METU Mathematics Department - Fall 2020 MATH 349 - Introduction to Mathematical Analysis Exercise Problems - List A

(1) For any real number $\lambda \in \mathbb{R}$ choose a positive real number $a_{\lambda} > 0$. Show that the subset A below is unbounded:

$$A = \{a_{\lambda_1} + \dots + a_{\lambda_k} \mid k \in \mathbb{N}, \ \lambda_1, \dots, \lambda_k \in \mathbb{R} \text{ are all distinct.} \}.$$

What if the indices λ were from integers but not from reals?

- (2) Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing function. Show that the set of points, at which f is discontinuous, is at most countable. (Hint: Use the above problem!)
- (3) Note that the interval [0,1] with addition modulo one is an abelian group.

a. Let H be a proper subgroup of [0, 1], which is closed as a subset of [0, 1]. Show that H is finite.

b. Show that the subgroup generated by $\sqrt{2}$ in [0,1] is dense. Conclude that $\{m + n\sqrt{2} \mid m, n \in \mathbb{Z}\}$ is dense in \mathbb{R} .

(4) (W. Rudin, Principles of Math. Analy. page 22, Problem 6) Fix any real number b > 1. For any rational number r = p/q, p,q ∈ Z, define b^r as b^r = (b^p)^{1/q}, the qth positive root of b^p.
a. Prove that for rational numbers r₁, r₂, b^{r₁+r₂} = b^{r₁} b^{r₂}.

Now for any positive real number x let $B(x) = \{b^r \mid r \in \mathbb{Q}, x \geq r\}$. Finally define b^x as $\sup B(x)$.

b. Show that for any rational number r = p/q the two definitions of b^r agrees. In other words, show $\sup B(r) = (b^p)^{1/q}$.

c. Prove that for real numbers $x_1, x_2, b^{x_1+x_2} = b^{x_1} b^{x_2}$.

- (5) Consider the sequence $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = x^n$ in the complete metric space of bounded functions equipped with the supremum metric, $B([0,1], \|\cdot\|_{sup})$. Is it a Cauchy sequence? Show that the same sequence is convergent in $B([0,1/2], \|\cdot\|_{sup})$
- (6) Let $(f_n) \in C(X) \cap B(X)$ be a convergent sequence, where $C(X) \cap B(X)$ is the metric space of real valued bounded and continuous functions on metric space (X, d). Let (x_n) be

convergent sequence in (X, d). Show that $f_n(x_n)$ is convergent in $(\mathbb{R}, |\cdot|)$.

- (7) Show that a metric space (X, d) is compact if and only if any continuous real valued function on X has a maximum.
- (8) A continuous map $f: (X, d_1) \to (Y, d_2)$ is called proper if the inverse image of any compact set under f is also compact. Show that a proper map is a closed map; i.e., the image of any closed set in X is closed in Y.
- (9) Show that any nonconstant polynomial map on \mathbb{R} or \mathbb{C} is proper.
- (10) Let $f, g \in \mathbb{C}[z]$ be two non constant monic polynomials. Consider the homotopy function

 $F: [0,1] \times \mathbb{C} \to \mathbb{C}$, $(t,z) \mapsto (1-t) f(z) + t g(z)$.

Show that F is proper if and only if $\deg(f) = \deg(g)$.

In case of real polynomials the following holds: For monic real polynomials $f, g \in \mathbb{R}[x]$ the homotopy function

 $F: [0,1] \times \mathbb{R} \to \mathbb{R}$, $(t,x) \mapsto (1-t) f(x) + t g(x)$

is proper if and only if $\deg(f) = \deg(g) \pmod{2}$.

- (11) Show that any bijection $f: [0, 1) \to (0, 1)$ has infinitely many discontinuity. Find such a bijection!
- (12) Let (f_n) be a sequence of Riemann integrable functions in B([a,b]) converging to some $f \in B([a,b])$. Show that f is also Riemann integrable and

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) \, dx.$$

(13) Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of function defined by

$$f_n(x) = \begin{cases} n(1 - nx), & \text{if } 0 < x < \frac{1}{n}, \\ 0, & \text{if } x = 0 \text{ or } \frac{1}{n} \le x \le 1. \end{cases}$$

a. Determine the function $f : [0,1] \to \mathbb{R}$, to which (f_n) converge pointwisely.

b. Compute the integral $\int_0^1 f_n(x) dx$.

c. Does (f_n) converge uniformly to f on [0, 1]? Explain your answer.

(14) Show that the subset $A = \{(\cos n, \sin n) \mid n \in \mathbb{Z}\}$ is dense in the unit circle $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. (Hint: Regarding the points of the plane as complex number note that the map

$$f(n) \doteq e^{in} = \cos n + i \sin n$$

is a group homomorphism from $(\mathbb{Z}, +)$ to $(\mathbb{C}^*, \cdot))$.

(15) Prove that there is a unique bounded continuous real valued function $f: [0, \infty) \to \mathbb{R}$ such that

$$f(s) = 1 + \int_0^s e^{-t^2} f(st) dt$$

for all $s \in [0, \infty)$.

(16) Let (f_n) be a bounded sequence in C[0,1] and

$$g_n(x) = \int_0^x f_n(t) dt$$

prove that there is a subsequence of (g_n) which converges to a continuous function uniformly.

(17) Let X be a complete metric space. If

$$X = \bigcup_{n=1}^{\infty} X_n$$

prove that for some m, the closure \overline{X}_m has non empty interior.

- (18) If X is a complete metric space which has no isolated point prove that X is uncountable.
- (19) Show that the set of irrational numbers is not a union of countably many closed subsets of \mathbb{R} .
- (20) Show that any connected metric space containing at least two points is uncountable.

- (21) Show that any open subset of reals is a countable disjoint union open intervals.
- (22) For any nonempty subsets A and B of real numbers define

$$A + B = \{a + b \mid a \in A, b \in B\}$$

Show that A + B is compact if both A and B are both compact. Also show that A + B is closed if A is compact and B is closed.

- (23) If $X \setminus \partial A$ is connected, prove that either IntA or ExtA is empty. Use this to show that $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \neq 1\}$ is not connected.
- (24) Construct a sequence of rational numbers (a_n) so that for any real number x there is a subsequence (a_{k_n}) with $\lim a_{k_n} = x$.
- (25) Prove that a precompact metric space is separable, i.e., has a countable dense subset. Are all separable metric spaces precompact?

4

List B

(1) a) Show that any continuous function $f : \mathbb{R} \to \mathbb{Z}$ is constant.

Show that the function $f: \mathbb{Q}^* \to \mathbb{Z}, f(x) = [x/\sqrt{2}]$ b) (greatest integer part) is continuous and onto.

c) Show that any uniformly continuous function $f: \mathbb{Q} \to \mathbb{Z}$ is constant.

(2) a) Show that the function $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

$$d(x, y) = |\sigma(x) - \sigma(y)|,$$

where $\sigma(x) = x$ if $x \leq 0$ and $\sigma(x) = \frac{x}{1+x}$ if x > 0, defines a metric.

b) Show that the subset $[a, \infty)$ is bounded for any a, while as $(-\infty, \infty)$ is not bounded.

c) Determine the balls B(-3, 1), B(1, 1/2), B(1, 2) and B(2, 2).

- (3) Prove that for any two subsets of real numbers A and B, which are bounded from above the subset $A \cup B$ is bounded from above and $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$
- (4) Show that for any two subsets A and B of real numbers $(A \cup B)' = A' \cup B'$ and $(A \cap B)' \subseteq A' \cap B'$. Find A and B so that $(A \cap B)' \neq A' \cap B'$. (Here, A' denotes the set of accumulation points of A, the derived set of A.)
- (5) **a.** If $a_n \leq b_n \leq c_n$ be sequences so that $\lim a_n = r = \lim c_n$, for some $r \in \mathbb{R}$. Show that $\lim b_n = r$.

b. If $\lim a_n = r$, $a_n \ge 0$, for all n, then show that $r \ge 0$ **c.** If $\lim_{n \to \infty} a_n = r$, then show that $\lim_{n \to \infty} b_n = r$, where $b_n = a_1 + \cdots + a_n$.

n

(6) Show that any function $f : \mathbb{Z} \to \mathbb{R}$ is continuous and every continuous functions $f : \mathbb{R} \to \mathbb{Z}$ is constant, where both spaces have the absolute value metric.

- (7) Either prove or give counter examples for the following statements: Let (X, d) be a metric space. Then, for any subsets A, B of X we have,
 - **a.** $Int(A) \cup Int(B) \subseteq Int(A \cup B);$ **b.** $Int(A) \cap Int(B) = Int(A \cap B);$ **c.** $\overline{A \cup B} = \overline{A \cup B};$ **d.** $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B};$ **e.** $\overline{Int(A)} = \overline{A};$
 - **f.** $Int(\overline{A}) = Int(A)$.
- (8) Prove that for any two subsets of real numbers A and B, which are bounded from below the subset

$$A + B = \{a + b \mid a \in A, b \in B\}$$

is bounded from below and $\inf(A + B) = \inf(A) + \inf(B)$.

(9) Let $f: X \to Y$ be a function from the set X to the set Y. For any subset $B \subseteq Y$ define the inverse image of B under f as $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$. Prove the following statements:

For any family of substes $\{A_{\alpha}\}_{\alpha \in \Lambda}$ in X,

- **a)** $f(\bigcup_{\alpha\in\Lambda}A_{\alpha})=\bigcup_{\alpha\in\Lambda}f(A_{\alpha});$
- **b)** $f(\cap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \cap_{\alpha \in \Lambda} f(A_{\alpha})$. Also find a counter example for

$$f(\bigcap_{\alpha\in\Lambda}A_{\alpha})=\bigcap_{\alpha\in\Lambda}f(A_{\alpha}).$$

On the other hand, for any family of subsets $\{B_{\alpha}\}_{\alpha \in \Lambda}$ of Y,

c)
$$f^{-1}(\bigcup_{\alpha \in \Lambda} B_{\alpha}) = \bigcup_{\alpha \in \Lambda} f^{-1}(B_{\alpha});$$

d) $f^{-1}(\bigcap_{\alpha \in \Lambda} B_{\alpha}) = \bigcap_{\alpha \in \Lambda} f^{-1}(B_{\alpha}).$

(10) Prove that a function $f: X \to Y$ is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$.

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 0, for all x < 0 and f(x) = 1 for all $x \ge 0$. Find a subset A so that $f(\overline{A}) \not\subseteq \overline{f(A)}$.

6

(11) Prove that for any two nonempty subsets of positive real numbers A and B with $\inf(A) \neq 0$, $\inf(B) \neq 0$ prove that $\inf(A \cdot B) = \inf(A) \cdot \inf(B)$, where

$$A \cdot B = \{ab \mid a \in A, b \in B\}$$

- (12) Let P be the set of irrational numbers in the interval [0, 1]. Compute P', the set of accumulation points of P.
- (13) Let S be a subset of real numbers. An element $x \in S$ is called an *isolated point* of S if there is a positive real number $\epsilon > 0$ so that $(x \epsilon, x + \epsilon) \cap S$ is finite. Prove that if x is an isolated point of S then x is an accumulation point of $\mathbb{R} \setminus S$.
- (14) Let $f : [0,1] \to [0,1]$ be a function so that f(A) is closed, whenever $A \subseteq [0,1]$ is closed. Set $A_1 = [0,1]$ and $A_{n+1} = f(A_n)$, for $n \ge 1$. Show that $\bigcap_{n=1}^{\infty} A_n$ is a nonempty closed set.
- (15) Let (a_n) and (b_n) be bounded sequences of real numbers. Show that $\liminf(a_n + b_n) \ge \liminf(a_n) + \liminf(b_n)$.
- (16) Let (a_n) be a sequence of real numbers so that $\lim na_n = L$. Show that $\lim a_n = 0$.
- (17) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 0, for all x < 0 and f(x) = 1 for all $x \ge 0$. Clearly, $f \in B(\mathbb{R})$. Show that the ball B(f, 1/3) contains no continuous function. Find a continuous function in the ball B(f, 2/3).
- (18) Consider the sequence defined by $a_1 = 1$ and $a_{n+1} = \sqrt{6 + a_n}$, for all $n \ge 1$. Show that $\lim a_n = 3$.
- (19) Show that any continuous bijection $f : \mathbb{R} \to \mathbb{R}$ is a homeomorphism.
- (20) Determine the interior, the exterior, the boundary and the closure of the following subsets:
 - a. $\mathbb{Z} \subset \mathbb{R}$, b. $\mathbb{Z} \subset \mathbb{Q}$, c. $\mathbb{Q} \subset \mathbb{R}$, d. $\mathbb{Z} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$,

e. $\mathbb{Z} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{Q}$,

f. $\{(x, y) \mid x, y \in \mathbb{R}, x < y^2\}$ in \mathbb{R}^2 ,

g. $Y \subseteq X$, where X is any set equipped with the discrete metric and Y is any subset.

h. $\{f \in C(\mathbb{R}) \cap B(\mathbb{R}) \mid f(0) = 1\} \subset B(\mathbb{R}), \text{ where } B(\mathbb{R})$ and $C(\mathbb{R})$ denotes the set of bounded and continuous functions on the real line, respectively and $B(\mathbb{R})$ is endowed with the supremum metric.

- (21) Let $f: (\mathbb{R}, |.|) \to (\mathbb{R}, |.|)$ be defined by f(x) = 5x. Show that f is a homeomorphism but not an isometry.
- (22) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x 1. Show that f is uniformly continuous on \mathbb{R} .
- (23) Show that \mathbb{Z} is not compact.
- (24) Determine whether the following sets of \mathbb{R}^2 are complete and compact. Explain.
 - (i) {(x,y): $1 \le x^2 + y^2 \le 4$ },
 - (ii) {(x, y) : 1 < y < 3}, (iii) {(x, y) : 2x + y = 1},

 - (iv) $\{(x, y) : 0 < x < 1, y = 0\},\$
 - (v) $\{(x,y): 0 \le x \le 1, y = e^x\}.$
- (25) Let (X, d) be a compact connected metric space and $f: X \to \mathbb{R}$ be a continuous function. Prove that f(X) is a finite closed interval.
- (26) Let (X, d) be a metric space and $t \in X$. Let $f : X \to \mathbb{R}$ be defined by f(x) = d(x, t). Show that f is uniformly continuous on X.
- (27) Let (X, d) be a metric space. Show that if (x_n) , (y_n) are Cauchy sequence of X, then $(d(x_n, y_n))$ converges in \mathbb{R} .
- (28) A metric space which has a countable dense subset is called separable. Prove that the cartesian product of two separable metric spaces is also separable.

- (29) Let (X, d) be a bounded metric space and d' be the metric on X defined by $d'(x, y) = \frac{d(x, y)}{1+d(x, y)}$, for all $x, y \in X$. Show that these two metrics are equivalent.
- (30) **a)** Prove that the complement of IntE is the closure of the complement of E.
 - **b)** Do E and \overline{E} always have the same interiors?
 - c) Do E and IntE always have the same closures?
- (31) In each case below give an example of a bounded set A in R.
 (i) sup(A) ∈ A,
 - (ii) $\sup(A) \notin A$,
 - (iii) $\sup(A)$ is an accumulation point of A,
 - (iv) $\sup(A)$ is not an accumulation point A.
- (32) Let (a_n) be a bounded sequence. Show that $\limsup(-a_n) = -\lim \inf(a_n)$.
- (33) Evaluate, wherever possible, the limit of the following sequence:

 (i) (^{eⁿ}/_{πⁿ}),
 (ii) (sin(π/n)).

(ii)
$$(\sin(\pi/n))$$

(iii) $(\frac{n!}{n^n})$,
(iv) $\frac{(-1)^n}{n}$.

- (34) Let A be a precompact subset of a complete metric space X and $f: X \to Y$ a continuous map. Show that its restriction to $A, f: A \to Y$, is uniformly continuous.
- (35) Let E_n be sequence of nonempty closed subsets of a compact metric space so that $E_{n+1} \subseteq E_n$, for each n. Prove that $\bigcap_{n=1}^{\infty} E_n \neq \emptyset$.

This list contains several questions from the course textbook entitled An Introduction to Real Analysis by Tosun Terzioğlu.