METU Mathematics Department - Fall 2020 MATH 349 - Introduction to Mathematical Analysis Exercise Problems - List A

(1) For any real number $\lambda \in \mathbb{R}$ choose a positive real number $a_{\lambda}>0$. Show that the subset A below is unbounded:
$A=\left\{a_{\lambda_{1}}+\cdots+a_{\lambda_{k}} \mid k \in \mathbb{N}, \lambda_{1}, \cdots, \lambda_{k} \in \mathbb{R}\right.$ are all distinct. $\}$.
What if the indices λ were from integers but not from reals?
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing function. Show that the set of points, at which f is discontinuous, is at most countable. (Hint: Use the above problem!)
(3) Note that the interval $[0,1]$ with addition modulo one is an abelian group.
a. Let H be a proper subgroup of $[0,1]$, which is closed as a subset of $[0,1]$. Show that H is finite.
b. Show that the subgroup generated by $\sqrt{2}$ in $[0,1]$ is dense. Conclude that $\{m+n \sqrt{2} \mid m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}.
(4) (W. Rudin, Principles of Math. Analy. page 22, Problem 6) Fix any real number $b>1$. For any rational number $r=p / q$, $p, q \in \mathbb{Z}$, define b^{r} as $b^{r} \doteq\left(b^{p}\right)^{1 / q}$, the q th positive root of b^{p}.
a. Prove that for rational numbers $r_{1}, r_{2}, b^{r_{1}+r_{2}}=b^{r_{1}} b^{r_{2}}$.

Now for any positive real number x let $B(x)=\left\{b^{r} \mid r \in\right.$ $\mathbb{Q}, x \geq r\}$. Finally define b^{x} as $\sup B(x)$.
b. Show that for any rational number $r=p / q$ the two definitions of b^{r} agrees. In other words, show $\sup B(r)=$ $\left(b^{p}\right)^{1 / q}$.
c. Prove that for real numbers $x_{1}, x_{2}, b^{x_{1}+x_{2}}=b^{x_{1}} b^{x_{2}}$.
(5) Consider the sequence $f_{n}:[0,1] \rightarrow \mathbb{R}, f_{n}(x)=x^{n}$ in the complete metric space of bounded functions equipped with the supremum metric, $B\left([0,1],\|\cdot\|_{\text {sup }}\right)$. Is it a Cauchy sequence? Show that the same sequence is convergent in $B\left([0,1 / 2],\|\cdot\|_{\text {sup }}\right)$
(6) Let $\left(f_{n}\right) \in C(X) \cap B(X)$ be a convergent sequence, where $C(X) \cap B(X)$ is the metric space of real valued bounded and continuous functions on metric space (X, d). Let $\left(x_{n}\right)$ be
convergent sequence in (X, d). Show that $f_{n}\left(x_{n}\right)$ is convergent in $(\mathbb{R},|\cdot|)$.
(7) Show that a metric space (X, d) is compact if and only if any continuous real valued function on X has a maximum.
(8) A continuous map $f:\left(X, d_{1}\right) \rightarrow\left(Y, d_{2}\right)$ is called proper if the inverse image of any compact set under f is also compact. Show that a proper map is a closed map; i.e., the image of any closed set in X is closed in Y.
(9) Show that any nonconstant polynomial map on \mathbb{R} or \mathbb{C} is proper.
(10) Let $f, g \in \mathbb{C}[z]$ be two non constant monic polynomials. Consider the homotopy function

$$
F:[0,1] \times \mathbb{C} \rightarrow \mathbb{C},(t, z) \mapsto(1-t) f(z)+t g(z)
$$

Show that F is proper if and only if $\operatorname{deg}(f)=\operatorname{deg}(g)$.
In case of real polynomials the following holds: For monic real polynomials $f, g \in \mathbb{R}[x]$ the homotopy function

$$
F:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}, \quad(t, x) \mapsto(1-t) f(x)+t g(x)
$$

is proper if and only if $\operatorname{deg}(f)=\operatorname{deg}(g)(\bmod 2)$.
(11) Show that any bijection $f:[0,1) \rightarrow(0,1)$ has infinitely many discontinuity. Find such a bijection!
(12) Let $\left(f_{n}\right)$ be a sequence of Riemann integrable functions in $B([a, b])$ converging to some $f \in B([a, b])$. Show that f is also Riemann integrable and

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

(13) Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of function defined by

$$
f_{n}(x)=\left\{\begin{array}{cc}
n(1-n x), & \text { if } 0<x<\frac{1}{n} \\
0, & \text { if } x=0 \text { or } \frac{1}{n} \leq x \leq 1
\end{array}\right.
$$

a. Determine the function $f:[0,1] \rightarrow \mathbb{R}$, to which $\left(f_{n}\right)$ converge pointwisely.
b. Compute the integral $\int_{0}^{1} f_{n}(x) d x$.
c. Does $\left(f_{n}\right)$ converge uniformly to f on $[0,1]$? Explain your answer.
(14) Show that the subset $A=\{(\cos n, \sin n) \mid n \in \mathbb{Z}\}$ is dense in the unit circle $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. (Hint: Regarding the points of the plane as complex number note that the map

$$
f(n) \doteq e^{i n}=\cos n+i \sin n
$$

is a group homomorphism from $(\mathbb{Z},+)$ to $\left.\left(\mathbb{C}^{*}, \cdot\right)\right)$.
(15) Prove that there is a unique bounded continuous real valued function $f:[0, \infty) \rightarrow \mathbb{R}$ such that

$$
f(s)=1+\int_{0}^{s} e^{-t^{2}} f(s t) d t
$$

for all $s \in[0, \infty)$.
(16) Let $\left(f_{n}\right)$ be a bounded sequence in $C[0,1]$ and

$$
g_{n}(x)=\int_{0}^{x} f_{n}(t) d t
$$

prove that there is a subsequence of $\left(g_{n}\right)$ which converges to a continuous function uniformly.
(17) Let X be a complete metric space. If

$$
X=\cup_{n=1}^{\infty} X_{n}
$$

prove that for some m, the closure \bar{X}_{m} has non empty interior.
(18) If X is a complete metric space which has no isolated point prove that X is uncountable.
(19) Show that the set of irrational numbers is not a union of countably many closed subsets of \mathbb{R}.
(20) Show that any connected metric space containing at least two points is uncountable.
(21) Show that any open subset of reals is a countable disjoint union open intervals.
(22) For any nonempty subsets A and B of real numbers define

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

Show that $A+B$ is compact if both A and B are both compact. Also show that $A+B$ is closed if A is compact and B is closed.
(23) If $X \backslash \partial A$ is connected, prove that either $\operatorname{Int} A$ or $\operatorname{Ext} A$ is empty. Use this to show that $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \neq 1\right\}$ is not connected.
(24) Construct a sequence of rational numbers $\left(a_{n}\right)$ so that for any real number x there is a subsequence $\left(a_{k_{n}}\right)$ with $\lim a_{k_{n}}=x$.
(25) Prove that a precompact metric space is separable, i.e., has a countable dense subset. Are all separable metric spaces precompact?

List B

(1) a) Show that any continuous function $f: \mathbb{R} \rightarrow \mathbb{Z}$ is constant.
b) Show that the function $f: \mathbb{Q}^{*} \rightarrow \mathbb{Z}, f(x)=[x / \sqrt{2}]$ (greatest integer part) is continuous and onto.
c) Show that any uniformly continuous function $f: \mathbb{Q} \rightarrow \mathbb{Z}$ is constant.
(2) a) Show that the function $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
d(x, y)=|\sigma(x)-\sigma(y)|
$$

where $\sigma(x)=x$ if $x \leq 0$ and $\sigma(x)=\frac{x}{1+x}$ if $x>0$, defines a metric.
b) Show that the subset $[a, \infty)$ is bounded for any a, while as $(-\infty, \infty)$ is not bounded.
c) Determine the balls $B(-3,1), B(1,1 / 2), B(1,2)$ and $B(2,2)$.
(3) Prove that for any two subsets of real numbers A and B, which are bounded from above the subset $A \cup B$ is bounded from above and $\sup (A \cup B)=\max \{\sup (A), \sup (B)\}$.
(4) Show that for any two subsets A and B of real numbers $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$ and $(A \cap B)^{\prime} \subseteq A^{\prime} \cap B^{\prime}$. Find A and B so that $(A \cap B)^{\prime} \neq A^{\prime} \cap B^{\prime}$. (Here, A^{\prime} denotes the set of accumulation points of A, the derived set of A.)
(5) a. If $a_{n} \leq b_{n} \leq c_{n}$ be sequences so that $\lim a_{n}=r=\lim c_{n}$, for some $r \in \mathbb{R}$. Show that $\lim b_{n}=r$.
b. If $\lim a_{n}=r, a_{n} \geq 0$, for all n, then show that $r \geq 0$ and $\lim \sqrt{a_{n}}=\sqrt{r}$.
c. If $\lim a_{n}=r$, then show that $\lim b_{n}=r$, where $b_{n}=$ $\frac{a_{1}+\cdots+a_{n}}{n}$.
(6) Show that any function $f: \mathbb{Z} \rightarrow \mathbb{R}$ is continuous and every continuous functions $f: \mathbb{R} \rightarrow \mathbb{Z}$ is constant, where both spaces have the absolute value metric.
(7) Either prove or give counter examples for the following statements: Let (X, d) be a metric space. Then, for any subsets A, B of X we have,
a. $\operatorname{Int}(A) \cup \operatorname{Int}(B) \subseteq \operatorname{Int}(A \cup B)$;
b. $\operatorname{Int}(A) \cap \operatorname{Int}(B)=\operatorname{Int}(A \cap B)$;
c. $\bar{A} \cup \bar{B}=\overline{A \cup B}$;
d. $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$;
e. $\overline{\operatorname{Int}(A)}=\bar{A}$;
f. $\operatorname{Int}(\bar{A})=\operatorname{Int}(A)$.
(8) Prove that for any two subsets of real numbers A and B, which are bounded from below the subset

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

is bounded from below and $\inf (A+B)=\inf (A)+\inf (B)$.
(9) Let $f: X \rightarrow Y$ be a function from the set X to the set Y. For any subset $B \subseteq Y$ define the inverse image of B under f as $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$. Prove the following statements:

For any family of substes $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ in X,
a) $f\left(\cup_{\alpha \in \Lambda} A_{\alpha}\right)=\cup_{\alpha \in \Lambda} f\left(A_{\alpha}\right)$;
b) $f\left(\cap_{\alpha \in \Lambda} A_{\alpha}\right) \subseteq \cap_{\alpha \in \Lambda} f\left(A_{\alpha}\right)$. Also find a counter example for

$$
f\left(\cap_{\alpha \in \Lambda} A_{\alpha}\right)=\cap_{\alpha \in \Lambda} f\left(A_{\alpha}\right) .
$$

On the other hand, for any family of subsets $\left\{B_{\alpha}\right\}_{\alpha \in \Lambda}$ of Y,
c) $f^{-1}\left(\cup_{\alpha \in \Lambda} B_{\alpha}\right)=\cup_{\alpha \in \Lambda} f^{-1}\left(B_{\alpha}\right)$;
d) $f^{-1}\left(\cap_{\alpha \in \Lambda} B_{\alpha}\right)=\cap_{\alpha \in \Lambda} f^{-1}\left(B_{\alpha}\right)$.
(10) Prove that a function $f: X \rightarrow Y$ is continuous if and only if $f(\bar{A}) \subseteq \overline{f(A)}$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=0$, for all $x<0$ and $f(x)=1$ for all $x \geq 0$. Find a subset A so that $f(\bar{A}) \nsubseteq f(A)$.
(11) Prove that for any two nonempty subsets of positive real numbers A and B with $\inf (A) \neq 0, \inf (B) \neq 0$ prove that $\inf (A \cdot B)=\inf (A) \cdot \inf (B)$, where

$$
A \cdot B=\{a b \mid a \in A, b \in B\} .
$$

(12) Let P be the set of irrational numbers in the interval $[0,1]$. Compute P^{\prime}, the set of accumulation points of P.
(13) Let S be a subset of real numbers. An element $x \in S$ is called an isolated point of S if there is a positive real number $\epsilon>0$ so that $(x-\epsilon, x+\epsilon) \cap S$ is finite. Prove that if x is an isolated point of S then x is an accumulation point of $\mathbb{R} \backslash S$.
(14) Let $f:[0,1] \rightarrow[0,1]$ be a function so that $f(A)$ is closed, whenever $A \subseteq[0,1]$ is closed. Set $A_{1}=[0,1]$ and $A_{n+1}=$ $f\left(A_{n}\right)$, for $n \geq 1$. Show that $\bigcap_{n=1}^{\infty} A_{n}$ is a nonempty closed set.
(15) Let $\left(a_{n}\right)$ and (b_{n}) be bounded sequences of real numbers. Show that $\liminf \left(a_{n}+b_{n}\right) \geq \liminf \left(a_{n}\right)+\liminf \left(b_{n}\right)$.
(16) Let $\left(a_{n}\right)$ be a sequence of real numbers so that $\lim n a_{n}=L$. Show that $\lim a_{n}=0$.
(17) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=0$, for all $x<0$ and $f(x)=1$ for all $x \geq 0$. Clearly, $f \in B(\mathbb{R})$. Show that the ball $B(f, 1 / 3)$ contains no continuous function. Find a continuous function in the ball $B(f, 2 / 3)$.
(18) Consider the sequence defined by $a_{1}=1$ and $a_{n+1}=\sqrt{6+a_{n}}$, for all $n \geq 1$. Show that $\lim a_{n}=3$.
(19) Show that any continuous bijection $f: \mathbb{R} \rightarrow \mathbb{R}$ is a homeomorphism.
(20) Determine the interior, the exterior, the boundary and the closure of the following subsets:
a. $\mathbb{Z} \subset \mathbb{R}$,
b. $\mathbb{Z} \subset \mathbb{Q}$,
c. $\mathbb{Q} \subset \mathbb{R}$,
d. $\mathbb{Z} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$,
e. $\mathbb{Z} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{Q}$,
f. $\left\{(x, y) \mid x, y \in \mathbb{R}, x<y^{2}\right\}$ in \mathbb{R}^{2},
g. $Y \subseteq X$, where X is any set equipped with the discrete metric and Y is any subset.
h. $\{f \in C(\mathbb{R}) \cap B(\mathbb{R}) \mid f(0)=1\} \subset B(\mathbb{R})$, where $B(\mathbb{R})$ and $C(\mathbb{R})$ denotes the set of bounded and continuous functions on the real line, respectively and $B(\mathbb{R})$ is endowed with the supremum metric.
(21) Let $f:(\mathbb{R},|\cdot|) \rightarrow(\mathbb{R},|\cdot|)$ be defined by $f(x)=5 x$. Show that f is a homeomorphism but not an isometry.
(22) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=2 x-1$. Show that f is uniformly continuous on \mathbb{R}.
(23) Show that \mathbb{Z} is not compact.
(24) Determine whether the following sets of \mathbb{R}^{2} are complete and compact. Explain.
(i) $\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4\right\}$,
(ii) $\{(x, y): 1<y<3\}$,
(iii) $\{(x, y): 2 x+y=1\}$,
(iv) $\{(x, y): 0<x<1, y=0\}$,
(v) $\left\{(x, y): 0 \leq x \leq 1, y=e^{x}\right\}$.
(25) Let (X, d) be a compact connected metric space and $f: X \rightarrow \mathbb{R}$ be a continuous function. Prove that $f(X)$ is a finite closed interval.
(26) Let (X, d) be a metric space and $t \in X$. Let $f: X \rightarrow \mathbb{R}$ be defined by $f(x)=d(x, t)$. Show that f is uniformly continuous on X.
(27) Let (X, d) be a metric space. Show that if $\left(x_{n}\right),\left(y_{n}\right)$ are Cauchy sequence of X, then $\left(d\left(x_{n}, y_{n}\right)\right)$ converges in \mathbb{R}.
(28) A metric space which has a countable dense subset is called separable. Prove that the cartesian product of two separable metric spaces is also separable.
(29) Let (X, d) be a bounded metric space and d^{\prime} be the metric on X defined by $d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}$, for all $x, y \in X$. Show that these two metrics are equivalent.
(30) a) Prove that the complement of $\operatorname{Int} E$ is the closure of the complement of E.
b) Do E and \bar{E} always have the same interiors?
c) Do E and $\operatorname{Int} E$ always have the same closures?
(31) In each case below give an example of a bounded set A in \mathbb{R}.
(i) $\sup (A) \in A$,
(ii) $\sup (A) \notin A$,
(iii) $\sup (A)$ is an accumulation point of A,
(iv) $\sup (A)$ is not an accumulation point A.
(32) Let $\left(a_{n}\right)$ be a bounded sequence. Show that $\lim \sup \left(-a_{n}\right)=$ $-\liminf \left(a_{n}\right)$.
(33) Evaluate, wherever possible, the limit of the following sequence:
(i) $\left(\frac{e^{n}}{\pi^{n}}\right)$,
(ii) $(\sin (\pi / n))$,
(iii) $\left(\frac{n!}{n^{n}}\right)$,
(iv) $\frac{(-1)^{n}}{n}$.
(34) Let A be a precompact subset of a complete metric space X and $f: X \rightarrow Y$ a continuous map. Show that its restriction to $A, f: A \rightarrow Y$, is uniformly continuous.
(35) Let E_{n} be sequence of nonempty closed subsets of a compact metric space so that $E_{n+1} \subseteq E_{n}$, for each n. Prove that

$$
\cap_{n=1}^{\infty} E_{n} \neq \emptyset .
$$

This list contains several questions from the course textbook entitled An Introduction to Real Analysis by Tosun Terzioğlu.

