EE 522 Spring 2010
Midterm Exam Solutions

1. Consider the boundary value problem

ou 0?u

— = — 0<xz<1

ot Ox?’ =r=0
u(z,0) = sinmz, 0<z<I1,
w(0,t) = wu(l,t)=0, t>0.

Obtain a finite difference scheme by using forward difference in time (¢) and central difference
in space () coordinates. Using h = Ax = 0.25, k = At, and r = k/h? = 0.5, determine the
value of u (0.5,0.125).

Solution With the notation wu,, = u (ph, gk) we can write

ou U —u

g1 . .
o o %, forward difference in ¢ at p, g

d%u U — 2Up, + U

+1, ~1, . )
o~ PP PI___P 28 central difference in = at p,q

Ox? h?

Up,g+1 — Upq Upt1,q — 2Upg + Up—14 . . .
p = 2 ,  finite difference equation.

Re-arranging the finite difference equation, we get
Upgi1 =T (Upp1,g + Up-1,4) + (1 — 27) Upg

which is an explicit formula. With r = 0.5, we have k = rh? = 0.031 25, and we get

1
Upgt1l = 5 (Up+1,q +up 1) -
2

Using this scheme we get the following result

z=0 x=0.25 xz=0.5 x=0.75 rz=1
t=0 sin0m =0 sin0.257 = v/2/2 sin0.57 =1 sin0.757 =+/2/2 0
t=10.03125 0 1/2 V2/2 1/2 0
t=10.0625 0 V2/4 1/2 V2/4 0
t=0.09375 0 1/4 V2/4 1/4 0
t=0.125 0 V2/8 1/4 V2/8 0

Note that the first line is from the initial condition u (z,0) = sin7x, and the z =0 and z = 1
columus are from the boundary conditions w (0,7) = u (1,¢) = 0.

The exact solution of the given BVP can be shown to be
u(z,t) =e ™ sinm,

Thus the exact value is u (0.5,0.125) = [e*f"t sin m} — 0.291212933 2

=0.5,4=0.125



2. If L is a positive definite, self-adjoint operator and L® = g has a solution ®g, show that the
functional

where @ and ¢ are real functions, is minimized by the solution ®.
Solution Since L is positive definite, we have (Lu,u) > ¢? ||u|| which means (Lu, u) is real. Further-

more, since the operator is symmetric, we have (Lu,u) = (u, Lu) . Now consider I (P + cw)
where w is a real function with ||w|| =1 and & > 0.

I(®+ew) = (L(P4ew),(P+ew)) —2(P+ew),g)
= (L®+elw), (P +ew)) —2((P+ew),g)
= (LD, D) + e (Lw, @) + e (LD, w) + & (Lw,w) — 2(®, g) — 2¢ (w, g)
= (L2,2) —2(2,9) + ((Lw, @) + (L, w) — 2 (w,g)) & + & (L, w)
1(®)
Thus

T (D +ew)— (D) =01 = ({(Lw,®) + (LD, w) — 2 (w,g)) e + & (Lw,w)

To make this functional stationary we must equate the coefficient of € to zero, i.e.:

(10, @) + (LB,0) — 2 {w,g) = 0
2(L® —g,w) = 0, Vw.

since (Lw,P) = (w, LP) = (LP,w) (P and g are real functions) and (w,g) = (g,w). Since
(L® — g,w) = 0 must be satisfied for any w, we must have L® — g = 0 or equivalently
L® = g which means that the solution @y of the equation L® = ¢ is a stationary point for
the functional I (). This stationary point is a minimum since L is positive definite.

3. Consider a long hollow conductor with a uniform U-shape cross-section as shown in Fig.1.

(a) With the mesh structure shown in the figure, write down the equations for the potentials
at all internal points.
(b) Solve the resulting system to determine the potential at point E.

Note: You should use the symmetry of the structure.

Solution We know that the central finite difference approximation for Laplace’s equation gives the
potential at a point as the mean value of its four neigbors. Observing that ' = X, D =Y,
C =7, and W = B due to symmetry and using the finite difference stencil we can write

100+100+0+ D

4
100+ E+0+C

4
B+D+0+0

4
A+100+C+0

4
B+100+8B+0

4

B =

= W aQ ©
I
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Figure 1: Figure for problem 3.

Solving this system (starting from the last) we get

1
A = §B+25
[A+100+C+0 250 2
B — +100+C' + ] g 2z,
L 4 A:%B+25 7 7
[ B+ D+0+4+0 125 7
¢ - |BHDH0+ ] Lo=B LTy
i 4 P29, 20 13 26
[100+ E4+04+C 2850 26
Ho_ +E+0+ ] D L2
1 1 D 1112
oo 00 + 100 + 0 + 1 LB 5
4 Do 20y 181

4. The integral equation

/ w(Z)(z—2)d =1, —w<z<w

w

can be cast into matrix equation

Ax=Db

by using the Method of Moments. Using pulse basis functions and delta test functions (point
matching), determine the elements of the coefficient matrix, A,,,, and the excitation vector,
by, Use N equal intervals over the region [—w, w] so that each interval has a length A = 2w/N
and test the equation at the center of each interval, ie., at z, = —w + A(n—1/2), for
n=1,...,N.

)



Solution If we divide the interval [—w, w] into N equal parts, each subinterval will be defined as
[—w+A(n—1),—w+ An|. We define

1 for —w+An—-1)<z<—-w+An
P (2) =

0 otherwise
and write

w(z) =Y aupa (2)

Using this expansion in the integral equation we get

w N
/ anpn () (z =2 dz = 1
T n=1

wi

N w
Z“n/ P () (z=2)de' = 1
n=1 —w

N —w+An

Zan/ (z—2)d = 1
n—1 —w+A(n—1)

FEvaluating the integral yields

al 1
Zan <zA—|—wA—A2n—|—2A2> =1

n=1

We test the equation at z, = —w + A (m — 1/2) giving

al 1
Zan <zmA +wA — A?n + §A2> =1
n=1

N

AQZ(m—n)an =1 m=1,...,N

n—1
Thus
Apn = A%(m —n)
by, = 1
It must be noted that the resulting matrix will be singular for N > 2. This implies that the

solution to the matrix equation will not be unique. This is due to the fact that the solution
to the integral equation is not unique, either. Two solutions are given below:

2 3 L oy

u(z) = z ~ 5t T gV
3 3 2w’ 45
_ .3 2
u(z) = z 2 T W z+1
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Figure 2: Figure for problem 5.

5. Consider the mesh shown in Fig.2. The shaded region is conducting and has no elements.
Calculate the global FEEM matrix elements (s 19 and (s 3 in terms of the local FEEM matrices

)

17] )

i,7=1,2,3,e=1,...,16 (Do not try to calculate local FEEM matrices!). Indicate your

local indexing. Do not try to impose any boundary conditions.

Solution There are two types of elements in the mesh as shown below with corresponding local

indexing:

Figure 3:

With this local indexing, we can write

03,10 = ng,l;)+01(,125)

Cos = CA+C + a8+

14 15
)+ iy



