EE 521 Fall 2007

Solution to Homework 1: Green’s Function

The equation —¢” — Ay = 0 has no nontrivial solutions Egc) (—o00,00) for any A. In fact, we

have
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Hence the equation has no eigenvalues.
If A is not in [0, 00), we can write VA = a + jf3, where we choose the branch cut for the
square root as the positive real axis in A plane. Thus for any A\ we have 8 > 0. Let
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00). The continuity and the jump conditions on g at z = & are
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Solving these two equations for A () and B (§) we get
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Finally, replacing these in the expression for g (x;&|)\) yields
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which can be written as
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The function g has a branch along the positive real A axis. Directly above and on the positive
real axis, we have _
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and directly below the positive real axis
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Thus the jump [g] as we cross the positive real \ axis is
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Now consider the contour C' that consists of a large circle and C'; and C'_ as shown in Fig.
(1) below. Since g is analytic except on the positive real A axis, we have
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Since on C'_, X ranges from +o0o to 0, we have
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where [g] is as calculated above.
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On the other hand,
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Finally, by making a change of variables with A\ = v?
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Figure 1: The integration contour.

Multiplying this result by f (x) on both sides and integrating over (—oo, 00) we get
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or equivalently
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By using the trigonometric identity
cos v€ cos VT + sinv€ sinvx = cosv (xr — &),

the expansion
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can also be written as
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Since the cosine function is even and the sine function is odd, we can also write
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Again, multiplying by f (z) on both sides and integrating over (—oo, 00) we get
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Now consider the system
—u" =M= f(x).

The function [7_ g (2;€[N) f (€) d€ satisfies the differential equation since
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We also need to show that this solution is indeed in L'éc) (—o00,00). To this extend, first

consider
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Now, we also have
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which is found by direct integration. Then
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and hence the solution is in Egc) (—00, 00). Finally, any solution of —u”—Au = f (x) can differ

from each other by the solution of the homogeneous equation. But, since the homogeneous
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equation has no solution in £5” (—00, 00) as shown above, the function
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is the unique solution.
Now consider the inhomogeneous equation

—u" =M= f(x).

Multiply both sides by ¢/** and integrate from —oo to oo.
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Since v and ' must vanish at +00, we obtain, after integrating the first term by parts twice,
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In the particular case where f () =0 (z — &), we get
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