A. Özpineci

INFN, Sezione di Bari

70126 Bari, Italy

 $18 June \ 2005$

Radiative Decays of Charm Mesons ^a: A Light Cone QCD Sum Rules Approach ozpineci@ba.infn.it

^aIn collaboration with P. Colangelo, and F.de Fazio

Outline

- Introduction
- Decay Modes
- QCD Sum Rules
- Light Cone QCD Sum Rules Approach to D Mesons
- Results and Discussions

Introduction

- Last few years have been an exciting period for hadron spectroscopy:
- The possible observation of baryons containing 5 quarks, pentaquarks, first by the LEPS facility in SPring-8 machine in Japan
- The observations of excitation of the heavy charmonium systems
- The detection of double heavy baryons: Ξ_{cc} by the SELEX Collaboration
- The observation of narrow charmed-stranged mesons with unexpected properties.

- In this talk, I will present the study of the radiative decays of $D_{sJ}(2317)$ and $D_s^*(2460)$ within the framework of Light Cone QCD Sum Rules
- A classification of charmed mesons can be obtained in the heavy quark limit: $m_c \to \infty$
- In this limit, the heavy quark spin, s_Q , decouples from the total spin of the light degrees of freedom, $s_l = L + S$.

- A given value of s_l , corresponds to a doublet which is degenerate in the heavy quark limit.
- for L = 0, $s_l = \frac{1}{2}$ and we have the doublet $(0^-, 1^-)$, denoted as $\left(D_{(s)}, D^*_{(s)}\right)$

L = 1

Introduction

Introduction

 $18 \ June \ 2005$

INFN, Sezione di Bari

Decay Modes

- The $s_l = \frac{1}{2}$ and $s_l = \frac{3}{2}$ doublets behave differenty in their decay modes:
- $s_l = \frac{1}{2}$ doublet can decay strongly into pseudoscalar mesons in an *s*-wave
- $s_l = \frac{3}{2}$ doublet can decay strongly into pseudoscalar mesons in *d*-wave only
- The $s_l = \frac{1}{2}$ are expected to be broad.

• CLEO, BELLE and FOCUS collaborations have found evidence of broad resonances, with masses around $2.4 \ GeV$ and widths around 300 MeV, which can be identified as the $s_l = \frac{1}{2}$ doublet of the non-strange D mesons. • The broadness of these states are consistant with the expactations for the $s_l = \frac{1}{2}$ doublet mesons. • The mixing angle between the 1⁺ members of the two doublets is found to be around -6° , which can safely be neglected

- In the strange sector, in 2003, BaBar collaboration reported the observation of a narrow resonance with mass close to 2.32 GeV, named $D_{sJ}^*(2317)$. Later, this resonance is observed also by the Belle, Cleo and Focus collaborations.
- In all the observations, the width is compatible with the experimental resolution, $\Gamma < 10 MeV$.
- No evidence for the radiative decays into $D_s\gamma$, $D_s^*\gamma$, and $D_s\gamma\gamma$ is found.
- $D_{sJ}^*(2317)$ is naturally interpreted as the scalar component of the $s_l = \frac{1}{2}$ doublet, i.e. the 0⁺

- CLEO also observed another heavier resonance $D_{sJ}(2460)$, with a width consistant with the experimental resolution.
- $D_{sJ}(2460)$ is naturally interpreted as the 1⁺ of the $s_l = \frac{1}{2}$ doublet.
- The existence of this resonance is also confirmed by BaBar and Belle

- One of the surprises of the measurements of these states are their low masses.
- All the predictions for the mass of the scalar $c\bar{s}$ were always heavier than the DK threshold of 2.36 GeV leading to a large width.
- Moreover, the non-strange D mesons were always predicted to be lighter than the strange D mesons, where as experimentally they have more or less equal masses.
- Updated analysis can give results in agreement with experimental data, but it is unclear why the previous determinations were bigger.

- Since the mass of the $D_{sJ}^*(3217)$ is lower than the DK threshold, it is expected to decay mainly through the isospin violating $D\pi$ channel.
- The decay of $D_{sJ}^*(2317) \to D_s^+ \pi^0$ is described as a two stage process: first $D_{sJ}^*(2317)$ decays into $D_s^+ \eta$, where η is then converted into π^0 throught the isospin violating $\eta - \pi^0$ mixing.
- The decay into $D_s^+\pi^0$ is observed but the width of this decay is still unknown.
- Various theoretical estimates for the width of this decay using the $c\bar{s}$ picture for the D_s meson give results in the 6-20~KeV range.

- Another important decay mode of the D^*_{sJ} is the radiative decay mode $D^*_{sJ}\to D^*_s\gamma$
- Experimentally, this mode is still not observed.

Table 1: Measurements and 90% CL upper limits of ratios of $D_{sJ}^*(2317)$ and $D_{sJ}(2460)$ decay widths.

	Belle	BaBar	CLEO
$\frac{\Gamma\left(D_{sJ}^{*}(2317) \rightarrow D_{s}^{*}\gamma\right)}{\Gamma\left(D_{sJ}^{*}(2317) \rightarrow D_{s}\pi^{0}\right)}$	< 0.18	—	< 0.059
$\frac{\Gamma\left(D_{sJ}(2460) \rightarrow D_{s}\gamma\right)}{\Gamma\left(D_{sJ}(2460) \rightarrow D_{s}^{*}\pi^{0}\right)}$	$0.55 \pm 0.13 \pm 0.08 \\ 0.38 \pm 0.11 \pm 0.04$	$0.375 \pm 0.054 \pm 0.057$ $0.274 \pm 0.045 \pm 0.020$	< 0.49
$\frac{\Gamma\left(D_{sJ}(2460) \rightarrow D_{s}^{*}\gamma\right)}{\Gamma\left(D_{sJ}(2460) \rightarrow D_{s}^{*}\pi^{0}\right)}$	< 0.31	—	< 0.16
$\frac{\Gamma\left(D_{sJ}(2460) \rightarrow D_{sJ}^{*}(2317)\gamma\right)}{\Gamma\left(D_{sJ}(2460) \rightarrow D_{s}^{*}\pi^{0}\right)}$		< 0.23	< 0.58

- To study this decay theoretically, one needs the matrix element $\langle D_s^+ \gamma | D_{sJ}^* \rangle$
- To calculate this matrix element theoretically, one needs a a non-perturbative method, one of the most reliable of which is the Light Cone QCD Sum Rules.

QCD Sum Rules

- In QCD sum rules approach, one relates hadronic properties to the properties of the vacuum of QCD through a number of condensates, one of which is the chiral condensate $\langle \bar{q}q \rangle$ which is known for quite a long time.
- To obtain the sum rules for the process $H_2 \to H_1 \gamma$, one starts by considering the correlation function

$$\Pi(p,q) = i \int d^4x e^{ipx} \langle \gamma(q) | \mathcal{T} \{ j_1(x) \overline{j}_2(0) \} | 0 \rangle$$

where j_1 is a current with the quantum numbers of H_i chosen s.t. $\langle H_i | j_i | 0 \rangle \neq 0$ • For $p^2 > 0$ and $(p+q)^2 > 0$, one can insert two complete sets of hadronic states to write the correlation function in the form:

$$\Pi(p,q) = \frac{\langle 0|j_1|H_1(p)\rangle}{p^2 - m_1^2} \langle \gamma(q)H_1(p)|H_2(p+q)\rangle \frac{\langle H_2(p+q)|j_2|0\rangle}{(p+q)^2 - m_2^2} + \cdots$$

where m_i is the mass of H_i .

- On the other kinematical region, where $p^2 << 0$ and $(p+q)^2 << 0$, the main contribution to the correlation function comes from small distances, and hence one can expand the time ordered product using OPE.
- The sum rules is obtained by equating both expressions for the correlation function using spectral representation for the correlation function.

Light Cone QCD Sum Rules for $D_{sJ}^* \to D_s^* \gamma$ decay

• In order to obtain the hadronic representation for the correlation function, the following matrix elements of the currents are needed:

$$\langle D_{sJ}^{*}(p)|j^{0^{+}}|0\rangle = m_{D_{sJ}^{*}}f_{D_{sJ}^{*}}$$
$$\langle D_{s}^{*}(p)|j_{\mu}^{1^{-}}|0\rangle = m_{D_{s}^{*}}f_{D_{s}^{*}}\varepsilon(p)$$

where $\varepsilon(p)$ is the polarization vector of the D_s^* vector meson, and f_D 's are called the residues or in this case, leptonic decay constants of the corresponding meson.

• The last ingrediant necessary to obtain a hadronic representation for the correlation function is the vertex element, which using gauge invariance can be written as:

 $\langle D_s^*(p)\gamma(q)|D_{sJ}^*\rangle = eF(q^2)\left((\varepsilon\eta)(pq) - (\eta p)(\varepsilon q)\right)$

where η is the polarization vector of the photon.

• Using these definitions and summing over the polarization of the vector meson, the correlation function becomes

$$\Pi_{\mu}(p,q) = e \frac{F(q^2)}{\left(p^2 - m_{D_s^*}^2\right) \left((p+q)^2 - m_{D_{sJ}^*}^2\right)} \left(\eta_{\mu}(pq) - q_{\mu}(\eta p)\right) + \cdots$$

 $18 June \ 2005$

- In order to obtain an expression of the correlation function using the OPE, first, one needs to determine appropriate currents.
- The immediate choice for the currents in the $c\overline{s}$ picture of the D_s mesons are:

$$j_{\mu}^{0^{+}} = \bar{s}c$$
$$j_{\mu}^{1^{-}} = \bar{s}\gamma_{\mu}c$$

• In the heavy quark limit, these currents become

$$\begin{aligned} j^{0^+} &= \bar{s}h_v \\ j^{1^-}_\mu &= \bar{s}\gamma^t_\mu h_v \end{aligned}$$

where h_v is the heavy quark field with the heavy quark moving at a velocity $v, \gamma^t_{\mu} = g^t_{\mu\nu}\gamma^{\nu}, g^t_{\mu\nu} = g_{\mu\nu} - v_{\mu}v_{\nu}$

18 June 2005

INFN, Sezione di Bari

• In the heavy quark limit, Dai *et. al* argue that the coupling of these currents to the corresponding mesons in the non relativistic limit vanishes and they propose to use the currents:

$$j^{0^{+}} = \bar{s}(-i \overset{\leftarrow}{\mathcal{D}^{t}})h_{v}$$
$$j^{1^{-}}_{\mu} = \bar{s}(-i \overset{\leftarrow}{\mathcal{D}^{t}})\gamma^{t}_{\mu}h_{v}$$

• We used both definitions of the currents in the heavy quark limit and found out that the results do not change. • Calculation of the correlation function amounts to calculating the Feynman diagrams of the form:

• Contracting only one type of quark fields, one can express the correlation function in terms of matrix elements of the form $\langle \gamma(q) | \bar{q}(x) \Gamma q(0) | 0 \rangle$, where Γ are $\mathbf{1}$, γ_{μ} , $\sigma_{\mu\nu}/\sqrt{2}$, $i\gamma_{\mu}\gamma_{5}$, and γ_{5}

- These matrix elements can be expanded on the light cone, around $x^2 = 0$.
- Using these input parameters, one can evalute the correlation function in terms of parameter appearing in the QCD lagrangian, a few condensates and wavefunctions

• The sum rules are obtained by calculating the integral in:

$$f_{D_s^*} f_{D_{sJ}^*} m_{D_s^*} m_{D_{sJ}^*} F_1(0) e^{-\frac{m_{D_s^*}^2 + m_{D_{sJ}^*}^2}{2M}} = \int_{m_c^2}^{s_0} ds e^{-\frac{s}{M^2}} \rho(s)$$

- In order to obtain a prediction for the formfactor $F_1(0)$, the constants f_D are also needed.
- These constants can also be calculated using the sum rules approach.
- For this purpose, one considers the correlation function

$$\Pi(p) = i \int d^4x e^{ipx} \langle 0 | \mathcal{T} \left\{ J_i(x) \bar{J}_i(0) \right\} | 0 \rangle$$

• For $j_i = j^{0^+}$, the correlation function becomes, in the phenomenological representation:

$$\Pi(p) = \frac{f_{D_{sJ}^*}^2 m_{D_{sJ}^*}^2}{p^2 - m_{D_{sJ}^*}^2}$$

• and for
$$j_i = j_{\mu}^{1^-}$$

$$\Pi_{\mu\nu}(p) = \frac{f_{D_s^*}^2 m_{D_s^*}^2}{p^2 - m_{D_s^*}^2} \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right)$$

 $18 \ June \ 2005$

INFN, Sezione di Bari

Figure 1: The parameter d in the $D_{s0} \to D_s^* \gamma$ decay amplitude versus the Borel parameter M^2 . The curves correspond to the thresholds $s_0 = 2.45^2 \text{ GeV}^2$ (continuous line), $s_0 = 2.5^2 \text{ GeV}^2$ (long-dashed line) and $s_0 = 2.55^2 \text{ GeV}^2$ (dashed line).

- It is seen that $d = -0.31 \pm 0.4 \ GeV^{-1}$
- The width, defined as:

$$\Gamma = \frac{\alpha}{8m_{D_{sJ}^*}^3} (m_{D_{sJ}^*}^2 - m_{D_s^*}^2)^3 F_1(0)^2 \tag{1}$$

turn out to be $\Gamma = 5 \pm 1 \ KeV$.

• There are bigger uncertainties due to the uncertainties in the values of the input parameter, e.g. if one uses $\chi = -4.4 \ GeV^{-2}$ instead of $\chi = -3.15 \ GeV^2$, the value obtained for |d| is 40% larger.

- The main contribution to the sum rules comes from the leading twist wavefunction φ_{γ} and the perturbative contribution.
- A large uncertainty is caused by the uncertainty of the value of χ which multiplies φ_γ.
- A recent prediction for the value of χ is, $\chi = -3.15 \ GeV^{-2}$. For this value of χ , the width reduces to as small as $\Gamma \simeq 10 \ KeV$
- Another large uncertainty comes from the value of the value of Λ_{QCD} , M^2 and s_0 , changing whose values can reduce the width by $4 \ KeV$
- Assuming that the ratio of the width of the radiative decay to the pionic decay saturates the experimental upper bound, our prediction for the pionic decay mode changes from $120 \ KeV$ up to $500 \ KeV$.
- The prediction for the pionic decay is much larger then the

predictions of other approaches.

- Assuming that the pionic and the radiative decays saturate the total width, we get $\Gamma_{D_{sJ}^*} < 525 KeV$ which is well below the experimental limit.
- Experimental data is still not sufficient to derive any precise conclusions from our results.
- There are big descrepancies between various methods. When more precise experimental data will be available, removing these uncertainties will lead to a deaper understanding of strong interactions.
- If the widht of the radiative decay turns out to be around $1 \ KeV$, it would most probably imply a structure for the D_{sJ}^* different from the quark-anti-quark picture.

Table	2: Comparison	of our res	ults with oth	er results	
Initial state	Final state	LCSR	VMD [2, 3]	QM [5]	QM [6
$D_{sJ}^{*}(2317)$	$D_s^*\gamma$	4-6	0.85	1.9	1.74
$D_{sJ}(2460)$	$D_s\gamma$	19-29	3.3	6.2	5.08
	$D_s^*\gamma$	0.6-1.1	1.5	5.5	4.66
	$D^*_{sJ}(2317)\gamma$	0.5-0.8		0.012	2.74

References

- M. A. Shifman, V. I. Vainshtein, V. I. Zakharov, Nucl. Phys. B147 (1979) 385.
- [2] P. Colangelo, F. De Fazio, R. Ferrandes, Mod. Phys. Lett. A19 (2004) 2083
- [3] P. Colangelo, F. De Fazio, *Phys. Lett.* **B570** (2003) 180
- [4] R. Ferrandes, preprint hep-ph/0407212
- [5] S. Godfrey, Phys. Lett. B **568**, 254 (2003).
- [6] W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003).