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Abstract

In this talk, the application of the Light Cone QCD sum rules to the calculation of the magnetic moments

of the octet and decuplet baryons and also to the calculation of the magnetic and quadrupole moments for

the radiative transitions D → Oγ is discussed. Due to limited space the results for the D → Oγ transitions

are presented only and they are compared with existing theoretical and experimental results.
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Introduction

• Electromagnetic interactions of hadrons provide unique insight into the structure of hadrons.

• They can be used to study the non-perturbative dynamics inside hadrons.

• They are also important testing grounds for non perturbative methods.

• Light Cone QCD Sum rules is one of the succesfull non-perturbative methods which is based on

the fundamental QCD Lagrangian.
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• That the nucleon could be deformed was proposed more than 20 years ago [1]

• It is still an intensive theoretical and experimental area of activity.

• The process ∆ → Nγ can give us information on this aspect also.

• If the wave functions of both the initial and final states are spherical, the quadrupole moments

for this decay should vanish.

• Recent experimental results show that the quadrupole moments are non zero.

• The spin-parity selection rules allow for magnetic dipole (M1), and electric (E2) or coulomb

(C2) quadrupole moments.

• The moments have been studied using various models.
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• In the naive (spherical) quark model of the nucleon, ∆ is a pure spin flip (M1) transition, and

E2 = C2 = 0

• Experimentally, indeed M1 dominates over the other moments.

• In other refined models, small E2 and C2 moments are predicted.

• In ”QCD inspired” quark model, one introduces a tensor forces which introduce a d-state

admixture to the nucleon.

• Stronger contributions are expected from pion clouds.
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Octet and Decuplet Baryons:

• These are the baryons belonging to the octet and decuplet representation in the product [2]

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 (1)

of SU(3)f .
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Light Cone QCD Sum Rules for Radiative Decays:

General Overview

• In QCD sum rules approach, properties of hadrons are expressed in terms of the vacuum

properties through non zero condensates in the vacuum

• One starts by studying a correlation function of the form:

Π(p, q) = i

∫

d4xeipx〈γ(q)|T ηB1
(x)η̄B2

(0)|0〉 (2)

where ηB is an operator with the quantum numbers of the B baryon and B is the lightest

baryon which it can create from the vacuum.

• For p2 > 0, the correlation function is calculated in terms of hadronic parameters.

• In the deep Euclidean region, p2 << 0 and (p + q)2 << 0, the correlation function is calculated

using the OPE in terms of QCD degrees of freedom.

• Sum rules are obtained by matching the two representation using spectral representation.
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• For p2 > 0, two complete sets of hadronic states can be inserted to get:

Π(p, q) =
〈0|ηB1

|B1(p)〉
p2 − m2

1

〈B1|B2〉γ
〈B2(p + q)|ηB2

|0〉
(p + q)2 − m2

2

+ · · · (3)

where · · · stands for the contribution of higher states and continuum.

• The matrix elements of the currents between the single baryon state and the vacuum are

defined as

〈0|ηB|B(p)〉 = λBu(p, s) (4)

where λ’s are the residues and u(p, s) is the function which describes the baryon with

momentum p and spin s.
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Phenomenological Description of the Electromagnetic

Interactions of the Octet and Decuplet Baryons

• The photon vertex 〈B2(p)|B1(p + q)〉γ can be written as:

〈B2(p)|B1(p + q)〉γ = Jµεµ (5)

where Jµ is the transition current and εµ is the polarization vector of the photon.

• Gauge invariance implies that

qµJµ = 0 (6)

• The most general current for the O → O transition currents consistant with the spin parity

selection rules is

J1/2→1/2
µ = ū(p)

(

f1γµ − i
f2

2m
σµνqν

)

u(p + q)

= ū(p)

[

(f1 + f2) γµ − Pµ

2m
f2

]

u(p + q) (7)

where P = p + (p + q) = 2p + q, fi are form factors which in general depend on q2, and u is a

Dirac spinor.

• To obtain a more intuitive picture of what these formfactors represent, consider this current in

the Breit frame, i.e. the frame in which ~P = 0
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• In this frame, the zeroth component becomes:

J
1/2→1/2
0 = (f1 + f2)ū(p)γ0u(p + q) − P0

2m
f2ū(p)u(p + q)

= f1ū(p)γ0u(p + q). (8)

• The point particle case, corresponds to f1 = 1. Hence f1 describes the spatial distribution of

the electric charge of the hadron. Hence f1 can be identified with the electric form factor.

• For the vector part we get

~J1/2→1/2 =
1

2m
(f1 + f2)i~q ×

(

ū(p)~Σu(p + q)
)

(9)

where ~Σ is the three dimensional spin operator [3]:

~Σ =





~σ 0

0 ~σ



 (10)

This can be correlated with the current density

~J(r) = ~▽× ~µ(r) (11)

Hence f1 + f2 can be identified by the magnetic form factor.
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• For the interaction of higher spin particles, the structure of the current is richer.

• The current for the D → D transition is:

Jρ = ūµ(p)Oµρν(p, q)uν (p + q) , (12)

where the Lorenz tensor Oµρν is given by:

Oµρν(p, q) = −gµν

[

γρ(f1 + f2) +
Pρ

2M
f2 + qρf3

]

−

− qµqν

(2M)2

[

γρ(G1 + G2) +
Pρ

2M
G2 + qρG3

]

(13)

where M is the mass of the decuplet baryon.

• uµ(p) is the Rarita-Schwinger spin vector satisfying (6p−m)uµ(p), γµuµ(p) = 0 and pµuµ(p) = 0

• The magnetic moment of the decuplet baryon is given by gM = 3(f1 + f2).
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• Finally for the mixed D → O transition, the current can be written as:

J3/2→1/2
µ = eu(p) {G1 (qργµ − gµρ 6q) γ5

+ G2 (Pµqρ − (Pq)gµρ) γ5

+ G3

(

qµqρ − q2gµρ

)

γ5

}

uρ(p + q) (14)

where P = 1
2 (p + (p + q)).

• The magnetic dipole moment, GM , and the electric quadrupole moment GE are defined as(at

q2 = 0): [4]:

GE =
m(M − m)

3

(

G1

M
+ G2

)

GM =
m

3

[

(3M + m)
G1

M
+ (M − m)G2

]

(15)

where M and m are the masses of the decuplet and the octet baryon respectively.
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• The decay width for the decay D → Oγ in terms of the multipole moments GE and GM :

Γγ = 3
α

32

(M2 − m2)3

M3m2

(

G2
M + 3G2

E

)

(16)

• The helicity amplitudes are:

A1/2 = −η (GM − 3GE)

A3/2 = −
√

3η (GM + GE) (17)

where

η =
1

2

√

3

2

(

M2 − m2

2m

)1/2
e

2m
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Derivation of the Sum Rules: D → O case

Hadronic Representation:

• Using the matrix elements for the currents and the vertex, and

∑

s

uα(p, s)ūβ(p, s) = − (6p + M)

{

gαβ − 1

3
γαγβ − 2pαpβ

3M2
+

pαγβ − pβγα

3M

}

(18)

one can obtain an expression for the correlation function in terms of the form factors.

• Schematically, we have

Tµ = eλOλD

1

p2 − m2

1

(p + q)2 − M2
[G2(εp)qµ 6q 6pγ5 +

+ M (2G1 − G2(M − m)) (εp)qµγ5

− (2G1 − G2(M − m)) (εp)qµ 6pγ5 − (2G1 + G2m) (εp)qµ 6qγ5] + other structures with 6ε at

the beginning and γµ, (p + q)µ or εµ at the end (19)

where we have chosen the ordering 6ε 6q 6pγµ
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• The reason for choosing this ordering and the structure ∝ qµ is that, spin-1/2 particles do not

contribute to this structure.

〈0|η 3
2
µ|

1

2
(p + q)〉 = (A′(p + q)µ + B′γµ) γ5u(p) (20)

• Using the matrix element, one can not create a structure ∝ qµ with this ordering.

• In our study, we choose the structures (εp)qµγ5 and qµ 6qγ5.

• The coefficients of these structures in the hadronic representation are:

For the (εp)qµγ5 structure:

Π2 = eλOλD

1

p2 − m2

1

(p + q)2 − M2
M (2G1 + G2(m − M)) (21)

For the qµ 6qγ5 structure:

Π4 = −eλOλD

1

p2 − m2

1

(p + q)2 − M2
(2G1 + G2m) (22)
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• Both can be written in the form

Πi =

∫ ∞

0

ds1ds2
ρphen

i (s1, s2)

(s1 − p2)(s2 − (p + q)2)
+ · · · (23)

where · · · are polynomials in p2 and (p + q)2, and

ρphen
2 (s1, s2) = eλOλDM (2G1 + G2(m − M)) δ(s1 − m2)δ(s2 − M2) + · · ·

ρphen
4 (s1, s2) = −eλOλD (2G1 + G2m) δ(s1 − m2)δ(s2 − M2) + · · · (24)

where · · · represent the contributions of the excited states and continuum.
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QCD Representation

• For p2 << 0 and (p + q)2 << 0, the main contributions come from small distances, hence one

can use the OPE.

• One must choose appropriate currents.

For the Decuplet:

ηΣ∗0

µ =

√

2

3
ǫabc

[(

uaT Cγµdb
)

sc +
(

daT Cγµsb
)

uc +
(

saT Cγµub
)

dc
]

ηΣ∗+

µ =
1√
2
ηΣ∗0

µ (d → u)

ηΣ∗−

µ =
1√
2
ηΣ∗0

µ (u → d)

η∆∗+

µ =
1√
2
ηΣ∗0

µ (s → u)

η∆∗0

µ =
1√
2
ηΣ∗0

µ (s → d)

ηΞ∗0

µ =
1√
2
ηΣ∗0

µ (d → s)

ηΞ∗−

µ =
1√
2
ηΣ∗0

µ (u → s) (25)
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For the Octet:

ηΣ0

=

√

1

2
ǫabc

[

−
(

uaT Csb
)

γ5d
c +

(

uaT Cγ5s
b
)

dc +
(

saT Cdb
)

γ5u
c −

(

saT Cγ5d
b
)

uc
]

ηΣ+

=
1√
2
ηΣ0

(d → u)

ηΣ−

=
1√
2
ηΣ0

(u → d)

ηp = −
√

2ηΣ0

(s → u)

ηn = −
√

2ηΣ0

(s → d)

ηΞ0

= −
√

2ηΣ0

(d → s)

ηΞ−

= −
√

2ηΣ0

(u → s)

ηΛ =

√

1

6
ǫabc

[

2
(

uaT Cdb
)

γ5s
c − 2

(

uaT Cγ5d
b
)

sc +
(

uaT Csb
)

γ5d
c

−
(

uaT Cγ5s
b
)

dc +
(

saT Cdb
)

γ5u
c −

(

saT Cγ5d
b
)

uc
]

(26)
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• Accept for the correlation function for Σ∗0 → Λ, the others can be obtained from the correlation

function for Σ∗0 → Σ0:

ΠΣ∗+
→Σ+

= ΠΣ∗0
→Σ0

(d → u)

ΠΣ∗−

→Σ−

= ΠΣ∗0
→Σ0

(u → d)

Π∆+
→p = −2ΠΣ∗0

→Σ0

(s → u)

Π∆0
→n = −2ΠΣ∗0

→Σ0

(s → d)

ΠΞ∗0
→Ξ0

= −2ΠΣ∗0
→Σ0

(d → s)

ΠΞ∗−

→Ξ−

= −2ΠΣ∗0
→Σ0

(u → s) (27)
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• It is also possible to obtain the correlation function for Σ∗0 → Λ from the correlation function

for Σ∗0 → Σ0 [5, 6].

• Note that:

2ηΣ0

(d ↔ s) = −
√

3ηΛ − ηΣ0

(28)

• and hence

−
√

3ΠΣ∗0
→Λ = 2ΠΣ∗0

→Σ0

(d ↔ s) + ΠΣ∗0
→Σ0

(29)
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• Using Wick Theorem, one can express the correlation function in terms of diagrams like the

ones in Fig. 1

(a) (b) (c)

(d) (e) (f)

Figure 1: Some of the Feynman diagrams contributing to the correlation function
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• The propagator for the light quarks are:

Sq(x) =
i 6x

2π2x4
− mq

4π2x2
− 〈q̄q〉

12

(

1 − i
mq

4
6x

)

− x2

192
m2

0〈q̄q〉
(

1 − i
mq

6
6x

)

−igs

∫ 1

0

du

[ 6x
16π2x2

Gµν(ux)σµν − uxµGµν(ux)γν i

4π2x2

−i
mq

32π2
Gµνσµν

(

ln

(−x2Λ2

4

)

+ 2γE

)]

(30)

where Λ is the energy cut off separating perturbative and non perturbative regimes.
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• The emission of the photon can be both perturbative or non perturbative:

• To calculate the perturbative emission one uses the free quark propagator and the quark-photon

vertex factor −ieγµ.

• The non perturbative emission is described by matrix elements of the form 〈γ(q)|q̄(x)Γq(0)|0〉

• These matrix elements are expanded around the light cone x2 = 0 and can be expressed in

terms of photon wave functions: [7]:

〈γ(q)|q̄(x)σµνq(0)|0〉 = −ieq〈q̄q〉(εµqν − ενqµ)

∫ 1

0

dueiūqx

(

χϕγ(u) +
x2

16
A(u)

)

− i

2(qx)
eq〈q̄q〉

[

xν

(

εµ − qµ
εx

qx

)

− xµ

(

εν − qν
εx

qx

)]
∫ 1

0

dueiūqxhγ(u)

〈γ(q)|q̄(x)γµq(0)|0〉 = · · ·
〈γ(q)|q̄(x)γµγ5q(0)|0〉 = · · ·
〈γ(q)|q̄(x)gsGµν(vx)q(0)|0〉 = · · ·
〈γ(q)|q̄(x)gsG̃µν(vx)q(0)|0〉 = · · ·
〈γ(q)|q̄(x)gsG̃µν(vx)γαγ5q(0)|0〉 = · · ·
〈γ(q)|q̄(x)gsGµν(vx)iγαγ5q(0)|0〉 = · · ·
〈γ(q)|q̄(x)σαβgsGµν(vx)q(0)|0〉 = · · · (31)
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• With these ingredients, the correlation function can be calculated in terms of the photon wave

functions, condensates and QCD parameters.

• The correlation function can be written is the spectral representation:

Πi =

∫ ∞

0

ρOPE
i (s1, s2)

(s1 − p2)(s2 − (p + q)2)
+ · · · (32)

where · · · are polynomials in p2 or (p + q)2.
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• For the spectral densities, on the phenomenological side we have:

ρphen
2 (s1, s2) = eλOλDM (2G1 + G2(m − M)) δ(s1 − m2)δ(s2 − M2) + · · ·

ρphen
4 (s1, s2) = −eλOλD (2G1 + G2m) δ(s1 − m2)δ(s2 − M2) + · · · (33)

and we also have calculated the spectral densities using QCD parameters: ρOPE
2 (s1, s2) and

ρOPE
4 (s1, s2).

• The two problems that are to be solved in order to obtain the sum rules:

The contributions of the higher states and the continuum are not known.

The are unknown polynomials in the spectral representations of the correlation function
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• To model the contributions of the higher states and the continuum, quark-hadron duality is

used, i.e.

ρphen
2 (s1, s2) = eλOλDM (2G1 + G2(m − M)) δ(s1 − m2)δ(s2 − M2) + ρOPE

2 θ(s1 − s0)θ(s2 − s0)

ρphen
4 (s1, s2) = −eλOλD (2G1 + G2m) δ(s1 − m2)δ(s2 − M2) + ρOPE

4 θ(s1 − s0)θ(s2 − s0) (34)

• To eliminate the unknown polynomials, the results are Borel transformed with respect to

p2
1 = p2 and p2

2 = (p + q)2:

1

(p2
i − m2

i )
n

→ (−1)n

Γ(n)

1

M
2(n−1)
i

e−
m

2

M2

p2n
i → 0 (35)

where M2
i are called the Borel parameters.

• Borel transformation also suppresses the contributions of the higher states and the continuum.
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• The sum rules are obtained by equating both sides of the Borel transformed expressions:

eλOλDM (2G1 + G2(m − M)) e
−

m
2

M
2
1

−
M

2

M
2
2 =

∫ s0

0

ρOPE
2 (s1, s2)e

−
s1

M
2
1

−
s2

M
2
2

−eλOλD (2G1 + G2m) e
−

m
2

M
2
1

−
M

2

M
2
2 =

∫ s0

0

ρOPE
4 (s1, s2)e

−
s1

M
2
1

−
s2

M
2
2 (36)

• For the sum rules we obtain:

√
3λOλDMΣΣ∗0

→Σ0

2 e
−

m
2

M
2
1

−
M

2

M
2
2 = (ed + eu − 2es)

M6

32π4
E2(x) + · · ·

√
3λOλDΣΣ∗0

→Σ0

4 e
−

m
2

M2
1

−
M

2

M2
2 = (eumu + edmd − 2esms)

11M4

384π2
E1(x) + · · · (37)

where 1
M2 = 1

M2
1

+ 1
M2

2

, M2
i are the Borel parameters, x = s0

M2 , s0 is the continuum threshold,

the functions En(x) are used to subtract the contributions of the higher states and continuum

and are defined as:

En(x) = 1 − e−x
n

∑

i=0

xi

i!
(38)

• In our numerical analysis, we set M2
1 = M2

2 = 2M2 and u0 =
M2

1

M2
1
+M2

2

= 1
2
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• An interesting limit to consider is the SU(3)f symmetry limit: i.e. the limit

〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 = 〈q̄q〉 and mu = md = ms = mq

• In this limit, we get

ΠΣ∗0
→Σ0

= (eu + ed − 2es)C = C (39)

• Setting s → u and multiplying by −2, we get

Π∆+
→p = −2(ed − eu)C = 2C = 2ΠΣ∗0

→Σ0

(40)

• Similarly

2ΠΣ∗0
→Σ0

= Π∆+
→p = −Π∆0

→n = ΠΣ∗+
→Σ+

= −ΠΞ∗0
→Ξ0

(41)

and

ΠΣ∗−

→Σ−

= ΠΞ∗−

→Ξ−

= 0 (42)
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• The last ingredients needed to obtain a prediction for Σ2 and Σ4, are the residues λO and λD

which can be obtained using the mass sum rules.

• One considers the correlator

Π = i

∫

d4xeipx〈0|T η(x)η̄(0)|0〉 (43)

• For the octet, on the phenomenological side it reduces to

Π = λ2
O

6p + m

p2 − m2
+ · · · (44)

• For the decuplet

Πµν = −λ2
D

6p + M

p2 − M2

(

gµν − 1

3
γµγν − 2pµpν

3M2
+

pµγν − pνγµ

3M

)

(45)

• Note that the mass sum rules do not give us the sign of λ, hence LCQSR does not predict the

sign of Σ2 and Σ4 separately, it only predicts their relative sign.
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Numerical Analysis

For the numerical values of the input parameters, the following values are used:

〈ūu〉(1 GeV ) = 〈d̄d〉(1 GeV ) = −(0.243)3 GeV 3, 〈s̄s〉(1 GeV ) = 0.8〈ūu〉(1 GeV ),

m2
0(1 GeV ) = 0.8, χ(1 GeV ) = −4.4 GeV −2, Λ = 300 MeV and f3γ = −0.0039 GeV 2.

• M2 is a completely arbitrary parameter, and the predictions should be independent of its

numerical value.

• An upper bound for M2 is determined by requiring that the contributions of the higher states

and the continuum are below a certain limit.

• A lower bound is obtained by requiring that the contributions of the term containing the

highest power of 1
M2 is less then a limit.
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Process GE GM REM (%)

∆+ → p 0.037 ± 0.008 1.3 ± 0.2 −2.8

∆0 → n −0.037 ± 0.008 −1.3 ± 0.2 −2.8

Σ∗+ → Σ+ −0.017 ± 0.008 1.2 ± 0.1 1.4

Σ∗0 → Σ0 −0.008 ± 0.008 0.55 ± 0.05 −1.4

Σ∗0 → Λ 0.023 ± 0.006 −1.48 ± 0.12 1.5

Σ∗− → Σ− 0.0087 ± 0.0006 −0.13 ± 0.01 6.7

Ξ∗0 → Ξ0 0.031 ± 0.006 −1.5 ± 0.14 2.1

Ξ∗− → Ξ− −0.0095 ± 0.0005 0.14 ± 0.02 6.8

Table 1: The predictions on the moments for various decays. The magnetic moments are given in

terms of natural magnetons
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Process GE G
[8]
E GM G

[8]
M REM (%) R[8]

EM (%)

∆+ → p 0.037 ± 0.008 -0.04(11) 1.3 ± 0.2 2.01(33) −2.8 3(8)

∆0 → n −0.037 ± 0.008 0.04(11) −1.3 ± 0.2 -2.01(33) −2.8 3(8)

Σ∗+ → Σ+ −0.017 ± 0.008 -0.06(8) 1.2 ± 0.1 2.13(16) 1.4 5(6)

Σ∗0 → Σ0 −0.008 ± 0.008 -0.02(4) 0.55 ± 0.05 0.87(7) −1.4 4(6)

Σ∗− → Σ− 0.0087 ± 0.0006 0.020(10) −0.13 ± 0.01 -0.38(4) 6.7 8(4)

Ξ∗0 → Ξ0 0.031 ± 0.006 0.03(4) -1.5 ± 0.14 -2.26(14) 2.1 2.4(27)

Ξ∗− → Ξ− -0.0095 ± 0.0005 -0.018(7) 0.14 ± 0.02 0.38(3) 6.8 7.4(30)

Table 2: Our results together with the results from lattice [8]
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Process A1/2(GeV −1/2) A3/2(GeV −1/2) Γ(MeV )

∆+ → p −0.07 ± 0.01 −0.14 ± 0.02 0.19 ± 0.06

∆0 → n 0.07 ± 0.01 0.14 ± 0.02 0.19 ± 0.06

Σ∗+ → Σ+ −0.048 ± 0.008 −0.08 ± 0.01 0.038 ± 0.012

Σ∗0 → Σ0 −0.044 ± 0.005 −0.074 ± 0.007 0.032 ± 0.005

Σ∗0 → Λ 0.072 ± 0.005 0.12 ± 0.01 0.14 ± 0.02

Σ∗− → Σ− 0.0056 ± 0.0003 0.0075 ± 0.0006 0.00038 ± 0.00006

Ξ∗0 → Ξ0 0.055 ± 0.004 0.088 ± 0.008 0.06 ± 0.01

Ξ∗− → Ξ− −0.0059 ± 0.0006 −0.0079 ± 0.0012 0.00054 ± 0.00015

Table 3: The predictions for the helicity amplitudes and the decay widths for various decays

Particle Our Work

Data Group

A1/2(×10−3GeV −1/2) −135 ± 6 −70 ± 10

A3/2(×10−3GeV −1/2) −255 ± 8 −140 ± 20

REM (%) −2.5 ± 0.5 −3 ± 1

Table 4: Comparison of our results with the experimental results for the decay ∆+ → pγ
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