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CHAPTER 8

Numerical Methods for Propagation Calculations

The basic problem in propagation calculations is to solve the Maxwell’s equations with
some specified boundary and initial conditions. Basically the problem can be formulated as
an integral equation which can be solved by an appropriate numerical method. Although
such a solution is possible in principle, the complexity of the problem is overwhelming. The
main difficulty will be an accurate description of the radio environment which must have a
subwavelength accuracy. The second difficulty will be the size of the problem. Assume that
we want to determine the coverage of a GSM900 base station serving a macrocell of radius
1km. We may take the computational domain as a cylinder of height about 100 m which will
ensure that the upper boundary of the computational domain is sufficiently far away from
any scattering object. If we discretize the volume using cubical grids, the size of the grid
should not exceed a fraction of the wavelength. Let us take the grid size as A/2, which is the
largest grid size that can be tolerated in a numerical solution. The number of grid points
will then be approximately 7r?h/ (\/ 2)3 ~ 6.8 x 101 At each grid point we have three
unknowns corresponding to the components of the electric field which will give 2.0 x 104
unknowns. With a straightforward numerical method this would require the inversion of 2.
0 x 10! by 2.0 x 10 complex matrix. If we use double precision arithmetic, each entry of
this matrix will be represented by 16 bytes. The memory required to store this matrix is
6.4 x 10%® bytes or 6.4 x 10! Thytes, a number that exceeds the total storage capacity of
all storage devices available on earth!

These calculations show that a direct solution of the vector Maxwell’s equations for prop-
agation prediction is practically impossible. The approach is then to use certain simplifying
assumptions which will render the problem tractable. Many different approximations have
been proposed in the literature. In this chapter, we will discuss only a few approaches that
are more commonly considered in the literature.

8.1. Integral Equation Methods

Many different integral equation formulations are possible for the propagation problem,
including EFTE, MFIE or mixed formulations. Here we will consider one derivation that
uses the Green’s integral theorem, [54]. We will consider only an elevated vertical electrical
dipole over an irregular terrain. Let the vertical component of the electric field be denoted
by 1. Then, assuming a homogeneous atmosphere with unity index of refraction, the field
1 must satisfy the scalar Helmholtz equation

V2% 4 kiyp = =10 () (8.1.1)

where I denotes the amplitude of the source. We have chosen a spherical coordinate system
with origin at the transmitting antenna. At a point P on the surface of the ground, the field
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1 must satisty the Leontovitch boundary condition

v
—| =jkovv(P)A 8.1.2
on|, Jkot (P) ( )
where A = /(k — 1)/k is the normalized surface impedance at point P. Let G (r;1’) be the
free space scalar Green’s function, i.e.,
efjkzg\rfr’\

G(rr)= ——— (8.1.3)

Cdrir—r|

Using Green’s second identity we can write
/ (VV°G — GV*y) dV' = j’{ <Ga—¢ — ¢%> s’ (8.1.4)
v 5 on on

where n denotes and outward normal to the surface S bounding the volume V. We choose
the volume V' as a hemispherical volume bounded by the ground surface below and a hemi-
spherical surface above, excluding a small spherical volume centered the receiver at r. Let
r’ denote a point P on the ground.

We can consider the surface S as the sum of three surfaces: The ground surface Sg, the
small spherical surface Sy about the receiver, the upper hemisphere S, whose radius will be
taken as infinitely large. The surface integral over S, vanishes due to radiation condition,
and the integral over Sy is simply 1 (r). Thus, the surface integral on the right hand side of
(8.1.4) becomes

o aaGN ., R CA
j1£<Gan—wan>dS—w(r)+/SG<Gan ¢8n>ds,

— 4 (r) + /SG <jk0A6jk0rr/ () — o () ;n <€jk0”/ >> ds'. (8.1.5)

47 |r — 1| 47 |r — 1|

The normal derivative of the Green’s function can be written as

0 [ e Ikolr=r 9, e IRl =TI\ 9| — 1|
— = 1
an <47T]r—r’]> J|r —r'| <47T]r—r’]> on (8.1.6)
, 1\ e 9r—r|
= —Jko (1 8.1.7
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and the surface integral becomes

oy OGN .,
é(c:%_%_n)ds_
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Next we consider the volume integral on the left hand side of (8.1.4). Since the Green’s
function must satisfy the Helmholtz equation, we have

V2G (r;7)) + k2G (1)) = =6 (r — 1) (8.1.9)

1 ds'. (3.1.8)
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which gives V2G (r;1') = —k2G (r;1') — 15 (v — r'). But since the point 1’ is excluded from
the volume we can omit the Dirac delta term and write V2@ (r;1') = —k2G (r;7') inside V.
Similarly, V? can be written from (8.1.1) as

V% (r) = =k (r) — 10 (r). (8.1.10)

The volume integral can now be written as

/(vaG—GV%) dV’:/G(r; )8 (r)dV’ (8.1.11)

v

= 4y (1) (8.1.12)

where 1 (r) denotes the free space ficld at the receiver location due to the transmitting
antenna which can be written as

e Jkor
vol) = (1) (8113)
where f (r) accounts for the transmitting antenna pattern, and » = |r|. The attenuation
factor is related to the actual field at the receiver, ¢ (r) by the relation
e Jkor
Y (r) = F(r) py— (8.1.14)

With these expressions, (8.1.4) becomes

—jkolr—r'| Ilr —r
dole) =)+ [ g ) [k (1 ) P s

47 |r — 1| Jko|r — 1|

(8.1.15)

Using (8.1.13) and (8.1.14) in (8.1.15) yields

_ Ik

)= m)-Lt
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This equation is the desired integral equation in the unknown attenuation function F (r).
However, the integration over Sg is a double integral which increases the size of the problem.
Furthermore, the integrand is very oscillatory due to the exp [—jko (Jr — 1| + 7/ — r)] term.
The oscillatory term suggests that a stationary phase approximation is suitable. Projecting
the integration over the earth’s surface onto a horizontal plane and introducing elliptical
coordinates with foci at the transmitter and the receiver, the method of stationary phase
enables us to reduce the two-dimensional to a one dimensional integral along the line joining
the transmitter to the receiver. Details of this procedure is explained in [54]. Since the
distances of interest are typically much larger than the wavelength, the term 1/jkg|r — 1|
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can also be neglected. Finally, the integral equation becomes

P () \/7“"/ ) exp [—jko (Jr — v] + 1/ — )] %

<A(u)+d’rd;r/’> ud“ . (8.1.17)

(z —u)

A numerical solution can be carried out by using the method of moments.

8.2. Parabolic Equation

The wave equation is a hyperbolic equation which is generally hard to solve by numerical
techniques. The parabolic equation is an approximation to the wave equation which uses a
preferred direction of motion and models the energy propagated in a cone centered about
the propagation direction, which is called the paraxial direction. It was first introduced in
the 1940’s, [55], to solve the problem of radio wave propagation around the earth.

8.2.1. Derivation of the Parabolic Equation. Consider a plane wave propagating in
the z-direction which is chosen to be along the surface of the earth. We will use a cylindrical
coordinate system (z, ¢, z) where z is the distance from the cylindrical axis. Let ¢ be an
electromagnetic field component (Ey4 or H,) which must satisfy the scalar wave equation in
three dimensions, i.e.,

V) 4 kgn* = 0 (8.2.1)

where kg is the wavenumber in free space and n is the refractive index of the medium which
is a function of position in general. We first use the earth flattening formulation which allows
us to represent the wave equation in cylindrical coordinates with a modified refractive index

m(x,z,¢) =n(z,z,¢) + 2' (8.2.2)

The wave equation in cylindrical coordinates is then

10 oY 0% 0% 9 B
;$< 82’>+228¢2 —I———I—/C > (z,2) = 0. (8.2.3)

If we assume that the field is independent of the angle ¢ (which is generally a good assumption
if the transmitting antenna has a pattern that is symmetrical about its main beam) we can
write

Py Py 10U,

9.2 T o2 —I— . + kim? (2, 2) ¢ = 0. (8.2.4)
The unusual choice of coordinate variables is now apparent. The z variable denotes the
range and the z variable is height above the earth’s surface.

The wave equation in free space has the outgoing solution HéQ) (kz) which has an asymp-

totic expansion

2 . .
H (k) ~ \ e e (3.2.5)
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Therefore we may assume a solution of the form

67jk;0:c
U (z,z) = WU (z,2). (8.2.6)
The rapid phase variation and the expected 1/y/z of ¥ (x,2) are thus separated from the
function u (z, z) and therefore it varies slowly in the propagation direction .

Using (8.2.6) in (8.2.4) yields

du (z, z)
Ox

0?u (x,2) N 0?u(x, 2)

072 or2 27ko

+ kg <m2 —1+ m> w(z,z) =0. (8.2.7)

As far as we are interested in the fields at points far away from the transmitter, we have
kox > 1 and we can drop the 1/ (2/€0x)2 term. Furthermore, the slow variation of the
function u (z, z) implies

O*u (z,2) du (z, z)

‘ Jx? < SR Jx (8.2.8)
and we can drop the second derivative in . These assumptions reduce (8.2.7) to

0?u (x,2) L Ou(x,2)

oz 2]k08= + k2 <m2 — 1) u(z,z)=0 (8.2.9)

which is a parabolic equation since only the first derivative in x appears. This final equation
is known as the parabolic equation (PE) for electromagnetic waves.
The two basic assumptions we have made in deriving the PE are

(1) The field point is many wavelengths away from the source,
(2) The change in Ju/0x is small over a wavelength.

The first condition is not a restriction for propagation calculations. The second condi-
tion is generally satisfied for realistic refractive index profiles and within 15 to 20° above
horizontal. Modification to the PE to allow the high angle limit is possible, but is much
more complex and will be omitted in this discussion.

8.2.2. Solutions of the PE. The numerical solution of the PFE is much easier than
the original Maxwell’s equations, which is hyperbolic in nature. The solution of the exact
equation requires the specification of the boundary conditions on the boundaries of the
two dimensional computational region. The parabolic equation on the other hand is an
open boundary problem which can be solved by a “marching” technique. That is, the field
variation on at a point x + Az can be determined from a knowledge of the field variation on
a constant x surface.

8.2.2.1. Finite Difference Solution. Let us assume that the computational domain is dis-
cretized as shown in Fig. 8.1. The discretization steps in z and z directions are Az and Az,
respectively. We use the notation

Upg = U (pAzx,qAz)
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where p and ¢ are integers. Using central difference formula for the second derivative in z
and forward difference formula for the derivative in x we get

u(z,z+ Az) —2u(z,z) +u(z,z — Az)
TSk
u(z 4+ Az, z) —u(x, 2)
Az

— 2jko + ki (m* (z,2) — 1) u(z,2) =0, (8.2.10)

or

U — 2Up g + Up g U —u
p,q+1 D,q p,q—1 . p+1,q D,q 2 2 _
— 25k + kg (mp’q — 1) Upq =0

(Az)2 Ax

which can be solved for u, 14 as

Ax (Az) kg (m2,—1)
= _9 - X
pa T %k (AZ)Q (Up,qﬂ Upg+ Upg 1)+ 2iko

Upq- (8.2.11)

Upt1,q = U

Note that this expression is fully explicit, meaning that the values of w(x + Az, z) are
expressed in terms of u (z,z). We only need to know the value of u (x,z) at = 0 which
is an initial condition, and at z = 0 and 2 = zpa.x Which are boundary conditions on the
earth’s surface and at the upper boundary of the computational domain. If we try to solve
a hyperbolic differential equation, we also need the boundary condition at z = x .y, 1.e., at
the right end of the computational domain.

2= Zopey

1] *—>@
x U / Uit
@
Ui
<« z=0

FicurEe 8.1. Solution domain for a two dimensional computational region.

8.2.2.2. Split Step Algorithm. The parabolic equation (8.2.9) can be written as

du(z,2) _ <L8_2 Fo 2 (

Oz ko022 2 z,%) = 1)> u(z,2). (8.2.12)
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To explain the split step algorithm, let us first assume that the refractive index is a constant.
Defining the operators

1 02
= 2.1
A 2]60 822’ (8 3>
ko
=5 (m”—1) (8.2.14)
we can write (8.2.12) formally as
)
% = —j(A+B)u(z,2) (8.2.15)
and integrate over = to obtain
w(z 4 Az, z) = e 8By (g2 (8.2.16)

This result express the field at x + Az in terms of the field at . We now want to split the
exponential operator. The simplest split is

S = e 8eBeinTA (8.2.17)

Such a splitting is possible only if the operators A and B commute. In the general case of
variable refractive index this is not true since

162 1 0%u
ABu= o (m>—=1)u# h (m”—1) 52 = BAu. (8.2.18)

However, when m is constant the operators commute. Taking the Fourier transform of
(8.2.16) in the z variable and defining the Fourier variable in z as p we get

U (z + Az, p) = e 8B I8AL] (1 p) . (8.2.19)

Then the inverse Fourier transform gives

u(z+ Az, z) = exp <_j’“°m" (m” = 1>> P {eXp <ijp2> Fu (w)}}

2 2ko
(8.2.20)
which marches the solution forward from z to z + Ax.
Let us define the commutator
[A,B] = AB — BA (8.2.21)
From the definition of the operators we have
19?2 (m?> —Du 1 0*u
Blu=-——_"""_ " (m?—1)=— .2.22
A, Blu 4 022 4 (m ) 022 (8 )
1 ?m? 19m?dou
= - — — 2.2
4u 072 * 2 0z Oz (8.2.23)

Thus, if the variations of the refractive index with height are relatively slow, the error
incurred by splitting the exponential remains small.

The error introduced due to variations of refractive index with range can be understood
by considering

B = ¢ iAwBeridaldy  omife(ALE), (8.2.24)



140 8. NUMERICAL METHODS FOR PROPAGATION CALCULATIONS
Expanding the exponentials into Taylor series gives
1
E= §A$2 [A, Bl u + hot (8.2.25)

which shows that the error is of second order in the range step. These discussions show
that if the index of refraction varies slowly with height and range (which is usually the case
in the atmosphere) we can use (8.2.20) with a high degree of accuracy. The error in these
approximations can be shown to be, [56],

om omou  mud®m u<8m>2

5. ) | +0 [(Az)?]. (8.2.26)

Ax | —9k — —_— =
v jomu@x_l_m@z@z_l_ 2 822+2

This result shows that the error depends on the step size Ax, frequency and the variation of
the refractive index. By decreasing the step size, the error can be made as small as desired.

The algorithm described by (8.2.20) is known as the split-step algorithm. In numerical
implementation, the Fourier transforms are evaluated as discrete Fourier sums and imple-
mented using the FFT algorithm. In approximating the Fourier transform by a DF'T, care
must be exercised to prevent aliasing. For a given FF'T size, there is a maximum height in z
and kosin@ (p) that can be represented without aliasing. There is a limit to the maximum
angle of propagation which will be smaller for higher frequencies. This limit is not funda-
mental and can be overcome by using different splitting of the exponential operator. Wide
angle PE algorithms have been proposed in the literature, [57, 58].

We have discussed a 2-D PE algorithm which assumes symmetry in the azimuthal di-
rection. In practical problems, the terrain has variation in the transverse direction. A 3-D
version of PE is also possible, [59], but will not be discussed here.

8.2.3. Initial Field and the Boundary Conditions. For the finite difference and
the split-step Fourier algorithms, one needs the initial field « (0, z) to start the solution
procedure. The z = 0 boundary is chosen sufficiently far away from the transmitter and the
initial field is taken as the far field antenna pattern. Typically a GGaussian pattern is chosen
as a simplifying approximation. However, any pattern can be defined either analytically or
numerically, provided that the beam width satisfies the maximum angle constraint for the
frequency and FE'T size chosen.

To propagate the solution in the x direction, one also needs the boundary conditions at
the upper (z = Zmax) and the lower (z = 0) surfaces. At the upper boundary, the field should
not be reflected back into the computational domain and energy should not leak from the
upper boundary to the lower boundary due to the circular nature of the FFT. One way to
implement this is to chose the upper boundary sufficiently high so that the fields arriving at
this surface is negligible. Another, and numerically more efficient way is to use an absorbing
boundary condition at the upper boundary. Applying a windowed FFT algorithm to the
data in the z direction accomplishes the same task.

If propagation over a plane earth is considered, the boundary condition at the lower
boundary is simply defined by the electrical properties of the ground. This applies to mixed
smooth earth problems. The boundary condition can also be applied by using image theory.
The computational domain is doubled in the z direction about the z = 0 plane and the
computations are carried out from —z,., to z. For each component in the plane wave
spectrum of the source, an image is formed by multiplying the source amplitude by the
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Fresnel reflection coefficient corresponding to its angle and the electrical parameters of the
ground. Surface roughness can be taken into account in the calculation of the reflection
coeflicient. The total field due to source and image are then propagated in the x direction.
This would be true if |F| & 1, since adding the two fields ignores the energy leakage into
ground.

When the terrain is not flat, the finite difference solution is applicable in a straightforward
manner. However, the split-step FF'T' algorithm is computationally much more efficient. The
basic idea in applying split-step FE'T for irregular terrains is to apply a conformal mapping
that transforms the irregular terrain into a flat one. This approach is first presented in [60],
and applied to tropospheric propagation in [61].

We define a new variable as

(=z—1t(x) (8.2.27)

where (:I:) describes the actual terrain above the earth’s surface. We then define the function
u(x, z) in terms of this new variable as

w(z,z) = U (x,¢)e 0@, (8.2.28)
Substituting (8.2.28) into (8.2.9) and applying the chain rule yields

92U o0 ac\ oU ou
S =2 ke ) o — 25k
ac ‘7<8C+08x> gc 2Ry,
o0 o09¢ 9% [0\
2 (m?=1) — 2o —2ko—r o> — oo — = 2.2
+ | kg (m” —1) 0, “acar o <8C> U=0 (82.29)

where we have omitted the arguments of the functions for brevity. If this equation can be
put into the same form as (8.2.9), the split-step FFT algorithm can be applied. To this end
we impose the condition

a0 ¢
% + koz -0 (8.2.30)

which restricts the function 0 to have a certain form. Since

a¢ :
=t (v) (8.2.31)

we can write

g—z kot (x). (82.32)

Therefor, 0 (z, () must have the form
0(2.0) = Chot' () + g () (32.33)

where ¢ (¢) is an arbitrary function as yet. We can now write (8.2.29) as

o oU ., g ( ,

(3.2.34)
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A further simplification is achieved if we choose

8g<$) kO / 2
9 2 (t' (=)

and finally we can recast (8.2.34) as

02U L oU

i 2jko— + kg [(m” —1) —2¢t" (z)] U = 0. (8.2.35)
This equation has the same form as (8.2.9) and the split-step algorithm can be applied to
this equation. The solution will now become

—jkolAz (m? (¢ + 1 (z)) — 1 — 21" <w>>>

(
2
Jo! {exp <j§:52> F{U(x,g)}}. (8.2.36)

Obviously, m must be expressed in the new coordinates.

U(z+ Az, () :exp<

8.2.4. Some Result. In this section we will discuss some results obtained by using the
PE equation, [4]. Fig. 8.2 shows the solution for a smooth spherical earth. The upward
bending of the rays are due to mapping the earth surface on a plane. The bottom graph
shows the field intensity at a constant height as a function of range. The interference pattern
can easily be observed.

Figure 8.3 shows the propagation over a pyramidal hill. Edge diffraction effect can be
observed.

As a last example, propagation over mixed flat earth is shown in Fig. 8.4. The geometry
models a smooth region characterizing a sea-land-sea path. The bottom graph shows the field
intensity at a constant height as a function of range. The recovery effect can be observed.
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FicUrE 8.2. PE solution over a smmoth spherical earth with constant refrac-
tivity, [4].
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F1GURE 8.3. Pyramidal hill with (a) staircase approximation and (b) confor-
mal mapping, [4]
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FIGURE 8.4. Propagation over mixed flat earth, [4].



