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CHAPTER 5

Propagation over Earth (Ground Wave)

The calculation of the propagation factor over a earth is rather involved. There are
several methods for the calculation of the propagation factor, some of which require intensive
calculations. These methods are discussed in detail in Chapters (3) and (4). In this chapter
we will discuss the regions of validity of different methods and, compare their advantages
and disadvantages.

For propagation calculations, the region around a transmitting antenna is divided into
three regions. In the first region, the direct and reflected waves are the main contributors to
the total field. The total field is determined by their interference. Therefore, this region is
therefore called the interference region. The third region is the region where the observation
point lies below the line-of-sight horizon of the transmitter. The field in this region is due
to diffraction of the waves and therefore it is called the diffraction region. In the region
between the two, the field calculations are based on a full-wave integral and is called the
intermediate region. The procedures for the calculation of the propagation factor is different
in each region and will be detailed in the following sections.

There is no general rule based on analytical derivations for determining the validity of the
computation methods as a function of distance. Therefore, the boundaries of these regions
are not clearly defined. However, in the literature a generally accepted rule of thumb is to
define the interference region as the region that extends from the transmitter up to 0.8Rh,
where Rh is the total horizon distance. The diffraction region starts at 1.2Rh, and the rest
is the intermediate region. This definition ignores the heights of the transmitting and the
receiving antenna. To overcome this problem, some authors define the interference region as
the region for which the interference equations are valid, but this description does not answer
the question. A more general description should use two dimensional regions as shown in
Fig. 5.1. However, the borders of the regions fail to have clear-cut definitions. Nonetheless,
we will try to give certain rules for the applicability of different formulas in the following
sections.

The waves that we consider in this chapter are called ground waves in the propagation
literature. We will use the definitions of the terms as given by the IEEE Standard 211, “IEEE
Standard Definitions of Terms for Radio Wave Propagation,” [37]. The relevant definitions
are exerpt from this document below:

Direct wave: A wave propagated over an unobstructed ray path from a source to a
point.

Ground wave: From a source in the vicinity of the surface of the Earth, a wave that
would exist in the vicinity of the surface in the absence of an ionosphere.

Note: The ground wave can be decomposed into the Norton surface wave and
a space wave consisting of the vector sum of a direct wave and a ground-reflected
wave.
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F����� 5.1. Definitions of the (I) interference, (II) intermediate, (III) diffrac-
tion regions. (a) range dependent definition, (b) zones.

Norton surface wave: The propagating electromagnetic wave produced by a source
over or on the ground. The Norton wave consists of the total field minus the
geometrical-optics field.

Reflected wave: For two media, separated by a planar interface, that part of the
incident wave which is returned to the first medium. The direction of propagation
of the reflected wave is given by Snell’s Law.

Surface wave: A wave guided by a boundary with a surface impedance whose reac-
tive part exceeds the resistive part. A surface wave is generally characterized as a
slow wave having a magnitude that exponentially decreases with distance from the
interface but may be modified by curvature.

The definition of ground wave implicitely defines a space wave as the vector sum of a
direct wave and a ground-reflected wave, which is also used in the literature.

5.1. Interference Region

In the interference region the surface wave is negligible and prime interest is in the space
wave component. Therefore, the attenuation function is given by

F =
∣∣1 +DΓe−jk∆R

∣∣ (5.1.1)

for either plane earth or spherical earth model excluding the antenna pattern effects. The
pattern effect can be added by considering the direction of direct and reflected waves with
respect to antenna bore sight. If these angles are denoted by ξd and ξr, respectively, the
attenuation function becomes

F =
∣∣f (ξd) + f (ξr)DΓe

−jk∆R
∣∣ . (5.1.2)

In the plane earth model D = 1 is used.
The first question is whether to use flat earth geometry or the spherical earth geometry.

There are three parameters that we should consider to answer this question, namely, the
reflection coefficient, the path length difference, and the divergence factor.

The reflection coefficient depends on the grazing angle and the electrical parameters of
the ground at the reflection point. Since the grazing angle and the reflection point may be
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different in the two models, the reflection coefficients calculated with the two models will be
different. In most practical situations however, the difference in the reflection coefficients will
be negligible. The most important difference between the two models is in the calculation
of the path difference ∆R. Figures 5.2 and 5.3 show the values of ψ and ∆R as a function
of the range R, calculated using three different approaches. The transmitter and receiver
heights are 50m and 100m, respectively. For these values the receiver falls below horizon
at a range of about 70 km. The error in the flat earth model increases with the range as
expected. This becomes especially important at higher frequencies where the wavelength is
comparable to the error.
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To determine the range of validity of the flat earth model, we have to compare the path
differences calculated by the two models. The flat earth model gives

∆Rf =
2h1h2
d

(5.1.3)

while for spherical earth model we can use the effective heights and write

∆Rs =
2h′1h

′

2

d
. (5.1.4)

where h′i = hi − d2i / (2ae). The difference between two results is then

∆Rf −∆Rs =
2h1h2
d

− 2h′1h
′

2

d
≈ (h1d22 + h2d

2
1)

dae
(5.1.5)

where we have neglected d21d
2
2/ (2ae)

2 term. To a first approximation, we can replace d1 and
d2 by the flat earth values and obtain

∆Rf −∆Rs ≈
dh1h2

ae (h2 + h1)
. (5.1.6)
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The two models will yield the same result if this difference is a fraction of the wavelength,
say λ0/10. Then, we can say that the flat earth model will be valid if

dh1h2
ae (h2 + h1)

<
λ0
10

(5.1.7)

or equivalenly, if

d <
λ0ae (h2 + h1)

10h1h2
. (5.1.8)

It must be noted that the validity region of the flat earth model depends on the frequency.
For the geometry of Fig. 5.3, and for λ0 = 10 cm, the flat earth model will be valid for ranges
below 2550m, while for λ0 = 1m, the range of validity extends to 25.5 km. Of course, if
the limit given by (5.1.8) exceeds the total horizon range, the interference region formulas
cannot be used. So we should limit the validity region of flat earth model as

d < min

(
λ0ae (h2 + h1)

10h1h2
,
√
2aeh1 +

√
2aeh2

)
. (5.1.9)

As the antenna heights get smaller, the flat earth model will be valid for increasing portions
of the total horizon range as can be seen from (5.1.9). At sufficiently small antenna heights,
the flat earth model is known to give accurate results up to and beyond the total horizon
range, [19]. However, in such cases the surface wave component must also be considered.

The variation of the divergence factor with range is shown in Fig. 5.4 for ht = 50m and
hr = 100m. The divergence factor decreases to very small values as the horizon is reached,
which is not correct. It is recommended to use D from (3.2.12i) if ∆R ≥ λ0/4 and take
D = 1 if ∆R < λ0/4, [16].

There is also the problem of solving the spherical earth geometry. One method is to use
the exact formula given in (3.2.4), the other is the method outlined in section 3.2 by the
equations (3.2.12). The error in (3.2.12) is not known, but generally believed to yield accurate
results in all practical situations. The exact formula can easily be solved by iteration, i.e., if
we start with an initial value ψ0 and define

ψk+1 = g (ψk) , (5.1.10)

then limk→∞ ψk exists and is the unique solution of equation (3.2.4), [38]. However, care
must be exercised in calculations, since the convergence may be very slow, especially for
larger values of ψ. On the other hand the approximate formulas for spherical earth give very
accurate results up to the horizon. The grazing angles and path length differences calculated
by the exact and approximate methods for spherical earth are shown in Fig. 5.2 and 5.3.
With the modern computers, calculations required for spherical earth model is not much of a
task, and it is generally better to use the spherical earth models. However, flat earth model
is still useful at least to quickly analyze and get an understanding for certain problems.

The total field is always determined by the sum of space and surface wave components.
In the interference region, the surface wave component is generally negligible, and the total
field is approximated by the space wave only. As the distance is increased towards the total
horizon, the space wave component decreases and the surface wave cannot be neglected.
Therefore, the interference formulas are not valid all the way to the total horizon range. No
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F����� 5.4. Variation of D with range, for ht = 50m and hr = 100m.

exact analytic expression is known for the limit of validity of interference formulas, but it is
believed that it will always be valid for ∆R ≥ λ0/4.

If the antennas are very close to the surface, only surface wave propagation should be
considered and it is accepted that, when the distance between the transmitter and the

receiver exceeds 80/f
1/3
MHz km or when either of the transmitter or receiver antenna height

exceeds 610/f2/3MHz m, the effect of earths sphericity must be taken into account in surface
wave calculations, [39].

5.1.1. Solution of Approximate Spherical Formulas. The approximate formulas
for the solution of spherical geometry are arranged in a way to determine the so called
correction factors J (S, T ) and K (S, T ) and the related terms S, T , S1, and S2 in terms of
the geometric parameters. However, in some problems like generating coverage diagrams,
we need to determine the geometric parameters from a knowledge of these parameters.
Although not obvious from the equations, only two of these parameters are independent,
and all parameters can be determined from a knowledge of any two of them. On the other
hand, we have three independent geometric parameters. This seems like a contradiction but,
scaling the antenna heights by a factor and the distance by the square root of the same factor
does not change the solution.
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The equations that relate S, T , S1, and S2 are

S =
S1T + S2
1 + T

, (5.1.11)

T =
S1 (1− S22)
S2 (1− S21)

. (5.1.12)

If any two of S1, S2, S, and T are given, the other two can be solved from these equations.
Still, the equations are nonlinear and generally require the solution of a cubic equation. The
parameters S and T are directly related to the physical parameters h1, h2, and d, and are
relatively easy to calculate. Therefore, plots giving the correction factors J , K, and the
divergence factor D as functions of S and T are generated. The use of these graphs makes
it easier to solve the spherical geometry. Figures 5.16, 5.17, and 5.18 given in the appendix
can be used for this purpose.

In constructing coverage diagrams, one is required to solve the distance at which the
attenuation factor has a certain value. Under certain assumptions, this means the determi-
nation of distance between transmitter and receiver with known heights for a given phase
difference between the direct and the reflected paths. Multiplying (3.2.12g) by Rh and
recognizing d/Rh = S, we can write

Rh∆R

2hrht
=
J (S, T )

S
=

(1− S21) (1− S22)
S

. (5.1.13)

We define the ratio J (S, T ) /S as a new function Q (S, T ) of the variables S and T . Figure
of the appendix gives Q (S, T ) as a function of S and T and can be used for this type of
problems.

5.2. Diffraction Region

At points sufficiently far beyond the total horizon range, the diffraction field can be
calculated by only a single term in the residue series given by (4.2.7) which is repeated here
for convenience

W (x, q) = 2

(
πx

j

)1/2 ∞∑

n=1

Gn (yt)Gn (yr) exp (−jxzn)
(zn − q2)

. (5.2.1)

The convergence of the residue series is basically determined by the exponential term. The
poles zn always lie in the fourth quadrant of the complex plane and zn have a negative
imaginary part and a positive real part. If we write zn = αn − jβn, with αn, βn > 0, we
observe that the terms in the series are proportional to exp (−xβn). Thus, for large x, the
terms decay rapidly. For large values of q, we have z1 = ζ1 = 1.17− j2.02 and we can write

F = |W | = V (x)U (yt)U (yr) , (5.2.2)

V (x) = 2
√
πx exp (−2.02x) (5.2.3)

U (y) =

∣∣∣∣
u (z1 − y)
qu (z1)

∣∣∣∣ =
∣∣∣∣
u (z1 − y)
u′ (z1)

∣∣∣∣ (5.2.4)

which is fairly easy to calculate. At the total horizon range and for a slight distance beyond
it, single term is not sufficient to obtain a correct value of F . There is no simple rule
that determines the distance beyond which the single mode representation is valid but for
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standard conditions the total horizon range needs to be increased by only a small fraction of
itself to make the single mode representation valid. One idea is to compare the magnitudes
of the second and first term. Again for large values of q, we have z2 = 2.054− j3.540. Thus
the ratio of the second term to the first term can be found to be approximately given by

exp (−1. 52x). If x ≥ 10/3, or equivalently R > (k0ae/2)
−1/3 10ae/3, the second term will be

less than 0.7% of the first term, and the use of single term expansion is justified. If more
error is acceptable, we can use the single term expansion at smaller ranges.

The height-gain function U (y) (in dB) is shown in Fig. 5.5 as a function of the normalized
height y in the region 1 < y < 100. The value of z1 is taken as the first zero of u (z) which
is valid for large values of q. With large q assumption, we have U (y) ≈ y for y ≤ 1.
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F����� 5.5. Height-gain function 20 log10 |U (y)| as a function of normalized
height, for large q, ae = 8500 km.

From the definition of V (x), we have

20 log10 V (x) = 20 log10 (2) + 10 log10 (π) + 10 log10 (x) + 20

(−2.02x
ln 10

)
, (5.2.5)

= 10. 992 1− 17. 545 5x+ 10 log10 (x) . (5.2.6)

For ranges of interest, x > 1 and log10 (x) ≪ x which means that we can approximate
20 log10 V (x) by a linear approximation. A very good fit to this function for the ranges of
interest is

20 log10 V (x) ≈ −17x+ 14 (5.2.7)
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with an error less than 4 dB. Figure 5.6 shows 20 log10 V (x) and the linear fit as a function
of x.
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F����� 5.6. 20 log10 (x) as a function of x, for 1 ≤ x ≤ 30, ae = 8500km.

5.3. Intermediate Region

We have seen that ray methods that are used in the interference region generally break
down before the total horizon range is reached. In a similar manner, the single term expres-
sion is valid not at the total horizon range but slightly beyond it. This leaves a region known
as the intermediate region near the horizon for which the two methods are not applicable.
Of course, using the residue series with more terms is a possibility, but it is generally quite
complicated. One method is to calculate the fields in the two regions with appropriate for-
mulas and then fill the intermediate region by a smooth interpolation. For this purpose,
typically two points are used in the interference region, one at ∆R = λ0/2 where the first
maximum occurs and F = 1 +D |Γ|, the other at the first point of quadrature, ∆R = λ0/4

and F =
√
1 +D2 |Γ|2. In the diffraction region, two or three points are used and an appro-

priate interpolation method is used. A shape preserving spline interpolation is a good choice
for this purpose.

The fields in the interference region are basically due to surface waves and the flat earth
surface wave attenuation function can be used to predict the field in this region. As mentioned

previously, the flat earth surface wave model is valid up to 80/f 1/3MHz km. Beyond this range
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earth sphericity must be taken into account. The small curvature expansion in powers of
δ3 = −1/ (2q3) given in (4.2.21) is useful in this region, however, its use is restricted also for
q ≥ 0.1, [40].

The surface wave formulas do not take antenna heights into account. In principle, these
formulas are valid only for antennas on the ground, but it is claimed that the flat earth

surface wave model can be used upto height of 610/f2/3MHz m. However, as we shall see in the
study cases below, the results will differ from residue series calculations by an appreciable
amount at fractions of this height.

5.4. Sample Calculations

In this section we will consider propagation at three different frequencies for the purpose
of comparing different formulations and their validities.

5.4.1. Case I. Suppose that a transmitter operates at 1MHz with vertical polarization
over “wet ground” with κ′ = 30 and σ = 10−2 S/m. We could expect flat earth model to be

valid up to 80/f
1/3
MHz = 80 km range provided that the antennas are below 610/f

2/3
MHz = 610m.

The value of q can be calculated as

|q| =
∣∣∣∣∣
−j
(
k0ae
2

)1/3 √
κ− 1

κ

∣∣∣∣∣
= 3. 3 (5.4.1)

which is greater than 0.1 and the small curvature assumption is expected to give good results.
The attenuation factors calculated with different methods for ht = hr = 1m are shown in
Fig. 5.7. The total horizon distance for this case is 8.2, and therefore the interference models
completely fail in the region of computations. The surface wave attenuation function with flat
earth assumption and small curvature correction are very close to each other. Only a small
difference is observed for ranges exceeding 35 km. In this region small curvature correction
coincides with residue series. Around the horizon range, the surface wave approximation fails
but the residue series shows the beginning of the interference region. The residue series were
calculated using 50 terms, although only a few terms in the residue series were sufficient for
larger values of R. The single term expression is not considered since q is not large enough
to justify the assumptions made, i.e., the location of the zero is not accurate.

Figure 5.8 shows the attenuation functions for ht = hr = 100m. For this case the total
horizon distance is 82 km. Although the antenna heights are below 610m, there is appreciable
difference between the residue series expansion is due to increased heights.

5.4.2. Case II. Next we will consider a 10MHz vertically polarized transmitter oper-
ating over a ground with parameters κ′ = 15 and σ = 3× 10−3 S/m. Figure 5.9 shows the
attenuation functions for ht = hr = 1m, calculated using the flat earth model, the small
curvature approximation, and the residue series. We could expect flat earth model to be

valid up to 80/f
1/3
MHz = 37. 1 km range. It can be seen that small curvature approximation

departs from the flat earth formula at about 15 km range, the difference being less than 3 dB
up to about 40 km. Between 15 − 70 km small curvature approximation and residue series
give similar results. Beyond 70 km, small curvature approximation falls of rapidly and differs
from the residue series result. The value of |q| for this case is 23. 4.
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F����� 5.7. Attenuation factors for Case I calculated with different methods
at 1MHz, ht = hr = 1m.

5.4.3. Case III. In the third case the frequency of operation is 1GHz and antennas
are at ht = hr = 50m. Propagation is over “wet ground” with κ′ = 30 and σ = 10−2 S/m,
and vertical polarization is considered. Fig. 5.10 shows the results. The total horizon range
for this case is 58.3 km. The interference region extends up to about 30 km. Eq. (5.1.9)
shows that the flat earth interference formula would be valid up to 10.2 km range. The
difference between flat earth and spherical earth models becomes obvious after about 15 km.
The residue series was calculated using 20 terms and gives accurate results even in the
interference region. The spherical interference model gives a zero field at the total horizon
range. The jump in this curve is at the range where ∆R = λ0/4 and the divergence factor is
taken as 1 for larger ranges. This point also indicates the border of the interference region.
Beyond 60 km, single term is sufficient in the residue series. The intermediate region is
between 40− 60 km and residue series appears to be quite accurate in this region. However,
the smoothness of the curve in this region implies that a simple interpolation would also be
quite accurate.

5.5. Mixed Path Propagation

If the ground parameters change along the propagation path between the transmitter
and receiver, we have a mixed path propagation. We are still assuming a smooth earth in
the sence that the irregularities of the ground is much smaller than the effective wavelength
λv = λ0/ sinψ, in the direction perpendicular to the surface. We will also assume that
the path can be described by a series of of finite segments, each with different ground
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F����� 5.8. Attenuation factors for Case I calculated with different methods
at 1MHz, ht = hr = 100m.

parameters. This problem typically models the situation where the path between the source
and the observer passes from land to sea or from sea to land. Depending on antenna heights
the space wave and/or surface wave components may be the dominant propagation mode.
However, in this section we will consider onlt the surface wave propagation.

The first analytical solution to this problem was proposed by Millington, [41]. He argued
that up to the discontinuity from the transmitting antenna, the transmission behaved as if the
path were homogeneous with parameters of the first region, and afterwards the propagation
is as it should if the path were homogeneous with parameters of the second region. This
creates a discontinuity in the vertical component of the field at the point where ground
parameters change and thus he adds a correction term. For transmission in the reverse
direction, he employes the same argument, but this gives rise to different fields in the two
directions, which violates the reciprocity principle. He then takes the geometric mean of the
fields in two directions to satisfy reciprocity. Although the derivation is heuristic, his result
was later shown to be valid, [34] for practical situations.

The algorithm proposed by Millington can be best explained by an example. We will
consider the three segment model shown in Fig. 5.11. The first step is to calculate the path
loss from the transmitter to the receiver (assuming antennas are on the ground) as

Ftr = F1 (d1)− F2 (d1) + F2 (d1 + d2)− F3 (d1 + d2) + F3 (d1 + d2 + d3) (5.5.1)

where F1 (d1) is the attenuation factor in dB over distance d1 using the parameters of the
first region, F2 (d1) is the attenuation factor in dB over distance d1 using parameters of
the second region, F2 (d1 + d2) is the attenuation factor in dB over distance d1 + d2 using
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F����� 5.9. Attenuation factors for Case II calculated with different methods
at 10MHz, ht = hr = 1m.

parameters of the second region, F3 (d1 + d2) is the attenuation factor in dB over distance
d1 + d2 using parameters of the third region, and F3 (d1 + d2 + d3) is the attenuation factor
in dB over distance d1 + d2 + d3 using parameters of the third region. Thus the subscript
of L indicates the region whose parameters should be used. Notice that the negative terms
take away the path loss due to its region from the following term. For example, if d3 is made
zero, the last two terms would cancel, leaving the two segment solution. Thus, the negative
terms are the corrections for continuity.

The second step is to make the calculation in the reverse direction, i.e.,

Frt = F3 (d3)− F2 (d3) + F2 (d3 + d2)− F1 (d3 + d2) + F1 (d3 + d2 + d1) . (5.5.2)

This time, F3 (d3) is the attenuation factor in dB over distance d3 using the parameters of
the third region, F2 (d3) is the attenuation factor in dB over distance d3 using parameters
of the second region, F2 (d3 + d2) is the attenuation factor in dB over distance d3 + d2 using
parameters of the second region, F1 (d3 + d2) is the attenuation factor in dB over distance
d3 + d2 using parameters of the first region, and F1 (d3 + d2 + d1) is the attenuation factor
in dB over distance d2 + d2 + d1 using parameters of the first region.

The third step is to take the geometric mean of the two results. In dB we have

F0 =
Ftr + Frt

2
. (5.5.3)

This step automatically satisfies reciprocity.
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F����� 5.10. Attenuation factors for Case III calculated with different meth-
ods at 1GHz, ht = hr = 50m.
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F����� 5.11. Geometry for three segment spherical earth mixed path.

The final step is to correct for antenna heigths by introducing the height-gain functions
as

FLt =
Ftr + Frt

2
− 20 log10 (|U (yt)| |U (yr)|) (5.5.4)

where yt and yr are the normalized heights of the transmitter and the receiver, respectively.
Note that the heigt-gain functions depend on the ground parameters, and the parameters of
the ground over which the antenna resides should be used. The height-gain functions can be
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approximated as

U (y) = 1 + jkh∆ (5.5.5)

where h is the height of the antenna ∆ is the normalized surface impedance.
Figure 5.12 shows the attenuation factor as a function of distance for a three segment

mixed path. The first and last sections have the parameters of sea (κ′ = 80, σ = 5S/m) while
the middle section models wet ground (κ′ = 30, σ = 10−2 S/m). The middle region extends
from 100 km to 300 km. The field decreases rapidly over the land section and increases beyond
the second boundary. Millington coins the name land-to-sea recovery to this phenomenon,
which has been experimentally verified, [41]. However, experiments generally do not show
such a sharp increase as shown in Fig. 5.12 which is due to the fact that the separation
between segments are not sharply defined in real paths.
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F����� 5.12. Surface wave attenuation factor for a three segment mixed path
propagation medium.

5.6. Four Ray Model

In many cases, the line of sight between the transmitter and the receiver is obstructed.
We have seen in section 2.2 that the signal may arrive at the receiver through diffraction.
The presence of the earth casues ground reflected waves. The reflected waves also undergo
diffraction and the four ray model is used in such cases.
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F����� 5.13. Four ray model geometry.

The geometry of the four ray model is shown in Fig. 5.13. The rays transmitted by the
transmitter at point A arrive the receiver at point B through four paths:

(1) Directly from A to Q, then after diffraction directly to B, (path AQB),
(2) Directly from A to Q, then after diffraction, by reflection at point N to B, (path

AQB′),
(3) From A to the reflection point M , then to Q, then after diffraction, directly to B,

(path A′QB),
(4) From A to the reflection point M , then to Q, then after diffraction, by reflection at

point N to B, (path A′QB′).

The field at the receiver is then the sum of the signals propagated through these four
paths. It has been observed in certain cases that, after propagating through mountain ranges
radio waves can exhibit a build up of the field, especially at microwave frequencies, [42]. This
obstacle gain can be explained by the four ray model. It is important to understand what
is meant by the gain mentioned here. The point at point B can be larger than it would be
if the obstacle were not there, altough intuitively, one would expect the field to be smaller
when there is an obstacle.

The field at point B can be calculated by using interference formulas. The attenuation
factor at point B can be written as

FT =
∣∣∣Fc,1e−jk0(RAQ+RQB) + Fc,2ΓMe−jk0(RA′Q+RQB)

+ Fc,3ΓNe
−jk0(RAQ+RQB′) + Fc,4ΓMΓNe

−jk0(RA′Q+RQB′)
∣∣∣ (5.6.1)

where Fc,i, i = 1, . . . , 4 is the complex attenuation factor of the four paths calculated in-
cluding the attenuation due to obstruction, and ΓM and ΓN are the reflection coefficients at
points M and N , respectively. The attenuation factor Fc,i is given in (2.2.7) as

Fc,i =
1√
2
[C (vi) + jS (vi)] (5.6.2)
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T���� 5.1. Quantities required for evaluation of Fc,i.

Att. Tx Rx Relative Clearence Reflection
Ray factor location location path length height coefficient

1 Fc,1 A B 0 h1 = H − htd2+hrd1
d

1
2 Fc,2 A B′ 2htH

d1
h2 = H − htd2−hrd1

d
ΓN

3 Fc,3 A′ B 2hrH
d2

h3 = H + htd2−hrd1
d

ΓM
4 Fc,4 A′ B′ 2htH

d1
+ 2hrH

d2
h4 = H + htd2+hrd1

d
ΓNΓM

Defining hi as the clearence height and h1 as the radius of the first Fresnel zone at the
location of the obstacle given by

hF =

√
d1d2λ0
d

,

we have vi =
√
2hi/hF .

If the obstacle height is much greater than the antenna heights, we may assume that Fc,i
are all same, and simplify (5.6.1) as

FT = F
∣∣1 + ΓMe

−jk0∆R1
∣∣ ∣∣1 + ΓNe

−jk0∆R2
∣∣ (5.6.3)

where F = |Fc,i|, ∆R1 = RA′Q−RAQ, ∆R2 = RQB′ −RQB. Furthermore, if ΓM = ΓN = −1,
we have

FT = F
∣∣1− e−jk0∆R1

∣∣ ∣∣1− e−jk0∆R2
∣∣ . (5.6.4)

It can be easily seen that if ∆R1 = (2n+ 1)λ0/2, and ∆R2 = (2m+ 1)λ0/2, the attenuation
factor becomes FT = 4F .

To calculate the complex attenuation factors, we must include the diffraction loss due to
the obstruction by using (2.2.7). With reference to Fig. 5.13, the quantities required for the
calculation of propagation factors Fc,i are listed in Table 5.1.

As an example, consider a geometry for which ht = hr = 30m. Figure 5.14 shows the
attenuation factor plotted against the obstacle heightH for a propagation path of d = 80 km.
The maximum obstacle gain of 15 dB is obtained for an obstacle height of 2000m. Note
that as the obstacle height goes zero the four ray theory predicts the no obstacle attenuation
factor as expected.

5.7. Examples

E������ 16. Using the spherical earth model, calculate the attenuation factor F for a
radar operating at 3GHz sited at a height of hr = 30m above sea and observing a target at
a distance of 125 km and a height of ht = 3000m above sea. The radar antenna has a beam
width of 3 ◦ and is tilted above the horizon by 0.5 ◦. The radar uses vertical polarization.

S������� 16. Taking ae = 8500 km, we can determine the horizon distance Rh as

Rh =
√
2aehr +

√
2aeht = 248 km. (5.7.1)
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F����� 5.14. Attenuation factor versus obstacle height, H .

Since R < 0.8Rh we can use the interference region formulas and calculate

p = 1.989× 105 ; Φ = 2.502 rad ; d1 = 1745m ; (5.7.2)

d2 = 123255m ; S1 = 7.727× 10−2; S2 = 0.546 ; (5.7.3)

T = 0.1 ; S = 0.503 ; J = 0.698 ; (5.7.4)

K = 0.705 ; D = 0.988 ; ∆R = 1.005 m ; (5.7.5)

tanψ = 1.709 ; ψ = 1.709× 10−2 rad = 0.979 ◦. (5.7.6)

The value of ∆R being greater than λ0/4 is another indicator for the validity of interference
region formulas. For sea water we can take κ′ = 80 and σ = 5S/m, and the reflection
coefficient for vertical polarization becomes

Γv = −0.729− 4.182× 10−2j. (5.7.7)

We must also take the antenna pattern effects into account. The direct wave angle ξd can be
found as

ξd = cos−1

(
(ae + ht)

2 − (ae + hr)
2 −R2d

2 (ae + hr)Rd

)

− π
2
= 0.94 ◦ (5.7.8)

while the reflected wave angle is −ψ. Since the radar beam is tilted above the horizon, the
direct and reflected waves arrives at 0.44 ◦ and −1.479 ◦ from bore sight of the antenna. Thus
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if f (θ) denotes the radar antenna field pattern, we must determine f (0.44) and f (−1.479).
The patterns of antennas can be well approximated by a Gaussian function in their main
beam, i.e., the antenna pattern can be written as

f (θ) = exp

(

−2 ln 2
(
θ

θBW

)2)

. (5.7.9)

where θBW is the 3dB beam width of the antenna. For our case

f (0.44) = 0.971; f (−1.479) = 0.714. (5.7.10)

Finally we find

F =
∣∣f (ξd) + f (ξr)DΓve

−jk0∆R
∣∣ = 0.491 = −6.178 dB. (5.7.11)

This indicates that the field strength incident on the target is 6.178 dB smaller than it would
be under free space conditions with the antenna pointing directly at the target. If we ignore
the antenna pattern, we would have

F =
∣∣1 +DΓve−jk0∆R

∣∣ = 0.354 (5.7.12)

which is about 3dB different.

E������ 17. A horizontally polarized radar operating at 10GHz is sited at an elevation
of 20m and tracking an airplane flying over sea at a height of 500m. At which range, R0,
the plane will be in the maximum of the lowest lobe?

S������� 17. The total horizon range is Rh =
√
2aehr+

√
2aeht = 110.6 km. The phase

difference between the direct and reflected waves is

α = k0∆R+ φ (5.7.13)

where φ is the phase angle of the reflection coefficient. If φ changes as a function of range,
this problem becomes very difficult to solve. However, since the propagation is over sea and
horizontal polarization is used, we may assume that φ = π. Counting from the lowest lobe,
the maxima will occur when α = 2nπ or ∆R = (2n − 1)λ0/2. Thus to be at the lowest
maximum we must have

∆R =
λ0
2
. (5.7.14)

Now we can calculate the value of the Q function as

Q =
Rh∆R

2hrht
= 0.082 95. (5.7.15)

We also have T = 0.2. Since J, S, and T are implicitly related, we must work the equations
in (3.2.12) backwards. However, this requires the solution of a highly nonlinear system. The
solution can be done by using the graphs prepared for this purpose. We can read the value of
S from Fig. 5.19 as S = 0.89 which gives

R0 = SRh = 98. 4 km. (5.7.16)

Another approach would be to determine ∆R for several values of R0 and make a table as

d ( km) 70 80 90 100
∆R ( cm) 13.3 8.0 3.9 1.1
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By linear interpolation we can find R0,1 = 98.6 km. A second iteration gives R0,2 = 98.2 km
which is the correct value to one decimal place.

E������ 18. Assume that a communication link operates at f = 3GHz with vertical
polarization above medium dry ground. The distance between the terminals is 100 km and
the terminals are at 50m and 100m above earth. Determine how far below the free-space
level the signal will be.

S������� 18. The total horizon range is
√
2aeh1+

√
2aeh2 = 70.4 km, which means that

the terminals are well beyond the horizon and the single term expression can be used. The
electrical parameters for medium dry ground are κ′ = 15, σ = 10−3 S/m from Table (3.1).
The normalized surface impedance is then

∆ =

√
κ− 1

κ
= 0.249 + 4. 63× 10−5j (5.7.17)

We have

x =

(
k0ae
2

)1/3(R
ae

)
= 7. 58 (5.7.18)

which is greater than 10/3 and justifies the use of the single term expression. Next we
determine

q = −j
(
k0ae
2

)1/3
∆ = 2. 98× 10−2 − 161j. (5.7.19)

Since |q| ≫ 1 we may assume that zn are the zeros of u (z). We have

V (x) = 2. 2× 10−6 = −113. 1 dB, (5.7.20)

U (y1) = 14. 63 = 23. 3 dB, (5.7.21)

U (y2) = 87. 47 = 39. 0 dB. (5.7.22)

and

F = −50. 8 dB. (5.7.23)

Hence the field strength will be 50. 8 dB below the free space level.

E������ 19. What should be the power of a transmitter operating at f = 1MHz with
vertical polarization over wet ground to produce a field of Erms = 40µV/m at a distance of
500 km. The transmitter antenna is a vertical monopole with a gain of 1.5. Assume that the
propagation is over medium ground.

S������� 19. Using single term expression we find

V (x) = 2. 85× 10−2.

Antenna height is not given in the problem but at λ0 = 300m, it is reasonable to assume that
U1 (yt) = 1. Thus the attenuation factor is F = 2. 85× 10−2. We can write

√
30PtGt
R

F = 40× 10−6.

Solving, we find Pt = 10. 95 kW.
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S������� 20. R = 500 000

E������ 20. A microwave communication link is operating at f = 3GHz with horizontal
polarization over “wet ground.” The link antennas are mounted on towers at a height of
h = 50m. Assuming a smooth earth, determine the maximum distance d so that the signal
level is not reduced below its free space value.

S������� 21. An attenuation factor of F = 1 is required. The total horizon distance for
this case is Rh = 58.3 km. Assuming Γh = −1, and D = 1 the attenuation factor is given by

F = 2

∣∣∣∣sin
k0∆R

2

∣∣∣∣ . (5.7.24)

Setting F = 1 we find that the path length difference should be ∆R = λ0/6. If we use flat
earth model, we have

2h2

d
=

0.1

6
=⇒ d = 300 km (5.7.25)

which is greater than the total horizon distance. Therefore, we must use spherical earth
model. Since ∆R < λ0/4 we will take D = 1. The antennas being at equal height implies
d1 = d2 = d/2 and S1 = S2 = d/(2

√
2aeh) in the spherical earth formulas. Thus,

J (S, T ) =
(
1− S21

)2
=

(

1−
(
d/2√
2aeh

)2)2
(5.7.26)

and we get

2h2

d

(
1− d2

8aeh

)2
=

1

60
. (5.7.27)

The only unknown in this equations is d and can be solved to give d = 45.5 km (the second
real solution gives d = 71 km which is larger than the total horizon range). At this distance
the grazing angle is ψ = 8.59 × 10−4 rad and Γh = 0.999 5∠180 ◦ justifying the assumption
made.
To solve (5.7.27) rewrite it as

d km = g (d km) = 10
√
34

√√√√
(

1−
√
d km
300

)

. (5.7.28)

Starting with an arbitrary value of d0, use dk+1 = g (dk).

E������ 21. For the microwave communication link of example 20, determine the at-
tenuation factor at d = 60 km.

S������� 22. The distance d = 60 km is in the intermediate region. We will use inter-
polation method for this example. We choose two points in the interference region. The first
point is where the first maximum occurs where ∆R = λ0/2 and F = 1 +D |Γ|. The second
point is the first point of quadrature, ∆R = λ0/4 and F =

√
1 +D2 |Γ|2. These points are
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found as

2h2

d

(
1− d2

8aeh

)2
=

1

20
=⇒ dm = 36.6 km ; Dm = 0.659 ; Fm = 4.4dB,

(5.7.29)

2h2

d

(
1− d2

8aeh

)2
=

1

40
=⇒ dq = 42.7 km ; Dq = 0.549 ; Fq = 1.2 dB. (5.7.30)

Next we choose three points in the diffraction zone, at d = 1.3Rh, 1.5Rh, and 2Rh, and
calculate the attenuation factors by the single term expression. The normalized height of the
antennas are y = 4. 879 giving U1 (y1) = U2 (y2) = 23.3 dB. The normalized distances and
corresponding values of V (x) are

x2 = 5. 74 ; V (5. 74) = −82. 2 dB, (5.7.31)

x2.5 = 6. 63; V (11.04) = −97. 1 dB, (5.7.32)

x3 = 8.83 ; V (8.83) = −134. 6 dB. (5.7.33)

Using these results we can form the plot shown in Fig. 5.15. Note that F = 1 is obtained at
d = 44.3 which is fairly accurate. The difference from example 20 is due to the divergence
factor being taken as 1 in that example.
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F����� 5.15. Attenuation factor in dB for ht = hr = 50m, f = 3GHz.

E������ 22. Consider a citizen’s band system operating at 27MHz in rural environment
(smooth earth assumption is valid). Both the transmitter and receiver antennas are very close
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to the ground and have unity gains. The transmitter power is 5W, and the receiver noise
figure is 10, and the receiver bandwidth is 5 kHz. Propagation is over medium ground. If a
20 dB SNR is required at the receiver, what would be the maximum range for both vertical
and horizontal polarizations?

S������� 23. The noise power at the receiver is

Pn = kTBF = 1.38× 10−23 × 300× 5000× 10 = 2. 07× 10−16W. (5.7.34)

The required signal power for 20 dB SNR is then

Ps = 2. 07× 10−14W = −137 dBm. (5.7.35)

The received signal power for free space communication is

Pr,fs = 37− 20 log10

(
4π

λ0

)
+ 20 log10 (R) = 35. 9− 20 log10 (R) dBm. (5.7.36)

Since both antennas are very close to the ground, the propagation is by means of the surface
wave. The ground parameters are κ′ = 15 and σ = 10−3 S/m from Table (3.1). The
numerical distance for vertical polarization is given by

p =

∣∣∣∣−jk0R
(κ− 1)

2κ2

∣∣∣∣ = 0.01758R. (5.7.37)

At very large distances the surface wave attenuation factor (in dB) changes linearly with
log10 p as can be seen from Fig. 4.2, and we can write

20 log10 F = −6− 20 log10 (p) = −6− 20 log10 (0.01758R) (5.7.38)

= 29.1− 20 log10 (R) (5.7.39)

Now we can write the received signal as

Pr(dBm) = Pr,fs(dBm)+ F (dB) = 65− 40 log10 (R) . (5.7.40)

Equating this to −137 dBm we find
R = 112. 2 km. (5.7.41)

On the other hand, the flat earth formula hold up to 80/ (27)1/3 = 26. 7 km range. Beyond
this range the effect of spherical earth will cause the received signal to attenuate very rapidly.
So it would be logical to assume that the maximum range will be slightly above 26. 7 km.
With horizontal polarization the numerical distance is

p =

∣∣∣∣−jk0R
(κ− 1)

2

∣∣∣∣ = 439. 8R. (5.7.42)

Repeating similar calculations we get

Pr(dBm) = −23− 40 log10 (R) (5.7.43)

from which the maximum distance is determined to be only 0. 7 km. This is due to the large
surface impedance of the ground for horizontal polarization.

E������ 23. Assume that an antenna is 30 km from the shore and radiating a power of
1 kW at f = 500kHz using a vertical monopole antenna of gain 1.5. Determine the field at
a distance of 100 km from the shore. Take the land parameters as medium ground.
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S������� 24. With the definitions in section 5.5 we have

F1 (d1) = −15.5 dB,
F2 (d1) ≈ F2 (d1 + d2) ≈ F2 (d2) ≈ 0 dB,

F1 (d2) = −27.5 dB,
F1 (d2 + d1) = −30 dB.

Then we can calculate

Ftr = −15.5 dB, Frt = −2. 5 dB,
F = −9.0 dB.

We can take the antenna height-gain as 1, since the wavelength is large. Then,

Erms =

√
30PtGt
R

F = 0.58mV/m.

5.8. Appendix A: Calculation of the Roots of u′ (z)− qu (z) = 0

The computation of the roots zn appearing in the residue series expression is rather
complicated. Fortunately, they are worked in the literature and series expansions for the
roots are available, [39]. There are two series that can be used for the computations. The
first one is in powers of q which is useful when q is small, and the second one is in inverse
powers of q which is useful when q is large.

The first series which converges well for small values of q (typically for |q| ≪
∣∣ 4√ζnξn

∣∣) is

zn =
∞∑

m=0

amq
m (5.8.1)

where q = −j
(
k0a
2

)1/3
∆ as defined in (4.2.4), and a0 (n) = ξn is the nth zero of u′ (z). The

first 8 values of ξn are tabulated in Table 5.2. The values of am (n) are

a0 (n) = ξn, (5.8.2a)

a1 (n) =
1

a0 (n)
, (5.8.2b)

a2 (n) = −
a21 (n)

2a0 (n)
= − 1

2a30 (n)
, (5.8.2c)

a3 (n) = −
3a1 (n) a2 (n)− 2a2 (n)− a1 (n)

3a0 (n)
=

3− 2a0 (n) + 2a30 (n)

6a50 (n)
(5.8.2d)

am+1 (n) = −
1

(m+ 1) a0 (n)

m∑

k=1

(m− k + 1) ak (n) am−k+1 (n) , m ≥ 3. (5.8.2e)

The value of ξn for n > 8 can be approximated by

ξn ≈
[
3π

2

(
n− 3

4

)]2/3
e−jπ/3. (5.8.3)

Although this approximation is accurate only to 4% for n > 8, in most cases the residue
series will be truncated before such terms are required.



88 5. PROPAGATION OVER EARTH (GROUND WAVE)

T���� 5.2. First 5 roots of u (z) and u′ (z).

n ξn ζn

1 1.018793e−jπ/3 2. 338 107 e−jπ/3

2 3.248198e−jπ/3 4.087949e−jπ/3

3 4.820099e−jπ/3 5.520560e−jπ/3

4 6.163307e−jπ/3 6.786708e−jπ/3

5 7.372177e−jπ/3 7.944134e−jπ/3

6 8.488487e−jπ/3 9.022651e−jπ/3

7 9.535449e−jπ/3 10.040174e−jπ/3

8 10.527660e−jπ/3 11.008524e−jπ/3

The second series which converges well for large values of q (typically for |q| ≫
∣∣ 4√ζnξn

∣∣)
is

zn =
∞∑

m=0

bmq
−m (5.8.4)

where b0 (n) = ζn is the nth zero of u (z). The first 8 values of ζn are also tabulated in Table
5.2. The values of bm (n) are

b1 (n) = 1 b2 (n) = 0 b3 (n) =
b0(n)
3

b4 (n) =
1
4

b5 (n) =
b2
0
(n)

5
b6 (n) =

7b0(n)
18

b7 (n) =
b3
0
(n)+1.25

7
b8 (n) =

29b2
0
(n)

60
b9 (n) =

b6(n)+b40(n)+b
2

1
(n)+2b0(n)b4(n)+2b3(n)b1(n)

9

.

(5.8.5)

The value of ζn for n > 8 are given approximately by

ζn ≈
[
3π

2

(
n− 1

4

)]2/3
e−jπ/3. (5.8.6)

When q ≈
∣∣ 4√ζnξn

∣∣, neither of the series converge. Therefore, convergence of the series
must be checked.

5.9. Appendix B: Graphs for Spherical Earth

The graphs for spherical earth calculations are given.
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F����� 5.18. Divergence factor D used in curved-earth pattern-propagation
factor calculation, plotted as a function of parameters S and T for standard
atmosphere.
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F����� 5.19. The function Q plotted as a function of parameters S and T
for standard atmosphere.


