
Vector and Function Spaces,Inner Product, NormEE 522 Spring, 2008In this note we give the basic mathematical background on linear spaces. It is assumed that the studentis familiar with three-dimensional vector analysis. The collection of vectors encountered there follows certainlaws of combination which makes it an example of an algebraic system called linear spaces (or vector spaces).We first define the concept of a field. In abstract algebra, a field is an algebraic structure in which theoperations of addition, subtraction, multiplication and division (except division by zero) may be performed,and the same rules hold which are familiar from the arithmetic of ordinary numbers.Definition 1 A field is a triplet (F , + , ∗ ) where F denotes a set, + and ∗ denote addition and multipli-cation operations that satisfy the following axioms:1. F is closed under + and ∗, that is for all a, b belonging to F , both a+ b and a ∗ b belong to F (or moreformally, + and ∗ are binary operations on F ),2. Both + and ∗ are associative, that is for all a, b, c in F , a+(b+ c) = (a+ b)+c and a∗(b ∗ c) = (a ∗ b)∗c,3. Both + and ∗ are commutative, that is for all a, b belonging to F , a+ b = b+ a and a ∗ b = b ∗ a,4. The operation ∗ is distributive over the operation +, that is for all a, b, c, belonging to F , a∗ (b+ c) =(a ∗ b) + (a ∗ c),5. There exists an element 0 in F , such that for all a belonging to F , a + 0 = a. This element is calledthe additive identity.6. There exists an element 1 in F different from 0, such that for all a belonging to F , a ∗ 1 = a,7. For every a belonging to F , there exists an element −a in F , such that a+(−a) = 0, and −a is calledthe additive inverse.8. For every a �= 0 belonging to F , there exists an element a−1 in F , such that a ∗ a−1 = 1, and a−1 iscalled the multiplicative inverse.Example 2 The set of real numbers denoted by R, together with the usual addition and multiplicationoperations is a field.Example 3 The set of complex numbers denoted by C, together with the usual complex addition and complexmultiplication operations is a field.Definition 4 Let F be a field (such as the real numbers or complex numbers), whose elements will be calledscalars. A vector (linear) space over the field F is a set V together with two binary operations,• vector addition: V × V → V denoted �v + �w, where �v, �w ∈ V , and• scalar multiplication: F × V → V denoted a�v, where a ∈ F and �v ∈ V ,satisfying the axioms below. Four of the axioms require vectors under addition to form an abeliangroup, and two are distributive laws.1. Vector addition is associative, that is for all �u,�v, �w ∈ V , we have �u+ (�v + �w) = (�u+�v) + �w.2. Vector addition is commutative, that is for all �v, �w ∈ V , we have �v + �w = �w +�v.3. Vector addition has an identity element, that is there exists an element �0 ∈ V , called the zero vector,such that �v +�0 = �v for all �v ∈ V .4. Vector addition has inverse elements, that is for all v ∈ V , there exists an element w ∈ V , called theadditive inverse of �v, such that �v + �w = �0.5. Distributivity holds for scalar multiplication over vector addition, that is for all a ∈ F and �v, �w ∈ V ,we have a (�v + �w) = a�v + a�w.



6. Distributivity holds for scalar multiplication over field addition, that is for all a, b ∈ F and �v ∈ V , wehave (a + b)�v = a�v + b�v.7. Scalar multiplication is compatible with multiplication in the field of scalars, that is for all a, b ∈ F andv ∈ V , we have a (b�v) = (ab)�v.8. Scalar multiplication has an identity element, that is for all �v ∈ V , we have 1�v = �v, where 1 denotesthe multiplicative identity in F .Example 5 The usual three dimensional vectors define a vector space with the usual vector addition andmultiplication by a scalar.Example 6 Let CN be the set of N-tuples of complex numbers. An element in CN will be denoted by�v = [ v1 v2 · · · vN ]. Let �v and �w be two vectors in CN . We define the addition as�u = �v + �w = [ v1 + w1 v2 + w2 · · · vN + wN ] .We define multiplication with a complex number (scalar) a as�u = a�v = [ av1 av2 · · · avN ] .Then CN is a vector space defined over the field of complex numbers C.We will drop the arrow from the vectors as a shorthand. It should be clear whether a variable is a vectoror scalar from the context, and if it is not clear, we will use the arrow notation.Example 7 (Function space) Let L2 [a, b] be the set of all complex valued functions defined over an interval[a, b] that is square integrable, i.e.,L2 [a, b] = {f | f : [a, b]→ C and ∫ ba |f (x)|2 dx <∞}We can define the addition of two functions, say f and g as(f + g) (x) = f (x) + g (x)and multiplication by a complex number (scalar) α as(αf) (x) = αf (x) .Then F[a,b] is a vector space defined over the field of complex numbers C.Definition 8 Any subset W of the vector space V defined over the field F that also satisfies the vector spaceaxioms is called a subspace of V , and is denoted by U ⊂ V .Theorem 9 Any subset W of a vector space V defined over the field F that is closed under vector additionand scalar multiplication is a subspace over the same field F . That is if for all u, v in W and for all a, b inF , au+ bv is also in W , then W is a subspace of V .Definition 10 Let U = {vi}Ni=1 be N elements in a vector space V . The set U is said to be a linearlydependent set if there exists a set of scalars {αi}Ni=1 such thatN∑i=1 αivi = 0. (1)The set U is a linearly independent set if it is not linearly dependent, which means that (1) is satisfied if andonly if αi = 0 for i = 1,2, . . . ,N .



Definition 11 Let U = {vi}Ni=1 be N elements in a vector space V . The span of U is defined as the set ofall linear combinations of its elements,Sp {U} = { N∑i=1 αivi∣∣∣∣∣ for any choice of αi ∈ F} .Definition 12 A linearly independent set that spans the space V is said to form a basis of V .Theorem 13 Any basis of a vector space will have the same number of elements if it is finite. This numberis called the dimension of the space.Example 14 In the three-dimensional Euclidean space the three unit vectors along the coordinate axes, i.e.the set {âx, ây, âz} is a basis. Hence the physical space is three-dimensional.Example 15 CN is N dimensional.Example 16 No finite set can span the function space L2 [a, b]. It is said to be infinite dimensional. Thecountable set {sin (nπT x) , cos (nπT x)}∞n=0 spans the function space since any function in L2 [a, b] can be ex-panded into a Fourier series.Theorem 17 If U = {bi}Ni=1 is a basis of V , then any vector v in V can uniquely be written asv = N∑i=1 αibi.The unique coefficients αi are known as the components of v along bi.Definition 18 Let V be a vector space defined over the field of complex numbers. A function ‖·‖ that mapselements of V into non-negative real numbers, i.e.‖·‖ : V → R+that satisfies the properties1. for all v, w in V , ‖v +w‖ � ‖v‖+ ‖w‖ (triangle inaquality)2. for all v in V and for all α in C ‖αv‖ = |α| ‖v‖3. for all v in V ‖v‖ � 0 and ‖v‖ = 0⇔ v = 0is called a norm defined on the vector space V .A norm is a function which assigns a strictly positive length (or size) to all vectors in a vector space,other than the zero vector.Example 19 For the vector space CN with elements v = [ v1 v2 · · · vN ],‖v‖ = N∑i=1 |vi|2defines a norm.Example 20 For the function space L2 [a, b] with elements f (x)‖f‖ = ∫ ba |f (x)|2 dx <∞defines a norm.



Definition 21 Let V be a vector space defined over the field of complex numbers. A function 〈·, ·〉 that mapselements of V × V into complex numbers, i.e.〈·, ·〉 : V × V → Cwhich satisfies the properties1. 〈x, y〉 = 〈y, x〉∗, for all x, y ∈ V , (conjugate symmetry),2. 〈ax+ by, z〉 = a 〈x, z〉+ b 〈y, z〉, for all x, y, z ∈ V , and for all a, b ∈ C, (linearity in the first variable),3. 〈x,x〉 � 0, and 〈x, x〉 = 0⇔ x = 0,where (·)∗ denotes complex conjugation, is called an inner product (scalar product) defined on the vectorspace V .Example 22 Let v and w be two elements of the vector space CN ,〈v, w〉 = vwH = N∑i=1 viw∗idefines an inner product.Example 23 Let f and g be two elements of the function space L2 [a, b],〈f, g〉 = ∫ ba f (x) g∗ (x) dxdefines an inner product.Theorem 24 Let V be an inner-product space (i.e., a vector space with an inner product) and x be anarbitrary element of V . The function √〈x, x〉 is a norm. We call this norm the natural norm of the inner-product space.Definition 25 Two elements of an inner product space are said to be orthogonal if their inner product iszero, 〈x, y〉 = 0 ⇔ x⊥y.Definition 26 Let U and W be two subspaces of an inner product space V . U and V are said to be orthogonaliff all elements in U are orthogonal to all elements in W ,U⊥W ⇔ 〈x, y〉 = 0 ∀x ∈ U ∧ ∀y ∈W.Example 27 The x = 0 plane and the z = 0 plane are both subspaces of the three-dimensional space. Thesetwo subspaces are ortogonal.Definition 28 A basis of an inner product space in which the elements are mutually orthogonal and ofmagnitude 1 is called an orthonormal basis.Definition 29 The orthogonal complement W⊥ of a subspace W of an inner product space V is the set ofall vectors in V that are orthogonal to every vector in W , i.e., it isW⊥ = {x ∈ V | 〈x, y〉 = 0 for all y ∈W} .Theorem 30 Let W be a subspace of an inner product space V . Any element x of V can be written uniquelyin the form x = x1 + x2where x1 ∈ W and x2 ∈W⊥. x1 is called the orthogonal projection of x onto the subspace W . Furthermorex1 is the vector in W that minimizes ‖x−w‖, i.e.,minw∈W ‖x− w‖is achieved when w = x1.Theorem 31 Let u1, . . . , uk be a basis of the subspace W of an inner product space, and A be the matrixwith these vectors as columns, then the projection of a vector x onto W is given byx1 = A (AHA)−1 AHx.


