
Managing Data Frames with the
dplyr package
Watch a video of this chapter⁵¹

Data Frames

The data frame is a key data structure in statistics and in R. The basic structure of a data frame is
that there is one observation per row and each column represents a variable, a measure, feature, or
characteristic of that observation. R has an internal implementation of data frames that is likely the
one you will use most often. However, there are packages on CRAN that implement data frames via
things like relational databases that allow you to operate on very very large data frames (but we
won’t discuss them here).

Given the importance of managing data frames, it’s important that we have good tools for dealing
with them. In previous chapters we have already discussed some tools like the subset() function
and the use of [and $ operators to extract subsets of data frames. However, other operations, like
filtering, re-ordering, and collapsing, can often be tedious operations in R whose syntax is not very
intuitive. The dplyr package is designed to mitigate a lot of these problems and to provide a highly
optimized set of routines specifically for dealing with data frames.

The dplyr Package

The dplyr package was developed by Hadley Wickham of RStudio and is an optimized and distilled
version of his plyr package. The dplyr package does not provide any “new” functionality to R per se,
in the sense that everything dplyr does could already be done with base R, but it greatly simplifies
existing functionality in R.

One important contribution of the dplyr package is that it provides a “grammar” (in particular,
verbs) for data manipulation and for operating on data frames. With this grammar, you can sensibly
communicate what it is that you are doing to a data frame that other people can understand
(assuming they also know the grammar). This is useful because it provides an abstraction for data
manipulation that previously did not exist. Another useful contribution is that the dplyr functions
are very fast, as many key operations are coded in C++.

⁵¹https://youtu.be/aywFompr1F4

https://youtu.be/aywFompr1F4
https://youtu.be/aywFompr1F4

Managing Data Frames with the dplyr package 50

dplyr Grammar

Some of the key “verbs” provided by the dplyr package are

• select: return a subset of the columns of a data frame, using a flexible notation
• filter: extract a subset of rows from a data frame based on logical conditions
• arrange: reorder rows of a data frame
• rename: rename variables in a data frame
• mutate: add new variables/columns or transform existing variables
• summarise / summarize: generate summary statistics of different variables in the data frame,
possibly within strata

• %>%: the “pipe” operator is used to connect multiple verb actions together into a pipeline

The dplyr package as a number of its own data types that it takes advantage of. For example, there
is a handy print method that prevents you from printing a lot of data to the console. Most of the
time, these additional data types are transparent to the user and do not need to be worried about.

Common dplyr Function Properties

All of the functions that we will discuss in this Chapter will have a few common characteristics. In
particular,

1. The first argument is a data frame.
2. The subsequent arguments describe what to do with the data frame specified in the first

argument, and you can refer to columns in the data frame directly without using the $ operator
(just use the column names).

3. The return result of a function is a new data frame
4. Data frames must be properly formatted and annotated for this to all be useful. In particular,

the data must be tidy⁵². In short, there should be one observation per row, and each column
should represent a feature or characteristic of that observation.

Installing the dplyr package

The dplyr package can be installed from CRAN or from GitHub using the devtools package and
the install_github() function. The GitHub repository will usually contain the latest updates to
the package and the development version.

To install from CRAN, just run

⁵²http://www.jstatsoft.org/v59/i10/paper

http://www.jstatsoft.org/v59/i10/paper
http://www.jstatsoft.org/v59/i10/paper

Managing Data Frames with the dplyr package 51

> install.packages("dplyr")

To install from GitHub you can run

> install_github("hadley/dplyr")

After installing the package it is important that you load it into your R session with the library()
function.

> library(dplyr)

Attaching package: 'dplyr'

The following object is masked from 'package:stats':

filter

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

You may get some warnings when the package is loaded because there are functions in the dplyr
package that have the same name as functions in other packages. For now you can ignore the
warnings.

select()

For the examples in this chapter we will be using a dataset containing air pollution and temperature
data for the city of Chicago⁵³ in the U.S. The dataset is available from my web site.

After unzipping the archive, you can load the data into R using the readRDS() function.

> chicago <- readRDS("chicago.rds")

You can see some basic characteristics of the dataset with the dim() and str() functions.

⁵³http://www.biostat.jhsph.edu/~rpeng/leanpub/rprog/chicago_data.zip

http://www.biostat.jhsph.edu/~rpeng/leanpub/rprog/chicago_data.zip
http://www.biostat.jhsph.edu/~rpeng/leanpub/rprog/chicago_data.zip

Managing Data Frames with the dplyr package 52

> dim(chicago)

[1] 6940 8

> str(chicago)

'data.frame': 6940 obs. of 8 variables:

$ city : chr "chic" "chic" "chic" "chic" ...

$ tmpd : num 31.5 33 33 29 32 40 34.5 29 26.5 32.5 ...

$ dptp : num 31.5 29.9 27.4 28.6 28.9 ...

$ date : Date, format: "1987-01-01" "1987-01-02" ...

$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...

$ pm10tmean2: num 34 NA 34.2 47 NA ...

$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...

$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

The select() function can be used to select columns of a data frame that you want to focus on.
Often you’ll have a large data frame containing “all” of the data, but any given analysis might only
use a subset of variables or observations. The select() function allows you to get the few columns
you might need.

Suppose we wanted to take the first 3 columns only. There are a few ways to do this. We could for
example use numerical indices. But we can also use the names directly.

> names(chicago)[1:3]

[1] "city" "tmpd" "dptp"

> subset <- select(chicago, city:dptp)

> head(subset)

city tmpd dptp

1 chic 31.5 31.500

2 chic 33.0 29.875

3 chic 33.0 27.375

4 chic 29.0 28.625

5 chic 32.0 28.875

6 chic 40.0 35.125

Note that the : normally cannot be used with names or strings, but inside the select() function
you can use it to specify a range of variable names.

You can also omit variables using the select() function by using the negative sign. With select()

you can do

> select(chicago, -(city:dptp))

which indicates that we should include every variable except the variables city through dptp. The
equivalent code in base R would be

Managing Data Frames with the dplyr package 53

> i <- match("city", names(chicago))

> j <- match("dptp", names(chicago))

> head(chicago[, -(i:j)])

Not super intuitive, right?

The select() function also allows a special syntax that allows you to specify variable names based
on patterns. So, for example, if you wanted to keep every variable that ends with a “2”, we could do

> subset <- select(chicago, ends_with("2"))

> str(subset)

'data.frame': 6940 obs. of 4 variables:

$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...

$ pm10tmean2: num 34 NA 34.2 47 NA ...

$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...

$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

Or if we wanted to keep every variable that starts with a “d”, we could do

> subset <- select(chicago, starts_with("d"))

> str(subset)

'data.frame': 6940 obs. of 2 variables:

$ dptp: num 31.5 29.9 27.4 28.6 28.9 ...

$ date: Date, format: "1987-01-01" "1987-01-02" ...

You can also use more general regular expressions if necessary. See the help page (?select) for more
details.

filter()

The filter() function is used to extract subsets of rows from a data frame. This function is similar
to the existing subset() function in R but is quite a bit faster in my experience.

Suppose we wanted to extract the rows of the chicago data frame where the levels of PM2.5 are
greater than 30 (which is a reasonably high level), we could do

Managing Data Frames with the dplyr package 54

> chic.f <- filter(chicago, pm25tmean2 > 30)

> str(chic.f)

'data.frame': 194 obs. of 8 variables:

$ city : chr "chic" "chic" "chic" "chic" ...

$ tmpd : num 23 28 55 59 57 57 75 61 73 78 ...

$ dptp : num 21.9 25.8 51.3 53.7 52 56 65.8 59 60.3 67.1 ...

$ date : Date, format: "1998-01-17" "1998-01-23" ...

$ pm25tmean2: num 38.1 34 39.4 35.4 33.3 ...

$ pm10tmean2: num 32.5 38.7 34 28.5 35 ...

$ o3tmean2 : num 3.18 1.75 10.79 14.3 20.66 ...

$ no2tmean2 : num 25.3 29.4 25.3 31.4 26.8 ...

You can see that there are now only 194 rows in the data frame and the distribution of the pm25tmean2
values is.

> summary(chic.f$pm25tmean2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

30.05 32.12 35.04 36.63 39.53 61.50

We can place an arbitrarily complex logical sequence inside of filter(), so we could for example
extract the rows where PM2.5 is greater than 30 and temperature is greater than 80 degrees
Fahrenheit.

> chic.f <- filter(chicago, pm25tmean2 > 30 & tmpd > 80)

> select(chic.f, date, tmpd, pm25tmean2)

date tmpd pm25tmean2

1 1998-08-23 81 39.60000

2 1998-09-06 81 31.50000

3 2001-07-20 82 32.30000

4 2001-08-01 84 43.70000

5 2001-08-08 85 38.83750

6 2001-08-09 84 38.20000

7 2002-06-20 82 33.00000

8 2002-06-23 82 42.50000

9 2002-07-08 81 33.10000

10 2002-07-18 82 38.85000

11 2003-06-25 82 33.90000

12 2003-07-04 84 32.90000

13 2005-06-24 86 31.85714

14 2005-06-27 82 51.53750

15 2005-06-28 85 31.20000

16 2005-07-17 84 32.70000

17 2005-08-03 84 37.90000

Managing Data Frames with the dplyr package 55

Now there are only 17 observations where both of those conditions are met.

arrange()

The arrange() function is used to reorder rows of a data frame according to one of the variables/-
columns. Reordering rows of a data frame (while preserving corresponding order of other columns)
is normally a pain to do in R. The arrange() function simplifies the process quite a bit.

Here we can order the rows of the data frame by date, so that the first row is the earliest (oldest)
observation and the last row is the latest (most recent) observation.

> chicago <- arrange(chicago, date)

We can now check the first few rows

> head(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

1 1987-01-01 NA

2 1987-01-02 NA

3 1987-01-03 NA

and the last few rows.

> tail(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

6938 2005-12-29 7.45000

6939 2005-12-30 15.05714

6940 2005-12-31 15.00000

Columns can be arranged in descending order too by useing the special desc() operator.

> chicago <- arrange(chicago, desc(date))

Looking at the first three and last three rows shows the dates in descending order.

Managing Data Frames with the dplyr package 56

> head(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

1 2005-12-31 15.00000

2 2005-12-30 15.05714

3 2005-12-29 7.45000

> tail(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

6938 1987-01-03 NA

6939 1987-01-02 NA

6940 1987-01-01 NA

rename()

Renaming a variable in a data frame in R is surprisingly hard to do! The rename() function is
designed to make this process easier.

Here you can see the names of the first five variables in the chicago data frame.

> head(chicago[, 1:5], 3)

city tmpd dptp date pm25tmean2

1 chic 35 30.1 2005-12-31 15.00000

2 chic 36 31.0 2005-12-30 15.05714

3 chic 35 29.4 2005-12-29 7.45000

The dptp column is supposed to represent the dew point temperature adn the pm25tmean2 column
provides the PM2.5 data. However, these names are pretty obscure or awkward and probably be
renamed to something more sensible.

> chicago <- rename(chicago, dewpoint = dptp, pm25 = pm25tmean2)

> head(chicago[, 1:5], 3)

city tmpd dewpoint date pm25

1 chic 35 30.1 2005-12-31 15.00000

2 chic 36 31.0 2005-12-30 15.05714

3 chic 35 29.4 2005-12-29 7.45000

The syntax inside the rename() function is to have the new name on the left-hand side of the = sign
and the old name on the right-hand side.

I leave it as an exercise for the reader to figure how you do this in base R without dplyr.

Managing Data Frames with the dplyr package 57

mutate()

The mutate() function exists to compute transformations of variables in a data frame. Often, you
want to create new variables that are derived from existing variables and mutate() provides a clean
interface for doing that.

For example, with air pollution data, we often want to detrend the data by subtracting the mean
from the data. That way we can look at whether a given day’s air pollution level is higher than or
less than average (as opposed to looking at its absolute level).

Here we create a pm25detrend variable that subtracts the mean from the pm25 variable.

> chicago <- mutate(chicago, pm25detrend = pm25 - mean(pm25, na.rm = TRUE))

> head(chicago)

city tmpd dewpoint date pm25 pm10tmean2 o3tmean2 no2tmean2

1 chic 35 30.1 2005-12-31 15.00000 23.5 2.531250 13.25000

2 chic 36 31.0 2005-12-30 15.05714 19.2 3.034420 22.80556

3 chic 35 29.4 2005-12-29 7.45000 23.5 6.794837 19.97222

4 chic 37 34.5 2005-12-28 17.75000 27.5 3.260417 19.28563

5 chic 40 33.6 2005-12-27 23.56000 27.0 4.468750 23.50000

6 chic 35 29.6 2005-12-26 8.40000 8.5 14.041667 16.81944

pm25detrend

1 -1.230958

2 -1.173815

3 -8.780958

4 1.519042

5 7.329042

6 -7.830958

There is also the related transmute() function, which does the same thing as mutate() but then
drops all non-transformed variables.

Here we detrend the PM10 and ozone (O3) variables.

> head(transmute(chicago,

+ pm10detrend = pm10tmean2 - mean(pm10tmean2, na.rm = TRUE),

+ o3detrend = o3tmean2 - mean(o3tmean2, na.rm = TRUE)))

pm10detrend o3detrend

1 -10.395206 -16.904263

2 -14.695206 -16.401093

3 -10.395206 -12.640676

4 -6.395206 -16.175096

5 -6.895206 -14.966763

6 -25.395206 -5.393846

Managing Data Frames with the dplyr package 58

Note that there are only two columns in the transmuted data frame.

group_by()

The group_by() function is used to generate summary statistics from the data frame within strata
defined by a variable. For example, in this air pollution dataset, you might want to know what the
average annual level of PM2.5 is. So the stratum is the year, and that is something we can derive
from the date variable. In conjunction with the group_by() function we often use the summarize()
function (or summarise() for some parts of the world).

The general operation here is a combination of splitting a data frame into separate pieces defined by
a variable or group of variables (group_by()), and then applying a summary function across those
subsets (summarize()).

First, we can create a year varible using as.POSIXlt().

> chicago <- mutate(chicago, year = as.POSIXlt(date)$year + 1900)

Now we can create a separate data frame that splits the original data frame by year.

> years <- group_by(chicago, year)

Finally, we compute summary statistics for each year in the data frame with the summarize()

function.

> summarize(years, pm25 = mean(pm25, na.rm = TRUE),

+ o3 = max(o3tmean2, na.rm = TRUE),

+ no2 = median(no2tmean2, na.rm = TRUE))

Source: local data frame [19 x 4]

year pm25 o3 no2

1 1987 NaN 62.96966 23.49369

2 1988 NaN 61.67708 24.52296

3 1989 NaN 59.72727 26.14062

4 1990 NaN 52.22917 22.59583

5 1991 NaN 63.10417 21.38194

6 1992 NaN 50.82870 24.78921

7 1993 NaN 44.30093 25.76993

8 1994 NaN 52.17844 28.47500

9 1995 NaN 66.58750 27.26042

10 1996 NaN 58.39583 26.38715

11 1997 NaN 56.54167 25.48143

Managing Data Frames with the dplyr package 59

12 1998 18.26467 50.66250 24.58649

13 1999 18.49646 57.48864 24.66667

14 2000 16.93806 55.76103 23.46082

15 2001 16.92632 51.81984 25.06522

16 2002 15.27335 54.88043 22.73750

17 2003 15.23183 56.16608 24.62500

18 2004 14.62864 44.48240 23.39130

19 2005 16.18556 58.84126 22.62387

summarize() returns a data frame with year as the first column, and then the annual averages of
pm25, o3, and no2.

In a slightly more complicated example, we might want to know what are the average levels of
ozone (o3) and nitrogen dioxide (no2) within quintiles of pm25. A slicker way to do this would be
through a regression model, but we can actually do this quickly with group_by() and summarize().

First, we can create a categorical variable of pm25 divided into quintiles.

> qq <- quantile(chicago$pm25, seq(0, 1, 0.2), na.rm = TRUE)

> chicago <- mutate(chicago, pm25.quint = cut(pm25, qq))

Now we can group the data frame by the pm25.quint variable.

> quint <- group_by(chicago, pm25.quint)

Finally, we can compute the mean of o3 and no2 within quintiles of pm25.

> summarize(quint, o3 = mean(o3tmean2, na.rm = TRUE),

+ no2 = mean(no2tmean2, na.rm = TRUE))

Source: local data frame [6 x 3]

pm25.quint o3 no2

1 (1.7,8.7] 21.66401 17.99129

2 (8.7,12.4] 20.38248 22.13004

3 (12.4,16.7] 20.66160 24.35708

4 (16.7,22.6] 19.88122 27.27132

5 (22.6,61.5] 20.31775 29.64427

6 NA 18.79044 25.77585

From the table, it seems there isn’t a strong relationship between pm25 and o3, but there appears to
be a positive correlation between pm25 and no2. More sophisticated statistical modeling can help to
provide precise answers to these questions, but a simple application of dplyr functions can often
get you most of the way there.

Managing Data Frames with the dplyr package 60

%>%

The pipeline operater %>% is very handy for stringing together multiple dplyr functions in a sequence
of operations. Notice above that every timewewanted to applymore than one function, the sequence
gets buried in a sequence of nested function calls that is difficult to read, i.e.

> third(second(first(x)))

This nesting is not a natural way to think about a sequence of operations. The %>% operator allows
you to string operations in a left-to-right fashion, i.e.

> first(x) %>% second %>% third

Take the example that we just did in the last section where we computed the mean of o3 and no2

within quintiles of pm25. There we had to

1. create a new variable pm25.quint
2. split the data frame by that new variable
3. compute the mean of o3 and no2 in the sub-groups defined by pm25.quint

That can be done with the following sequence in a single R expression.

> mutate(chicago, pm25.quint = cut(pm25, qq)) %>%

+ group_by(pm25.quint) %>%

+ summarize(o3 = mean(o3tmean2, na.rm = TRUE),

+ no2 = mean(no2tmean2, na.rm = TRUE))

Source: local data frame [6 x 3]

pm25.quint o3 no2

1 (1.7,8.7] 21.66401 17.99129

2 (8.7,12.4] 20.38248 22.13004

3 (12.4,16.7] 20.66160 24.35708

4 (16.7,22.6] 19.88122 27.27132

5 (22.6,61.5] 20.31775 29.64427

6 NA 18.79044 25.77585

This way we don’t have to create a set of temporary variables along the way or create a massive
nested sequence of function calls.

Notice in the above code that I pass the chicago data frame to the first call to mutate(), but then
afterwards I do not have to pass the first argument to group_by() or summarize(). Once you travel
down the pipeline with %>%, the first argument is taken to be the output of the previous element in
the pipeline.

Another example might be computing the average pollutant level by month. This could be useful to
see if there are any seasonal trends in the data.

Managing Data Frames with the dplyr package 61

> mutate(chicago, month = as.POSIXlt(date)$mon + 1) %>%

+ group_by(month) %>%

+ summarize(pm25 = mean(pm25, na.rm = TRUE),

+ o3 = max(o3tmean2, na.rm = TRUE),

+ no2 = median(no2tmean2, na.rm = TRUE))

Source: local data frame [12 x 4]

month pm25 o3 no2

1 1 17.76996 28.22222 25.35417

2 2 20.37513 37.37500 26.78034

3 3 17.40818 39.05000 26.76984

4 4 13.85879 47.94907 25.03125

5 5 14.07420 52.75000 24.22222

6 6 15.86461 66.58750 25.01140

7 7 16.57087 59.54167 22.38442

8 8 16.93380 53.96701 22.98333

9 9 15.91279 57.48864 24.47917

10 10 14.23557 47.09275 24.15217

11 11 15.15794 29.45833 23.56537

12 12 17.52221 27.70833 24.45773

Here we can see that o3 tends to be low in the winter months and high in the summer while no2 is
higher in the winter and lower in the summer.

Summary

The dplyr package provides a concise set of operations for managing data frames. With these
functions we can do a number of complex operations in just a few lines of code. In particular,
we can often conduct the beginnings of an exploratory analysis with the powerful combination of
group_by() and summarize().

Once you learn the dplyr grammar there are a few additional benefits

• dplyr can work with other data frame “backends” such as SQL databases. There is an SQL
interface for relational databases via the DBI package

• dplyr can be integrated with the data.table package for large fast tables

The dplyr package is handy way to both simplify and speed up your data frame management code.
It’s rare that you get such a combination at the same time!

