forward difference formula for the derivative in x we getu (x, z +∆z)− 2u (x, z) + u (x, z −∆z)(∆z)2− 2jk0u (x+∆x, z)− u (x, z)∆x + k20 (m2 (x, z)− 1)u (x, z) = 0, (8.2.10)or up,q+1 − 2up,q + up,q−1(∆z)2 − 2jk0up+1,q − up,q∆x + k20 (m2p,q − 1)up,q = 0which can be solved for up+1,q asup+1,q = up,q+ ∆x2jk0 (∆z)2 (up,q+1 − 2up,q + up,q−1)+ (∆x) k20 (m2p,q − 1)2jk0 up,q. (8.2.11)Note that this expression is fully explicit, meaning that the values of u (x+∆x, z) areexpressed in terms of u (x, z). We only need to know the value of u (x, z) at x = 0 whichis an initial condition, and at z = 0 and z = zmax which are boundary conditions on theearth’s surface and at the upper boundary of the computational domain. If we try to solvea hyperbolic differential equation, we also need the boundary condition at x = xmax, i.e., atthe right end of the computational domain.
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F����� 8.1. Solution domain for a two dimensional computational region.8.2.2.2. Split Step Algorithm. The parabolic equation (8.2.9) can be written as∂u (x, z)∂x = −j ( 12k0 ∂2∂z2 + k02 (m2 (x, z)− 1))u (x, z) . (8.2.12)



8.2. PARABOLIC EQUATION 139To explain the split step algorithm, let us first assume that the refractive index is a constant.Defining the operatorsA = 12k0 ∂2∂z2 , (8.2.13)B = k02 (m2 − 1) (8.2.14)we can write (8.2.12) formally as∂u (x, z)∂x = −j (A+ B)u (x, z) (8.2.15)and integrate over x to obtainu (x+∆x, z) = e−j∆x(A+B)u (x, z) . (8.2.16)This result express the field at x+∆x in terms of the field at x. We now want to split theexponential operator. The simplest split isS = e−j∆xBe−j∆xA. (8.2.17)Such a splitting is possible only if the operators A and B commute. In the general case ofvariable refractive index this is not true sinceABu = 14 ∂2∂z2 (m2 − 1)u �= 14 (m2 − 1) ∂2u∂z2 = BAu. (8.2.18)However, when m is constant the operators commute. Taking the Fourier transform of(8.2.16) in the z variable and defining the Fourier variable in z as p we getU (x+∆x, p) = e−j∆xBe−j∆xAU (x, p) . (8.2.19)Then the inverse Fourier transform givesu (x+∆x, z) = exp(−jk0∆x (m2 − 1)2 )F−1{exp(j∆xp22k0 )F {u (x, z)}}(8.2.20)which marches the solution forward from x to x+∆x.Let us define the commutator[A,B] = AB − BA (8.2.21)From the definition of the operators we have[A,B]u = 14 ∂2 (m2 − 1)u∂z2 − 14 (m2 − 1) ∂2u∂z2 (8.2.22)= 14u∂2m2∂z2 + 12 ∂m2∂z ∂u∂z . (8.2.23)Thus, if the variations of the refractive index with height are relatively slow, the errorincurred by splitting the exponential remains small.The error introduced due to variations of refractive index with range can be understoodby consideringE = e−j∆xBe−j∆xAu− e−j∆x(A+B)u. (8.2.24)



140 8. NUMERICAL METHODS FOR PROPAGATION CALCULATIONSExpanding the exponentials into Taylor series givesE = 12∆x2 [A,B]u+ hot (8.2.25)which shows that the error is of second order in the range step. These discussions showthat if the index of refraction varies slowly with height and range (which is usually the casein the atmosphere) we can use (8.2.20) with a high degree of accuracy. The error in theseapproximations can be shown to be, [56],∆x[−jk0mu∂m∂x +m∂m∂z ∂u∂z + mu2 ∂2m∂z2 + u2 (∂m∂z )2]+O [(∆x)2] . (8.2.26)This result shows that the error depends on the step size ∆x, frequency and the variation ofthe refractive index. By decreasing the step size, the error can be made as small as desired.The algorithm described by (8.2.20) is known as the split-step algorithm. In numericalimplementation, the Fourier transforms are evaluated as discrete Fourier sums and imple-mented using the FFT algorithm. In approximating the Fourier transform by a DFT, caremust be exercised to prevent aliasing. For a given FFT size, there is a maximum height in zand k0 sin θ (p) that can be represented without aliasing. There is a limit to the maximumangle of propagation which will be smaller for higher frequencies. This limit is not funda-mental and can be overcome by using different splitting of the exponential operator. Wideangle PE algorithms have been proposed in the literature, [57, 58].We have discussed a 2-D PE algorithm which assumes symmetry in the azimuthal di-rection. In practical problems, the terrain has variation in the transverse direction. A 3-Dversion of PE is also possible, [59], but will not be discussed here.8.2.3. Initial Field and the Boundary Conditions. For the finite difference andthe split-step Fourier algorithms, one needs the initial field u (0, z) to start the solutionprocedure. The x = 0 boundary is chosen sufficiently far away from the transmitter and theinitial field is taken as the far field antenna pattern. Typically a Gaussian pattern is chosenas a simplifying approximation. However, any pattern can be defined either analytically ornumerically, provided that the beam width satisfies the maximum angle constraint for thefrequency and FFT size chosen.To propagate the solution in the x direction, one also needs the boundary conditions atthe upper (z = zmax) and the lower (z = 0) surfaces. At the upper boundary, the field shouldnot be reflected back into the computational domain and energy should not leak from theupper boundary to the lower boundary due to the circular nature of the FFT. One way toimplement this is to chose the upper boundary sufficiently high so that the fields arriving atthis surface is negligible. Another, and numerically more efficient way is to use an absorbingboundary condition at the upper boundary. Applying a windowed FFT algorithm to thedata in the z direction accomplishes the same task.If propagation over a plane earth is considered, the boundary condition at the lowerboundary is simply defined by the electrical properties of the ground. This applies to mixedsmooth earth problems. The boundary condition can also be applied by using image theory.The computational domain is doubled in the z direction about the z = 0 plane and thecomputations are carried out from −zmax to z. For each component in the plane wavespectrum of the source, an image is formed by multiplying the source amplitude by the



8.2. PARABOLIC EQUATION 141Fresnel reflection coefficient corresponding to its angle and the electrical parameters of theground. Surface roughness can be taken into account in the calculation of the reflectioncoefficient. The total field due to source and image are then propagated in the x direction.This would be true if |F | ≈ 1, since adding the two fields ignores the energy leakage intoground.When the terrain is not flat, the finite difference solution is applicable in a straightforwardmanner. However, the split-step FFT algorithm is computationally much more efficient. Thebasic idea in applying split-step FFT for irregular terrains is to apply a conformal mappingthat transforms the irregular terrain into a flat one. This approach is first presented in [60],and applied to tropospheric propagation in [61].We define a new variable asζ = z − t (x) (8.2.27)where t (x) describes the actual terrain above the earth’s surface. We then define the functionu (x, z) in terms of this new variable asu (x, z) = U (x, ζ) e−jθ(x,ζ). (8.2.28)Substituting (8.2.28) into (8.2.9) and applying the chain rule yields∂2U∂ζ2 − 2j(∂θ∂ζ + k0 ∂ζ∂x) ∂U∂ζ − 2jk0∂U∂x+ [k20 (m2 − 1)− 2k0 ∂θ∂x − 2k0∂θ∂ζ ∂ζ∂x − j ∂2θ∂ζ2 −(∂θ∂ζ)2]U = 0 (8.2.29)where we have omitted the arguments of the functions for brevity. If this equation can beput into the same form as (8.2.9), the split-step FFT algorithm can be applied. To this endwe impose the condition∂θ∂ζ + k0 ∂ζ∂x = 0 (8.2.30)which restricts the function θ to have a certain form. Since∂ζ∂x = −t′ (x) (8.2.31)we can write∂θ∂ζ = k0t′ (x) . (8.2.32)Therefor, θ (x, ζ) must have the formθ (x, ζ) = ζk0t′ (x) + g (x) (8.2.33)where g (ζ) is an arbitrary function as yet. We can now write (8.2.29) as∂2U∂ζ2 − 2jk0∂U∂x + [k20 (m2 − 1)− 2k20ζt′′ (x)− 2k0∂g (x)∂x + (k0t′ (x))2]U = 0.(8.2.34)



142 8. NUMERICAL METHODS FOR PROPAGATION CALCULATIONSA further simplification is achieved if we choose∂g (x)∂x = k02 (t′ (x))2and finally we can recast (8.2.34) as∂2U∂ζ2 − 2jk0∂U∂x + k20 [(m2 − 1)− 2ζt′′ (x)]U = 0. (8.2.35)This equation has the same form as (8.2.9) and the split-step algorithm can be applied tothis equation. The solution will now becomeU (x+∆x, ζ) = exp(−jk0∆x (m2 (ζ + t (x))− 1 − 2ζt′′ (x))2 )F−1{exp(j∆xp22k0 )F {U (x, ζ)}} . (8.2.36)Obviously, m must be expressed in the new coordinates.8.2.4. Some Result. In this section we will discuss some results obtained by using thePE equation, [4]. Fig. 8.2 shows the solution for a smooth spherical earth. The upwardbending of the rays are due to mapping the earth surface on a plane. The bottom graphshows the field intensity at a constant height as a function of range. The interference patterncan easily be observed.Figure 8.3 shows the propagation over a pyramidal hill. Edge diffraction effect can beobserved.As a last example, propagation over mixed flat earth is shown in Fig. 8.4. The geometrymodels a smooth region characterizing a sea-land-sea path. The bottom graph shows the fieldintensity at a constant height as a function of range. The recovery effect can be observed.



8.2. PARABOLIC EQUATION 143

F����� 8.2. PE solution over a smmoth spherical earth with constant refrac-tivity, [4].
F����� 8.3. Pyramidal hill with (a) staircase approximation and (b) confor-mal mapping, [4]
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F����� 8.4. Propagation over mixed flat earth, [4].


