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CHAPTER 4

Propagation over Earth (Diffraction Region)

The rigorous solution of the propagation of radio waves over earth problem requires the
solution of Maxwell’s equations with appropriate boundary conditions. The optical approach
discussed in the previous chapter is only approximate. It gives quite accurate results in the
so called interference region which extends just short of the horizon. Especially in the case
of spherical earth, the field beyond optical horizon is non-zero, which cannot be predicted
by the ray theory. Thus we need a better formulation that gives the fields in this so called
diffraction region, beyond horizon. We will consider the propagation over a flat earth first.

4.1. Current Element over a Flat Surface

4.1.1. Vertical Current Element. The problem of radiation from a vertical current
element over an infinite flat lossy dielectric medium was first solve by Sommerfeld, [23]. The
solution was later expressed in an approximate form by Norton, [24], that is much more
useful in engineering applications. The following derivation is based on the derivation by
Collin, [25].

Consider a z-directed current element of unit strength located at a height h above a flat
dielectric surface characterized by the complex dielectric constant

κ = κ′ − jκ′′ = κ′ − j
σ

ωǫ0
(4.1.1)

where σ is the conductivity, κ′ is the dielectric constant (relative permittivity). The pertinent
geometry is shown in Fig. 4.1. Since the current element is assumed to be in the z-direction,
the vector potential has only the z component and must satisfy

∇2Az + k20Az = −µ0δ (x) δ (y) δ (z − h) , z > 0,
∇2Az3 + k2Az3 = 0, z < 0.

(4.1.2a)

The Fourier transforms of these equation with respect to x and y variables are
(

∂2

∂z2
+ k20 − β2

)
Az
(
βx, βy, z

)
= −µ0δ (z − h) , z > 0, (4.1.3a)

(
∂2

∂z2
+ k2 − β2

)
Az3

(
βx, βy, z

)
= 0, z < 0. (4.1.3b)

where β = β2x + β2y, and

Az
(
βx, βy, z

)
=

∫ ∞

−∞

∫ ∞

−∞
Az (x, y, z) e

jβxxejβyydxdy, (4.1.4a)

Az3
(
βx, βy, z

)
=

∫ ∞

−∞

∫ ∞

−∞
Az3 (x, y, z) e

jβxxejβyydxdy. (4.1.4b)
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The continuity of the tangential components of the electric and magnetic field at z = 0
requires

Az
(
βx, βy, 0

+
)
= Az3

(
βx, βy, 0

−) , (4.1.5a)

∂Az
(
βx, βy, z

)

∂z

∣∣∣∣∣
z=0+

=
1

κ

∂Az3
(
βx, βy, 0

)

∂z

∣∣∣∣∣
z=0−

. (4.1.5b)
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F����� 4.1. The geometry for the solution of Sommerfeld problem.

We divide the z > 0 region into two regions: z > h is the Region I and 0 < z < h is
the Region II. Since the differential equations in (4.1.3) are harmonic equations in z, their
solutions can be expressed as linear combinations of the harmonic functions e±jγ0z where

γ0 =
√

k20 − β2 with negative imaginary part. In Region I, the solution must decay as
z → ∞ hence only e−jγ0z term can be used. In Region II both solutions are possible, and
a linear combination of e−jγ0z and e+jγ0z terms must be used. For z < 0, only a downward
decaying wave is admissible. Furthermore, the function Az must be continuous at z = 0 and
z = h. Thus we can write

Az1
(
βx, βy, z

)
= Ce−jγ0(z−h), z > h, (4.1.6)

Az2
(
βx, βy, z

)
=

C (ejγ0z − Γve−jγ0z)
ejγ0h (1− Γve−j2γ0h)

, 0 < z < h, (4.1.7)

Az3
(
βx, βy, z

)
=

C (1− Γv) ejγz
ejγ0h (1− Γve−j2γ0h)

, z < 0. (4.1.8)

where γ =
√

k2 − β2 with negative imaginary part. At z = h, the derivative of Az must be
discontinuous to satisfy (4.1.3a) and the amount of discontinuity is

∂Az1
∂z

∣∣∣∣
z=h

− ∂Az2
∂z

∣∣∣∣
z=h

= −µ0 (4.1.9)
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The two equations (4.1.5b), and (4.1.9) determine C and Γv as

Γv =
γ − κγ0
γ + κγ0

= 1− γ0
γ0κ+ γ

2κ, (4.1.10a)

C =
µ0
(
1− Γve−j2γ0h

)

2jγ0
. (4.1.10b)

The form of (4.1.10a) implies that Γv can be interpreted as a reflection coefficient. At
distances sufficiently removed from the current element, we are interested in the solution
Az1 which is the inverse Fourier transform of Az1, i.e.,

Az1 =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Az1e−jβxxe−jβyydβxdβy

=
µ0
8π2

∫ ∞

−∞

∫ ∞

−∞

1

jγ0

(
1− Γve−j2γ0h

)
e−jγ0(z−h)e−jβxxe−jβyydβxdβy. (4.1.11)

This solution is more easily handled in cylindrical coordinates. For this purpose we define
βx = u cosϕ′, βy = u sinϕ′, x = ρ cosφ, and y = ρ sin φ and obtain

Az1 =
µ0
8π2

∫ 2π

ϕ′=0

∫ ∞

u=0

1

jγ0

(
1− Γve−j2γ0h

)
e−jγ0(z−h)e−juρ cos(φ−ϕ

′)ududϕ′

=
µ0
4π

∫ ∞

0

1

jγ0

(
1− Γve−j2γ0h

)
e−jγ0(z−h)J0 (uρ)udu (4.1.12)

where we have made use of the fact that, [26],
∫ π

0

e−jz cosφdφ = πJ0 (z) . (4.1.13)

With this change of variables we have β2 = u2, and therefore γ0 =
√

k20 − u2, and γ =√
k2 − u2, both with negative imaginary parts.

The result in (4.1.12) describes the solution as a spectrum of plane waves. The first term
(with unity coefficient) accounts for the radiation of the current element, the other (with
coefficient Γve

−2γ0h) represents the waves reflected from the surface which appear to emanate
from the image point at z = −h. Therefore, if we set Γv = 0 we should obtain the radiation
of a current element in free space which means

∫ ∞

0

e−j
√
k20−u2(z−h)

j
√

k20 − u2
J0 (uρ)udu =

e−jk0R1

R1

(4.1.14)

where R1 =
√

ρ2 + (z − h)2 is the distance from the current element. This result is known

as the Sommerfeld identity, [27]. Using this result (4.1.12) can be expressed as

Az1 =
µ0
4π






∫∞
0

e−jγ0(z−h)

jγ0
J0 (uρ)udu−

∫∞
0

e−jγ0(z+h)

jγ0
J0 (uρ) udu

−j2κ
∫∞
0

e−jγ0(z+h)

γ0κ+ γ
J0 (uρ) udu




 ,

=
µ0
4π

(
e−jk0R1

R1

− e−jk0R2

R2

− j2κ

∫ ∞

0

e−jγ0(z+h)

γ0κ + γ
J0 (uρ)udu

)
. (4.1.15)
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where R2 =
√

ρ2 + (z + h)2 is the distance from the image of the current element. For a

perfectly conducting material, κ becomes infinity and the integral is exactly twice the term
containing R2 in the above expression giving

Az1 =
µ0
4π

e−jk0R1

R1

+
µ0
4π

e−jk0R2

R2

, as κ→∞ (4.1.16)

which is the expected result and we have used this result in Chapter 3 with a modification
that includes reflection coefficient. However, the above derivation shows that the approach
we used in Chapter 3 is not exact.

The Bessel function appearing inside the integral in (4.1.15) can be written in terms

of Hankel functions as 2J0 (uρ) = H
(1)
0 (uρ) + H

(2)
0 (uρ). Using the fact that H

(1)
0 (−x) =

−H(2)
0 (x) we can rewrite (4.1.15) as

Az1 =
µ0
4π

(
e−jk0R1

R1

− e−jk0R2

R2

+ κI

)
(4.1.17)

where

I = −2j
∫ ∞

0

e−jγ0(z+h)

γ0κ+ γ
J0 (uρ)udu = −j

∫ ∞

−∞

e−jγ0(z+h)

γ0κ + γ
H(2)
0 (uρ)udu. (4.1.18)

Although this formulation is exact, the evaluation of the integral is necessary for a useful
result.

The integrand of I has a pole when γ0κ+γ = 0 or equivalently at up = ±k0
√

κ/ (κ+ 1).
The contribution of this term to the integral I can be evaluated by the residue technique
yielding a field of the form, [25],

Az =
µ0
2

k

κ2 − 1

√
κ

κ+ 1
H(2)
0

(
kρ√
κ + 1

)
e−jk0(z+h)/

√
κ+1, (4.1.19)

which is called the Zenneck surface wave. At points far away from the current element and
close to the surface, i.e., for ρ → ∞ and z = 0, we find, after using the large argument
asymptotic expression for the Hankel function, that

Az1 = K
e−jk0ρ/

√
κ+1

√
ρ

(4.1.20)

where K is an amplitude constant. This solution decays with ρ−1/2 which is much slower
than the usual ρ−1 decay rate of the free space propagation.

However, the residue term is not the dominant term in the integral. In 1919, Weyl
solved the same problem with a different approach that gave a similar result but without the
Zenneck surface wave term, [28]. Asymptotic evaluation of the integral for large ρ also shows
that the Zenneck surface wave term is cancelled and what remains is a more rapidly decaying
surface field which is called the Norton surface wave, although it is not a true surface wave
but the field at the surface.

In 1930’s Norton studied this problem and obtained approximate expressions that can
be used in practical calculations, [29]. At large distances he gives the electric field intensity
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as

Ez = −j
k0Z0
4π

[
cos2 ψ

(
e−jk0R1

R1

+ Γv
e−jk0R2

R2

)

+
(1− Γv)

κ2
(
κ2 − κ + cos2 ψ

)
F
e−jk0R2

R2

]
, (4.1.21)

Eρ = j
k0Z0
4π

[
sinψ cosψ

(
e−jk0R1

R1
+ Γv

e−jk0R2

R2

)

−(1− Γv)
κ

cosψ
√

κ− cos2 ψ
(
1− (κ− cos

2 ψ)

2κ2
+
sin2 ψ

2

)
F

e−jk0R2

R2

]
(4.1.22)

where Γv is the Fresnel reflection coefficient for vertical polarization at a grazing angle of
ψ = π/2− θ, given by (3.1.16a), and

F = 1− j
√
πΩe−Ω erfc

(
j
√
Ω
)
. (4.1.23)

The complementary error function is defined as

erfc (x) =
2√
π

∫ ∞

x

e−t
2

dt (4.1.24)

and

Ω =
−2jk0R1

(1− Γv)2
(
κ− sin2 θ2

)

κ2
≈ −jk0R

(κ− 1)
2κ2

(4.1.25)

The factor F is called surface wave attenuation factor or the ground wave attenuation factor.
Inspection of (4.1.21) and (4.1.22) shows that the total field may be divided into two parts, a
“space wave” which is the formula considered in the interference region, and a “surface wave”
(which is the Norton surface wave as discussed above) that contains additional attenuation
function F .

If we consider a point on the surface of the earth, the space wave term will rapidly vanish
as the distance is increased, since Γv will approach −1 at large distances. However, the
surface term will remain. This fact is experimentally verified and theoretically explained by
the discussions above. On the surface of the earth, (4.1.21) and (4.1.22) reduces to

Esurface ≈ −j
k0Z0
4π

(1− Γv)F
e−jk0R

R

(
κ− 1
κ
âz +

√
κ− 1
κ

âρ

)
. (4.1.26)

There are two important points about this result, the field will have a radial component
(see Sec. 4.1.1.1), and its decay rate is determined by the surface wave attenuation factor,
F . The term Ω that defines the attenuation factor is a complex quantity that is typically
expressed in polar form as Ω = pe−jb, where p = |Ω| is known as the numerical distance, and
b as the phase constant. Once p and b are determined for the given ground parameters, the
attenuation factor can be calculated using (4.1.23). Computation of the attenuation function
requires evaluation of the erfc (x) function for complex values. In fact, the function

w (z) = e−z
2

erfc(−jz). (4.1.27)
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is called the Fadeeva function and its computation is easier. Numerical evaluation of the
Fadeeva function is described in, [30]. In Fig. 4.2 the value of |F | is shown as a function of
the numerical distance for different values of phase constant.
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F����� 4.2. The flat earth surface wave attenuation factor |F | as a function
of the numerical distance.

Norton, [24], gives two approximate formulas for the calculation of |F | for b < 90 ◦, [31].
The first approximation is

f1 (p, b) =
2 + 0.3p

2 + p + 0.6p2
−
√

p

2
exp (−5p/8) sin b (4.1.28)

and the second one is

f2 (p, b) =






e−0.43p+0.01p
2 −

√
p

2
exp (−5p/8) sin b for p ≤ 4.5

1

2p− 3.7 −
√

p

2
exp (−5p/8) sin b for p > 4.5

. (4.1.29)

However, f1 (p, b) gives up to 40% error, and f2 (p, b) gives up to 20% error, especially for
values of b > 60 ◦. Both formulas fail to be correct for b = 180 ◦, [31].
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If κ′ ≫ 1, which is the case for most soils, the numerical distance can be approximated
as

p ≈ k0R

2κ
=

k0R

2
√
(κ′)2 + (κ′′)2

. (4.1.30)

In the two extreme cases of κ′′ ≫ κ′ and κ′′ ≪ κ′, this result can be approximated as

p ≈






k0R

2κ′′
=

πR

60λ2σ
for κ′′ ≫ κ′

k0R

2κ′
=

πR

λκ′
for κ′′ ≪ κ′

. (4.1.31)

The numerical distance depends both on the actual distance and the electrical parameters
of the ground. For a perfectly conducting earth, the numerical distance reduces to zero and
the attenuation factor takes the value of 1 which corresponds to free space transmission.
As p increases, |F | decreases which means the energy loss into the ground increases. The
radio waves cannot penetrate into a well conducting surface while the situation is reversed
for poorly conducting surfaces.

The frequency also plays an important role. In the VLF band (< 300 kHz) ground losses
are small and communication is possible up to several hundred kilometers. In the MF band
(300 to 3000 kHz which includes the AM band) regular communication up to distances of
1000 km is possible. In the HF band (3 to 30MHz), ground losses start to dominate and the
surface wave distance reduces drastically. In the upper HF band the surface waves die out
within a few tens of kilometers. It has been reported by CB users that while stations only
30 km apart cannot communicate, both can talk to a third station more than 1000 km apart
via ionospheric skip (which will be discussed later in Chapter 7).

4.1.1.1. The Radial Component of the Field. The expression of the electric field at the
surface given by (4.1.26) shows that there will be a horizontal (Eρ) component of the field.
This component gives rise to a Poynting vector component that points into the earth and
describes the loss. The ratio of the horizontal component to the vertical component is
1/
√
κ− 1. If we consider a 1MHz radio wave at the surface of an average earth having

σ = 5× 10−3 and κ′ = 10, we get

Eh
Ev
=

Eρ
Ez
= 0.105∠42 ◦. (4.1.32)

Since the horizontal and vertical components are shifted in phase, the total field is ellip-
tically polarized in a vertical plane, and the wave is no more a plane wave. The polarization
ellipse lies in the plane defined by the propagation direction and the normal to the earth as
shown in Fig. 4.3.

4.1.2. Horizontal Current Element. The problem of radiation from a horizontal
current element over an infinite flat lossy dielectric medium can also be solved following
a similar approach. The resulting field can also be decomposed into a space wave and a
surface wave component. It must be noted that the space wave in this case has a small
vertical component due to geometry. The surface wave will also have both horizontal and
vertical components. The horizontal component is the main component, however it is shorted
out by the conductive earth and the fields are much smaller as compared to a vertical dipole
of same moment. The vertical component arises due to the lossy ground just like a horizontal
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Eρ

Ez

z

ρ

Propagation direction

F����� 4.3. Polarization ellipse for a wave propagating over a surface of finite conductivity.

component arises in the case of a vertical dipole. This can be understood by the reciprocity
of the fields.

As a result, the surface wave for a horizontal dipole is much smaller than a corresponding
vertical dipole, and therefore this mode of propagation is not used in practice. The surface
wave attenuation factor is given by the same formula (4.1.23), except that

Ω = −jk0R
(κ− 1)
2

(4.1.33)

for this case.

4.2. Current Element over a Smooth Sphere

The Sommerfeld’s statement of the problem overlooks the spherical nature of the earth.
The real problem certainly necessitates the use of a spherical model. The problem of a dipole
radiator above a lossy dielectric sphere was first solved by Watson in 1918, [32]. His solution
is also discussed in detail in [33]. The electric field at the location of receiver is expressed
in the form, [34],

E0r = E0W (x, q) (4.2.1)

where

E0 = −
jk0Z0
4π

e−jk0R

R
(4.2.2)

is the reference field of a current element of unit moment, and W (x, q) is the attenuation
factor, which replaces the function |F | for the flat earth case. In the present case,

x =

(
k0a

2

)1/3(R

a

)
(4.2.3)

is a normalized range parameter, a is the radius of earth, and

q = −j

(
k0a

2

)1/3
∆ (4.2.4)

where ∆ is the normalized surface impedance of the ground and is given by
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∆ =






√
κ− 1
κ

for vertical polarization
√
κ− 1 for horizontal polarization

. (4.2.5)

The attenuation factor is obtained by evaluating the full-wave field integral, [35], which
can be written in the form

I =
1

2

∫

C

κH
(2)
0 (κR) v (κ, ht, hr) dκ (4.2.6)

where C is a contour that encloses all the poles of the integrand. Using the residue technique
the result can be written as a series expansion given by

W (x, q) = 2

(
πx

j

)1/2 ∞∑

n=1

Gn (yt)Gn (yr) exp (−jxzn)

(zn − q2)
(4.2.7)

where

Gn (y) =
u (zn − y)

u (zn)
=

qu (zn − y)

u′ (zn)
(4.2.8)

is a height-gain function, and

yt =

(
2

k0a

)1/3
k0ht, yr =

(
2

k0a

)1/3
k0hr. (4.2.9)

This result is an approximation under the assumption that the transmitter antenna height
ht and observer height hr are both much less than the separation R between them, while the
latter is much less than the earth radius, a. If a is taken as the effective earth radius, this
formulation takes the atmospheric refraction into account (for the standard atmosphere).

The height-gain functions in (4.2.7) can also be approximated as Gs (y) ≈ 1 + j∆k0h,
where h is either ht or hr. Expanding Gn (y) into a power series in y, we get

Gn (y) = 1−
u′ (zn)

u (zn)
y +O

(
y2
)
. (4.2.10)

Using (4.2.15) in this expression gives

Gn (y) ≈ 1− qy (4.2.11)

and replacing q and y from (4.2.4) and (4.2.9) gives the desired result. Notice that this result
will only be valid for small values of y.

The function u (z) is the Airy integral defined as

u (z) =
1√
π

∫

C

exp

(
zt− t3

3

)
dt =

√
π [Bi (z)− jAi (z)] (4.2.12)

= −2
√
π exp

(
5

6
jπ

)
Ai(ze−j2π/3) (4.2.13)

where the contour C runs in the complex plane from ∞ej2π/3 to the origin, and then along
the real axis to +∞. The function u (z) satisfies the differential equation

u′′ (z)− zu (z) = 0. (4.2.14)
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T
��� 4.1. Typical values of surface impedance

|∆|
Surface Type Vertical Horizontal

Sea water 3.3× 10−3 299. 8
Wet ground 7. 4× 10−2 13. 5
Medium dry ground 0.204 4. 8
Very dry ground 0.469 1. 6

The zn in the series expansion (4.2.7) are the poles of the integrand in (4.2.6) which are
determined by the consecutive roots of the equation

u′ (zn)− qu (zn) = 0, n = 1, 2, . . . (4.2.15)

The evaluation of the attenuation factor is rather complicated. The most difficult part of
the calculations is the determination of the roots from (4.2.15). Fortunately, the topic has
been worked out extensively in the literature. If q is large, the poles can be approximated
by the zeros of u (t). Denoting these zeros by ζn, it can be shown that, [35],

ζn = |ζn| e−jπ/3 (4.2.16)

where the first few values of ζn are given as

|ζ1| = 2. 338 11 |ζ2| = 4.08795 |ζ3| = 5.52056
|ζ4| = 6.78671 |ζ5| = 7.94413 |ζ6| = 9.02265

. (4.2.17)

When q is small, we write (4.2.15) as

u (zn)

u′ (zn)
=
1

q
(4.2.18)

and expand the left hand side about ζn to obtain

(zn − ζn)−
u′′ (ζn)

2u′ (ζn)
(zn − ζn)

2 + · · · = 1
q
. (4.2.19)

But from (4.2.14) we have u′′ (ζn) = ζnu (ζn) = 0. Therefore, we may write

zn = ζn +
1

q
(4.2.20)

to a first order approximation. The value of q is determined by the normalized surface
impedance ∆. Typical values of ∆ for f = 1MHz are tabulated in Table (4.1).

If we assume that the permittivity and conductivity do not change with frequency, we
can show that:

• The surface impedance is always larger for horizontal polarization,
• The surface impedance decreases with frequency for horizontal polarization, while

it increases with frequency for vertical polarization,
• As the frequency is increased towards infinity, the surface impedance attains the

limiting value of
√
κ′ − 1/κ′ for vertical polarization and

√
κ′ − 1 for horizontal

polarization,
• For vertical polarization dry ground has the largest surface impedance while sea

surface has the smallest,
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• For horizontal polarization sea surface has the largest surface impedance while dry
ground has the smallest.

The value of q increases with frequency for both vertical and horizontal polarizations.
For horizontal polarization, the smallest value of q is attained for dry ground, but its value
is greater than 103 even at frequencies as low as 10 kHz. Therefore, the correction term
in (4.2.20) is negligible. However, q may take quite small values for vertical polarization,
especially for propagation over sea surface in the frequency range below 100MHz. For both
horizontal and vertical polarization, correction term reduces the attenuation with range, the
reduction in the case of vertical polarization being very much greater than in the case of
horizontal. On this basis, the field near and beyond horizon range tends to be somewhat
greater for vertical polarization than for horizontal.

The attenuation function W (x, q) can also be expanded in inverse powers of (k0a). Using
the method described in, [36], Wait obtained the formula, [34],

W (x, q) = F (Ω)−
(
δ3

2

)[
1− j

√
πΩ− (1 + 2Ω)F (Ω)

]

+ δ6
{
1− j

√
πΩ(1− Ω)− 2Ω + 5

6
Ω2 +

[
Ω2

2
− 1
]
F (Ω)

}
+O

(
δ9
)

(4.2.21)

where δ3 = −1/ (2q3) = j/ (k0a∆3), Ω = −jk0∆2/2 as defined in (4.1.25) and (4.1.33) before,
and F (Ω) is the flat-earth attenuation function given by (4.1.23). This expansion is called
the small curvature expansion and is useful in a region where the flat-earth attenuation F (Ω)
is inadequate to predict the phase of the ground wave. At such points, the residue series has
a very slow convergence and is difficult to handle. As the distance is increased, the residue
series becomes manageable and is more accurate than (4.2.21) since the latter is a truncated
power series in p which increases with distance.

It must be noted that (4.2.21) does not depend on antenna heights. Actually, this formula
is similar to the flat earth surface wave attenuation factor, except that it includes the earth
curvature. As a→∞, (4.2.21) reduces to flat earth formula. Thus, (4.2.21) should only be
used if the antennas are sufficiently close to the earth.


