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Introduction

Electromagnetic interactions of hadrons provide unique insight into the structure of hadrons.
That the nucleon could be deformed was proposed more than 20 years ago [1]

It is still an intensive theoretical and experimental area of activity.

The process A — N~ can give us information on this aspect also.

If the wave functions of both the initial and final states are spherical, the quadrupole moments
for this decay should vanish.

Recent experimental results show that the quadrupole moments are non zero.

The spin-parity selection rules allow for magnetic dipole (M1), and electric (E2) or coulomb

(C2) quadrupole moments.

The moments have been studied using various models.



In the naive (spherical) quark model of the nucleon, A is a pure spin flip (M1) transition, and
E2=C2=0

Experimentally, indeed M1 dominates over the other moments.
In other refined models, small £2 and C2 moments are predicted.

In ”QCD inspired” quark model, one introduces a tensor forces which introduce a d-state
admixture to the nucleon.

Stronger contributions are expected from pion clouds.



QCD Sum Rules

Electromagnetic decays of baryons also constitute an important test for non perturbative
methods.

To study these processes, a reliable non perturbative method is needed.
One of these methods is the Light Cone QCD sum rules approach.

In QCD sum rules approach, properties of hadrons are expressed in terms of the vacuum

properties through non zero condensates in the vacuum

One starts by studying a correlation function of the form:
(p,q) = [ a2 (20| Tro(2)1,(0)10) )

For p? > 0, the correlation function is calculated in terms of hadronic parameters.

In the deep Euclidean region, p?> << 0, the correlation function is calculated using the OPE in
terms of QCD degrees of freedom.

Sum rules are obtained by matching the two representation using spectral representation.



Light Cone QCD Sum Rules for radiative
Decuplet to Octet Transition

Hadronic Representation

e For p? > 0, two complete sets of hadronic states can be inserted to get:

(0lno|Octet(p))
p2 _ m2

Decuplet(p + g 0
1—[(]97 q) _ < ( )‘UDM >

(p+q)* — M?

where - - - stand for the contribution of higher states and continuum.

e The matrix elements of the currents between the single baryon state and the vacuum are

defined as

(Ono|Octet(p)) = Xou(p,s)
(Decuplet(p + q)|npu|0) = Apuu(p+4q,s)

where A’s are the residues and u,, is the Rarita-Schwinger spinor.

(Octet|Decuplet)-, 4.



e The electromagnetic vertex can be parametrized in terms of three form factors as|2]:

(Octet|Decuplet), = eu(p,s){G1(q £ —¢€, 4) 5
+ G2((Pe)g, — (Pg)ep) v
+ Gs((q)ap — q%ep) v} uP(p + q)
where P = % (p+ (p+ q)) and ¢ is the photon polarization vector.

e In our case, we will be considering a real photon(¢?> = 0 and e.¢ = 0), hence G3 will not

contribute.



e For experimental studies, it is desirable to use form factors which diagonalize the cross section.

e Linear combinations of GG; give us the magnetic dipole, G, electric quadrupole, Gg and

Coulomb quadrupole, G¢ form factors[2]:

Gy = :((BM +m) (M +m) —¢*) % + (M? —m?) G2 + 2q2G3] m
Gg = :(M2 —m?+¢%) % + (M? —m?) Gy + 2q2G3] W
Go = :2MG1+%(3M2+m2—q2)G2+(Mz—m2+q2)G3]% (5)
e The helicity amplitudes are given as:
== o) ()} G0 £
Asjp = —% (M? —m?) (%>% %q(GM‘i‘GE)Qi (6)



e Using the matrix elements for the currents and the vertex, and

) 1 2PaPs | Pa¥B — Ppa
> ualp,8)us(p,s) = — (#+ M) {gaﬁ S et @

one can obtain an expression for the correlation function in terms of the form factors.

e Schematically, we have

1 1
p2—m? (p+q)? — M2 [G2(5P)QM qd pys +

+ M (2Gy — G2(M —m)) (ep)aus
— (2G1 — Go(M —m)) (ep)qy Pys — (2G1 + Gam) (ep)q,, 47s] + other structures with ¢ at

TM = 6)\@ )\D

the beginning and v, (p + ¢), or €, at the end (8)

where we have chosen the ordering ¢ ¢ pv,



The reason for choosing this ordering and the structure o g, is that, spin-1/2 particles do not
contribute to this structure.

1

(Olnguls (p + @) = (A(p + @) + B'yu) v5u(p) (9)

Using the matrix element, one can not create a structure o< ¢, with this ordering.
In our study, we choose the structures (ep)q,vs and q,, ¢7s.

The coefficients of these structures in the hadronic representation are:

For the (ep)q,s structure:

p? —m? (p+Q)2—M2M(2G1+G2(m_M)) (10)

For the g,, ¢vs structure:

1 1

I, = —eloA
PO T (ot q)2 — MP

(2G4 + Gom) (11)




e Both can be written in the form

; = /Oo ds1dsz P (s, 52) + -
0 (s1 —p?)(s2 — (P +q)?)
where - - - are polynomials in p? and (p + ¢)?, and
pghe"(sl, s3) = edoApM (2G; + Go(m — M))6(s1 —m?)6(sg — M?) + - -
pihen(sl, s9) = —eXoAp (2G1 + Gam)d(s1 —m2)6(sy — M?) 4 - -

where - - - represent the contributions of the excited states and continuum.
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QCD Representation

e For p? << 0 and (p+ ¢)? << 0, the main contributions come from small distances, hence one

can use the OPE.

e One must choose appropriate currents.

For the Decuplet:

Z*O .
77M -

>t
77“ -

> _
77M -

2

3
]_ Z*O

Vel

1 e
V2

1 E*O
V2

1 E*O
V2

1 Z*O

Vel

]_ Z*O

vl

(d —u)
(u — d)
(s = u)
(s —d)
(d—s)

(u—5)

= gabe [(u“TC%db) s¢ + (daTC%sb) u® + (saTC%ub) dc}
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For the Octet:

7720 _ \/geabc [_ (uaTCSb> ,}/Sdc + (UGTC’}/g,Sb) dc + (SaTCdb) 75uc _ (SaTC’)/g,db) uc]
= \%7720 (d — u)
= \%nzo (u— d)
wo= V2T (s —u)
nto= V27 (s = d)
== V27 (d— s)
"= = —V2n® (u—s)
nA — leabc [2 (uaTCdb) 7530 —9 (UQTC’Y5db> s¢ + (uaTCSb> 75dc

6

— (UGTC’}/E,Sb) d® + (SGTC'db) Vsu — (SGTC’)/g,db) uc}
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e Accept for the correlation function for ¥*° — A, the others can be obtained from the correlation

function for ¥*0 — 20:

HZ*+_>Z+ _ HZ*O_)ZO (d . u)
= - - e (u — d)
HA+—>p — _2HZ*O—>ZO (S N U)
HA0—>n — _2HE*O—>EO (S N d)
HE*O—>EO — _2H2*0—>20 (d N 3)
M=% = o™ = (u—s) (16)
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e It is also possible to obtain the correlation function for £*° — A from the correlation function
for ¥*0 — %0 [3, 4].

e Note that:
27 (d > s) = =3t — ™ (17)
e and hence

_\/§HZ*O—>A — 2H2*0—>20 (d PN 3) + HE*O—>EO (18)
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e Using Wick Theorem, one can express the correlation function in terms of diagrams like the
ones in Fig. 1

&>
e

Figure 1: Some of the Feynman diagrams contributing to the correlation function

p TV




e The propagator for the light quarks are:

2

) = g g gy (1 A) g (1 )

1 :
—z'gs/ du {LGMV(UCC)O'W/ — urt G (uz)y” !
0

167222 A2 2

272
;M L —x°A
—ig 5GLo (ln ( 1 ) + 2’yE>] (19)

where A is the energy cut off separating perturbative and non perturbative regimes.
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The emission of the photon can be both perturbative or non perturbative:

To calculate the perturbative emission one uses the free quark propagator and the quark-photon

vertex factor —iey,,.
The non perturbative emission is described by matrix elements of the form (v(q)|g(x)'q(0)|0)

These matrix elements are expanded around the light cone 22 = 0 and can be expressed in

terms of photon wave functions: [5]:

1), OI0) = i 00} et~ 2va,) [ e () + 40 )

_ (ix)eq<q—q> {:13 (su—qu%) — <ey—qyz—§)] /0 duc ™, ()
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e With these ingredients, the correlation function can be calculated in terms of the photon wave

functions, condensates and QCD parameters.

e The correlation function can be written is the spectral representation:

e
R P e (21

where - - - are polynomials in p? or (p + q)2.

18



For the spectral densities, on the phenomenological side we have:

PP (s1,80) = edoApM (2Gy + Go(m — M) 6(sy — m?)§(sy — M?) + - - -

p;zhen(slj 82) — _6)\0)\’17 (2G1 + sz) (5(81 — m2)5(82 — Mz) + ... (22)
and we also have calculated the spectral densities using QCD parameters: p$ % (s1,s,) and
PP (51, 52).

The two problems that are to be solved in order two obtain the sum rules:
The contributions of the higher states and the continuum are not known.

The are unknown polynomials in the spectral representations of the correlation function
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e To model the contributions of the higher states and the continuum, quark-hadron duality is

used, i.e.
pghen(317 32) = e)\O)‘DM (2G1 + GQ(m — M)) 5(81 — m2)5(82 - M2) + pQOPEe(Sl - 30)9(32 - 80)
P (s1,80) = —eXodp (2G1 + Gam) 8(s1 —m?)3(s2 — M) + pf7F0(s1 — 50)8(s2 — s0)  (23)

e To eliminate the unknown polynomials, the results are Borel transformed with respect to
p? =p® and p3 = (p +¢)*:
1 (—=1)™ 1 m?
— e
(p7 —m3)n L(n) pr2n—b

7 7

p?n — 0 (24)

where M? are called the Borel parameters.

e Borel transformation also suppresses the contributions of the higher states and the continuum.
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e The sum rules are obtained by equating both sides of the Borel transformed expressions:

_m_Q_M_z S0 81 82
eAoA\pM (2G1 + Gz(m — M)) e MP M7 — / pQOPE(Sl, 82)6 M7 M3
0
_ _E_z_ﬁ_g — * OPE 22
eAoAp (2G1 + Gam)e Mi Mz = pl T(s1,82)e Mi Mz (25)
0

e For the sum rules we obtain:

_mZ M2 6
\/§>\0>\DMZ§ OHEO@ MP o MF o (ed + €, — 265) %EQ(l') + -
) _m?_ M2 11M*4
\/ngApEf OHEO@ M7 M3 = (eumu +eqmg — 2esm8) 384—71'2E1 (CL’) + - (26)

where ﬁ = Mif + Mig, M? are the Borel parameters, r = 272> So is the continuum threshold,
the functions E,(z) are used to subtract the contributions of the higher states and continuum

and are defined as:

n 1

E,.(x)=1- e_xz v

1=0

(27)

il

: : M;
e In our numerical analysis, we set MZ = M3 = 2M? and ug = e = 2
1 2

[y
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An interesting limit to consider is the SU(3); symmetry limit: i.e. the limit

(uu) = @d) = (5s) = (qq) and m,, = mg = ms = my
In this limit, we get

n="-% = (éy +eq —2e5)C =C

Setting s — w and multiplying by —2, we get
HA+_>p — _2(€d . eu)c — 2C — 2HE*O_>EO
Similarly
2HZ*O—>EO _ HA+—>p _ _HAO—>n _ HE*+—>E+ _ _HE*O—>TO
and
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The last ingredients needed to obtain a prediction for >y and X4, are the residues A\p and Ap

which can be obtained using the mass sum rules.

One considers the correlator
=i [ dtee™ (O Tn()a(0)0) (32)

For the octet, on the phenomenological side it reduces to

N2 ﬂ +m
H_)\Om_'_‘“ (33)
For the decuplet
. 2 p+M 1 2pupu PuYv — PvVu
M = 3y (o = gy + 20 34

Note that the mass sum rules do not give us the sign of A\, hence LCQSR does not predict the
sign of Yo and X4 separately, it only predicts their relative sign.
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Numerical Analysis

For the numerical values of the input parameters, the following values are used:
(uu) (1 GeV) = (dd)(1 GeV) = —(0.243)3 GeV3, (35)(1 GeV) = 0.8(uu)(1 GeV),
m3(1 GeV) = 0.8, x(1 GeV) = —4.4 GeV =2, A = 300 MeV and f3, = —0.0039 GeV?2.

e M? is a completely arbitrary parameter, and the predictions should be independent of its

numerical value.

e An upper bound for M? is determined by requiring that the contributions of the higher states

and the continuum are below a certain limit.

e A lower bound is obtained by requiring that the contributions of the term containing the
highest power of ﬁ is less then a limit.

24



Structure | so(GeV?) | M?(GeV?) | continuum (%) | highest power
of 57z (%)
ya—N 5.0 1.5-1.7 40 40
ya—N 4.5 1.3-1.5 20 20
»y 6.5 1.6-1.8 30 30
>3 % 5.0 1.4-1.6 20 20
»F—E 5.0 1.7-1.9 20 20
>3 —F 5.0 1.2-1.4 20 20

Table 1: The continuum thresholds, sy, the Borel mass, M?2, regions and the contributions of the

continuum and the highest dimensional operator to the various structures for various processes
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Figure 2: The M? dependence of £ 7
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Process PN Y4

AT —p 3.34+0.5 2.0+ 0.4
AV —n —3.34+0.5 —2.0+0.4
IR S 2.6 +0.3 1.340.2
»*0 30 1.2+0.2 0.6 £0.1
>0 5 A ~1.340.2 —0.54+0.1
¥~ - ¥~ | —0.284+0.01 | —0.0540.02
=40 - =0 —2.140.3 —0.74+0.2
=~ - Z7 | 0.264+0.02 | —0.003+0.017

Table 2: The predictions of ¥ and X4 for various decays.
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Process G, Go Gg G Gr/Gpr (%)
AT —p 1.54+0.2 -1.1£+£0.7 0.015 4+ 0.057 1.7+0.3 1+4
A —n -1.54+0.2 1.1 £0.7 -0.015 £ 0.057 -1.7+£0.3 1+4
DI D 1.24+0.1 -0.94+04 -0.005 £ 0.021 1.84+0.2 -0.24+1.2
»*0 30 0.56 +0.09 -0.4+0.2 04 0.01 0.8+0.1 -0.14+1.5
0 A -0.6 £0.1 0.6 £0.2 0.016 £0.016 | -0.75 £0.12 2+2
T — X7 | -0.12+£0.01 | 0.17£0.02 | 0.006 & 0.002 | -0.18 & 0.01 -3.24+0.8
=0 - =0 -0.954+0.14 0.9+0.3 0.028 £ 0.024 -1.54+0.2 -1.74+14
=~ —-=Z7 | 0.11+£0.01 | -0.17£0.02 | -0.009 + 0.002 | 0.17 £ 0.02 -5.5+0.8

Table 3: The predictions on the moments for various decays. The magnetic moments are given in

terms of natural magnetons
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Process Gk G’Eg] Gum GES] Rem (%) RESM%)
AT —p 0.015+£ 0.057 | -0.05(13) 1.7£0.3 2.46(41) —1+4 3(8)
AV —n —0.015 £ 0.057 | 0.05(13) —1.7+0.3 |-246(41) | —-1+4 3(8)
¥t — ¥ | —0.005+0.021 | -0.08(10) 1.8£0.2 2.61(20) | 0.2+1.2 5(6)
¥ - 30 0+£0.01 -0.03(5) 0.8+0.1 1.07(8) | 0.1+1.5 4(6)
¥*7 — ¥~ | 0.006+0.002 | 0.024(12) | —0.18 £0.01 | -0.47(5) | 3.2+0.8 8(4)
=0 — =Y 0.028 £ 0.024 0.04(5) -1.5+0.2 2.77(17) | 1L.7+£1.4 | 2.4(27)
=% — =7 | -0.009+0.002 | -0.022(9) | 0.17£0.02 0.47(4) | 55+£0.8 | 7.4(30)
Table 4: Our results together with the results from lattice [6]
Particle Our Work
Data Group

Ajp(x1073GeV—1/2) | —135+6 | —107+18

A3/5(x1073GeV—1/2) | —255+£8 | —192+ 32

Rem(%) —2.5+0.5 —1+4

Table 5: Comparison of our results with the experimental results for the decay AT — py
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