EE 521 Fall 2007 Final Exam : (Open books)

Duration : 180 min.

1. Find the Green's function which satisfies the differential equation

$$
\left(x \frac{d^{2}}{d x^{2}}+2 \frac{d}{d x}-\frac{2}{x}\right) g\left(x ; x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
$$

over the interval $0<x<\infty$. We require that the Green's function be finite over $0<x<\infty$. Hint : To solve the homogeneous equation, assume a solution of the form $y=x^{\alpha}$.
2. Let $\bar{\Gamma}\left(\mathbf{r} ; \mathbf{r}^{\prime}\right)$ be a solution of

$$
\nabla \times \nabla \times \bar{\Gamma}\left(\mathbf{r} ; \mathbf{r}^{\prime}\right)-k^{2} \bar{\Gamma}\left(\mathbf{r} ; \mathbf{r}^{\prime}\right)=\overline{\mathbf{I}} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

in a volume V. On the surface S surrounding V let $\bar{\Gamma}$ satisfy either the boundary condition

$$
\mathbf{n} \times \bar{\Gamma}=0 \quad \text { or } \quad \mathbf{n} \times \nabla \times \bar{\Gamma}=0 .
$$

Show that the dyadic Green's function satisfies the symmetry condition

$$
\mathbf{J}_{1}\left(\mathbf{r}_{1}\right) \cdot \bar{\Gamma}\left(\mathbf{r}_{1} ; \mathbf{r}_{2}\right) \cdot \mathbf{J}_{2}\left(\mathbf{r}_{2}\right)=\mathbf{J}_{2}\left(\mathbf{r}_{2}\right) \cdot \bar{\Gamma}\left(\mathbf{r}_{2} ; \mathbf{r}_{1}\right) \cdot \mathbf{J}_{1}\left(\mathbf{r}_{1}\right) .
$$

Hint : Use the Green's identity

$$
\begin{aligned}
\int_{V}[(\nabla \times \nabla \times \mathbf{A}) \cdot \mathbf{B}-\mathbf{A} \cdot(\nabla \times \nabla \times \mathbf{B})] d & = \\
& -\int_{S}\{[\mathbf{n} \times(\nabla \times \mathbf{A})] \cdot \mathbf{B}+(\mathbf{n} \times \mathbf{A}) \cdot(\nabla \times \mathbf{B})\} d S
\end{aligned}
$$

with

$$
\mathbf{A}=\bar{\Gamma}\left(\mathbf{r} ; \mathbf{r}_{1}\right) \cdot \mathbf{J}_{1}\left(\mathbf{r}_{1}\right), \quad \mathbf{B}=\bar{\Gamma}\left(\mathbf{r} ; \mathbf{r}_{2}\right) \cdot \mathbf{J}_{2}\left(\mathbf{r}_{2}\right) .
$$

3. The geometry of a two dimensional potential problem is defined in polar coordinates by the surfaces $\phi=0, \phi=\beta$, and $\rho=a$, as indicated in the Fig. (1) below.

Figure 1: Geometry for Problem (3).

Using separation of variables in polar coordinates, obtain an expression for the Green's function that satisfies $G=0$ on the boundary surfaces.
4. Consider a z-polarized plane wave propagating in the positive x direction, i.e.

$$
\mathbf{E}^{i}=E_{0} e^{-j k x} \mathbf{a}_{z}
$$

Assume that this field is incident upon a conducting cylinder of radius a as shown in Fig. (2).
(a) Express the incident field in the form

$$
E_{z}^{i}=E_{0} \sum_{n=-\infty}^{\infty} a_{n} J_{n}(k \rho) e^{j n \phi}
$$

i.e., determine the coefficients a_{n}.

Hint :

$$
J_{n}(x)=\frac{j^{n}}{2 \pi} \int_{0}^{2 \pi} e^{-j(n \phi+x \cos \phi)} d \phi
$$

(b) The total field with the conducting cylinder present is the sum of the incident and scattered fields, that is,

$$
\mathbf{E}^{t}=\mathbf{E}^{i}+\mathbf{E}^{s}
$$

Determine the scattered field \mathbf{E}^{s}. If you could not solve part (a), determine the scattered field in terms of the coefficients a_{n}.

Figure 2: Geometry for Problem (4).

