MID- and LARGE-SPAN STRUCTURES

Bekir Özer Ay

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF ARCHITECTURE
Ordinary systems
\[X \approx Y \approx Z \]

One-way spanning
\[X \gg Y \& Z \]

Two-way spanning
\[X \approx Y \gg Z \]

High-rise
\[Z \gg X \& Y \]
Linear elements forming frames with orthogonal rigid joints

• **Vertical members** (columns) subjected to axial load (compression & tension)
• **Horizontal members** (beams) subjected to flexure (moment)

Bending elements are **less efficient for large spans** because they use **only half of the material** (bending stress varies from compression to tension with zero stress at the neutral axis)
Spanning Systems - Orthogonal frames

La Grande Arche (1989) by Johann Otto von Spreckelsen

~112 m
~75 m
A truss is a structural frame based on the geometric rigidity of the triangle. Linear members are subjected only to axial tension and compression. They support load much like beams but for larger spans.
Spanning Systems - Trusses

To prevent secondary shear and bending stresses from developing, the centroidal axes of the truss members and the load at a joint should pass through a common point.
A space truss is a long-spanning three-dimensional plate structure based on the rigidity of the triangle.

Two-way space trusses are most effective if the spans in the principle directions are almost equal.
The most suitable overall plan-form is a square in which the frame is supported around its perimeter on columns or walls. The span-to-depth ratio (Span/Depth) is approximately 20.
It is complicated to design and construct the space frames, therefore they are more expensive than the plane-truss systems.

Space frames are economically competitive at spans greater than 20 m.
Spanning Systems - Space Trusses

Depth range: \(\text{span/12 to span/20} \)

Overhangs: 15% to 30% of span

Span range for column-supported: 9 to 24 m
Span range for wall-supported: 9 to 39 m
Arch is an efficient spanning system through its shape and geometry (structural form).

- Arches are curved structures designated to support a vertical load primarily by axial compression.

- The thrust of an arch on its support is proportional to the span and inversely proportional to its rise.
Spanning Systems - Arch

Skating Rink, (104m) (Munich, 1983) by Ackermann

Oriente Station (Lisbon) by Calatrava
Vaults are arched structures forming a ceiling or roof over an area. Because a vault behaves as an arch extended in a third dimension, the longitudinal supporting members must be strengthened for the outward thrust of the arching action.
The lamella vault is a system which allows large interiors to be created.

Casa Mila, Gaudi
A dome is a spherical surface structure having a circular plan.

A dome is similar to a rotated arch except that circumferential forces are developed that are compression near the crown and tensile in the lower portion.
Spanning Systems - Dome

The dome of Selimiye Mosque by Great Sinan
The Geodesic Dome (with a diameter of 80m) US Pavillion in Montreal, 1967 by R. Buckminster Fuller
Cable structures utilize the cable as the principle means of support. Because cables have high tensile strength but offer no resistance to compression or bending, they must be used purely in tension.

When subjected to concentrated loads, the shape of a cable consists of straight line segments. Under a uniformly distributed load, it will take on the shape of an inverted arch.
They are effective if the curvature is compatible with spatial design objectives, and the thrust is resisted by a compression ring or grandstand.

They are unstable under wind uplift and uneven loads.

Under wind uplift suspended cables tend to flutter. Stabilizing cables and ballast weight are used against flutter.
Stay slope of 25° to 30° is usually optimal.
Steep stay slope causes small forces but high masts.
Shallow stay slope causes high forces but low masts.
Span/depth ratio of about 10 to 15 is optimal.
Dulles Airport by Saarinen
A cable (span=49m) roof supported by concrete **outward leaning** columns (span= 46m, a 46x183 m structure) and concrete edge beams.

The concrete dead weight resists wind uplift and minimizes the roof deformations.
The Portuguese National Pavilion is a prestigious landmark building designed by Alvaro Siza to host Expo 98. The pavilion consists of two exhibition areas, one housing main exhibitions, the second providing a large outdoor space for national displays.

- The most iconic feature of the pavilion is a thin, curved concrete sail which creates a canopy over the ceremonial plaza.
- Cables supporting the canopy require enormous tension, provided by a series of 14m high fin-like walls which form porticos on either side of the plaza.
Shells are thin, curved plate structures typically constructed of reinforced concrete.

A shell can sustain relatively large forces if uniformly applied. Because of its thinness, however, a shell has little bending resistance and is unstable for concentrated loads.
Spanning Systems - Shell Structures

CNIT by Camelot, De Mailly and Zehrfuss (Architects) and Prouve, Esquilan (Engineers)

CNIT: the largest unsupported concrete (post-tens.) span (two hundred and eighteen meters wide and forty six meters high)
Spanning Systems - Shell Structures

<table>
<thead>
<tr>
<th>structure</th>
<th>location, year, architect</th>
<th>geometry</th>
<th>dimensions</th>
<th>radius (a)</th>
<th>thickness (t)</th>
<th>ratio (a/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNIT</td>
<td>Paris 1957 Esquilan</td>
<td>intersection of 3 cylinders on 3 supports</td>
<td>219 m between supports</td>
<td>89.9–420.0 m</td>
<td>1.91–2.74 m total 0.06 – 0.12 m outer layers</td>
<td>47–153</td>
</tr>
</tbody>
</table>

References:
- CT4143 Shell Analysis Class Notes, Delft University of Technology
Table 4.5 Typical thicknesses of hyperbolic paraboloid shells in reinforced concrete

<table>
<thead>
<tr>
<th>Span (m)</th>
<th>Shell thickness (mm)</th>
<th>At crown</th>
<th>At edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>75</td>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>
Spanning Systems - Membrane Structures

- Membranes are thin, flexible surfaces that carry loads primarily through the development of tensile stresses.

- They may be suspended (German pavilion by Otto, expo 67)
Spanning Systems - Membrane Structures

• or stretched between posts

• or be supported by air pressure
 (Pneumatic structures,
 Tokyo Dome ≈ 185m x 185m)
Spanning Systems - Membrane Structures

Pneumatic structures
• Air-supported structures consist of a single membrane supported by an internal air pressure slightly higher than normal atmospheric pressure (i.e., 0.3% in Tokyo Dome)

• Air-inflated structures are supported by pressurized air within inflated building elements
Olympic Pool Tokyo (1964) by Tange

Spanning Systems - Membrane Structures
Spanning Systems - Membrane Structures

Olympic Pool Tokyo (1964) by Tange

• Two anticlastic saddles supported by two cables draped over two concrete columns.
Spanning Systems - Membrane Structures

Olympic Roof, Munich (1972) by Behnisch and Otto

A spider web hovering over the landscape