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In this note we give the basic mathematical background on linear spaces. It is assumed that the student
is familiar with three-dimensional vector analysis. The collection of vectors encountered there follows certain
laws of combination which makes it an example of an algebraic system called linear spaces (or vector spaces).
We first define the concept of a field. In abstract algebra, a field is an algebraic structure in which the
operations of addition, subtraction, multiplication and division (except division by zero) may be performed,
and the same rules hold which are familiar from the arithmetic of ordinary numbers.

Definition 1 A field is a triplet (F, + , * ) where F denotes a set, + and * denote addition and multipli-
cation operations that satisfy the following axioms:

1. Fis closed under + and *, that is for all a, b belonging to F', both a+b and a* b belong to F' (or more
formally, + and % are binary operations on F),

2. Both + and x are associative, that is for all a, b, ¢ in F', a+(b + ¢) = (a + b)+c and ax(b * c) = (a * b)*c,
3. Both 4+ and % are commulative, thatl is for all a, b belonging to F', a +b=0b+a and axb="bx*a,

4. The operation * is distributive over the operation +, that is for all a, b, ¢, belonging to F', a*(b+c) =
(a*b)+ (ax*c),

5. There exists an element 0 in F', such that for all a belonging to F', a +0 = a. This element is called
the addilive identity.

6. There exists an element 1 in F' different from 0, such that for all a belonging to F, a+1 = a,

7. For every a belonging to F, there exists an element —a in F, such that a + (—a) =0, and —a is called
the addilive inverse.

8. For every a # 0 belonging lo F, there exists an element o' in F, such that axa ' =1, and o~ is
called the multiplicalive inverse.

Example 2 The set of real numbers denoted by R, together with the usual addition and multiplication
operations is a field.

Example 3 The set of complex numbers denoted by C, together with the usual complex addition and complex
multiplication operations is a field.

Definition 4 Let F be a field (such as the real numbers or complex numbers), whose elements will be called
scalars. A vector (linear) space over the field F is a set V together with two binary operations,

e vector addition: V x V. — V denoted U + W, where U,w € V, and

e scalar multiplication: ' xV — V denoted o, where a € F and v € V,

satisfying the axioms below. Four of the axioms require vectors under addition to form an abelian
group, and lwo are distributive laws.
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1. Vector addition is associative, that is for all W,0,W € V, we have €+ (¥ + W

— —

)= (i +7) +w.
2. Vector addition is commutative, that is for all v, € V', we have U+ W = W + ¥.

3. Vector addilion has an identity element, that is there exisls an element 0e V', called the zero wveclor,
such that U +0 =47 for allv € V.

4. Veclor addition has inverse elements, that is for allv € V', there exists an element w € V, called the
additive inverse of U, such that v+ w = 0.

5. Distributivity holds for scalar multiplication over vector addition, that is for all a € F and U,%W € V,
we have o (T4 W) = a¥ + aw.



6. Distributivity holds for scalar multiplication over field addition, that is for all a,b € F and v € V, we
have (a 4 b) U = a¥ + b¥.

7. Scalar multiplication is compatible with multiplication in the field of scalars, that is for all a,b € F' and
v €V, we have a (b)) = (ab) .

8. Scalar multiplication has an identity element, that is for all ¥ € V', we have 1¥ = ¥, where 1 denotes
the multiplicalive identity in F'.

Example 5 The usual three dimensional vectors define a vector space with the usual vector addition and
multiplication by a scalar.

Example 6 Let CN be the set of N-tuples of complex numbers. An element in CN will be denoted by
7= [ VL Vg ot UN ] Let ¥ and % be two vectors in CV. We define the addition as

U=T+UW= [ v+ w ve+we -+ Uy FWN ]
We define multiplication with a complex number (scalar) a as
U =al = [ avy avy -+ QUN ]
Then CN is a vector space defined over the field of complex numbers C.

We will drop the arrow from the vectors as a shorthand. It should be clear whether a variable is a vector
or scalar from the context, and if it is not clear, we will use the arrow notation.

Example 7 (Function space) Let Lo [a,b] be the set of all complex valued functions defined over an interval
[a,b] that is square integrable, i.e.,

Lo, b] = {f|f:[a,b] o C and / |f(x)|2dx<oo}

We can define the addition of two functions, say f and g as
(f+9) @) =f(2)+g()
and multiplication by a complex number (scalar) o as
(@f) (@) = af (z).
Then Fi, ) is a vector space defined over the field of complex numbers C.

Definition 8 Any subset W of the vector space V' defined over the field F' that also satisfies the vector space
axitoms is called a subspace of V', and is denoted by U C V.

Theorem 9 Any subset W of a vector space V' defined over the field I that is closed under vector addition
and scalar multiplication is a subspace over the same field F'. That is if for all w,v in W and for all a,b in
F, au+bv is also in W, then W is a subspace of V.

Definition 10 Let U = {Ui}fil be N elements in a vector space V. The set U is said to be a linearly
dependent set if there exists a set of scalars {ai}fil such that

N
Zawi =0. (1)
=1

The set U is a linearly independent set if it is not linearly dependent, which means that (1) is satisfied if and
only if ; =0 fori=1,2,...,N.



Definition 11 Let U = {Ui}fil be N elements in a vector space V. The span of U is defined as the set of
all linear combinations of its elements,

N

Sp{U} = {Zaivi

i=1

for any choice of a; € F} .

Definition 12 A linearly independent set thatl spans the space V' is said to form a basis of V.

Theorem 13 Any basis of a vector space will have the same number of elements if it is finite. This number
is called the dimension of the space.

Example 14 In the three-dimensional Fuclidean space the three unit veclors along the coordinale axes, i.e.
the set {ay,ay,d.} is a basis. Hence the physical space is three-dimensional.

Example 15 CV is N dimensional.

Example 16 No finite set can span the function space Lo [a,b]. It is said to be infinite dimensional. The

counlable sel {sin (%x) , COS (%x)}zozo spans the function space since any function in Lg [a,b] can be ex-

panded into a Fourier series.

Theorem 17 IfU = {bi}fil is a basis of V, then any vector v in V can uniquely be writlen as

N
v = Z Oéibi.
i=1
The unique coefficients c; are known as the components of v along b;.

Definition 18 Let V' be a vector space defined over the field of complex numbers. A function ||-|| that maps
elements of V into non-negative real numbers, i.e.

||| : V —RT
that satisfies the properties

1. for allv,w in 'V,
lv+w| < |0l +|lw||  (triangle inaquality)

2. for allv in V and for all o in C
lewl| = |e |Jv]]

3. forallvinV
oI 20 and |||=0<v=0

is called a norm defined on the vector space V.

A norm is a function which assigns a strictly positive length (or size) to all vectors in a vector space,
other than the zero vector.

Example 19 For the vector space CN with elements v = [ vy Uz - UN ],

N

2

loll = il
i=1

defines a norm.

Example 20 For the function space Lg [a,b] with elements f (z)

b
17 = / 1 (@) da < oo

defines a norm.



Definition 21 Let V' be a vector space defined over the field of complex numbers. A function (-,-) that maps
elements of V' x V into complex numbers, i.e.

(,):VxV—=C
which satisfies the properties
1. {z,y) = (y, )", for allz,y €V, (conjugate symmetry),
2. {ax +by,z) = alx,2) +b{y, 2), for all z,y,z € V, and for all a,b € C, (linearity in the first variadle),
3. {z,xy 20, and {(z,z) =0z =0,

where (-)* denotes complex conjugation, is called an inner product (scalar product) defined on the vector
space V.

Example 22 Let v and w be two elements of the vector space CV,

N
v,w) =vw = v;w!
K2

i=1

defines an inner product.

Example 23 Let f and g be two elements of the function space Lo [a,b],

b
o= [ 1@ @
defines an inner product.

Theorem 24 Let V' be an inner-product space (i.e., a vector space with an inner product) and x be an
arbitrary element of V.. The function \/{x,x) is a norm. We call this norm the natural norm of the inner-
product space.

Definition 25 Two elements of an inner product space are said to be orthogonal if their inner product is
zero,
(,yy =0 < zly.

Definition 26 Let U and W be two subspaces of an inner product space V.. U and V are said to be orthogonal
iff all elements in U are orthogonal to all elements in W,

ULW & (z,y) =0 VzeUAVyeW.

Example 27 The x = 0 plane and the z = 0 plane are both subspaces of the three-dimensional space. These
two subspaces are ortogonal.

Definition 28 A basis of an inner product space in which the elements are mutually orthogonal and of
magnitude 1 is called an orthonormal basis.

Definition 29 The orthogonal complement W= of a subspace W of an inner product space V is the set of
all vectors in V' thal are orthogonal to every veclor in W, i.e., il is

W ={zeV|{x,y)=0 forally c W}.

Theorem 30 Let W be a subspace of an inner product space V. Any element © of V' can be written uniquely
in the form
rT=x1+x2

where ©1 € W and x5 € W, xy is called the orthogonal projection of x onto the subspace W. Furthermore
xy 48 the vector in W that minimizes ||z — w||, i.e.,

min ||z — w||
weW
is achieved when w = x1.

Theorem 31 Let uq,...,u, be a basis of the subspace W of an inner product space, and A be the malrix
with these vectors as columns, then the projection of a vector x onto W is given by

2 = A(ATA) T AT,



