TUTORIAL PROBLEMS ON KINEMATICS

M. Kemal Özgören

PROBLEM 1

Figure 1

Figure 1 shows a helicopter moving with respect to an earth-fixed frame $\mathcal{F}_e(O)$. Let the frames attached to the helicopter and its rotor be $\mathcal{F}_h(C)$ and $\mathcal{F}_r(Q)$ respectively. The orientational relationships involving these frames are described as follows:

$$\mathcal{F}_{e} \xrightarrow{\vec{u}_{3}^{(e)}} \mathcal{F}_{m} \xrightarrow{\vec{u}_{2}^{(m)}} \mathcal{F}_{n} \xrightarrow{\vec{u}_{1}^{(n)}} \mathcal{F}_{h} \xrightarrow{\vec{u}_{3}^{(h)}} \mathcal{F}_{r}$$

Let the dyadics $R_{r/h}$ and $R_{r/e}$ represent the rotation operators that orient the rotor with respect to the helicopter and the earth.

- a) Obtain the transformation matrices $\hat{C}^{(e,h)}$, $\hat{C}^{(h,r)}$, and $\hat{C}^{(e,r)}$.
- b) Obtain the matrix representations of $ar{R}_{r/h}$ and $ar{R}_{r/e}$ in $\mathcal{F}_h(C)$
- c) Obtain the matrix representations of $reve{R}_{r/h}$ and $reve{R}_{r/e}$ in $\mathcal{F}_e(O)$.

Express all the required matrices using exponential rotation matrices and their products.

d) The unit vector \vec{w} (along one of the rotor blades) is obtained by rotating $\vec{w}_0 / / \vec{u}_1^{(e)}$ (the first basis vector of \mathcal{F}_e) with $\vec{K}_{er} = \vec{K}_{r/e}$. Formulate this operation *separately* as observed in \mathcal{F}_h and \mathcal{F}_e . Thus, express $\vec{w}^{(h)} = \{\vec{w}\}^{(h)}$ and $\vec{w}^{(e)} = \{\vec{w}\}^{(e)}$ using the results of the previous parts. Check your expressions by verifying the fact that $\vec{w}^{(e)} = \hat{C}^{(e,h)} \vec{w}^{(h)}$.

SOLUTION

a)
$$\hat{C}^{(e,h)} = \hat{C}^{(e,m)} \hat{C}^{(m,n)} \hat{C}^{(n,h)} = e^{\tilde{u}_3 \psi} e^{\tilde{u}_2 \theta} e^{\tilde{u}_1 \phi}$$
.
 $\hat{C}^{(h,r)} = e^{\tilde{u}_3 \gamma}$.
 $\hat{C}^{(e,r)} = \hat{C}^{(e,h)} \hat{C}^{(h,r)} = e^{\tilde{u}_3 \psi} e^{\tilde{u}_2 \theta} e^{\tilde{u}_1 \phi} e^{\tilde{u}_3 \gamma}$.
b) $\{\bar{R}_{r/h}\}^{(h)} = \hat{R}_{hr}^{(h)} = \hat{C}^{(h,r)} = e^{\tilde{u}_3 \gamma}$.

$$\begin{split} \{\bar{R}_{r/e}\}^{(h)} &= \hat{R}_{er}^{(h)} = \hat{C}^{(h,e)} \hat{R}_{er}^{(e)} \hat{C}^{(e,h)} = \hat{C}^{(h,e)} \hat{C}^{(e,r)} \hat{C}^{(e,h)} = \hat{C}^{(h,r)} \hat{C}^{(e,h)} \\ &= e^{\tilde{u}_3 \gamma} e^{\tilde{u}_3 \psi} e^{\tilde{u}_2 \theta} e^{\tilde{u}_1 \phi} = e^{\tilde{u}_3 (\gamma + \psi)} e^{\tilde{u}_2 \theta} e^{\tilde{u}_1 \phi} \,. \end{split}$$

$$c) \ \{\bar{R}_{r/h}\}^{(e)} &= \hat{R}_{hr}^{(e)} = \hat{C}^{(e,h)} \hat{R}_{hr}^{(h)} \hat{C}^{(h,e)} = \hat{C}^{(e,h)} \hat{C}^{(h,r)} \hat{C}^{(h,e)} \end{split}$$

$$= e^{\tilde{u}_3 \psi} e^{\tilde{u}_2 \theta} e^{\tilde{u}_1 \phi} e^{\tilde{u}_3 \gamma} e^{-\tilde{u}_1 \phi} e^{-\tilde{u}_2 \theta} e^{-\tilde{u}_3 \psi} .$$

$$\{ \breve{R}_{r/e} \}^{(e)} = \hat{R}_{er}^{(e)} = \hat{C}^{(e,r)} = e^{\tilde{u}_3 \psi} e^{\tilde{u}_2 \theta} e^{\tilde{u}_1 \phi} e^{\tilde{u}_3 \gamma} .$$

$$\{\bar{R}_{r/e}\}^{(e)} = \bar{R}_{er}^{(e)} = C^{(e,r)} = e^{u_3\psi}e^{u_2\theta}e^{u_1\phi}e^{u_3\gamma}.$$

d)
$$\vec{w} = \vec{R}_{er} \cdot \vec{u}_1^{(e)}$$
.

$$\begin{split} \overline{w}^{(h)} &= \hat{R}_{er}^{(h)} \overline{u}_1^{(e/h)} = \hat{R}_{er}^{(h)} \hat{C}^{(h,e)} \overline{u}_1^{(e/e)} = \hat{R}_{er}^{(h)} \hat{C}^{(h,e)} \overline{u}_1 = [\hat{C}^{(h,r)} \hat{C}^{(e,h)}] \hat{C}^{(h,e)} \overline{u}_1 \\ &= \hat{C}^{(h,r)} \overline{u}_1 = e^{\tilde{u}_3 \gamma} \overline{u}_1; \quad \overline{w}^{(h)} = \overline{u}_1 \cos \gamma + \overline{u}_2 \sin \gamma \; . \\ \overline{w}^{(e)} &= \hat{R}_{er}^{(e)} \overline{u}_1^{(e/e)} = \hat{R}_{er}^{(e)} \overline{u}_1 = \hat{C}^{(e,r)} \overline{u}_1 \\ &= e^{\tilde{u}_3 \psi} e^{\tilde{u}_2 \theta} e^{\tilde{u}_1 \phi} e^{\tilde{u}_3 \gamma} \overline{u}_1 \; . \end{split}$$

Verification:

$$\overline{w}^{(e)} = \hat{C}^{(e,h)}\overline{w}^{(h)} = [e^{\tilde{u}_3\psi}e^{\tilde{u}_2\theta}e^{\tilde{u}_1\phi}][e^{\tilde{u}_3\gamma}\overline{u}_1] = e^{\tilde{u}_3\psi}e^{\tilde{u}_2\theta}e^{\tilde{u}_1\phi}e^{\tilde{u}_3\gamma}\overline{u}_1. \quad \text{(Checks!)}$$

PROBLEM 2

Consider the same helicopter described in Problem 1.

a) Express
$$\overline{\omega}_{r/h}^{(h)} = {\{\vec{\omega}_{r/h}\}}^{(h)}$$
.

b) Express
$$\overline{\omega}_{r/e}^{(h)} = {\{\vec{\omega}_{r/e}\}}^{(h)}$$
.

c) Express
$$\bar{\alpha}_{r/e}^{(h)} = \{\vec{\alpha}_{r/e}\}^{(h)}$$
.

SOLUTION

a)
$$\vec{\omega}_{r/h} = \dot{\gamma} \vec{u}_3^{(h)} \Rightarrow \vec{\omega}_{r/h}^{(h)} = \dot{\gamma} \vec{u}_3$$
.

b)
$$\vec{\omega}_{r/e} = \vec{\omega}_{r/h} + \vec{\omega}_{h/n} + \vec{\omega}_{n/m} + \vec{\omega}_{m/e} = \dot{\gamma} \vec{u}_{3}^{(h)} + \dot{\phi} \vec{u}_{1}^{(h)} + \dot{\theta} \vec{u}_{2}^{(n)} + \dot{\psi} \vec{u}_{3}^{(m)};$$

$$\vec{\omega}_{r/e}^{(h)} = \dot{\gamma} \vec{u}_{3}^{(h/h)} + \dot{\phi} \vec{u}_{1}^{(h/h)} + \dot{\theta} \vec{u}_{2}^{(n/h)} + \dot{\psi} \vec{u}_{3}^{(m/h)},$$

$$\vec{\omega}_{r/e}^{(h)} = \dot{\gamma} \vec{u}_{3} + \dot{\phi} \vec{u}_{1} + \dot{\theta} \dot{C}^{(h,n)} \vec{u}_{2} + \dot{\psi} \dot{C}^{(h,m)} \vec{u}_{3},$$

$$\vec{\omega}_{r/e}^{(h)} = \dot{\gamma} \vec{u}_{3} + \dot{\phi} \vec{u}_{1} + \dot{\theta} e^{-\tilde{u}_{1}\phi} \vec{u}_{2} + \dot{\psi} e^{-\tilde{u}_{1}\phi} e^{-\tilde{u}_{2}\theta} \vec{u}_{3},$$

$$\vec{\omega}_{r/e}^{(h)} = \vec{u}_{1} (\dot{\phi} - \dot{\psi} s\theta) + \vec{u}_{2} (\dot{\theta} c\phi + \dot{\psi} s\phi c\theta) + \vec{u}_{3} (\dot{\gamma} - \dot{\theta} s\phi + \dot{\psi} c\phi c\theta).$$

c)
$$\vec{\alpha}_{r/e} = D_r \vec{\omega}_{r/e} = D_h \vec{\omega}_{r/e} + \vec{\omega}_{h/r} \times \vec{\omega}_{r/e} = D_h \vec{\omega}_{r/e} - \vec{\omega}_{r/h} \times \vec{\omega}_{r/e};$$

$$\vec{\alpha}_{r/e}^{(h)} = \dot{\vec{\omega}}_{r/e}^{(h)} - \dot{\gamma} \tilde{u}_3 \vec{\omega}_{r/e}^{(h)},$$

$$\vec{\alpha}_{r/e}^{(h)} = \vec{u}_1 (\ddot{\phi} - \ddot{\psi} s\theta + \cdots) + \vec{u}_2 (\ddot{\theta} c\phi + \ddot{\psi} s\phi c\theta + \cdots) + \vec{u}_3 (\ddot{\gamma} - \ddot{\theta} s\phi + \ddot{\psi} c\phi c\theta + \cdots) + \vec{u}_1 \dot{\gamma} (\dot{\theta} c\phi + \dot{\psi} s\phi c\theta) - \vec{u}_2 \dot{\gamma} (\dot{\phi} - \dot{\psi} s\theta).$$

PROBLEM 3

A reference frame \mathcal{F} , which is rotating about its fixed origin O, coincides consecutively with the reference frames \mathcal{F}_0 , \mathcal{F}_1 , and \mathcal{F}_2 according to the following sequence:

$$\mathcal{F}_0 \xrightarrow{\vec{u}_1^{(0)}, \ \theta_1} \mathcal{F}_1 \xrightarrow{\vec{u}_2^{(1)}, \ \theta_2} \mathcal{F}_2$$

Let P be a point with *constant* coordinates x_1, x_2, x_3 in the rotating frame \mathcal{F} .

- a) Find the coordinates of P in \mathcal{F}_1 and \mathcal{F}_0 when \mathcal{F} coincides with \mathcal{F}_2 .
- b) Find the coordinates of P in \mathcal{F}_2 while \mathcal{F} is yet coincident with \mathcal{F}_1 .
- c) As \mathcal{F} rotates all the way from \mathcal{F}_0 to \mathcal{F}_2 , the observers in \mathcal{F}_0 and \mathcal{F}_1 use the rotation matrices $\hat{R}_{02}^{(0)}$ and $\hat{R}_{02}^{(1)}$ respectively in order to relate the initial and final coordinates of P that they observe. Express $\hat{R}_{02}^{(0)}$ and $\hat{R}_{02}^{(1)}$ using exponential rotation matrices.

SOLUTION

a)
$$\begin{aligned} \overline{r}_{P_2}^{(1)} &= \hat{C}^{(1,2)} \overline{r}_{P_2}^{(2)}, \quad \overline{r}_{P_2}^{(0)} &= \hat{C}^{(0,2)} \overline{r}_{P_2}^{(2)} = \hat{C}^{(0,1)} \overline{r}_{P_2}^{(1)} \\ \overline{r}_{P_2}^{(2)} &= \overline{r}_{P_0}^{(0)} &= \overline{u}_1 x_1 + \overline{u}_2 x_2 + \overline{u}_3 x_3 \\ \hat{C}^{(0,1)} &= e^{\widetilde{u}_1 \theta_1}, \quad \hat{C}^{(1,2)} &= e^{\widetilde{u}_2 \theta_2}, \quad \hat{C}^{(0,2)} &= e^{\widetilde{u}_1 \theta_1} e^{\widetilde{u}_2 \theta_2} \\ \overline{r}_{P_2}^{(1)} &= e^{\widetilde{u}_2 \theta_2} (\overline{u}_1 x_1 + \overline{u}_2 x_2 + \overline{u}_3 x_3) &= e^{\widetilde{u}_2 \theta_2} \overline{u}_1 x_1 + \overline{u}_2 x_2 + e^{\widetilde{u}_2 \theta_2} \overline{u}_3 x_3 \\ \overline{r}_{P_2}^{(1)} &= (\overline{u}_1 c \theta_2 - \overline{u}_3 s \theta_2) x_1 + \overline{u}_2 x_2 + (\overline{u}_3 c \theta_2 + \overline{u}_1 s \theta_2) x_3 \\ \overline{r}_{P_3}^{(1)} &= \overline{u}_1 (x_1 c \theta_2 + x_3 s \theta_2) + \overline{u}_2 x_2 + \overline{u}_3 (x_3 c \theta_2 - x_1 s \theta_2) \end{aligned}$$

$$\begin{split} \overline{r}_{P_2}^{(0)} &= e^{\tilde{u}_1 \theta_1} [\overline{u}_1 (x_1 c \theta_2 + x_3 s \theta_2) + \overline{u}_2 x_2 + \overline{u}_3 (x_3 c \theta_2 - x_1 s \theta_2)] \\ \overline{r}_{P_2}^{(0)} &= \overline{u}_1 (x_1 c \theta_2 + x_3 s \theta_2) + e^{\tilde{u}_1 \theta_1} \overline{u}_2 x_2 + e^{\tilde{u}_1 \theta_1} \overline{u}_3 (x_3 c \theta_2 - x_1 s \theta_2) \\ \overline{r}_{P_2}^{(0)} &= \overline{u}_1 (x_1 c \theta_2 + x_3 s \theta_2) + (\overline{u}_2 c \theta_1 + \overline{u}_3 s \theta_1) x_2 + (\overline{u}_3 c \theta_1 - \overline{u}_2 s \theta_1) (x_3 c \theta_2 - x_1 s \theta_2) \\ \overline{r}_{P_2}^{(0)} &= \overline{u}_1 (x_1 c \theta_2 + x_3 s \theta_2) + \overline{u}_2 (x_2 c \theta_1 + x_1 s \theta_1 s \theta_2 - x_3 s \theta_1 c \theta_2) \\ &+ \overline{u}_3 (x_2 s \theta_1 - x_1 c \theta_1 s \theta_2 + x_3 c \theta_1 c \theta_2) \end{split}$$

b)
$$\overline{r}_{P_{1}}^{(2)} = \hat{C}^{(2,1)} \overline{r}_{P_{1}}^{(1)}$$

$$\overline{r}_{P_{1}}^{(1)} = \overline{r}_{P_{0}}^{(0)} = \overline{u}_{1} x_{1} + \overline{u}_{2} x_{2} + \overline{u}_{3} x_{3}, \quad \hat{C}^{(2,1)} = e^{-\tilde{u}_{2}\theta_{2}}$$

$$\overline{r}_{P_{1}}^{(1)} = e^{-\tilde{u}_{2}\theta_{2}} (\overline{u}_{1} x_{1} + \overline{u}_{2} x_{2} + \overline{u}_{3} x_{3}) = e^{-\tilde{u}_{2}\theta_{2}} \overline{u}_{1} x_{1} + \overline{u}_{2} x_{2} + e^{-\tilde{u}_{2}\theta_{2}} \overline{u}_{3} x_{3}$$

$$\overline{r}_{P_{1}}^{(1)} = (\overline{u}_{1} c \theta_{2} + \overline{u}_{3} s \theta_{2}) x_{1} + \overline{u}_{2} x_{2} + (\overline{u}_{3} c \theta_{2} - \overline{u}_{1} s \theta_{2}) x_{3}$$

$$\overline{r}_{P_{1}}^{(1)} = \overline{u}_{1} (x_{1} c \theta_{2} - x_{3} s \theta_{2}) + \overline{u}_{2} x_{2} + \overline{u}_{3} (x_{1} s \theta_{2} + x_{3} c \theta_{2})$$
c)
$$\hat{R}_{02}^{(0)} = \hat{C}^{(0,2)} = e^{\tilde{u}_{1}\theta_{1}} e^{\tilde{u}_{2}\theta_{2}}$$

$$\hat{R}_{02}^{(1)} = \hat{C}^{(1,0)} \hat{R}_{02}^{(0)} \hat{C}^{(0,1)} = (e^{-\tilde{u}_{1}\theta_{1}}) (e^{\tilde{u}_{1}\theta_{1}} e^{\tilde{u}_{2}\theta_{2}}) (e^{\tilde{u}_{1}\theta_{1}})$$

$$\hat{R}_{02}^{(1)} = e^{\tilde{u}_{2}\theta_{2}} e^{\tilde{u}_{1}\theta_{1}}$$

PROBLEM 4

Consider the four-link *spatial* mechanism shown in the figure. Joint-12 is *revolute* with the joint variable θ_{12} , joint-23 is *cylindrical* with the joint variables θ_{23} and $s_{23} = AB$, joint-14 is *prismatic* with the joint variable $s_{14} = OC$, and joint-34 is *spherical*. At joint-34, the motion of link-4 relative to link-3 is described by three joint variables ϕ_{34} , θ_{34} , and ψ_{34} , which are the Euler angles of a suitable sequence. The link parameters of the mechanism are $b_1 = OA$, $b_3 = BC$, and $\beta_{14} =$ angle from $\vec{u}_1^{(1)}$ to $\vec{u}_1^{(4)}$ about $\vec{u}_3^{(1)}$. Furthermore, angle(ABC) = 90° and AB is perpendicular to $\vec{u}_1^{(1)}$.

a) Using the point-to-point loop closure equation

$$\vec{r}_{OA} + \vec{r}_{AB} + \vec{r}_{BC} = \vec{r}_{OC}$$

written for the joint center locations, obtain formulas to find the joint variables θ_{23} , s_{23} , and s_{14} for a given value of the input joint variable θ_{12} . Indicate the *closure alternatives* clearly.

Suggestion: You may find it more convenient to formulate the solution as indicated below:

$$s_{14} = f_{14}(\theta_{12}, \sigma), \quad \sigma = \pm 1; \quad s_{23} = f_{23}(\theta_{12}, s_{14}), \quad \theta_{23} = f'_{23}(\theta_{12}, s_{14}).$$

b) Then, using the *orientational loop closure equation*

$$\hat{C}^{(1,2)}\hat{C}^{(2,3)}\hat{C}^{(3,4)} = \hat{C}^{(1,4)}$$

written for the link orientations, determine the remaining joint variables ϕ_{34} , θ_{34} , and ψ_{34} by choosing the most suitable sequence that gives them in the simplest possible way in terms of θ_{12} , β_{14} , and already determined θ_{23} .

c) In particular, find all the non-input joint variables *corresponding to each closure* of the mechanism for the following numerical values:

$$b_1 = 0.5 \text{ m}, \quad b_3 = 0.75 \text{ m}, \quad \beta_{14} = 120^{\circ}; \quad \theta_{12} = 30^{\circ}.$$

SOLUTION

a)

Point-to-Point Loop Closure Equation: $\vec{r}_{OA} + \vec{r}_{AB} + \vec{r}_{BC} = \vec{r}_{OC}$.

$$-b_{1}\overline{u}_{1}^{(1)} + s_{23}\overline{u}_{3}^{(2)} + b_{3}\overline{u}_{1}^{(3)} = -s_{14}\overline{u}_{1}^{(4)},$$

$$-b_{1}\overline{u}_{1}^{(1/1)} + s_{23}\overline{u}_{3}^{(2/1)} + b_{3}\overline{u}_{1}^{(3/1)} = -s_{14}\overline{u}_{1}^{(4/1)},$$

$$-b_{1}\overline{u}_{1} + s_{23}\hat{C}^{(1,2)}\overline{u}_{3} + b_{3}\hat{C}^{(1,3)}\overline{u}_{1} = -s_{14}\hat{C}^{(1,4)}\overline{u}_{1}.$$

On the other hand,

$$\hat{C}^{(1,2)} = e^{\tilde{u}_1 \theta_{12}}, \qquad \hat{C}^{(1,3)} = e^{\tilde{u}_1 \theta_{12}} e^{\tilde{u}_3 \theta_{23}}, \quad \hat{C}^{(1,4)} = e^{\tilde{u}_3 \beta_{14}}.$$

Hence,

$$\begin{split} -b_{1}\overline{u}_{1} + s_{23}e^{\widetilde{u}_{1}\theta_{12}}\overline{u}_{3} + b_{3}e^{\widetilde{u}_{1}\theta_{12}}e^{\widetilde{u}_{3}\theta_{23}}\overline{u}_{1} &= -s_{14}e^{\widetilde{u}_{3}\beta_{14}}\overline{u}_{1}, \\ -b_{1}\overline{u}_{1} + s_{23}\overline{u}_{3} + b_{3}e^{\widetilde{u}_{3}\theta_{23}}\overline{u}_{1} &= -s_{14}e^{-\widetilde{u}_{1}\theta_{12}}(\overline{u}_{1}c\beta_{14} + \overline{u}_{2}s\beta_{14}), \\ -b_{1}\overline{u}_{1} + s_{23}\overline{u}_{3} + b_{3}(\overline{u}_{1}c\theta_{23} + \overline{u}_{2}s\theta_{23}) &= -s_{14}(\overline{u}_{1}c\beta_{14} + \overline{u}_{2}s\beta_{14}c\theta_{12} - \overline{u}_{3}s\beta_{14}s\theta_{12}). \end{split}$$

The corresponding scalar equations are

$$b_3c\theta_{23} = b_1 - s_{14}c\beta_{14}$$
, Eq. (i)

$$b_3 s \theta_{23} = -s_{14} s \beta_{14} c \theta_{12}$$
, Eq. (ii)

$$s_{23} = s_{14}s\beta_{14}s\theta_{12}$$
. Eq. (iii)

By adding squares of Eqs. (i) and (ii), we get

$$(c^{2}\beta_{14} + s^{2}\beta_{14}c^{2}\theta_{12})s_{14}^{2} - 2(b_{1}c\beta_{14})s_{14} - (b_{3}^{2} - b_{1}^{2}) = 0.$$

Two possible solutions to this equation are

$$s_{14} = \frac{b_1 c \beta_{14} + \sigma \sqrt{b_3^2 c^2 \beta_{14} + (b_3^2 - b_1^2) s^2 \beta_{14} c^2 \theta_{12}}}{c^2 \beta_{14} + s^2 \beta_{14} c^2 \theta_{12}}; \qquad \sigma = \pm 1.$$

With this solution, Eq. (iii) gives s_{23} readily as

$$s_{23} = s_{14}s\beta_{14}s\theta_{12}$$
.

Finally, from the ratio of Eqs. (i) and (ii), we get

$$\theta_{23} = \operatorname{atan}_2(-s_{14}s\beta_{14}c\theta_{12} : b_1 - s_{14}c\beta_{14}).$$

Here, σ is the *closure indicator*. Once, its value (+1 or -1) is selected, the closure will be defined and the corresponding variables (s_{14} , s_{23} , and θ_{23}) will be uniquely determined by the preceding expressions.

b)

Orientational Loop Closure Equation: $\hat{C}^{(1,2)}\hat{C}^{(2,3)}\hat{C}^{(3,4)} = \hat{C}^{(1,4)}$

$$\hat{C}^{(1,2)} = e^{\widetilde{u}_1 \theta_{12}}, \quad \hat{C}^{(2,3)} = e^{\widetilde{u}_3 \theta_{23}}, \quad \hat{C}^{(3,4)} = ?, \quad \hat{C}^{(1,4)} = e^{\widetilde{u}_3 \beta_{14}}.$$

The orientational equation leads to

$$\hat{C}^{(3,4)} = e^{-\tilde{u}_3 \theta_{23}} e^{-\tilde{u}_1 \theta_{12}} e^{\tilde{u}_3 \beta_{14}}.$$

This equation implies that the most suitable sequence for the spherical joint (Joint-34) is 3-1-3. That is,

$$\hat{C}^{(3,4)} = e^{\tilde{u}_3\phi_{34}} e^{\tilde{u}_1\theta_{34}} e^{\tilde{u}_3\psi_{34}} = e^{-\tilde{u}_3\theta_{23}} e^{-\tilde{u}_1\theta_{12}} e^{\tilde{u}_3\beta_{14}}.$$

Hence, by direct comparison, the associated joint variables are determined simply as

$$\phi_{34} = -\theta_{23}$$
, $\theta_{34} = -\theta_{12}$, $\psi_{34} = \beta_{14}$.

c)

With the given numerical values, we get the following solutions for each closure:

First closure with $\sigma = +1$;

$$s_{14} = 0.3846 \text{ m}$$
, $s_{23} = 0.1665 \text{ m}$, $\theta_{23} = -22.62^{\circ}$;

$$\phi_{34} = 22.62^{\circ}$$
, $\theta_{34} = -30^{\circ}$, $\psi_{34} = 120^{\circ}$.

Second closure with $\sigma = -1$;

$$s_{14} = -1.000 \text{ m}$$
, $s_{23} = -0.433 \text{ m}$, $\theta_{23} = 90^{\circ}$;

$$\phi_{34} = -90^{\circ}$$
, $\theta_{34} = -30^{\circ}$, $\psi_{34} = 120^{\circ}$.