CHAPTER 10

Wideband Channels

Up to this point, we have considered calculation path losses and/or received powers at
a single frequency. Of course, any communication system uses a finite bandwidth about
a center frequency. The previous calculations are reasonable only if the channel can be
considered as independent of frequency over the communication bandwidth. Such a case
would be called a “narrowband” communications channel, which is characterized by the
propagation medium and its variation with frequency as compared to the bandwidth of the
information transmitted. Same communication bandwidth may be treated as narrowband
for some environments while it may become wideband for other environments.

Different fading at different frequencies result in distortion of the transmitted informa-
tion, and can cause significant errors upon reception. It may be desirable to use a narrowband
communication system to reduce such errors. However, there is an increasing demand for
faster communication systems (primarily for high speed data transfer) which forces the sys-
tems to operate in wideband region. The characterization of such channels and methods to
mitigate adverse affects of wideband channels are considered in this chapter.

10.1. Two Path Model

The simplest frequency fading channel consists of two rays: a direct ray from the trans-
mitter to the receiver traveling a distance R, and a second ray scattered from an obstacle
displaced laterally by H from the direct path, as shown in Fig. 10.1. For simplicity, assume
that both rays have equal power.

TX

Ficure 10.1. Two ray model.
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158 10. WIDEBAND CHANNELS

If an impulse is transmitted by the transmitter, the receiver will observe two impulses
separated in time by 7 = AR/c where AR is the path length difference and ¢ is the speed
of light. The impulse response of the channel is then

h(t)=0(t+to) +0(L+1lo+T) (10.1.1)

where tg = d/c. The transfer function of the channel is then
jwit jwT w7 1 -
H(w) = e/ (14 eT) = 2cos 5 exp | S (2to+7) ). (10.1.2)

The magnitude of the transfer function is simply |2coswt/2| which is shown in Fig. 10.2.
Obviously, the transfer function is not constant and different frequency components will ex-
perience different amounts of attenuation, which will give rise to dispersion of the transmitted
signals. The 3 dB bandwidth about a peak is 7/7. We may assume that the dispersion of
a signal having a bandwidth smaller than the 3 dB bandwidth is negligible. That is, if the
signal bandwidth is smaller than 1/7, then the channel may be assumed to be dispersionless.
Therefore, we define

1
feon =~ (10.1.3)

as the coherence bandwidth of the channel. For example, if the path length difference is 3m,
than 7 = 10ns and f.;, = 100 MHz. If the signal bandwidth is comparable to 100 MHz the
response will clearly be different for different frequencies and the channel is said to exhibit
frequency selective fading. On the other hand, if the signal bandwidth is 10 MHz, the channel
may be assumed to have a constant response.

10.2. Channel Characterization

10.2.1. Time Varying Channel Characterization. In real life, there are many scat-
terers and the scattered fields will not be of equal magnitude. The channel transfer function
will not have nulls as in the two-ray model. The channel is time-varying due to the motion
of transmitter, receiver or the scatterers. In such cases there will be a Doppler shift in the
frequency of the received signal and the channel transfer function will be time-varying. It
is convenient to use the complex envelope representation to represent real bandpass signals.
We use the relation

s(t) = Re {= (t) e/} (10.2.1)

to define the complex envelope representation z (t) of the real signal s(f). For a linear
time-varying channel, the complex envelope of the output is given by

y(t):/oo:r(t—T)h(T;t)dT:/oo:r(t)h(t—T;t)dT (10.2.2)

where h(7;1) is the time-varying impulse response of the channel at time ¢ for an impulse
applied at time 7. That is, if the input is z () = ¢ (t — o), the output will be y (t) =
h (t — to;t). Since a physical channel must be causal, h (t — fo; ) must be zero for £ < tg, or
equivalently h (7;¢) must be zero for 7 < 0.
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FicurEe 10.2. Magnitude of channel transfer function.

The Fourier transform of the transfer function with respect to the delay variable 7 is
defined as the time-varying transfer function, i.e.,

T (w;t) = /OO h(r;t)e 7“7dr. (10.2.3)

[e @]

The complex envelope of the output can be written as
1 [~ ,
y() =5 / X (W) T (wst) € dw (10.2.4)
™ — 00

where X (w) is the Fourier transform of the input signal z (7).
If we take the Fourier transform of T’ (w;#) with respect to the £ variable also, we get
what is called as the Doppler-spread function:

H (w, @) = /OO T (w;t)e 7='dt. (10.2.5)

[e @]

With this definition, the complex envelope of the output can be written as

1 [ [ .
vy =13 / / X (W) H (w, @) @ dudo. (10.2.6)
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Using p = w + @, we can write

1 [~ /1 [ ;
y(t) = 5 <%/ X(p—w) H(p—w, @) dw> tdy (10.2.7a)
1 [~ ;
= — Y it q 10.2.7b
on | Y WeMdn ( )
where
1 [o@)
Y (p) = o / X(p—w) H(p—w,w)dw (10.2.8)

is the Fourier transform of the output.
If the Fourier transform of h (7;¢) with respect to ¢ variable is carried out first, we can
express y (1) as

1 [ [~ .
y(t) = %/ / z(t—71)8 (1;0) " dewdr (10.2.9)
where
h(r;t) = 21/ S (1; ) ™ dw. (10.2.10)
™ — 00

The function S (7;w) is called the delay-Doppler spread function. The relation between
these functions is shown schematically in Fig. 10.3.
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FicurEe 10.3. Relation between different definitiions.

10.2.2. Random Time Varying Channel Characterization. The definitions in the
previous section apply to a deterministic channel. In real life, the channel is random. This
means that, the impulse response is a random process. Typically, only a second order char-
acterization of the channel is used. This means specification of the channel autocorrelation
function. Such a characterization will be complete only for random processes of that have
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distributions with at most two parameters, including a Gaussian process. Corresponding to
each function defined above, we define an autocorrelation function:

Ry (T1,79;t1,te) = (h(T1;t1) h* (T3 t2)) (10.2.11a)
Ry (wy, wa; ty,ta) = (T (wy;t1) T™ (wa; t9)) (10.2.11b)
Ry (w1, wa; @y, w3) = (H (w3 1) H* (we; @2)) (10.2.11c¢)
Rs (71,795 w1, @3) = (S (71; 1) S* (79;3)) . (10.2.11d)

It must be noted that (71, 73) are time delay variables with (wy,ws) being the corresponding
frequency variables, while (¢1,%5) are time variables with (wy, ws) being the corresponding
frequency variables. Any of these autocorrelation functions may be used to obtain the
autocorrelation of the output. For example, if z (¢) is a deterministic signal, we have

Ry (t1,ta) = (y (L) ¥~ (12)) (10.2.12a)
1 oe , 1 oe , *
= <<_7r/ X(Wl)T(Wl;tl)ewltldM) <%/ X(W2)T(W2;t2)€jw2t2dw2> >
h h (10.2.12D)
1 RO .
— <H / / X (Wl) X* (WQ) T (Wl; tl) T* <WQ; t2) Gj(wltthWQ)dwldWQ>
T (10.2.12¢)
1 RO .
h H/ / X (w1) X (w2) (T (wis 1) T* (wa; b)) €12 deoy dy
T (10.2.124)
1 RO .
- H/ / X (w1) X* (wa) Ry (w1, wast1,ta) edrti=tzon) gy iy
(10.2.12¢)

A channel is said to be wide-sense stationary (WSS) when the correlation function does
not depend on the absolute values of £; and £y but only on the time difference At =ty — 1.
In such a case, the autocorrelation functions become a function of the variable At, i.e.,

Ry (71,79 AL) = (Rl (T4;1) 1" (755 13)) (10.2.132)
RT (wl, Way At) = <T (wl; tl) T* <WQ; t2)> . (10213b>
This gives rise to
RH (Wl,WQ; W1, WQ) =9 (Wl — WQ) PH (Wl,WQ; wl) s (10214&)
Rs (T1,T2; w1, @s) = 0 (w1 — wa) Ps (T1,7T2; @1) (10.2.14b)
where
PH (Wl, Way wl) = / RT (Wl, Way At) GijwlAtd (At) s (10215&)
PS (7'1, T9; wl) == / Rh (7'1, T9; At) GijwlAtd (At) . (10215b>

Equations (10.2.14) show that the Doppler shifts corresponding to different times are uncor-
related.
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If the channel is such that contributions of scattering from elements having different
time delays (for single scattering, different time delays can be thought of as arriving from
different ellipsoids about the transmitter and receiver) is uncorrelated, then it is classified
as uncorrelated scattering (US). This assumption is also equivalent to assuming that the
correlation functions are wide-sense stationary with respect to the frequency variables wy
and ws 1.e., the correlation functions in w; and ws are dependent only on their difference
Aw = wy — wy:

Ry (wy, wo; by, ty) =

Ry (w1, we; w1, ) =

T (Aw,tl,tQ) s (10216&)

R

In this case the correlation functions in the time-delay variable can be written as

Ry (71, Tosty, ts) = 0 (11 — 7o) Py (71314, 85) , (10.2.17a)
Rg (7'1,7'2; Wy, Wy) =0 (7'1 —T9) Ps (7'1; w1y, W) (10.2.17b)
where
1 o0 .
Py (T15t1,te) = o Ry (Aw; ty, 1) €7%%d (Aw)
7T — 00
1 o0 .
Py (1151, @2) = o Ry (Aw; w1, @9) ™2%d (Aw) .

7T — 00

If the channel is WSS in both time and frequency variables then it is classified as WSSUS
channel. This leads to

10.2.1%8a
10.2.18b
10.2.18c
10.2.18d

0 (11 — 7o) Py (11; AY)
Ry (Aw; At),
d (wy — @) Py (Aw; @),

(7'1—7'2) (wl—WQ)Ps<7'1,wl).

Rh (7—177—27 tla t2

RT <w17w27t17 2

Ry (W17W2;w1, Wy

) ( )
) ( )
) ( )
) ( )

RS (7—17 To; Wi, Wy
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For a WSSUS channel we have
Ry (t,t+ At) = (y(O)y" (t + A1)

:<</Zx(t—7-)h(r;t)d7-> </Zx

(10.2.192)

(t+ At —7)Yh (75t + At)dr’
(10.2.19b)

= </Z/Zx(t—7‘)x*(t—I—At—T’)h(T;t)h*(T’;t—I—At)dT’d7'>

(10.2.19¢)

:/OO /OOx<t_7)x*(t+At_7/)<h(73t)h*(7’;t+At)>dT/dT

(10.2.19d)

:/ / z(t—1)a" (t+ At =7 ) Ry (7,75t t + At) dr'dr

(10.2.19¢)

:/ / z(t—7)x* (t+ At —=7)o(r—7') Py (1; At) dr'dr

(10.2.19f)

_ /°° (t— )5t (t+ At —7) P, (r; At) dr (10.2.19g)

[e @]

When the time separation of the observation, At, is zero, we write Py, (7,0) = P, (7) and

the above equation simplifies to

Ry<t,t):/OOZ‘(t—T)x*(t—T)Ph<T)dT

[e @]

= /OO ]:r(t—r)]QPh (1) dr

[e @]

~ Py (7).

(10.2.202)

(10.2.20D)
(10.2.20¢)

The above approximation is valid if the time duration of 2 is much smaller than the spread
of Py (7) or equivalently, if the spectrum of is |z (t)]2 is constant over the frequency interval
where the spectrum of Py (7) is non-zero. The function P, (7) is known as the power delay
profile of the channel. P, (7) can be considered as the scattering function Pg (7, @) averaged
over all Doppler frequencies. If there are discrete scatterers, the power delay profile will
consist of several impulses as shown in Fig. 10.4. Typically, the power delay profile will be

a continuous curve with several impulsive peaks.

Two parameters are of practical interest and they are the mean delay, 7, and the r.m.s.

delay spread, 7, defined as

- fTPh(T)dT
G
. _ \/f T—T) )dT
rms fPh .

*
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F1GURE 10.4. A discrete power delay profile.

Values of delay spread tend to depend on the environment. For instance, in macrocells that
have cell radii ranging from 1 to 20km, 7., could range from 0.1 us 10 us. In the case of
a microcell which has cell radius ranging from 100m to 1km, 7, can range from 10ns to
100 ns. Several models of delay spread are available to the user to carry out an initial system
design. Table 10.1 shows the various exponential models used in the study of GSM systems

while Table 10.2 gives typical values of 7., in various environments.

TABLE 10.1. Standard power delay profiles.

Environment | Typical delay spread 7.,
e 92 Qus <7 <0.7pus
Rural Pi(r) = 0 otherwise
e 35 Qus <7 < 2us
Hilly terrain Po(t)=< 0.1 7 15us <7 <20 pus
0 otherwise
e Ous< T <Tus
Urban Pi(r) = 0 otherwise
e’ Ops <7 <bHus
Hilly urban Py(t)=1< 05”7 Bus<71<10us

0 otherwise
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TABLE 10.2. Typical values of 7,,,s in various environments

Environment | Typical delay spread 7.,
Rural 200 ns

Hilly terrain 5—10pus

Urban 1 us

Hilly urban 1—3us

Indoor 10 — 50 ns
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