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CHAPTER 1

Fundamental Concepts

1.1. Radio Waves

The term radio wave refer to the part of the electromagnetic spectrum corresponding
to radio frequencies — that is, frequencies lower than around 300 GHz (or, equivalently,
wavelengths longer than about 1 mm). Since the radio {requencies occupy a very large range
in the spectrum, the spectrum is divided into smaller sections called bands. There are several
designations for the radio frequency bands. The most commonly used band designation is

the IEEE US definitions given in Table 1.
TaBLE 1. IEEFE US Radio spectrum designations

Band Frequency range | Origin of name

HE band | 3 to 30 MHz High Frequency

VIHE band | 30 to 300 MHz Very High Frequency

UHE band | 300 to 1000 MHz Ultra High Frequency

L. band 1 to 2GHz Long wave

S band 2 to 4 GHz Short wave

C band 4 to 8 GHz Compromise between S and X
X band 8 to 12GHz Used in WWII for fire control, unknown
Ku band |12 to 18 GHz Kurz under

K band 18 to 27 GHz Kurz (German)

Ka band | 27 to 40 GHz Kurz above

V band 40 to 75 GHz

W band 75 to 110 GHz W follows V in the alphabet
mm band | 110 to 300 GHz

The I'TU radio bands are designations defined in the ITU Radio Regulations and is given
in Table 2

The usage of the radio spectrum is regulated by the government in most countries. The
governments in turn obey the international regulations.

Radio waves are typically generated by moving charges in antennas. Antennas are devices
that couple the electromagnetic energy generated by a system into the surrounding space.
The electromagnetic energy than propagates to be received by another antenna at some
other location.

1.2. Radiation from an Antenna

Consider a point source of energy as shown in Fig. 1. The total energy per second
emanating from the source is the radiated power, measured in Watts, (W). We will denote

1



2 1. FUNDAMENTAL CONCEPTS

TABLE 2. ITU Radio spectrum designations

Band Number | Symbol | Frequency range | Wavelength range
1 ELF 3 to 30 Hz 10000 to 100000 km
2 SLF 30 to 300 Hz 1000 to 10000 km

3 ULF 300Hz to 3kHz 100 to 1000 km

4 VLEF 3 to 30kHz 10 to 100 km

5 LF 30 to 300 kHz 1 to 10km

6 MFE 300kHz to SMHz | 100m to 1km

7 HE 3 to 30 MHz 10 to 100 m

8 VHE 30 to 300 MHz 1to 10m

9 UHF 300MHz to 3GHz | 10cm to I m

10 SHE 3 to 30 GHz 1 to 10em

11 EHF 30 to 300 GHz 1 to 10 mm

A source that radiates energy
uniformly in all directions is called an isotropic source. For such a source, energy propagates
outward spherically. If we consider a spherical surface of radius R and center at the source,
the energy crossing this surface at a unit time should be equal to the transmitted power, F;,
since the energy must be conserved. Since we are going to consider the energy received by
some other antenna, we will be interested in the energy that propagates toward the receiving
antenna, instead of the total energy. Therefore, it is convenient to define energy crossing a
surface of unit area per unit time, which is called the power density, P. This quantity has
the unit of (W/m?) and is called the energy density. For the isotropic source, the power
density at a distance R from the source will then be

=
P = .
47 R?

this quantity by F; which stands for transmitted power.

(1.2.1)

Isotropic source

FIGURE 1. An isotropic source.

The above discussion implicitly assumes that the power (or energy) propagates along
straight lines (which can be shown to be true by using Maxwell’s equations). Therefore, it is
sometimes more convenient to consider the flow of power through unit solid angle', which is
called the radiation intensity, U. Unlike the power density, this quantity will remain constant

ISolid angle is defined similar to the planar angle; the solid angle subtended by an object is the area of
its projection on the unit sphere.
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as we move away from the radiator. Thus we have

B o
- L - R’P, 1.2.2
U= _=1R (1.2.2)

It must be noted that the above discussions are only valid in the so called far field region of
an antenna.

An isotropic radiator is a fictitious source. Real antennas cannot be isotropic. Actually,
the antennas are desired to radiate more in preferred directions. The pattern of a typical
antenna is shown in Fig. 2. The antenna radiates most of the power in a certain direction
(generally the bore-sight direction). In practice, it is impossible to confine the radiated
energy in a single direction and there will be some radiation in undesired directions. These
radiations are called sidelobes of the antenna pattern. The directivity of an antenna is

defined as

U, maximum radiation intensit
D=7 _ B — : Y (1.2.3)
Uo average radiation intensity

where D is the directivity. Multiplying numerator and denominator of (1.2.3) by 47 gives

D— dnUy,  AnU,, 4w (maximum radiation intensity)
 AxlUy, P total power radiated

The definition of directivity is based entirely on the shape of the radiated power pattern.
The power input and antenna efliciency are not involved. The (power) gain of an antenna is

defined as

G 4 (maximum radiation intensity) (1‘2‘ 5)

total power input to the antenna

(1.2.4)

Notice that if the antenna is lossy, the total radiated power will differ from the total input
power by a factor n < 1 called the efficiency of the antenna. Thus we have

G =nD. (1.2.6)

The directivity and gain imply the maximum values for an antenna. These ideas can be
generalized to any angle as

D(0,6) A7U (0,¢)  4x (radiation intensity in the direction of (0, ¢)) (1.27)
= = . . a
’ P, total power radiated ’

4 diation intensity in the directi f (0
G0,6) = 7 (radiation intensity in the direction of ( ,gb)) (1.2.7)

total power input to the antenna

Again the gain and directivity patterns are related by the efficiency of the antenna as

G(0,0)=nD(0,9). (1.2.8)
With these definitions, the power density at a distance R from the antenna in the direction
(0, ¢) will be
BG(0,¢)
P=——".
47 R?

The quantity PG (0, ¢) in (1.2.9) is called the effective radiated power and is abbreviated
as ERP.

(1.2.9)
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FIGURE 2. A typical antenna pattern.

1.3. Electromagnetic Wave Propagation Concepts

The above discussions ignore the vector nature of the electromagnetic waves. In reality,
electromagnetic energy is carried by the electric and magnetic field components. In free space
and at points sufficiently far away from the source, these fields are perpendicular to each other
and to the direction of the propagation. Such a wave is referred to as a TEM (Transverse
ElectroMagnetic) wave. In this course, we will only consider TEM waves. The electric and
magnetic field vectors both oscillate at the frequency of the transmitted radiation. It is
customary to drop the known sinusoidal time variation form the field expressions. Thus,
the field vectors are in fact phasors. The field vectors may oscillate in a single direction, in
which case the field is said to be linearly polarized. In certain cases, the tip of the electric (or
magnetic) field vector will traverse an ellipse in the plane perpendicular to the propagation.
Then the field is said to be elliptically polarized. As a special case of elliptic polarization, we
may have circular polarization. For a linearly polarized field, if the direction of the electric
field vector is parallel to the earth’s surface the wave is said to be horizontally polarized, and
if it is perpendicular, the wave is said to be vertically polarized. Although it is possible to
have other directions, any field can be decomposed into a sum of a vertically polarized and a
horizontally polarized waves. Therefore, we will confine ourselves to the study of these two
waves. It must be emphasized that a circularly polarized wave can also be decomposed in a
similar manner.



1.3. ELECTROMAGNETIC WAVE PROPAGATION CONCEPTS 5

The cross product of the electric and magnetic field vectors is another vector called the
Poynting Vector, and is denoted by S.

S(W/m*) =E(V/m)xH(A/m). (1.3.1)

For TEM waves this vector points in the direction of propagation. Its magnitude gives the
power density. It must be noted that the field quantities in (1.3.1) are rms values so that
|S| gives the average power. For TEM fields in free space, the magnitude of electric and
magnetic field vectors are related by the equation

E| = % H] (1.3.2)
where
Zo = ? = 1207 = 377Q (1.3.3)
0

is called the intrinsic impedance of the free space, o = 1.25664 x 10" * Hm ! is the perme-
ability and gy = 8.854187817 x 10 2 Fm ™! is the permittivity of the free space. In some
applications, the electric field is also required. Using (1.3.1) and (1.3.2) in (1.2.9) we can
obtain

R
The peak field is then given by

v/ 60FP.G, (0,
By = th (6,9) (V/m). (1.3.5)
and the instantaneous field by

B (1) = YO tgt 0:9) s (ot — ) (1.3.6)

where ¢ is a constant phase. Generally, instead of trigonometric notation, (1.3.6) is written

as
) = YOROOD

and the exponential is dropped in phasor notation. Unless otherwise stated, the field strength
will be given in rms phasor notation without any subscript.

Another important quantity that can be derived from Maxwell’s equations is the velocity
of propagation of the radio waves which is given by

1
HoZo

In a medium other than the free space, the intrinsic impedance and velocity of propaga-
tion can be found using the same formulas with permeability and permittivity replaced by
that of the propagation medium. It is customary to define

€= &80 (1.3.8a)
1= I Ho (1.3.8b)

Erms =

(V/m). (1.3.4)

=2.998 x 10°m/s. (1.3.7)

C =
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where €, and p, are called the relalive permittivity and the relative permeability, respectively.
In most media, . = 1 and n = /2, is defined as the refractive index of the medium. Then

we get
1 7
Z:\/E: Hello _ o _ 7o (1.3.9)
g
1

Eréo \/57“ €o n

c

v = = —. 1.3.9b
VHE  \[Erfigt0 N ( )
Another important quantity related to wave propagation is the wavelength. Wavelength

is the space equivalent of the period of a periodic signal. Since the waves propagate as
they move, the snapshot of a sinusoidal wave will have sinusoidal variation in space and the
distance between the peaks (or nulls) of the wave is the wavelength, denoted by A. Inverse of

wavelength would be the space equivalent of frequency. In practice, we use the wavenumber
defined as
27
k=—. 1.3.10
” (1.310)

An important property of a wave is that the wavelength and frequency are related to the
velocity by

v=A/f. (1.3.11)

The constant phase term in (1.3.6) can now be expressed explicitly as follows. The phase
reference is taken as the transmitter and since it takes R/c seconds for the wave to travel a
distance of R, the field at a distance of R from the transmitter becomes

E(t) =~ 601G (0, 9) cos w <t — E) = X 6051 (0,¢) cos (wt —kR). (1.3.12)

R c R

1.4. Receiving Antennas and Reciprocity

Antennas are also used to receive energy from a propagating radio wave. The antenna
couples the surrounding environment to the receiving system. It is convenient to characterize
a recelving antenna by an effective receiving area A, so that the power received by the antenna
is given by the incident power density multiplied by the effective area, i.e.,

P = AP (1.4.1)

where P denotes the incident power density (W/m?), A, is the effective (equivalent) area
(m?), and P, is the received power ( W). Such an equation would be valid only if a plane wave
is incident on the antenna. Otherwise the relation would be much more complicated. With
this definition, it can be shown that under matched polarization and impedance conditions
the effective area A, is related to the gain G as
Ao

Ae = 47TG. (1.4.2)
This relationship is true for any type of antennas, even if the antenna itself does not have a
real aperture as in the case of dipole antennas. In the case of aperture antennas, the effective
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area is proportional to the physical area. In general, effective area will be smaller than the
physical area and we have

Ae = 1,4, (1.4.3)

where A, is the physical are and 77, < 1 is called the aperture efficiency.

The relation is a result of the reciprocity principle, and therefore can only be applied to
reciprocal antennas. However, most practical antennas are reciprocal. Reciprocity implies
that receiving and transmitting properties of the same antenna will be similar. Thus, an
antenna responds differently to waves incident from different directions. As in the case of
directivity or gain, we can define effective area as a function of direction by the relation

22
A (0,¢) = 2G(0.9). (1.4.4)

47

The effective area by itself is used to imply the maximum value for an antenna.

In calculating the power received by an antenna, one must take polarization into account.
If the polarization of the antenna and the incident wave are different, the antenna will not
receive any signal. The electromagnetic waves impinging on an antenna, causes the charges
on the antenna to oscillate back and forth and the receiving circuitry senses the resulting
currents. Now, consider a dipole antenna. If the electric field of the radio wave is along
the antenna, there is a long conductor along which the charges can move. However, if the
electric field is perpendicular to the antenna, the charges do not have much space to move in
that direction and the received power will be very small. Thus, a dipole antenna will receive
the waves polarized in its direction while it will not respond to orthogonally polarized waves.
Due to reciprocity, the dipole antenna will radiate electromagnetic waves polarized along its
direction when used as a transmitting antenna. Fquation (1.4.4) implies that polarization
characteristics of an antenna is the same when receiving or transmitting. However, when

using (1.4.1) the polarization properties of the antenna and incident wave must be same. If
this is not the case, (1.4.1) should be modified as

P.=A.Pcosa (1.4.5)

where cos «v is the polarization mismatch factor.

1.5. Friis’ Transmission Formula

The definitions in the previous sections make it relatively easy to derive an expression
for the received signal in a line-of-sight communication link. With reference to Fig. 3, the
power density radiated by the transmitter at the location of the receiving antenna will be

_ Pth <6t7 gbt)

P 1.5.1
47 R? ( )
The power received by the receiving antenna will then be
P, = A, (0,,0,)P. (1.5.2)
Using the reciprocity relation given in (1.4.4) along with these equations, we get
22 PGy (0, 6,)
P=22G,0,,¢,) ————. 1.5.3
47T ( i ¢T‘) 47TR2 ( >
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Gr@M :

< M@D 5

Receiving antenna

Tranamitting antenna

FIGURE 3. A transmitting and receiving communication system.

In practice, there may be impedance mismatch at the transmitter and receiver. If I'; is
the reflection coefficient in the feed line for the transmitter, then only (1 — ]Pt]2> factor of the
input power will be radiated. Similarly, if T, is the input reflection coefficient for the receiver,
only (1 — ]Fr]2> factor of the power will be transferred to the receiver. Furthermore, if there
is a polarization mismatch, then the received signal should be multiplied by the mismatch
factor. Thus (1.5.3) should be written as

P
1672 R2

Generally, the impedance and polarization mismatch factors are not considered as will be

P, = G, (0,,¢,) G (0, ¢,) (1 — |Tuf?) (1= |T,°) cosa. (1.5.4)

explained shortly. In communication systems, the antennas are aligned to look at each other
and (1.5.3) is often written as

o
PT‘ - PthGrm. (155>
It is customary to write (1.5.5) in logarithmic form as
AT R
101og (P,) = 101og (P,) + 10log (Gy) + 101log (G,) — 20log 7; . (1.5.6)
0

If P, and P; are given in watts, 10log (F,) and 10log (P;) are the powers in dBW, that is
they are the powers expressed in decibels with respect to 1 watt. In communication systems,
the decibel powers are generally expressed with respect to 1 mW and expressed as dBm.
10log () is the antenna gain in decibels with respect to an isotropic antenna, since the gain
of an isotropic antenna is 1. These quantities are expressed by dBi (decibels over isotropic).
Therefore, (1.5.6) can be written as

4
P, (dBm) = P, (dBm) 4 G, (dBi) + G, (dBi) — 20log,, :—R. (1.5.7)
0

The last term in (1.5.7) is called the free space path loss expressed in dB. It represents the
loss of power due to spherical spreading. In words, this final equation says that

received power = transmitted power + antenna gains — losses.
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Thus the impedance and polarization mismatch terms can be included in the losses along
with the free space path loss. Actually any other losses in the system such as the atmospheric
absorption loss, fading loss, etc., can also be included in this last term.

1.6. The Radar Equation

Radar detects objects by receiving the power reflected from them. If a target is at a
distance R from the radar, the power density at the location of the target is
PG, (0
Ptarget _ t t( ty th) ] (161>
47 R?
where P, is the transmitted power and Gy (0;,¢,) is the transmit antenna power pattern.
The target intercepts a portion of the incident power and reradiates in various directions.
The amount of the power intercepted by the target and reradiated back in the direction of
the radar is measured by the radar cross section (back scattering cross section) of the target,
denoted by ¢ and is defined by the relation

PG (0, ¢) ©
ATR?  4mR?
The radar cross section has the units of area and its a characteristic of the target only. It is

a measure of the size of the target as seen by the radar. The power received by the radar is
then

Pradar =

(1.6.2)

PGy (0i, 1) o )\(Q)Ptha

P, = A, (0,,¢,) = .
" e amet 009 (4m)* R

(1.6.3)

The right most term is obtained by using (1.4.4). It is assumed that the radar uses the
same antenna for both transmitting and receiving, and that the target is in the direction of
antenna pattern maximum.

1.7. Signal to Noise Ratio

Signal reception is determined not only by the signal strength at the receiver but also by
noise. In fact, the ratio of the signal power to noise power is defined as the signal to noise
ratio (SNR) and is what determines the reception. In this course we will mainly deal with
the signal strength. However, we will also consider the sources of noise.

The noise power present at the input of a receiver is the sum of internal noise and
external noise. Internal noise is basically the thermal noise generated within the receiver
and is covered in texts on radio receivers. We will be concerned with external noise. The
main types of external noise are man-made interference, atmospheric noise, cosmic noise,
and also thermal noise which is produced by the heated atmosphere and earth surface.

The thermal noise is generated by the random motion of conduction electrons in the
ohmic parts of the receiver circuitry. This noise is directly proportional to the temperature
of ohmic parts of the receiver and the receiver bandwidth. The available thermal noise power
at the input of a receiver of noise band with B,, (Hz) at a temperature T' ( K) is given by

N; = kTB, (1.7.1)
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where k = 1.380658 x 1072 JK ! is the Boltzmann’s constant. The noise power in practical
receivers is often greater than this value due to reasons beyond the scope of this course. The
noise figure F' of a receiver is defined as

noise power at the output of the practical receiver N,
F= P P P - (1.7.2)

noise power at the output of an ideal receiver kT B,A

which may also be written as the ratio of the
No o S’ZNO o Sz/N'L

N:A  ASN;  S,/N,’

In communication systems and in radar, the minimum detectable signal, or sensitivity is the
value of 5; that corresponds to the minimum ratio of output SNR necessary for detection and
is denoted by Spin. The SNR necessary for detection depends on how the receiver processes
the signal.

Once the SNR for good reception and the noise power is known, one can easily find the
required signal strength at the input of the receiver, thus all the pertinent characteristics
of a radio link system can be determined. Radio wave propagation deals basically with the
calculation of the signal strength.

=

(1.7.3)

1.8. Examples

EXAMPLE 1. Find the free space path loss for two cases: (a) r = 10km, f = 15kHz and
(b) R =10%, f =10 GHz.

SOLUTION 1. The free space path loss is given by

I <47TR>2 B <47er>2
Ao c
where ¢ = 3 x 10°m/ s is the velocity of light. Substituting the numerical values gives:
(a) L =395 or15.9 dB,
(b) L =1.75x 10%" or 272.4 dB.

The first case corresponds to ULF communication. The second case corresponds to space
communication. The distance of Venus from earth is about 108 km.

EXAMPLE 2. Suppose that the sensitivity (minimum received power for reliable commu-
nication) of a receiver is Spin = —110 dBm. Assuming a line of sight communication link,
find the required transmitter power for R = 400km and f = 1.5 GHz, G, = G, = 30 dB.

SOLUTION 2. The free space path loss is L = 148 dB. Using (1.5.7) we have
—110 = P, + 30 + 30 — 148
which gives P, = —22 dBm or F, = 6.3 uW.

Such a small value is basically due to high receiver sensitivity and free space communica-
tion.

EXAMPLE 3. Suppose that a communication system uses 15 kHz bandwidth and requires
10 dB SNR for reliable detection. The receiver has a noise figure of F' = 4 dB. Assuming
a line of sight communication link, find the required transmitter power for R = 50km and

f=15MHz, G; = G, =6 dB.
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SOLUTION 3. The noise power per Hz at room temperature (20°C) is
KT =1.380658 x 10 JK ' x 293K =4.04 x 10 *".

This value is commonly taken as —203 dBW or —173 dBm. The recewer sensilivity can be
found as

Smin = KT BF <i> =173 dBm+ 4244+ 10 = —117 dBm

where 42 = 101og,, (15000) is the bandwidth in dB. Using same steps as in example (3) we
gel

P=—-117T-6-6+90 = —39 dBm
or P, = 1.2 x 107*mW, where 90 dB is the free space path loss.

EXAMPLE 4. Voyager 1 entered deep space and is currently at a distance of about 110
AU (1 AU is the distance of earth to sun which is 149,597,871km). It uses a 3.7 meter
parabolic antenna at X band (3.6 cm). Assuming a transmitter power of 20W determine the
power recerved by an earth recewver using a 34 meter parabolic antenna.

SOLUTION 4. The distance of Voyager 1 to earthis R = 110x1.49x 10! = 1.65x 10 m.
The free space path loss is then L = 315 dB. The gain of a parabolic antenna is given by

AN
G = gap <)\—0>

where €,, is the aperture efficiency which can be taken as 0.75 for most practical antennas.

Thus
3707\ >
G, = 101og,q (0.75 <3—67T> ) — 48.9 dB,
34007 >
G = 10logyo | 075 — 68.2 dB.

Using (1.5.7) gives
P, =434489 +68.2 — 315 = —154.9 dBm.

Comparing this value to the sensitivity of practical antennas, it is not surprising that com-
munzcation with Voyager 1 is still possible.

EXAMPLE 5. The distance from Earth to the edge of the observable universe is about 1/
billion parsecs (4.6 x 10" light years). Assuming that Voyager 1 reaches that distance, what
would be the radius of the receiving antenna that would receive a power of —173 dBm?

SOLUTION 5. A light year is the distance light travels in a year. Thus
1 light year = 365 x 24 x 60 x 60 x 3 x 10°m = 9.46 x 10" m.

Thus the distance from Earth to the edge of the observable universe is R = 4.35 x 10% m.
The free space path loss is then L = 583 dB. Using (1.5.7) gives

—173 =434+ 485+ G, — 583
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or G, = 318.5 dB. If a parabolic antenna with an aperture efficiency of 0.75 is used this
would mean an antenna radius of

g\ 2
G, = 0.75 <%> = 10%% = d = 1.05 x 10" m = 702 AU.
which appears to be quite impractical (to give an idea, the distance of earth to Pluto is only
32.5 AU). However, it must be kept in mind that the receiver sensitivity can be improved by
signal integration.



