EE 521 Fall 2007 Solution to Homework 1: Green's Function

The equation $-\varphi'' - \lambda \varphi = 0$ has no nontrivial solutions $\mathcal{L}_{2}^{(c)}(-\infty, \infty)$ for any λ . In fact, we have

$$\left| \exp \left(j\sqrt{\lambda}x \right) \right|^2 = e^{-2\beta x}, \quad \left| \exp \left(-j\sqrt{\lambda}x \right) \right|^2 = e^{2\beta x}.$$

Clearly for any β (including $\beta = 0$),

$$\int_{-\infty}^{\infty} \left| \exp\left(j\sqrt{\lambda}x\right) \right|^2 dx = +\infty, \quad \int_{-\infty}^{\infty} \left| \exp\left(-j\sqrt{\lambda}x\right) \right|^2 dx = +\infty.$$

Hence the equation has no eigenvalues.

If λ is not in $[0, \infty)$, we can write $\sqrt{\lambda} = \alpha + j\beta$, where we choose the branch cut for the square root as the positive real axis in λ plane. Thus for any λ we have $\beta > 0$. Let

$$g(x;\xi|\lambda) = \begin{cases} A(\xi) \exp(j\sqrt{\lambda}x) & x > \xi \\ B(\xi) \exp(-j\sqrt{\lambda}x) & x < \xi \end{cases}.$$

We have

$$\int_{-\infty}^{\infty} g(x;\xi|\lambda) dx = \int_{-\infty}^{\xi} g(x;\xi|\lambda) dx + \int_{\xi}^{\infty} g(x;\xi|\lambda) dx$$

$$= \int_{-\infty}^{\xi} B(\xi) \exp\left(-j\sqrt{\lambda}x\right) dx + \int_{\xi}^{\infty} A(\xi) \exp\left(j\sqrt{\lambda}x\right) dx$$

$$= \int_{-\infty}^{\xi} B(\xi) e^{-jx\alpha} e^{x\beta} dx + \int_{\xi}^{\infty} A(\xi) e^{-x\beta} e^{jx\alpha} dx$$

$$= \lim_{x \to -\infty} B(\xi) \frac{e^{\xi(-j\alpha+\beta)} - e^{-jx\alpha} e^{x\beta}}{-j\alpha+\beta} + \lim_{x \to \infty} A(\xi) \frac{e^{-\xi(-j\alpha+\beta)} - e^{-x(-j\alpha+\beta)}}{-j\alpha+\beta}$$

$$= B(\xi) \frac{e^{\xi(-j\alpha+\beta)}}{-j\alpha+\beta} + A(\xi) \frac{e^{-\xi(-j\alpha+\beta)}}{-j\alpha+\beta} < \infty$$

and $g(x;\xi|\lambda)$ is in $\mathcal{L}_{2}^{(c)}(-\infty,\infty)$. The continuity and the jump conditions on g at $x=\xi$ are

$$A(\xi) e^{j\sqrt{\lambda}\xi} - B(\xi) e^{-j\sqrt{\lambda}\xi} = 0;$$

$$j\sqrt{\lambda}A(\xi) e^{j\sqrt{\lambda}\xi} + j\sqrt{\lambda}B(\xi) e^{-j\sqrt{\lambda}\xi} = -1.$$

Solving these two equations for $A(\xi)$ and $B(\xi)$ we get

$$A(\xi) = \frac{1}{2} \frac{j}{\sqrt{\lambda}} e^{-j\sqrt{\lambda}\xi}; \quad B(\xi) = \frac{1}{2} \frac{j}{\sqrt{\lambda}} e^{j\sqrt{\lambda}\xi}.$$

Finally, replacing these in the expression for $g(x;\xi|\lambda)$ yields

$$g(x;\xi|\lambda) = \begin{cases} \frac{1}{2} \frac{j}{\sqrt{\lambda}} e^{j\sqrt{\lambda}(x-\xi)} & x > \xi \\ \frac{1}{2} \frac{j}{\sqrt{\lambda}} e^{j\sqrt{\lambda}(\xi-x)} & x < \xi \end{cases}$$

which can be written as

$$g\left(x;\xi|\lambda\right) = \frac{1}{2}\frac{j}{\sqrt{\lambda}}e^{j\sqrt{\lambda}(x_{>}-x_{<})} = \frac{1}{2}\frac{j}{\sqrt{\lambda}}e^{j\sqrt{\lambda}x_{>}}e^{-j\sqrt{\lambda}x_{<}} = \frac{j}{2\sqrt{\lambda}}e^{j\sqrt{\lambda}|x-\xi|}.$$

The function g has a branch along the positive real λ axis. Directly above and on the positive real axis, we have

$$g_{+} = \frac{j}{2|\lambda|^{1/2}} e^{j|\lambda|^{1/2}|x-\xi|},$$

and directly below the positive real axis

$$g_{-} = \frac{j}{-2 |\lambda|^{1/2}} e^{-j|\lambda|^{1/2}|x-\xi|}.$$

Thus the jump [g] as we cross the positive real λ axis is

$$[g] = g_{+} - g_{-} = \frac{j}{2|\lambda|^{1/2}} e^{j|\lambda|^{1/2}|x-\xi|} - \frac{j}{-2|\lambda|^{1/2}} e^{-j|\lambda|^{1/2}|x-\xi|}$$
$$= j \frac{\cos\sqrt{\lambda}(x-\xi)}{\sqrt{\lambda}} = j \frac{\cos\sqrt{\lambda}\xi\cos\sqrt{\lambda}x + \sin\sqrt{\lambda}\xi\sin\sqrt{\lambda}x}{\sqrt{\lambda}}$$

Now consider the contour C that consists of a large circle and C_+ and C_- as shown in Fig. (1) below. Since g is analytic except on the positive real λ axis, we have

$$\int_C g \, d\lambda = 0.$$

On the other hand,

$$\int_C g \, d\lambda = \oint g \, d\lambda + \int_{C_-} g \, d\lambda + \int_{C_-} g \, d\lambda.$$

Since on C_{-} , λ ranges from $+\infty$ to 0, we have

$$\int_C g \, d\lambda = \oint g \, d\lambda + \int_0^\infty [g] \, d\lambda$$

where [g] is as calculated above.

Using

$$\oint g(x;\xi|\lambda) d\lambda = -2\pi j \delta(x-\xi)$$

we obtain

$$\delta(x-\xi) = \frac{1}{2\pi j} \int_0^\infty [g] d\lambda$$
$$= \frac{1}{2\pi} \int_0^\infty \frac{\cos\sqrt{\lambda}\xi\cos\sqrt{\lambda}x + \sin\sqrt{\lambda}\xi\sin\sqrt{\lambda}x}{\sqrt{\lambda}} d\lambda$$

Finally, by making a change of variables with $\lambda = v^2$

$$\delta(x - \xi) = \frac{1}{\pi} \int_0^\infty \left[\cos v \xi \cos v x + \sin v \xi \sin v x \right] dv.$$

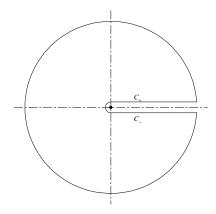


Figure 1: The integration contour.

Multiplying this result by f(x) on both sides and integrating over $(-\infty, \infty)$ we get

$$\int_{-\infty}^{\infty} f(x) \, \delta(x - \xi) \, dx = \int_{-\infty}^{\infty} f(x) \, \frac{1}{\pi} \int_{0}^{\infty} \left[\cos v \xi \cos v x + \sin v \xi \sin v x \right] \, dv dx$$

or equivalently

$$f\left(\xi\right) = \frac{1}{\pi} \int_{0}^{\infty} \cos v \xi \left[\int_{-\infty}^{\infty} f\left(x\right) \cos v x \, dx \right] \, dv + \frac{1}{\pi} \int_{0}^{\infty} \sin v \xi \left[\int_{-\infty}^{\infty} f\left(x\right) \sin v x \, dx \right] \, dv.$$

By using the trigonometric identity

$$\cos v\xi \cos vx + \sin v\xi \sin vx = \cos v (x - \xi),$$

the expansion

$$\delta(x - \xi) = \frac{1}{\pi} \int_0^\infty \left[\cos v \xi \cos v x + \sin v \xi \sin v x \right] dv$$

can also be written as

$$\delta\left(x-\xi\right) = \frac{1}{\pi} \int_0^\infty \left[\cos v \left(x-\xi\right)\right] \, dv.$$

Since the cosine function is even and the sine function is odd, we can also write

$$\delta(x-\xi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\cos v \left(x-\xi\right)\right] dv + \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[j\sin v \left(x-\xi\right)\right] dv$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{jv(x-\xi)} dv.$$

Again, multiplying by f(x) on both sides and integrating over $(-\infty, \infty)$ we get

$$\int_{-\infty}^{\infty} f(x) \, \delta(x - \xi) \, dx = \int_{-\infty}^{\infty} f(x) \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \left[e^{jv(x - \xi)} \right] \, dv \right) \, dx$$

or equivalently,

$$f(\xi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-jv\xi} \left(\int_{-\infty}^{\infty} f(x) e^{jvx} dx \right) dv.$$

Now consider the system

$$-u'' - \lambda u = f(x).$$

The function $\int_{-\infty}^{\infty} g\left(x;\xi|\lambda\right) f\left(\xi\right) d\xi$ satisfies the differential equation since

$$\left(-\frac{d^2}{dx^2} - \lambda\right) \int_{-\infty}^{\infty} g\left(x; \xi | \lambda\right) f\left(\xi\right) d\xi = \int_{-\infty}^{\infty} \left(-\frac{d^2}{dx^2} - \lambda\right) g\left(x; \xi | \lambda\right) f\left(\xi\right) d\xi$$
$$= \int_{-\infty}^{\infty} \delta\left(x - \xi\right) f\left(\xi\right) d\xi = f\left(x\right).$$

We also need to show that this solution is indeed in $\mathcal{L}_{2}^{(c)}(-\infty,\infty)$. To this extend, first consider

$$|u(x)|^{2} = \left| \int_{-\infty}^{\infty} g(x;\xi|\lambda) f(\xi) d\xi \right|^{2} = \left| \int_{-\infty}^{\infty} g(x;\xi|\lambda) f(\xi) d\xi \right| \times \left| \int_{-\infty}^{\infty} g(x;\eta|\lambda) f(\eta) d\eta \right|$$

$$\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |g(x;\xi|\lambda)| |g(x;\eta|\lambda)| |f(\xi)| |f(\eta)| d\xi d\eta.$$

Since $|f(\xi)| |f(\eta)| \le \frac{1}{2} (|f(\xi)|^2 + |f(\eta)|^2)$,

$$|u(x)|^{2} \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |g(x;\xi|\lambda)| |g(x;\eta|\lambda)| |f(\xi)|^{2} d\xi d\eta.$$

Now, we also have

$$\int_{-\infty}^{\infty} |g\left(x;\xi|\lambda\right)| \ d\xi \le l = \frac{1}{|\lambda|^{1/2}\beta}, \quad \int_{-\infty}^{\infty} |g\left(x;\xi|\lambda\right)| \ dx \le l = \frac{1}{|\lambda|^{1/2}\beta}.$$

which is found by direct integration. Then

$$||u||^2 = \int_{-\infty}^{\infty} |u(x)|^2 dx \le l^2 \int_{-\infty}^{\infty} |f(\xi)|^2 d\xi = l^2 ||f||^2$$

and hence the solution is in $\mathcal{L}_{2}^{(c)}(-\infty,\infty)$. Finally, any solution of $-u''-\lambda u=f(x)$ can differ from each other by the solution of the homogeneous equation. But, since the homogeneous equation has no solution in $\mathcal{L}_{2}^{(c)}(-\infty,\infty)$ as shown above, the function

$$u(x) = \int_{-\infty}^{\infty} g(x;\xi|\lambda) f(\xi) d\xi$$

is the unique solution.

Now consider the inhomogeneous equation

$$-u'' - \lambda u = f(x).$$

Multiply both sides by e^{jvx} and integrate from $-\infty$ to ∞ .

$$\int_{-\infty}^{\infty} \left(-u'' - \lambda u\right) e^{jvx} dx = \int_{-\infty}^{\infty} f(x) e^{jvx} dx.$$

Since u and u' must vanish at $\pm \infty$, we obtain, after integrating the first term by parts twice,

$$v^{2}U(v) - \lambda U(v) = F(v)$$

where

$$U(v) = \int_{-\infty}^{\infty} u(x) e^{jvx} dx; \quad F(v) = \int_{-\infty}^{\infty} f(x) e^{jvx} dx.$$

Thus,

$$U(v) = \frac{F(v)}{v^2 - \lambda}$$

and

$$u(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} U(v) e^{-jvx} dv$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{F(v)}{v^2 - \lambda} e^{-jvx} dv$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{v^2 - \lambda} e^{-jvx} \left(\int_{-\infty}^{\infty} f(x) e^{jvx} dx \right) dv$$

In the particular case where $f(x) = \delta(x - \xi)$, we get

$$g(x;\xi|\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{v^2 - \lambda} e^{-jvx} \left(\int_{-\infty}^{\infty} \delta(x - \xi) e^{jvx} dx \right) dv$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-jv(x - \xi)}}{v^2 - \lambda} dv.$$