I The FDTD (Finite Difference Time
Domain) Algorithm

The FDTD method refers to a specific FD discretization
of the time dependent Maxwell’s equations. It has been

developed by Yee in 1966. It is based on a Cartesian grid.



I.1 Maxwell’s Equations

In a source free (no electric or magnetic sources) region

of space, Maxwell’s equations are

B
VXE = —%—t, (Faraday’s law)
D
VxH = %_t +J.,  (Ampere’s law)

V.-D =0,
V-B = 0.



In a linear, isotropic, non-dispersive material (i.e. mate-
rials having field independent, direction independent, and

frequency independent electric and magnetic properties)
D=c¢cE, B=uH, J.=0E

where ¢, u, and o are called the constitutive parameters,

we can write

OH 1
7 — —;V X E, (].)
E 1y uk 2)

ot ¢ €



In Cartesian coordinates we have

OH, 1 <8Ey B 8EZ>

ot 1\ 0z oy
% - % (aa% - ag) (19)
85: = é (881;[2 — 88[? — OEx> (2a)
%Etz = é (88[? — 88[_5; — OEyZ> (2¢)

which form a system of 6 coupled PDE’s in the 6 field components.
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Notation: We have 4 independent variables, z, y, z, and
t. We will consider discretization in each of these vari-
ables. Let u (x,y, z,t) denote any of the 6 field com-
ponents. We will denote a grid point in space by

(1Ax, jAy, kAz) = (3,7, k)
and a time instant by
t =nAt
where 7, 7, k, and n are integers. Then

u (iAz, jAY, kAz, nAt) =u" (1,5, k) .
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I.2 The Yee Algorithm

Yee used central difference expressions to approximate the

derivatives. Consider (1a)
H, 1/[(0FE E,

7 = — Q - 7 (1a)
ot p\ 0z Oy

At time step n we can write a central difference to the

LHS as

1 -
Hy™ (i, j,k) — H;
At

DO[—

(¢, J, k)




At
1 Eg(i,j,k—F%)—Eg(Z,j,k—%)
p (i, 3, k) Az
B (LR B (- L)

5 (12

Here 1 (2, 7, k) denotes the permeability at a space point,

and this takes inhomogeneous media into account.



Note: We are assuming that the corresponding cell is ho-
mogeneous. We will consider the more general case

later.

The Yee algorithm is a "marching on in time" algorithm.
That is, we assume that all field values are given at initial
time £ = 0, or equivalently for n = 0. Then we proceed to
calculate field values at At/2, At, 3At/2, 2At,...
ie. forn=1/2, 1, 3/2, 2,....



Eq. (1a) therefore defines H, (i, j, k) at time step n +
1/2 in terms of previously calculated values of H, (at time

stepn —1/2), E, and E, (at time step n). Thus we have

H™E G k) = HY G, k) +
At By (i, k+3) — By (i, k — 3)
(4, 7, k) Az
Ay

(1a")



Now consider (2a)

OE, 1(0H, OJH,
ot e\ Oy 0z

(2a)

If we use time step n as the center point, we would
need H at n, i.e. at full-steps. However, (1a") gives
magnetic field values at half-steps. This can be avoided

if we discretize (2a) at time step n + 1/2. Thus
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x A B
L OHM (L k) — HIY (i — L k)
e (1,7, k) Ay
L OHT (g kY — HY (6, k — 1)
(i, 7, k) Az
~e(i,4,k) E;Hr% (i, k) (24)
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Note that we still have E, at time step n + 1/2. If
we can find an approximation to ., +3 (¢, j, k) in terms of
electric field values at full time steps, we could avoid the
calculation of E field at half steps. For this purpose we

write

ni En_|_1..k Enk‘
E3;+2 (Z,j,k)ﬁ x (Zaja )2_|_ 33<ij7 )

Using this in (2a’) we can express E"*! (i, j, k) in terms

of previously calculated values:
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1 — o(i,j,k)At

ntl (c s 2o (i k) o fe -
Eg;+1 <Z7]7 k) — At;(ifj,g) Eaj <Z7,]7 k)
L+ 5000
At i nts .. nt+i ..
e(i,7,k) H., -~ (Zaj + %7 k) —H.° (Zaj _ %7 k)
o(i,j,k)At A
L+500m | Y
n—|—L .. 1 n—|—l .. 1 i
_Hy 2<Z’]’k+§>_Hy 2<Z’]’k_§> (2&”)

Az

Note that (2a”) expresses E, at time step n + 1 in terms

of previously calculated values of E, (at time step n), H,

and H, (at time step n + 1/2).
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In a similar way the finite difference expressions for
1
H, " (i, , k) can be obtained from (1b),

1

H." (i, j, k) can be obtained from (1c),
n 1 . . .

E;* (4,7, k) can be obtained from (2b),

E™ (1,7, k) can be obtained from (2c).

The final equations are
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HY (i, k) = Hy 2 (i, k)

N At Ey (i k+3) — By (i k—3)  Er(ij+3.k) —EX(ij—5.k)
i j. k) Az Ay

Hy'™* (i,j.k) = Hy * (i, . k)
(i, j, k) Az Az

H. %(i,j,k):Hz %(m,k)

LA B (gt k) B (= 5k)  Ep(i45.0.k) = By (1= §.00k)
(4,5, k) Ay Ax
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Define

B 2¢(i.7,k) B £(i,5.k)
Oljjjk - 1 _|_ Ato—@)j)k) ’ Dljjjk N 1 _|_ O—(Zajak>At
26 (i.7,k) 2¢(i,5,k)
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E;H_l (iaja k) - Oi7j7kEchl (Zlaja k)

1
n+y

+D; ik

Ay

Eyt (i, g k) = CijnEy (i,], k)

1
n+3

HIY2 (i, k4 1) — HI% (i g,k — 1)

Az

; @j+5@Q%@J%$)HT5@$k+@1$%@J$%q

+D; ik

Az

EM (i, 4, k) = CijnEY (i, 4, k)

Hy™ (i 3 ,k) — Hy ™ (i = L k)

+D; ik

Az
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These equations show that we need E at full time steps
and H at half time steps as shown. Yee algorithm com-
putes E and H field components at alternating time steps
in a "leapfrog" arrangement.

E is calculated at time steps t = 0, At, 2At, ...

H is calculated at time steps ¢ = 0.5A¢, 1.5A¢t, 2.5At, . ..

They are also displaced by half steps in space.
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® ® O t=1.5At
ET E E ET (= Ap
A
H@ H@ H@ t=0.5 At
I =
E E E E f= 0

X=0 x= Ax x= 2Ax x= 3AX

Figure.1l: Space-time chart of the Yee algorithm for a 1-D wave propagation
example showing the use of central differences for space derivatives and leapfrog
for the time derivatives.
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Figure.2: A cubic cell of Yee space lattice.
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In the space coordinates we don’t need to calculate the

FE and H field components at every point. Suppose that
the coordinates of the center point of the Yee space lattice
is (¢, j, k). Then, we need to calculate

1 n+l .. 1 1
E'(i4= 7k H 2 i+~ k+-),
x(z+27]7 )7 (Z]+2 +2>

E; (z,j+§,k>, H, (Z+§,j,k+§>,

Ey (Z,j,k—l—§>, HZ (Z+§,]—|—§,]€>.

DOj—

=
DOj—
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In the Yee space lattice every E is surrounded by four
circulating H components, and every H component is
surrounded by four circulating E: components.

Let the coordinates of the center point of the lattice
cell be (4,7, k). Consider the front face. The coordi-
nates of the center point of the front face is (z + %, 7 k)
Then F, (z + %, 7, k) is expressed in terms of H. values
at the left and at the right i.e. H, (z + %,j — %, k) and
H, (z + %,j + %, k) and H, values above and below, i.e.
H, (z + 4,0,k + %) and H, (z + 40,k — %) (and also the
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value of F, at (¢, j, k)). This is the physical explanation
of (2a”). Similarly, the right face corresponds to (2b")
and the top face to (2¢”).

The Yee algorithm for FD'TD was originally obtained by
replacing the derivatives in the point form of Maxwell’s
curl equations by central difference formulas. However,
the integral forms of Maxwell’s equations can also be used

to obtain the same formulas.
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1.3 Integral Formulation

We start with Maxwell’s curl equations again.
OE

VXHZFJE—FOE (1)
oH

We choose two surfaces Sg and Sy bounded by the curves
Cp and Cy. Integrating (1) over S and using Stokes’

theorem gives

]{ E-dl:/ ,Lba—H°ndS. (3)
Cr Sp ot
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Similarly, integrating (2) over Sy and using Stokes’ the-

orem gives

H-dl = 58—E-nds+/ oE - ndS. (4)
St

o Sy ot
Eq.s (3) and (4) are the integral forms of the Maxwell’s

curl equations and are equivalent to the differential forms.
To simplify the derivation let us consider a linearly po-
larized TEM., electromagnetic wave propagating in the

positive z direction.
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We can write
E = E,.(zt)a,
H = H,(zt)a,

In general, €, u, and o are functions of position and

for simplicity we will assume that they are functions of z

only.
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_<—
dl 4 } Al
(@)

y 7 z-Al2 Z, zo+ﬂ2 ~2

Figure.3: Contour for integration of (3).
With the choice of Sg shown in Fig. (3), we can ap-
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proximate the LHS of (3) as:

Al Al
%Edl: — b, (20—7,t> Al+ E, (Z()—F?,t) Al

\ . 7 \ .

E TV TV
on the left path on the right path
dl and E are in dl and E are in

opposite directions the same direction

Note that on the top and bottom paths dl and E are

orthogonal and line integrals are zero.
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For the RHS of (3), we have

OH 0H,(z,t)
- qs = - %Y g
/SE“a \/S /SEM ot NG

dzdx

If Al is suﬁczently small, OH, (z,t) /Ot can be taken as
0H, (z,t) /Ot. Then the RHS becomes

OH,(z,1) - OH, (20, )/
— daxdz ~ 2)dxdz
/SEM 5 5 SEM( )

Zo—l—g
— aH(é:O’ )Al/ 2 p(z)dz

072
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Note that the average value of 1 (denoted p,,,) is

1 z0—|—%
Havg = N7 M(’Z) dz
7 Al Y
hence
— d dz = — I (A
/SEM at 2d% = ~flayg— 5 (Al)
Eq. (3) reduces to
E, (z0+55t) Al — B, (20— §Lt) AL OH, (2, )
Al — e gy

Finally, using central difference approximation to the time
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derivative we get

E, (20+55t) Al — E, (20 — §L,t) Al

29
Al
H, (w0, +5) = Hy (20, = F)
Mcwg At

The integral formulation shows that when the constitutive

parameters vary within a Yee cell, their average values
should be used. This becomes important especially at
the interface of two media. The differential aprroach is
straightforward but fails to give an answer to such cases.

Now consider the front surface of the Yee lattice shown
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in Fig. (2). Applying a similar derivation for (4) at time

step n + % we get

nes (01 1 S |
Hy+2(z+—,j,k——>Ay+Hz+2(z+—,j+§,k>Az

2 2 2
n+l . 1 . 1 n+l . 1 . 1
—Hy 2(Z+§,],]€—|—§>Ay—Hz 2(Z+§,]—§,]€>AZ:
1 El(Gial ik —Er i+l gk
eavg(w?j,k) S GuF >At EF 20 k),

n (5 1 n+1 (- 1
T Oaug (i_‘_%)jp k) b <Z+ 2’]’k> +2Ex <Z+ 2’]’k>
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where

n+%( 1 )_Eg(z'Jr%,j,k)JrEQ“ (14 3.7, k)

E, 4+ =, 7, k
Ty 2
which is similar to (2a”) except for the fact that average

values pf the constitutive parameters are used.
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Figure.4: Contour for integration of (4).
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