A. Özpineci

Physics Department, METU

23 February 2007

Strong Coupling Constants of the Octet Baryons to K and π Mesons in Light Cone QCD Sum Rules ^a:

ozpineci@metu.edu.tr

 $^{^{\}rm a}$ T. M. Aliev, A. Ozpineci, S.B. Yakovlev, V. S. Zamiralov, Phys. Rev. $\bf D74$ (2006) 116001, hep-ph/0609026

Outline

- Introduction
- $SU(3)_f$ Limit
- Light Cone QCD Sum Rules
- Relations Between Correlation Functions
- General Analysis and Conclusion

Introduction

• QCD has an $SU(3)_f$ symmetry when $m_u = m_d = m_s$

• Mesons: $3 \otimes \bar{3} = 1 \oplus 8$

Baryons: $3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$

Figure 1: Octet of pseudoscalar mesons and spin-1/2 baryons

• $SU(3)_f$ Limit

• In the $SU(3)_f$ limit, the baryons can be grouped in the octet representation as:

$$B_{\beta}^{\alpha} = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & n \\ \Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda \end{pmatrix}$$

• The Mesons as:

$$P_{\beta}^{\alpha} = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

- The most general $SU(3)_f$ interactions can be described by two terms:
 - $-\operatorname{Tr}\bar{B}\left\{P,B\right\}$
 - $-\operatorname{Tr}\bar{B}\left[P,B\right]$
- The most general interaction lagrangian:

$$\mathcal{L} = \sqrt{2} \left(D \operatorname{Tr} \bar{B} \left\{ P, B \right\} + F \operatorname{Tr} \bar{B} \left[P, B \right] \right)$$

• The coupling constants can be read off as:

$$g_{\pi^0 pp} = F + D, \ g_{\pi^0 \Sigma^+ \Sigma^+} = 2F, \ g_{\pi^- \Sigma^+ \Sigma^0} = -2F$$

 $g_{\pi^0 \Xi^0 \Xi^0} = F - D, \ g_{\pi^+ \Xi^+ \Xi^0} = -\sqrt{2}(F - D), \ \text{etc.}$

Light Cone QCD Sum Rules

• One starts with a correlation function of the form

$$\Pi = i \int d^4x e^{ipx} \langle \mathcal{M}(q) | \mathcal{T} \eta_{B_1}(x) \bar{\eta}_{B_2}(0) | 0 \rangle$$

• Inserting a complete set of hadronic states

$$\Pi^{phen} = \sum_{h,h'} \frac{\langle 0|\eta_{B_1}|B_1^h\rangle}{p_1^{h2} - m_1^{h2}} \langle \mathcal{M}B_1^h|B_2^{h'}\rangle \frac{\langle B_2^{h'}|\eta_{B_2}|0\rangle}{p_2^{h'2} - m_2^{h'2}}$$

• Extraction more precise near the poles: $p_1^2 \simeq m_1^2 > 0$ and $p_2^2 \simeq m_2^2 > 0$

$$\langle 0|\eta_{B_i}|B_i(p,s)\rangle = \lambda_{B_i}u(p,s)$$

$$\langle B_1(p_1)\mathcal{M}(q)|B_2(p_2)\rangle = g_{B_2B_1}\mathcal{M}\bar{u}(p_1)i\gamma_5u(p_2)$$

$$\Pi^{B_2 \to B_1 \mathcal{M}}(p_1^2, p_2^2)$$

$$= i \frac{g_{B_2 B_1 \mathcal{M}} \lambda_{B_1} \lambda_{B_2}}{(p_1^2 - M_1^2)(p_2^2 - M_2^2)} (- \not p \not q \gamma_5 - M_1 \not q \gamma_5 + (M_2 - M_1) \not p \gamma_5 + (M_1 M_2 - p^2) \gamma_5) + \cdots$$

- When $p_1^2 \to -\infty$ and $p_2^2 \to -\infty$, the main contribution is from small distances and times.
- Perturbative techniques can be applied:

$$\mathcal{T}\eta_{B_1}(x)\bar{\eta}_{B_2}(0) \simeq \sum_t C_t(x^2) : \mathcal{O}_t(x) :$$

where : \cdots : stand for the normal product, and the first operators are of the form $\bar{q}(x)\Gamma q(0)$.

• If the operators \mathcal{O}_t are expanded around $x \sim 0$, one obtains the OPE.

• The matrix elements $\langle \mathcal{M} | : \mathcal{O}_t(x) : |0\rangle$ are expanded around $x^2 \sim 0$ (hence the name light cone).

$$\langle \mathcal{M}(q)| : \bar{q}(x)\gamma_{\mu}\gamma_{5}q(0) : |0\rangle =$$

$$-if_{\mathcal{M}}q_{\mu} \int_{0}^{1} du e^{i\bar{u}qx} \left(\varphi_{\mathcal{M}}(u) + \frac{1}{16}m_{\mathcal{M}}^{2}x^{2}\mathbb{A}(u)\right)$$

• With these inputs, one can calculate Π when $p_1^2 << 0$ and $p_2^2 << 0$.

- To extract the coupling constants, one needs to analytically continue to the $p_1^2 > 0$ and $p_2^2 > 0$ domain.
- This is achieved by spectral representation of the coefficient functions

$$\Pi(p_1^2, p_2^2) = \int ds_1 ds_2 \frac{\rho(s_1, s_2)}{(s_1 - p_1^2)(s_2 - p_2^2)} + \cdots$$

where \cdots stand for polynomials in p_1^2 or p_2^2 .

Relations Between Correlation Functions

• To obtain the correlation function, first suitable currents have to be chosen:

$$\eta^{\Sigma^{0}} = \sqrt{\frac{1}{2}} \epsilon^{abc} \left[\left(u^{aT} C s^{b} \right) \gamma_{5} d^{c} + t \left(u^{aT} C \gamma_{5} s^{b} \right) d^{c} \right. \\
\left. - \left(s^{aT} C d^{b} \right) \gamma_{5} u^{c} - t \left(s^{aT} C \gamma_{5} d^{b} \right) u^{c} \right] \\
\eta^{\Sigma^{+}} = -\frac{1}{\sqrt{2}} \eta^{\Sigma^{0}} (d \to u) , \quad \eta^{\Sigma^{-}} = \frac{1}{\sqrt{2}} \eta^{\Sigma^{0}} (u \to d) \\
\eta^{p} = \eta^{\Sigma^{+}} (s \to d) , \quad \eta^{n} = \eta^{\Sigma^{-}} (s \to u) \\
\eta^{\Xi^{0}} = \eta^{n} (d \to s) , \quad \eta^{\Xi^{-}} = \eta^{p} (u \to s) \\
\eta^{\Lambda} = -\sqrt{\frac{1}{6}} \epsilon^{abc} \left[2 \left(u^{aT} C d^{b} \right) \gamma_{5} s^{c} + 2t \left(u^{aT} C \gamma_{5} d^{b} \right) s^{c} + \left(u^{aT} C s^{b} \right) \gamma_{5} d^{c} \\
+ t \left(u^{aT} C \gamma_{5} s^{b} \right) d^{c} + \left(s^{aT} C d^{b} \right) \gamma_{5} u^{c} + t \left(s^{aT} C \gamma_{5} d^{b} \right) u^{c} \right]$$

• The Λ current can also be obtained from that of the Σ^0 by:

$$2\eta_{\Sigma^{0}}(d \leftrightarrow s) + \eta_{\Sigma^{0}} = -\sqrt{3}\eta_{\Lambda}$$
$$2\eta_{\Sigma^{0}}(u \leftrightarrow s) - \eta_{\Sigma^{0}} = -\sqrt{3}\eta_{\Lambda}$$

- Convention: Let $\pi^0 = g_{\pi uu}\bar{u}u + g_{\pi dd}\bar{d}d + g_{\pi ss}\bar{s}s$
- Denote $\Pi^{B_2 \to B_1 \mathcal{M}} = \langle \mathcal{M} | B_1 \bar{B}_2 | 0 \rangle$ and $\Pi^{\Sigma^0 \to \Sigma^0 \pi^0} = g_{\pi u u} \langle \bar{u} u | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle + g_{\pi d d} \langle \bar{d} d | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle + g_{\pi s s} \langle \bar{s} s | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle$
- Let $\Pi_1(u,d,s) = \langle \bar{u}u|\Sigma^0\bar{\Sigma}^0|0\rangle$, $\Pi_2(u,d,s) = \langle \bar{s}s|\Sigma^0\bar{\Sigma}^0|0\rangle$
- $\langle \bar{d}d|\Sigma^0\bar{\Sigma}^0|0\rangle = \Pi_1(d,u,s) \text{ since } \Sigma^0(u\leftrightarrow d) = \Sigma^0$

- Consider $\Pi^{\Sigma^+ \to \Sigma^+ \pi^0} = g_{\pi \bar{u} u} \langle \bar{u} u | \Sigma^+ \bar{\Sigma}^+ | 0 \rangle + g_{\pi \bar{s} s} \langle \bar{s} s | \Sigma^+ \bar{\Sigma}^+ | 0 \rangle$
- Note that $\Sigma^0(d \to u) = -\sqrt{2}\Sigma^+$
- Hence $\langle \bar{u}u|\Sigma^0\bar{\Sigma}^0|0\rangle(d\to u)=2\langle \bar{u}u|\Sigma^+\bar{\Sigma}^+|0\rangle'$
- $\langle \bar{u}u|\Sigma^{+}\bar{\Sigma}^{+}|0\rangle = 4\langle \bar{u}u|\Sigma^{+}\bar{\Sigma}^{+}|0\rangle'$ = $2\langle \bar{u}u|\Sigma^{0}\bar{\Sigma}^{0}|0\rangle(d\to u) = 2\Pi_{1}(u,u,s)$
- Hence $\Pi^{\Sigma^+ \to \Sigma^+ \pi^0} = \sqrt{2} \Pi_1(u, u, s)$

• What about charged mesons? Consider $\Pi^{\Sigma^0 \to \Sigma^+ \pi^-}$

- Hence it is natural to expect that $\langle \bar{d}d|\Sigma^0\bar{\Sigma}^0|0\rangle$ to be proportional to $\langle \bar{u}d|\Sigma^+\bar{\Sigma}^0|0\rangle$
- Indeed $\Pi^{\Sigma^0 \to \Sigma^+ \pi^-} = \langle \bar{u}d | \Sigma^+ \bar{\Sigma}^0 | 0 \rangle = -\sqrt{2} \langle \bar{d}d | \Sigma^0 \bar{\Sigma}^0 | 0 \rangle = -\sqrt{2} \Pi_1(d, u, s)$
- Exchanging u and d quarks, one also obtains $\Pi^{\Sigma^0 \to \Sigma^- \pi^+} = \langle \bar{d}u | \Sigma^- \bar{\Sigma}^0 | 0 \rangle = \sqrt{2} \Pi_1(u, d, s)$

• Similarly $\Pi^{\Xi^0 \to \Xi^- \pi^+} = \langle \bar{d}u | \Xi^- \Xi^0 | 0 \rangle = -\sqrt{2} \langle \bar{u}u | \Xi^0 \bar{\Xi}^0 | 0 \rangle = -\Pi_2(s, s, u)$

• Exchanging u and d, one obtains $\Pi^{\Xi^- \to \Xi^+ \pi^-} = -\Pi_2(s, s, d)$

- What about Λ ?
- Using $2\Sigma^0(d \leftrightarrow s) = -\sqrt{3}\Lambda \Sigma^0$ and the result $\Pi^{\Sigma^0 \to \Sigma^- \pi^+} = \sqrt{2}\Pi_1(u, d, s)$, we have $2\sqrt{2}\Pi_1(u, s, d) = \sqrt{3}\Pi^{\Lambda \to \Xi^- K^+} + \Pi^{\Sigma^0 \to \Xi^- K^+}$
- How to separate the two correlation functions? Define $\Pi_3(u,d,s) = -\Pi^{\Sigma^0 \to \Xi^- K^+} = -\langle \bar{s}u | \Xi^- \bar{\Sigma}^0 | 0 \rangle$ and $\Pi_4(u,d,s) = -\Pi^{\Xi^- \to \Sigma^0 K^-} = -\langle \bar{u}s | \Sigma^0 \bar{\Xi}^- | 0 \rangle$

- How are the functions related to the F and D constants in the $SU(3)_f$ limit?
- In the $SU(3)_f$ limit, $\Pi_1 \propto \sqrt{2}F$, $\Pi_2 \propto \sqrt{2}(F-D)$, and $\Pi_4 = \Pi_3 \propto -(F+D)$

Explicit Expressions:

$$\Pi_{1}(u,d,s) = \frac{f_{\mathcal{M}}}{64\pi^{2}}M^{4}\left(m_{s}(1-t)^{2} - m_{d}(1-t^{2})\right)i_{2}(\phi_{\mathcal{M}})$$

$$- \frac{\mu_{\mathcal{M}}}{64\pi^{2}}M^{4}\left(1 - \tilde{\mu}_{\mathcal{M}}^{2}\right)(1-t^{2})i_{2}(\phi_{\sigma})$$

$$- \frac{f_{\mathcal{M}}}{32\pi^{2}}m_{\mathcal{M}}^{2}M^{2}\left(m_{s}(1-t)^{2} + 3m_{d}(1-t^{2})\right)i_{1}(\mathcal{V},1)\left(\gamma_{E} - \ln\frac{M^{2}}{\Lambda^{2}}\right)$$

$$+ \frac{f_{\mathcal{M}}}{16\pi^{2}}m_{\mathcal{M}}^{2}M^{2}\left(m_{s}(1-t)^{2} - m_{d}(1-t^{2})\right)i_{1}(\mathcal{V}_{\perp},1)\left(\gamma_{E} - \ln\frac{M^{2}}{\Lambda^{2}}\right)$$

$$+ \frac{f_{\mathcal{M}}}{768\pi^{2}}\langle g_{s}^{2}GG\rangle\left(m_{s}(1-t)^{2} - m_{d}(1-t^{2})\right)i_{2}(\phi_{\mathcal{M}})\left(\gamma_{E} - \ln\frac{M^{2}}{\Lambda^{2}}\right)$$

$$- \frac{m_{0}^{2} + 2M^{2}}{3456M^{6}}\mu_{\mathcal{M}}\left(1 - \tilde{\mu}_{\mathcal{M}}^{2}\right)\langle g_{s}^{2}GG\rangle\left(m_{d}\langle\bar{s}s\rangle + m_{s}\langle\bar{d}d\rangle\right)(3 + 2t + 3t^{2})\delta_{2}(a)$$

$$-\frac{m_{0}^{2}}{648M^{2}}\left(1-\tilde{\mu}_{\mathcal{M}}^{2}\right)\mu_{\mathcal{M}}(m_{s}\langle\bar{d}d\rangle+m_{d}\langle\bar{s}s\rangle)(5+4t+5t^{2})i_{2}(\phi_{\sigma})$$

$$-\frac{f_{\mathcal{M}}}{3072\pi^{2}M^{2}}\langle g_{s}^{2}GG\rangle m_{\mathcal{M}}^{2}\left(m_{s}(1-t)^{2}-m_{d}(1-t^{2})\right)\left(4i_{1}(\mathcal{A}_{\parallel},1-2v)-i_{2}(\mathbb{A})\right)$$

$$+\frac{f_{\mathcal{M}}}{768\pi^{2}M^{2}}\langle g_{s}^{2}GG\rangle m_{\mathcal{M}}^{2}\left(m_{s}(1-t)^{2}+m_{d}(1-t^{2})\right)i_{1}(\mathcal{V}_{\parallel},1)$$

$$-\frac{f_{\mathcal{M}}}{1152\pi^{2}}\langle g_{s}^{2}GG\rangle\left(m_{s}(1-t)^{2}-m_{d}(1-t^{2})\right)i_{2}(\varphi_{\mathcal{M}})$$

$$-\frac{f_{\mathcal{M}}}{128\pi^{2}}m_{\mathcal{M}}^{2}M^{2}\left(m_{s}(1-t)^{2}-m_{d}(1-t^{2})\right)i_{2}(\mathbb{A})$$

$$-\frac{f_{\mathcal{M}}}{24}M^{2}\left(\langle\bar{s}s\rangle(1-t)^{2}-\langle\bar{d}d\rangle(1-t^{2})\right)i_{1}(\varphi_{\mathcal{M}})$$

$$+\frac{f_{\mathcal{M}}}{32\pi^{2}}m_{\mathcal{M}}^{2}M^{2}\left(m_{s}(1-t)^{2}-m_{d}(1-t^{2})\right)i_{1}(\mathcal{A}_{\parallel},1-2v)$$

$$-\frac{f_{\mathcal{M}}}{16\pi^{2}}m_{\mathcal{M}}^{2}M^{2}\left(m_{s}(1-t)^{2}+2m_{d}(1-t^{2})\right)i_{1}(\mathcal{V}_{\parallel},1)$$

$$+ \frac{f_{\mathcal{M}}}{16\pi^{2}}m_{\mathcal{M}}^{2}M^{2}\left(m_{s}(1-t)^{2}-m_{d}(1-t^{2})\right)i_{1}(\mathcal{V}_{\perp},1)$$

$$+ \frac{\mu_{\mathcal{M}}}{144}\left(1-\tilde{\mu}_{\mathcal{M}}^{2}\right)\left[\langle\bar{d}d\rangle\left(-3m_{d}(1-t^{2})-2m_{s}(3+2t+3t^{2})\right)\right]$$

$$- \langle\bar{s}s\rangle\left(3m_{s}(1-t^{2})+m_{d}(6+4t+6t^{2})\right)\left]i_{2}(\phi_{\sigma})$$

$$+ \frac{f_{\mathcal{M}}}{432}m_{0}^{2}\left(3\langle\bar{s}s\rangle(1-t)^{2}-2\langle\bar{d}d\rangle(1-t)^{2}\right)i_{2}(\varphi_{\mathcal{M}})$$

$$+ \frac{f_{\mathcal{M}}}{96}m_{\mathcal{M}}^{2}\left(\langle\bar{s}s\rangle(1-t)^{2}-\langle\bar{d}d\rangle(1-t^{2})\right)i_{2}(\mathbb{A})$$

$$- \frac{\mu_{\mathcal{M}}}{48}(1-t^{2})(\langle\bar{d}d\rangle m_{d}-\langle\bar{s}s\rangle m_{s})i_{1}'(\mathcal{T},1-2v)$$

$$- \frac{f_{\mathcal{M}}}{24}m_{\mathcal{M}}^{2}\left(\langle\bar{s}s\rangle(1-t)^{2}-\langle\bar{d}d\rangle(1-t^{2})\right)i_{1}(\mathcal{A}_{\parallel},1-2v)$$

$$+ \frac{f_{\mathcal{M}}}{24}m_{\mathcal{M}}^{2}\left(\langle\bar{d}d\rangle(1-t^{2})+\langle\bar{s}s\rangle(1-t)^{2}\right)i_{1}(\mathcal{V}_{\parallel},1)$$

Figure 2: The M^2 dependence of the $g_{pp\pi}$ coupling constant.

Figure 3: The θ dependence of the $g_{pp\pi}$ where $\tan \theta = t$

Channel	Gen. Current	t = -1	$SU(3)_f$	QSR*	QSR [†]	Exp.
$\Lambda \to nK$	-13 ± 3	-9.5 ± 1	-14.3	-2.37	-2.49	-13.5
				-2.51	-2.49	-13.5
$\Lambda \to \Sigma^+ \pi^-$	10 ± 3	12 ± 1	10.0			
$\Lambda \to \Xi^0 K^0$	4.5 ± 2	-2.5 ± 0.5	4.25			
$n \rightarrow p\pi^-$	21 ± 4	20 ± 2	19.8			21.2
$n \to \Sigma^0 K^0$	-3.2 ± 2.2	-9.5 ± 0.5	-3.3	-0.025	-0.40	-4.25
$p \to \Lambda K^+$	-13 ± 3	-10 ± 1	-14.25	-2.37	-2.49	-13.5
$p \to p\pi^0$	14 ± 4	15 ± 1	Input	13.5		14.9
$p \to \Sigma^+ K^0$	4 ± 3	14 ± 1	5.75			
$\Sigma^0 \to nK^0$	-4 ± 3	-9.5 ± 1	-3.32	-0.025	-0.40	-4.25
$\Sigma^0 \to \Lambda \pi^0$	11 ± 3	12 ± 1.5	10.0	6.9		
$\Sigma^0 \to \Xi^0 K^0$	-13 ± 3	-13.5 ± 1	-14			
$\Sigma^- \to nK^-$	5 ± 3	15 ± 2	4.7			
$\Sigma^+ \to \Lambda \pi^+$	10 ± 3.5	12.5 ± 1	Input			
$\Sigma^+ \rightarrow \Sigma^0 \pi^+$	-9 ± 2	-7.5 ± 0.7	-10.7	-11.9		
$\Xi^0 \to \Lambda K^0$	4.5 ± 1	-2.6 ± 0.3	4.25			
$\Xi^0 \to \Sigma^0 K^0$	-12.5 ± 3	-13.5 ± 1	-14			
$\Xi^0 \to \Sigma^+ K^-$	18 ± 4	19 ± 2	19.8			
$\Xi^0 o \Xi^0 \pi^0$	10 ± 2	0.3 ± 0.6	-3.32	-1.60		

Conclusion

- All the strong coupling constants are expressed in terms of four analytic functions
- The predicted coupling constants respect the $SU(3)_f$ symmetry
- There is good agreement with the experimental results.