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Preface

In a first course of linear algebra, one learns the various uses of matrices, for
instance the properties of determinants, eigenvectors and eigenvalues, and
methods for solving linear equations. The required calculations are straight-
forward (because, conceptually, vectors and matrices are merely “arrays of
numbers”) if cumbersome. However, there is a more abstract and more pow-
erful approach: Vectors are elements of abstract vector spaces, and matrices
represent linear transformations of vectors. This invariant or coordinate-free
approach is important in algebra and has found many applications in science.

The purpose of this book is to help the reader make a transition to the ab-
stract coordinate-free approach, and also to give a hands-on introduction to
exterior products, a powerful tool of linear algebra. I show how the coordin-
ate-free approach together with exterior products can be used to clarify the
basic results of matrix algebra, at the same time avoiding all the laborious
matrix calculations.

Here is a simple theorem that illustrates the advantages of the exterior
product approach. A triangle is oriented arbitrarily in three-dimensional
space; the three orthogonal projections of this triangle are triangles in the
three coordinate planes. Let S be the area of the initial triangle, and letA,B,C
be the areas of the three projections. Then

S2 = A2 +B2 + C2.

If one uses bivectors to represent the oriented areas of the triangle and of its
three projections, the statement above is equivalent to the Pythagoras theo-
rem in the space of bivectors, and the proof requires only a few straightfor-
ward definitions and checks. A generalization of this result to volumes of
k-dimensional bodies embedded in N -dimensional spaces is then obtained
with no extra work. I hope that the readers will appreciate the beauty of an
approach to linear algebra that allows us to obtain such results quickly and
almost without calculations.

The exterior product is widely used in connection with n-forms, which are
exterior products of covectors. In this book I do not use n-forms — instead
I use vectors, n-vectors, and their exterior products. This approach allows
a more straightforward geometric interpretation and also simplifies calcula-
tions and proofs.

To make the book logically self-contained, I present a proof of every basic
result of linear algebra. The emphasis is not on computational techniques,
although the coordinate-free approach does make many computations easier
and more elegant.1 The main topics covered are tensor products; exterior

1Elegant means shorter and easier to remember. Usually, elegant derivations are those in which

v



Preface

products; coordinate-free definitions of the determinant det Â, the trace TrÂ,
and the characteristic polynomial QÂ (λ); basic properties of determinants;
solution of linear equations, including over-determined or under-determined

systems, using Kramer’s rule; the Liouville formula det exp Â = exp TrÂ as an
identity of formal series; the algebraic complement (cofactor) matrix; Jacobi’s
formula for the variation of the determinant; variation of the characteristic
polynomial and of eigenvalue; the Cayley-Hamilton theorem; analytic func-
tions of operators; Jordan canonical form; construction of projectors onto Jor-
dan cells; Hodge star and the computation of k-dimensional volumes through

k-vectors; definition and properties of the Pfaffian PfÂ for antisymmetric op-

erators Â. All these standard results are derived without matrix calculations;
instead, the exterior product is used as a main computational tool.

This book is largely pedagogical, meaning that the results are long known,
and the emphasis is on a clear and self-contained, logically motivated pre-
sentation aimed at students. Therefore, some exercises with hints and partial
solutions are included, but not references to literature.2 I have tried to avoid
being overly pedantic while keeping the exposition mathematically rigorous.

Sections marked with a star ∗ are not especially difficult but contain ma-
terial that may be skipped at first reading. (Exercises marked with a star are
more difficult.)

The first chapter is an introduction to the invariant approach to vector
spaces. I assume that readers are familiar with elementary linear algebra in
the language of row/column vectors and matrices; Appendix C contains a
brief overview of that material. Good introductory books (which I did not
read in detail but which have a certain overlap with the present notes) are
“Finite-dimensional Vector Spaces” by P. Halmos and “Linear Algebra” by J.
Hefferon (the latter is a free book).

I started thinking about the approach to linear algebra based on exterior
products while still a student. I am especially grateful to Sergei Arkhipov,
Leonid Positsel’sky, and Arkady Vaintrob who have stimulated my interest
at that time and taught me much of what I could not otherwise learn about
algebra. Thanks are also due to Prof. Howard Haber (UCSC) for constructive
feedback on an earlier version of this text.

some powerful basic idea is exploited to obtain the result quickly.
2The approach to determinants via exterior products has been known since at least 1880 but

does not seem especially popular in textbooks, perhaps due to the somewhat abstract nature
of the tensor product. I believe that this approach to determinants and to other results in
linear algebra deserves to be more widely appreciated.
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0 Introduction and summary

All the notions mentioned in this section will be explained below. If you
already know the definition of tensor and exterior products and are familiar
with statements such as End V ∼= V ⊗ V ∗, you may skip to Chapter 2.

0.1 Notation

The following conventions are used throughout this text.

I use the bold emphasis to define a new word, term, or notion, and the
definition always appears near the boldface text (whether or not I write the
word “Definition”).

Ordered sets are denoted by round parentheses, e.g. (1, 2, 3). Unordered
sets are denoted using the curly parentheses, e.g. {a, b, c}.

The symbol ≡ means “is now being defined as” or “equals by a previously
given definition.”

The symbol
!
= means “as we already know, equals.”

A set consisting of all elements x satisfying some property P (x) is denoted
by {x |P (x) is true }.

A map f from a set V to W is denoted by f : V →W . An element v ∈ V is
then mapped to an elementw ∈W , which is written as f : v 7→ w or f(v) = w.

The sets of rational numbers, real numbers, and complex numbers are de-
noted respectively by Q, R, and C.

Statements, Lemmas, Theorems, Examples, and Exercises are numbered
only within a single subsection, so references are always to a certain state-
ment in a certain subsection.1 A reference to “Theorem 1.1.4” means the un-
numbered theorem in Sec. 1.1.4.

Proofs, solutions, examples, and exercises are separated from the rest by
the symbol �. More precisely, this symbol means “I have finished with this;
now we look at something else.”

V is a finite-dimensional vector space over a field K. Vectors from V are
denoted by boldface lowercase letters, e.g. v ∈ V . The dimension of V is
N ≡ dimV .

The standardN -dimensional space over real numbers (the space consisting
of N -tuples of real numbers) is denoted by RN .

The subspace spanned by a given set of vectors {v1, ...,vn} is denoted by
Span {v1, ...,vn}.

1I was too lazy to implement a comprehensive system of numbering for all these items.
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0 Introduction and summary

The vector space dual to V is V ∗. Elements of V ∗ (covectors) are denoted
by starred letters, e.g. f∗ ∈ V ∗. A covector f∗ acts on a vector v and produces
a number f∗(v).

The space of linear maps (homomorphisms) V → W is Hom (V,W ). The
space of linear operators (also called endomorphisms) of a vector space V ,
i.e. the space of all linear maps V → V , is End V . Operators are denoted

by the circumflex accent, e.g. Â. The identity operator on V is 1̂V ∈ End V
(sometimes also denoted 1̂ for brevity).

The direct sum of spaces V and W is V ⊕W . The tensor product of spaces
V and W is V ⊗W . The exterior (anti-commutative) product of V and V is
V∧V . The exterior product of n copies of V is ∧nV . Canonical isomorphisms
of vector spaces are denoted by the symbol ∼=; for example, End V ∼= V ⊗ V ∗.

The scalar product of vectors is denoted by 〈u,v〉. The notation a × b is
used only for the traditional vector product (also called cross product) in 3-
dimensional space. Otherwise, the product symbol × is used to denote the
continuation a long expression that is being split between lines.

The exterior (wedge) product of vectors is denoted by a ∧ b ∈ ∧2V .
Any two nonzero tensors a1∧ ...∧aN and b1∧ ...∧bN in anN -dimensional

space are proportional to each other, say

a1 ∧ ... ∧ aN = λb1 ∧ ... ∧ bN .

It is then convenient to denote λ by the “tensor ratio”

λ ≡ a1 ∧ ... ∧ aN

b1 ∧ ... ∧ bN
.

The number of unordered choices of k items from n is denoted by

(
n

k

)

=
n!

k!(n− k)!
.

The k-linear action of a linear operator Â in the space ∧nV is denoted by

∧nÂk. (Here 0 ≤ k ≤ n ≤ N .) For example,

(∧3Â2)a ∧ b ∧ c ≡ Âa ∧ Âb ∧ c + Âa ∧ b ∧ Âc

+ a ∧ Âb ∧ Âc.

The imaginary unit (
√
−1) is denoted by a roman “i,” while the base of natu-

ral logarithms is written as an italic “e.” For example, I would write eiπ = −1.
This convention is designed to avoid conflicts with the much used index i
and with labeled vectors such as ei.

I write an italic d in the derivatives, such as df/dx, and in integrals, such
as
∫
f(x)dx, because in these cases the symbols dx do not refer to a separate

well-defined object “dx” but are a part of the traditional symbolic notation
used in calculus. Differential forms (or, for that matter, nonstandard calcu-
lus) do make “dx” into a well-defined object; in that case I write a roman
“d” in “dx.” Neither calculus nor differential forms are actually used in this

2



0.2 Sample quiz problems

book; the only exception is the occasional use of the derivative d/dx applied
to polynomials in x. I will not need to make a distinction between d/dx and
∂/∂x; the derivative of a function f with respect to x is denoted by ∂xf .

0.2 Sample quiz problems

The following problems can be solved using techniques explained in this
book. (These problems are of varying difficulty.) In these problems V is an
N -dimensional vector space (with a scalar product if indicated).

Exterior multiplication: If two tensors ω1, ω2 ∈ ∧kV (with 1 ≤ k ≤ N − 1)
are such that ω1 ∧ v = ω2 ∧ v for all vectors v ∈ V , show that ω1 = ω2.

Insertions: a) It is given that ψ ∈ ∧kV (with 1 ≤ k ≤ N − 1) and ψ ∧ a = 0,
where a ∈ V and a 6= 0. Further, a covector f∗ ∈ V ∗ is given such that
f∗(a) 6= 0. Show that

ψ =
1

f∗(a)
a ∧ (ιf∗ψ).

b) It is given that ψ ∧ a = 0 and ψ ∧ b = 0, where ψ ∈ ∧kV (with 2 ≤ k ≤
N − 1) and a,b ∈ V such that a ∧ b 6= 0. Show that there exists χ ∈ ∧k−2V
such that ψ = a ∧ b ∧ χ.

c) It is given that ψ ∧ a ∧ b = 0, where ψ ∈ ∧kV (with 2 ≤ k ≤ N − 2) and
a,b ∈ V such that a ∧ b 6= 0. Is it always true that ψ = a ∧ b ∧ χ for some
χ ∈ ∧k−2V ?

Determinants: a) Suppose Â is a linear operator defined by Â =
∑N

i=1 ai⊗b∗
i ,

where ai ∈ V are given vectors and bi ∈ V ∗ are given covectors; N = dimV .
Show that

det Â =
a1 ∧ ... ∧ aN

e1 ∧ ... ∧ eN

b∗
1 ∧ ... ∧ b∗

N

e∗1 ∧ ... ∧ e∗N
,

where {ej} is an arbitrary basis and
{
e∗j
}

is the corresponding dual basis.
Show that the expression above is independent of the choice of the basis {ej}.

b) Suppose that a scalar product is given in V , and an operator Â is defined
by

Âx ≡
N∑

i=1

ai 〈bi,x〉 .

Further, suppose that {ej} is an orthonormal basis in V . Show that

det Â =
a1 ∧ ... ∧ aN

e1 ∧ ... ∧ eN

b1 ∧ ... ∧ bN

e1 ∧ ... ∧ eN
,

and that this expression is independent of the choice of the orthonormal basis
{ej} and of the orientation of the basis.
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0 Introduction and summary

Hyperplanes: a) Let us suppose that the “price” of the vector x ∈ V is given
by the formula

Cost (x) ≡ C(x,x),

where C(a,b) is a known, positive-definite bilinear form. Determine the
“cheapest” vector x belonging to the affine hyperplane a∗(x) = α, where
a∗ ∈ V ∗ is a nonzero covector and α is a number.

b) We are now working in a vector space with a scalar product, and the
“price” of a vector x is 〈x,x〉. Two affine hyperplanes are given by equations
〈a,x〉 = α and 〈b,x〉 = β, where a and b are given vectors, α and β are
numbers, and x ∈ V . (It is assured that a and b are nonzero and not parallel to
each other.) Determine the “cheapest” vector x belonging to the intersection
of the two hyperplanes.

Too few equations: A linear operator Â is defined by Â =
∑k

i=1 ai ⊗ b∗
i ,

where ai ∈ V are given vectors and b∗
i ∈ V ∗ are given covectors, and k <

N = dimV . Show that the vector equation Âx = c has no solutions if a1 ∧
... ∧ ak ∧ c 6= 0. In case a1 ∧ ... ∧ ak ∧ c = 0, show that solutions x surely exist
when b∗

1 ∧ ... ∧ b∗
k 6= 0 but may not exist otherwise.

Operator functions: It is known that the operator Â satisfies the operator

equation Â2 = −1̂. Simplify the operator-valued functions 1+Â
3−Â

, cos(λÂ), and
√

Â+ 2 to linear formulas involving Â. (Here λ is a number, while the num-
bers 1, 2, 3 stand for multiples of the identity operator.) Compare the results
with the complex numbers 1+i

3−i , cos(λi),
√

i + 2 and generalize the conclusion

to a theorem about computing analytic functions f(Â).

Inverse operator: It is known that ÂB̂ = λ1̂V , where λ 6= 0 is a number.

Prove that also B̂Â = λ1̂V . (Both Â and B̂ are linear operators in a finite-
dimensional space V .)

Trace and determinant: Consider the space of polynomials in the variables
x and y, where we admit only polynomials of the form a0 + a1x+ a2y+ a3xy

(with aj ∈ R). An operator Â is defined by

Â ≡ x
∂

∂x
− ∂

∂y
.

Show that Â is a linear operator in this space. Compute the trace and the

determinant of Â. If Â is invertible, compute Â−1(x+ y).

Cayley-Hamilton theorem: Express det Â through TrÂ and Tr(Â2) for an ar-

bitrary operator Â in a two-dimensional space.

Algebraic complement: Let Â be a linear operator and
˜̂
A its algebraic com-

plement.
a) Show that

Tr
˜̂
A = ∧N ÂN−1.

Here ∧N ÂN−1 is the coefficient at (−λ) in the characteristic polynomial of Â
(that is, minus the coefficient preceding the determinant).
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b) For t-independent operators Â and B̂, show that

∂

∂t
det(Â+ tB̂) = Tr(

˜̂
AB̂).

Liouville formula: Suppose X̂(t) is a defined as solution of the differential
equation

∂tX̂(t) = Â(t)X̂(t) − X̂(t)Â(t),

where Â(t) is a given operator. (Operators that are functions of t can be un-
derstood as operator-valued formal power series.)

a) Show that the determinant of X̂(t) is independent of t.

b) Show that all the coefficients of the characteristic polynomial of X̂(t) are
independent of t.
Hodge star: Suppose {v1, ...,vN} is a basis in V , not necessarily orthonormal,
while {ej} is a positively oriented orthonormal basis. Show that

∗(v1 ∧ ... ∧ vN ) =
v1 ∧ ... ∧ vN

e1 ∧ ... ∧ eN
.

Volume in space: Consider the space of polynomials of degree at most 4 in
the variable x. The scalar product of two polynomials p1(x) and p2(x) is de-
fined by

〈p1, p2〉 ≡
1

2

∫ 1

−1

p1(x)p2(x)dx.

Determine the three-dimensional volume of the tetrahedron with vertices at
the “points” 0, 1 + x, x2 + x3, x4 in this five-dimensional space.

0.3 A list of results

Here is a list of some results explained in this book. If you already know all
these results and their derivations, you may not need to read any further.

Vector spaces may be defined over an abstract number field, without spec-
ifying the number of dimensions or a basis.

The set
{
a+ b

√
41 | a, b ∈ Q

}
is a number field.

Any vector can be represented as a linear combination of basis vectors. All
bases have equally many vectors.

The set of all linear maps from one vector space to another is denoted
Hom(V,W ) and is a vector space.

The zero vector is not an eigenvector (by definition).

An operator having in some basis the matrix representation

(
0 1
0 0

)

can-

not be diagonalized.
The dual vector space V ∗ has the same dimension as V (for finite-dimen-

sional spaces).
Given a nonzero covector f∗ ∈ V ∗, the set of vectors v ∈ V such that

f∗(v) = 0 is a subspace of codimension 1 (a hyperplane).
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The tensor product of Rm and Rn has dimension mn.

Any linear map Â : V → W can be represented by a tensor of the form
∑k

i=1 v∗
i ⊗ wi ∈ V ∗ ⊗W . The rank of Â is equal to the smallest number of

simple tensor product terms v∗
i ⊗ wi required for this representation.

The identity map 1̂V : V → V is represented as the tensor
∑N

i=1 e∗i ⊗ ei ∈
V ∗ ⊗ V , where {ei} is any basis and {e∗i } its dual basis. This tensor does not
depend on the choice of the basis {ei}.

A set of vectors {v1, ...,vk} is linearly independent if and only if v1 ∧ ... ∧
vk 6= 0. If v1 ∧ ... ∧ vk 6= 0 but v1 ∧ ... ∧ vk ∧ x = 0 then the vector x belongs
to the subspace Span {v1, ...,vk}.

The dimension of the space ∧kV is
(
N
k

)
, where N ≡ dimV .

Insertion ιa∗ω of a covector a∗ ∈ V ∗ into an antisymmetric tensor ω ∈ ∧kV
has the property

v ∧ (ιa∗ω) + ιa∗(v ∧ ω) = a∗(v)ω.

Given a basis {ei}, the dual basis {e∗i } may be computed as

e∗i (x) =
e1 ∧ ... ∧ x ∧ ... ∧ eN

e1 ∧ ... ∧ eN
,

where x replaces ei in the numerator.
The subspace spanned by a set of vectors {v1, ...,vk}, not necessarily lin-

early independent, can be characterized by a certain antisymmetric tensor ω,
which is the exterior product of the largest number of vi’s such that ω 6= 0.
The tensor ω, computed in this way, is unique up to a constant factor.

The n-vector (antisymmetric tensor) v1∧...∧vn represents geometrically the
oriented n-dimensional volume of the parallelepiped spanned by the vectors
vi.

The determinant of a linear operator Â is the coefficient that multiplies the

oriented volume of any parallelepiped transformed by Â. In our notation, the

operator ∧N ÂN acts in ∧NV as multiplication by det Â.
If each of the given vectors {v1, ...,vN} is expressed through a basis {ei} as

vj =
∑N

i=1 vijei, the determinant of the matrix vij is found as

det(vij) = det(vji) =
v1 ∧ ... ∧ vN

e1 ∧ ... ∧ eN
.

A linear operator Â : V → V and its canonically defined transpose ÂT :
V ∗ → V ∗ have the same characteristic polynomials.

If det Â 6= 0 then the inverse operator Â−1 exists, and a linear equation

Âx = b has the unique solution x = Â−1b. Otherwise, solutions exist

if b belongs to the image of Â. Explicit solutions may be constructed us-
ing Kramer’s rule: If a vector b belongs to the subspace spanned by vectors
{v1, ...,vn} then b =

∑n
i=1 bivi, where the coefficients bi may be found (as-

suming v1 ∧ ... ∧ vn 6= 0) as

bi =
v1 ∧ ... ∧ x ∧ ... ∧ vn

v1 ∧ ... ∧ vn

6
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(here x replaces vi in the exterior product in the numerator).
Eigenvalues of a linear operator are roots of its characteristic polynomial.

For each root λi, there exists at least one eigenvector corresponding to the
eigenvalue λi.

If {v1, ...,vk} are eigenvectors corresponding to all different eigenvalues
λ1, ..., λk of some operator, then the set {v1, ...,vk} is linearly independent.

The dimension of the eigenspace corresponding to λi is not larger than the
algebraic multiplicity of the root λi in the characteristic polynomial.

(Below in this section we always denote by N the dimension of the space V .)

The trace of an operator Â can be expressed as ∧N Â1.

We have Tr(ÂB̂) = Tr(B̂Â). This holds even if Â, B̂ are maps between

different spaces, i.e. Â : V →W and B̂ : W → V .

If an operator Â is nilpotent, its characteristic polynomial is (−λ)
N , i.e. the

same as the characteristic polynomial of a zero operator.

The j-th coefficient of the characteristic polynomial of Â is (−1)
j
(∧N Âj).

Each coefficient of the characteristic polynomial of Â can be expressed as a

polynomial function of N traces of the form Tr(Âk), k = 1, ..., N .
The space ∧N−1V is N -dimensional like V itself, and there is a canonical

isomorphism between End(∧N−1V ) and End(V ). This isomorphism, called
exterior transposition, is denoted by (...)∧T . The exterior transpose of an

operator X̂ ∈ EndV is defined by

(X̂∧Tω) ∧ v ≡ ω ∧ X̂v, ∀ω ∈ ∧N−1V, v ∈ V.

Similarly, one defines the exterior transposition map between End(∧N−kV )
and End(∧kV ) for all k = 1, ..., N .

The algebraic complement operator (normally defined as a matrix con-
sisting of minors) is canonically defined through exterior transposition as
˜̂
A ≡ (∧N−1ÂN−1)∧T . It can be expressed as a polynomial in Â and satisfies

the identity
˜̂
AÂ = (det Â)1̂V . Also, all other operators

Â(k) ≡
(
∧N−1ÂN−k

)∧T
, k = 1, ..., N

can be expressed as polynomials in Â with known coefficients.

The characteristic polynomial of Â gives the zero operator if applied to the

operator Â (the Cayley-Hamilton theorem). A similar theorem holds for each

of the operators ∧kÂ1, 2 ≤ k ≤ N − 1 (with different polynomials).

A formal power series f(t) can be applied to the operator tÂ; the result is

an operator-valued formal series f(tÂ) that has the usual properties, e.g.

∂tf(tÂ) = Âf ′(tÂ).

If Â is diagonalized with eigenvalues {λi} in the eigenbasis {ei}, then a

formal power series f(tÂ) is diagonalized in the same basis with eigenvalues
f(tλi).
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If an operator Â satisfies a polynomial equation such as p(Â) = 0, where
p(x) is a known polynomial of degree k (not necessarily, but possibly, the

characteristic polynomial of Â) then any formal power series f(tÂ) is reduced

to a polynomial in tÂ of degree not larger than k − 1. This polynomial can
be computed as the interpolating polynomial for the function f(tx) at points
x = xi where xi are the (all different) roots of p(x). Suitable modifications are
available when not all roots are different. So one can compute any analytic

function f(Â) of the operator Â as long as one knows a polynomial equation

satisfied by Â.

A square root of an operator Â (i.e. a linear operator B̂ such that B̂B̂ = Â)
is not unique and does not always exist. In two and three dimensions, one

can either obtain all square roots explicitly as polynomials in Â, or determine

that some square roots are not expressible as polynomials in Â or that square

roots of Â do not exist at all.
If an operator Â depends on a parameter t, one can express the derivative of

the determinant of Â through the algebraic complement
˜̂
A (Jacobi’s formula),

∂t det Â(t) = Tr(
˜̂
A∂tÂ).

Derivatives of other coefficients qk ≡ ∧N ÂN−k of the characteristic polyno-
mial are given by similar formulas,

∂tqk = Tr
[
(∧N−1ÂN−k−1)∧T∂tÂ

]
.

The Liouville formula holds: det exp Â = exp TrÂ.
Any operator (not necessarily diagonalizable) can be reduced to a Jordan

canonical form in a Jordan basis. The Jordan basis consists of eigenvectors
and root vectors for each eigenvalue.

Given an operator Â whose characteristic polynomial is known (hence all
roots λi and their algebraic multiplicities mi are known), one can construct

explicitly a projector P̂λi
onto a Jordan cell for any chosen eigenvalue λi. The

projector is found as a polynomial in Â with known coefficients.
(Below in this section we assume that a scalar product is fixed in V .)
A nondegenerate scalar product provides a one-to-one correspondence be-

tween vectors and covectors. Then the canonically transposed operator ÂT :

V ∗ → V ∗ can be mapped into an operator in V , denoted also by ÂT . (This op-
erator is represented by the transposed matrix only in an orthonormal basis.)

We have (ÂB̂)T = B̂T ÂT and det(ÂT ) = det Â.
Orthogonal transformations have determinants equal to ±1. Mirror reflec-

tions are orthogonal transformations and have determinant equal to −1.
Given an orthonormal basis {ei}, one can define the unit volume tensor

ω = e1 ∧ ...∧ eN . The tensor ω is then independent of the choice of {ei} up to
a factor ±1 due to the orientation of the basis (i.e. the ordering of the vectors
of the basis), as long as the scalar product is kept fixed.

Given a fixed scalar product 〈·, ·〉 and a fixed orientation of space, the Hodge
star operation is uniquely defined as a linear map (isomorphism) ∧kV →
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∧N−kV for each k = 0, ..., N . For instance,

∗e1 = e2 ∧ e3 ∧ ... ∧ eN ; ∗(e1 ∧ e2) = e3 ∧ ... ∧ eN ,

if {ei} is any positively oriented, orthonormal basis.
The Hodge star map satisfies

〈a,b〉 = ∗(a ∧ ∗b) = ∗(b ∧ ∗a), a,b ∈ V.

In a three-dimensional space, the usual vector product and triple product
can be expressed through the Hodge star as

a × b = ∗(a ∧ b), a · (b × c) = ∗(a ∧ b ∧ c).

The volume of anN -dimensional parallelepiped spanned by {v1, ...,vN} is
equal to

√

det(Gij), where Gij ≡ 〈vi,vj〉 is the matrix of the pairwise scalar
products.

Given a scalar product in V , a scalar product is canonically defined also in
the spaces ∧kV for all k = 2, ..., N . This scalar product can be defined by

〈ω1, ω2〉 = ∗(ω1 ∧ ∗ω2) = ∗(ω2 ∧ ∗ω1) = 〈ω2, ω1〉 ,
where ω1,2 ∈ ∧kV . Alternatively, this scalar product is defined by choosing an
orthonormal basis {ej} and postulating that ei1 ∧ ... ∧ eik

is normalized and
orthogonal to any other such tensor with different indices {ij |j = 1, ..., k}.
The k-dimensional volume of a parallelepiped spanned by vectors {v1, ...,vk}
is found as

√

〈ψ,ψ〉 with ψ ≡ v1 ∧ ... ∧ vk ∈ ∧kV .
The insertion ιvψ of a vector v into a k-vector ψ ∈ ∧kV (or the “interior

product”) can be expressed as

ιvψ = ∗(v ∧ ∗ψ).

If ω ≡ e1 ∧ ... ∧ eN is the unit volume tensor, we have ιvω = ∗v.
Symmetric, antisymmetric, Hermitian, and anti-Hermitian operators are

always diagonalizable (if we allow complex eigenvalues and eigenvectors).
Eigenvectors of these operators can be chosen orthogonal to each other.

Antisymmetric operators are representable as elements of ∧2V of the form
∑n

i=1 ai∧bi, where one needs no more than N/2 terms, and the vectors ai, bi

can be chosen mutually orthogonal to each other. (For this, we do not need
complex vectors.)

The Pfaffian of an antisymmetric operator Â in even-dimensional space is

the number Pf Â defined as

1

(N/2)!
A ∧ ... ∧A
︸ ︷︷ ︸

N/2

= (Pf Â)e1 ∧ ... ∧ eN ,

where {ei} is an orthonormal basis. Some basic properties of the Pfaffian are

(Pf Â)2 = det Â,

Pf (B̂ÂB̂T ) = (det B̂)(Pf Â),

where Â is an antisymmetric operator (ÂT = −Â) and B̂ is an arbitrary oper-
ator.
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1 Linear algebra without

coordinates

1.1 Vector spaces

Abstract vector spaces are developed as a generalization of the familiar vec-
tors in Euclidean space.

1.1.1 Three-dimensional Euclidean geometry

Let us begin with something you already know. Three-dimensional vectors
are specified by triples of coordinates, r ≡ (x, y, z). The operations of vector
sum and vector product of such vectors are defined by

(x1, y1, z1) + (x2, y2, z2) ≡ (x1 + x2, y1 + y2, z1 + z2) ; (1.1)

(x1, y1, z1) × (x2, y2, z2) ≡ (y1z2 − z1y2, z1x2 − x1z2,

x1y2 − y1x2). (1.2)

(I assume that these definitions are familiar to you.) Vectors can be rescaled
by multiplying them with real numbers,

cr = c (x, y, z) ≡ (cx, cy, cz) . (1.3)

A rescaled vector is parallel to the original vector and points either in the
same or in the opposite direction. In addition, a scalar product of two vectors
is defined,

(x1, y1, z1) · (x2, y2, z2) ≡ x1x2 + y1y2 + z1z2. (1.4)

These operations encapsulate all of Euclidean geometry in a purely algebraic
language. For example, the length of a vector r is

|r| ≡
√

r · r =
√

x2 + y2 + z2, (1.5)

the angle α between vectors r1 and r2 is found from the relation (the cosine
theorem)

|r1| |r2| cosα = r1 · r2,

while the area of a triangle spanned by vectors r1 and r2 is

S =
1

2
|r1 × r2| .

Using these definitions, one can reformulate every geometric statement
(such as, “a triangle having two equal sides has also two equal angles”) in
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terms of relations between vectors, which are ultimately reducible to alge-
braic equations involving a set of numbers. The replacement of geometric
constructions by algebraic relations is useful because it allows us to free our-
selves from the confines of our three-dimensional intuition; we are then able
to solve problems in higher-dimensional spaces. The price is a greater com-
plication of the algebraic equations and inequalities that need to be solved.
To make these equations more transparent and easier to handle, the theory
of linear algebra is developed. The first step is to realize what features of
vectors are essential and what are just accidental facts of our familiar three-
dimensional Euclidean space.

1.1.2 From three-dimensional vectors to abstract vectors

Abstract vector spaces retain the essential properties of the familiar Euclidean
geometry but generalize it in two ways: First, the dimension of space is not
3 but an arbitrary integer number (or even infinity); second, the coordinates
are “abstract numbers” (see below) instead of real numbers. Let us first pass
to higher-dimensional vectors.

Generalizing the notion of a three-dimensional vector to a higher (still fi-
nite) dimension is straightforward: instead of triples (x, y, z) one considers
sets of n coordinates (x1, ..., xn). The definitions of the vector sum (1.1), scal-
ing (1.3) and scalar product (1.4) are straightforwardly generalized to n-tuples
of coordinates. In this way we can describe n-dimensional Euclidean geome-
try. All theorems of linear algebra are proved in the same way regardless of
the number of components in vectors, so the generalization to n-dimensional
spaces is a natural thing to do.
Question: The scalar product can be generalized to n-dimensional spaces,

(x1, ..., xn) · (y1, ..., yn) ≡ x1y1 + ...+ xnyn,

but what about the vector product? The formula (1.2) seems to be compli-
cated, and it is hard to guess what should be written, say, in four dimensions.
Answer: It turns out that the vector product (1.2) cannot be generalized to

arbitrary n-dimensional spaces.1 At this point we will not require the vector
spaces to have either a vector or a scalar product; instead we will concentrate
on the basic algebraic properties of vectors. Later we will see that there is an
algebraic construction (the exterior product) that replaces the vector product
in higher dimensions.

Abstract numbers

The motivation to replace the real coordinates x, y, z by complex coordinates,
rational coordinates, or by some other, more abstract numbers comes from
many branches of physics and mathematics. In any case, the statements of
linear algebra almost never rely on the fact that coordinates of vectors are real

1A vector product exists only in some cases, e.g. n = 3 and n = 7. This is a theorem of higher
algebra which we will not prove here.
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numbers. Only certain properties of real numbers are actually used, namely
that one can add or multiply or divide numbers. So one can easily replace
real numbers by complex numbers or by some other kind of numbers as long
as one can add, multiply and divide them as usual. (The use of the square
root as in Eq. (1.5) can be avoided if one considers only squared lengths of
vectors.)

Instead of specifying each time that one works with real numbers or with
complex numbers, one says that one is working with some “abstract num-
bers” that have all the needed properties of numbers. The required properties
of such “abstract numbers” are summarized by the axioms of a number field.
Definition: A number field (also called simply a field) is a set K which is
an abelian group with respect to addition and multiplication, such that the
distributive law holds. More precisely: There exist elements 0 and 1, and the
operations +, −, ∗, and / are defined such that a + b = b + a, a ∗ b = b ∗ a,
0+a = a, 1∗a = a, 0∗a = 0, and for every a ∈ K the numbers −a and 1/a (for
a 6= 0) exist such that a+(−a) = 0, a∗(1/a) = 1, and also a∗(b+c) = a∗b+a∗c.
The operations − and / are defined by a− b ≡ a+ (−b) and a/b = a ∗ (1/b).

In a more visual language: A field is a set of elements on which the opera-
tions +, −, ∗, and / are defined, the elements 0 and 1 exist, and the familiar
arithmetic properties such as a + b = b + a, a + 0 = 0, a − a = 0, a ∗ 1 = 1,
a/b∗b = a (for b 6= 0), etc. are satisfied. Elements of a field can be visualized as
“abstract numbers” because they can be added, subtracted, multiplied, and
divided, with the usual arithmetic rules. (For instance, division by zero is
still undefined, even with abstract numbers!) I will call elements of a number
field simply numbers when (in my view) it does not cause confusion.

Examples of number fields

Real numbers R are a field, as are rational numbers Q and complex numbers
C, with all arithmetic operations defined as usual. Integer numbers Z with
the usual arithmetic are not a field because e.g. the division of 1 by a nonzero
number 2 cannot be an integer.

Another interesting example is the set of numbers of the form a + b
√

3,
where a, b ∈ Q are rational numbers. It is easy to see that sums, products, and
ratios of such numbers are again numbers from the same set, for example

(a1 + b1
√

3)(a2 + b2
√

3)

= (a1a2 + 3b1b2) + (a1b2 + a2b1)
√

3.

Let’s check the division property:

1

a+ b
√

3
=
a− b

√
3

a− b
√

3

1

a+ b
√

3
=
a− b

√
3

a2 − 3b2
.

Note that
√

3 is irrational, so the denominator a2 − 3b2 is never zero as long
as a and b are rational and at least one of a, b is nonzero. Therefore, we can
divide numbers of the form a+ b

√
3 and again get numbers of the same kind.
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It follows that the set
{
a+ b

√
3 | a, b ∈ Q

}
is indeed a number field. This field

is usually denoted by Q[
√

3] and called an extension of rational numbers by√
3. Fields of this form are useful in algebraic number theory.
A field might even consist of a finite set of numbers (in which case it is

called a finite field). For example, the set of three numbers {0, 1, 2} can be
made a field if we define the arithmetic operations as

1 + 2 ≡ 0, 2 + 2 ≡ 1, 2 ∗ 2 ≡ 1, 1/2 ≡ 2,

with all other operations as in usual arithmetic. This is the field of integers
modulo 3 and is denoted by F3. Fields of this form are useful, for instance, in
cryptography.

Any field must contain elements that play the role of the numbers 0 and 1;
we denote these elements simply by 0 and 1. Therefore the smallest possible
field is the set {0, 1} with the usual relations 0 + 1 = 1, 1 · 1 = 1 etc. This field
is denoted by F2.

Most of the time we will not need to specify the number field; it is all right
to imagine that we always use R or C as the field. (See Appendix A for a brief
introduction to complex numbers.)
Exercise: Which of the following sets are number fields:

a)
{
x+ iy

√
2 |x, y ∈ Q

}
, where i is the imaginary unit.

b)
{
x+ y

√
2 |x, y ∈ Z

}
.

Abstract vector spaces

After a generalization of the three-dimensional vector geometry to n-dimen-
sional spaces and real numbers R to abstract number fields, we arrive at the
following definition of a vector space.
Definition V1: An n-dimensional vector space over a field K is the set of all
n-tuples (x1, ..., xn), where xi ∈ K; the numbers xi are called components of
the vector (in older books they were called coordinates). The operations of
vector sum and the scaling of vectors by numbers are given by the formulas

(x1, ..., xn) + (y1, ..., yn) ≡ (x1 + y1, ..., xn + yn) , xi, yi ∈ K;

λ (x1, ..., xn) ≡ (λx1, ..., λxn) , λ ∈ K.

This vector space is denoted by Kn.
Most problems in physics involve vector spaces over the field of real num-

bers K = R or complex numbers K = C. However, most results of basic linear
algebra hold for arbitrary number fields, and for now we will consider vector
spaces over an arbitrary number field K.

Definition V1 is adequate for applications involving finite-dimensional vec-
tor spaces. However, it turns out that further abstraction is necessary when
one considers infinite-dimensional spaces. Namely, one needs to do away
with coordinates and define the vector space by the basic requirements on
the vector sum and scaling operations.

We will adopt the following “coordinate-free” definition of a vector space.
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Definition V2: A set V is a vector space over a number field K if the follow-
ing conditions are met:

1. V is an abelian group; the sum of two vectors is denoted by the “+”
sign, the zero element is the vector 0. So for any u,v ∈ V the vector
u + v ∈ V exists, u + v = v + u, and in particular v + 0 = v for any
v ∈ V .

2. An operation of multiplication by numbers is defined, such that for
each λ ∈ K, v ∈ V the vector λv ∈ V is determined.

3. The following properties hold, for all vectors u,v ∈ V and all numbers
λ, µ ∈ K:

(λ+ µ)v = λv + µv, λ (v + u) = λv + λu,

1v = v, 0v = 0.

These properties guarantee that the multiplication by numbers is com-
patible with the vector sum, so that usual rules of arithmetic and algebra
are applicable.

Below I will not be so pedantic as to write the boldface 0 for the zero vec-
tor 0 ∈ V ; denoting the zero vector simply by 0 never creates confusion in
practice.

Elements of a vector space are called vectors; in contrast, numbers from
the field K are called scalars. For clarity, since this is an introductory text,
I will print all vectors in boldface font so that v, a, x are vectors but v, a, x
are scalars (i.e. numbers). Sometimes, for additional clarity, one uses Greek
letters such as α, λ, µ to denote scalars and Latin letters to denote vectors. For
example, one writes expressions of the form λ1v1 + λ2v2 + ... + λnvn; these
are called linear combinations of vectors v1, v2, ..., vn.

The definition V2 is standard in abstract algebra. As we will see below, the
coordinate-free language is well suited to proving theorems about general
properties of vectors.

Question: I do not understand how to work with abstract vectors in abstract
vector spaces. According to the vector space axioms (definition V2), I should
be able to add vectors together and multiply them by scalars. It is clear how to
add the n-tuples (v1, ..., vn), but how can I compute anything with an abstract
vector v that does not seem to have any components?
Answer: Definition V2 is “abstract” in the sense that it does not explain

how to add particular kinds of vectors, instead it merely lists the set of prop-
erties any vector space must satisfy. To define a particular vector space, we
of course need to specify a particular set of vectors and a rule for adding its
elements in an explicit fashion (see examples below in Sec. 1.1.3). Definition
V2 is used in the following way: Suppose someone claims that a certain setX
of particular mathematical objects is a vector space over some number field,
then we only need to check that the sum of vectors and the multiplication of
vector by a number are well-defined and conform to the properties listed in
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1 Linear algebra without coordinates

Definition V2. If every property holds, then the set X is a vector space, and
all the theorems of linear algebra will automatically hold for the elements of
the set X . Viewed from this perspective, Definition V1 specifies a particular
vector space—the space of rows of numbers (v1, ..., vn). In some cases the
vector space at hand is exactly that of Definition V1, and then it is convenient
to work with components vj when performing calculations with specific vec-
tors. However, components are not needed for proving general theorems. In
this book, when I say that “a vector v ∈ V is given,” I imagine that enough
concrete information about v will be available when it is actually needed.

1.1.3 Examples of vector spaces

Example 0. The familiar example is the three-dimensional Euclidean space.
This space is denoted by R3 and is the set of all triples (x1, x2, x3), where xi

are real numbers. This is a vector space over R.

Example 1. The set of complex numbers C is a vector space over the field of
real numbers R. Indeed, complex numbers can be added and multiplied by
real numbers.

Example 2. Consider the set of all three-dimensional vectors v ∈ R3 which
are orthogonal to a given vector a 6= 0; here we use the standard scalar prod-
uct (1.4); vectors a and b are called orthogonal to each other if a · b = 0. This
set is closed under vector sum and scalar multiplication because if u · a = 0
and v · a = 0, then for any λ ∈ R we have (u + λv) · a = 0. Thus we obtain a
vector space (a certain subset of R3) which is defined not in terms of compo-
nents but through geometric relations between vectors of another (previously
defined) space.

Example 3. Consider the set of all real-valued continuous functions f (x) de-
fined for x ∈ [0, 1] and such that f (0) = 0 and f (1) = 0. This set is a vec-
tor space over R. Indeed, the definition of a vector space is satisfied if we
define the sum of two functions as f (x) + f (y) and the multiplication by
scalars, λf (x), in the natural way. It is easy to see that the axioms of the
vector space are satisfied: If h (x) = f (x) + λg (x), where f (x) and g (x) are
vectors from this space, then the function h (x) is continuous on [0, 1] and sat-
isfies h (0) = h (1) = 0, i.e. the function h (x) is also an element of the same
space.

Example 4. To represent the fact that there are λ1 gallons of water and λ2

gallons of oil, we may write the expression λ1X + λ2Y, where X and Y are
formal symbols and λ1,2 are numbers. The set of all such expressions is a
vector space. This space is called the space of formal linear combinations of
the symbols X and Y. The operations of sum and scalar multiplication are
defined in the natural way, so that we can perform calculations such as

1

2
(2X + 3Y) − 1

2
(2X − 3Y) = 3Y.

For the purpose of manipulating such expressions, it is unimportant that X

and Y stand for water and oil. We may simply work with formal expressions
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1.1 Vector spaces

such as 2X+3Y, where X and Y and “+” are symbols that do not mean any-
thing by themselves except that they can appear in such linear combinations
and have familiar properties of algebraic objects (the operation “+” is commu-
tative and associative, etc.). Such formal constructions are often encountered
in mathematics.

Question: It seems that such “formal” constructions are absurd and/or use-
less. I know how to add numbers or vectors, but how can I add X + Y if X

and Y are, as you say, “meaningless symbols”?

Answer: Usually when we write “a + b” we imply that the operation “+”
is already defined, so a + b is another number if a and b are numbers. How-
ever, in the case of formal expressions described in Example 4, the “+” sign is
actually going to acquire a new definition. So X+Y is not equal to a new sym-
bol Z, instead X + Y is just an expression that we can manipulate. Consider
the analogy with complex numbers: the number 1 + 2i is an expression that
we manipulate, and the imaginary unit, i, is a symbol that is never “equal to
something else.” According to its definition, the expression X + Y cannot be
simplified to anything else, just like 1 + 2i cannot be simplified. The symbols
X, Y, i are not meaningless: their meaning comes from the rules of computations
with these symbols.

Maybe it helps to change notation. Let us begin by writing a pair (a, b)
instead of aX + bY. We can define the sum of such pairs in the natural way,
e.g.

(2, 3) + (−2, 1) = (0, 4) .

It is clear that these pairs build a vector space. Now, to remind ourselves
that the numbers of the pair stand for, say, quantities of water and oil, we
write (2X, 3Y) instead of (2, 3). The symbols X and Y are merely part of the
notation. Now it is natural to change the notation further and to write simply
2X instead of (2X, 0Y) and aX + bY instead of (aX, bY). It is clear that we
do not introduce anything new when we write aX + bY instead of (aX, bY):
We merely change the notation so that computations appear easier. Similarly,
complex numbers can be understood as pairs of real numbers, such as (3, 2),
for which 3 + 2i is merely a more convenient notation that helps remember
the rules of computation. �

Example 5. The set of all polynomials of degree at most n in the variable
x with complex coefficients is a vector space over C. Such polynomials are
expressions of the form p (x) = p0 + p1x + ... + pnx

n, where x is a formal
variable (i.e. no value is assigned to x), n is an integer, and pi are complex
numbers.

Example 6. Consider now the set of all polynomials in the variables x, y, and
z, with complex coefficients, and such that the combined degree in x, in y,
and in z is at most 2. For instance, the polynomial 1 + 2ix − yz −

√
3x2 is an

element of that vector space (while x2y is not because its combined degree is
3). It is clear that the degree will never increase above 2 when any two such
polynomials are added together, so these polynomials indeed form a vector
space over the field C.
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1 Linear algebra without coordinates

Exercise. Which of the following are vector spaces over R?

1. The set of all complex numbers z whose real part is equal to 0. The
complex numbers are added and multiplied by real constants as usual.

2. The set of all complex numbers z whose imaginary part is equal to 3.
The complex numbers are added and multiplied by real constants as
usual.

3. The set of pairs of the form (apples, $3.1415926), where the first element
is always the word “apples” and the second element is a price in dollars
(the price may be an arbitrary real number, not necessarily positive or
with an integer number of cents). Addition and multiplication by real
constants is defined as follows:

(apples, $x) + (apples, $y) ≡ (apples, $(x+ y))

λ · (apples, $x) ≡ (apples, $(λ · x))

4. The set of pairs of the form either (apples, $x) or (chocolate, $y), where
x and y are real numbers. The pairs are added as follows,

(apples, $x) + (apples, $y) ≡ (apples, $(x+ y))

(chocolate, $x) + (chocolate, $y) ≡ (chocolate, $(x+ y))

(chocolate, $x) + (apples, $y) ≡ (chocolate, $(x+ y))

(that is, chocolate “takes precedence” over apples). The multiplication
by a number is defined as in the previous question.

5. The set of “bracketed complex numbers,” denoted [z], where z is a com-
plex number such that |z| = 1. For example: [i],

[
1
2 − 1

2 i
√

3
]
, [−1]. Ad-

dition and multiplication by real constants λ are defined as follows,

[z1] + [z2] = [z1z2] , λ · [z] =
[
zeiλ

]
.

6. The set of infinite arrays (a1, a2, ...) of arbitrary real numbers. Addition
and multiplication are defined term-by-term.

7. The set of polynomials in the variable x with real coefficients and of
arbitrary (but finite) degree. Addition and multiplication is defined as
usual in algebra.

Question: All these abstract definitions notwithstanding, would it be all
right if I always keep in the back of my mind that a vector v is a row of
components (v1, ..., vn)?
Answer: It will be perfectly all right as long as you work with finite-dimen-

sional vector spaces. (This intuition often fails when working with infinite-
dimensional spaces!) Even if all we need is finite-dimensional vectors, there is
another argument in favor of the coordinate-free thinking. Suppose I persist
in visualizing vectors as rows (v1, ..., vn); let us see what happens. First, I
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1.1 Vector spaces

introduce the vector notation and write u+v instead of (u1 + v1, ..., un + vn);
this is just for convenience and to save time. Then I check the axioms of the
vector space (see the definition V2 above); row vectors of course obey these
axioms. Suppose I somehow manage to produce all proofs and calculations
using only the vector notation and the axioms of the abstract vector space,
and suppose I never use the coordinates vj explicitly, even though I keep
them in the back of my mind. Then all my results will be valid not only for
collections of components (v1, ..., vn) but also for any mathematical objects
that obey the axioms of the abstract vector space. In fact I would then realize
that I have been working with abstract vectors all along while carrying the
image of a row vector (v1, ..., vn) in the back of my mind.

1.1.4 Dimensionality and bases

Unlike the definition V1, the definition V2 does not include any informa-
tion about the dimensionality of the vector space. So, on the one hand, this
definition treats finite- and infinite-dimensional spaces on the same footing;
the definition V2 lets us establish that a certain set is a vector space without
knowing its dimensionality in advance. On the other hand, once a particular
vector space is given, we may need some additional work to figure out the
number of dimensions in it. The key notion used for that purpose is “linear
independence.”

We say, for example, the vector w ≡ 2u − 3v is “linearly dependent” on u

and v. A vector x is linearly independent of vectors u and v if x cannot be
expressed as a linear combination λ1u + λ2v.

A set of vectors is linearly dependent if one of the vectors is a linear com-
bination of others. This property can be formulated more elegantly:

Definition: The set of vectors {v1, ...,vn} is a linearly dependent set if there
exist numbers λ1, ..., λn ∈ K, not all equal to zero, such that

λ1v1 + ...+ λnvn = 0. (1.6)

If no such numbers exist, i.e. if Eq. (1.6) holds only with all λi = 0, the vectors
{vi} constitute a linearly independent set.

Interpretation: As a first example, consider the set {v} consisting of a sin-
gle nonzero vector v 6= 0. The set {v} is a linearly independent set because
λv = 0 only if λ = 0. Now consider the set {u,v,w}, where u = 2v and w

is any vector. This set is linearly dependent because there exists a nontrivial
linear combination (i.e. a linear combination with some nonzero coefficients)
which is equal to zero,

u − 2v = 1u + (−2)v + 0w = 0.

More generally: If a set {v1, ...,vn} is linearly dependent, then there exists
at least one vector equal to a linear combination of other vectors. Indeed, by
definition there must be at least one nonzero number among the numbers λi

involved in Eq. (1.6); suppose λ1 6= 0, then we can divide Eq. (1.6) by λ1 and
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1 Linear algebra without coordinates

express v1 through other vectors,

v1 = − 1

λ1
(λ2v2 + ...+ λnvn) .

In other words, the existence of numbers λi, not all equal to zero, is indeed the
formal statement of the idea that at least some vector in the set {vi} is a linear
combination of other vectors. By writing a linear combination

∑

i λivi = 0
and by saying that “not all λi are zero” we avoid specifying which vector is
equal to a linear combination of others.

Remark: Often instead of saying “a linearly independent set of vectors” one
says “a set of linearly independent vectors.” This is intended to mean the
same thing but might be confusing because, taken literally, the phrase “a set
of independent vectors” means a set in which each vector is “independent”
by itself. Keep in mind that linear independence is a property of a set of vec-
tors; this property depends on the relationships between all the vectors in the
set and is not a property of each vector taken separately. It would be more
consistent to say e.g. “a set of mutually independent vectors.” In this text, I
will pedantically stick to the phrase “linearly independent set.”

Example 1: Consider the vectors a = (0, 1), b = (1, 1) in R2. Is the set {a,b}
linearly independent? Suppose there exists a linear combination αa+βb = 0
with at least one of α, β 6= 0. Then we would have

αa + βb = (0, α) + (β, β) = (β, α+ β)
!
= 0.

This is possible only if β = 0 and α = 0. Therefore, {a,b} is linearly indepen-
dent.

Exercise 1: a) A set {v1, ...,vn} is linearly independent. Prove that any sub-
set, say {v1, ...,vk}, where k < n, is also a linearly independent set.

b) Decide whether the given sets {a,b} or {a,b, c} are linearly independent
sets of vectors from R2 or other spaces as indicated. For linearly dependent
sets, find a linear combination showing this.

1. a =
(
2,
√

2
)
, b = ( 1√

2
, 1

2 ) in R2

2. a = (−2, 3), b = (6,−9) in R2

3. a = (1 + 2i, 10, 20), b = (1 − 2i, 10, 20) in C3

4. a = (0, 10i, 20i, 30i), b = (0, 20i, 40i, 60i), c = (0, 30i, 60i, 90i) in C4

5. a = (3, 1, 2), b = (1, 0, 1), c = (0,−1, 2) in R3

The number of dimensions (or simply the dimension) of a vector space is
the maximum possible number of vectors in a linearly independent set. The
formal definition is the following.
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1.1 Vector spaces

Definition: A vector space is n-dimensional if linearly independent sets of n
vectors can be found in it, but no linearly independent sets of n + 1 vectors.
The dimension of a vector space V is then denoted by dimV ≡ n. A vector
space is infinite-dimensional if linearly independent sets having arbitrarily
many vectors can be found in it.

By this definition, in an n-dimensional vector space there exists at least one
linearly independent set of n vectors {e1, ..., en}. Linearly independent sets
containing exactly n = dimV vectors have useful properties, to which we
now turn.

Definition: A basis in the space V is a linearly independent set of vectors
{e1, ..., en} such that for any vector v ∈ V there exist numbers vk ∈ K such
that v =

∑n
k=1 vkek. (In other words, every other vector v is a linear com-

bination of basis vectors.) The numbers vk are called the components (or
coordinates) of the vector v with respect to the basis {ei}.

Example 2: In the three-dimensional Euclidean space R3, the set of three
triples (1, 0, 0), (0, 1, 0), and (0, 0, 1) is a basis because every vector x = (x, y, z)
can be expressed as

x = (x, y, z) = x (1, 0, 0) + y (0, 1, 0) + z (0, 0, 1) .

This basis is called the standard basis. Analogously one defines the standard
basis in Rn. �

The following statement is standard, and I write out its full proof here as
an example of an argument based on the abstract definition of vectors.

Theorem: (1) If a set {e1, ..., en} is linearly independent and n = dimV ,
then the set {e1, ..., en} is a basis in V . (2) For a given vector v ∈ V and
a given basis {e1, ..., en}, the coefficients vk involved in the decomposition
v =

∑n
k=1 vkek are uniquely determined.

Proof: (1) By definition of dimension, the set {v, e1, ..., en} must be linearly
dependent. By definition of linear dependence, there exist numbers λ0, ..., λn,
not all equal to zero, such that

λ0v + λ1e1 + ...+ λnen = 0. (1.7)

Now if we had λ0 = 0, it would mean that not all numbers in the smaller
set {λ1, ..., λn} are zero; however, in that case Eq. (1.7) would contradict the
linear independence of the set {e1, ..., en}. Therefore λ0 6= 0 and Eq. (1.7)
shows that the vector v can be expressed through the basis, v =

∑n
k=1 vkek

with the coefficients vk ≡ −λk/λ0.
(2) To show that the set of coefficients {vk} is unique, we assume that there

are two such sets, {vk} and {v′k}. Then

0 = v − v =
n∑

k=1

vkek −
n∑

k=1

v′kek =
n∑

k=1

(vk − v′k) ek.

Since the set {e1, ..., en} is linearly independent, all coefficients in this linear
combination must vanish, so vk = v′k for all k. �
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1 Linear algebra without coordinates

If we fix a basis {ei} in a finite-dimensional vector space V then all vectors
v ∈ V are uniquely represented by n-tuples {v1, ..., vn} of their components.
Thus we recover the original picture of a vector space as a set of n-tuples of
numbers. (Below we will prove that every basis in an n-dimensional space
has the same number of vectors, namely n.) Now, if we choose another basis
{e′i}, the same vector v will have different components v′k:

v =

n∑

k=1

vkek =

n∑

k=1

v′ke
′
k.

Remark: One sometimes reads that “the components are transformed” or
that “vectors are sets of numbers that transform under a change of basis.” I
do not use this language because it suggests that the components vk, which
are numbers such as 1

3 or
√

2, are somehow not simply numbers but “know
how to transform.” I prefer to say that the components vk of a vector v in a
particular basis {ek} express the relationship of v to that basis and are there-
fore functions of the vector v and of all basis vectors ej . �

For many purposes it is better to think about a vector v not as a set of its
components {v1, ..., vn} in some basis, but as a geometric object; a “directed
magnitude” is a useful heuristic idea. Geometric objects exist in the vector
space independently of a choice of basis. In linear algebra, one is typically
interested in problems involving relations between vectors, for example u =
av + bw, where a, b ∈ K are numbers. No choice of basis is necessary to
describe such relations between vectors; I will call such relations coordinate-
free or geometric. As I will demonstrate later in this text, many statements
of linear algebra are more transparent and easier to prove in the coordinate-
free language. Of course, in many practical applications one absolutely needs
to perform specific calculations with components in an appropriately chosen
basis, and facility with such calculations is important. But I find it helpful to
keep a coordinate-free (geometric) picture in the back of my mind even when
I am doing calculations in coordinates.

Question: I am not sure how to determine the number of dimensions in a
vector space. According to the definition, I should figure out whether there
exist certain linearly independent sets of vectors. But surely it is impossible
to go over all sets of n vectors checking the linear independence of each set?
Answer: Of course it is impossible when there are infinitely many vectors.

This is simply not the way to go. We can determine the dimensionality of a
given vector space by proving that the space has a basis consisting of a certain
number of vectors. A particular vector space must be specified in concrete
terms (see Sec. 1.1.3 for examples), and in each case we should manage to
find a general proof that covers all sets of n vectors at once.

Exercise 2: For each vector space in the examples in Sec. 1.1.3, find the di-
mension or show that the dimension is infinite.
Solution for Example 1: The set C of complex numbers is a two-dimen-

sional vector space over R because every complex number a + ib can be rep-
resented as a linear combination of two basis vectors (1 and i) with real coeffi-
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cients a, b. The set {1, i} is linearly independent because a+ ib = 0 only when
both a = b = 0.
Solution for Example 2: The space V is defined as the set of triples (x, y, z)

such that ax + by + cz = 0, where at least one of a, b, c is nonzero. Suppose,
without loss of generality, that a 6= 0; then we can express

x = − b

a
y − c

a
z.

Now the two parameters y and z are arbitrary while x is determined. Hence
it appears plausible that the space V is two-dimensional. Let us prove this
formally. Choose as the possible basis vectors e1 = (− b

a , 1, 0) and e2 =
(
− c

a , 0, 1
)
. These vectors belong to V , and the set {e1, e2} is linearly inde-

pendent (straightforward checks). It remains to show that every vector x ∈ V
is expressed as a linear combination of e1 and e2. Indeed, any such x must
have components x, y, z that satisfy x = − b

ay − c
az. Hence, x = ye1 + ze2.

Exercise 3: Describe a vector space that has dimension zero.
Solution: If there are no linearly independent sets in a space V , it means

that all sets consisting of just one vector {v} are already linearly dependent.
More formally, ∀v ∈ V : ∃λ 6= 0 such that λv = 0. Thus v = 0, that is,
all vectors v ∈ V are equal to the zero vector. Therefore a zero-dimensional
space is a space that consists of only one vector: the zero vector.
Exercise 4∗: Usually a vector space admits infinitely many choices of a basis.
However, above I cautiously wrote that a vector space “has at least one basis.”
Is there an example of a vector space that has only one basis?

Hints: The answer is positive. Try to build a new basis from an existing one
and see where that might fail. This has to do with finite number fields (try
F2), and the only available example is rather dull.

1.1.5 All bases have equally many vectors

We have seen that any linearly independent set of n vectors in an n-dimen-
sional space is a basis. The following statement shows that a basis cannot
have fewer than n vectors. The proof is somewhat long and can be skipped
unless you would like to gain more facility with coordinate-free manipula-
tions.
Theorem: In a finite-dimensional vector space, all bases have equally many
vectors.
Proof: Suppose that {e1, ..., em} and {f1, ..., fn} are two bases in a vector

space V and m 6= n. I will show that this assumption leads to contradiction,
and then it will follow that any two bases must have equally many vectors.

Assume thatm > n. The idea of the proof is to take the larger set {e1, ..., em}
and to replace one of its vectors, say es, by f1, so that the resulting set of m
vectors

{e1, ..., es−1, f1, es+1, ..., em} (1.8)

is still linearly independent. I will prove shortly that such a replacement is
possible, assuming only that the initial set is linearly independent. Then I will
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1 Linear algebra without coordinates

continue to replace other vectors ek by f2, f3, etc., always keeping the resulting
set linearly independent. Finally, I will arrive to the linearly independent set

{
f1, ..., fn, ek1

, ek2
, ..., ekm−n

}
,

which contains all fj as well as (m− n) vectors ek1
, ek2

, ..., ekm−n
left over

from the original set; there must be at least one such vector left over because
(by assumption) there are more vectors in the basis {ej} than in the basis {fj},
in other words, because m − n ≥ 1. Since the set {fj} is a basis, the vector
ek1

is a linear combination of {f1, ..., fn}, so the set {f1, ..., fn, ek1
, ...} cannot

be linearly independent. This contradiction proves the theorem.
It remains to show that it is possible to find the index s such that the

set (1.8) is linearly independent. The required statement is the following: If
{ej | 1 ≤ j ≤ m} and {fj | 1 ≤ j ≤ n} are two bases in the space V , and if the
set S ≡ {e1, ..., ek, f1, ..., fl} (where l < n) is linearly independent then there
exists an index s such that es in S can be replaced by fl+1 and the new set

T ≡ {e1, ..., es−1, fl+1, es+1, ..., ek, f1, ..., fl} (1.9)

is still linearly independent. To find a suitable index s, we try to decom-
pose fl+1 into a linear combination of vectors from S. In other words, we ask
whether the set

S′ ≡ S ∪ {fl+1} = {e1, ..., ek, f1, ..., fl+1}

is linearly independent. There are two possibilities: First, if S′ is linearly
independent, we can remove any es, say e1, from it, and the resulting set

T = {e2, ..., ek, f1, ..., fl+1}

will be again linearly independent. This set T is obtained from S by replacing
e1 with fl+1, so now there is nothing left to prove. Now consider the second
possibility: S′ is linearly dependent. In that case, fl+1 can be decomposed as

fl+1 =

k∑

j=1

λjej +

l∑

j=1

µjfj , (1.10)

where λj , µj are some constants, not all equal to zero. Suppose all λj are zero;
then fl+1 would be a linear combination of other fj ; but this cannot happen for
a basis {fj}. Therefore not all λj , 1 ≤ j ≤ k are zero; for example, λs 6= 0. This
gives us the index s. Now we can replace es in the set S by fl+1; it remains to
prove that the resulting set T defined by Eq. (1.9) is linearly independent.

This last proof is again by contradiction: if T is linearly dependent, there
exists a vanishing linear combination of the form

s−1∑

j=1

ρjej + σl+1fl+1 +

k∑

j=s+1

ρjej +

l∑

j=1

σjfj = 0, (1.11)
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where ρj , σj are not all zero. In particular, σl+1 6= 0 because otherwise the
initial set S would be linearly dependent,

s−1∑

j=1

ρjej +

k∑

j=s+1

ρjej +

l∑

j=1

σjfj = 0.

If we now substitute Eq. (1.10) into Eq. (1.11), we will obtain a vanishing lin-
ear combination that contains only vectors from the initial set S in which the
coefficient at the vector es is σl+1λs 6= 0. This contradicts the linear indepen-
dence of the set S. Therefore the set T is linearly independent. �

Exercise 1: Completing a basis. If a set {v1, ...,vk}, vj ∈ V is linearly inde-
pendent and k < n ≡ dimV , the theorem says that the set {vj} is not a basis
in V . Prove that there exist (n− k) additional vectors vk+1, ..., vn ∈ V such
that the set {v1, ...,vn} is a basis in V .

Outline of proof: If {vj} is not yet a basis, it means that there exists at least
one vector v ∈ V which cannot be represented by a linear combination of
{vj}. Add it to the set {vj}; prove that the resulting set is still linearly inde-
pendent. Repeat these steps until a basis is built; by the above Theorem, the
basis will contain exactly n vectors.
Exercise 2: Eliminating unnecessary vectors. Suppose that a set of vectors
{e1, ..., es} spans the space V , i.e. every vector v ∈ V can be represented by a
linear combination of {vj}; and suppose that s > n ≡ dimV . By definition of
dimension, the set {ej} must be linearly dependent, so it is not a basis in V .
Prove that one can remove certain vectors from this set so that the remaining
vectors are a basis in V .

Hint: The set has too many vectors. Consider a nontrivial linear combina-
tion of vectors {e1, ..., es} that is equal to zero. Show that one can remove
some vector ek from the set {e1, ..., es} such that the remaining set still spans
V . The procedure can be repeated until a basis in V remains.
Exercise 3: Finding a basis. Consider the vector space of polynomials of de-
gree at most 2 in the variable x, with real coefficients. Determine whether the
following four sets of vectors are linearly independent, and which of them
can serve as a basis in that space. The sets are {1 + x, 1 − x}; {1, 1 + x, 1 − x};
{
1, 1 + x− x2

}
;
{
1, 1 + x, 1 + x+ x2

}
.

Exercise 4: Not a basis. Suppose that a set {v1, ...,vn} in an n-dimensional
space V is not a basis; show that this set must be linearly dependent.

1.2 Linear maps in vector spaces

An important role in linear algebra is played by matrices, which usually rep-
resent linear transformations of vectors. Namely, with the definition V1 of
vectors as n-tuples vi, one defines matrices as square tables of numbers, Aij ,
that describe transformations of vectors according to the formula

ui ≡
n∑

j=1

Aijvj . (1.12)
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1 Linear algebra without coordinates

This transformation takes a vector v into a new vector u = Âv in the same
vector space. For example, in two dimensions one writes the transformation
of column vectors as

[
u1

u2

]

=

(
A11 A12

A21 A22

)[
v1
v2

]

≡
[
A11v1 +A12v2
A21v1 +A22v2

]

.

The composition of two transformations Aij and Bij is a transformation de-
scribed by the matrix

Cij =
n∑

k=1

AikBkj . (1.13)

This is the law of matrix multiplication. (I assume that all this is familiar to
you.)

More generally, a map from anm-dimensional space V to an n-dimensional
space W is described by a rectangular m× n matrix that transforms m-tuples
into n-tuples in an analogous way. Most of the time we will be working with
transformations within one vector space (described by square matrices).

This picture of matrix transformations is straightforward but relies on the
coordinate representation of vectors and so has two drawbacks: (i) The cal-
culations with matrix components are often unnecessarily cumbersome. (ii)
Definitions and calculations cannot be easily generalized to infinite-dimen-
sional spaces. Nevertheless, many of the results have nothing to do with
components and do apply to infinite-dimensional spaces. We need a different
approach to characterizing linear transformations of vectors.

The way out is to concentrate on the linearity of the transformations, i.e. on
the properties

Â (λv) = λÂ (v) ,

Â (v1 + v2) = Â (v1) + Â (v2) ,

which are easy to check directly. In fact it turns out that the multiplication
law and the matrix representation of transformations can be derived from the
above requirements of linearity. Below we will see how this is done.

1.2.1 Abstract definition of linear maps

First, we define an abstract linear map as follows.

Definition: A map Â : V → W between two vector spaces V , W is linear if
for any λ ∈ K and u,v ∈ V ,

Â (u + λv) = Âu + λÂv. (1.14)

(Note, pedantically, that the “+” in the left side of Eq. (1.14) is the vector sum
in the space V , while in the right side it is the vector sum in the space W .)

Linear maps are also called homomorphisms of vector spaces. Linear maps
acting from a space V to the same space are called linear operators or endo-
morphisms of the space V .
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1.2 Linear maps in vector spaces

At first sight it might appear that the abstract definition of a linear transfor-
mation offers much less information than the definition in terms of matrices.
This is true: the abstract definition does not specify any particular linear map,
it only gives conditions for a map to be linear. If the vector space is finite-
dimensional and a basis {ei} is selected then the familiar matrix picture is
immediately recovered from the abstract definition. Let us first, for simplic-

ity, consider a linear map Â : V → V .

Statement 1: If Â is a linear map V → V and {ej} is a basis then there

exist numbers Ajk (j, k = 1, ..., n) such that the vector Âv has components
∑

k Ajkvk if a vector v has components vk in the basis {ej}.
Proof: For any vector v we have a decomposition v =

∑n
k=1 vkek with

some components vk. By linearity, the result of application of the map Â to
the vector v is

Âv = Â
(

n∑

k=1

vkek

)
=

n∑

k=1

vk(Âek).

Therefore, it is sufficient to know how the map Â transforms the basis vectors

ek, k = 1, ..., n. Each of the vectors Âek has (in the basis {ei}) a decomposition

Âek =

n∑

j=1

Ajkej , k = 1, ..., n,

where Ajk with 1 ≤ j, k ≤ n are some coefficients; these Ajk are just some
numbers that we can calculate for a specific given linear transformation and
a specific basis. It is convenient to arrange these numbers into a square table

(matrix) Ajk. Finally, we compute Âv as

Âv =

n∑

k=1

vk

n∑

j=1

Ajkej =

n∑

j=1

ujej ,

where the components uj of the vector u ≡ Âv are

uj ≡
n∑

k=1

Ajkvk.

This is exactly the law (1.12) of multiplication of the matrix Ajk by a column
vector vk. Therefore the formula of the matrix representation (1.12) is a nec-
essary consequence of the linearity of a transformation. �

The analogous matrix representation holds for linear maps Â : V → W
between different vector spaces.

It is helpful to imagine that the linear transformation Â somehow exists as
a geometric object (an object that “knows how to transform vectors”), while
the matrix representation Ajk is merely a set of coefficients needed to de-
scribe that transformation in a particular basis. The matrix Ajk depends on
the choice of the basis, but there any many properties of the linear transfor-

mation Â that do not depend on the basis; these properties can be thought

27



1 Linear algebra without coordinates

of as the “geometric” properties of the transformation.2 Below we will be
concerned only with geometric properties of objects.

Definition: Two linear maps Â, B̂ are equal if Âv = B̂v for all v ∈ V . The

composition of linear maps Â, B̂ is the map ÂB̂ which acts on vectors v as

(ÂB̂)v ≡ Â(B̂v).

Statement 2: The composition of two linear transformations is again a linear
transformation.
Proof: I give two proofs to contrast the coordinate-free language with the

language of matrices, and also to show the derivation of the matrix multipli-
cation law.

(Coordinate-free proof :) We need to demonstrate the property (1.14). If Â and

B̂ are linear transformations then we have, by definition,

ÂB̂ (u + λv) = Â(B̂u + λB̂v) = ÂB̂u + λÂB̂v.

Therefore the composition ÂB̂ is a linear map.
(Proof using matrices:) We need to show that for any vector v with compo-

nents vi and for any two transformation matrices Aij and Bij , the result of
first transforming with Bij and then with Aij is equivalent to transforming v

with some other matrix. We calculate the components v′i of the transformed
vector,

v′i =

n∑

j=1

Aij

n∑

k=1

Bjkvk =

n∑

k=1





n∑

j=1

AijBjk



 vk ≡
n∑

k=1

Cikvk,

where Cik is the matrix of the new transformation. �

Note that we need to work more in the second proof because matrices
are defined through their components, as “tables of numbers.” So we cannot
prove linearity without also finding an explicit formula for the matrix product
in terms of matrix components. The first proof does not use such a formula.

1.2.2 Examples of linear maps

The easiest example of a linear map is the identity operator 1̂V . This is a map
V → V defined by 1̂V v = v. It is clear that this map is linear, and that its
matrix elements in any basis are given by the Kronecker delta symbol

δij ≡
{

1, i = j;
0, i 6= j.

We can also define a map which multiplies all vectors v ∈ V by a fixed
number λ. This is also obviously a linear map, and we denote it by λ1̂V . If

2Example: the properties A11 = 0, A11 > A12, and Aij = −2Aji are not geometric properties

of the linear transformation Â because they may hold in one basis but not in another basis.
However, the number

Pn
i=1

Aii turns out to be geometric (independent of the basis), as we
will see below.
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1.2 Linear maps in vector spaces

λ = 0, we may write 0̂V to denote the map that transforms all vectors into the
zero vector.

Another example of a linear transformation is the following. Suppose that
the set {e1, ..., en} is a basis in the space V ; then any vector v ∈ V is uniquely
expressed as a linear combination v =

∑n
j=1 vjej . We denote by e∗1 (v) the

function that gives the component v1 of a vector v in the basis {ej}. Then we

define the map M̂ by the formula

M̂v ≡ v1e2 = e∗1 (v) e2.

In other words, the new vector M̂v is always parallel to e2 but has the coeffi-
cient v1. It is easy to prove that this map is linear (you need to check that the
first component of a sum of vectors is equal to the sum of their first compo-

nents). The matrix corresponding to M̂ in the basis {ej} is

Mij =







0 0 0 ...
1 0 0 ...
0 0 0 ...
... ... ... ...






.

The map that shifts all vectors by a fixed vector, Ŝav ≡ v + a, is not linear
because

Ŝa (u + v) = u + v + a 6= Ŝa (u) + Ŝa (v) = u + v + 2a.

Question: I understand how to work with a linear transformation specified

by its matrix Ajk. But how can I work with an abstract “linear map” Â if the

only thing I know about Â is that it is linear? It seems that I cannot specify
linear transformations or perform calculations with them unless I use matri-
ces.

Answer: It is true that the abstract definition of a linear map does not in-
clude a specification of a particular transformation, unlike the concrete def-
inition in terms of a matrix. However, it does not mean that matrices are
always needed. For a particular problem in linear algebra, a particular trans-
formation is always specified either as a certain matrix in a given basis, or in a

geometric, i.e. basis-free manner, e.g. “the transformation B̂ multiplies a vector
by 3/2 and then projects onto the plane orthogonal to the fixed vector a.” In
this book I concentrate on general properties of linear transformations, which
are best formulated and studied in the geometric (coordinate-free) language
rather than in the matrix language. Below we will see many coordinate-free
calculations with linear maps. In Sec. 1.8 we will also see how to specify arbi-
trary linear transformations in a coordinate-free manner, although it will then
be quite similar to the matrix notation.

Exercise 1: If V is a one-dimensional vector space over a field K, prove that

any linear operator Â on V must act simply as a multiplication by a number.
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1 Linear algebra without coordinates

Solution: Let e 6= 0 be a basis vector; note that any nonzero vector e is a
basis in V , and that every vector v ∈ V is proportional to e. Consider the

action of Â on the vector e: the vector Âe must also be proportional to e, say

Âe = ae where a ∈ K is some constant. Then by linearity of Â, for any vector

v = ve we get Âv = Âve = ave = av, so the operator Â multiplies all vectors
by the same number a. �

Exercise 2: If {e1, ..., eN} is a basis in V and {v1, ...,vN} is a set ofN arbitrary

vectors, does there exist a linear map Â such that Âej = vj for j = 1, ..., N? If
so, is this map unique?
Solution: For any x ∈ V there exists a unique set of N numbers x1, ..., xN

such that x =
∑N

i=1 xiei. Since Â must be linear, the action of Â on x must

be given by the formula Âx =
∑N

i=1 xivi. This formula defines Âx for all x.

Hence, the map Â exists and is unique. �

1.2.3 Vector space of all linear maps

Suppose that V and W are two vector spaces and consider all linear maps

Â : V → W . The set of all such maps is itself a vector space because we
can add two linear maps and multiply linear maps by scalars, getting again

a linear map. More formally, if Â and B̂ are linear maps from V to W and

λ ∈ K is a number (a scalar) then we define λÂ and Â+ B̂ in the natural way:

(λÂ)v ≡ λ(Âv),

(Â+ B̂)v ≡ Âv + B̂v, ∀v ∈ V.

In words: the map λÂ acts on a vector v by first acting on it with Â and then

multiplying the result by the scalar λ; the map Â + B̂ acts on a vector v by

adding the vectors Âv and B̂v. It is straightforward to check that the maps

λÂ and Â + B̂ defined in this way are linear maps V → W . Therefore, the
set of all linear maps V → W is a vector space. This vector space is denoted
Hom (V,W ), meaning the “space of homomorphisms” from V to W .

The space of linear maps from V to itself is called the space of endomor-
phisms of V and is denoted EndV . Endomorphisms of V are also called
linear operators in the space V . (We have been talking about linear operators
all along, but we did not call them endomorphisms until now.)

1.2.4 Eigenvectors and eigenvalues

Definition 1: Suppose Â : V → V is a linear operator, and a vector v 6= 0

is such that Âv = λv where λ ∈ K is some number. Then v is called the
eigenvector of Â with the eigenvalue λ.

The geometric interpretation is that v is a special direction for the transfor-

mation Â such that Â acts simply as a scaling by a certain number λ in that
direction.
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1.2 Linear maps in vector spaces

Remark: Without the condition v 6= 0 in the definition, it would follow that
the zero vector is an eigenvector for any operator with any eigenvalue, which
would not be very useful, so we exclude the trivial case v = 0.

Example 1: Suppose Â is the transformation that rotates vectors around some
fixed axis by a fixed angle. Then any vector v parallel to the axis is unchanged

by the rotation, so it is an eigenvector of Â with eigenvalue 1.

Example 2: Suppose Â is the operator of multiplication by a number α, i.e. we

define Âx ≡ αx for all x. Then all nonzero vectors x 6= 0 are eigenvectors of

Â with eigenvalue α.

Exercise 1: Suppose v is an eigenvector of Â with eigenvalue λ. Show that
cv for any c ∈ K, c 6= 0, is also an eigenvector with the same eigenvalue.

Solution: Â(cv) = cÂv = cλv = λ(cv).
Example 3: Suppose that an operator Â ∈ End V is such that it has N =
dimV eigenvectors v1, ..., vN that constitute a basis in V . Suppose that λ1,
..., λN are the corresponding eigenvalues (not necessarily different). Then the

matrix representation of Â in the basis {vj} is a diagonal matrix

Aij = diag (λ1, ..., λN ) ≡








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN







.

Thus a basis consisting of eigenvectors (the eigenbasis), if it exists, is a par-
ticularly convenient choice of basis for a given operator.
Remark: The task of determining the eigenbasis (also called the diagonaliza-
tion of an operator) is a standard, well-studied problem for which efficient
numerical methods exist. (This book is not about these methods.) However, it
is important to know that not all operators can be diagonalized. The simplest
example of a non-diagonalizable operator is one with the matrix representa-

tion

(
0 1
0 0

)

in R2. This operator has only one eigenvector,
(
1
0

)
, so we have

no hope of finding an eigenbasis. The theory of the “Jordan canonical form”
(see Sec. 4.6) explains how to choose the basis for a non-diagonalizable oper-
ator so that its matrix in that basis becomes as simple as possible.

Definition 2: A map Â : V → W is invertible if there exists a map Â−1 :

W → V such that ÂÂ−1 = 1̂W and Â−1Â = 1̂V . The map Â−1 is called the

inverse of Â.
Exercise 2: Suppose that an operator Â ∈ End V has an eigenvector with

eigenvalue 0. Show that Â describes a non-invertible transformation.
Outline of the solution: Show that the inverse of a linear operator (if the

inverse exists) is again a linear operator. A linear operator must transform

the zero vector into the zero vector. We have Âv = 0 and yet we must have

Â−10 = 0 if Â−1 exists. �

Exercise 3: Suppose that an operator Â ∈ End V in an n-dimensional vector

space V describes a non-invertible transformation. Show that the operator Â
has at least one eigenvector v with eigenvalue 0.
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1 Linear algebra without coordinates

Outline of the solution: Let {e1, ..., en} be a basis; consider the set of vec-

tors {Âe1, ..., Âen} and show that it is not a basis, hence linearly dependent

(otherwise Â would be invertible). Then there exists a linear combination
∑

j cj(Âej) = 0 where not all cj are zero; v ≡∑j cjej is then nonzero, and is
the desired eigenvector. �

1.3 Subspaces

Definition: A subspace of a vector space V is a subset S ⊂ V such that S is
itself a vector space.

A subspace is not just any subset of V . For example, if v ∈ V is a nonzero
vector then the subset S consisting of the single vector, S = {v}, is not a
subspace: for instance, v + v = 2v, but 2v 6∈ S.
Example 1. The set {λv | ∀λ ∈ K} is called the subspace spanned by the vec-
tor v. This set is a subspace because we can add vectors from this set to
each other and obtain again vectors from the same set. More generally, if
v1, ...,vn ∈ V are some vectors, we define the subspace spanned by {vj} as
the set of all linear combinations

Span {v1, ...,vn} ≡ {λ1v1 + ...+ λnvn | ∀λi ∈ K} .

It is obvious that Span {v1, ...,vn} is a subspace of V .
If {ej} is a basis in the space V then the subspace spanned by the vectors

{ej} is equal to V itself.
Exercise 1: Show that the intersection of two subspaces is also a subspace.

Example 2: Kernel of an operator. Suppose Â ∈ EndV is a linear operator.

The set of all vectors v such that Âv = 0 is called the kernel of the operator Â

and is denoted by ker Â. In formal notation,

ker Â ≡ {u ∈ V | Âu = 0}.

This set is a subspace of V because if u,v ∈ ker Â then

Â (u + λv) = Âu + λÂv = 0,

and so u + λv ∈ ker Â.
Example 3: Image of an operator. Suppose Â : V → V is a linear operator.

The image of the operator Â, denoted imA, is by definition the set of all

vectors v obtained by acting with Â on some other vectors u ∈ V . In formal
notation,

im Â ≡ {Âu | ∀u ∈ V }.
This set is also a subspace of V (prove this!).
Exercise 2: In a vector space V , let us choose a vector v 6= 0. Consider the

set S0 of all linear operators Â ∈ EndV such that Âv = 0. Is S0 a subspace?

Same question for the set S3 of operators Â such that Âv = 3v. Same question

for the set S′ of all operators Â for which there exists some λ ∈ K such that

Âv = λv, where λ may be different for each Â.
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1.3 Subspaces

1.3.1 Projectors and subspaces

Definition: A linear operator P̂ : V → V is called a projector if P̂ P̂ = P̂ .
Projectors are useful for defining subspaces: The result of a projection re-

mains invariant under further projections, P̂ (P̂v) = P̂v, so a projector P̂

defines a subspace im P̂ , which consists of all vectors invariant under P̂ .
As an example, consider the transformation of R3 given by the matrix

P̂ =





1 0 a
0 1 b
0 0 0



 ,

where a, b are arbitrary numbers. It is easy to check that P̂ P̂ = P̂ for any a, b.
This transformation is a projector onto the subspace spanned by the vectors
(1, 0, 0) and (0, 1, 0). (Note that a and b can be chosen at will; there are many
projectors onto the same subspace.)
Statement: Eigenvalues of a projector can be only the numbers 0 and 1.

Proof: If v ∈ V is an eigenvector of a projector P̂ with the eigenvalue λ
then

λv = P̂v = P̂ P̂v = P̂ λv = λ2v ⇒ λ (λ− 1)v = 0.

Since v 6= 0, we must have either λ = 0 or λ = 1. �

1.3.2 Eigenspaces

Another way to specify a subspace is through eigenvectors of some operator.

Exercise 1: For a linear operator Â and a fixed number λ ∈ K, the set of all

vectors v ∈ V such that Âv = λv is a subspace of V .

The subspace of all such vectors is called the eigenspace of Â with the

eigenvalue λ. Any nonzero vector from that subspace is an eigenvector of Â
with eigenvalue λ.

Example: If P̂ is a projector then im P̂ is the eigenspace of P̂ with eigenvalue
1.
Exercise 2: Show that eigenspaces Vλ and Vµ corresponding to different eigen-
values, λ 6= µ, have only one common vector — the zero vector. (Vλ ∩ Vµ =
{0}.)

By definition, a subspace U ⊂ V is invariant under the action of some

operator Â if Âu ∈ U for all u ∈ U .

Exercise 3: Show that the eigenspace of Â with eigenvalue λ is invariant un-

der Â.
Exercise 4: In a space of polynomials in the variable x of any (finite) degree,
consider the subspace U of polynomials of degree not more than 2 and the

operator Â ≡ x d
dx , that is,

Â : p(x) 7→ x
dp(x)

dx
.

Show that U is invariant under Â.
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1.4 Isomorphisms of vector spaces

Two vector spaces are isomorphic if there exists a one-to-one linear map be-
tween them. This linear map is called the isomorphism.

Exercise 1: If {v1, ...,vN} is a linearly independent set of vectors (vj ∈ V )

and M̂ : V → W is an isomorphism then the set {M̂v1, ..., M̂vN} is also

linearly independent. In particular, M̂ maps a basis in V into a basis in W .

Hint: First show that M̂v = 0 if and only if v = 0. Then consider the result

of M̂ (λ1v1 + ...+ λNvN ).

Statement 1: Any vector space V of dimension n is isomorphic to the space
Kn of n-tuples.
Proof: To demonstrate this, it is sufficient to present some isomorphism. We

can always choose a basis {ei} in V , so that any vector v ∈ V is decomposed

as v =
∑n

i=1 λiei. Then we define the isomorphism map M̂ between V and
the space Kn as

M̂v ≡ (λ1, ..., λn) .

It is easy to see that M̂ is linear and one-to-one. �

Vector spaces Km and Kn are isomorphic only if they have equal dimen-
sion, m = n. The reason they are not isomorphic for m 6= n is that they have
different numbers of vectors in a basis, while one-to-one linear maps must
preserve linear independence and map a basis to a basis. (For m 6= n, there
are plenty of linear maps from Km to Kn but none of them is a one-to-one
map. It also follows that a one-to-one map between Km and Kn cannot be
linear.)

Note that the isomorphism M̂ constructed in the proof of Statement 1 will
depend on the choice of the basis: a different basis {e′i} yields a different map

M̂ ′. For this reason, the isomorphism M̂ is not canonical.

Definition: A linear map between two vector spaces V and W is canonically
defined or canonical if it is defined independently of a choice of bases in
V and W . (We are of course allowed to choose a basis while constructing
a canonical map, but at the end we need to prove that the resulting map
does not depend on that choice.) Vector spaces V and W are canonically
isomorphic if there exists a canonically defined isomorphism between them;
I write V ∼= W in this case.

Examples of canonical isomorphisms:

1. Any vector space V is canonically isomorphic to itself, V ∼= V ; the iso-
morphism is the identity map v → v which is defined regardless of any
basis. (This is trivial but still, a valid example.)

2. If V is a one-dimensional vector space then EndV ∼= K. You have seen
the map End V → K in the Exercise 1.2.2, where you had to show that
any linear operator in V is a multiplication by a number; this number
is the element of K corresponding to the given operator. Note that V 6∼=
K unless there is a “preferred” vector e ∈ V , e 6= 0 which would be
mapped into the number 1 ∈ K. Usually vector spaces do not have any
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special vectors, so there is no canonical isomorphism. (However, EndV
does have a special element — the identity 1̂V .)

At this point I cannot give more interesting examples of canonical maps, but
I will show many of them later. My intuitive picture is that canonically iso-
morphic spaces have a fundamental structural similarity. An isomorphism
that depends on the choice of basis, as in the Statement 1 above, is unsatisfac-
tory if we are interested in properties that can be formulated geometrically
(independently of any basis).

1.5 Direct sum of vector spaces

If V andW are two given vector spaces over a field K, we define a new vector
space V ⊕ W as the space of pairs (v,w), where v ∈ V and w ∈ W . The
operations of vector sum and scalar multiplication are defined in the natural
way,

(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2) ,

λ (v1,w1) = (λv1, λw1) .

The new vector space is called the direct sum of the spaces V and W .

Statement: The dimension of the direct sum is dim (V ⊕W ) = dimV+dimW .
Proof: If v1, ..., vm and w1, ..., wn are bases in V and W respectively, con-

sider the set of m+ n vectors

(v1, 0) , ..., (vm, 0) , (0,w1) , ..., (0,wn) .

It is easy to prove that this set is linearly independent. Then it is clear that
any vector (v,w) ∈ V ⊕ W can be represented as a linear combination of
the vectors from the above set, therefore that set is a basis and the dimension
of V ⊕W is m + n. (This proof is sketchy but the material is standard and
straightforward.) �

Exercise 1: Complete the proof.
Hint: If (v,w) = 0 then v = 0 and w = 0 separately.

1.5.1 V and W as subspaces of V ⊕ W ; canonical
projections

If V andW are two vector spaces then the space V ⊕W has a certain subspace
which is canonically isomorphic to V . This subspace is the set of all vectors
from V ⊕W of the form (v, 0), where v ∈ V . It is obvious that this set forms
a subspace (it is closed under linear operations) and is isomorphic to V . To

demonstrate this, we present a canonical isomorphism which we denote P̂V :

V ⊕W → V . The isomorphism P̂V is the canonical projection defined by

P̂V (v,w) ≡ v.
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It is easy to check that this is a linear and one-to-one map of the subspace

{(v, 0) |v ∈ V } to V , and that P̂ is a projector. This projector is canonical be-
cause we have defined it without reference to any basis. The relation is so
simple that it is convenient to write v ∈ V ⊕W instead of (v, 0) ∈ V ⊕W .

Similarly, we define the subspace isomorphic to W and the corresponding
canonical projection.

It is usually convenient to denote vectors from V ⊕ W by formal linear
combinations, e.g. v + w, instead of the pair notation (v,w). A pair (v, 0) is
denoted simply by v ∈ V ⊕W .
Exercise 1: Show that the space Rn ⊕ Rm is isomorphic to Rn+m, but not
canonically.

Hint: The image of Rn ⊂ Rn ⊕ Rm under the isomorphism is a subspace of
Rn+m, but there are no canonically defined subspaces in that space.

1.6 Dual (conjugate) vector space

Given a vector space V , we define another vector space V ∗ called the dual or
the conjugate to V . The elements of V ∗ are linear functions on V , that is to
say, maps f∗ : V → K having the property

f∗ (u + λv) = f∗ (u) + λf∗ (v) , ∀u,v ∈ V, ∀λ ∈ K.

The elements of V ∗ are called dual vectors, covectors or linear forms; I will
say “covectors” to save space.
Definition: A covector is a linear map V → K. The set of all covectors is the
dual space to the vector space V . The zero covector is the linear function that
maps all vectors into zero. Covectors f∗ and g∗ are equal if

f∗ (v) = g∗ (v) , ∀v ∈ V.

It is clear that the set of all linear functions is a vector space because e.g. the
sum of linear functions is again a linear function. This “space of all linear
functions” is the space we denote by V ∗. In our earlier notation, this space is
the same as Hom(V,K).
Example 1: For the space R2 with vectors v ≡ (x, y), we may define the func-
tions f∗ (v) ≡ 2x, g∗ (v) ≡ y − x. It is straightforward to check that these
functions are linear.
Example 2: Let V be the space of polynomials of degree not more than 2 in
the variable x with real coefficients. This space V is three-dimensional and
contains elements such as p ≡ p(x) = a+ bx+ cx2. A linear function f∗ on V
could be defined in a way that might appear nontrivial, such as

f∗(p) =

∫ ∞

0

e−xp(x)dx.

Nevertheless, it is clear that this is a linear function mapping V into R. Simi-
larly,

g∗(p) =
d

dx

∣
∣
∣
∣
x=1

p(x)
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1.6 Dual (conjugate) vector space

is a linear function. Hence, f∗ and g∗ belong to V ∗.

Remark: One says that a covector f∗ is applied to a vector v and yields a
number f∗(v), or alternatively that a covector acts on a vector. This is similar
to writing cos(0) = 1 and saying that the cosine function is applied to the
number 0, or “acts on the number 0,” and then yields the number 1. Other
notations for a covector acting on a vector are 〈f∗,v〉 and f∗ · v, and also ιvf

∗

or ιf∗v (here the symbol ι stands for “insert”). However, in this text I will
always use the notation f∗(v) for clarity. The notation 〈x,y〉 will be used for
scalar products.

Question: It is unclear how to visualize the dual space when it is defined in
such abstract terms, as the set of all functions having some property. How do
I know which functions are there, and how can I describe this space in more
concrete terms?
Answer: Indeed, we need some work to characterize V ∗ more explicitly.

We will do this in the next subsection by constructing a basis in V ∗.

1.6.1 Dual basis

Suppose {e1, ..., en} is a basis in V ; then any vector v ∈ V is uniquely ex-
pressed as a linear combination

v =
n∑

j=1

vjej .

The coefficient v1, understood as a function of the vector v, is a linear function
of v because

u + λv =

n∑

j=1

ujej + λ

n∑

j=1

vjej =

n∑

j=1

(ui + λvj) ej ,

therefore the first coefficient of the vector u+λv is u1+λv1. So the coefficients
vk, 1 ≤ k ≤ n, are linear functions of the vector v; therefore they are covectors,
i.e. elements of V ∗. Let us denote these covectors by e∗1, ..., e∗n. Please note that
e∗1 depends on the entire basis {ej} and not only on e1, as it might appear from
the notation e∗1. In other words, e∗1 is not a result of some “star” operation
applied only to e1. The covector e∗1 will change if we change e2 or any other
basis vector. This is so because the component v1 of a fixed vector v depends
not only on e1 but also on every other basis vector ej .

Theorem: The set of n covectors e∗1, ..., e∗n is a basis in V ∗. Thus, the dimen-
sion of the dual space V ∗ is equal to that of V .

Proof: First, we show by an explicit calculation that any covector f∗ is a
linear combination of

{
e∗j
}

. Namely, for any f∗ ∈ V ∗ and v ∈ V we have

f∗ (v) = f∗
(

n∑

j=1

vjej

)
=

n∑

j=1

vjf
∗ (ej) =

n∑

j=1

e∗j (v) f∗ (ej) .
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1 Linear algebra without coordinates

Note that in the last line the quantities f∗ (ej) are some numbers that do not
depend on v. Let us denote φj ≡ f∗ (ej) for brevity; then we obtain the
following linear decomposition of f∗ through the covectors

{
e∗j
}

,

f∗ (v) =

n∑

j=1

φje
∗
j (v) ⇒ f∗ =

n∑

j=1

φje
∗
j .

So indeed all covectors f∗ are linear combinations of e∗j .

It remains to prove that the set
{
e∗j
}

is linearly independent. If this were
not so, we would have

∑

i λie
∗
i = 0 where not all λi are zero. Act on a vector

ek (k = 1, ..., n) with this linear combination and get

0
!
= (

n∑

i=1

λie
∗
i )(ek) = λk, k = 1, ..., n.

Hence all λk are zero. �

Remark: The theorem holds only for finite-dimensional spaces! For infinite-
dimensional spaces V , the dual space V ∗ may be “larger” or “smaller” than
V . Infinite-dimensional spaces are subtle, and one should not think that they
are simply “spaces with infinitely many basis vectors.” More detail (much
more detail!) can be found in standard textbooks on functional analysis. �

The set of covectors
{
e∗j
}

is called the dual basis to the basis {ej}. The
covectors e∗j of the dual basis have the useful property

e∗i (ej) = δij

(please check this!). Here δij is the Kronecker symbol: δij = 0 if i 6= j and
δii = 1. For instance, e∗1 (e1) = 1 and e∗1 (ek) = 0 for k ≥ 2.
Question: I would like to see a concrete calculation. How do I compute f∗ (v)
if a vector v ∈ V and a covector f∗ ∈ V ∗ are “given”?
Answer: Vectors are usually “given” by listing their components in some

basis. Suppose {e1, ..., eN} is a basis in V and {e∗1, ..., e∗N} is its dual basis. If
the vector v has components vk in a basis {ek} and the covector f∗ ∈ V ∗ has
components f∗k in the dual basis {e∗k}, then

f∗ (v) =
N∑

k=1

f∗ke∗k
(

N∑

l=1

vlel

)
=

N∑

k=1

f∗kvk. (1.15)

Question: The formula (1.15) looks like the scalar product (1.4). How come?
Answer: Yes, it does look like that, but Eq. (1.15) does not describe a scalar

product because for one thing, f∗ and v are from different vector spaces. I
would rather say that the scalar product resembles Eq. (1.15), and this hap-
pens only for a special choice of basis (an orthonormal basis) in V . This will be
explained in more detail in Sec. 5.1.
Question: The dual basis still seems too abstract to me. Suppose V is the
three-dimensional space of polynomials in the variable xwith real coefficients
and degree no more than 2. The three polynomials

{
1, x, x2

}
are a basis in V .

How can I compute explicitly the dual basis to this basis?
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1.6 Dual (conjugate) vector space

Answer: An arbitrary vector from this space is a polynomial a + bx + cx2.
The basis dual to

{
1, x, x2

}
consists of three covectors. Let us denote the set

of these covectors by {e∗1, e∗2, e∗3}. These covectors are linear functions defined
like this:

e∗1
(
a+ bx+ cx2

)
= a,

e∗2
(
a+ bx+ cx2

)
= b,

e∗3
(
a+ bx+ cx2

)
= c.

If you like, you can visualize them as differential operators acting on the poly-
nomials p(x) like this:

e∗1(p) = p(x)|x=0 ; e∗2(p) =
dp

dx

∣
∣
∣
∣
x=0

; e∗3(p) =
1

2

d2p

dx2

∣
∣
∣
∣
x=0

.

However, this is a bit too complicated; the covector e∗3 just extracts the coef-
ficient of the polynomial p(x) at x2. To make it clear that, say, e∗2 and e∗3 can
be evaluated without taking derivatives or limits, we may write the formulas
for e∗j (p) in another equivalent way, e.g.

e∗2(p) =
p(1) − p(−1)

2
, e∗3(p) =

p(1) − 2p(0) + p(−1)

2
.

It is straightforward to check that these formulas are indeed equivalent by
substituting p(x) = a+ bx+ cx2.
Exercise 1: Compute f∗ and g∗ from Example 2 in terms of the basis {e∗i }
defined above.
Question: I’m still not sure what to do in the general case. For example, the
set
{
1, 1 + x, 1 + x+ 1

2x
2
}

is also a basis in the space V of quadratic polyno-
mials. How do I explicitly compute the dual basis now? The previous trick
with derivatives does not work.
Answer: Let’s denote this basis by {f1, f2, f3}; we are looking for the dual

basis {f∗1 , f∗2 , f∗3 }. It will certainly be sufficiently explicit if we manage to ex-
press the covectors f∗j through the covectors {e∗1, e∗2, e∗3} that we just found
previously. Since the set of covectors {e∗1, e∗2, e∗3} is a basis in V ∗, we expect
that f∗1 is a linear combination of {e∗1, e∗2, e∗3} with some constant coefficients,
and similarly f∗2 and f∗3 . Let us, for instance, determine f∗1 . We write

f∗1 = Ae∗1 +Be∗2 + Ce∗3

with unknown coefficients A,B,C. By definition, f∗1 acting on an arbitrary
vector v = c1f1 + c2f2 + c3f3 must yield c1. Recall that e∗i , i = 1, 2, 3 yield the
coefficients of the polynomial at 1, x, and x2. Therefore

c1
!
= f∗1 (v) = f∗1 (c1f1 + c2f2 + c3f3)

= (Ae∗1 +Be∗2 + Ce∗3) (c1f1 + c2f2 + c3f3)

= (Ae∗1 +Be∗2 + Ce∗3)
(
c1 + c2 (1 + x) + c3

(
1 + x+ 1

2x
2
))

= Ac1 +Ac2 +Ac3 +Bc2 +Bc3 + 1
2Cc3.
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1 Linear algebra without coordinates

Since this must hold for every c1, c2, c3, we obtain a system of equations for
the unknown constants A,B,C:

A = 1;

A+B = 0;

A+B + 1
2C = 0.

The solution is A = 1, B = −1, C = 0. Therefore f∗1 = e∗1 − e∗2. In the same
way we can determine f∗2 and f∗3 . �

Here are some useful properties of covectors.

Statement: (1) If f∗ 6= 0 is a given covector, there exists a basis {v1, ...,vN} of
V such that f∗ (v1) = 1 while f∗ (vi) = 0 for 2 ≤ i ≤ N .

(2) Once such a basis is found, the set {a,v2, ...,vN} will still be a basis in
V for any vector a such that f∗ (a) 6= 0.
Proof: (1) By definition, the property f∗ 6= 0 means that there exists at least

one vector u ∈ V such that f∗(u) 6= 0. Given the vector u, we define the
vector v1 by

v1 ≡ 1

f∗ (u)
u.

It follows (using the linearity of f∗) that f∗(v1) = 1. Then by Exercise 1 in
Sec. 1.1.5 the vector v1 can be completed to some basis {v1,w2, ...,wN}. There-
after we define the vectors v2, ..., vN by the formula

vi ≡ wi − f∗ (wi)v1, 2 ≤ i ≤ N,

and obtain a set of vectors {v1, ...,vN} such that f∗(v1) = 1 and f∗(vi) = 0
for 2 ≤ i ≤ N . This set is linearly independent because a linear dependence
among {vj},

0 =

N∑

i=1

λivi =
(
λ1 −

N∑

i=2

λif
∗(wi)

)
v1 +

N∑

i=2

λiwi,

together with the linear independence of the basis {v1,w2, ...,wN}, forces
λi = 0 for all i ≥ 2 and hence also λ1 = 0. Therefore, the set {v1, ...,vN} is the
required basis.

(2) If the set {a,v2, ...,vN} were linearly dependent,

λa +

N∑

j=2

λjvj = 0,

with λj , λ not all zero, then we would have

f∗
(
λa +

N∑

j=2

λjvj

)
= λf∗ (a) = 0,
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1.6 Dual (conjugate) vector space

which forces λ = 0 since by assumption f∗(a) 6= 0. However, λ = 0 entails

N∑

j=2

λjvj = 0,

with λj not all zero, which contradicts the linear independence of the set
{v2, ...,vN}. �

Exercise 2: Suppose that {v1, ...,vk}, vj ∈ V is a linearly independent set
(not necessarily a basis). Prove that there exists at least one covector f∗ ∈ V ∗

such that
f∗(v1) = 1, while f∗(v2) = ... = f∗(vk) = 0.

Outline of proof: The set {v1, ...,vk} can be completed to a basis in V , see
Exercise 1 in Sec. 1.1.5. Then f∗ is the covector dual to v1 in that basis.
Exercise 3: Prove that the space dual to V ∗ is canonically isomorphic to V ,
i.e. V ∗∗ ∼= V (for finite-dimensional V ).

Hint: Vectors v ∈ V can be thought of as linear functions on V ∗, defined by
v(f∗) ≡ f∗(v). This provides a map V → V ∗∗, so the space V is a subspace
of V ∗∗. Show that this map is injective. The dimensions of the spaces V , V ∗,
and V ∗∗ are the same; deduce that V as a subspace of V ∗∗ coincides with the
whole space V ∗∗.

1.6.2 Hyperplanes

Covectors are convenient for characterizing hyperplanes.
Let us begin with a familiar example: In three dimensions, the set of points

with coordinate x = 0 is a plane. The set of points whose coordinates satisfy
the linear equation x+ 2y − z = 0 is another plane.

Instead of writing a linear equation with coordinates, one can write a covec-
tor applied to the vector of coordinates. For example, the equation x+2y−z =
0 can be rewritten as f∗(x) = 0, where x ≡ {x, y, z} ∈ R3, while the covector
f∗ ∈

(
R3
)∗

is expressed through the dual basis
{
e∗j
}

as

f∗ ≡ e∗1 + 2e∗2 − e∗3.

The generalization of this to N dimensions is as follows.
Definition 1: The hyperplane (i.e. subspace of codimension 1) annihilated
by a covector f∗ ∈ V ∗ is the set of all vectors x ∈ V such that f∗(x) = 0. (Note
that the zero vector, x = 0, belongs to the hyperplane.)
Statement: The hyperplane annihilated by a nonzero covector f∗ is a sub-
space of V of dimension N − 1 (where N ≡ dimV ).
Proof: It is clear that the hyperplane is a subspace of V because for any x1

and x2 in the hyperplane we have

f∗(x1 + λx2) = f∗(x1) + λf∗(x2) = 0.

Hence any linear combination of x1 and x2 also belongs to the hyperplane, so
the hyperplane is a subspace.
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1 Linear algebra without coordinates

To determine the dimension of this subspace, we would like to construct
a basis for the hyperplane. Since f∗ ∈ V ∗ is a nonzero covector, there exists
some vector u ∈ V such that f∗ (u) 6= 0. (This vector does not belong to
the hyperplane.) The idea is to complete u to a basis {u,v1, ...,vN−1} in V ,
such that f∗(u) 6= 0 but f∗(vi) = 0; then {v1, ...,vN−1} will be a basis in the
hyperplane. To find such a basis {u,v1, ...,vN−1}, let us first complete u to
some basis {u,u1, ...,uN−1}. Then we define vi = ui − ciu with appropriately
chosen ci. To achieve f∗(vi) = 0, we set

ci =
f∗(ui)

f∗(u)
.

It remains to prove that {u,v1, ...,vN−1} is again a basis. Applying f∗ to a
supposedly existing vanishing linear combination,

λu +

N−1∑

i=1

λivi = 0,

we obtain λ = 0. Expressing vi through u and ui, we obtain a vanishing linear
combination of vectors {u,u1, ...,uN−1} with coefficients λi at ui. Hence, all
λi are zero, and so the set {u,v1, ...,vN−1} is linearly independent and thus a
basis in V .

Finally, we show that {v1, ...,vN−1} is a basis in the hyperplane. By con-
struction, every vi belongs to the hyperplane, and so does every linear com-
bination of the vi’s. It remains to show that every x such that f∗(x) = 0 can
be expressed as a linear combination of the {vj}. For any such x we have the
decomposition in the basis{u,v1, ...,vN−1},

x = λu +

N−1∑

i=1

λivi.

Applying f∗ to this, we find λ = 0. Hence, x is a linear combination only of
the {vj}. This shows that the set {vj} spans the hyperplane. The set {vj} is
linearly independent since it is a subset of a basis in V . Hence, {vj} is a basis
in the hyperplane. Therefore, the hyperplane has dimension N − 1. �

Hyperplanes considered so far always contain the zero vector. Another
useful construction is that of an affine hyperplane: Geometrically speaking,
this is a hyperplane that has been shifted away from the origin.
Definition 2: An affine hyperplane is the set of all vectors x ∈ V such that
f∗(x) = α, where f∗ ∈ V ∗ is nonzero, and α is a number.
Remark: An affine hyperplane with α 6= 0 is not a subspace of V and may be
described more constructively as follows. We first obtain a basis {v1, ...,vN−1}
of the hyperplane f∗(x) = 0, as described above. We then choose some vector
u such that f∗(u) 6= 0; such a vector exists since f∗ 6= 0. We can then multiply
u by a constant λ such that f∗(λu) = α, that is, the vector λu belongs to the
affine hyperplane. Now, every vector x of the form

x = λu +
N−1∑

i=1

λivi,
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1.7 Tensor product of vector spaces

with arbitrary λi, belongs to the hyperplane since f∗(x) = α by construction.
Thus, the set {x | f∗(x) = α} is a hyperplane drawn through λu parallel to the
vectors {vi}. Affine hyperplanes described by the same covector f∗ but with
different values of α will differ only in the choice of the initial vector λu and
thus are parallel to each other, in the geometric sense.
Exercise: Intersection of many hyperplanes. a) Suppose f∗1 , ..., f

∗
k ∈ V . Show

that the set of all vectors x ∈ V such that f∗i (x) = 0 (i = 1, ...k) is a subspace
of V .

b)* Show that the dimension of that subspace is equal to N − k (where
N ≡ dimV ) if the set {f∗1 , ..., f∗k} is linearly independent.

1.7 Tensor product of vector spaces

The tensor product is an abstract construction which is important in many
applications. The motivation is that we would like to define a product of
vectors, u ⊗ v, which behaves as we expect a product to behave, e.g.

(a + λb) ⊗ c = a ⊗ c + λb ⊗ c, ∀λ ∈ K, ∀a,b, c ∈ V,

and the same with respect to the second vector. This property is called bi-
linearity. A “trivial” product would be a ⊗ b = 0 for all a,b; of course, this
product has the bilinearity property but is useless. It turns out to be impos-
sible to define a nontrivial product of vectors in a general vector space, such
that the result is again a vector in the same space.3 The solution is to define
a product of vectors so that the resulting object u ⊗ v is not a vector from
V but an element of another space. This space is constructed in the following
definition.
Definition: Suppose V and W are two vector spaces over a field K; then one
defines a new vector space, which is called the tensor product of V and W
and denoted by V ⊗W . This is the space of expressions of the form

v1 ⊗ w1 + ...+ vn ⊗ wn, (1.16)

where vi ∈ V , wi ∈W . The plus sign behaves as usual (commutative and as-
sociative). The symbol ⊗ is a special separator symbol. Further, we postulate
that the following combinations are equal,

λ (v ⊗ w) = (λv) ⊗ w = v ⊗ (λw) , (1.17)

(v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w, (1.18)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, (1.19)

for any vectors v,w,v1,2,w1,2 and for any constant λ. (One could say that
the symbol ⊗ “behaves as a noncommutative product sign”.) The expression
v⊗w, which is by definition an element of V ⊗W , is called the tensor product
of vectors v and w. In the space V ⊗W , the operations of addition and mul-
tiplication by scalars are defined in the natural way. Elements of the tensor
product space are called tensors.

3The impossibility of this is proved in abstract algebra but I do not know the proof.
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1 Linear algebra without coordinates

Question: The set V ⊗W is a vector space. What is the zero vector in that
space?
Answer: Since V ⊗W is a vector space, the zero element 0 ∈ V ⊗W can

be obtained by multiplying any other element of V ⊗ W by the number 0.
So, according to Eq. (1.17), we have 0 = 0 (v ⊗ w) = (0v) ⊗ w = 0 ⊗ w =
0 ⊗ (0w) = 0 ⊗ 0. In other words, the zero element is represented by the
tensor 0 ⊗ 0. It will not cause confusion if we simply write 0 for this zero
tensor. �

Generally, one calls something a tensor if it belongs to a space that was
previously defined as a tensor product of some other vector spaces.

According to the above definition, we may perform calculations with the
tensor product expressions by expanding brackets or moving scalar factors,
as if ⊗ is a kind of multiplication. For example, if vi ∈ V and wi ∈W then

1

3
(v1 − v2) ⊗ (w1 − 2w2) =

1

3
v1 ⊗ w1 −

1

3
v2 ⊗ w1

− 2

3
v1 ⊗ w2 +

2

3
v2 ⊗ w2.

Note that we cannot simplify this expression any further, because by defini-
tion no other combinations of tensor products are equal except those specified
in Eqs. (1.17)–(1.19). This calculation illustrates that ⊗ is a formal symbol, so
in particular v ⊗w is not a new vector from V or from W but is a new entity,
an element of a new vector space that we just defined.

Question: The logic behind the operation ⊗ is still unclear. How could we
write the properties (1.17)–(1.19) if the operation ⊗ was not yet defined?
Answer: We actually define the operation ⊗ through these properties. In

other words, the object a⊗b is defined as an expression with which one may
perform certain manipulations. Here is a more formal definition of the tensor
product space. We first consider the space of all formal linear combinations

λ1v1 ⊗ w1 + ...+ λnvn ⊗ wn,

which is a very large vector space. Then we introduce equivalence relations
expressed by Eqs. (1.17)–(1.19). The space V ⊗ W is, by definition, the set
of equivalence classes of linear combinations with respect to these relations.
Representatives of these equivalence classes may be written in the form (1.16)
and calculations can be performed using only the axioms (1.17)–(1.19). �

Note that v⊗w is generally different from w⊗v because the vectors v and
w can belong to different vector spaces. Pedantically, one can also define the
tensor product space W ⊗ V and then demonstrate a canonical isomorphism
V ⊗W ∼= W ⊗ V .

Exercise: Prove that the spaces V ⊗W andW⊗V are canonically isomorphic.
Answer: A canonical isomorphism will map the expression v⊗w ∈ V ⊗W

into w ⊗ v ∈W ⊗ V . �

The representation of a tensor A ∈ V ⊗W in the form (1.16) is not unique,
i.e. there may be many possible choices of the vectors vj and wj that give the
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1.7 Tensor product of vector spaces

same tensor A. For example,

A ≡ v1 ⊗ w1 + v2 ⊗ w2 = (v1 − v2) ⊗ w1 + v2 ⊗ (w1 + w2) .

This is quite similar to the identity 2 + 3 = (2 − 1) + (3 + 1), except that in
this case we can simplify 2 + 3 = 5 while in the tensor product space no such
simplification is possible. I stress that two tensor expressions

∑

k vk⊗wk and
∑

k v′
k ⊗w′

k are equal only if they can be related by a chain of identities of the
form (1.17)–(1.19); such are the axioms of the tensor product.

1.7.1 First examples

Example 1: polynomials. Let V be the space of polynomials having a degree
≤ 2 in the variable x, and let W be the space of polynomials of degree ≤ 2 in
the variable y. We consider the tensor product of the elements p(x) = 1 + x
and q(y) = y2 − 2y. Expanding the tensor product according to the axioms,
we find

(1 + x) ⊗
(
y2 − 2y

)
= 1 ⊗ y2 − 1 ⊗ 2y + x⊗ y2 − x⊗ 2y.

Let us compare this with the formula we would obtain by multiplying the
polynomials in the conventional way,

(1 + x)
(
y2 − 2y

)
= y2 − 2y + xy2 − 2xy.

Note that 1 ⊗ 2y = 2 ⊗ y and x ⊗ 2y = 2x ⊗ y according to the axioms of
the tensor product. So we can see that the tensor product space V ⊗W has a
natural interpretation through the algebra of polynomials. The space V ⊗W
can be visualized as the space of polynomials in both x and y of degree at
most 2 in each variable. To make this interpretation precise, we can construct
a canonical isomorphism between the space V ⊗W and the space of polyno-
mials in x and y of degree at most 2 in each variable. The isomorphism maps
the tensor p(x) ⊗ q(y) to the polynomial p(x)q(y).
Example 2: R3 ⊗ C. Let V be the three-dimensional space R3, and let W be
the set of all complex numbers C considered as a vector space over R. Then
the tensor product of V and W is, by definition, the space of combinations of
the form

(x1, y1, z1) ⊗ (a1 + b1i) + (x2, y2, z2) ⊗ (a2 + b2i) + ...

Here “i” can be treated as a formal symbol; of course we know that i2 = −1,
but our vector spaces are over R and so we will not need to multiply complex
numbers when we perform calculations in these spaces. Since

(x, y, z) ⊗ (a+ bi) = (ax, ay, az) ⊗ 1 + (bx, by, bz) ⊗ i,

any element of R3 ⊗ C can be represented by the expression v1 ⊗ 1 + v2 ⊗ i,
where v1,2 ∈ R3. For brevity one can write such expressions as v1 + v2i. One
also writes R3 ⊗R C to emphasize the fact that it is a space over R. In other
words, R3 ⊗R C is the space of three-dimensional vectors “with complex co-
efficients.” This space is six-dimensional.
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1 Linear algebra without coordinates

Exercise: We can consider R3 ⊗R C as a vector space over C if we define the
multiplication by a complex number λ by λ(v ⊗ z) ≡ v ⊗ (λz) for v ∈ V and
λ, z ∈ C. Compute explicitly

λ (v1 ⊗ 1 + v2 ⊗ i) =?

Determine the dimension of the space R3 ⊗R C when viewed as a vector space
over C in this way.
Example 3: V ⊗ K is isomorphic to V . Since K is a vector space over itself,
we can consider the tensor product of V and K. However, nothing is gained:
the space V ⊗K is canonically isomorphic to V . This can be easily verified: an
element x of V ⊗K is by definition an expression of the form x = v1⊗λ1+...+
vn ⊗ λn, however, it follows from the axiom (1.17) that v1 ⊗ λ1 = (λ1v1) ⊗ 1,
therefore x = (λ1v1 + ...+ λnvn) ⊗ 1. Thus for any x ∈ V ⊗ K there exists
a unique v ∈ V such that x = v ⊗ 1. In other words, there is a canonical
isomorphism V → V ⊗ K which maps v into v ⊗ 1.

1.7.2 Example: Rm ⊗ Rn

Let {e1, ..., em} and {f1, ..., fn} be the standard bases in Rm and Rn respec-
tively. The vector space Rm ⊗Rn consists, by definition, of expressions of the
form

v1 ⊗ w1 + ...+ vk ⊗ wk =

k∑

i=1

vi ⊗ wi, vi ∈ Rm, wi ∈ Rn.

The vectors vi,wi can be decomposed as follows,

vi =

m∑

j=1

λijej , wi =

n∑

l=1

µilfl, (1.20)

where λij and µij are some coefficients. Then

k∑

i=1

vi ⊗ wi =
k∑

i=1





m∑

j=1

λijej



⊗
(

n∑

l=1

µilfl

)

=

m∑

j=1

n∑

l=1

(
k∑

i=1

λijµil

)

(ej ⊗ fl)

=

m∑

j=1

n∑

l=1

Cjlej ⊗ fl,

where Cjl ≡
∑k

i=1 λijµil is a certain set of numbers. In other words, an arbi-
trary element of Rm ⊗ Rn can be expressed as a linear combination of ej ⊗ fl.
In Sec. 1.7.3 (after some preparatory work) we will prove that the the set of
tensors

{ej ⊗ fl | 1 ≤ j ≤ m, 1 ≤ l ≤ n}
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is linearly independent and therefore is a basis in the space Rm⊗Rn. It follows
that the space Rm ⊗ Rn has dimension mn and that elements of Rm ⊗ Rn can
be represented by rectangular tables of components Cjl, where 1 ≤ j ≤ m,
1 ≤ l ≤ n. In other words, the space Rm⊗Rn is isomorphic to the linear space
of rectangular m × n matrices with coefficients from K. This isomorphism is
not canonical because the components Cjl depend on the choice of the bases
{ej} and {fj}.

1.7.3 Dimension of tensor product is the product of
dimensions

We have seen above that the dimension of a direct sum V ⊕W is the sum of
dimensions of V and of W . Now the analogous statement: The dimension of
a tensor product space V ⊗W is equal to dimV · dimW .

To prove this statement, we will explicitly construct a basis in V ⊗W out of
two given bases in V and in W . Throughout this section, we consider finite-
dimensional vector spaces V and W and vectors vj ∈ V , wj ∈W .
Lemma 1: a) If {v1, ...,vm} and {w1, ...,wn} are two bases in their respective
spaces then any element A ∈ V ⊗W can be expressed as a linear combination
of the form

A =

m∑

j=1

n∑

k=1

λjkvj ⊗ wk

with some coefficients λjk.
b) Any tensor A ∈ V ⊗ W can be written as a linear combination A =

∑

k ak ⊗ bk, where ak ∈ V and bk ∈ W , with at most min (m,n) terms in the
sum.
Proof: a) The required decomposition was given in Example 1.7.2.
b) We can group the n terms λjkwk into new vectors bj and obtain the

required formula with m terms:

A =

m∑

j=1

n∑

k=1

λjkvj ⊗ wk =

m∑

j=1

vj ⊗ bj , bj ≡
n∑

k=1

λjkwk.

I will call this formula the decomposition of the tensor A in the basis {vj}.
Since a similar decomposition with n terms exists for the basis {wk}, it fol-
lows that A has a decomposition with at most min (m,n) terms (not all terms
in the decomposition need to be nonzero). �

We have proved that the set {vj ⊗ wk} allows us to express any tensor A
as a linear combination; in other words, the set

{vj ⊗ wk | 1 ≤ j ≤ m, 1 ≤ k ≤ n}

spans the space V ⊗ W . This set will be a basis in V ⊗ W if it is linearly
independent, which we have not yet proved. This is a somewhat subtle point;
indeed, how do we show that there exists no linear dependence, say, of the
form

λ1v1 ⊗ w1 + λ2v2 ⊗ w2 = 0
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1 Linear algebra without coordinates

with some nonzero coefficients λi? Is it perhaps possible to juggle tensor
products to obtain such a relation? The answer is negative, but the proof is
a bit circumspect. We will use covectors from V ∗ in a nontraditional way,
namely not as linear maps V → K but as maps V ⊗W →W .
Lemma 2: If f∗ ∈ V ∗ is any covector, we define the map f∗ : V ⊗W → W
(tensors into vectors) by the formula

f∗
(∑

k

vk ⊗ wk

)
≡
∑

k

f∗ (vk)wk. (1.21)

Then this map is a linear map V ⊗W →W .
Proof: The formula (1.21) defines the map explicitly (and canonically!). It

is easy to see that any linear combinations of tensors are mapped into the
corresponding linear combinations of vectors,

f∗ (vk ⊗ wk + λv′
k ⊗ w′

k) = f∗ (vk)wk + λf∗ (v′
k)w′

k.

This follows from the definition (1.21) and the linearity of the map f∗. How-
ever, there is one potential problem: there exist many representations of an
element A ∈ V ⊗W as an expression of the form

∑

k vk ⊗ wk with different
choices of vk,wk. Thus we need to show that the map f∗ is well-defined by
Eq. (1.21), i.e. that f∗(A) is always the same vector regardless of the choice of
the vectors vk and wk used to represent A as A =

∑

k vk ⊗ wk. Recall that
different expressions of the form

∑

k vk ⊗ wk can be equal as a consequence
of the axioms (1.17)–(1.19).

In other words, we need to prove that a tensor equality
∑

k

vk ⊗ wk =
∑

k

v′
k ⊗ w′

k (1.22)

entails
f∗
(∑

k

vk ⊗ wk

)
= f∗

(∑

k

v′
k ⊗ w′

k

)
.

To prove this, we need to use the definition of the tensor product. Two expres-
sions in Eq. (1.22) can be equal only if they are related by a chain of identities
of the form (1.17)–(1.19), therefore it is sufficient to prove that the map f∗

transforms both sides of each of those identities into the same vector. This is
verified by explicit calculations, for example we need to check that

f∗ (λv ⊗ w) = λf∗ (v ⊗ w) ,

f∗ [(v1 + v2) ⊗ w] = f∗ (v1 ⊗ w) + f∗ (v2 ⊗ w) ,

f∗ [v ⊗ (w1 + w2)] = f∗ (v ⊗ w1) + f∗ (v ⊗ w2) .

These simple calculations look tautological, so please check that you can do
them and explain why they are necessary for this proof. �

Lemma 3: If {v1, ...,vm} and {u1, ...,un} are two linearly independent sets
in their respective spaces then the set

{vj ⊗ wk} ≡ {v1 ⊗ w1,v1 ⊗ w2, ...,vm ⊗ wn−1,vm ⊗ wn}
is linearly independent in the space V ⊗W .
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1.7 Tensor product of vector spaces

Proof: We need to prove that a vanishing linear combination

m∑

j=1

n∑

k=1

λjkvj ⊗ wk = 0 (1.23)

is possible only if all λjk = 0. Let us choose some fixed value j1; we will now
prove that λj1k = 0 for all k. By the result of Exercise 1 in Sec. 1.6 there exists
a covector f∗ ∈ V ∗ such that f∗ (vj) = δj1j for j = 1, ..., n. Then we apply the
map f∗ : V ⊗W → W defined in Lemma 1 to Eq. (1.23). On the one hand, it
follows from Eq. (1.23) that

f∗
[

m∑

j=1

n∑

k=1

λjkvj ⊗ wk

]
= f∗ (0) = 0.

On the other hand, by definition of the map f∗ we have

f∗
[

m∑

j=1

n∑

k=1

λjkvj ⊗ wk

]
=

m∑

j=1

n∑

k=1

λjkf
∗ (vj)wk

=

m∑

j=1

n∑

k=1

λjkδj1jwk =

n∑

k=1

λj1kwk.

Therefore
∑

k λj1kwk = 0. Since the set {wk} is linearly independent, we
must have λj1k = 0 for all k = 1, ..., n. �

Now we are ready to prove the main statement of this section.

Theorem: If V and W are finite-dimensional vector spaces then

dim (V ⊗W ) = dimV · dimW.

Proof: By definition of dimension, there exist linearly independent sets of
m ≡ dimV vectors in V and of n ≡ dimW vectors in W , and by the basis
theorem these sets are bases in V and W respectively. By Lemma 1 the set of
mn elements {vj ⊗ wk} spans the space V ⊗W , and by Lemma 3 this set is
linearly independent. Therefore this set is a basis. Hence, there are no linearly
independent sets of mn+ 1 elements in V ⊗W , so dim (V ⊗W ) = mn. �

1.7.4 Higher-rank tensor products

The tensor product of several spaces is defined similarly, e.g. U ⊗ V ⊗W is
the space of expressions of the form

u1 ⊗ v1 ⊗ w1 + ...+ un ⊗ vn ⊗ wn, ui,vi,wi ∈ V.

Alternatively (and equivalently) one can define the space U ⊗ V ⊗W as the
tensor product of the spaces U ⊗ V and W .

Exercise∗: Prove that (U ⊗ V ) ⊗W ∼= U ⊗ (V ⊗W ).
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1 Linear algebra without coordinates

Definition: If we only work with one space V and if all other spaces are
constructed out of V and V ∗ using the tensor product, then we only need
spaces of the form

V ⊗ ...⊗ V
︸ ︷︷ ︸

m

⊗V ∗ ⊗ ...⊗ V ∗
︸ ︷︷ ︸

n

.

Elements of such spaces are called tensors of rank (m,n). For example, vec-
tors v ∈ V have rank (1, 0), covectors f∗ ∈ V ∗ have rank (0, 1), tensors from
V ⊗V ∗ have rank (1, 1), tensors from V ⊗V have rank (2, 0), and so on. Scalars
from K have rank (0, 0).

In many applications, the spaces V and V ∗ are identified (e.g. using a scalar
product; see below). In that case, the rank is reduced to a single number —
the sum of m and n. Thus, in this simplified counting, tensors from V ⊗ V ∗

as well as tensors from V ⊗ V have rank 2.

1.7.5 * Distributivity of tensor product

We have two operations that build new vector spaces out of old ones: the
direct sum V ⊕ W and the tensor product V ⊗ W . Is there something like
the formula (U ⊕ V ) ⊗ W ∼= (U ⊗W ) ⊕ (V ⊗W )? The answer is positive.
I will not need this construction below; this is just another example of how
different spaces are related by a canonical isomorphism.

Statement: The spaces (U ⊕ V )⊗W and (U ⊗W )⊕ (V ⊗W ) are canonically
isomorphic.
Proof: An element (u,v) ⊗ w ∈ (U ⊕ V ) ⊗ W is mapped into the pair

(u ⊗ w,v ⊗ w) ∈ (U ⊗W ) ⊕ (V ⊗W ). It is easy to see that this map is a
canonical isomorphism. I leave the details to you. �

Exercise: Let U , V , andW be some vector spaces. Demonstrate the following
canonical isomorphisms:

(U ⊕ V )
∗ ∼= U∗ ⊕ V ∗,

(U ⊗ V )
∗ ∼= U∗ ⊗ V ∗.

1.8 Linear maps and tensors

The tensor product construction may appear an abstract plaything at this
point, but in fact it is a universal tool to describe linear maps.

We have seen that the set of all linear operators Â : V → V is a vector space
because one can naturally define the sum of two operators and the product
of a number and an operator. This vector space is called the space of endo-
morphisms of V and denoted by End V .

In this section I will show that linear operators can be thought of as ele-
ments of the space V ⊗ V ∗. This gives a convenient way to represent a lin-
ear operator by a coordinate-free formula. Later we will see that the space
Hom (V,W ) of linear maps V →W is canonically isomorphic to W ⊗ V ∗.
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1.8 Linear maps and tensors

1.8.1 Tensors as linear operators

First, we will show that any tensor from the space V ⊗V ∗ acts as a linear map
V → V .

Lemma: A tensor A ∈ V ⊗ V ∗ expressed as

A ≡
k∑

j=1

vj ⊗ f∗j

defines a linear operator Â : V → V according to the formula

Âx ≡
k∑

j=1

f∗j (x)vj . (1.24)

Proof: Compare this linear map with the linear map defined in Eq. (1.21),
Lemma 2 of Sec. 1.7.3. We need to prove two statements:

(1) The transformation is linear, Â(x + λy) = Âx + λÂy.
(2) The operator Â does not depend on the decomposition of the tensor

A using particular vectors vj and covectors f∗j : two decompositions of the
tensor A,

A =

k∑

j=1

vj ⊗ f∗j =

l∑

j=1

wj ⊗ g∗
j ,

yield the same operator,

Âx =

k∑

j=1

f∗j (x)vj =

l∑

j=1

g∗
j (x)wj , ∀x.

The first statement, Â (x + λy) = Âx + λÂy, follows from the linearity of
f∗j as a map V → K and is easy to verify by explicit calculation:

Â(x + λy) =
k∑

j=1

f∗j (x + λy)vj

=

k∑

j=1

f∗j (x)vj + λ

k∑

j=1

f∗j (y)vj

= Âx + λÂy.

The second statement is proved using the axioms (1.17)–(1.19) of the tensor
product. Two different expressions for the tensor A can be equal only if they
are related through the axioms (1.17)–(1.19). So it suffices to check that the

operator Â remains unchanged when we use each of the three axioms to re-

place
∑k

j=1 vj ⊗ f∗j by an equivalent tensor expression. Let us check the first
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1 Linear algebra without coordinates

axiom: We need to compare the action of
∑

j (uj + vj)⊗ f∗j on a vector x ∈ V
and the action of the sum of

∑

j uj ⊗ f∗j and
∑

j vj ⊗ f∗j on the same vector:

Âx =

[
∑

j

(uj + vj) ⊗ f∗j

]

x

=
∑

j

f∗j (x) (uj + vj)

=

[
∑

j

uj ⊗ f∗j

]

x +

[
∑

j

vj ⊗ f∗j

]

x.

The action of Â on x remains unchanged for every x, which means that the

operator Â itself is unchanged. Similarly, we (more precisely, you) can check

directly that the other two axioms also leave Â unchanged. It follows that the

action of Â on a vector x, as defined by Eq. (1.24), is independent of the choice
of representation of the tensor A through vectors vj and covectors f∗j . �

Question: I am wondering what kind of operators correspond to tensor ex-
pressions. For example, take the single-term tensor A = v ⊗ w∗. What is the

geometric meaning of the corresponding operator Â?

Answer: Let us calculate: Âx = w∗ (x)v, i.e. the operator Â acts on any
vector x ∈ V and produces a vector that is always proportional to the fixed

vector v. Hence, the image of the operator Â is the one-dimensional subspace

spanned by v. However, Â is not necessarily a projector because in general

ÂÂ 6= Â:

Â(Âx) = w∗ (v)w∗ (x)v 6= w∗ (x)v, unless w∗ (v) = 1.

Exercise 1: An operator Â is given by the formula

Â = 1̂V + λv ⊗ w∗,

where λ ∈ K, v ∈ V , w∗ ∈ V ∗. Compute Âx for any x ∈ V .

Answer: Âx = x + λw∗ (x)v.
Exercise 2: Let n ∈ V and f∗ ∈ V ∗ such that f∗(n) = 1. Show that the
operator P̂ ≡ 1̂V − n ⊗ f∗ is a projector onto the subspace annihilated by f∗.

Hint: You need to show that P̂ P̂ = P̂ ; that any vector x annihilated by f∗

is invariant under P̂ (i.e. if f∗(x) = 0 then P̂x = x); and that for any vector x,

f∗(P̂x) = 0.

1.8.2 Linear operators as tensors

We have seen that any tensor A ∈ V ⊗ V ∗ has a corresponding linear map in

End V . Now conversely, let Â ∈ End V be a linear operator and let {v1, ...,vn}
be a basis in V . We will now find such covectors f∗k ∈ V ∗ that the tensor
∑

k vk ⊗ f∗k corresponds to Â. The required covectors f∗k ∈ V ∗ can be defined
by the formula

f∗k (x) ≡ v∗
k(Âx), ∀x ∈ V,
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where {v∗
k} is the dual basis. With this definition, we have

[ n∑

k=1

vk ⊗ f∗k

]

x =

n∑

k=1

f∗k (x)vk =

n∑

k=1

v∗
k(Âx)vk = Âx.

The last equality is based on the formula

n∑

k=1

v∗
k (y)vk = y,

which holds because the components of a vector y in the basis {vk} are v∗
k (y).

Then it follows from the definition (1.24) that
[∑

k vk ⊗ f∗k
]
x = Âx.

Let us look at this construction in another way: we have defined a map
ˆ : V ⊗ V ∗ → End V whereby any tensor A ∈ V ⊗ V ∗ is transformed into a

linear operator Â ∈ End V .

Theorem: (1) There is a canonical isomorphism A → Â between the spaces
V ⊗ V ∗ and End V . In other words, linear operators are canonically (without
choosing a basis) and uniquely mapped into tensors of the form

v1 ⊗ f∗1 + ...+ vn ⊗ f∗n.

Conversely, a tensor
∑n

k=1 vk ⊗ f∗k is mapped into the operator Â defined by
Eq. (1.24).

(2) It is possible to write a tensor A as a sum of not more than N ≡ dimV
terms,

A =
n∑

k=1

vk ⊗ f∗k , n ≤ N.

Proof: (1) To prove that a map is an isomorphism of vector spaces, we need
to show that this map is linear and bijective (one-to-one). Linearity easily
follows from the definition of the map ˆ: if A,B ∈ V ⊗ V ∗ are two tensors

then A + λB ∈ V ⊗ V ∗ is mapped into Â + λB̂. To prove the bijectivity,

we need to show that for any operator Â there exists a corresponding tensor
A =

∑

k vk ⊗ f∗k (this we have already shown above), and that two different

tensors A 6= B cannot be mapped into the same operator Â = B̂. If two

different tensorsA 6= B were mapped into the same operator Â = B̂, it would

follow from the linearity of ˆ that Â−B = Â − B̂ = 0, in other words, that

a nonzero tensor C ≡ A − B 6= 0 is mapped into the zero operator, Ĉ = 0.
We will now arrive to a contradiction. The tensor C has a decomposition C =
∑

k vk ⊗ c∗k in the basis {vk}. Since C 6= 0, it follows that at least one covector
c∗k is nonzero. Suppose c∗1 6= 0; then there exists at least one vector x ∈ V

such that c∗1 (x) 6= 0. We now act on x with the operator Ĉ: by assumption,

Ĉ = Â− B̂ = 0, but at the same time

0 = Ĉx ≡
∑

k

vkc
∗
k (x) = v1c1 (x) + ...
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This is a contradiction because a linear combination of vectors vk with at least
one nonzero coefficient cannot vanish (the vectors {vk} are a basis).

Note that we did use a basis {vk} in the construction of the map End V →
V ⊗ V ∗, when we defined the covectors f∗k . However, this map is canonical
because it is the same map for all choices of the basis. Indeed, if we choose
another basis {v′

k} then of course the covectors f ′∗k will be different from f∗k ,
but the tensor A will remain the same,

A =

n∑

k=1

vk ⊗ f∗k = A′ =

n∑

k=1

v′
k ⊗ f ′∗k ∈ V ⊗ V ∗,

because (as we just proved) different tensors are always mapped into differ-
ent operators.

(2) This follows from Lemma 1 of Sec. 1.7.3. �

From now on, I will not use the map ˆ explicitly. Rather, I will simply not
distinguish between the spaces End V and V ⊗ V ∗. I will write things like

v ⊗ w∗ ∈ End V or Â = x ⊗ y∗. The space implied in each case will be clear
from the context.

1.8.3 Examples and exercises

Example 1: The identity operator. How to represent the identity operator 1̂V

by a tensor A ∈ V ⊗ V ∗?
Choose a basis {vk} in V ; this choice defines the dual basis {v∗

k} in V ∗ (see
Sec. 1.6) such that v∗

j (vk) = δjk. Now apply the construction of Sec. 1.8.2 to
find

A =

n∑

k=1

vk ⊗ f∗k , f∗k (x) = v∗
k

(
1̂V x

)
= v∗

k (x) ⇒ f∗k = v∗
k.

Therefore

1̂V =

n∑

k=1

vk ⊗ v∗
k. (1.25)

Question: The identity operator 1̂V is defined canonically, i.e. independently
of a basis in V ; it is simply the transformation that does not change any vec-
tors. However, the tensor representation (1.25) seems to depend on the choice
of a basis {vk}. What is going on? Is the tensor 1̂ ∈ V ⊗ V ∗ defined canoni-
cally?
Answer: Yes. The tensor

∑

k vk ⊗ v∗
k is the same tensor regardless of which

basis {vk} we choose; of course the correct dual basis {v∗
k} must be used. In

other words, for any two bases {vk} and {ṽk}, and with {v∗
k} and {ṽ∗

k} being
the corresponding dual bases, we have the tensor equality

∑

k

vk ⊗ v∗
k =

∑

k

ṽk ⊗ ṽ∗
k.

We have proved this in Theorem 1.8.2 when we established that two different
tensors are always mapped into different operators by the map .̂ One can say
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that
∑

k vk ⊗ v∗
k is a canonically defined tensor in V ⊗ V ∗ since it is the unique

tensor corresponding to the canonically defined identity operator 1̂V . Recall
that a given tensor can be written as a linear combination of tensor products
in many different ways! Here is a worked-out example:

Let {v1,v2} be a basis in a two-dimensional space; let {v∗
1,v

∗
2} be the cor-

responding dual basis. We can choose another basis, e.g.

{w1,w2} ≡ {v1 + v2,v1 − v2} .

Its dual basis is (verify this!)

w∗
1 =

1

2
(v∗

1 + v∗
2) , w∗

2 =
1

2
(v∗

1 − v∗
2) .

Then we compute the identity tensor:

1̂ = w1 ⊗ w∗
1 + w2 ⊗ w∗

2 = (v1 + v2) ⊗
1

2
(v∗

1 + v∗
2)

+ (v1 − v2) ⊗
1

2
(v∗

1 − v∗
2)

= v1 ⊗ v∗
1 + v2 ⊗ v∗

2.

The tensor expressions w1 ⊗ w∗
1 + w2 ⊗ w∗

2 and v1 ⊗ v∗
1 + v2 ⊗ v∗

2 are equal
because of distributivity and linearity of tensor product, i.e. due to the axioms
of the tensor product.
Exercise 1: Matrices as tensors. Now suppose we have a matrix Ajk that

specifies the linear operator Â in a basis {ek}. Which tensor A ∈ V ⊗ V ∗

corresponds to this operator?
Answer: A =

∑n
j,k=1Ajkej ⊗ e∗k.

Exercise 2: Product of linear operators. Suppose Â =
∑n

k=1 vk ⊗ f∗k and

B̂ =
∑n

l=1 wl ⊗ g∗
l are two operators. Obtain the tensor representation of the

product ÂB̂.

Answer: ÂB̂ =
∑n

k=1

∑n
l=1 f∗k (wl)vk ⊗ g∗

l .

Exercise 3: Verify that 1̂V 1̂V = 1̂V by explicit computation using the tensor
representation (1.25).

Hint: Use the formula v∗
j (vk) = δjk.

Exercise 4: Eigenvalues. Suppose Â = α1̂V +u⊗ f∗ and B̂ = u⊗ f∗ +v⊗g∗,
where u,v ∈ V are a linearly independent set, α ∈ K, and f∗,g∗ ∈ V ∗ are
nonzero but such that f∗(v) = 0 and g∗(u) = 0 while f∗(u) 6= 0 and g∗(v) 6= 0.
Determine the eigenvalues and eigenvectors of the operators Â and B̂.
Solution: (I give a solution because it is an instructive calculation showing

how to handle tensors in the index-free approach. Note that the vectors u,v
and the covectors f∗,g∗ are “given,” which means that numbers such as f∗(u)
are known constants.)

For the operator Â, the eigenvalue equation Âx = λx yields

αx + uf∗(x) = λx.
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1 Linear algebra without coordinates

Either λ = α and then f∗ (x) = 0, or λ 6= α and then x is proportional to u;
substituting x = u into the above equation, we find λ = α+ f∗ (u). Therefore

the operator Â has two eigenvalues, λ = α and λ = α+f∗ (u). The eigenspace
with the eigenvalue λ = α is the set of all x ∈ V such that f∗ (x) = 0. The
eigenspace with the eigenvalue λ = α+f∗ (u) is the set of vectors proportional
to u. (It might happen that f∗ (u) = 0; then there is only one eigenvalue,
λ = α, and no second eigenspace.)

For the operator B̂, the calculations are longer. Since {u,v} is a linearly
independent set, we may add some vectors ek to that set in order to com-
plete it to a basis {u,v, e3, ..., eN}. It is convenient to adapt this basis to
the given covectors f∗ and g∗; namely, it is possible to choose this basis
such that f∗(ek) = 0 and g∗(ek) = 0 for k = 3, ..., N . (We may replace
ek 7→ ek − aku − bkv with some suitable constants ak, bk to achieve this,
using the given properties f∗(v) = 0, g∗(u) = 0, f∗(u) 6= 0, and g∗(v) 6= 0.)
Suppose x is an unknown eigenvector with the eigenvalue λ; then x can be

expressed as x = αu + βv +
∑N

k=3 ykek in this basis, where α, β, and yk are
unknown constants. Our goal is therefore to determine α, β, yk, and λ. De-

note y ≡
∑N

k=3 ykek and transform the eigenvalue equation using the given
conditions f∗(v) = g∗(u) = 0 as well as the properties f∗(y) = g∗(y) = 0,

B̂x − λx =u (αf∗ (u) + βf∗ (v) + f∗ (y) − αλ)

+ v (αg∗ (u) + βg∗ (v) + g∗ (y) − βλ) − λy

=u (αf∗ (u) − αλ) + v (βg∗ (v) − βλ) − λy = 0.

The above equation says that a certain linear combination of the vectors u,
v, and y is zero. If y 6= 0, the set {u,v,y} is linearly independent since
{u,v, e3, ..., eN} is a basis (see Exercise 1 in Sec. 1.1.4). Then the linear combi-
nation of the three vectors u, v, and y can be zero only if all three coefficients
are zero. On the other hand, if y = 0 then we are left only with two coeffi-
cients that must vanish. Thus, we can proceed by considering separately the
two possible cases, y 6= 0 and y = 0.

We begin with the case y = 0. In this case, B̂x− λx = 0 is equivalent to the
vanishing of the linear combination

u (αf∗(u) − αλ) + v (βg∗(v) − βλ) = 0.

Since {u,v} is linearly independent, this linear combination can vanish only
when both coefficients vanish:

α (f∗ (u) − λ) = 0,

β (g∗ (v) − λ) = 0.

This is a system of two linear equations for the two unknowns α and β; when
we solve it, we will determine the possible eigenvectors x = αu+ βv and the
corresponding eigenvalues λ. Note that we are looking for nonzero solutions,
so α and β cannot be both zero. If α 6= 0, we must have λ = f∗(u). If f∗(u) 6=
g∗(v), the second equation forces β = 0. Otherwise, any β is a solution.
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1.8 Linear maps and tensors

Likewise, if β 6= 0 then we must have λ = g∗(v). Therefore we obtain the
following possibilities:

a) f∗(u) 6= g∗(v), two nonzero eigenvalues λ1 = f∗(u) with eigenvector
x1 = αu (with any α 6= 0) and λ2 = g∗(v) with eigenvector x2 = βv (with
any β 6= 0).

b) f∗(u) = g∗(v), one nonzero eigenvalue λ = f∗(u) = g∗(v), two-dimen-
sional eigenspace with eigenvectors x = αu + βv where at least one of α, β is
nonzero.

Now we consider the case y 6= 0 (recall that y is an unknown vector from
the subspace Span {e3, ..., eN}). In this case, we obtain a system of linear
equations for the set of unknowns (α, β, λ,y):

αf∗ (u) − αλ = 0,

βg∗ (v) − βλ = 0,

−λ = 0.

This system is simplified, using λ = 0, to

αf∗ (u) = 0,

βg∗ (v) = 0.

Since f∗(u) 6= 0 and g∗(v) 6= 0, the only solution is α = β = 0. Hence, the
eigenvector is x = y for any nonzero y ∈ Span {e3, ..., eN}. In other words,
there is an (N − 2)-dimensional eigenspace corresponding to the eigenvalue
λ = 0. �

Remark: The preceding exercise serves to show that calculations in the coord-
inate-free approach are not always short! (I even specified some additional
constraints on u,v, f∗,g∗ in order to make the solution shorter. Without these
constraints, there are many more cases to be considered.) The coordinate-free
approach does not necessarily provide a shorter way to find eigenvalues of
matrices than the usual methods based on the evaluation of determinants.
However, the coordinate-free method is efficient for the operator Â. The end
result is that we are able to determine eigenvalues and eigenspaces of opera-

tors such as Â and B̂, regardless of the number of dimensions in the space, by
using the special structure of these operators, which is specified in a purely
geometric way.

Exercise 5: Find the inverse operator to Â = 1̂V + u ⊗ f∗, where u ∈ V ,

f∗ ∈ V ∗. Determine when Â−1 exists.

Answer: The inverse operator exists only if f∗(u) 6= −1: then

Â−1 = 1̂V − 1

1 + f∗(u)
u ⊗ f∗.

When f∗(u) = −1, the operator Â has an eigenvector u with eigenvalue 0, so

Â−1 cannot exist.
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1.8.4 Linear maps between different spaces

So far we have been dealing with linear operators that map a space V into
itself; what about linear maps V →W between different spaces? If we replace
V ∗ by W ∗ in many of our definitions and proofs, we will obtain a parallel set
of results for linear maps V →W .

Theorem 1: Any tensor A ≡ ∑k
j=1 wj ⊗ f∗j ∈ W ⊗ V ∗ acts as a linear map

V →W according to the formula

Ax ≡
k∑

j=1

f∗j (x)wj .

The space Hom (V,W ) of all linear operators V → W is canonically isomor-
phic to the space W ⊗ V ∗.
Proof: Left as an exercise since it is fully analogous to previous proofs.

Example 1: Covectors as tensors. We know that the number field K is a vec-
tor space over itself and V ∼= V ⊗K. Therefore linear maps V → K are tensors
from V ∗ ⊗ K ∼= V ∗, i.e. covectors, in agreement with the definition of V ∗.
Example 2: If V and W are vector spaces, what are tensors from V ∗ ⊗W ∗?

They can be viewed as (1) linear maps from V into W ∗, (2) linear maps
from W into V ∗, (3) linear maps from V ⊗W into K. These possibilities can
be written as canonical isomorphisms:

V ∗ ⊗W ∗ ∼= Hom (V,W ∗) ∼= Hom (W,V ∗) ∼= Hom (V ⊗W,K) .

Exercise 1: How can we interpret the space V ⊗ V ⊗ V ∗? Same question for
the space V ∗ ⊗ V ∗ ⊗ V ⊗ V .
Answer: In many different ways:

V ⊗ V ⊗ V ∗ ∼= Hom (V, V ⊗ V )
∼= Hom (End V, V ) ∼= Hom (V ∗,End V ) ∼= ... and

V ∗ ⊗ V ∗ ⊗ V ⊗ V ∼= Hom (V, V ∗ ⊗ V ⊗ V )
∼= Hom (V ⊗ V, V ⊗ V ) ∼= Hom (End V,End V ) ∼= ...

For example, V ⊗ V ⊗ V ∗ can be visualized as the space of linear maps from
V ∗ to linear operators in V . The action of a tensor u ⊗ v ⊗ w∗ ∈ V ⊗ V ⊗ V ∗

on a covector f∗ ∈ V ∗ may be defined either as f∗ (u)v ⊗ w∗ ∈ V ⊗ V ∗ or
alternatively as f∗ (v)u ⊗ w∗ ∈ V ⊗ V ∗. Note that these two definitions are
not equivalent, i.e. the same tensors are mapped to different operators. In each
case, one of the copies of V (from V ⊗ V ⊗ V ∗) is “paired up” with V ∗.
Question: We have seen in the proof of Lemma 1 in Sec. 1.7.3 that covectors
f∗ ∈ V ∗ act as linear maps V ⊗ W → W . However, I am now sufficiently
illuminated to know that linear maps V ⊗W → W are elements of the space
W ⊗W ∗ ⊗ V ∗ and not elements of V ∗. How can this be reconciled?
Answer: There is an injection map V ∗ → W ⊗ W ∗ ⊗ V ∗ defined by the

formula f∗ → 1̂W ⊗ f∗, where 1̂W ∈ W ⊗W ∗ is the identity operator. Since
1̂W is a canonically defined element ofW ⊗W ∗, the map is canonical (defined
without choice of basis, i.e. geometrically). Thus covectors f∗ ∈ V ∗ can be
naturally considered as elements of the space Hom (V ⊗W,W ).
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1.8 Linear maps and tensors

Question: The space V ⊗ V ∗ can be interpreted as End V , as End V ∗, or as
Hom (V ⊗ V ∗,K). This means that one tensor A ∈ V ⊗ V ∗ represents an
operator in V , an operator in V ∗, or a map from operators into numbers.
What is the relation between all these different interpretations of the tensorA?
For example, what is the interpretation of the identity operator 1̂V ∈ V ⊗ V ∗

as an element of Hom (V ⊗ V ∗,K)?
Answer: The identity tensor 1̂V represents the identity operator in V and in

V ∗. It also represents the following map V ⊗ V ∗ → K,

1̂V : v ⊗ f∗ 7→ f∗ (v) .

This map applied to an operator Â ∈ V ⊗ V ∗ yields the trace of that operator
(see Sec. 3.8).

The definition below explains the relation between operators in V and op-
erators in V ∗ represented by the same tensor.

Definition: If Â : V → W is a linear map then the transposed operator ÂT :
W ∗ → V ∗ is the map defined by

(ÂT f∗) (v) ≡ f∗(Âv), ∀v ∈ V, ∀f∗ ∈W ∗. (1.26)

In particular, this defines the transposed operator ÂT : V ∗ → V ∗ given an

operator Â : V → V .
Remark: The above definition is an example of “mathematical style”: I just
wrote formula (1.26) and left it for you to digest. In case you have trouble

with this formula, let me translate: The operator ÂT is by definition such that

it will transform an arbitrary covector f∗ ∈ W ∗ into a new covector (ÂT f∗) ∈
V ∗, which is a linear function defined by its action on vectors v ∈ V . The
formula says that the value of that linear function applied to an arbitrary

vector v should be equal to the number f∗(Âv); thus we defined the action of

the covector ÂT f∗ on any vector v. Note how in the formula (ÂT f∗) (v) the
parentheses are used to show that the first object is acting on the second.

Since we have defined the covector ÂT f∗ for any f∗ ∈ W ∗, it follows that

we have thereby defined the operator ÂT acting in the spaceW ∗ and yielding
a covector from V ∗. Please read the formula again and check that you can
understand it. The difficulty of understanding equations such as Eq. (1.26)
is that one needs to keep in mind all the mathematical notations introduced
previously and used here, and one also needs to guess the argument implied
by the formula. In this case, the implied argument is that we will define a new

operator ÂT if we show, for any f∗ ∈ W ∗, how the new covector (ÂT f∗) ∈ V ∗

works on any vector v ∈ V . Only after some practice with such arguments
will it become easier to read mathematical definitions. �

Note that the transpose map ÂT is defined canonically (i.e. without choos-

ing a basis) through the original map Â.

Question: How to use this definition when the operator Â is given? Eq. (1.26)

is not a formula that gives ÂT f∗ directly; rather, it is an identity connecting
some values for arbitrary v and f∗.
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Answer: In order to use this definition, we need to apply ÂT f∗ to an arbi-
trary vector v and transform the resulting expression. We could also compute

the coefficients of the operator ÂT in some basis.
Exercise 2: If A =

∑

k wk ⊗ f∗k ∈W ⊗V ∗ is a linear map V →W , what is the
tensor representation of its transpose AT ? What is its matrix representation
in a suitable basis?
Answer: The transpose operator AT maps W ∗ → V ∗, so the corresponding

tensor is AT =
∑

k f∗k ⊗ wk ∈ V ∗ ⊗W . Its tensor representation consists of
the same vectors wk ∈ W and covectors f∗k ∈ V ∗ as the tensor representation
of A. The matrix representation of AT is the transposed matrix of A if we use
the same basis {ej} and its dual basis

{
e∗j
}

. �

An important characteristic of linear operators is the rank. (Note that we
have already used the word “rank” to denote the degree of a tensor product;
the following definition presents a different meaning of the word “rank.”)

Definition: The rank of a linear map Â : V → W is the dimension of the

image subspace im Â ⊂ W . (Recall that im Â is a linear subspace of W that

contains all vectors w ∈W expressed as w = Âv with some v ∈ V .) The rank

may be denoted by rank Â ≡ dim(im Â).

Theorem 2: The rank of Â is the smallest number of terms necessary to write

an operator Â : V → W as a sum of single-term tensor products. In other

words, the operator Â can be expressed as

Â =

rank Â∑

k=1

wk ⊗ f∗k ∈W ⊗ V ∗,

with suitably chosen wk ∈W and f∗k ∈ V ∗, but not as a sum of fewer terms.

Proof: We know that Â can be written as a sum of tensor product terms,

Â =
n∑

k=1

wk ⊗ f∗k , (1.27)

where wk ∈W , f∗k ∈ V ∗ are some vectors and covectors, and n is some integer.
There are many possible choices of these vectors and the covectors. Let us
suppose that Eq. (1.27) represents a choice such that n is the smallest possible

number of terms. We will first show that n is not smaller than the rank of Â;
then we will show that n is not larger than the rank of Â.

If n is the smallest number of terms, the set {w1, ...,wn} must be linearly
independent, or else we can reduce the number of terms in the sum (1.27). To
show this, suppose that w1 is equal to a linear combination of other wk,

w1 =
n∑

k=2

λkwk,

then we can rewrite Â as

Â = w1 ⊗ f∗1 +

n∑

k=2

wk ⊗ f∗k =

n∑

k=2

wk ⊗ (f∗k + λkf
∗
1 ) ,
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1.8 Linear maps and tensors

reducing the number of terms from n to n− 1. Since by assumption the num-
ber of terms cannot be made less than n, the set {wk} must be linearly inde-
pendent. In particular, the subspace spanned by {wk} is n-dimensional. (The
same reasoning shows that the set {f∗k} must be also linearly independent,
but we will not need to use this.)

The rank of Â is the dimension of the image of Â; let us denotem ≡ rank Â.

It follows from the definition of the map Â that for any v ∈ V , the image Âv

is a linear combination of the vectors wk,

Âv =

n∑

k=1

f∗k (v)wk.

Therefore, them-dimensional subspace imÂ is contained within the n-dimen-
sional subspace Span {w1, ...,wn}, so m ≤ n.

Now, we may choose a basis {b1, ...,bm} in the subspace imÂ; then for
every v ∈ V we have

Âv =

m∑

i=1

βibi

with some coefficients βi that are uniquely determined for each vector v; in
other words, βi are functions of v. It is easy to see that the coefficients βi are
linear functions of the vector v since

Â(v + λu) =

m∑

i=1

(βi + λαi)bi

if Âu =
∑m

i=1 αibi. Hence there exist some covectors g∗
i such that βi = g∗

i (v).

It follows that we are able to express Â as the tensor
∑m

i=1 bi ⊗ g∗
i using m

terms. Since the smallest possible number of terms is n, we must havem ≥ n.

We have shown that m ≤ n and m ≥ n, therefore n = m = rank Â. �

Corollary: The rank of a map Â : V →W is equal to the rank of its transpose

ÂT : W ∗ → V ∗.
Proof: The maps Â and ÂT are represented by the same tensor from the

space W ⊗ V ∗. Since the rank is equal to the minimum number of terms

necessary to express that tensor, the ranks of Â and ÂT always coincide. �

We conclude that tensor product is a general construction that represents
the space of linear maps between various previously defined spaces. For ex-
ample, matrices are representations of linear maps from vectors to vectors;
tensors from V ∗ ⊗ V ⊗ V can be viewed as linear maps from matrices to vec-
tors, etc.
Exercise 3: Prove that the tensor equality a⊗ a + b⊗b = v⊗w where a 6= 0
and b 6= 0 can hold only when a = λb for some scalar λ.

Hint: If a 6= λb then there exists a covector f∗ such that f∗(a) = 1 and
f∗(b) = 0. Define the map f∗ : V ⊗ V→ V as f∗(x ⊗ y) = f∗(x)y. Compute

f∗(a ⊗ a + b ⊗ b) = a = f∗(v)w,

hence w is proportional to a. Similarly you can show that w is proportional
to b.

61



1 Linear algebra without coordinates

1.9 Index notation for tensors

So far we have used a purely coordinate-free formalism to define and describe
tensors from spaces such as V ⊗V ∗. However, in many calculations a basis in
V is fixed, and one needs to compute the components of tensors in that basis.
Also, the coordinate-free notation becomes cumbersome for computations in
higher-rank tensor spaces such as V ⊗V ⊗V ∗ because there is no direct means
of referring to an individual component in the tensor product. The index
notation makes such calculations easier.

Suppose a basis {e1, ..., eN} in V is fixed; then the dual basis {e∗k} is also
fixed. Any vector v ∈ V is decomposed as v =

∑

k vkek and any covector as
f∗ =

∑

k fke
∗
k. Any tensor from V ⊗ V is decomposed as

A =
∑

j,k

Ajkej ⊗ ek ∈ V ⊗ V

and so on. The action of a covector on a vector is f∗ (v) =
∑

k fkvk, and the
action of an operator on a vector is

∑

j,k Ajkvkek. However, it is cumber-
some to keep writing these sums. In the index notation, one writes only the
components vk or Ajk of vectors and tensors.

1.9.1 Definition of index notation

The rules are as follows:

• Basis vectors ek and basis tensors ek ⊗e∗l are never written explicitly. (It
is assumed that the basis is fixed and known.)

• Instead of a vector v ∈ V , one writes its array of components vk with
the superscript index. Covectors f∗ ∈ V ∗ are written fk with the subscript
index. The index k runs over integers from 1 to N . Components of
vectors and tensors may be thought of as numbers (e.g. elements of the
number field K).

• Tensors are written as multidimensional arrays of components with su-
perscript or subscript indices as necessary, for example Ajk ∈ V ∗ ⊗ V ∗

or Blm
k ∈ V ⊗ V ⊗ V ∗. Thus e.g. the Kronecker delta symbol is written

as δj
k when it represents the identity operator 1̂V .

• The choice of indices must be consistent; each index corresponds to a
particular copy of V or V ∗. Thus it is wrong to write vj = uk or vi +
ui = 0. Correct equations are vj = uj and vi + ui = 0. This disallows
meaningless expressions such as v∗ + u (one cannot add vectors from
different spaces).

• Sums over indices such as
∑N

k=1 akbk are not written explicitly, the
∑

symbol is omitted, and the Einstein summation convention is used in-
stead: Summation over all values of an index is always implied when
that index letter appears once as a subscript and once as a superscript.
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In this case the letter is called a dummy (or mute) index. Thus one
writes fkv

k instead of
∑

k fkvk and Aj
kv

k instead of
∑

k Ajkvk.

• Summation is allowed only over one subscript and one superscript but
never over two subscripts or two superscripts and never over three or
more coincident indices. This corresponds to requiring that we are only
allowed to compute the canonical pairing of V and V ∗ [see Eq. (1.15)]
but no other pairing. The expression vkvk is not allowed because there

is no canonical pairing of V and V , so, for instance, the sum
∑N

k=1 v
kvk

depends on the choice of the basis. For the same reason (dependence on
the basis), expressions such as uiviwi or AiiB

ii are not allowed. Correct
expressions are uiv

iwk and AikB
ik.

• One needs to pay close attention to the choice and the position of the
letters such as j, k, l,... used as indices. Indices that are not repeated are
free indices. The rank of a tensor expression is equal to the number

of free subscript and superscript indices. Thus Aj
kv

k is a rank 1 tensor

(i.e. a vector) because the expressionAj
kv

k has a single free index, j, and
a summation over k is implied.

• The tensor product symbol ⊗ is never written. For example, if v ⊗ f∗ =
∑

jk vjf
∗
kej ⊗ e∗k, one writes vkfj to represent the tensor v ⊗ f∗. The in-

dex letters in the expression vkfj are intentionally chosen to be different
(in this case, k and j) so that no summation would be implied. In other
words, a tensor product is written simply as a product of components,
and the index letters are chosen appropriately. Then one can interpret
vkfj as simply the product of numbers. In particular, it makes no differ-
ence whether one writes fjv

k or vkfj . The position of the indices (rather
than the ordering of vectors) shows in every case how the tensor prod-
uct is formed. Note that it is not possible to distinguish V ⊗ V ∗ from
V ∗ ⊗ V in the index notation.

Example 1: It follows from the definition of δi
j that δi

jv
j = vi. This is the

index representation of 1̂v = v.

Example 2: Suppose w, x, y, and z are vectors from V whose components are
wi, xi, yi, zi. What are the components of the tensor w⊗x+ 2y⊗ z ∈ V ⊗ V ?
Answer: wixk +2yizk. (We need to choose another letter for the second free

index, k, which corresponds to the second copy of V in V ⊗ V .)

Example 3: The operator Â ≡ 1̂V + λv⊗u∗ ∈ V ⊗ V ∗ acts on a vector x ∈ V .

Calculate the resulting vector y ≡ Âx.
In the index-free notation, the calculation is

y = Âx =
(
1̂V + λv ⊗ u∗)x = x + λu∗ (x)v.

In the index notation, the calculation looks like this:

yk =
(
δk
j + λvkuj

)
xj = xk + λvkujx

j .
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In this formula, j is a dummy index and k is a free index. We could have also
written λxjvkuj instead of λvkujx

j since the ordering of components makes
no difference in the index notation.
Exercise: In a physics book you find the following formula,

Hα
µν =

1

2
(hβµν + hβνµ − hµνβ) gαβ .

To what spaces do the tensors H , g, h belong (assuming these quantities rep-
resent tensors)? Rewrite this formula in the coordinate-free notation.
Answer: H ∈ V ⊗ V ∗ ⊗ V ∗, h ∈ V ∗ ⊗ V ∗ ⊗ V ∗, g ∈ V ⊗ V . Assuming the

simplest case,
h = h∗

1 ⊗ h∗
2 ⊗ h∗

3, g = g1 ⊗ g2,

the coordinate-free formula is

H =
1

2
g1 ⊗ (h∗

1 (g2)h
∗
2 ⊗ h∗

3 + h∗
1 (g2)h

∗
3 ⊗ h∗

2 − h∗
3 (g2)h

∗
1 ⊗ h∗

2) .

Question: I would like to decompose a vector v in the basis {ej} using the
index notation, v = vjej . Is it okay to write the lower index j on the basis
vectors ej? I also want to write vj = e∗j (v) using the dual basis

{
e∗j
}

, but then
the index j is not correctly matched at both sides.
Answer: The index notation is designed so that you never use the basis vec-

tors ej or e∗j — you only use components such as vj or fj . The only way to
keep the upper and the lower indices consistent (i.e. having the summation
always over one upper and one lower index) when you want to use both the
components vj and the basis vectors ej is to use upper indices on the dual
basis, i.e. writing

{
e∗j
}

. Then a covector will have components with lower
indices, f∗ = fje

∗j , and the index notation remains consistent. A further
problem occurs when you have a scalar product and you would like to ex-
press the component vj as vj = 〈v, ej〉. In this case, the only way to keep the
notation consistent is to use explicitly a suitable matrix, say gij , in order to
represent the scalar product. Then one would be able to write vj = gjk 〈v, ek〉
and keep the index notation consistent.

1.9.2 Advantages and disadvantages of index notation

Index notation is conceptually easier than the index-free notation because one
can imagine manipulating “merely” some tables of numbers, rather than “ab-
stract vectors.” In other words, we are working with less abstract objects. The
price is that we obscure the geometric interpretation of what we are doing,
and proofs of general theorems become more difficult to understand.

The main advantage of the index notation is that it makes computations
with complicated tensors quicker. Consider, for example, the space V ⊗ V ⊗
V ∗⊗V ∗ whose elements can be interpreted as operators from Hom (V ⊗V, V ⊗
V ). The action of such an operator on a tensor ajk ∈ V ⊗ V is expressed in
the index notation as

blm = Alm
jk a

jk,
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1.9 Index notation for tensors

where alm and blm represent tensors from V ⊗ V and Alm
jk is a tensor from

V ⊗ V ⊗ V ∗ ⊗ V ∗, while the summation over the indices j and k is implied.
Each index letter refers unambiguously to one tensor product factor. Note
that the formula

blm = Alm
kj a

jk

describes another (inequivalent) way to define the isomorphism between the
spaces V ⊗V ⊗V ∗⊗V ∗ and Hom (V ⊗V, V ⊗V ). The index notation expresses
this difference in a concise way; of course, one needs to pay close attention to
the position and the order of indices.

Note that in the coordinate-free notation it is much more cumbersome to
describe and manipulate such tensors. Without the index notation, it is cum-
bersome to perform calculations with a tensor such as

Bik
jl ≡ δi

jδ
k
l − δk

j δ
i
l ∈ V ⊗ V ⊗ V ∗ ⊗ V ∗

which acts as an operator in V ⊗ V , exchanging the two vector factors:

(
δi
jδ

k
l − δk

j δ
i
l

)
ajl = aik − aki.

The index-free definition of this operator is simple with single-term tensor
products,

B̂ (u ⊗ v) ≡ u ⊗ v − v ⊗ u.

Having defined B̂ on single-term tensor products, we require linearity and

so define the operator B̂ on the entire space V ⊗ V . However, practical

calculations are cumbersome if we are applying B̂ to a complicated tensor
X ∈ V ⊗ V rather than to a single-term product u⊗ v, because, in particular,
we are obliged to decompose X into single-term tensor products in order to
perform such a calculation.

Some disadvantages of the index notation are as follows: (1) If the basis is
changed, all components need to be recomputed. In textbooks that use the
index notation, quite some time is spent studying the transformation laws of
tensor components under a change of basis. If different bases are used simul-
taneously, confusion may result as to which basis is implied in a particular
formula. (2) If we are using unrelated vector spaces V and W , we need to
choose a basis in each of them and always remember which index belongs to
which space. The index notation does not show this explicitly. To alleviate
this problem, one may use e.g. Greek and Latin indices to distinguish differ-
ent spaces, but this is not always convenient or sufficient. (3) The geometrical
meaning of many calculations appears hidden behind a mass of indices. It
is sometimes unclear whether a long expression with indices can be simpli-
fied and how to proceed with calculations. (Do we need to try all possible
relabellings of indices and see what happens?)

Despite these disadvantages, the index notation enables one to perform
practical calculations with high-rank tensor spaces, such as those required
in field theory and in general relativity. For this reason, and also for histor-
ical reasons (Einstein used the index notation when developing the theory
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1 Linear algebra without coordinates

of relativity), most physics textbooks use the index notation. In some cases,
calculations can be performed equally quickly using index and index-free no-
tations. In other cases, especially when deriving general properties of tensors,
the index-free notation is superior.4 I use the index-free notation in this book
because calculations in coordinates are not essential for this book’s central
topics. However, I will occasionally show how to do some calculations also
in the index notation.

1.10 Dirac notation for vectors and covectors

The Dirac notation was developed for quantum mechanics where one needs
to perform many computations with operators, vectors and covectors (but not
with higher-rank tensors!). The Dirac notation is index-free.

1.10.1 Definition of Dirac notation

The rules are as follows:

• One writes the symbol |v〉 for a vector v ∈ V and 〈f | for a covector
f∗ ∈ V ∗. The labels inside the special brackets | 〉 and 〈 | are chosen
according to the problem at hand, e.g. one can denote specific vectors
by |0〉, |1〉, |x〉, |v1〉, or even

〈
(0)ãij ; l,m

∣
∣ if that helps. (Note that |0〉 is

normally not the zero vector; the latter is denoted simply by 0, as usual.)

• Linear combinations of vectors are written like this: 2 |v〉 − 3 |u〉 instead
of 2v − 3u.

• The action of a covector on a vector is written as 〈f |v〉; the result is a
number. The mnemonic for this is “bra-ket”, so 〈f | is a “bra vector”
and |v〉 is a “ket vector.” The action of an operator Â on a vector |v〉 is

written Â |v〉.

• The action of the transposed operator ÂT on a covector 〈f | is written

〈f | Â. Note that the transposition label (T ) is not used. This is consistent

within the Dirac notation: The covector 〈f | Â acts on a vector |v〉 as
〈f | Â |v〉, which is the same (by definition of ÂT ) as the covector 〈f |
acting on Â |v〉.

• The tensor product symbol ⊗ is omitted. Instead of v ⊗ f∗ ∈ V ⊗ V ∗

or a ⊗ b ∈ V ⊗ V , one writes |v〉 〈f | and |a〉 |b〉 respectively. The tensor
space to which a tensor belongs will be clear from the notation or from
explanations in the text. Note that one cannot write f∗⊗v as 〈f | |v〉 since
〈f | |v〉 already means f∗(v) in the Dirac notation. Instead, one always
writes |v〉 〈f | and does not distinguish between f∗ ⊗ v and v ⊗ f∗.

4I have developed an advanced textbook on general relativity entirely in the index-free notation
and displayed the infrequent cases where the index notation is easier to use.
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1.10 Dirac notation for vectors and covectors

Example 1: The action of an operator a⊗ b∗ ∈ V ⊗ V ∗ on a vector v ∈ V has
been defined by (a ⊗ b∗)v = b∗(v)a. In the Dirac notation, this is very easy
to express: one acts with |a〉 〈b| on a vector |v〉 by writing

(|a〉 〈b|) |v〉 = |a〉 〈b| |v〉 = |a〉 〈b|v〉 .

In other words, we mentally remove one vertical line and get the vector |a〉
times the number 〈b|v〉. This is entirely consistent with the definition of the
operator a ⊗ b∗ ∈ EndV .

Example 2: The action of Â ≡ 1̂V + 1
2v ⊗ u∗ ∈ V ⊗ V ∗ on a vector x ∈ V is

written as follows:

|y〉 = Â |x〉 =
(
1̂ + 1

2 |v〉 〈u|
)
|x〉 = |x〉 + 1

2 |v〉 〈u| |x〉

= |x〉 +
〈u|x〉

2
|v〉 .

Note that we have again “simplified” 〈u| |x〉 to 〈u|x〉, and the result is correct.
Compare this notation with the same calculation written in the index-free
notation:

y = Âx =
(
1̂ + 1

2v ⊗ u∗)x = x +
u∗(x)

2
v.

Example 3: If |e1〉, ..., |eN 〉 is a basis, we denote by 〈ek| the covectors from the
dual basis, so that 〈ej |ek〉 = δjk. A vector |v〉 is expressed through the basis
vectors as

|v〉 =
∑

k

vk |ek〉 ,

where the coefficients vk can be computed as vk = 〈ek|v〉. An arbitrary oper-

ator Â is decomposed as

Â =
∑

j,k

Ajk |ej〉 〈ek| .

The matrix elements Ajk of the operator Â in this basis are found as

Ajk = 〈ej | Â |ek〉 .

The identity operator is decomposed as follows,

1̂ =
∑

k

|ek〉 〈ek| .

Expressions of this sort abound in quantum mechanics textbooks.

1.10.2 Advantages and disadvantages of Dirac notation

The Dirac notation is convenient when many calculations with vectors and
covectors are required. But calculations become cumbersome if we need
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many tensor powers. For example, suppose we would like to apply a cov-
ector 〈f | to the second vector in the tensor product |a〉 |b〉 |c〉, so that the an-
swer is |a〉 〈f |b〉 |c〉. Now one cannot simply write 〈f |X with X = |a〉 |b〉 |c〉
because 〈f |X is ambiguous in this case. The desired kind of action of covec-
tors on tensors is difficult to express using the Dirac notation. Only the index
notation allows one to write and to carry out arbitrary operations with this
kind of tensor product. In the example just mentioned, one writes fja

ibjck to
indicate that the covector fj acts on the vector bj but not on the other vectors.
Of course, the resulting expression is harder to read because one needs to pay
close attention to every index.
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In this chapter I introduce one of the most useful constructions in basic linear
algebra — the exterior product, denoted by a ∧ b, where a and b are vectors
from a space V . The basic idea of the exterior product is that we would like
to define an antisymmetric and bilinear product of vectors. In other words, we
would like to have the properties a∧b = −b∧a and a∧(b+λc) = a∧b+λa∧c.

2.1 Motivation

Here I discuss, at some length, the motivation for introducing the exterior
product. The motivation is geometrical and comes from considering the prop-
erties of areas and volumes in the framework of elementary Euclidean geom-
etry. I will proceed with a formal definition of the exterior product in Sec. 2.2.
In order to understand the definition explained there, it is not necessary to
use this geometric motivation because the definition will be purely algebraic.
Nevertheless, I feel that this motivation will be helpful for some readers.

2.1.1 Two-dimensional oriented area

We work in a two-dimensional Euclidean space, such as that considered in
elementary geometry. We assume that the usual geometrical definition of the
area of a parallelogram is known.

Consider the area Ar(a,b) of a parallelogram spanned by vectors a and b.
It is known from elementary geometry that Ar(a,b) = |a| · |b| · sinα where
α is the angle between the two vectors, which is always between 0 and π (we
do not take into account the orientation of this angle). Thus defined, the area
Ar is always non-negative.

Let us investigateAr(a,b) as a function of the vectors a and b. If we stretch
the vector a, say, by factor 2, the area is also increased by factor 2. However, if
we multiply a by the number −2, the area will be multiplied by 2 rather than
by −2:

Ar(a, 2b) = Ar(a,−2b) = 2Ar(a,b).

Similarly, for some vectors a,b, c such as shown in Fig. 2.2, we haveAr(a,b+
c) = Ar(a,b) +Ar(a, c). However, if we consider b = −c then we obtain

Ar(a,b + c) = Ar(a, 0) = 0

6= Ar(a,b) +Ar(a,−b) = 2Ar(a,b).
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eplacements

0

A

B

D

C

E

b

a

b + αa

Figure 2.1: The area of the parallelogram 0ACB spanned by a and b is equal
to the area of the parallelogram 0ADE spanned by a and b + αa

due to the equality of areas ACD and 0BE.

Hence, the area Ar(a,b) is, strictly speaking, not a linear function of the
vectors a and b:

Ar(λa,b) = |λ|Ar(a,b) 6= λAr(a,b),

Ar(a,b + c) 6= Ar(a,b) +Ar(a, c).

Nevertheless, as we have seen, the properties of linearity hold in some cases.
If we look closely at those cases, we find that linearly holds precisely when
we do not change the orientation of the vectors. It would be more convenient
if the linearity properties held in all cases.

The trick is to replace the area function Ar with the oriented area function
A(a,b). Namely, we define the function A(a,b) by

A(a,b) = ± |a| · |b| · sinα,

where the sign is chosen positive when the angle α is measured from the
vector a to the vector b in the counterclockwise direction, and negative oth-
erwise.

Statement: The oriented area A(a,b) of a parallelogram spanned by the vec-
tors a and b in the two-dimensional Euclidean space is an antisymmetric and
bilinear function of the vectors a and b:

A(a,b) = −A(b,a),

A(λa,b) = λA(a,b),

A(a,b + c) = A(a,b) +A(a, c). (the sum law)

Proof: The first property is a straightforward consequence of the sign rule
in the definition of A.
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replacements

A B

DC

FE

a

a

b

b

c

b + c

Figure 2.2: The area of the parallelogram spanned by a and b (equal to the
area of CEFD) plus the area of the parallelogram spanned by a

and c (the area of ACDB) equals the area of the parallelogram
spanned by a and b+c (the area ofAEFB) because of the equality
of the areas of ACE and BDF .

Proving the second property requires considering the cases λ > 0 and λ < 0
separately. If λ > 0 then the orientation of the pair (a,b) remains the same
and then it is clear that the property holds: When we rescale a by λ, the
parallelogram is stretched and its area increases by factor λ. If λ < 0 then the
orientation of the parallelogram is reversed and the oriented area changes
sign.

To prove the sum law, we consider two cases: either c is parallel to a or it is
not. If c is parallel to a, say c = αa, we use Fig. 2.1 to show thatA(a,b+λa) =
A(a,b), which yields the desired statement since A(a, λa) = 0. If c is not par-
allel to a, we use Fig. 2.2 to show that A(a,b + c) = A(a,b) +A(a, c). Analo-
gous geometric constructions can be made for different possible orientations
of the vectors a, b, c. �

It is relatively easy to compute the oriented area because of its algebraic
properties. Suppose the vectors a and b are given through their components
in a standard basis {e1, e2}, for instance

a = α1e1 + α2e2, b = β1e1 + β2e2.

We assume, of course, that the vectors e1 and e2 are orthogonal to each other
and have unit length, as is appropriate in a Euclidean space. We also assume
that the right angle is measured from e1 to e2 in the counter-clockwise direc-
tion, so that A(e1, e2) = +1. Then we use the Statement and the properties
A(e1, e1) = 0, A(e1, e2) = 1, A(e2, e2) = 0 to compute

A(a,b) = A(α1e1 + α2e2, β1e1 + β2e2)

= α1β2A(e1, e2) + α2β1A(e2, e1)

= α1β2 − α2β1.
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2 Exterior product

The ordinary (unoriented) area is then obtained as the absolute value of
the oriented area, Ar(a,b) = |A(a,b)|. It turns out that the oriented area,
due to its strict linearity properties, is a much more convenient and powerful
construction than the unoriented area.

2.1.2 Parallelograms in R3 and in Rn

Let us now work in the Euclidean space R3 with a standard basis {e1, e2, e3}.
We can similarly try to characterize the area of a parallelogram spanned by
two vectors a, b. It is, however, not possible to characterize the orientation
of the area simply by a sign. We also cannot use a geometric construction
such as that in Fig. 2.2; in fact it is not true in three dimensions that the area
spanned by a and b + c is equal to the sum of Ar(a,b) and Ar(a, c). Can we
still define some kind of “oriented area” that obeys the sum law?

Let us consider Fig. 2.2 as a figure showing the projection of the areas of the
three parallelograms onto some coordinate plane, say, the plane of the basis
vectors {e1, e2}. It is straightforward to see that the projections of the areas
obey the sum law as oriented areas.

Statement: Let a,b be two vectors in R3, and let P (a,b) be the parallelogram
spanned by these vectors. Denote by P (a,b)e1,e2

the parallelogram within
the coordinate plane Span {e1, e2} obtained by projecting P (a,b) onto that
coordinate plane, and similarly for the other two coordinate planes. Denote
byA(a,b)e1,e2

the oriented area of P (a,b)e1,e2
. ThenA(a,b)e1,e2

is a bilinear,
antisymmetric function of a and b.
Proof: The projection onto the coordinate plane of e1, e2 is a linear transfor-

mation. Hence, the vector a + λb is projected onto the sum of the projections
of a and λb. Then we apply the arguments in the proof of Statement 2.1.1 to
the projections of the vectors; in particular, Figs. 2.1 and 2.2 are interpreted as
showing the projections of all vectors onto the coordinate plane e1, e2. It is
then straightforward to see that all the properties of the oriented area hold
for the projected oriented areas. Details left as exercise. �

It is therefore convenient to consider the oriented areas of the three pro-
jections — A(a,b)e1,e2

, A(a,b)e2,e3
, A(a,b)e3,e1

— as three components of a
vector-valued area A(a,b) of the parallelogram spanned by a,b. Indeed, it can
be shown that these three projected areas coincide with the three Euclidean
components of the vector product a×b. The vector product is the traditional
way such areas are represented in geometry: the vector a × b represents at
once the magnitude of the area and the orientation of the parallelogram. One
computes the unoriented area of a parallelogram as the length of the vector
a × b representing the oriented area,

Ar(a,b) =
[
A(a,b)2

e1,e2
+A(a,b)2

e2,e3
+A(a,b)2

e3,e1

] 1
2 .

However, the vector product cannot be generalized to all higher-dimen-
sional spaces. Luckily, the vector product does not play an essential role in
the construction of the oriented area.
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Instead of working with the vector product, we will generalize the idea of
projecting the parallelogram onto coordinate planes. Consider a parallelo-
gram spanned by vectors a,b in an n-dimensional Euclidean space V with
the standard basis {e1, ..., en}. While in three-dimensional space we had just
three projections (onto the coordinate planes xy, xz, yz), in an n-dimension-
al space we have 1

2n(n − 1) coordinate planes, which can be denoted by
Span {ei, ej} (with 1 ≤ i < j ≤ n). We may construct the 1

2n(n − 1) pro-
jections of the parallelogram onto these coordinate planes. Each of these pro-
jections has an oriented area; that area is a bilinear, antisymmetric number-
valued function of the vectors a,b. (The proof of the Statement above does
not use the fact that the space is three-dimensional!) We may then regard these
1
2n(n − 1) numbers as the components of a vector representing the oriented
area of the parallelogram. It is clear that all these components are needed in
order to describe the actual geometric orientation of the parallelogram in the
n-dimensional space.

We arrived at the idea that the oriented area of the parallelogram spanned
by a,b is an antisymmetric, bilinear function A(a,b) whose value is a vector
with 1

2n(n−1) components, i.e. a vector in a new space — the “space of oriented
areas,” as it were. This space is 1

2n(n− 1)-dimensional. We will construct this
space explicitly below; it is the space of bivectors, to be denoted by ∧2V .

We will see that the unoriented area of the parallelogram is computed as
the length of the vector A(a,b), i.e. as the square root of the sum of squares of
the areas of the projections of the parallelogram onto the coordinate planes.
This is a generalization of the Pythagoras theorem to areas in higher-dimen-
sional spaces.

The analogy between ordinary vectors and vector-valued areas can be un-
derstood visually as follows. A straight line segment in an n-dimensional
space is represented by a vector whose n components (in an orthonormal ba-
sis) are the signed lengths of the n projections of the line segment onto the
coordinate axes. (The components are signed, or oriented, i.e. taken with a
negative sign if the orientation of the vector is opposite to the orientation of
the axis.) The length of a straight line segment, i.e. the length of the vector

v, is then computed as
√

〈v,v〉. The scalar product 〈v,v〉 is equal to the sum
of squared lengths of the projections because we are using an orthonormal
basis. A parallelogram in space is represented by a vector ψ whose

(
n
2

)
com-

ponents are the oriented areas of the
(
n
2

)
projections of the parallelogram onto

the coordinate planes. (The vector ψ belongs to the space of oriented areas,
not to the original n-dimensional space.) The numerical value of the area of

the parallelogram is then computed as
√

〈ψ,ψ〉. The scalar product 〈ψ,ψ〉 in
the space of oriented areas is equal to the sum of squared areas of the projec-
tions because the

(
n
2

)
unit areas in the coordinate planes are an orthonormal

basis (according to the definition of the scalar product in the space of oriented
areas).

The generalization of the Pythagoras theorem holds not only for areas but
also for higher-dimensional volumes. A general proof of this theorem will be
given in Sec. 5.5.2, using the exterior product and several other constructions

73



2 Exterior product

to be developed below.

2.2 Exterior product

In the previous section I motivated the introduction of the antisymmetric
product by showing its connection to areas and volumes. In this section I
will give the definition and work out the properties of the exterior product
in a purely algebraic manner, without using any geometric intuition. This
will enable us to work with vectors in arbitrary dimensions, to obtain many
useful results, and eventually also to appreciate more fully the geometric sig-
nificance of the exterior product.

As explained in Sec. 2.1.2, it is possible to represent the oriented area of
a parallelogram by a vector in some auxiliary space. The oriented area is
much more convenient to work with because it is a bilinear function of the
vectors a and b (this is explained in detail in Sec. 2.1). “Product” is another
word for “bilinear function.” We have also seen that the oriented area is an
antisymmetric function of the vectors a and b.

In three dimensions, an oriented area is represented by the cross product
a × b, which is indeed an antisymmetric and bilinear product. So we expect
that the oriented area in higher dimensions can be represented by some kind
of new antisymmetric product of a and b; let us denote this product (to be
defined below) by a∧ b, pronounced “a wedge b.” The value of a∧ b will be
a vector in a new vector space. We will also construct this new space explicitly.

2.2.1 Definition of exterior product

Like the tensor product space, the space of exterior products can be defined
solely by its algebraic properties. We can consider the space of formal expres-
sions like a ∧ b, 3a ∧ b + 2c ∧ d, etc., and require the properties of an antisym-
metric, bilinear product to hold.

Here is a more formal definition of the exterior product space: We will con-
struct an antisymmetric product “by hand,” using the tensor product space.
Definition 1: Given a vector space V , we define a new vector space V ∧ V
called the exterior product (or antisymmetric tensor product, or alternating
product, or wedge product) of two copies of V . The space V ∧ V is the sub-
space in V ⊗V consisting of all antisymmetric tensors, i.e. tensors of the form

v1 ⊗ v2 − v2 ⊗ v1, v1,2 ∈ V,

and all linear combinations of such tensors. The exterior product of two vec-
tors v1 and v2 is the expression shown above; it is obviously an antisymmetric
and bilinear function of v1 and v2.

For example, here is one particular element from V ∧ V , which we write in
two different ways using the axioms of the tensor product:

(u + v) ⊗ (v + w) − (v + w) ⊗ (u + v) = u ⊗ v − v ⊗ u

+u ⊗ w − w ⊗ u + v ⊗ w − w ⊗ v ∈ V ∧ V. (2.1)
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Remark: A tensor v1 ⊗ v2 ∈ V ⊗ V is not equal to the tensor v2 ⊗ v1 if
v1 6= v2. This is so because there is no identity among the axioms of the
tensor product that would allow us to exchange the factors v1 and v2 in the
expression v1 ⊗ v2.
Exercise 1: Prove that the “exchange map” T̂ (v1 ⊗ v2) ≡ v2 ⊗ v1 is a canon-

ically defined, linear map of V ⊗ V into itself. Show that T̂ has only two
eigenvalues which are ±1. Give examples of eigenvectors with eigenvalues
+1 and −1. Show that the subspace V ∧ V ⊂ V ⊗ V is the eigenspace of the

exchange operator T̂ with eigenvalue −1

Hint: T̂ T̂ = 1̂V ⊗V . Consider tensors of the form u⊗ v± v⊗u as candidate
eigenvectors of T̂ . �

It is quite cumbersome to perform calculations in the tensor product nota-
tion as we did in Eq. (2.1). So let us write the exterior product as u∧v instead
of u⊗ v − v ⊗ u. It is then straightforward to see that the “wedge” symbol ∧
indeed works like an anti-commutative multiplication, as we intended. The
rules of computation are summarized in the following statement.
Statement 1: One may save time and write u⊗v−v⊗u ≡ u∧v ∈ V ∧V , and
the result of any calculation will be correct, as long as one follows the rules:

u ∧ v = −v ∧ u, (2.2)

(λu) ∧ v = λ (u ∧ v) , (2.3)

(u + v) ∧ x = u ∧ x + v ∧ x. (2.4)

It follows also that u ∧ (λv) = λ (u ∧ v) and that v ∧ v = 0. (These identities
hold for any vectors u,v ∈ V and any scalars λ ∈ K.)

Proof: These properties are direct consequences of the axioms of the tensor
product when applied to antisymmetric tensors. For example, the calcula-
tion (2.1) now requires a simple expansion of brackets,

(u + v) ∧ (v + w) = u ∧ v + u ∧ w + v ∧ w.

Here we removed the term v ∧ v which vanishes due to the antisymmetry of
∧. Details left as exercise. �

Elements of the space V ∧ V , such as a ∧ b + c ∧ d, are sometimes called
bivectors.1 We will also want to define the exterior product of more than
two vectors. To define the exterior product of three vectors, we consider the
subspace of V ⊗ V ⊗ V that consists of antisymmetric tensors of the form

a ⊗ b ⊗ c − b ⊗ a ⊗ c + c ⊗ a ⊗ b − c ⊗ b ⊗ a

+b ⊗ c ⊗ a − a ⊗ c ⊗ b (2.5)

and linear combinations of such tensors. These tensors are called totally an-
tisymmetric because they can be viewed as (tensor-valued) functions of the
vectors a,b, c that change sign under exchange of any two vectors. The ex-
pression in Eq. (2.5) will be denoted for brevity by a ∧ b ∧ c, similarly to the
exterior product of two vectors, a ⊗ b − b ⊗ a, which is denoted for brevity
by a ∧ b. Here is a general definition.

1It is important to note that a bivector is not necessarily expressible as a single-term product of
two vectors; see the Exercise at the end of Sec. 2.3.2.
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Definition 2: The exterior product of k copies of V (also called the k-th exte-
rior power of V ) is denoted by ∧kV and is defined as the subspace of totally
antisymmetric tensors within V ⊗ ... ⊗ V . In the concise notation, this is the
space spanned by expressions of the form

v1 ∧ v2 ∧ ... ∧ vk, vj ∈ V,

assuming that the properties of the wedge product (linearity and antisymme-
try) hold as given by Statement 1. For instance,

u ∧ v1 ∧ ... ∧ vk = (−1)
k
v1 ∧ ... ∧ vk ∧ u (2.6)

(“pulling a vector through k other vectors changes sign k times”). �

The previously defined space of bivectors is in this notation V ∧ V ≡ ∧2V .
A natural extension of this notation is ∧0V = K and ∧1V = V . I will also use
the following “wedge product” notation,

n∧

k=1

vk ≡ v1 ∧ v2 ∧ ... ∧ vn.

Tensors from the space ∧nV are also called n-vectors or antisymmetric ten-
sors of rank n.
Question: How to compute expressions containing multiple products such
as a ∧ b ∧ c?
Answer: Apply the rules shown in Statement 1. For example, one can per-

mute adjacent vectors and change sign,

a ∧ b ∧ c = −b ∧ a ∧ c = b ∧ c ∧ a,

one can expand brackets,

a ∧ (x + 4y) ∧ b = a ∧ x ∧ b + 4a ∧ y ∧ b,

and so on. If the vectors a,b, c are given as linear combinations of some basis
vectors {ej}, we can thus reduce a ∧ b ∧ c to a linear combination of exterior
products of basis vectors, such as e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, etc.
Question: The notation a ∧ b ∧ c suggests that the exterior product is asso-
ciative,

a ∧ b ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c).

How can we make sense of this?
Answer: If we want to be pedantic, we need to define the exterior product

operation ∧ between a single-term bivector a∧b and a vector c, such that the
result is by definition the 3-vector a∧b∧ c. We then define the same operation
on linear combinations of single-term bivectors,

(a ∧ b + x ∧ y) ∧ c ≡ a ∧ b ∧ c + x ∧ y ∧ c.

Thus we have defined the exterior product between ∧2V and V , the result
being a 3-vector from ∧3V . We then need to verify that the results do not de-
pend on the choice of the vectors such as a,b,x,y in the representation of a
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bivector: A different representation can be achieved only by using the proper-
ties of the exterior product (i.e. the axioms of the tensor product), e.g. we may
replace a∧b by −b∧ (a + λb). It is easy to verify that any such replacements
will not modify the resulting 3-vector, e.g.

a ∧ b ∧ c = −b ∧ (a + λb) ∧ c,

again due to the properties of the exterior product. This consideration shows
that calculations with exterior products are consistent with our algebraic in-
tuition. We may indeed compute a ∧ b ∧ c as (a ∧ b) ∧ c or as a ∧ (b ∧ c).

Example 1: Suppose we work in R3 and have vectors a =
(
0, 1

2 ,− 1
2

)
, b =

(2,−2, 0), c = (−2, 5,−3). Let us compute various exterior products. Calcu-
lations are easier if we introduce the basis {e1, e2, e3} explicitly:

a =
1

2
(e2 − e3) , b = 2(e1 − e2), c = −2e1 + 5e2 − 3e3.

We compute the 2-vector a∧b by using the properties of the exterior product,
such as x ∧ x = 0 and x ∧ y = −y ∧ x, and simply expanding the brackets as
usual in algebra:

a ∧ b =
1

2
(e2 − e3) ∧ 2 (e1 − e2)

= (e2 − e3) ∧ (e1 − e2)

= e2 ∧ e1 − e3 ∧ e1 − e2 ∧ e2 + e3 ∧ e2

= −e1 ∧ e2 + e1 ∧ e3 − e2 ∧ e3.

The last expression is the result; note that now there is nothing more to com-
pute or to simplify. The expressions such as e1 ∧ e2 are the basic expressions
out of which the space R3 ∧ R3 is built. Below (Sec. 2.3.2) we will show for-
mally that the set of these expressions is a basis in the space R3 ∧ R3.

Let us also compute the 3-vector a ∧ b ∧ c,

a ∧ b ∧ c = (a ∧ b) ∧ c

= (−e1 ∧ e2 + e1 ∧ e3 − e2 ∧ e3) ∧ (−2e1 + 5e2 − 3e3).

When we expand the brackets here, terms such as e1 ∧ e2 ∧ e1 will vanish
because

e1 ∧ e2 ∧ e1 = −e2 ∧ e1 ∧ e1 = 0,

so only terms containing all different vectors need to be kept, and we find

a ∧ b ∧ c = 3e1 ∧ e2 ∧ e3 + 5e1 ∧ e3 ∧ e2 + 2e2 ∧ e3 ∧ e1

= (3 − 5 + 2) e1 ∧ e2 ∧ e3 = 0.

We note that all the terms are proportional to the 3-vector e1 ∧e2 ∧e3, so only
the coefficient in front of e1 ∧ e2 ∧ e3 was needed; then, by coincidence, that
coefficient turned out to be zero. So the result is the zero 3-vector. �
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Question: Our original goal was to introduce a bilinear, antisymmetric prod-
uct of vectors in order to obtain a geometric representation of oriented areas.
Instead, a ∧ b was defined algebraically, through tensor products. It is clear
that a∧b is antisymmetric and bilinear, but why does it represent an oriented
area?

Answer: Indeed, it may not be immediately clear why oriented areas should
be elements of V ∧ V . We have seen that the oriented area A(x,y) is an an-
tisymmetric and bilinear function of the two vectors x and y. Right now we
have constructed the space V ∧ V simply as the space of antisymmetric prod-
ucts. By constructing that space merely out of the axioms of the antisymmet-
ric product, we already covered every possible bilinear antisymmetric product.
This means that any antisymmetric and bilinear function of the two vectors x

and y is proportional to x ∧ y or, more generally, is a linear function of x ∧ y

(perhaps with values in a different space). Therefore, the space of oriented
areas (that is, the space of linear combinations of A(x,y) for various x and
y) is in any case mapped to a subspace of V ∧ V . We have also seen that

oriented areas in N dimensions can be represented through
(
N
2

)
projections,

which indicates that they are vectors in some
(
N
2

)
-dimensional space. We

will see below that the space V ∧ V has exactly this dimension (Theorem 2
in Sec. 2.3.2). Therefore, we can expect that the space of oriented areas co-
incides with V ∧ V . Below we will be working in a space V with a scalar
product, where the notions of area and volume are well defined. Then we
will see (Sec. 5.5.2) that tensors from V ∧ V and the higher exterior powers of
V indeed correspond in a natural way to oriented areas, or more generally to
oriented volumes of a certain dimension.

Remark: Origin of the name “exterior.” The construction of the exterior
product is a modern formulation of the ideas dating back to H. Grassmann
(1844). A 2-vector a∧b is interpreted geometrically as the oriented area of the
parallelogram spanned by the vectors a and b. Similarly, a 3-vector a ∧ b ∧ c

represents the oriented 3-volume of a parallelepiped spanned by {a,b, c}.
Due to the antisymmetry of the exterior product, we have (a∧b)∧(a∧c) = 0,
(a ∧ b ∧ c) ∧ (b ∧ d) = 0, etc. We can interpret this geometrically by saying
that the “product” of two volumes is zero if these volumes have a vector in
common. This motivated Grassmann to call his antisymmetric product “ex-
terior.” In his reasoning, the product of two “extensive quantities” (such as
lines, areas, or volumes) is nonzero only when each of the two quantities is
geometrically “to the exterior” (outside) of the other.

Exercise 2: Show that in a two-dimensional space V , any 3-vector such as
a ∧ b ∧ c can be simplified to the zero 3-vector. Prove the same for n-vectors
in N -dimensional spaces when n > N . �

One can also consider the exterior powers of the dual space V ∗. Tensors
from ∧nV ∗ are usually (for historical reasons) called n-forms (rather than “n-
covectors”).

Question: Where is the star here, really? Is the space ∧n (V ∗) different from
(∧nV )

∗?
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Answer: Good that you asked. These spaces are canonically isomorphic,
but there is a subtle technical issue worth mentioning. Consider an example:
a∗ ∧ b∗ ∈ ∧2(V ∗) can act upon u ∧ v ∈ ∧2V by the standard tensor product
rule, namely a∗ ⊗ b∗ acts on u ⊗ v as

(a∗ ⊗ b∗) (u ⊗ v) = a∗(u)b∗(v),

so by using the definition of a∗∧b∗ and u∧v through the tensor product, we
find

(a∗ ∧ b∗) (u ∧ v) = (a∗ ⊗ b∗ − b∗ ⊗ a∗) (u ⊗ v − v ⊗ u)

= 2a∗(u)b∗(v) − 2b∗(u)a∗(v).

We got a combinatorial factor 2, that is, a factor that arises because we have
two permutations of the set (a,b). With ∧n (V ∗) and (∧nV )

∗ we get a factor
n!. It is not always convenient to have this combinatorial factor. For example,
in a finite number field the number n! might be equal to zero for large enough
n. In these cases we could redefine the action of a∗ ∧ b∗ on u ∧ v as

(a∗ ∧ b∗) (u ∧ v) ≡ a∗(u)b∗(v) − b∗(u)a∗(v).

If we are not working in a finite number field, we are able to divide by any
integer, so we may keep combinatorial factors in the denominators of expres-
sions where such factors appear. For example, if {ej} is a basis in V and
ω = e1 ∧ ... ∧ eN is the corresponding basis tensor in the one-dimensional

space ∧NV , the dual basis tensor in
(
∧NV

)∗
could be defined by

ω∗ =
1

N !
e∗1 ∧ ... ∧ e∗N , so that ω∗(ω) = 1.

The need for such combinatorial factors is a minor technical inconvenience
that does not arise too often. We may give the following definition that avoids
dividing by combinatorial factors (but now we use permutations; see Ap-
pendix B).

Definition 3: The action of a k-form f∗1 ∧ ... ∧ f∗k on a k-vector v1 ∧ ... ∧ vk is
defined by

∑

σ

(−1)|σ|f∗1 (vσ(1))...f
∗
k (vσ(k)),

where the summation is performed over all permutations σ of the ordered set
(1, ..., k).

Example 2: With k = 3 we have

(p∗ ∧ q∗ ∧ r∗)(a ∧ b ∧ c)

= p∗(a)q∗(b)r∗(c) − p∗(b)q∗(a)r∗(c)

+ p∗(b)q∗(c)r∗(a) − p∗(c)q∗(b)r∗(a)

+ p∗(c)q∗(a)r∗(b) − p∗(c)q∗(b)r∗(a).
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Exercise 3: a) Show that a ∧ b ∧ ω = ω ∧ a ∧ b where ω is any antisymmetric
tensor (e.g. ω = x ∧ y ∧ z).

b) Show that

ω1 ∧ a ∧ ω2 ∧ b ∧ ω3 = −ω1 ∧ b ∧ ω2 ∧ a ∧ ω3,

where ω1, ω2, ω3 are arbitrary antisymmetric tensors and a,b are vectors.
c) Due to antisymmetry, a ∧ a = 0 for any vector a ∈ V . Is it also true that

ω ∧ ω = 0 for any bivector ω ∈ ∧2V ?

2.2.2 * Symmetric tensor product

Question: At this point it is still unclear why the antisymmetric definition
is at all useful. Perhaps we could define something else, say the symmetric
product, instead of the exterior product? We could try to define a product,
say a ⊙ b, with some other property, such as

a ⊙ b = 2b ⊙ a.

Answer: This does not work because, for example, we would have

b ⊙ a = 2a ⊙ b = 4b ⊙ a,

so all the “⊙” products would have to vanish.
We can define the symmetric tensor product, ⊗S , with the property

a ⊗S b = b ⊗S a,

but it is impossible to define anything else in a similar fashion.2

The antisymmetric tensor product is the eigenspace (within V ⊗ V ) of the

exchange operator T̂ with eigenvalue −1. That operator has only eigenvec-
tors with eigenvalues ±1, so the only other possibility is to consider the eigen-
space with eigenvalue +1. This eigenspace is spanned by symmetric tensors
of the form u ⊗ v + v ⊗ u, and can be considered as the space of symmetric
tensor products. We could write

a ⊗S b ≡ a ⊗ b + b ⊗ a

and develop the properties of this product. However, it turns out that the
symmetric tensor product is much less useful for the purposes of linear alge-
bra than the antisymmetric subspace. This book derives most of the results of
linear algebra using the antisymmetric product as the main tool!

2.3 Properties of spaces ∧kV
As we have seen, tensors from the space V ⊗ V are representable by linear
combinations of the form a ⊗ b + c ⊗ d + ..., but not uniquely representable

2This is a theorem due to Grassmann (1862).
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because one can transform one such linear combination into another by us-
ing the axioms of the tensor product. Similarly, n-vectors are not uniquely
representable by linear combinations of exterior products. For example,

a ∧ b + a ∧ c + b ∧ c = (a + b) ∧ (b + c)

since b ∧ b = 0. In other words, the 2-vector ω ≡ a ∧ b + a ∧ c + b ∧ c has
an alternative representation containing only a single-term exterior product,
ω = r ∧ s where r = a + b and s = b + c.

Exercise: Show that any 2-vector in a three-dimensional space is representable
by a single-term exterior product, i.e. to a 2-vector of the form a ∧ b.

Hint: Choose a basis {e1, e2, e3} and show that αe1∧e2+βe1∧e3 +γe2∧e3

is equal to a single-term product. �

What about higher-dimensional spaces? We will show (see the Exercise at
the end of Sec. 2.3.2) that n-vectors cannot be in general reduced to a single-
term product. This is, however, always possible for (N − 1)-vectors in an
N -dimensional space. (You showed this for N = 3 in the exercise above.)

Statement: Any (N − 1)-vector in an N -dimensional space can be written as
a single-term exterior product of the form a1 ∧ ... ∧ aN−1.

Proof: We prove this by using induction in N . The basis of induction is
N = 2, where there is nothing to prove. The induction step: Suppose that
the statement is proved for (N − 1)-vectors in N -dimensional spaces, we
need to prove it for N -vectors in (N + 1)-dimensional spaces. Choose a basis
{e1, ..., eN+1} in the space. Any N -vector ω can be written as a linear combi-
nation of exterior product terms,

ω = α1e2 ∧ ... ∧ eN+1 + α2e1 ∧ e3 ∧ ... ∧ eN+1 + ...

+ αNe1 ∧ ... ∧ eN−1 ∧ eN+1 + αN+1e1 ∧ ... ∧ eN ,

where {αi} are some constants.
Note that any tensor ω ∈ ∧N−1V can be written in this way simply by ex-

pressing every vector through the basis and by expanding the exterior prod-
ucts. The result will be a linear combination of the form shown above, con-
taining at most N + 1 single-term exterior products of the form e1 ∧ ... ∧ eN ,
e2 ∧ ... ∧ eN+1, and so on. We do not yet know whether these single-term ex-
terior products constitute a linearly independent set; this will be established
in Sec. 2.3.2. Presently, we will not need this property.

Now we would like to transform the expression above to a single term. We
move eN+1 outside brackets in the first N terms:

ω =
(
α1e2 ∧ ... ∧ eN + ...+ αNe1 ∧ ... ∧ eN−1

)
∧ eN+1

+ αN+1e1 ∧ ... ∧ eN

≡ ψ ∧ eN+1 + αN+1e1 ∧ ... ∧ eN ,

where in the last line we have introduced an auxiliary (N − 1)-vector ψ. If it
happens that ψ = 0, there is nothing left to prove. Otherwise, at least one of
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the αi must be nonzero; without loss of generality, suppose that αN 6= 0 and
rewrite ω as

ω = ψ ∧ eN+1 + αN+1e1 ∧ ... ∧ eN = ψ ∧
(
eN+1 +

αN+1

αN
eN

)
.

Now we note that ψ belongs to the space of (N − 1)-vectors over the N -
dimensional subspace spanned by {e1, ..., eN}. By the inductive assumption,
ψ can be written as a single-term exterior product, ψ = a1∧ ...∧aN−1, of some
vectors {ai}. Denoting

aN ≡ eN+1 +
αN+1

αN
eN ,

we obtain
ω = a1 ∧ ... ∧ aN−1 ∧ aN ,

i.e. ω can be represented as a single-term exterior product. �

2.3.1 Linear maps between spaces ∧k
V

Since the spaces ∧kV are vector spaces, we may consider linear maps between
them.

A simplest example is a map

La : ω 7→ a ∧ ω,

mapping ∧kV → ∧k+1V ; here the vector a is fixed. It is important to check that
La is a linear map between these spaces. How do we check this? We need to
check that La maps a linear combination of tensors into linear combinations;
this is easy to see,

La(ω + λω′) = a ∧ (ω + λω′)

= a ∧ ω + λa ∧ ω′ = Laω + λLaω
′.

Let us now fix a covector a∗. A covector is a map V → K. In Lemma 2
of Sec. 1.7.3 we have used covectors to define linear maps a∗ : V ⊗W → W
according to Eq. (1.21), mapping v ⊗ w 7→ a∗ (v)w. Now we will apply the
analogous construction to exterior powers and construct a map V ∧ V → V .
Let us denote this map by ιa∗ .

It would be incorrect to define the map ιa∗ by the formula ιa∗(v ∧ w) =
a∗ (v)w because such a definition does not respect the antisymmetry of the
wedge product and thus violates the linearity condition,

ιa∗ (w ∧ v)
!
= ιa∗ ((−1)v ∧ w) = −ιa∗ (v ∧ w) 6= a∗(v)w.

So we need to act with a∗ on each of the vectors in a wedge product and make
sure that the correct minus sign comes out. An acceptable formula for the
map ιa∗ : ∧2V → V is

ιa∗ (v ∧ w) ≡ a∗ (v)w − a∗ (w)v.
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(Please check that the linearity condition now holds!) This is how we will
define the map ιa∗ on ∧2V .

Let us now extend ιa∗ : ∧2V → V to a map

ιa∗ : ∧kV → ∧k−1V,

defined as follows:

ιa∗v ≡ a∗(v),

ιa∗(v ∧ ω) ≡ a∗(v)ω − v ∧ (ιa∗ω). (2.7)

This definition is inductive, i.e. it shows how to define ιa∗ on ∧kV if we know
how to define it on ∧k−1V . The action of ιa∗ on a sum of terms is defined by
requiring linearity,

ιa∗ (A+ λB) ≡ ιa∗ (A) + λιa∗ (B) , A,B ∈ ∧kV.

We can convert this inductive definition into a more explicit formula: if
ω = v1 ∧ ... ∧ vk ∈ ∧kV then

ιa∗(v1 ∧ ... ∧ vk) ≡ a∗(v1)v2 ∧ ... ∧ vk − a∗(v2)v1 ∧ v3 ∧ ... ∧ vk

+ ...+ (−1)
k−1

a∗(vk)v1 ∧ ... ∧ vk−1.

This map is called the interior product or the insertion map. This is a use-
ful operation in linear algebra. The insertion map ιa∗ψ “inserts” the covector
a∗ into the tensor ψ ∈ ∧kV by acting with a∗ on each of the vectors in the
exterior product that makes up ψ.

Let us check formally that the insertion map is linear.
Statement: The map ιa∗ : ∧kV → ∧k−1V for 1 ≤ k ≤ N is a well-defined
linear map, according to the inductive definition.
Proof: First, we need to check that it maps linear combinations into lin-

ear combinations; this is quite easy to see by induction, using the fact that
a∗ : V → K is linear. However, this type of linearity is not sufficient; we also
need to check that the result of the map, i.e. the tensor ιa∗(ω), is defined in-
dependently of the representation of ω through vectors such as vi. The problem
is, there are many such representations, for example some tensor ω ∈ ∧3V
might be written using different vectors as

ω = v1 ∧ v2 ∧ v3 = v2 ∧ (v3 − v1) ∧ (v3 + v2) ≡ ṽ1 ∧ ṽ2 ∧ ṽ3.

We need to verify that any such equivalent representation yields the same
resulting tensor ιa∗(ω), despite the fact that the definition of ιa∗ appears to
depend on the choice of the vectors vi. Only then will it be proved that ιa∗ is
a linear map ∧kV → ∧k−1V .

An equivalent representation of a tensor ω can be obtained only by using
the properties of the exterior product, namely linearity and antisymmetry.
Therefore, we need to verify that ιa∗(ω) does not change when we change the
representation of ω in these two ways: 1) expanding a linear combination,

(x + λy) ∧ ... 7→ x ∧ ...+ λy ∧ ...; (2.8)
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2) interchanging the order of two vectors in the exterior product and change
the sign,

x ∧ y ∧ ... 7→ −y ∧ x ∧ ... (2.9)

It is clear that a∗(x + λy) = a∗(x) + λa∗(y); it follows by induction that ιa∗ω
does not change under a change of representation of the type (2.8). Now we
consider the change of representation of the type (2.9). We have, by definition
of ιa∗ ,

ιa∗(v1 ∧ v2 ∧ χ) = a∗(v1)v2 ∧ χ− a∗(v2)v1 ∧ χ+ v1 ∧ v2 ∧ ιa∗(χ),

where we have denoted by χ the rest of the exterior product. It is clear from
the above expression that

ιa∗(v1 ∧ v2 ∧ χ) = −ιa∗(v2 ∧ v1 ∧ χ) = ιa∗(−v2 ∧ v1 ∧ χ).

This proves that ιa∗(ω) does not change under a change of representation of
ω of the type (2.9). This concludes the proof. �

Remark: It is apparent from the proof that the minus sign in the inductive
definition (2.7) is crucial for the linearity of the map ιa∗ . Indeed, if we attempt
to define a map by a formula such as

v1 ∧ v2 7→ a∗(v1)v2 + a∗(v2)v1,

the result will not be a linear map ∧2V → V despite the appearance of linear-
ity. The correct formula must take into account the fact that v1∧v2 = −v2∧v1.
Exercise: Show by induction in k that

Lxιa∗ω + ιa∗Lxω = a∗(x)ω, ∀ω ∈ ∧kV.

In other words, the linear operator Lxιa∗ + ιa∗Lx : ∧kV → ∧kV is simply the
multiplication by the number a∗(x).

2.3.2 Exterior product and linear dependence

The exterior product is useful in many ways. One powerful property of the
exterior product is its close relation to linear independence of sets of vectors.
For example, if u = λv then u ∧ v = 0. More generally:
Theorem 1: A set {v1, ...,vk} of vectors from V is linearly independent if and
only if (v1 ∧ v2 ∧ ... ∧ vk) 6= 0, i.e. it is a nonzero tensor from ∧kV .
Proof: If {vj} is linearly dependent then without loss of generality we may

assume that v1 is a linear combination of other vectors, v1 =
∑k

j=2 λjvj . Then

v1 ∧ v2 ∧ ... ∧ vk =
k∑

j=2

λjvj ∧ v2 ∧ ... ∧ vj ∧ ... ∧ vk

=

k∑

j=2

(−1)
j−1

v2 ∧ ...vj ∧ vj ∧ ... ∧ vk = 0.
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Conversely, we need to prove that the tensor v1∧ ...∧vk 6= 0 if {vj} is linearly
independent. The proof is by induction in k. The basis of induction is k =
1: if {v1} is linearly independent then clearly v1 6= 0. The induction step:
Assume that the statement is proved for k−1 and that {v1, ...,vk} is a linearly
independent set. By Exercise 1 in Sec. 1.6 there exists a covector f∗ ∈ V ∗

such that f∗ (v1) = 1 and f∗ (vi) = 0 for 2 ≤ i ≤ k. Now we apply the
interior product map ιf∗ : ∧kV → ∧k−1V constructed in Sec. 2.3.1 to the
tensor v1 ∧ ... ∧ vk and find

ιf∗ (v1 ∧ ... ∧ vk) = v2 ∧ ... ∧ vk.

By the induction step, the linear independence of k − 1 vectors {v2, ...,vk}
entails v2 ∧ ... ∧ vk 6= 0. The map ιf∗ is linear and cannot map a zero tensor
into a nonzero tensor, therefore v1 ∧ ... ∧ vk 6= 0. �

It is also important to know that any tensor from the highest exterior power
∧NV can be represented as just a single-term exterior product of N vectors.
(Note that the same property for ∧N−1V was already established in Sec. 2.3.)

Lemma 1: For any tensor ω ∈ ∧NV there exist vectors {v1, ...,vN} such that
ω = v1 ∧ ... ∧ vN .
Proof: If ω = 0 then there is nothing to prove, so we assume ω 6= 0. By defi-

nition, the tensor ω has a representation as a sum of several exterior products,
say

ω = v1 ∧ ... ∧ vN + v′
1 ∧ ... ∧ v′

N + ...

Let us simplify this expression to just one exterior product. First, let us omit
any zero terms in this expression (for instance, a ∧ a ∧ b ∧ ... = 0). Then
by Theorem 1 the set {v1, ...,vN} is linearly independent (or else the term
v1 ∧ ... ∧ vN would be zero). Hence, {v1, ...,vN} is a basis in V . All other
vectors such as v′

i can be decomposed as linear combinations of vectors in
that basis. Let us denote ψ ≡ v1 ∧ ... ∧ vN . By expanding the brackets in
exterior products such as v′

1 ∧ ...∧v′
N , we will obtain every time the tensor ψ

with different coefficients. Therefore, the final result of simplification will be
that ω equals ψ multiplied with some coefficient. This is sufficient to prove
Lemma 1. �

Now we would like to build a basis in the space ∧mV . For this we need to
determine which sets of tensors from ∧mV are linearly independent within
that space.

Lemma 2: If {e1, ..., eN} is a basis in V then any tensor A ∈ ∧mV can be
decomposed as a linear combination of the tensors ek1

∧ ek2
∧ ... ∧ ekm

with
some indices kj , 1 ≤ j ≤ m.
Proof: The tensor A is a linear combination of expressions of the form v1 ∧

...∧vm, and each vector vi ∈ V can be decomposed in the basis {ej}. Expand-
ing the brackets around the wedges using the rules (2.2)–(2.4), we obtain a
decomposition of an arbitrary tensor through the basis tensors. For example,

(e1 + 2e2) ∧ (e1 − e2 + e3) − 2 (e2 − e3) ∧ (e1 − e3)

= −e1 ∧ e2 − e1 ∧ e3 + 4e2 ∧ e3
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(please verify this yourself!). �

By Theorem 1, all tensors ek1
∧ ek2

∧ ... ∧ ekm
constructed out of subsets of

vectors from the basis {e1, ..., ek} are nonzero, and by Lemma 2 any tensor
can be decomposed into a linear combination of these tensors. But are these
tensors a basis in the space ∧mV ? Yes:
Lemma 3: If {v1, ...,vn} is a linearly independent set of vectors (not neces-
sarily a basis in V since n ≤ N ), then:

(1) The set of
(
n
2

)
tensors

{vj ∧ vk, 1 ≤ j < k ≤ n} ≡ {v1 ∧ v2,v1 ∧ v3, ...,vn−1 ∧ vn}

is linearly independent in the space ∧2V .
(2) The set of

(
n
m

)
tensors

{vk1
∧ vk2

∧ ... ∧ vkm
, 1 ≤ k1 < k2 < ... < km ≤ n}

is linearly independent in the space ∧mV for 2 ≤ m ≤ n.
Proof: (1) The proof is similar to that of Lemma 3 in Sec. 1.7.3. Suppose the

set {vj} is linearly independent but the set {vj ∧ vk} is linearly dependent, so
that there exists a linear combination

∑

1≤j<k≤n

λjkvj ∧ vk = 0

with at least some λjk 6= 0. Without loss of generality, λ12 6= 0 (or else we can
renumber the vectors vj). There exists a covector f∗ ∈ V ∗ such that f∗ (v1) =
1 and f∗ (vi) = 0 for 2 ≤ i ≤ n. Apply the interior product with this covector
to the above tensor,

0 = ιf∗




∑

1≤j<k≤n

λjkvj ∧ vk



 =

n∑

k=2

λ1kvk,

therefore by linear independence of {vk} all λ1k = 0, contradicting the as-
sumption λ12 6= 0.

(2) The proof of part (1) is straightforwardly generalized to the space ∧mV ,
using induction in m. We have just proved the basis of induction, m = 2.
Now the induction step: assume that the statement is proved for m − 1 and
consider a set {vk1

∧ ... ∧ vkm
}, of tensors of rank m, where {vj} is a basis.

Suppose that this set is linearly dependent; then there is a linear combination

ω ≡
∑

k1,...,km

λk1...km
vk1

∧ ... ∧ vkm
= 0

with some nonzero coefficients, e.g. λ12...m 6= 0. There exists a covector f∗

such that f∗ (v1) = 1 and f∗ (vi) = 0 for 2 ≤ i ≤ n. Apply this covector to the
tensor ω and obtain ιf∗ω = 0, which yields a vanishing linear combination
of tensors vk1

∧ ... ∧ vkm−1
of rank m− 1 with some nonzero coefficients. But

this contradicts the induction assumption, which says that any set of tensors
vk1

∧ ... ∧ vkm−1
of rank m− 1 is linearly independent. �

Now we are ready to compute the dimension of ∧mV .
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Theorem 2: The dimension of the space ∧mV is

dim∧mV =

(
N

m

)

=
N !

m! (N −m)!
,

where N ≡ dimV . For m > N we have dim∧mV = 0, i.e. the spaces ∧mV for
m > N consist solely of the zero tensor.
Proof: We will explicitly construct a basis in the space ∧mV . First choose a

basis {e1, ..., eN} in V . By Lemma 3, the set of
(
N
m

)
tensors

{ek1
∧ ek2

∧ ... ∧ ekm
, 1 ≤ k1 < k2 < ... < km ≤ N}

is linearly independent, and by Lemma 2 any tensor A ∈ ∧mV is a linear
combination of these tensors. Therefore the set {ek1

∧ ek2
∧ ... ∧ ekm

} is a ba-
sis in ∧mV . By Theorem 1.1.5, the dimension of space is equal to the number

of vectors in any basis, therefore dim∧mN =
(
N
m

)
.

For m > N , the existence of a nonzero tensor v1 ∧ ... ∧ vm contradicts
Theorem 1: The set {v1, ...,vm} cannot be linearly independent since it has
more vectors than the dimension of the space. Therefore all such tensors are
equal to zero (more pedantically, to the zero tensor), which is thus the only
element of ∧mV for every m > N . �

Exercise 1: It is given that the set of four vectors {a,b, c,d} is linearly inde-
pendent. Show that the tensor ω ≡ a ∧ b + c ∧ d ∈ ∧2V cannot be equal to a
single-term exterior product of the form x ∧ y.

Outline of solution:
1. Constructive solution. There exists f∗ ∈ V ∗ such that f∗(a) = 1 and

f∗(b) = 0, f∗(c) = 0, f∗(d) = 0. Compute ιf∗ω = b. If ω = x ∧ y, it will
follow that a linear combination of x and y is equal to b, i.e. b belongs to the
two-dimensional space Span {x,y}. Repeat this argument for the remaining
three vectors (a, c, d) and obtain a contradiction.

2. Non-constructive solution. Compute ω∧ω = 2a∧b∧c∧d 6= 0 by linear
independence of {a,b, c,d}. If we could express ω = x ∧ y then we would
have ω ∧ ω = 0. �

Remark: While a ∧ b is interpreted geometrically as the oriented area of a
parallelogram spanned by a and b, a general linear combination such as a ∧
b + c ∧ d + e ∧ f does not have this interpretation (unless it can be reduced
to a single-term product x ∧ y). If not reducible to a single-term product,
a ∧ b + c ∧ d can be interpreted only as a formal linear combination of two
areas.

Exercise 2: Suppose that ψ ∈ ∧kV and x ∈ V are such that x ∧ ψ = 0 while
x 6= 0. Show that there exists χ ∈ ∧k−1V such that ψ = x∧χ. Give an example
where ψ and χ are not representable as a single-term exterior product.

Outline of solution: There exists f∗ ∈ V ∗ such that f∗(x) = 1. Apply ιf∗ to
the given equality x ∧ ψ = 0:

0
!
= ιf∗(x ∧ ψ) = ψ − x ∧ ιf∗ψ,
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2 Exterior product

which means that ψ = x ∧ χ with χ ≡ ιf∗ψ. An example can be found with
χ = a ∧ b + c ∧ d as in Exercise 1, and x such that the set {a,b, c,d,x} is
linearly independent; then ψ ≡ x ∧ ψ is also not reducible to a single-term
product.

2.3.3 Computing the dual basis

The exterior product allows us to compute explicitly the dual basis for a given
basis.

We begin with some motivation. Suppose {v1, ...,vN} is a given basis; we
would like to compute its dual basis. For instance, the covector v∗

1 of the dual
basis is the linear function such that v∗

1(x) is equal to the coefficient at v1 in
the decomposition of x in the basis {vj},

x =

N∑

i=1

xivi; v∗
1(x) = x1.

We start from the observation that the tensor ω ≡ v1∧ ...∧vN is nonzero since
{vj} is a basis. The exterior product x ∧ v2 ∧ ... ∧ vN is equal to zero if x is a
linear combination only of v2, ..., vN , with a zero coefficient x1. This suggests
that the exterior product of x with the (N − 1)-vector v2 ∧ ... ∧ vN is quite
similar to the covector v∗

1 we are looking for. Indeed, let us compute

x ∧ v2 ∧ ... ∧ vN = x1v1 ∧ v2 ∧ ... ∧ vN = x1ω.

Therefore, exterior multiplication with v2 ∧ ...∧ vN acts quite similarly to v∗
1 .

To make the notation more concise, let us introduce a special complement
operation3 denoted by a star:

∗ (v1) ≡ v2 ∧ ... ∧ vN .

Then we can write v∗
1(x)ω = x∧∗(v1). This equation can be used for comput-

ing v∗
1 : namely, for any x ∈ V the number v∗

1(x) is equal to the constant λ in
the equation x∧ ∗(v1) = λω. To make this kind of equation more convenient,
let us write

λ ≡ v∗
1(x) =

x ∧ v2 ∧ ... ∧ vN

v1 ∧ v2 ∧ ... ∧ vN
=

x ∧ ∗(v1)

ω
,

where the “division” of one tensor by another is to be understood as follows:
We first compute the tensor x∧∗(v1); this tensor is proportional to the tensor
ω since both belong to the one-dimensional space ∧NV , so we can determine
the number λ such that x ∧ ∗(v1) = λω; the proportionality coefficient λ is
then the result of the division of x ∧ ∗(v1) by ω.

For v2 we have

v1 ∧ x ∧ v3 ∧ ... ∧ vN = x2ω = v∗
2(x)ω.

3The complement operation was introduced by H. Grassmann (1844).
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If we would like to have x2ω = x∧∗(v2), we need to add an extra minus sign
and define

∗ (v2) ≡ −v1 ∧ v3 ∧ ... ∧ vN .

Then we indeed obtain v∗
2(x)ω = x ∧ ∗(v2).

It is then clear that we can define the tensors ∗(vi) for i = 1, ..., N in this
way. The tensor ∗(vi) is obtained from ω by removing the vector vi and by
adding a sign that corresponds to shifting the vector vi to the left position
in the exterior product. The “complement” map, ∗ : V → ∧N−1V , satisfies
vj ∧ ∗(vj) = ω for each basis vector vj . (Once defined on the basis vectors,
the complement map can be then extended to all vectors from V by requiring
linearity. However, we will apply the complement operation only to basis
vectors right now.)

With these definitions, we may express the dual basis as

v∗
i (x)ω = x ∧ ∗(vi), x ∈ V, i = 1, ..., N.

Remark: The notation ∗(vi) suggests that e.g. ∗(v1) is some operation ap-
plied to v1 and is a function only of the vector v1, but this is not so: The
“complement” of a vector depends on the entire basis and not merely on the
single vector! Also, the property v1 ∧ ∗(v1) = ω is not sufficient to define the
tensor ∗v1. The proper definition of ∗(vi) is the tensor obtained from ω by
removing vi as just explained.

Example: In the space R2, let us compute the dual basis to the basis {v1,v2}
where v1 =

(
2
1

)
and v2 =

(−1
1

)
.

Denote by e1 and e2 the standard basis vectors
(
1
0

)
and

(
0
1

)
. We first com-

pute the 2-vector

ω = v1 ∧ v2 = (2e1 + e2) ∧ (−e1 + e2) = 3e1 ∧ e2.

The “complement” operation for the basis {v1,v2} gives ∗(v1) = v2 and
∗(v2) = −v1. We now define the covectors v∗

1,2 by their action on arbitrary
vector x ≡ x1e1 + x2e2,

v∗
1(x)ω = x ∧ v2 = (x1e1 + x2e2) ∧ (−e1 + e2)

= (x1 + x2) e1 ∧ e2 =
x1 + x2

3
ω,

v∗
2(x)ω = −x ∧ v1 = − (x1e1 + x2e2) ∧ (2e1 + e2)

= (−x1 + 2x2) e1 ∧ e2 =
−x1 + 2x2

3
ω.

Therefore, v∗
1 = 1

3e
∗
1 + 1

3e
∗
2 and v∗

2 = − 1
3e

∗
1 + 2

3e
∗
2.

Question: Can we define the complement operation for all x ∈ V by the
equation x∧∗(x) = ω where ω ∈ ∧NV is a fixed tensor? Does the complement
really depend on the entire basis? Or perhaps a choice of ω is sufficient?
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Answer: No, yes, no. Firstly, ∗(x) is not uniquely specified by that equa-
tion alone, since x ∧ A = ω defines A only up to tensors of the form x ∧ ...;
secondly, the equation x∧∗(x) = ω indicates that ∗(λx) = 1

λ ∗(x), so the com-
plement map would not be linear if defined like that. It is important to keep
in mind that the complement map requires an entire basis for its definition
and depends not only on the choice of a tensor ω, but also on the choice of all
the basis vectors. For example, in two dimensions we have ∗(e1) = e2; it is
clear that ∗(e1) depends on the choice of e2!
Remark: The situation is different when the vector space is equipped with
a scalar product (see Sec. 5.4.2 below). In that case, one usually chooses an
orthonormal basis to define the complement map; then the complement map
is called the Hodge star. It turns out that the Hodge star is independent of the
choice of the basis as long as the basis is orthonormal with respect to the given
scalar product, and as long as the orientation of the basis is unchanged (i.e. as
long as the tensor ω does not change sign). In other words, the Hodge star op-
eration is invariant under orthogonal and orientation-preserving transforma-
tions of the basis; these transformations preserve the tensor ω. So the Hodge
star operation depends not quite on the detailed choice of the basis, but rather
on the choice of the scalar product and on the orientation of the basis (the sign
of ω). However, right now we are working with a general space without a
scalar product. In this case, the complement map depends on the entire basis.

2.3.4 Gaussian elimination

Question: How much computational effort is actually needed to compute
the exterior product of n vectors? It looks easy in two or three dimensions,
but in N dimensions the product of n vectors {x1, ...,xn} gives expressions
such as

n∧

i=1

xn = (x11e1 + ...+ x1NeN ) ∧ ... ∧ (xn1e1 + ...+ xnNeN ) ,

which will be reduced to an exponentially large number (of order Nn) of
elementary tensor products when we expand all brackets.
Answer: Of course, expanding all brackets is not the best way to compute

long exterior products. We can instead use a procedure similar to the Gaus-
sian elimination for computing determinants. The key observation is that

x1 ∧ x2 ∧ ... = x1 ∧ (x2 − λx1) ∧ ...

for any number λ, and that it is easy to compute an exterior product of the
form

(α1e1 + α2e2 + α3e3) ∧ (β2e2 + β3e3) ∧ e3 = α1β2e1 ∧ e2 ∧ e3.

It is easy to compute this exterior product because the second vector (β2e2 +
β3e3) does not contain the basis vector e1 and the third vector does not con-
tain e1 or e2. So we can simplify the computation of a long exterior product
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if we rewrite

n∧

i=1

xn = x1 ∧ x̃2 ∧ ... ∧ x̃n

≡ x1 ∧ (x2 − λ11x1) ∧ ... ∧ (xn − λn1x1 − ...− λn−1,n−1xn−1) ,

where the coefficients {λij | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ i} are chosen appropriately
such that the vector x̃2 ≡ x2 −λ11x1 does not contain the basis vector e1, and
generally the vector

x̃k ≡ xk − λk1x1 − ...− λk−1,k−1xk−1

does not contain the basis vectors e1,..., ek−1. (That is, these basis vectors
have been “eliminated” from the vector xk, hence the name of the method.)
Eliminating e1 from x2 can be done with λ11 = x21

x11
, which is possible pro-

vided that x11 6= 0; if x11 = 0, we need to renumber the vectors {xj}. If none
of them contains e1, we skip e1 and proceed with e2 instead. Elimination of
other basis vectors proceeds similarly. After performing this algorithm, we
will either find that some vector x̃k is itself zero, which means that the entire
exterior product vanishes, or we will find the product of vectors of the form

x̃1 ∧ ... ∧ x̃n,

where the vectors x̃i are linear combinations of ei, ..., eN (not containing e1,
..., ei).

If n = N , the product can be evaluated immediately since the last vector,
x̃N , is proportional to eN , so

x̃1 ∧ ... ∧ x̃n = (c11e1 + ...) ∧ ... ∧ (cnneN )

= c11c22...cnne1 ∧ ... ∧ eN .

The computation is somewhat longer if n < N , so that

x̃n = cnnen + ...+ cnNeN .

In that case, we may eliminate, say, en from x̃1, ..., x̃n−1 by subtracting a
multiple of x̃n from them, but we cannot simplify the product any more; at
that point we need to expand the last bracket (containing x̃n) and write out
the terms.
Example 1: We will calculate the exterior product

a ∧ b ∧ c

≡ (7e1 − 8e2 + e3) ∧ (e1 − 2e2 − 15e3) ∧ (2e1 − 5e2 − e3).

We will eliminate e1 from a and c (just to keep the coefficients simpler):

a ∧ b ∧ c = (a − 7b) ∧ b ∧ (c − 2b)

= (6e2 + 106e3) ∧ b ∧ (−e2 + 9e3)

≡ a1 ∧ b ∧ c1.
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Now we eliminate e2 from a1, and then the product can be evaluated quickly:

a ∧ b ∧ c = a1 ∧ b ∧ c1 = (a1 + 6c1) ∧ b ∧ c1

= (160e3) ∧ (e1 − 2e2 − 5e3) ∧ (−e2 + 9e3)

= 160e3 ∧ e1 ∧ (−e2) = −160e1 ∧ e2 ∧ e3.

Example 2: Consider

a ∧ b ∧ c ≡ (e1 + 2e2 − e3 + e4)

∧ (2e1 + e2 − e3 + 3e4) ∧ (−e1 − e2 + e4).

We eliminate e1 and e2:

a ∧ b ∧ c = a ∧ (b − 2a) ∧ (c + a)

= a ∧ (−3e2 + e3 + e4) ∧ (e2 − e3 + 2e4)

≡ a ∧ b1 ∧ c1 = a ∧ b1 ∧ (c1 + 3b1)

= a ∧ b1 ∧ (2e3 + 5e4) ≡ a ∧ b1 ∧ c2.

We can now eliminate e3 from a and b1:

a ∧ b1 ∧ c2 = (a +
1

2
c2) ∧ (b1 −

1

2
c2) ∧ c2 ≡ a2 ∧ b2 ∧ c2

= (e1 + 2e2 +
7

2
e4) ∧ (−3e2 −

3

2
e4) ∧ (2e3 + 5e4).

Now we cannot eliminate any more vectors, so we expand the last bracket
and simplify the result by omitting the products of equal vectors:

a2 ∧ b2 ∧ c2 = a2 ∧ b2 ∧ 2e3 + a2 ∧ b2 ∧ 5e4

= (e1 + 2e2) ∧ (−3

2
e4) ∧ 2e3 + e1 ∧ (−3e2) ∧ 2e3

+ e1 ∧ (−3e2) ∧ 5e4

= 3e1 ∧ e3 ∧ e4 + 6e2 ∧ e3 ∧ e4 − 6e1 ∧ e2 ∧ e3 − 15e1 ∧ e2 ∧ e4.

2.3.5 Rank of a set of vectors

We have defined the rank of a map (Sec. 1.8.4) as the dimension of the image
of the map, and we have seen that the rank is equal to the minimum number
of tensor product terms needed to represent the map as a tensor. An analo-
gous concept can be introduced for sets of vectors.
Definition: If S = {v1, ...,vn} is a set of vectors (where n is not necessarily
smaller than the dimensionN of space), the rank of the set S is the dimension
of the subspace spanned by the vectors {v1, ...,vn}. Written as a formula,

rank (S) = dim SpanS.

The rank of a set S is equal to the maximum number of vectors in any
linearly independent subset of S. For example, consider the set {0,v, 2v, 3v}
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where v 6= 0. The rank of this set is 1 since these four vectors span a one-
dimensional subspace,

Span {0,v, 2v, 3v} = Span {v} .

Any subset of S having two or more vectors is linearly dependent.

We will now show how to use the exterior product for computing the rank
of a given (finite) set S = {v1, ...,vn}.

According to Theorem 1 in Sec. 2.3.2, the set S is linearly independent if
and only if v1 ∧ ... ∧ vn 6= 0. So we first compute the tensor v1 ∧ ... ∧ vn.
If this tensor is nonzero then the set S is linearly independent, and the rank
of S is equal to n. If, on the other hand, v1 ∧ ... ∧ vn = 0, the rank is less
than n. We can determine the rank of S by the following procedure. First,
we assume that all vj 6= 0 (any zero vectors can be omitted without changing
the rank of S). Then we compute v1 ∧ v2; if the result is zero, we may omit
v2 since v2 is proportional to v1 and try v1 ∧ v3. If v1 ∧ v2 6= 0, we try
v1 ∧ v2 ∧ v3, and so on. The procedure can be formulated using induction in
the obvious way. Eventually we will arrive at a subset {vi1 , ...,vik

} ⊂ S such
that vi1 ∧ ... ∧ ...vik

6= 0 but vi1 ∧ ... ∧ ...vik
∧ vj = 0 for any other vj . Thus,

there are no linearly independent subsets of S having k + 1 or more vectors.
Then the rank of S is equal to k.

The subset {vi1 , ...,vik
} is built by a procedure that depends on the order

in which the vectors vj are selected. However, the next statement says that
the resulting subspace spanned by {vi1 , ...,vik

} is the same regardless of the
order of vectors vj . Hence, the subset {vi1 , ...,vik

} yields a basis in SpanS.

Statement: Suppose a set S of vectors has rank k and contains two different
linearly independent subsets, say S1 = {v1, ...,vk} and S2 = {u1, ...,uk},
both having k vectors (but no linearly independent subsets having k + 1 or
more vectors). Then the tensors v1 ∧ ...∧vk and u1 ∧ ...∧uk are proportional
to each other (as tensors from ∧kV ).

Proof: The tensors v1∧...∧vk and u1∧...∧uk are both nonzero by Theorem 1
in Sec. 2.3.2. We will now show that it is possible to replace v1 by one of the
vectors from the set S2, say ul, such that the new tensor ul ∧ v2 ∧ ... ∧ vk is
nonzero and proportional to the original tensor v1∧ ...∧vk. It will follow that
this procedure can be repeated for every other vector vi, until we replace all
vi’s by some ui’s and thus prove that the tensors v1 ∧ ...∧vk and u1 ∧ ...∧uk

are proportional to each other.

It remains to prove that the vector v1 can be replaced. We need to find
a suitable vector ul. Let ul be one of the vectors from S2, and let us check
whether v1 could be replaced by ul. We first note that v1 ∧ ... ∧ vk ∧ ul = 0
since there are no linearly independent subsets of S having k + 1 vectors.
Hence the set {v1, ...,vk,ul} is linearly dependent. It follows (since the set
{vi | i = 1, ..., k} was linearly independent before we added ul to it) that ul

can be expressed as a linear combination of the vi’s with some coefficients αi:

ul = α1v1 + ...+ αkvk.
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If α1 6= 0 then we will have

ul ∧ v2 ∧ ... ∧ vk = α1v1 ∧ v2 ∧ ... ∧ vk.

The new tensor is nonzero and proportional to the old tensor, so we can re-
place v1 by ul.

However, it could also happen that α1 = 0. In that case we need to choose a
different vector ul′ ∈ S2 such that the corresponding coefficient α1 is nonzero.
It remains to prove that such a choice is possible. If this were impossible
then all ui’s would have been expressible as linear combinations of vi’s with
zero coefficients at the vector v1. In that case, the exterior product u1 ∧ ... ∧
uk would be equal to a linear combination of exterior products of vectors
vi with i = 2, ..., k. These exterior products contain k vectors among which
only (k − 1) vectors are different. Such exterior products are all equal to zero.
However, this contradicts the assumption u1 ∧ ...∧uk 6= 0. Therefore, at least
one vector ul exists such that α1 6= 0, and the required replacement is always
possible. �

Remark: It follows from the above Statement that the subspace spanned by
S can be uniquely characterized by a nonzero tensor such as v1 ∧ ... ∧ vk in
which the constituents — the vectors v1,..., vk — form a basis in the subspace
SpanS. It does not matter which linearly independent subset we choose for
this purpose. We also have a computational procedure for determining the
subspace SpanS together with its dimension. Thus, we find that a k-dimen-
sional subspace is adequately specified by selecting a nonzero tensor ω ∈ ∧kV
of the form ω = v1∧...∧vk. For a given subspace, this tensor ω is unique up to
a nonzero constant factor. Of course, the decomposition of ω into an exterior
product of vectors {vi | i = 1, ..., k} is not unique, but any such decomposition
yields a set {vi | i = 1, ..., k} spanning the same subspace.

Exercise 1: Let {v1, ...,vn} be a linearly independent set of vectors, ω ≡ v1 ∧
...∧ vn 6= 0, and x be a given vector such that ω ∧ x = 0. Show that x belongs
to the subspace Span {v1, ...,vn}.

Exercise 2: Given a nonzero covector f∗ and a vector n such that f∗(n) 6= 0,
show that the operator P̂ defined by

P̂x = x − n
f∗(x)

f∗(n)

is a projector onto the subspace f∗⊥, i.e. that f∗(P̂x) = 0 for all x ∈ V . Show
that

(P̂x) ∧ n = x ∧ n, ∀x ∈ V.

2.3.6 Exterior product in index notation

Here I show how to perform calculations with the exterior product using the
index notation (see Sec. 1.9), although I will not use this later because the
index-free notation is more suitable for the purposes of this book.
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Let us choose a basis {ej} in V ; then the dual basis
{
e∗j
}

in V and the basis
{ek1

∧ ... ∧ ekm
} in ∧mV are fixed. By definition, the exterior product of two

vectors u and v is
A ≡ u ∧ v = u ⊗ v − v ⊗ u,

therefore it is written in the index notation as Aij = uivj −ujvi. Note that the
matrix Aij is antisymmetric: Aij = −Aji.

Another example: The 3-vector u ∧ v ∧ w can be expanded in the basis as

u ∧ v ∧ w =
N∑

i,j,k=1

Bijkei ∧ ej ∧ ek.

What is the relation between the components ui, vi, wi of the vectors and the
components Bijk? A direct calculation yields

Bijk = uivjwk − uivkwj + ukviwj − ukwjvi + ujwkvi − ujwiwk. (2.10)

In other words, every permutation of the set (i, j, k) of indices enters with the
sign corresponding to the parity of that permutation.
Remark: Readers familiar with the standard definition of the matrix deter-
minant will recognize a formula quite similar to the determinant of a 3 × 3
matrix. The connection between determinants and exterior products will be
fully elucidated in Chapter 3.
Remark: The “three-dimensional array” Bijk is antisymmetric with respect
to any pair of indices:

Bijk = −Bjik = −Bikj = ...

Such arrays are called totally antisymmetric. �

The formula (2.10) for the components Bijk of u ∧ v ∧w is not particularly
convenient and cannot be easily generalized. We will now rewrite Eq. (2.10)
in a different form that will be more suitable for expressing exterior products
of arbitrary tensors.

Let us first consider the exterior product of three vectors as a map Ê :
V ⊗ V ⊗ V → ∧3V . This map is linear and can be represented, in the in-
dex notation, in the following way:

uivjwk 7→ (u ∧ v ∧ w)
ijk

=
∑

l,m,n

Eijk
lmnu

lvmwn,

where the array Eijk
lmn is the component representation of the map E. Com-

paring with the formula (2.10), we find that Eijk
lmn can be expressed through

the Kronecker δ-symbol as

Eijk
lmn = δi

lδ
j
mδ

k
n − δi

lδ
k
mδ

j
n + δk

l δ
i
mδ

j
n − δk

l δ
j
mδ

i
n + δj

l δ
k
mδ

i
n − δj

l δ
i
mδ

k
n.

It is now clear that the exterior product of two vectors can be also written as

(u ∧ v)ij =
∑

l,m

Eij
lmu

lvm,
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2 Exterior product

where
Eij

lm = δi
lδ

j
m − δj

l δ
i
m.

By analogy, the map Ê : V ⊗...⊗V → ∧nV (for 2 ≤ n ≤ N ) can be represented
in the index notation by the array of components Ei1...in

j1...jn
. This array is totally

antisymmetric with respect to all the indices {is} and separately with respect
to all {js}. Using this array, the exterior product of two general antisymmetric
tensors, say φ ∈ ∧mV and ψ ∈ ∧nV , such that m+n ≤ N , can be represented
in the index notation by

(φ ∧ ψ)i1...im+n =
1

m!n!

∑

(js,ks)

E
i1...im+n

j1...jmk1...kn
φj1...jmψk1...kn .

The combinatorial factorm!n! is needed to compensate for them! equal terms
arising from the summation over (j1, ..., jm) due to the fact that φj1...jm is
totally antisymmetric, and similarly for the n! equal terms arising from the
summation over (k1, ..., km).

It is useful to have a general formula for the array Ei1...in

j1...jn
. One way to

define it is

Ei1...in

j1...jn
=

{

(−1)
|σ| if (i1, ..., in) is a permutation σ of (j1, ..., jn) ;

0 otherwise.

We will now show how one can express Ei1...in

j1...jn
through the Levi-Civita sym-

bol ε.
The Levi-Civita symbol is defined as a totally antisymmetric array with N

indices, whose values are 0 or ±1 according to the formula

εi1...iN =

{

(−1)
|σ| if (i1, ..., iN ) is a permutation σ of (1, ..., N) ;

0 otherwise.

Comparing this with the definition of Ei1...in

j1...jn
, we notice that

εi1...iN = Ei1...iN

1...N .

Depending on convenience, we may write εwith upper or lower indices since
ε is just an array of numbers in this calculation.

In order to express Ei1...in

j1...jn
through εi1...iN , we obviously need to use at

least two copies of ε — one with upper and one with lower indices. Let us
therefore consider the expression

Ẽi1...in

j1...jn
≡

∑

k1,...,kN−n

εi1...ink1...kN−nεj1...jnk1...kN−n
, (2.11)

where the summation is performed only over the N −n indices {ks}. This ex-
pression has 2n free indices i1, ..., in and j1, ..., jn, and is totally antisymmetric
in these free indices (since ε is totally antisymmetric in all indices).
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2.3 Properties of spaces ∧kV

Statement: The exterior product operator Ei1...in

j1...jn
is expressed through the

Levi-Civita symbol as

Ei1...in

j1...jn
=

1

(N − n)!
Ẽi1...in

j1...jn
, (2.12)

where Ẽ is defined by Eq. (2.11).

Proof: Let us compare the values of Ei1...in

j1...jn
and Ẽi1...in

j1...jn
, where the indices

{is} and {js} have some fixed values. There are two cases: either the set
(i1, ..., in) is a permutation of the set (j1, ..., jn); in that case we may denote
this permutation by σ; or (i1, ..., in) is not a permutation of (j1, ..., jn).

Considering the case when a permutation σ brings (j1, ..., jn) into (i1, ..., in),
we find that the symbols ε in Eq. (2.11) will be nonzero only if the indices
(k1, ..., kN−n) are a permutation of the complement of the set (i1, ..., in). There
are (N − n)! such permutations, each contributing the same value to the sum
in Eq. (2.11). Hence, we may write4 the sum as

Ẽi1...in

j1...jn
= (N − n)! εi1...ink1...kN−nεj1...jnk1...kN−n

(no sums!),

where the indices {ks} are chosen such that the values of ε are nonzero. Since

σ (j1, ..., jn) = (i1, ..., in) ,

we may permute the first n indices in εj1...jnk1...kN−n

Ẽi1...in

j1...jn
= (N − n)!(−1)|σ|εi1...ink1...kN−nεi1...ink1...kN−n

(no sums!)

= (N − n)!(−1)|σ|.

(In the last line, we replaced the squared ε by 1.) Thus, the required formula

for Ẽ is valid in the first case.
In the case when σ does not exist, we note that

Ẽi1...in

j1...jn
= 0,

because in that case one of the ε’s in Eq. (2.11) will have at least some indices

equal and thus will be zero. Therefore Ẽ and E are equal to zero for the same
sets of indices. �

Note that the formula for the top exterior power (n = N ) is simple and
involves no summations and no combinatorial factors:

Ei1...iN

j1...jN
= εi1...iN εj1...jN

.

Exercise: The operator Ê : V ⊗ V ⊗ V → ∧3V can be considered within the

subspace ∧3V ⊂ V ⊗V ⊗V , which yields an operator Ê : ∧3V → ∧3V . Show
that in this subspace,

Ê = 3! 1̂∧3V .

Generalize to ∧nV in the natural way.

Hint: Act with Ê on a ∧ b ∧ c.
4In the equation below, I have put the warning “no sums” for clarity: A summation over all

repeated indices is often implicitly assumed in the index notation.
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2 Exterior product

Remark: As a rule, a summation of the Levi-Civita symbol ε with any anti-
symmetric tensor (e.g. another ε) gives rise to a combinatorial factor n! when
the summation goes over n indices.

2.3.7 * Exterior algebra (Grassmann algebra)

The formalism of exterior algebra is used e.g. in physical theories of quantum
fermionic fields and supersymmetry.
Definition: An algebra is a vector space with a distributive multiplication.
In other words, A is an algebra if it is a vector space over a field K and if for
any a, b ∈ A their product ab ∈ A is defined, such that a (b+ c) = ab+ ac and
(a+ b) c = ac+ bc and λ (ab) = (λa) b = a (λb) for λ ∈ K. An algebra is called
commutative if ab = ba for all a, b.

The properties of the multiplication in an algebra can be summarized by
saying that for any fixed element a ∈ A, the transformations x 7→ ax and
x 7→ xa are linear maps of the algebra into itself.
Examples of algebras:

1. All N × N matrices with coefficients from K are a N2-dimensional al-
gebra. The multiplication is defined by the usual matrix multiplication
formula. This algebra is not commutative because not all matrices com-
mute.

2. The field K is a one-dimensional algebra over itself. (Not a very exciting
example.) This algebra is commutative.

Statement: If ω ∈ ∧mV then we can define the map Lω : ∧kV → ∧k+mV by
the formula

Lω (v1 ∧ ... ∧ vk) ≡ ω ∧ v1 ∧ ... ∧ vk.

For elements of ∧0V ≡ K, we define Lλω ≡ λω and also Lωλ ≡ λω for any
ω ∈ ∧kV , λ ∈ K. Then the map Lω is linear for any ω ∈ ∧mV , 0 ≤ m ≤ N .
Proof: Left as exercise. �

Definition: The exterior algebra (also called the Grassmann algebra) based
on a vector space V is the space ∧V defined as the direct sum,

∧V ≡ K ⊕ V ⊕ ∧2V ⊕ ...⊕ ∧NV,

with the multiplication defined by the map L, which is extended to the whole
of ∧V by linearity.

For example, if u,v ∈ V then 1 + u ∈ ∧V ,

A ≡ 3 − v + u − 2v ∧ u ∈ ∧V,

and

L1+uA = (1 + u) ∧ (3 − v + u − 2v ∧ u) = 3 − v + 4u − v ∧ u.

Note that we still write the symbol ∧ to denote multiplication in ∧V although
now it is not necessarily anticommutative; for instance, 1 ∧ x = x ∧ 1 = x for
any x in this algebra.
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2.3 Properties of spaces ∧kV

Remark: The summation in expressions such as 1 + u above is formal in the
usual sense: 1+u is not a new vector or a new tensor, but an element of a new
space. The exterior algebra is thus the space of formal linear combinations of
numbers, vectors, 2-vectors, etc., all the way to N -vectors. �

Since ∧V is a direct sum of ∧0V , ∧1V , etc., the elements of ∧V are sums
of scalars, vectors, bivectors, etc., i.e. of objects having a definite “grade” —
scalars being “of grade” 0, vectors of grade 1, and generally k-vectors being
of grade k. It is easy to see that k-vectors and l-vectors either commute or
anticommute, for instance

(a ∧ b) ∧ c = c ∧ (a ∧ b) ,

(a ∧ b ∧ c) ∧ 1 = 1 ∧ (a ∧ b ∧ c) ,

(a ∧ b ∧ c) ∧ d = −d ∧ (a ∧ b ∧ c) .

The general law of commutation and anticommutation can be written as

ωk ∧ ωl = (−1)
kl
ωl ∧ ωk,

where ωk ∈ ∧kV and ωl ∈ ∧lV . However, it is important to note that sums
of elements having different grades, such as 1 + a, are elements of ∧V that
do not have a definite grade, because they do not belong to any single sub-
space ∧kV ⊂ ∧V . Elements that do not have a definite grade can of course
still be multiplied within ∧V , but they neither commute nor anticommute, for
example:

(1 + a) ∧ (1 + b) = 1 + a + b + a ∧ b,

(1 + b) ∧ (1 + a) = 1 + a + b − a ∧ b.

So ∧V is a noncommutative (but associative) algebra. Nevertheless, the fact
that elements of ∧V having a pure grade either commute or anticommute is
important, so this kind of algebra is called a graded algebra.
Exercise 1: Compute the dimension of the algebra ∧V as a vector space, if
dimV = N .
Answer: dim (∧V ) =

∑N
i=0

(
N
i

)
= 2N .

Exercise 2: Suppose that an element x ∈ ∧V is a sum of elements of pure even
grade, e.g. x = 1 + a ∧ b. Show that x commutes with any other element of
∧V .
Exercise 3: Compute exp (a) and exp (a ∧ b + c ∧ d) by writing the Taylor
series using the multiplication within the algebra ∧V .

Hint: Simplify the expression exp(x) = 1+x+ 1
2x∧x+ ... for the particular

x as given.
Answer: exp (a) = 1 + a;

exp (a ∧ b + c ∧ d) = 1 + a ∧ b + c ∧ d + a ∧ b ∧ c ∧ d.
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In this section we will consider finite-dimensional vector spaces V without a
scalar product. We will denote by N the dimensionality of V , i.e. N = dimV .

3.1 Determinants through permutations: the hard

way

In textbooks on linear algebra, the following definition is found.
Definition D0: The determinant of a square N ×N matrix Aij is the number

det(Aij) ≡
∑

σ

(−1)
|σ|
Aσ(1)1...Aσ(N)N , (3.1)

where the summation goes over all permutations σ : (1, ..., N) 7→ (k1, ..., kN )
of the ordered set (1, ..., N), and the parity function |σ| is equal to 0 if the per-
mutation σ is even and to 1 if it is odd. (An even permutation is reducible to
an even number of elementary exchanges of adjacent numbers; for instance,
the permutation (1, 3, 2) is odd while (3, 1, 2) is even. See Appendix B if you
need to refresh your knowledge of permutations.)

Let us illustrate Eq. (3.1) with 2× 2 and 3× 3 matrices. Since there are only
two permutations of the set (1, 2), namely

(1, 2) 7→ (1, 2) and (1, 2) 7→ (2, 1) ,

and six permutations of the set (1, 2, 3), namely

(1, 2, 3) , (1, 3, 2) , (2, 1, 3) , (2, 3, 1) , (3, 1, 2) , (3, 2, 1) ,

we can write explicit formulas for these determinants:

det

(
a11 a12

a21 a22

)

= a11a22 − a21a12;

det





a11 a12 a13

a21 a22 a23

a31 a32 a33



 = a11a22a33 − a11a32a23 − a21a12a33

+ a21a32a13 + a31a12a23 − a31a22a13.

We note that the determinant of an N ×N matrix has N ! terms in this type of
formula, because there are N ! different permutations of the set (1, ..., N). A
numerical evaluation of the determinant of a large matrix using this formula
is prohibitively long.
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Using the definition D0 and the properties of permutations, one can di-
rectly prove various properties of determinants, for instance their antisym-
metry with respect to exchanges of matrix rows or columns, and finally the
relevance of det(Aij) to linear equations

∑

j Aijxj = ai, as well as the impor-
tant property

det (AB) = (detA) (detB) .

Deriving these properties in this way will require long calculations.
Question: To me, definition D0 seems unmotivated and strange. It is not
clear why this complicated combination of matrix elements has any useful
properties at all. Even if so then maybe there exists another complicated com-
bination of matrix elements that is even more useful?
Answer: Yes, indeed: There exist other complicated combinations that are

also useful. All this is best understood if we do not begin by studying the
definition (3.1). Instead, we will proceed in a coordinate-free manner and
build upon geometric intuition.

We will interpret the matrix Ajk not as a “table of numbers” but as a co-

ordinate representation of a linear transformation Â in some vector space V

with respect to some given basis. We will define an action of the operator Â
on the exterior product space ∧NV in a certain way. That action will allow
us to understand the properties and the uses of determinants without long
calculations.

Another useful interpretation of the matrix Ajk is to regard it as a table of
components of a set of N vectors v1, ...,vN in a given basis {ej}, that is,

vj =

N∑

k=1

Ajkek, j = 1, ..., N.

The determinant of the matrix Ajk is then naturally related to the exterior
product v1 ∧ ... ∧ vN . This construction is especially useful for solving linear
equations.

These constructions and related results occupy the present chapter. Most of
the derivations are straightforward and short but require some facility with
calculations involving the exterior product. I recommend that you repeat all
the calculations yourself.
Exercise: If {v1, ...,vN} are N vectors and σ is a permutation of the ordered
set (1, ..., N), show that

v1 ∧ ... ∧ vN = (−1)
|σ|

vσ(1) ∧ ... ∧ vσ(N).

3.2 The space ∧NV and oriented volume

Of all the exterior power spaces ∧kV (k = 1, 2, ...), the last nontrivial space is
∧NV whereN ≡ dimV , for it is impossible to have a nonzero exterior product
of (N + 1) or more vectors. In other words, the spaces ∧N+1V , ∧N+2V etc. are
all zero-dimensional and thus do not contain any nonzero tensors.
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By Theorem 2 from Sec. 2.3.2, the space ∧NV is one-dimensional. There-
fore, all nonzero tensors from ∧NV are proportional to each other. Hence,
any nonzero tensor ω1 ∈ ∧NV can serve as a basis tensor in ∧NV .

The space ∧NV is extremely useful because it is so simple and yet is directly
related to determinants and volumes; this idea will be developed now. We
begin by considering an example.

Example: In a two-dimensional space V , let us choose a basis {e1, e2} and
consider two arbitrary vectors v1 and v2. These vectors can be decomposed
in the basis as

v1 = a11e1 + a12e2, v2 = a21e1 + a22e2,

where {aij} are some coefficients. Let us now compute the 2-vector v1 ∧v2 ∈
∧2V :

v1 ∧ v2 = (a11e1 + a12e2) ∧ (a21e1 + a22e2)

= a11a22e1 ∧ e2 + a12a21e2 ∧ e1

= (a11a22 − a12a21) e1 ∧ e2.

We may observe that firstly, the 2-vector v1 ∧ v2 is proportional to e1 ∧ e2,
and secondly, the proportionality coefficient is equal to the determinant of
the matrix aij .

If we compute the exterior product v1∧v2∧v3 of three vectors in a 3-dimen-
sional space, we will similarly notice that the result is proportional to e1∧e2∧
e3, and the proportionality coefficient is again equal to the determinant of the
matrix aij . �

Let us return to considering a general, N -dimensional space V . The ex-
amples just given motivate us to study N -vectors (i.e. tensors from the top
exterior power space ∧NV ) and their relationships of the form v1 ∧ ...∧vN =
λe1 ∧ ... ∧ eN .

By Lemma 1 from Sec. 2.3.2, every nonzero element of ∧NV must be of
the form v1 ∧ ... ∧ vN , where the set {v1, ...,vN} is linearly independent and
thus a basis in V . Conversely, each basis {vj} in V yields a nonzero tensor
v1∧...∧vN ∈ ∧NV . This tensor has a useful geometric interpretation because,
in some sense, it represents the volume of the N -dimensional parallelepiped
spanned by the vectors {vj}. I will now explain this idea.

A rigorous definition of “volume” in N -dimensional space requires much
background work in geometry and measure theory; I am not prepared to ex-
plain all this here. However, we can motivate the interpretation of the tensor
v1 ∧ ...∧vN as the volume by appealing to the visual notion of the volume of
a parallelepiped.1

1In this text, we do not actually need a mathematically rigorous notion of “volume” — it is
used purely to develop geometrical intuition. All formulations and proofs in this text are
completely algebraic.
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Statement: Consider anN -dimensional space V where the (N -dimensional)
volume of solid bodies can be computed through some reasonable2 geometric
procedure. Then:

(1) Two parallelepipeds spanned by the sets of vectors {u1,u2, ...,uN} and
{v1,v2, ...,vN} have equal volumes if and only if the corresponding tensors
from ∧NV are equal up to a sign,

u1 ∧ ... ∧ uN = ±v1 ∧ ... ∧ vN . (3.2)

Here “two bodies have equal volumes” means (in the style of ancient Greek
geometry) that the bodies can be cut into suitable pieces, such that the vol-
umes are found to be identical by inspection after a rearrangement of the
pieces.

(2) If u1 ∧ ... ∧ uN = λv1 ∧ ... ∧ vN , where λ ∈ K is a number, λ 6= 0, then
the volumes of the two parallelepipeds differ by a factor of |λ|.

To prove these statements, we will use the following lemma.

Lemma: In an N -dimensional space:
(1) The volume of a parallelepiped spanned by {λv1,v2...,vN} is λ times

greater than that of {v1,v2, ...,vN}.
(2) Two parallelepipeds spanned by the sets of vectors {v1,v2, ...,vN} and

{v1 + λv2,v2, ...,vN} have equal volume.
Proof of Lemma: (1) This is clear from geometric considerations: When a

parallelepiped is stretched λ times in one direction, its volume must increase
by the factor λ. (2) First, we ignore the vectors v3,...,vN and consider the two-
dimensional plane containing v1 and v2. In Fig. 3.1 one can see that the par-
allelograms spanned by {v1,v2} and by {v1 + λv2,v2} can be cut into appro-
priate pieces to demonstrate the equality of their area. Now, we consider the
N -dimensional volume (a three-dimensional example is shown in Fig. 3.2).
Similarly to the two-dimensional case, we find that the N -dimensional par-
allelepipeds spanned by {v1,v2, ...,vN} and by {v1 + λv2,v2, ...,vN} have
equal N -dimensional volume. �

Proof of Statement: (1) To prove that the volumes are equal when the tensors
are equal, we will transform the first basis {u1,u2, ...,uN} into the second ba-
sis {v1,v2, ...,vN} by a sequence of transformations of two types: either we
will multiply one of the vectors vj by a number λ, or add λvj to another
vector vk. We first need to demonstrate that any basis can be transformed
into any other basis by this procedure. To demonstrate this, recall the proof
of Theorem 1.1.5 in which vectors from the first basis were systematically re-
placed by vectors of the second one. Each replacement can be implemented
by a certain sequence of replacements of the kind uj → λuj or uj → uj +λui.
Note that the tensor u1 ∧ ... ∧ uN changes in the same way as the volume
under these replacements: The tensor u1 ∧ ... ∧ uN gets multiplied by λ after
uj → λuj and remains unchanged after uj → uj + λui. At the end of the

2Here by “reasonable” I mean that the volume has the usual properties: for instance, the volume
of a body consisting of two parts equals the sum of the volumes of the parts. An example of
such procedure would be the N -fold integral

R

dx1...
R

dxN , where xj are coordinates of
points in an orthonormal basis.
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0

A

B

D
C

E

v1

v2

v1 + λv2

Figure 3.1: The area of the parallelogram 0ACB spanned by {v1,v2} is equal
to the area of the parallelogram 0ADE spanned by {v1 + λv2,v2}.

a

b

c

a + λb

Figure 3.2: Parallelepipeds spanned by {a,b, c} and by {a + λb,b, c} have
equal volume since the volumes of the shaded regions are equal.
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replacement procedure, the basis {uj} becomes the basis {vj} (up to the or-
dering of vectors), while the volume is multiplied by the same factor as the
tensor u1∧ ...∧uN . The ordering of the vectors in the set {vj} can be changed
with possibly a sign change in the tensor u1 ∧ ... ∧ uN . Therefore the state-
ment (3.2) is equivalent to the assumption that the volumes of {vj} and {uj}
are equal. (2) A transformation v1 → λv1 increases the volume by a factor of
|λ| and makes the two tensors equal, therefore the volumes differ by a factor
of |λ|. �

Let us now consider the interpretation of the above Statement. Suppose we
somehow know that the parallelepiped spanned by the vectors {u1, ...,uN}
has unit volume. Given this knowledge, the volume of any other parallelepi-
ped spanned by some other vectors {v1, ...,vN} is easy to compute. Indeed,
we can compute the tensors u1∧...∧uN and v1∧...∧vN . Since the space ∧NV
is one-dimensional, these two tensors must be proportional to each other. By
expanding the vectors vj in the basis {uj}, it is straightforward to compute
the coefficient λ in the relationship

v1 ∧ ... ∧ vN = λu1 ∧ ... ∧ uN .

The Statement now says that the volume of a parallelepiped spanned by the
vectors {v1, ...,vN} is equal to |λ|.
Exercise 1: The volume of a parallelepiped spanned by vectors a, b, c is equal
to 19. Compute the volume of a parallelepiped spanned by the vectors 2a−b,
c + 3a, b.
Solution: Since (2a − b)∧(c + 3a)∧b = 2a∧c∧b = −2a∧b∧c, the volume

is 38 (twice 19; we ignored the minus sign since we are interested only in the
absolute value of the volume). �

It is also clear that the tensor v1 ∧ ...∧vN allows us only to compare the vol-
umes of two parallelepipeds; we cannot determine the volume of one paral-
lelepiped taken by itself. A tensor such as v1 ∧ ... ∧ vN can be used to de-
termine the numerical value of the volume only if we can compare it with
another given tensor, u1 ∧ ... ∧ uN , which (by assumption) corresponds to a
parallelepiped of unit volume. A choice of a “reference” tensor u1 ∧ ... ∧ uN

can be made, for instance, if we are given a basis in V ; without this choice,
there is no natural map from ∧NV to numbers (K). In other words, the space
∧NV is not canonically isomorphic to the space K (even though both ∧NV and
K are one-dimensional vector spaces). Indeed, a canonical isomorphism be-
tween ∧NV and K would imply that the element 1 ∈ K has a corresponding
canonically defined tensor ω1 ∈ ∧NV . In that case there would be some basis
{ej} in V such that e1 ∧ ...∧ eN = ω1, which indicates that the basis {ej} is in
some sense “preferred” or “natural.” However, there is no “natural” or “pre-
ferred” choice of basis in a vector space V , unless some additional structure
is given (such as a scalar product). Hence, no canonical choice of ω1 ∈ ∧NV
is possible.
Remark: When a scalar product is defined in V , there is a preferred choice of
basis, namely an orthonormal basis {ej} such that 〈ei, ej〉 = δij (see Sec. 5.1).
Since the length of each of the basis vectors is 1, and the basis vectors are or-
thogonal to each other, the volume of the parallelepiped spanned by {ej} is
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equal to 1. (This is the usual Euclidean definition of volume.) Then the tensor

ω1 ≡ ∧N
j=1 ej can be computed using this basis and used as a unit volume

tensor. We will see below (Sec. 5.5.2) that this tensor does not depend on the
choice of the orthonormal basis, up to the orientation. The isomorphism be-
tween ∧NV and K is then fixed (up to the sign), thanks to the scalar product.
�

In the absence of a scalar product, one can say that the value of the vol-
ume in an abstract vector space is not a number but a tensor from the space
∧NV . It is sufficient to regard the element v1 ∧ ... ∧ vN ∈ ∧NV as the def-
inition of the “∧NV -valued volume” of the parallelepiped spanned by {vj}.
The space ∧NV is one-dimensional, so the “tensor-valued volume” has the
familiar properties we expect (it is “almost a number”). One thing is unusual
about this “volume”: It is oriented, that is, it changes sign if we exchange the
order of two vectors from the set {vj}.
Exercise 2: Suppose {u1, ...,uN} is a basis in V . Let x be some vector whose
components in the basis {uj} are given, x =

∑

j αjuj . Compute the (tensor-
valued) volume of the parallelepiped spanned by {u1 + x, ...,uN + x}.
Hints: Use the linearity property, (a + x)∧ ... = a∧ ...+ x∧ ..., and notice the
simplification

x ∧ (a + x) ∧ (b + x) ∧ ... ∧ (c + x) = x ∧ a ∧ b ∧ ... ∧ c.

Answer: The volume tensor is

(u1 + x) ∧ ... ∧ (uN + x) = (1 + α1 + ...+ αN )u1 ∧ ... ∧ uN .

Remark: tensor-valued area. The idea that the volume is “oriented” can be
understood perhaps more intuitively by considering the area of the parallel-
ogram spanned by two vectors a, b in the familiar 3-dimensional space. It is
customary to draw the vector product a×b as the representation of this area,
since the length |a × b| is equal to the area, and the direction of a×b is normal
to the area. Thus, the vector a × b can be understood as the “oriented area”
of the parallelogram. However, note that the direction of the vector a × b

depends not only on the angular orientation of the parallelogram in space,
but also on the order of the vectors a, b. The 2-vector a∧b is the natural ana-
logue of the vector product a × b in higher-dimensional spaces. Hence, it is
algebraically natural to regard the tensor a ∧ b ∈ ∧2V as the “tensor-valued”
representation of the area of the parallelogram spanned by {a,b}.

Consider now a parallelogram spanned by a,b in a two-dimensional plane.
We can still represent the oriented area of this parallelogram by the vector
product a×b, where we imagine that the plane is embedded in a three-dimen-
sional space. The area of the parallelogram does not have a nontrivial angular
orientation any more since the vector product a × b is always orthogonal to
the plane; the only feature left from the orientation is the positive or negative
sign of a × b relative to an arbitrarily chosen vector n normal to the plane.
Hence, we may say that the sign of the oriented volume of a parallelepiped
is the only remnant of the angular orientation of the parallelepiped in space
when the dimension of the parallelepiped is equal to the dimension of space.
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(See Sec. 2.1 for more explanations about the geometrical interpretation of
volume in terms of exterior product.) �

3.3 Determinants of operators

Let Â ∈ End V be a linear operator. Consider its action on tensors from the

space ∧NV defined in the following way, v1 ∧ ...∧ ...vN 7→ Âv1 ∧ ...∧ ÂvN . I

denote this operation by ∧N ÂN , so

∧N ÂN (v1 ∧ ... ∧ vN ) ≡ (Âv1) ∧ ... ∧ (ÂvN ).

The notation ∧N ÂN underscores the fact that there are N copies of Â acting
simultaneously.

We have just defined ∧N ÂN on single-term products v1∧...∧vN ; the action

of ∧N ÂN on linear combinations of such products is obtained by requiring
linearity.

Let us verify that ∧N ÂN is a linear map; it is sufficient to check that it is
compatible with the exterior product axioms:

Â(v + λu) ∧ Âv2 ∧ ... ∧ ÂvN = Âv ∧ Âv2 ∧ ... ∧ ÂvN

+ λÂu ∧ Âv2 ∧ ... ∧ ÂvN ;

Âv1 ∧ Âv2 ∧ ... ∧ ÂvN = −Âv2 ∧ Âv1 ∧ ... ∧ ÂvN .

Therefore, ∧N ÂN is now defined as a linear operator ∧NV → ∧NV .

By Theorem 2 in Sec. 2.3.2, the space ∧NV is one-dimensional. So ∧N ÂN ,
being a linear operator in a one-dimensional space, must act simply as mul-
tiplication by a number. (Every linear operator in a one-dimensional space
must act as multiplication by a number!) Thus we can write

∧N ÂN = α1̂∧N V ,

where α ∈ K is a number which is somehow associated with the operator Â.
What is the significance of this number α? This number is actually equal to

the determinant of the operator Â as given by Definition D0. But let us pretend
that we do not know anything about determinants; it is very convenient to
use this construction to define the determinant and to derive its properties.

Definition D1: The determinant det Â of an operator Â ∈ End V is the num-

ber by which any nonzero tensor ω ∈ ∧NV is multiplied when ∧N ÂN acts on
it:

(∧N ÂN )ω = (det Â)ω. (3.3)

In other words, ∧NAN = (det Â)1̂∧N V .
We can immediately put this definition to use; here are the first results.

Statement 1: The determinant of a product is the product of determinants:

det(ÂB̂) = (det Â)(det B̂).
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Proof: Act with ∧N ÂN and then with ∧N B̂N on a nonzero tensor ω ∈ ∧NV .
Since these operators act as multiplication by a number, the result is the mul-
tiplication by the product of these numbers. We thus have

(∧N ÂN )(∧N B̂N )ω = (∧N ÂN )(det B̂)ω = (det Â)(det B̂)ω.

On the other hand, for ω = v1 ∧ ... ∧ vN we have

(∧N ÂN )(∧N B̂N )ω = (∧N ÂN )B̂v1 ∧ ... ∧ B̂vN

= ÂB̂v1 ∧ ... ∧ ÂB̂vN = ∧N (ÂB̂)Nω

= (det(ÂB̂))ω.

Therefore, det(ÂB̂) = (det Â)(det B̂). �

Exercise 1: Prove that det(λÂ) = λN det Â for any λ ∈ K and Â ∈ End V .
Now let us clarify the relation between the determinant and the volume.

We will prove that the determinant of a transformation Â is the coefficient

by which the volume of parallelepipeds will grow when we act with Â on
the vector space. After proving this, I will derive the relation (3.1) for the

determinant through the matrix coefficients of Â in some basis; it will follow
that the formula (3.1) gives the same results in any basis.
Statement 2: When a parallelepiped spanned by the vectors {v1, ...,vN} is

transformed by a linear operator Â, so that vj 7→ Âvj , the volume of the

parallelepiped grows by the factor |det Â |.
Proof: Suppose the volume of the parallelepiped spanned by the vec-

tors {v1, ...,vN} is v. The transformed parallelepiped is spanned by vectors

{Âv1, ..., ÂvN}. According to the definition of the determinant, det Â is a
number such that

Âv1 ∧ ... ∧ ÂvN = (det Â)v1 ∧ ... ∧ vN .

By Statement 3.2, the volume of the transformed parallelepiped is |det Â |
times the volume of the original parallelepiped. �

If we consider the oriented (i.e. tensor-valued) volume, we find that it
grows by the factor det Â (without the absolute value). Therefore we could
define the determinant also in the following way:

Definition D2: The determinant det Â of a linear transformation Â is the
number by which the oriented volume of any parallelepiped grows after the
transformation. (One is then obliged to prove that this number does not de-
pend on the choice of the initial parallelepiped! We just proved this in State-
ment 1 using an algebraic definition D1 of the determinant.)

With this definition of the determinant, the property

det(ÂB̂) = (det Â)(det B̂)

is easy to understand: The composition of the transformations Â and B̂ mul-
tiplies the volume by the product of the individual volume growth factors

det Â and det B̂.
Finally, here is a derivation of the formula (3.1) from Definition D1.
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Statement 3: If {ej} is any basis in V ,
{
e∗j
}

is the dual basis, and a linear

operator Â is represented by a tensor,

Â =

N∑

j,k=1

Ajkej ⊗ e∗k, (3.4)

then the determinant of Â is given by the formula (3.1).

Proof: The operator Â defined by Eq. (3.4) acts on the basis vectors {ej} as
follows,

Âek =

N∑

j=1

Ajkej .

A straightforward calculation is all that is needed to obtain the formula for
the determinant. I first consider the case N = 2 as an illustration:

∧2Â2 (e1 ∧ e2) = Âe1 ∧ Âe2

= (A11e1 +A21e2) ∧ (A12e1 +A22e2)

= A11A22e1 ∧ e2 +A21A12e2 ∧ e1

= (A11A22 −A12A21) e1 ∧ e2.

Hence det Â = A11A22 −A12A21, in agreement with the usual formula.

Now I consider the general case. The action of ∧N ÂN on the basis element
e1 ∧ ... ∧ eN ∈ ∧NV is

∧N ÂN (e1 ∧ ... ∧ eN ) = Âe1 ∧ ... ∧ ÂeN

=





N∑

j1=1

Aj11ej1



 ∧ ... ∧





N∑

jN=1

AjN NejN





=
N∑

j1=1

...
N∑

jN=1

Aj11ej1 ∧ ... ∧AjN NejN

=
N∑

j1=1

...
N∑

jN=1

(Aj11...AjN N )ej1 ∧ ... ∧ ejN
. (3.5)

In the last sum, the only nonzero terms are those in which the indices j1, ..., jN
do not repeat; in other words, (j1, ..., jN ) is a permutation of the set (1, ..., N ).
Let us therefore denote this permutation by σ and write σ(1) ≡ j1, ..., σ(N) ≡
jN . Using the antisymmetry of the exterior product and the definition of the
parity |σ| of the permutation σ, we can express

ej1 ∧ ... ∧ ejN
= eσ(1) ∧ ... ∧ eσ(N) = (−1)

|σ|
e1 ∧ ... ∧ eN .

Now we can rewrite the last line in Eq. (3.5) in terms of sums over all permu-
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tations σ instead of sums over all {j1, ..., jN}:

∧N ÂN (e1 ∧ ... ∧ eN ) =
∑

σ

Aσ(1)1...Aσ(N)Neσ(1) ∧ ... ∧ eσ(N)

=
∑

σ

Aσ(1)1...Aσ(N)N (−1)
|σ|

e1 ∧ ... ∧ eN .

Thus we have reproduced the formula (3.1). �

We have seen three equivalent definitions of the determinant, each with its
own advantages: first, a direct but complicated definition (3.1) in terms of ma-
trix coefficients; second, an elegant but abstract definition (3.3) that depends
on the construction of the exterior product; third, an intuitive and visual def-
inition in terms of the volume which, however, is based on the geometric
notion of “volume of an N -dimensional domain” rather than on purely al-
gebraic constructions. All three definitions are equivalent when applied to
linear operators in finite-dimensional spaces.

3.3.1 Examples: computing determinants

Question: We have been working with operators more or less in the same
way as with matrices, like in Eq. (3.4). What is the advantage of the coordin-
ate-free approach if we are again computing with the elements of matrices?
Answer: In some cases, there is no other way except to represent an oper-

ator in some basis through a matrix such as Aij . However, in many cases an
interesting operator can be represented geometrically, i.e. without choosing a
basis. It is often useful to express an operator in a basis-free manner because
this yields some nontrivial information that would otherwise be obscured by
an unnecessary (or wrong) choice of basis. It is useful to be able to employ
both the basis-free and the component-based techniques. Here are some ex-
amples where we compute determinants of operators defined without a basis.
Example 1: Operators of the form 1̂V +a⊗b∗ are useful in geometry because
they can represent reflections or projections with respect to an axis or a plane
if a and b∗ are chosen appropriately. For instance, if b∗ 6= 0, we can define a
hyperplane Hb∗ ⊂ V as the subspace annihilated by the covector b∗, i.e. the
subspace consisting of vectors v ∈ V such that b∗ (v) = 0. If a vector a ∈ V
is such that b∗ (a) 6= 0, i.e. a 6∈ Hb∗ , then

P̂ ≡ 1̂V − 1

b∗ (a)
a ⊗ b∗

is a projector onto Hb∗ , while the operator

R̂ ≡ 1̂V − 2

b∗ (a)
a ⊗ b∗

describes a mirror reflection with respect to the hyperplane Hb∗ , in the sense

that v + R̂v ∈ Hb∗ for any v ∈ V . �

The following statement shows how to calculate determinants of such op-

erators. For instance, with the above definitions we would find det P̂ = 0 and
det R̂ = −1 by a direct application of Eq. (3.6).
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Statement: Let a ∈ V and b∗ ∈ V ∗. Then

det
(
1̂V + a ⊗ b∗) = 1 + b∗ (a) . (3.6)

Proof: If b∗ = 0, the formula is trivial, so we assume that b∗ 6= 0. Then
we need to consider two cases: b∗(a) 6= 0 or b∗(a) = 0; however, the final
formula (3.6) is the same in both cases.

Case 1. By Statement 1.6, if b∗ (a) 6= 0 there exists a basis {a,v2, ...,vN}
such that b∗ (vi) = 0 for 2 ≤ i ≤ N , where N = dimV . Then we compute

the determinant by applying the operator ∧N
(
1̂V + a ⊗ b∗)N to the tensor

a ∧ v2 ∧ ... ∧ vN : since
(
1̂V + a ⊗ b∗)a = (1 + b∗ (a))a,

(
1̂V + a ⊗ b∗)vi = vi, i = 2, ..., N,

we get

∧N
(
1̂V + a ⊗ b∗)N a ∧ v2 ∧ ... ∧ vN

= (1 + b∗ (a))a ∧ v2 ∧ ... ∧ vN .

Therefore det
(
1̂V + a ⊗ b∗) = 1 + b∗ (a), as required.

Case 2. If b∗ (a) = 0, we will show that det
(
1̂V + a ⊗ b∗) = 1. We can-

not choose the basis {a,v2, ...,vN} as in case 1, so we need to choose another
basis. There exists some vector w ∈ V such that b∗ (w) 6= 0 because by
assumption b∗ 6= 0. It is clear that {w,a} is a linearly independent set: oth-
erwise we would have b∗(w) = 0. Therefore, we can complete this set to a
basis {w,a,v3, ...,vN}. Further, the vectors v3, ...,vN can be chosen such that
b∗ (vi) = 0 for 3 ≤ i ≤ N . Now we compute the determinant by acting with

the operator ∧N
(
1̂V + a ⊗ b∗)N on the tensor a ∧ w ∧ v3 ∧ ... ∧ vN : since

(
1̂V + a ⊗ b∗)a = a,
(
1̂V + a ⊗ b∗)w = w + b∗ (w)a,
(
1̂V + a ⊗ b∗)vi = vi, i = 3, ..., N,

we get

∧N
(
1̂V + a ⊗ b∗)N a ∧ w ∧ v3 ∧ ... ∧ vN

= a ∧ (w + b∗ (w)a) ∧ v3 ∧ ... ∧ vN

= a ∧ w ∧ v3 ∧ ... ∧ vN .

Therefore det
(
1̂V + a ⊗ b∗) = 1. �

Exercise 1: In a similar way, prove the following statement: If ai ∈ V and
b∗

i ∈ V ∗ for 1 ≤ i ≤ n < N are such that b∗
i (aj) = 0 for all i > j, then

det

(

1̂V +

n∑

i=1

ai ⊗ b∗
i

)

=

n∏

i=1

(1 + b∗
i (ai)) .
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Exercise 2: Consider the three-dimensional space of polynomials p(x) in the

variable x of degree at most 2 with real coefficients. The operators Â and B̂
are defined by

(Âp)(x) ≡ p(x) + x
dp(x)

dx
,

(B̂p)(x) ≡ x2p(1) + 2p(x).

Check that these operators are linear. Compute the determinants of Â and B̂.
Solution: The operators are linear because they are expressed as formulas

containing p(x) linearly. Let us use the underbar to distinguish the polynomi-
als 1, x from numbers such as 1. A convenient basis tensor of the 3rd exterior
power is 1 ∧ x ∧ x2, so we perform the calculation,

(det Â)(1 ∧ x ∧ x2) = (Â1) ∧ (Âx) ∧ (Âx2)

= 1 ∧ (2x) ∧ (3x2) = 6(1 ∧ x ∧ x2),

and find that det Â = 6. Similarly we find det B̂ = 12. �

Exercise 3: Suppose the space V is decomposed into a direct sum ofU andW ,

and an operator Â is such that U and W are invariant subspaces (Âx ∈ U for

all x ∈ U , and the same for W ). Denote by ÂU the restriction of the operator

Â to the subspace U . Show that

det Â = (det ÂU )(det ÂW ).

Hint: Choose a basis in V as the union of a basis in U and a basis in W . In
this basis, the operator Â is represented by a block-diagonal matrix.

3.4 Determinants of square tables

Note that the determinant formula (3.1) applies to any square matrix, with-
out referring to any transformations in any vector spaces. Sometimes it is
useful to compute the determinants of matrices that do not represent linear
transformations. Such matrices are really just tables of numbers. The prop-
erties of determinants of course remain the same whether or not the matrix
represents a linear transformation in the context of the problem we are solv-
ing. The geometric construction of the determinant through the space ∧NV
is useful because it helps us understand heuristically where the properties of
the determinant come from.

Given just a square table of numbers, it is often useful to introduce a linear
transformation corresponding to the matrix in some (conveniently chosen)
basis; this often helps solve problems. An example frequently used in linear
algebra is a matrix consisting of the components of some vectors in a basis.
Suppose {ej | j = 1, ..., N} is a basis and {vj | j = 1, ..., N} are some vectors.
Since each of the vj can be decomposed through the basis {ej}, say

vi =

N∑

j=1

vijej , i = 1, ..., N,
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we may consider the coefficients vij as a square matrix. This matrix, at first
glance, does not represent a linear transformation; it’s just a square-shaped

table of the coefficients vij . However, let us define a linear operator Â by the

condition that Âei = vi for all i = 1, ..., N . This condition defines Âx for
any vector x if we assume the linearity of Â (see Exercise 2 in Sec. 1.2.2). The

operator Â has the following matrix representation with respect to the basis
{ei} and the dual basis {e∗i }:

Â =

N∑

i=1

vi ⊗ e∗i =

N∑

i=1

N∑

j=1

vijej ⊗ e∗i .

So the matrix vji (the transpose of vij) is the matrix representing the transfor-

mation Â. Let us consider the determinant of this transformation:

(det Â)e1 ∧ ... ∧ eN = Âe1 ∧ ... ∧ ÂeN = v1 ∧ ... ∧ vN .

The determinant of the matrix vji is thus equal to the determinant of the trans-

formation Â. Hence, the computation of the determinant of the matrix vji is
equivalent to the computation of the tensor v1 ∧ ... ∧ vN ∈ ∧NV and its com-
parison with the basis tensor e1 ∧ ...∧eN . We have thus proved the following
statement.
Statement 1: The determinant of the matrix vji made up by the components
of the vectors {vj} in a basis {ej} (j = 1, ..., N ) is the number C defined as
the coefficient in the tensor equality

v1 ∧ ... ∧ vN = Ce1 ∧ ... ∧ eN .

Corollary: The determinant of a matrix does not change when a multiple of
one row is added to another row. The determinant is linear as a function of
each row. The determinant changes sign when two rows are exchanged.
Proof: We consider the matrix vij as the table of coefficients of vectors {vj}

in a basis {ej}, as explained above. Since

(det vji)e1 ∧ ... ∧ eN = v1 ∧ ... ∧ vN ,

we need only to examine the properties of the tensor ω ≡ v1 ∧ ... ∧ vN under
various replacements. When a multiple of row k is added to another row j,
we replace vj 7→ vj + λvk for fixed j, k; then the tensor ω does not change,

v1 ∧ ... ∧ vj ∧ ... ∧ vN = v1 ∧ ... ∧ (vj + λvk) ∧ ... ∧ vN ,

hence the determinant of vij does not change. To show that the determinant is
linear as a function of each row, we consider the replacement vj 7→ u+λv for
fixed j; the tensor ω is then equal to the sum of the tensors v1∧ ...∧u∧ ...∧vN

and λv1 ∧ ... ∧ v ∧ ... ∧ vN . Finally, exchanging the rows k and l in the matrix
vij corresponds to exchanging the vectors vk and vl, and then the tensor ω
changes sign. �

It is an important property that matrix transposition leaves the determinant
unchanged.
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Statement 2: The determinant of the transposed operator is unchanged:

det ÂT = det Â.

Proof: I give two proofs, one based on Definition D0 and the properties of
permutations, another entirely coordinate-free — based on Definition D1 of
the determinant and definition 1.8.4 of the transposed operator.

First proof : According to Definition D0, the determinant of the transposed
matrix Aji is given by the formula

det(Aji) ≡
∑

σ

(−1)
|σ|
A1,σ(1)...AN,σ(N), (3.7)

so the only difference between det(Aij) and det(Aji) is the order of indices
in the products of matrix elements, namely Aσ(i),i instead of Ai,σ(i). We can
show that the sum in Eq. (3.7) consists of exactly the same terms as the sum in
Eq. (3.1), only the terms occur in a different order. This is sufficient to prove
that det(Aij) = det(Aji).

The sum in Eq. (3.7) consists of terms of the form A1,σ(1)...AN,σ(N), where
σ is some permutation. We may reorder factors in this term,

A1,σ(1)...AN,σ(N) = Aσ′(1),1...Aσ′(N),N ,

where σ′ is another permutation such that Ai,σ(i) = Aσ′(i),i for i = 1, ..., N .
This is achieved when σ′ is the permutation inverse to σ, i.e. we need to use
σ′ ≡ σ−1. Since there exists precisely one inverse permutation σ−1 for each
permutation σ, we may transform the sum in Eq. (3.7) into a sum over all
inverse permutations σ′; each permutation will still enter exactly once into
the new sum. Since the parity of the inverse permutation σ−1 is the same as

the parity of σ (see Statement 3 in Appendix B), the factor (−1)
|σ| will remain

unchanged. Therefore, the sum will remain the same.
Second proof : The transposed operator is defined as

(ÂT f∗)(x) = f∗(Âx), ∀f∗ ∈ V ∗, x ∈ V.

In order to compare the determinants det Â and det(ÂT ) according to Defini-

tion D1, we need to compare the numbers ∧N ÂN and ∧N (ÂT )N .
Let us choose nonzero tensors ω ∈ ∧NV and ω∗ ∈ ∧NV ∗. By Lemma 1 in

Sec. 2.3.2, these tensors have representations of the form ω = v1∧ ...∧vN and
ω∗ = f∗1 ∧ ... ∧ f∗N . We have

(det Â)v1 ∧ ... ∧ vN = Âv1 ∧ ... ∧ ÂvN .

Now we would like to relate this expression with the analogous expression

for ÂT . In order to use the definition of ÂT , we need to act on the vectors
Âvi by the covectors f∗j . Therefore, we act with the N -form ω∗ ∈ ∧NV ∗ ∼=
(∧NV )∗ on the N -vector ∧N ÂNω ∈ ∧NV (this canonical action was defined
by Definition 3 in Sec. 2.2). Since this action is linear, we find

ω∗(∧N ÂNω) = (det Â)ω∗(ω).

115



3 Basic applications

(Note that ω∗(ω) 6= 0 since by assumption the tensors ω and ω∗ are nonzero.)
On the other hand,

ω∗(∧N ÂNω
)

=
∑

σ

(−1)|σ|f∗1 (Âvσ(1))...f
∗
N (Âvσ(N))

=
∑

σ

(−1)|σ|(ÂT f∗1 )(vσ(1))...(Â
T f∗N )(vσ(N))

=
(
∧N (ÂT )Nω∗)(ω) = (det ÂT )ω∗(ω).

Hence det ÂT = det Â. �

Exercise* (Laplace expansion): As shown in the Corollary above, the deter-
minant of the matrix vij is a linear function of each of the vectors {vi}. Con-
sider det(vij) as a linear function of the first vector, v1; this function is a cov-
ector that we may temporarily denote by f∗1 . Show that f∗1 can be represented
in the dual basis

{
e∗j
}

as

f∗1 =

N∑

i=1

(−1)
i−1

B1ie
∗
i ,

where the coefficients B1i are minors of the matrix vij , that is, determinants
of the matrix vij from which row 1 and column i have been deleted.
Solution: Consider one of the coefficients, for example B11 ≡ f∗1 (e1). This

coefficient can be determined from the tensor equality

e1 ∧ v2 ∧ ... ∧ vN = B11e1 ∧ ... ∧ eN . (3.8)

We could reduce B11 to a determinant of an (N − 1) × (N − 1) matrix if we
could cancel e1 on both sides of Eq. (3.8). We would be able to cancel e1 if we
had a tensor equality of the form

e1 ∧ ψ = B11e1 ∧ e2 ∧ ... ∧ eN ,

where the (N − 1)-vector ψ were proportional to e2 ∧ ... ∧ eN . However,
v2 ∧ ... ∧ vN in Eq. (3.8) is not necessarily proportional to e2 ∧ ... ∧ eN ; so
we need to transform Eq. (3.8) to a suitable form. In order to do this, we
transform the vectors vi into vectors that belong to the subspace spanned by
{e2, ..., eN}. We subtract from each vi (i = 2, ..., N ) a suitable multiple of e1

and define the vectors ṽi (i = 2, ..., N ) such that e∗1(ṽi) = 0:

ṽi ≡ vi − e∗1(vi)e1, i = 2, ..., N.

Then ṽi ∈ Span {e2, ..., eN} and also

e1 ∧ v2 ∧ ... ∧ vN = e1 ∧ ṽ2 ∧ ... ∧ ṽN .

Now Eq. (3.8) is rewritten as

e1 ∧ ṽ2 ∧ ... ∧ ṽN = B11e1 ∧ e2 ∧ ... ∧ eN .
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Since ṽi ∈ Span {e2, ..., eN}, the tensors ṽ2 ∧ ... ∧ ṽN and e2 ∧ ... ∧ eN are
proportional to each other. Now we are allowed to cancel e1 and obtain

ṽ2 ∧ ... ∧ ṽN = B11e2 ∧ ... ∧ eN .

Note that the vectors ṽi have the first components equal to zero. In other
words, B11 is equal to the determinant of the matrix vij from which row 1
(i.e. the vector v1) and column 1 (the coefficients at e1) have been deleted.
The coefficients B1j for j = 2, ..., N are calculated similarly. �

3.4.1 * Index notation for ∧N
V and determinants

Let us see how determinants are written in the index notation.
In order to use the index notation, we need to fix a basis {ej} and represent

each vector and each tensor by their components in that basis. Determinants
are related to the space ∧NV . Let us consider a set of vectors {v1, ...,vN} and
the tensor

ψ ≡ v1 ∧ ... ∧ vN ∈ ∧NV.

Since the space ∧NV is one-dimensional and its basis consists of the single
tensor e1 ∧ ... ∧ eN , the index representation of ψ consists, in principle, of the
single number C in a formula such as

ψ = Ce1 ∧ ... ∧ eN .

However, it is more convenient to use a totally antisymmetric array of num-
bers having N indices, ψi1...iN , so that

ψ =
1

N !

N∑

i1,...,iN=1

ψi1...iN ei1 ∧ ... ∧ eiN
.

Then the coefficient C is C ≡ ψ12...N . In the formula above, the combinato-
rial factor N ! compensates the fact that we are summing an antisymmetric
product of vectors with a totally antisymmetric array of coefficients.

To write such arrays more conveniently, one can use Levi-Civita symbol
εi1...iN (see Sec. 2.3.6). It is clear that any other totally antisymmetric array
of numbers with N indices, such as ψi1...iN , is proportional to εi1...iN : For
indices {i1, ..., iN} that correspond to a permutation σ we have

ψi1...iN = ψ12...N (−1)|σ|,

and hence
ψi1...iN = (ψ12...N )εi1...iN .

How to compute the index representation of ψ given the array vk
j of the

components of the vectors {vj}? We need to represent the tensor

ψ ≡
∑

σ

(−1)
|σ|

vσ(1) ⊗ vσ(2) ⊗ ...⊗ vσ(N).

117
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Hence, we can use the Levi-Civita symbol and write

ψ12...N =
∑

σ

(−1)
|σ|
v1

σ(1) ⊗ v2
σ(2) ⊗ ...⊗ vN

σ(N)

=
N∑

i1,...,iN=1

εi1...iN v1
i1 ...v

N
iN
.

The component ψ12...N is the only number we need to represent ψ in the basis
{ej}.

The Levi-Civita symbol itself can be seen as the index representation of the
tensor

ω ≡ e1 ∧ ... ∧ eN

in the basis {ej}. (The components of ω in a different basis will, of course,
differ from εi1...iN by a constant factor.)

Now let us construct the index representation of the determinant of an op-

erator Â. The operator is given by its matrix Ai
j and acts on a vector v with

components vi yielding a vector u ≡ Âv with components

uk =

N∑

i=1

Ak
i v

i.

Hence, the operator ∧N ÂN acting on ψ yields an antisymmetric tensor whose
component with the indices k1...kN is

[

(∧N ÂN )ψ
]k1...kN

=
[

Âv1 ∧ ... ∧ ÂvN

]k1...kN

=
∑

is,js

εi1...iNAk1

j1
vj1

i1
...AkN

jN
vjN

iN
.

Since the tensor ∧N ÂNψ is proportional to ψ with the coefficient det Â, the
same proportionality holds for the components of these tensors:

∑

is,js

εi1...iNAk1

j1
vj1

i1
...AkN

jN
vjN

iN
= (det Â)ψk1...kN

= (det Â)
∑

is

εi1...iN vk1

i1
...vkN

iN
.

The relation above must hold for arbitrary vectors {vj}. This is sufficient to

derive a formula for det Â. Since {vj} are arbitrary, we may select {vj} as the
basis vectors {ej}, so that vk

i = δk
i . Substituting this into the equation above,

we find ∑

is,js

εi1...iNAk1

i1
...AkN

iN
= (det Â)εk1...kN .

We can now solve for det Â by multiplying with another Levi-Civita symbol
εk1...kN

, written this time with lower indices to comply with the summation
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convention, and summing over all ks. By elementary combinatorics (there are
N ! possibilities to choose the indices k1, ..., kN such that they are all different),
we have ∑

k1,...,kN

εk1...kN
εk1...kN = N !,

and therefore

det(Â) =
1

N !

∑

is,ks

εk1...kN
εi1...iNAk1

i1
...AkN

iN
.

This formula can be seen as the index representation of

det Â = ω∗(∧N ÂNω),

where ω∗ ∈ (∧NV )∗ is the tensor dual to ω and such that ω∗(ω) = 1. The
components of ω∗ are

1

N !
εk1...kN

.

We have shown how the index notation can express calculations with de-
terminants and tensors in the space ∧NV . Such calculations in the index no-
tation are almost always more cumbersome than in the index-free notation.

3.5 Solving linear equations

Determinants allow us to “determine” whether a system of linear equations
has solutions. I will now explain this using exterior products. I will also
show how to use exterior products for actually finding the solutions of linear
equations when they exist.

A system of N linear equations for N unknowns x1, ..., xN can be written
in the matrix form,

N∑

j=1

Aijxj = bi, i = 1, ..., N. (3.9)

HereAij is a given matrix of coefficients, and theN numbers bi are also given.
The first step in studying Eq. (3.9) is to interpret it in a geometric way, so

that Aij is not merely a “table of numbers” but a geometric object. We intro-
duce an N -dimensional vector space V = RN , in which a basis {ei} is fixed.
There are two options (both will turn out to be useful). The first option is to
interpret Aij , bj , and xj as the coefficients representing some linear operator

Â and some vectors b,x in the basis {ej}:

Â ≡
N∑

i,j=1

Aijei ⊗ e∗j , b ≡
N∑

j=1

bjej , x ≡
N∑

j=1

xjej .

Then we reformulate Eq. (3.9) as the vector equation

Âx = b, (3.10)
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from which we would like to find the unknown vector x.

The second option is to interpretAij as the components of a set ofN vectors
{a1, ...,aN} with respect to the basis,

aj ≡
N∑

i=1

Aijei, j = 1, ..., N,

to define b as before,

b ≡
N∑

j=1

bjej ,

and to rewrite Eq. (3.9) as an equation expressing b as a linear combination
of {aj} with unknown coefficients {xj},

N∑

j=1

xjaj = b. (3.11)

In this interpretation, {xj} is just a set of N unknown numbers. These num-
bers could be interpreted the set of components of the vector b in the basis
{aj} if {aj} were actually a basis, which is not necessarily the case.

3.5.1 Existence of solutions

Let us begin with the first interpretation, Eq. (3.10). When does Eq. (3.10) have

solutions? The solution certainly exists when the operator Â is invertible,

i.e. the inverse operator Â−1 exists such that ÂÂ−1 = Â−1Â = 1̂V ; then the

solution is found as x = Â−1b. The condition for the existence of Â−1 is
that the determinant of Â is nonzero. When the determinant of Â is zero,
the solution may or may not exist, and the solution is more complicated. I
will give a proof of these statements based on the new definition D1 of the
determinant.

Theorem 1: If det Â 6= 0, the equation Âx = b has a unique solution x for

any b ∈ V . There exists a linear operator Â−1 such that the solution x is

expressed as x = Â−1b.

Proof: Suppose {ei | i = 1, ..., N} is a basis in V . It follows from det Â 6= 0
that

∧N ÂN (e1 ∧ ... ∧ eN ) = (Âe1) ∧ ... ∧ (ÂeN ) 6= 0.

By Theorem 1 of Sec. 2.3.2, the set of vectors {Âe1, ..., ÂeN} is linearly in-
dependent and therefore is a basis in V . Thus there exists a unique set of
coefficients {ci} such that

b =
N∑

i=1

ci(Âei).
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3.5 Solving linear equations

Then due to linearity of Â we have

b = Â

N∑

i=1

ciei;

in other words, the solution of the equation Âx = b is x ≡ ∑N
i=1 ciei. Since

the coefficients {ci} are determined uniquely, the solution x is unique.

The solution x can be expressed as a function of b as follows. Since {Âei}
is a basis, there exists the corresponding dual basis, which we may denote by
{
v∗

j

}
. Then the coefficients ci can be expressed as ci = v∗

i (b), and the vector
x as

x =

N∑

i=1

ciei =

N∑

i=1

eiv
∗
i (b) =

(
N∑

i=1

ei ⊗ v∗
i

)
b ≡ Â−1b.

This shows explicitly that the operator Â−1 exists and is linear. �

Corollary: If det Â 6= 0, the equation Âv = 0 has only the (trivial) solution
v = 0.
Proof: The zero vector v = 0 is a solution of Âv = 0. By the above theorem

the solution of that equation is unique, thus there are no other solutions. �

Theorem 2 (existence of eigenvectors): If det Â = 0, there exists at least one
eigenvector with eigenvalue 0, that is, at least one nonzero vector v such that

Âv = 0.
Proof: Choose a basis {ej} and consider the set {Âe1, ..., ÂeN}. This set

must be linearly dependent since

Âe1 ∧ ... ∧ ÂeN = (det Â)e1 ∧ ... ∧ eN = 0.

Hence, there must exist at least one linear combination
∑N

i=1 λiÂei = 0 with

λi not all zero. Then the vector v ≡
∑N

i=1 λiei is nonzero and satisfies Âv = 0.
�

Remark: If det Â = 0, there may exist more than one eigenvector v such that

Âv = 0; more detailed analysis is needed to fully determine the eigenspace
of zero eigenvalue, but we found that at least one eigenvector v exists. If

det Â = 0 then the equation Âx = b with b 6= 0 may still have solutions,
although not for every b. Moreover, when a solution x exists it will not be
unique because x + λv is another solution if x is one. The full analysis of

solvability of the equation Âx = b when det Â = 0 is more complicated (see
the end of Sec. 3.5.2). �

Once the inverse operator Â−1 is determined, it is easy to compute solu-

tions of any number of equations Âx = b1, Âx = b2, etc., for any number
of vectors b1, b2, etc. However, if we only need to solve one such equa-

tion, Âx = b, then computing the full inverse operator is too much work:
We have to determine the entire dual basis

{
v∗

j

}
and construct the operator

Â−1 =
∑N

i=1 ei ⊗ v∗
i . An easier method is then provided by Kramer’s rule.
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3.5.2 Kramer’s rule and beyond

We will now use the second interpretation, Eq. (3.11), of a linear system. This
equation claims that b is a linear combination of the N vectors of the set
{a1, ...,aN}. Clearly, this is true for any b if {a1, ...,aN} is a basis in V ; in
that case, the solution {xj} exists and is unique because the dual basis,

{
a∗

j

}
,

exists and allows us to write the solution as

xj = a∗
j (b).

On the other hand, when {a1, ...,aN} is not a basis in V it is not certain that
some given vector b is a linear combination of aj . In that case, the solution
{xj} may or may not exist, and when it exists it will not be unique.

We first consider the case where {aj} is a basis in V . In this case, the solu-
tion {xj} exists, and we would like to determine it more explicitly. We recall
that an explicit computation of the dual basis was shown in Sec. 2.3.3. Moti-
vated by the constructions given in that section, we consider the tensor

ω ≡ a1 ∧ ... ∧ aN ∈ ∧NV

and additionally the N tensors {ωj | j = 1, ..., N}, defined by

ωj ≡ a1 ∧ ... ∧ aj−1 ∧ b ∧ aj+1 ∧ ... ∧ aN ∈ ∧NV. (3.12)

The tensor ωj is the exterior product of all the vectors a1 to aN except that aj

is replaced by b. Since we know that the solution xj exists, we can substitute

b =
∑N

i=1 xiai into Eq. (3.12) and find

ωj = a1 ∧ ... ∧ xjaj ∧ ... ∧ aN = xjω.

Since {aj} is a basis, the tensor ω ∈ ∧NV is nonzero (Theorem 1 in Sec. 2.3.2).
Hence xj (j = 1, ..., N ) can be computed as the coefficient of proportionality
between ωj and ω:

xj =
ωj

ω
=

a1 ∧ ... ∧ aj−1 ∧ b ∧ aj+1 ∧ ... ∧ aN

a1 ∧ ... ∧ aN
.

As before, the “division” of tensors means that the nonzero tensor ω is to be
factored out of the numerator and canceled with the denominator, leaving a
number.

This formula represents Kramer’s rule, which yields explicitly the coeffi-
cients xj necessary to represent a vector b through vectors {a1, ...,aN}. In
its matrix formulation, Kramer’s rule says that xj is equal to the determinant
of the modified matrix Aij where the j-th column has been replaced by the
column (b1, ..., bN ), divided by the determinant of the unmodified Aij .

It remains to consider the case where {aj} is not a basis in V . We have seen
in Statement 2.3.5 that there exists a maximal nonzero exterior product of
some linearly independent subset of {aj}; this subset can be found by trying
various exterior products of the aj ’s. Let us now denote by ω this maximal
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exterior product. Without loss of generality, we may renumber the aj ’s so
that ω = a1 ∧ ... ∧ ar, where r is the rank of the set {aj}. If the equation
∑n

j=1 xjaj = b has a solution then b is expressible as a linear combination
of the aj ’s; thus we must have ω ∧ b = 0. We can check whether ω ∧ b = 0
since we have already computed ω. If we find that ω ∧ b 6= 0 we know that
the equation

∑n
j=1 xjaj = b has no solutions.

If we find that ω ∧ b = 0 then we can conclude that the vector b belongs
to the subspace Span {a1, ...,ar}, and so the equation

∑n
j=1 xjaj = b has so-

lutions, — in fact infinitely many of them. To determine all solutions, we will
note that the set {a1, ...,ar} is linearly independent, so b is uniquely repre-
sented as a linear combination of the vectors a1, ...,ar . In other words, there
is a unique solution of the form

x
(1)
i = (x

(1)
1 , ..., x(1)

r , 0, ..., 0)

that may have nonzero coefficients x
(1)
1 , ..., x

(1)
r only up to the component

number r, after which x
(1)
i = 0 (r + 1 ≤ i ≤ n). To obtain the coefficients

x
(1)
i , we use Kramer’s rule for the subspace Span {a1, ...,ar}:

x
(1)
i =

a1 ∧ ... ∧ aj−1 ∧ b ∧ aj+1 ∧ ... ∧ ar

a1 ∧ ... ∧ ar
.

We can now obtain the general solution of the equation
∑n

j=1 xjaj = b by

adding to the solution x
(1)
i an arbitrary solution x

(0)
i of the homogeneous

equation,
∑n

j=1 x
(0)
j aj = 0. The solutions of the homogeneous equation build

a subspace that can be determined as an eigenspace of the operator Â as con-
sidered in the previous subsection. We can also determine the homogeneous
solutions using the method of this section, as follows.

We decompose the vectors ar+1, ...,an into linear combinations of a1, ..., ar

again by using Kramer’s rule:

ak =

r∑

j=1

αkjaj , k = r + 1, ..., n,

αkj ≡ a1 ∧ ... ∧ aj−1 ∧ ak ∧ aj+1 ∧ ... ∧ ar

a1 ∧ ... ∧ ar
.

Having computed the coefficients αkj , we determine the (n− r)-dimensional
space of homogeneous solutions. This space is spanned by the (n− r) solu-
tions that can be chosen, for example, as follows:

x
(0)(r+1)
i = (α(r+1)1, ..., α(r+1)r,−1, 0, ..., 0),

x
(0)(r+2)
i = (α(r+2)1, ..., α(r+2)r, 0,−1, ..., 0),

...

x
(0)(n)
i = (αn1, ..., αnr, 0, 0, ...,−1).
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Finally, the solution of the equation
∑n

j=1 xjaj = b can be written as

xi = x
(1)
i +

n∑

k=r+1

βkx
(0)(k)
i , i = 1, ..., n,

where {βk | k = r + 1, ...n} are arbitrary coefficients. The formula above ex-
plicitly contains (n− r) arbitrary constants and is called the general solution
of
∑n

i=1 xiai = b. (The general solution of something is a formula with arbi-
trary constants that describes all solutions.)
Example: Consider the linear system

2x+ y = 1

2x+ 2y + z = 4

y + z = 3

Let us apply the procedure above to this system. We interpret this system
as the vector equation xa + yb + zc = p where a = (2, 2, 0), b = (1, 2, 1),
c = (0, 1, 1), and p = (1, 4, 3) are given vectors. Introducing an explicit basis
{e1, e2, e3}, we compute (using elimination)

a ∧ b = (2e1 + 2e2) ∧ (e1 + 2e2 + e3)

= 2 (e1 + e2) ∧ (e1 + 2e2 + e3)

= 2 (e1 + e2) ∧ (e2 + e3) = a ∧ c.

Therefore a ∧ b ∧ c = 0, and the maximal nonzero exterior product can be
chosen as ω ≡ a ∧ b. Now we check whether the vector p belongs to the
subspace Span {a,b}:

ω ∧ p = 2 (e1 + e2) ∧ (e2 + e3) ∧ (e1 + 4e2 + 3e3)

= 2 (e1 + e2) ∧ (e2 + e3) ∧ 3(e2 + e3) = 0.

Therefore, p can be represented as a linear combination of a and b. To deter-
mine the coefficients, we use Kramer’s rule: p = αa + βb where

α =
p ∧ b

a ∧ b
=

(e1 + 4e2 + 3e3) ∧ (e1 + 2e2 + e3)

2 (e1 + e2) ∧ (e2 + e3)

=
−2e1 ∧ e2 − 2e1 ∧ e3 − 2e2 ∧ e3

2 (e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3)
= −1;

β =
a ∧ p

a ∧ b
=

2 (e1 + e2) ∧ (e1 + 4e2 + 3e3)

2 (e1 + e2) ∧ (e2 + e3)

=
3e1 ∧ e2 + 3e1 ∧ e3 + 3e2 ∧ e3

e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3
= 3.

Therefore, p = −a+3b; thus the inhomogeneous solution is x(1) = (−1, 3, 0).
To determine the space of homogeneous solutions, we decompose c into a

linear combination of a and b by the same method; the result is c = − 1
2a+b.

So the space of homogeneous solutions is spanned by the single solution

x
(0)(1)
i =

(
− 1

2 , 1,−1
)
.
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Finally, we write the general solution as

xi = x
(1)
i + βx

(0)(1)
i =

(
−1 − 1

2β, 3 + β,−β
)
,

where β is an arbitrary constant. �

Remark: In the calculations of the coefficients according to Kramer’s rule the
numerators and the denominators always contain the same tensor, such as
e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3, multiplied by a constant factor. We have seen
this in the above examples. This is guaranteed to happen in every case; it is
impossible that a numerator should contain e1∧e2+e1∧e3+2e2∧e3 or some
other tensor not proportional to ω. Therefore, in practical calculations it is
sufficient to compute just one coefficient, say at e1∧e2, in both the numerator
and the denominator.
Exercise: Techniques based on Kramer’s rule can be applied also to non-
square systems. Consider the system

x+ y = 1

y + z = 1

This system has infinitely many solutions. Determine the general solution.
Answer: For example, the general solution can be written as

xi = (1, 0, 1) + α (1,−1, 1) ,

where α is an arbitrary number.

3.6 Vandermonde matrix

The Vandermonde matrix is defined by

Vand (x1, ..., xN ) ≡










1 1 · · · 1
x1 x2 xN

x2
1 x2

2 x2
N

...
...

. . .

xN−1
1 xN−1

2 · · · xN−1
N










.

It is a curious matrix that is useful in several ways. A classic result is an
explicit formula for the determinant of this matrix. Let us first compute the
determinant for a Vandermonde matrix of small size.
Exercise 1: Verify that the Vandermonde determinants for N = 2 and N = 3
are as follows,

∣
∣
∣
∣

1 1
x y

∣
∣
∣
∣
= y − x;

∣
∣
∣
∣
∣
∣

1 1 1
x y z
x2 y2 z2

∣
∣
∣
∣
∣
∣

= (y − x) (z − x) (z − y) .

It now appears plausible from these examples that the determinant that
we denote by det (Vand(x1, ..., xN )) is equal to the product of the pairwise
differences between all the xi’s.
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Statement 1: The determinant of the Vandermonde matrix is given by

det (Vand (x1, ..., xN ))

= (x2 − x1) (x3 − x1) ... (xN − xN−1)

=
∏

1≤i<j≤N

(xj − xi). (3.13)

Proof: Let us represent the Vandermonde matrix as a table of the compo-
nents of a set of N vectors {vj} with respect to some basis {ej}. Looking at
the Vandermonde matrix, we find that the components of the vector v1 are
(1, 1, ..., 1), so

v1 = e1 + ...+ eN .

The components of the vector v2 are (x1, x2, ..., xN ); the components of the
vector v3 are

(
x2

1, x
2
2, ..., x

2
N

)
. Generally, the vector vj (j = 1, ..., N ) has com-

ponents (xj−1
1 , ..., xj−1

N ). It is convenient to introduce a linear operator Â such

that Âe1 = x1e1, ..., ÂeN = xNeN ; in other words, the operator Â is diagonal

in the basis {ej}, and ej is an eigenvector of Â with the eigenvalue xj . A

tensor representation of Â is

Â =

N∑

j=1

xjej ⊗ e∗j .

Then we have a short formula for vj :

vj = Âj−1u, j = 1, ..., N ; u ≡ v1 = e1 + ...+ eN .

According to Statement 1 of Sec. 3.4, the determinant of the Vandermonde
matrix is equal to the coefficient C in the equation

v1 ∧ ... ∧ vN = Ce1 ∧ ... ∧ eN .

So our purpose now is to determineC. Let us use the formula for vj to rewrite

v1 ∧ ... ∧ vN = u ∧ Âu ∧ Â2u ∧ ... ∧ ÂN−1u. (3.14)

Now we use the following trick: since a∧b = a∧ (b + λa) for any λ, we may
replace

u ∧ Âu = u ∧ (Âu + λu) = u ∧ (Â+ λ1̂)u.

Similarly, we may replace the factor Â2u by (Â2 + λ1Â+ λ2)u, with arbitrary
coefficients λ1 and λ2. We may pull this trick in every factor in the tensor

product (3.14) starting from the second factor. In effect, we may replace Âk

by an arbitrary polynomial pk(Â) of degree k as long as the coefficient at Âk

remains 1. (Such polynomials are called monic polynomials.) So we obtain

u ∧ Âu ∧ Â2u ∧ ... ∧ ÂN−1u

= u ∧ p1(Â)u ∧ p2(Â)Âu ∧ ... ∧ pN−1(Â)u.
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Since we may choose the monic polynomials pj(Â) arbitrarily, we would like
to choose them such that the formula is simplified as much as possible.

Let us first choose the polynomial pN−1 because that polynomial has the
highest degree (N − 1) and so affords us the most freedom. Here comes an-
other trick: If we choose

pN−1(x) ≡ (x− x1) (x− x2) ... (x− xN−1) ,

then the operator pN−1(Â) will be much simplified:

pN−1(Â)eN = pN−1(xN )eN ; pN−1(Â)ej = 0, j = 1, ..., N − 1.

Therefore pN−1(Â)u = pN−1(xN )eN . Now we repeat this trick for the poly-
nomial pN−2, choosing

pN−2(x) ≡ (x− x1) ... (x− xN−2)

and finding

pN−2(Â)u = pN−2(xN−1)eN−1 + pN−2(xN )eN .

We need to compute the exterior product, which simplifies:

pN−2(Â)u ∧ pN−1(Â)u

= (pN−2(xN−1)eN−1 + pN−2(xN )eN ) ∧ pN−1(xN )eN

= pN−2(xN−1)eN−1 ∧ pN−1(xN )eN .

Proceeding inductively in this fashion, we find

u ∧ p1(Â)u ∧ ... ∧ pN−1(Â)u

= u ∧ p1(x2)e2 ∧ ... ∧ pN−1(xN )eN

= p1(x2)...pN−1(xN )e1 ∧ ... ∧ eN ,

where we defined each monic polynomial pj(x) as

pj(x) ≡ (x− x1)...(x− xj), j = 1, ..., N − 1.

For instance, p1(x) = x− x1. The product of the polynomials,

p1(x2)p2(x3)...pN−1(xN )

= (x2 − x1) (x3 − x1)(x3 − x2)...(xN − xN−1)

=
∏

1≤i<j≤N

(xj − xi) .

yields the required formula (3.13). �
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Remark: This somewhat long argument explains the procedure of subtract-
ing various rows of the Vandermonde matrix from each other in order to sim-
plify the determinant. (The calculation appears long because I have moti-
vated every step, rather than just go through the equations.) One can observe
that the determinant of the Vandermonde matrix is nonzero if and only if all
the values xj are different. This property allows one to prove the Vander-
monde formula in a much more elegant way.3 Namely, one can notice that
the expression v1 ∧ ... ∧ vN is a polynomial in xj of degree not more than
1
2N(N − 1); that this polynomial is equal to zero unless every xj is different;
therefore this polynomial must be equal to Eq. (3.13) times a constant. To find
that constant, one computes explicitly the coefficient at the term x2x

2
3...x

N−1
N ,

which is equal to 1, hence the constant is 1. �

In the next two subsections we will look at two interesting applications of
the Vandermonde matrix.

3.6.1 Linear independence of eigenvectors

Statement: Suppose that the vectors e1, ..., en are nonzero and are eigenvec-

tors of an operator Â with all different eigenvalues λ1, ..., λn. Then the set
{e1, ..., en} is linearly independent. (The number n may be less than the di-
mension N of the vector space V ; the statement holds also for infinite-dimen-
sional spaces).
Proof. Let us show that the set {ej | j = 1, ..., n} is linearly independent.

By definition of linear independence, we need to show that
∑n

j=1 cjej = 0
is possible only if all the coefficients cj are equal to zero. Let us denote u =
∑n

j=1 cjej and assume that u = 0. Consider the vectors u, Âu, ..., Ân−1u;
by assumption all these vectors are equal to zero. The condition that these
vectors are equal to zero is a system of vector equations that looks like this,

c1e1 + ...+ cnen = 0,

c1λ1e1 + ...+ cnλnen = 0,

...

c1λ
n−1
1 e1 + ...+ cnλ

n−1
n en = 0.

This system of equations can be written in a matrix form with the Vander-
monde matrix,








1 1 · · · 1
λ1 λ2 λn

...
...

. . .

λn−1
1 λn−1

2 · · · λn−1
n















c1e1

c2e2

...
cnen








=








0
0
...
0







.

Since the eigenvalues λj are (by assumption) all different, the determinant of
the Vandermonde matrix is nonzero. Therefore, this system of equations has

3I picked this up from a paper by C. Krattenthaler (see online
arxiv.org/abs/math.co/9902004) where many other special determinants
are evaluated using similar techniques.
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3.6 Vandermonde matrix

only the trivial solution, cjej = 0 for all j. Since ej 6= 0, it is necessary that all
cj = 0, j = 1, ...n. �

Exercise: Show that we are justified in using the matrix method for solving a
system of equations with vector-valued unknowns ciei.

Hint: Act with an arbitrary covector f∗ on all the equations.

3.6.2 Polynomial interpolation

The task of polynomial interpolation consists of finding a polynomial that
passes through specified points.

Statement: If the numbers x1, ..., xN are all different and numbers y1, ..., yN

are arbitrary then there exists a unique polynomial p(x) of degree at most
N − 1 that has values yj at the points xj (j = 1, ..., N ).
Proof. Let us try to determine the coefficients of the polynomial p(x). We

write a polynomial with unknown coefficients,

p(x) = p0 + p1x+ ...+ pN−1x
N−1,

and obtain a system of N linear equations, p(xj) = yj (j = 1, ..., N ), for the N
unknowns pj . The crucial observation is that this system of equations has the
Vandermonde matrix. For example, with N = 3 we have three equations,

p(x1) = p0 + p1x1 + p2x
2
1 = y1,

p(x2) = p0 + p1x2 + p2x
2
2 = y2,

p(x3) = p0 + p1x3 + p2x
2
3 = y3,

which can be rewritten in the matrix form as




1 x1 x2
1

1 x2 x2
2

1 x3 x2
3









p0

p1

p2



 =





y1
y2
y3



 .

Since the determinant of the Vandermonde matrix is nonzero as long as all xj

are different, these equations always have a unique solution {pj}. Therefore
the required polynomial always exists and is unique. �

Question: The polynomial p(x) exists, but how can I write it explicitly?
Answer: One possibility is the Lagrange interpolating polynomial; let us

illustrate the idea on an example with three points:

p(x) = y1
(x− x2) (x− x3)

(x1 − x2) (x1 − x3)
+ y2

(x− x1) (x− x3)

(x2 − x1) (x2 − x3)

+ y3
(x− x1) (x− x2)

(x3 − x1) (x3 − x2)
.

It is easy to check directly that this polynomial indeed has values p(xi) = yi

for i = 1, 2, 3. However, other (equivalent, but computationally more effi-
cient) formulas are used in numerical calculations.
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3.7 Multilinear actions in exterior powers

As we have seen, the action of Â on the exterior power ∧NV by

v1 ∧ ... ∧ vN 7→ Âv1 ∧ ... ∧ ÂvN

has been very useful. However, this is not the only way Â can act on an N -
vector. Let us explore other possibilities; we will later see that they have their
uses as well.

A straightforward generalization is to promote an operator Â ∈ End V to a
linear operator in the space ∧kV , k < N (rather than in the top exterior power

∧NV ). We denote this by ∧kÂk:

(∧kÂk)v1 ∧ ... ∧ vk = Âv1 ∧ ... ∧ Âvk.

This is, of course, a linear map of ∧kÂk to itself (but not any more a mere
multiplication by a scalar!). For instance, in ∧2V we have

(∧2Â2)u ∧ v = Âu ∧ Âv.

However, this is not the only possibility. We could, for instance, define an-
other map of ∧2V to itself like this,

u ∧ v 7→ (Âu) ∧ v + u ∧ (Âv).

This map is linear in Â (as well as being a linear map of ∧2V to itself), so

I denote this map by ∧2Â1 to emphasize that it contains Â only linearly. I

call such maps extensions of Â to the exterior power space ∧2V (this is not a
standard terminology).

It turns out that operators of this kind play an important role in many
results related to determinants. Let us now generalize the examples given

above. We denote by ∧mÂk a linear map ∧mV → ∧mV that acts on v1∧...∧vm

by producing a sum of terms with k copies of Â in each term. For instance,

∧2Â1 (a ∧ b) ≡ Âa ∧ b + a ∧ Âb;

∧3Â3 (a ∧ b ∧ c) ≡ Âa ∧ Âb ∧ Âc;

∧3Â2 (a ∧ b ∧ c) ≡ Âa ∧ Âb ∧ c + Âa ∧ b ∧ Âc

+ a ∧ Âb ∧ Âc.

More generally, we can write

∧kÂk (v1 ∧ ... ∧ vk) = Âv1 ∧ ... ∧ Âvk;

∧kÂ1 (v1 ∧ ... ∧ vk) =

k∑

j=1

v1 ∧ ... ∧ Âvj ∧ ... ∧ vk;

∧kÂm (v1 ∧ ... ∧ vk) =
∑

s1, ..., sk = 0, 1
∑

j sj = m

Âs1v1 ∧ ... ∧ Âskvk.
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In the last line, the sum is over all integers sj , each being either 0 or 1, so that

Âsj is either 1̂ or Â, and the total power of Â is m.

So far we defined the action of ∧mÂk only on tensors of the form v1 ∧ ... ∧
vm ∈ ∧mV . Since an arbitrary element of ∧mV is a linear combination of

such “elementary” tensors, and since we intend ∧mÂk to be a linear map,

we define the action of ∧mÂk on every element of ∧mV using linearity. For
example,

∧2Â2 (a ∧ b + c ∧ d) ≡ Âa ∧ Âb + Âc ∧ Âd.

By now it should be clear that the extension ∧mÂk is indeed a linear map
∧mV → ∧mV . Here is a formal definition.
Definition: For a linear operator Â in V , the k-linear extension of Â to the

space ∧mV is a linear transformation ∧mV → ∧mV denoted by ∧mÂk and
defined by the formula

∧mÂk
(

m∧

j=1

vj

)
=

∑

(s1,...,sm)

m∧

j=1

Âsjvj , sj = 0 or 1,

m∑

j=1

sj = k. (3.15)

In words: To describe the action of ∧mÂk on a term v1 ∧ ... ∧ vm ∈ ∧mV , we
sum over all possible ways to act with Â on the various vectors vj from the

term v1 ∧ ... ∧ vm, where Â appears exactly k times. The action of ∧mÂk on
a linear combination of terms is by definition the linear combination of the

actions on each term. Also by definition we set ∧mÂ0 ≡ 1̂∧mV and ∧mÂk ≡
0̂∧mV for k < 0 or k > m or m > N . The meaningful values of m and k for

∧mÂk are thus 0 ≤ k ≤ m ≤ N .
Example: Let the operator Â and the vectors a,b, c be such that Âa = 0,

Âb = 2b, Âc = b + c. We can then apply the various extensions of the

operator Â to various tensors. For instance,

∧2Â1(a ∧ b) = Âa ∧ b + a ∧ Âb = 2a ∧ b,

∧2Â2(a ∧ b) = Âa ∧ Âb = 0,

∧3Â2(a ∧ b ∧ c) = a ∧ Âb ∧ Âc = a ∧ 2b ∧ c = 2(a ∧ b ∧ c)

(in the last line, we dropped terms containing Âa).

Before we move on to see why the operators ∧mÂk are useful, let us obtain
some basic properties of these operators.

Statement 1: The k-linear extension of Â is a linear operator in the space
∧mV .
Proof: To prove the linearity of the map, we need to demonstrate not only

that ∧mÂk maps linear combinations into linear combinations (this is obvi-

ous), but also that the result of the action of ∧mÂk on a tensor ω ∈ ∧mV does
not depend on the particular representation of ω through terms of the form
v1 ∧ ... ∧ vm. Thus we need to check that

∧mÂk (ω ∧ v1 ∧ v2 ∧ ω′) = −∧mÂk (ω ∧ v2 ∧ v1 ∧ ω′) ,
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where ω and ω′ are arbitrary tensors such that ω ∧ v1 ∧ v2 ∧ ω′ ∈ ∧mV . But

this property is a simple consequence of the definition of ∧mÂk which can be
verified by explicit computation. �

Statement 2: For any two operators Â, B̂ ∈ End V , we have

∧m(ÂB̂)
m

=
(
∧mÂm

)(
∧mB̂m

)
.

For example,

∧2 (ÂB̂)
2
(u ∧ v) = ÂB̂u ∧ ÂB̂v

= ∧2Â2(B̂u ∧ B̂v) = ∧2Â2
(
∧2B̂2

)
(u ∧ v) .

Proof: This property is a direct consequence of the definition of the opera-

tor ∧kÂk:

∧kÂk (v1 ∧ ... ∧ vk) = Âv1 ∧ Âv2 ∧ ... ∧ Âvk =

k∧

j=1

Âvj ,

therefore

∧m(ÂB̂)
m(

k∧

j=1

vj

)
=

k∧

j=1

ÂB̂vj ,

∧mÂm ∧m B̂m
(

k∧

j=1

vj

)
= ∧mÂm

(
k∧

j=1

B̂vj

)
=

k∧

j=1

ÂB̂vj .

�

Statement 3: The operator ∧mÂk is k-linear in Â,

∧m(λÂ)k = λk(∧mÂk).

For this reason, ∧mÂk is called a k-linear extension.
Proof: This follows directly from the definition of the operator ∧mÂk. �

Finally, a formula that will be useful later (you can skip to Sec. 3.8 if you

would rather see how ∧mÂk is used).

Statement 4: The following identity holds for any Â ∈ End V and for any
vectors {vj | 1 ≤ j ≤ m} and u,

[
∧mÂk (v1 ∧ ... ∧ vm)

]
∧ u +

[
∧mÂk−1 (v1 ∧ ... ∧ vm)

]
∧ (Âu)

= ∧m+1Âk (v1 ∧ ... ∧ vm ∧ u) .

For example,

∧2Â2 (u ∧ v) ∧ w + ∧2Â1 (u ∧ v) ∧ Âw = ∧3Â2 (u ∧ v ∧ w) . (3.16)
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Proof: By definition, ∧m+1Âk (v1 ∧ ... ∧ vm ∧ u) is a sum of terms where

Â acts k times on the vectors vj and u. We can gather all terms containing Âu

and separately all terms containing u, and we will get the required expres-
sions. Here is an explicit calculation for the given example:

∧2Â2 (u ∧ v) ∧ w = Âu ∧ Âv ∧ w;

∧2Â1 (u ∧ v) ∧ Âw =
(
Âu ∧ v + u ∧ Âv

)
∧ Âw.

The formula (3.16) follows.
It should now be clear how the proof proceeds in the general case. A formal

proof using Eq. (3.15) is as follows. Applying Eq. (3.15), we need to sum over
s1, ..., sm+1. We can consider terms where sm+1 = 0 separately from terms
where sm+1 = 1:

∧m+1Âk (v1 ∧ ... ∧ vm ∧ u) =
∑

(s1,...,sm);
P

sj=k

(
m∧

j=1

Âsjvj

)
∧ u

+
∑

(s1,...,sm);
P

sj=k−1

(
m∧

j=1

Âsjvj

)
∧ Âu

=
[
∧mÂk (v1 ∧ ... ∧ vm)

]
∧ u +

[
∧mÂk−1 (v1 ∧ ... ∧ vm)

]
∧ Âu.

�

3.7.1 * Index notation

Let us briefly note how the multilinear action such as ∧mÂk can be expressed
in the index notation.

Suppose that the operator Â has the index representation Aj
i in a fixed ba-

sis. The operator ∧mÂk acts in the space ∧mV ; tensors ψ in that space are
represented in the index notation by totally antisymmetric arrays with m in-

dices, such as ψi1...im . An operator B̂ ∈ End (∧mV ) must be therefore repre-

sented by an array with 2m indices, Bj1...jm

i1...im
, which is totally antisymmetric

with respect to the indices {is} and separately with respect to {js}.

Let us begin with ∧mÂm as the simplest case. The action of ∧mÂm on ψ is
written in the index notation as

[∧mÂmψ]i1...im =

N∑

j1,...,jm=1

Ai1
j1
...Aim

jm
ψj1...jm .

This array is totally antisymmetric in i1, ..., im as usual.

Another example is the action of ∧mÂ1 on ψ:

[∧mÂ1ψ]i1...im =

m∑

s=1

N∑

j=1

Ais

j ψ
i1...is−1jis+1...im .

In other words, Â acts only on the sth index of ψ, and we sum over all s.

In this way, every ∧mÂk can be written in the index notation, although the
expressions become cumbersome.
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3.8 Trace

The trace of a square matrixAjk is defined as the sum of its diagonal elements,
TrA ≡ ∑n

j=1Ajj . This definition is quite simple at first sight. However, if
this definition is taken as fundamental then one is left with many questions.
Suppose Ajk is the representation of a linear transformation in a basis; is the
number TrA independent of the basis? Why is this particular combination of
the matrix elements useful? (Why not compute the sum of the elements of
Ajk along the other diagonal of the square,

∑n
j=1A(n+1−j)j?)

To clarify the significance of the trace, I will give two other definitions of
the trace: one through the canonical linear map V ⊗ V ∗ → K, and another
using the exterior powers construction, quite similar to the definition of the
determinant in Sec. 3.3.
Definition Tr1: The trace TrA of a tensor A ≡ ∑

k vk ⊗ f∗k ∈ V ⊗ V ∗ is the
number canonically defined by the formula

TrA =
∑

k

f∗k (vk) . (3.17)

If we represent the tensor A through the basis tensors ej ⊗ e∗k, where {ej} is
some basis and {e∗k} is its dual basis,

A =

N∑

j=1

N∑

k=1

Ajkej ⊗ e∗k,

then e∗k(ej) = δij , and it follows that

TrA =

N∑

j,k=1

Ajke
∗
k(ej) =

N∑

j,k=1

Ajkδkj =

N∑

j=1

Ajj ,

in agreement with the traditional definition.
Exercise 1: Show that the trace (according to Definition Tr1) does not depend
on the choice of the tensor decomposition A =

∑

k vk ⊗ f∗k . �

Here is another definition of the trace.
Definition Tr2: The trace TrÂ of an operator Â ∈ End V is the number by

which any nonzero tensor ω ∈ ∧NV is multiplied when ∧N Â1 acts on it:

(∧N Â1)ω = (TrÂ)ω, ∀ω ∈ ∧NV. (3.18)

Alternatively written,

∧N Â1 = (TrÂ)1̂∧N V .

First we will show that the definition Tr2 is equivalent to the traditional

definition of the trace. Recall that, according to the definition of ∧N Â1,

∧N Â1 (v1 ∧ ... ∧ vN ) = Âv1 ∧ v2 ∧ ... ∧ vN + ...

+ v1 ∧ ... ∧ vN−1 ∧ ÂvN .
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Statement 1: If {ej} is any basis in V ,
{
e∗j
}

is the dual basis, and a linear

operator Â is represented by a tensor Â =
∑N

j,k=1Ajkej ⊗ e∗k, then the trace

of Â computed according to Eq. (3.18) will agree with the formula TrÂ =
∑N

j=1Ajj .

Proof: The operator Â acts on the basis vectors {ej} as follows,

Âek =

N∑

j=1

Ajkej .

Therefore e1 ∧ ...∧ Âej ∧ ...∧eN = Ajje1 ∧ ...∧eN , and definition (3.18) gives

(TrÂ) e1 ∧ ... ∧ eN =

N∑

j=1

e1 ∧ ... ∧ Âej ∧ ... ∧ eN

=
(

N∑

j=1

Ajj

)
e1 ∧ ... ∧ eN .

Thus TrÂ =
∑N

j=1Ajj . �

Now we prove some standard properties of the trace.

Statement 2: For any operators Â, B̂ ∈ End V :

(1) Tr(Â+ B̂) = TrÂ+ TrB̂.
(2) Tr(ÂB̂) = Tr(B̂Â).
Proof: The formula (3.17) allows one to derive these properties more easily,

but I will give proofs using the definition (3.18).
(1) Since

e1 ∧ ... ∧ (Â+ B̂)ej ∧ ... ∧ eN = e1 ∧ ... ∧ Âej ∧ ... ∧ eN

+ e1 ∧ ... ∧ B̂ej ∧ ... ∧ eN ,

from the definition of ∧N Â1 we easily obtain ∧N (Â+ B̂)1 = ∧N Â1 + ∧N B̂1.

(2) Since ∧N Â1 and ∧N B̂1 are operators in one-dimensional space ∧NV ,
they commute, that is

(∧N Â1)(∧N B̂1) = (∧N B̂1)(∧N Â1) = (TrÂ)(TrB̂)1̂∧N V .

Now we explicitly compute the composition (∧N Â1)(∧N B̂1) acting on e1 ∧
.... ∧ eN . First, an example with N = 2,

(∧N Â1)(∧N B̂1) (e1 ∧ e2) = ∧N Â1(B̂e1 ∧ e2 + e1 ∧ B̂e2)

= ÂB̂e1 ∧ e2 + B̂e1 ∧ Âe2

+ Âe1 ∧ B̂e2 + e1 ∧ ÂB̂e2

= ∧N (ÂB̂)1e1 ∧ e2 + Âe1 ∧ B̂e2 + B̂e1 ∧ Âe2.
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Now the general calculation:

(∧N Â1)(∧N B̂1)e1 ∧ .... ∧ eN =

N∑

j=1

e1 ∧ ... ∧ ÂB̂ej ∧ ... ∧ eN

+
N∑

j=1

N∑

k = 1
(k 6= j)

e1 ∧ ... ∧ Âej ∧ ... ∧ B̂ek ∧ ... ∧ eN .

The second sum is symmetric in Â and B̂, therefore the identity

(∧N Â1)(∧N B̂1)e1 ∧ .... ∧ eN = (∧N B̂1)(∧N Â1)e1 ∧ .... ∧ eN

entails

N∑

j=1

e1 ∧ ... ∧ ÂB̂ej ∧ ... ∧ eN =

N∑

j=1

e1 ∧ ... ∧ B̂Âej ∧ ... ∧ eN ,

that is Tr(ÂB̂) = Tr(B̂Â). �

Exercise 2: The operator L̂b acts on the entire exterior algebra ∧V and is de-

fined by L̂b : ω 7→ b∧ω, where ω ∈ ∧V and b ∈ V . Compute the trace of this
operator. Hint: Use Definition Tr1 of the trace.

Answer: TrL̂b = 0.

Exercise 3: Suppose ÂÂ = 0; show that TrÂ = 0 and det Â = 0.

Solution: We see that det Â = 0 because 0 = det(ÂÂ) = (det Â)2. Now we
apply the operator ∧N Â1 to a nonzero tensor ω = v1 ∧ ... ∧ vN ∈ ∧NV twice
in a row:

(∧N Â1)(∧N Â1)ω = (TrÂ)2ω

= (∧N Â1)
N∑

j=1

v1 ∧ ... ∧ Âvj ∧ ... ∧ vN

=
N∑

i=1

N∑

j=1

v1 ∧ ... ∧ Âvi ∧ ... ∧ Âvj ∧ ... ∧ vN

= 2(∧N Â2)ω.

(In this calculation, we omitted the terms containing ÂÂvi since ÂÂ = 0.)
Using this trick, we can prove by induction that for 1 ≤ k ≤ N

(TrÂ)
k
ω = (∧N Â1)kω = k!(∧N Âk)ω.

Note that ∧N ÂN multiplies by the determinant of Â, which is zero. Therefore

(TrÂ)N = N !(det Â) = 0 and so TrÂ = 0. �
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3.9 Characteristic polynomial

Definition: The characteristic polynomial QÂ (x) of an operator Â ∈ End V
is defined as

QÂ (x) ≡ det
(
Â− x1̂V

)
.

This is a polynomial of degree N in the variable x.
Example 1: The characteristic polynomial of the operator a1̂V , where a ∈ K,
is

Qa1̂V
(x) = (a− x)

N
.

Setting a = 0, we find that the characteristic polynomial of the zero operator

0̂V is simply (−x)N .

Example 2: Consider a diagonalizable operator Â, i.e. an operator having a
basis {v1, ...,vN} of eigenvectors with eigenvalues λ1, ..., λN (the eigenvalues
are not necessarily all different). This operator can be then written in a tensor
form as

Â =
N∑

i=1

λivi ⊗ v∗
i ,

where {v∗
i } is the basis dual to {vi}. The characteristic polynomial of this

operator is found from

det(Â− x1̂)v1 ∧ ... ∧ vN = (Âv1 − xv1) ∧ ... ∧ (ÂvN − xvN )

= (λ1 − x)v1 ∧ ... ∧ (λN − x)vN .

Hence
QÂ(x) = (λ1 − x) ... (λN − x) .

Note also that the trace of a diagonalizable operator is equal to the sum of the

eigenvalues, Tr Â = λ1 + ...+λN , and the determinant is equal to the product

of the eigenvalues, det Â = λ1λ2...λN . This can be easily verified by direct

calculations in the eigenbasis of Â.

Exercise 1: If an operator Â has the characteristic polynomial QÂ (x) then

what is the characteristic polynomial of the operator aÂ, where a ∈ K is a
scalar?
Answer:

QaÂ (x) = aNQÂ

(
a−1x

)
.

Note that the right side of the above formula does not actually contain a in
the denominator because of the prefactor aN . �

The principal use of the characteristic polynomial is to determine the eigen-
values of linear operators. We remind the reader that a polynomial p(x) of
degree N has N roots if we count each root with its algebraic multiplicity;
the number of different roots may be smaller than N . A root λ has algebraic

multiplicity k if p(x) contains a factor (x− λ)
k but not a factor (x− λ)

k+1.
For example, the polynomial

p(x) = (x− 3)2(x− 1) = x3 − 7x2 + 15x− 9
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has two distinct roots, x = 1 and x = 3, and the root x = 3 has multiplicity
2. If we count each root with its multiplicity, we will find that the polynomial
p(x) has 3 roots (“not all of them different” as we would say in this case).

Theorem 1: a) The set of all the roots of the characteristic polynomial QÂ(x)

is the same as the set of all the eigenvalues of the operator Â.
b) The geometric multiplicity of an eigenvalue λ (i.e. the dimension of the

space of all eigenvectors with the given eigenvalue λ) is at least 1 but not
larger than the algebraic multiplicity of a root λ in the characteristic polyno-
mial.
Proof: a) By definition, an eigenvalue of an operator Â is such a number

λ ∈ K that there exists at least one vector v ∈ V , v 6= 0, such that Âv = λv.
This equation is equivalent to (Â− λ1̂V )v = 0. By Corollary 3.5, there would

be no solutions v 6= 0 unless det(Â− λ1̂V ) = 0. It follows that all eigenvalues
λmust be roots of the characteristic polynomial. Conversely, if λ is a root then

det(Â− λ1̂V ) = 0 and hence the vector equation (Â− λ1̂V )v = 0 will have at
least one nonzero solution v (see Theorem 2 in Sec. 3.5).

b) Suppose {v1, ...,vk} is a basis in the eigenspace of eigenvalue λ0. We
need to show that λ0 is a root of QÂ(x) with multiplicity at least k. We may
obtain a basis in the space V as {v1, ...,vk, ek+1, ..., eN} by adding suitable
new vectors {ej}, j = k + 1, ..., N . Now compute the characteristic polyno-
mial:

QÂ(x)(v1 ∧ ... ∧ vk ∧ ek+1 ∧ ... ∧ eN )

= (Â− x1̂)v1 ∧ ... ∧ (Â− x1̂)vk

∧ (Â− x1̂)ek+1 ∧ ... ∧ (Â− x1̂)eN

= (λ0 − x)
k
v1 ∧ ... ∧ vk ∧ (Â− x1̂)ek+1 ∧ ... ∧ (Â− x1̂)eN .

It follows that QÂ(x) contains the factor (λ0 − x)
k, which means that λ0 is a

root of QÂ(x) of multiplicity at least k. �

Remark: If an operator’s characteristic polynomial has a root λ0 of algebraic
multiplicity k, it may or may not have a k-dimensional eigenspace for the
eigenvalue λ0. We only know that λ0 is an eigenvalue, i.e. that the eigenspace
is at least one-dimensional. �

Theorem 1 shows that all the eigenvalues λ of an operator Â can be com-
puted as roots of the equation QÂ(λ) = 0, which is called the characteristic

equation for the operator Â.
Now we will demonstrate that the coefficients of the characteristic poly-

nomial QÂ(x) are related in a simple way to the operators ∧N Âk. First we
need an auxiliary calculation to derive an explicit formula for determinants

of operators of the form Â− λ1̂V .

Lemma 1: For any Â ∈ End V , we have

∧N (Â+ 1̂V )N =

N∑

r=0

(∧N Âr).

138
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More generally, for 0 ≤ q ≤ p ≤ N , we have

∧p(Â+ 1̂V )q =

q
∑

r=0

(
p− r

p− q

)

(∧pÂr). (3.19)

Proof: I first give some examples, then prove the most useful case p = q,
and then show a proof of Eq. (3.19) for arbitrary p and q.

For p = q = 2, we compute

∧2(Â+ 1̂V )2a ∧ b = (Â+ 1̂V )a ∧ (Â+ 1̂V )b

= Âa ∧ Âb + Âa ∧ b + a ∧ Âb + a ∧ b

= [∧2Â2 + ∧2Â1 + ∧2Â0] (a ∧ b) .

This can be easily generalized to arbitrary p = q: The action of the operator

∧p(Â+ 1̂V )p on e1 ∧ ... ∧ ep is

∧p(Â+ 1̂V )pe1 ∧ ... ∧ ep = (Â+ 1̂V )e1 ∧ ... ∧ (Â+ 1̂V )ep,

and we can expand the brackets to find first one term with p operators Â, then

p terms with (p− 1) operators Â, etc., and finally one term with no operators

Â acting on the vectors ej . All terms which contain r operators Â (with 0 ≤
r ≤ p) are those appearing in the definition of the operator ∧pÂr. Therefore

∧p(Â+ 1̂V )p =

p
∑

r=0

(∧pÂr).

This is precisely the formula (3.19) because in the particular case p = q the
combinatorial coefficient is trivial,

(
p− r

p− q

)

=

(
p− r

0

)

= 1.

Now we consider the general case 0 ≤ q ≤ p. First an example: for p = 2
and q = 1, we compute

∧2(Â+ 1̂V )1a ∧ b = (Â+ 1̂V )a ∧ b + a ∧ (Â+ 1̂V )b

= 2a ∧ b + Âa ∧ b + a ∧ Âb

=
[(

2
1

)
(∧2Â0) +

(
2
0

)
(∧2Â1)

]

a ∧ b,

since
(
2
1

)
= 2 and

(
2
0

)
= 1.

To prove the formula (3.19) in the general case, we use induction. The ba-
sis of induction consists of the trivial case (p ≥ 0, q = 0) where all operators

∧0Âp with p ≥ 1 are zero operators, and of the case p = q, which was al-
ready proved. Now we will prove the induction step (p, q) & (p, q + 1) ⇒
(p+ 1, q + 1). Figure 3.3 indicates why this induction step is sufficient to
prove the statement for all 0 ≤ q ≤ p ≤ N .
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Figure 3.3: Deriving Lemma 1 by induction. White circles correspond to the
basis of induction. Black circles are reached by induction steps.

Let v ∈ V be an arbitrary vector and ω ∈ ∧pV be an arbitrary tensor. The
induction step is proved by the following chain of equations,

∧p+1 (Â+ 1̂V )q+1 (v ∧ ω)

(1) = (Â+ 1̂V )v ∧
[

∧p(Â+ 1̂V )qω
]

+ v ∧
[

∧p(Â+ 1̂V )q+1ω
]

(2) = Âv ∧
q
∑

r=0

(
p− r

p− q

)

(∧pÂr)ω + v ∧
q
∑

r=0

(
p− r

p− q

)

(∧pÂr)ω

+ v ∧
q+1
∑

r=0

(
p− r

p− q − 1

)

(∧pÂr)ω

(3) = Âv ∧
q+1
∑

k=1

(
p− k + 1

p− q

)

(∧pÂk−1)ω

+ v ∧
q+1
∑

r=0

[(
p− r

p− q − 1

)

+

(
p− r

p− q

)]

(∧pÂr)ω

(4) =

q+1
∑

k=0

(
p− k + 1

p− q

){

Âv ∧
[

∧pÂk−1ω
]

+ v ∧
[

∧pÂkω
]}

(1) =

q+1
∑

k=0

(
p− k + 1

p− q

)

(∧p+1Âk) (v ∧ ω) ,

where (1) is Statement 4 of Sec. 3.7, (2) uses the induction step assumptions for
(p, q) and (p, q + 1), (3) is the relabeling r = k− 1 and rearranging terms (note
that the summation over 0 ≤ r ≤ q was formally extended to 0 ≤ r ≤ q + 1
because the term with r = q + 1 vanishes), and (4) is by the binomial identity

(
n

m− 1

)

+

(
n

m

)

=

(
n+ 1

m

)

and a further relabeling r → k in the preceding summation. �
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Corollary: For any Â ∈ End V and α ∈ K,

∧p(Â+ α1̂V )q =

q
∑

r=0

αq−r

(
p− r

p− q

)

(∧pÂr).

Proof: By Statement 3 of Sec. 3.7, ∧p(αÂ)q = αq(∧pÂq). Set Â = αB̂, where

B̂ is an auxiliary operator, and compute

∧p(αB̂ + α1̂V )q = αq ∧p (B̂ + 1̂V )q = αq

q
∑

r=0

(
p− r

p− q

)

(∧pB̂r)

=

q
∑

r=0

αq−r

(
p− r

p− q

)

(∧p(αB̂)r)

=

q
∑

r=0

αq−r

(
p− r

p− q

)

(∧pÂr).

�

Theorem 2: The coefficients qm(Â), 1 ≤ m ≤ N of the characteristic polyno-
mial, defined by

QÂ (λ) = (−λ)
N

+

N−1∑

k=0

(−1)
k
qN−k(Â)λk,

are the numbers corresponding to the operators ∧N Âm ∈ End(∧NV ):

qm(Â)1̂∧N V = ∧N Âm.

In particular, qN (Â) = det Â and q1(Â) = TrÂ. More compactly, the statement
can be written as

QÂ (λ) 1̂∧N V =
N∑

k=0

(−λ)
N−k

(∧N Âk).

Proof: This is now a consequence of Lemma 1 and its Corollary, where we
set p = q = N and obtain

∧N (Â− λ1̂V )N =
N∑

r=0

(−λ)
N−r

(∧N Âr).

�

Exercise 1: Show that the characteristic polynomial of an operator Â in a
three-dimensional space V can be written as

QÂ(λ) = det Â− 1
2

[
(TrÂ)2 − Tr(Â2)

]
λ+ (TrÂ)λ2 − λ3.
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Solution: The first and the third coefficients of QÂ(λ) are, as usual, the de-

terminant and the trace of Â. The second coefficient is equal to −∧3Â2, so we
need to show that

∧3Â2 =
1

2

[
(TrÂ)2 − Tr(Â2)

]
.

We apply the operator ∧3Â1 twice to a tensor a ∧ b ∧ c and calculate:

(TrÂ)2a ∧ b ∧ c = (∧3Â1)(∧3Â1)(a ∧ b ∧ c)

= (∧3Â1)(Âa ∧ b ∧ c + a ∧ Âb ∧ c + a ∧ b ∧ Âc)

= Â2a ∧ b ∧ c + 2Âa ∧ Âb ∧ c + a ∧ Â2b ∧ c

+ 2Âa ∧ b ∧ Âc + 2a ∧ Âb ∧ Âc + a ∧ b ∧ Â2c

=
[
Tr(Â2) + 2 ∧3 Â2

]
a ∧ b ∧ c.

Then the desired formula follows. �

Exercise 2 (general trace relations): Generalize the result of Exercise 1 to N
dimensions:

a) Show that
∧N Â2 = 1

2

[
(TrÂ)2 − Tr(Â2)

]
.

b)* Show that all coefficients ∧N Âk (k = 1, ..., N ) can be expressed as poly-

nomials in TrÂ, Tr(Â2), ..., Tr(ÂN ).
Hint: Define a “mixed” operator ∧N (Ân)jÂk as a sum of exterior products

containing j times Ân and k times Â; for example,
[
∧3(Â2)1Â1

]
a ∧ b ∧ c ≡ Â2a ∧ (Âb ∧ c + b ∧ Âc)

+ Âa ∧ (Â2b ∧ c + b ∧ Â2c) + a ∧ (Â2b ∧ Âc + Âb ∧ Â2c).

By applying several operators ∧N Âk and Tr(Âk) to an exterior product, derive

identities connecting these operators and ∧N Âk:

(∧N Â1)(∧N Âk) = (k + 1) ∧N Âk+1 + ∧N (Â2)1Âk−1,

Tr(Âk)Tr(Â) = Tr(Âk+1) + ∧N (Âk)1Â1,

for k = 2, ..., N − 1. Using these identities, show by induction that operators

of the form ∧N Âk (k = 1, ..., N ) can be all expressed through TrÂ, Tr(Â2), ...,

Tr(ÂN−1) as polynomials.

As an example, here is the trace relation for ∧N Â3:

∧N Â3 = 1
6 (TrÂ)3 − 1

2 (TrÂ)Tr(Â2) + 1
3Tr(Â3).

Note that in three dimensions this formula directly yields the determinant of

Â expressed through traces of powers of Â. Below (Sec. 4.5.3) we will derive
a formula for the general trace relation. �

Since operators in ∧NV act as multiplication by a number, it is convenient

to omit 1̂∧N V and regard expressions such as ∧N Âk as simply numbers. More
formally, there is a canonical isomorphism between End

(
∧NV

)
and K (even

though there is no canonical isomorphism between ∧NV and K).
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Exercise 3: Give an explicit formula for the canonical isomorphism: a) be-

tween
(
∧kV

)∗
and ∧k(V ∗); b) between End

(
∧NV

)
and K.

Answer: a) A tensor f∗1 ∧ ... ∧ f∗k ∈ ∧k(V ∗) acts as a linear function on a
tensor v1 ∧ ... ∧ vk ∈ ∧kV by the formula

(f∗1 ∧ ... ∧ f∗k ) (v1 ∧ ... ∧ vk) ≡ det(Ajk),

where Ajk is the square matrix defined by Ajk ≡ f∗j (vk).

b) Since (∧NV )∗ is canonically isomorphic to ∧N (V ∗), an operator N̂ ∈
End

(
∧NV

)
can be represented by a tensor

N̂ = (v1 ∧ ... ∧ vN ) ⊗ (f∗1 ∧ ... ∧ f∗N ) ∈
(
∧NV

)
⊗
(
∧NV ∗) .

The isomorphism maps N̂ into the number det(Ajk), where Ajk is the square
matrix defined by Ajk ≡ f∗j (vk). �

Exercise 4: Show that an operator Â ∈ End V and its canonical transpose

operator ÂT ∈ End V ∗ have the same characteristic polynomials.

Hint: Consider the operator (Â− x1̂V )T . �

Exercise 5: Given an operator Â of rank r < N , show that ∧N Âk = 0 for

k ≥ r + 1 but ∧N Âr 6= 0.

Hint: If Â has rank r < N then Âv1 ∧ ... ∧ Âvr+1 = 0 for any set of vectors
{v1, ...,vr+1}.

3.9.1 Nilpotent operators

There are many operators with the same characteristic polynomial. In partic-
ular, there are many operators which have the simplest possible characteristic

polynomial, Q0(x) = (−x)N . Note that the zero operator has this character-

istic polynomial. We will now see how to describe all such operators Â that

QÂ(x) = (−x)N .

Definition: An operator Â ∈ End V is nilpotent if there exists an integer

p ≥ 1 such that (Â)p = 0̂, where 0̂ is the zero operator and (Â)p is the p-th

power of the operator Â.

Examples: a) The operator defined by the matrix

(
0 α
0 0

)

in some basis

{e1, e2} is nilpotent for any number α. This operator can be expressed in
tensor form as αe1 ⊗ e∗2.

b) In the space of polynomials of degree at most n in the variable x, the
linear operator d

dx is nilpotent because the (n + 1)-th power of this operator
will evaluate the (n+ 1)-th derivative, which is zero on any polynomial of
degree at most n. �

Statement: If Â is a nilpotent operator then Q̂Â (x) = (−x)N .
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Proof: First an example: suppose that N = 2 and that Â3 = 0. By Theo-

rem 2, the coefficients of the characteristic polynomial of the operator Â cor-

respond to the operators ∧N Âk. We need to show that all these operators are
equal to zero.

Consider, for instance, ∧2Â2 = q21̂∧2V . This operator raised to the power 3
acts on a tensor a ∧ b ∈ ∧2V as

(
∧2Â2

)3
a ∧ b = Â3a ∧ Â3b = 0

since Â3 = 0. On the other hand,
(
∧2Â2

)3
a ∧ b = (q2)

3
a ∧ b.

Therefore q2 = 0. Now consider ∧2Â1 to the power 3,
(
∧2Â1

)3
a ∧ b = Â2a ∧ Âb + Âa ∧ Â2b

(all other terms vanish because Â3 = 0). It is clear that the operator ∧2Â1 to

the power 6 vanishes because there will be at least a third power of Â acting
on each vector. Therefore q1 = 0 as well.

Now a general argument. Let p be a positive integer such that Âp = 0, and

consider the (pN)-th power of the operator ∧N Âk for some k ≥ 1. We will

prove that (∧N Âk)pN = 0̂. Since ∧N Âk is a multiplication by a number, from

(∧N Âk)pN = 0 it will follow that ∧N Âk is a zero operator in ∧NV for all k ≥ 1.
If all the coefficients qk of the characteristic polynomial vanish, we will have

QÂ (x) = (−x)N .

To prove that (∧N Âk)pN = 0̂, consider the action of the operator (∧N Âk)pN

on a tensor e1 ∧ ...∧ eN ∈ ∧NV . By definition of ∧N Âk, this operator is a sum
of terms of the form

Âs1e1 ∧ ... ∧ ÂsN eN ,

where sj = 0 or sj = 1 are chosen such that
∑N

j=1 sj = k. Therefore, the same
operator raised to the power pN is expressed as

(∧N Âk)pN =
∑

(s1,...,sn)

Âs1e1 ∧ ... ∧ ÂsN eN , (3.20)

where now sj are non-negative integers, 0 ≤ sj ≤ pN , such that
∑N

j=1 sj =
kpN . It is impossible that all sj in Eq. (3.20) are less than p, because then we

would have
∑N

j=1 sj < Np, which would contradict the condition
∑N

j=1 sj =
kpN (since k ≥ 1 by construction). So each term of the sum in Eq. (3.20)

contains at least a p-th power of Â. Since (Â)p = 0, each term in the sum in

Eq. (3.20) vanishes. Hence (∧N Âk)pN = 0 as required. �

Remark: The converse statement is also true: If the characteristic polynomial

of an operator Â is QÂ(x) = (−x)N then Â is nilpotent. This follows easily

from the Cayley-Hamilton theorem (see below), which states thatQÂ(Â) = 0,

so we obtain immediately (Â)N = 0, i.e. the operator Â is nilpotent. We find
that one cannot distinguish a nilpotent operator from the zero operator by
looking only at the characteristic polynomial.
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In this chapter we work in an N -dimensional vector space over a number
field K.

4.1 The space ∧N−1
V

So far we have been using only the top exterior power, ∧NV . The next-to-top
exterior power space, ∧N−1V , has the same dimension as V and is therefore
quite useful since it is a space, in some special sense, associated with V . We
will now find several important uses of this space.

4.1.1 Exterior transposition of operators

We have seen that a linear operator in the space ∧NV is equivalent to multi-
plication by a number. We can reformulate this statement by saying that the
space of linear operators in ∧NV is canonically isomorphic to K. Similarly,
the space of linear operators in ∧N−1V is canonically isomorphic to EndV ,
the space of linear operators in V . The isomorphism map will be denoted by
the superscript ∧T . We will begin by defining this map explicitly.

Question: What is a nontrivial example of a linear operator in ∧N−1V ?

Answer: Any operator of the form ∧N−1Âp with 1 ≤ p ≤ N − 1 and

Â ∈ EndV . In this book, operators constructed in this way will be the only
instance of operators in ∧N−1V .

Definition: If X̂ ∈ EndV is a given linear operator then the exterior trans-
pose operator

X̂∧T ∈ End
(
∧N−1V

)

is canonically defined by the formula

(
X̂∧Tω

)
∧ v ≡ ω ∧ X̂v,

which must hold for all ω ∈ ∧N−1V and all v ∈ V . If Ŷ ∈ End(∧N−1V ) is
a linear operator then its exterior transpose Ŷ ∧T ∈ EndV is defined by the
formula

ω ∧
(
Ŷ ∧T v

)
≡ (Ŷ ω) ∧ v, ∀ω ∈ ∧N−1V, v ∈ V.

We need to check that the definition makes sense, i.e. that the operators
defined by these formulas exist and are uniquely defined.
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Statement 1: The exterior transpose operators are well-defined, i.e. they ex-
ist, are unique, and are linear operators in the respective spaces. The exterior
transposition has the linearity property

(Â+ λB̂)∧T = Â∧T + λB̂∧T .

If X̂ ∈ EndV is an exterior transpose of Ŷ ∈ End
(
∧N−1V

)
, i.e. X̂ = Ŷ ∧T ,

then also conversely Ŷ = X̂∧T .
Proof: We need to show that the formula

(
X̂∧Tω

)
∧ v ≡ ω ∧ X̂v

actually defines an operator X̂∧T uniquely when X̂ ∈ EndV is a given op-

erator. Let us fix a tensor ω ∈ ∧N−1V ; to find X̂∧Tω we need to determine a
tensor ψ ∈ ∧N−1V such that ψ ∧ v = ω ∧ X̂v for all v ∈ V . When we find
such a ψ, we will also show that it is unique; then we will have shown that

X̂∧Tω ≡ ψ is well-defined.
An explicit computation of the tensor ψ can be performed in terms of a

basis {e1, ..., eN} in V . A basis in the space ∧N−1V is formed by the set of
N tensors of the form ωi ≡ e1 ∧ ... ∧ ei−1 ∧ ei+1 ∧ ... ∧ eN , that is, ωi is the
exterior product of the basis vectors without the vector ei (1 ≤ i ≤ N ). In the
notation of Sec. 2.3.3, we have ωi = ∗(ei)(−1)i−1. It is sufficient to determine
the components of ψ in this basis,

ψ =
N∑

i=1

ciωi.

Taking the exterior product of ψ with ei, we find that only the term with ci
survives,

ψ ∧ ei = (−1)N−icie1 ∧ ... ∧ eN .

Therefore, the coefficient ci is uniquely determined from the condition

cie1 ∧ ... ∧ eN = (−1)N−iψ ∧ ei
!
=(−1)N−iω ∧ X̂ei.

Since the operator X̂ is given, we know all X̂ei and can compute ω ∧ X̂ei ∈
∧NV . So we find that every coefficient ci is uniquely determined.

It is seen from the above formula that each coefficient ci depends linearly

on the operator X̂ . Therefore the linearity property holds,

(Â+ λB̂)∧T = Â∧T + λB̂∧T .

The linearity of the operator X̂∧T follows straightforwardly from the iden-
tity

(
X̂∧T (ω + λω′)

)
∧ v

!
= (ω + λω′) ∧ X̂v

= ω ∧ X̂v + λω′ ∧ X̂v

!
=(X̂∧Tω) ∧ v + λ(X̂∧Tω′) ∧ v.
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In the same way we prove the existence, the uniqueness, and the linearity of
the exterior transpose of an operator from End(∧N−1V ). It is then clear that
the transpose of the transpose is again the original operator. Details left as
exercise. �

Remark: Note that the space ∧N−1V is has the same dimension as V but
is not canonically isomorphic to V . Rather, an element ψ ∈ ∧N−1V natu-
rally acts by exterior multiplication on a vector v ∈ V and yields a tensor
from ∧NV , i.e. ψ is a linear map V → ∧NV , and we may express this as
∧N−1V ∼= V ∗ ⊗ ∧NV . Nevertheless, as we will now show, the exterior trans-
pose map allows us to establish that the space of linear operators in ∧N−1V
is canonically isomorphic to the space of linear operators in V . We will use
this isomorphism extensively in the following sections. A formal statement
follows.

Statement 2: The spaces End(∧N−1V ) and EndV are canonically isomor-
phic.

Proof: The map ∧T between these spaces is one-to-one since no two dif-
ferent operators are mapped to the same operator. If two different operators

Â, B̂ had the same exterior transpose, we would have (Â − B̂)∧T = 0 and

yet Â − B̂ 6= 0. There exists at least one ω ∈ ∧N−1V and v ∈ V such that

ω ∧ (Â− B̂)v 6= 0, and then

0 =
(
(Â− B̂)∧Tω

)
∧ v = ω ∧ (Â− B̂)v 6= 0,

which is a contradiction. The map ∧T is linear (Statement 1). Therefore, it is
an isomorphism between the vector spaces End

(
∧N−1V

)
and EndV . �

A generalization of Statement 1 is the following.

Exercise 1: Show that the spaces End(∧kV ) and End(∧N−kV ) are canoni-

cally isomorphic (1 ≤ k < N ). Specifically, if X̂ ∈ End(∧kV ) then the linear

operator X̂∧T ∈ End(∧N−kV ) is uniquely defined by the formula

(
X̂∧TωN−k

)
∧ ωk ≡ ωN−k ∧ X̂ωk,

which must hold for arbitrary tensors ωk ∈ ∧kV , ωN−k ∈ ∧N−kV .

Remark: It follows that the exterior transpose of ∧N ÂN ∈ End
(
∧NV

)
is

mapped by the canonical isomorphism to an element of End K, that is, a mul-
tiplication by a number. This is precisely the map we have been using in the
previous section to define the determinant. In this notation, we have

det Â ≡
(
∧N ÂN

)∧T
.

Here we identify End K with K.

Exercise 2: For any operators Â, B̂ ∈ End
(
∧kV

)
, show that

(ÂB̂)∧T = B̂∧T Â∧T .
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4.1.2 * Index notation

Let us see how the exterior transposition is expressed in the index notation.
(Below we will not use the resulting formulas.)

If an operator Â ∈ EndV is given in the index notation by a matrix Aj
i , the

exterior transpose Â∧T ∈ End
(
∧N−1V

)
is represented by an array B

j1...jN−1

i1...iN−1
,

which is totally antisymmetric with respect to its N − 1 lower and upper

indices separately. The action of the operator B̂ ≡ Â∧T on a tensor ψ ∈
∧N−1V is written in the index notation as

∑

is

B
j1...jN−1

i1...iN−1
ψi1...iN−1 .

(Here we did not introduce any combinatorial factors; the factor (N − 1)! will
therefore appear at the end of the calculation.)

By definition of the exterior transpose, for any vector v ∈ V and for any
ψ ∈ ∧N−1V we must have

(B̂ψ) ∧ v = ψ ∧ (Âv).

Using the index representation of the exterior product through the projection

operators Ê (see Sec. 2.3.6), we represent the equation above in the the index
notation as

∑

i,is,js

Ek1...kN

j1...jN−1i(B
j1...jN−1

i1...iN−1
ψi1...iN−1)vi

=
∑

js,i,j

Ek1...kN

j1...jN−1jψ
j1...jN−1(Aj

iv
i).

We may simplify this to

∑

i,is,js

εj1...jN−1i(B
j1...jN−1

i1...iN−1
ψi1...iN−1)vi

=
∑

is,i,j

εi1...iN−1jψ
i1...iN−1(Aj

iv
i),

because Ek1...kN

j1...jN
= εj1...jN

εk1...kN , and we may cancel the common factor

εk1...kN whose indices are not being summed over.
Since the equation above should hold for arbitrary ψi1...iN−1 and vi, the

equation with the corresponding free indices is and i should hold:

∑

js

εj1...jN−1iB
j1...jN−1

i1...iN−1
=
∑

j

εi1...iN−1jA
j
i . (4.1)

This equation can be solved for B as follows. We note that the ε symbol in
the left-hand side of Eq. (4.1) has one free index, i. Let us therefore multiply
with an additional ε and sum over that index; this will yield the projection
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operator Ê (see Sec. 2.3.6). Namely, we multiply both sides of Eq. (4.1) with
εk1...kN−1i and sum over i:

∑

j,i

εk1...kN−1iεi1...iN−1jA
j
i =

∑

js,i

εk1...kN−1iεj1...jN−1iB
j1...jN−1

i1...iN−1

=
∑

js

E
k1...kN−1

j1...jN−1
B

j1...jN−1

i1...iN−1
,

where in the last line we used the definition (2.11)–(2.12) of the operator Ê.
Now we note that the right-hand side is the index representation of the prod-

uct of the operators Ê and B̂ (both operators act in ∧N−1V ). The left-hand

side is also an operator in ∧N−1V ; denoting this operator for brevity by X̂ ,
we rewrite the equation as

ÊB̂ = X̂ ∈ End
(
∧N−1V

)
.

Using the property

Ê = (N − 1)!1̂∧N−1V

(see Exercise in Sec. 2.3.6), we may solve the equation ÊB̂ = X̂ for B̂ as

B̂ =
1

(N − 1)!
X̂.

Hence, the components of B̂ ≡ Â∧T are expressed as

B
k1...kN−1

i1...iN−1
=

1

(N − 1)!

∑

j,i

εk1...kN−1iεi1...iN−1jA
j
i .

An analogous formula holds for the exterior transpose of an operator in
∧nV , for any n = 2, ..., N . I give the formula without proof and illustrate it
by an example.
Statement: If Â ∈ End (∧nV ) is given by its components Aj1...jn

i1...in
then the

components of Â∧T are
(
Â∧T

)k1...kN−n

l1...lN−n

=
1

n!(N − n)!

∑

js,is

εk1...kN−ni1...inεl1...lN−nj1...jn
Aj1...jn

i1...in
.

Example: Consider the exterior transposition Â∧T of the identity operator

Â ≡ 1̂∧2V . The components of the identity operator are given by

Aj1j2
i1i2

= δj1
i1
δj2
i2
,

so the components of Â∧T are

(
Â∧T

)k1...kN−2

l1...lN−2
=

1

2!(N − 2)!

∑

js,is

εk1...kN−2i1i2εl1...lN−2j1j2A
j1j2
i1i2

=
1

2!(N − 2)!

∑

i1,i2

εk1...kN−2i1i2εl1...lN−2i1i2 .
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Let us check that this array of components is the same as that representing
the operator 1̂∧N−2V . We note that the expression above is the same as

1

(N − 2)!
E

k1...kN−2

l1...lN−2
,

where the numbers Ek1...kn

l1...ln
are defined by Eqs. (2.11)–(2.12). Since the opera-

tor Ê in ∧N−2V is equal to (N − 2)!1̂∧N−2V , we obtain that

Â∧T = 1̂∧N−2V

as required.

4.2 Algebraic complement (adjoint) and beyond

In Sec. 3.3 we defined the determinant and derived various useful properties

by considering, essentially, the exterior transpose of ∧N Âp with 1 ≤ p ≤ N
(although we did not introduce this terminology back then). We have just
seen that the exterior transposition can be defined more generally — as a map
from End(∧kV ) to End(∧N−kV ). We will see in this section that the exterior
transposition of the operators ∧N−1Âp with 1 ≤ p ≤ N − 1 yields operators
acting in V that are quite useful as well.

4.2.1 Definition of algebraic complement

While we proved that operators like (∧N−1Âp)∧T are well-defined, we still
have not obtained any explicit formulas for these operators. We will now
compute these operators explicitly because they play an important role in the
further development of the theory. It will turn out that every operator of the

form (∧N−1Âp)∧T is a polynomial in Â with coefficients that are known if we

know the characteristic polynomial of Â.

Example 1: Let us compute (∧N−1Â1)∧T . We consider, as a first example, a

three-dimensional (N = 3) vector space V and a linear operator Â ∈ EndV .

We are interested in the operator (∧2Â1)∧T . By definition of the exterior trans-
pose,

a ∧ b ∧ (∧2Â1)∧T c =
(
(∧2Â1)(a ∧ b)

)
∧ c

= Âa ∧ b ∧ c + a ∧ Âb ∧ c.

We recognize a fragment of the operator ∧3Â1 and write

(∧3Â1)(a ∧ b ∧ c) = Âa ∧ b ∧ c + a ∧ Âb ∧ c + a ∧ b ∧ Âc

= (Tr Â)a ∧ b ∧ c,
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since this operator acts as multiplication by the trace of Â (Section 3.8). It
follows that

a ∧ b ∧ (∧2Â1)∧T c = (Tr Â)a ∧ b ∧ c − a ∧ b ∧ Âc

= a ∧ b ∧
(
(Tr Â)c − Âc

)
.

Since this must hold for arbitrary a,b, c ∈ V , it follows that

(∧2Â1)∧T = (Tr Â)1̂V − Â.

Thus we have computed the operator (∧2Â1)∧T in terms of Â and the trace

of Â.

Example 2: Let us now consider the operator (∧2Â2)∧T . We have

a ∧ b ∧ (∧2Â2)∧T c =
(
(∧2Â2)(a ∧ b)

)
∧ c = Âa ∧ Âb ∧ c.

We recognize a fragment of the operator ∧3Â2 and write

(∧3Â2)(a ∧ b ∧ c) = Âa ∧ Âb ∧ c + a ∧ Âb ∧ Âc + Âa ∧ b ∧ Âc.

Therefore,

a ∧ b ∧ (∧2Â2)∧T c = (∧3Â2)(a ∧ b ∧ c)

− (a ∧ Âb + Âa ∧ b) ∧ Âc

(1) = (∧3Â2)(a ∧ b ∧ c) − a ∧ b ∧ (∧2Â1)∧T Âc

= a ∧ b∧
(
∧3Â2 − (∧2Â1)∧T Â

)
c,

where (1) used the definition of the operator (∧2Â1)∧T . It follows that

(∧2Â2)∧T = (∧3Â2)1̂V − (∧2Â1)∧T Â

= (∧3Â2)1̂V − (Tr Â)Â+ ÂÂ.

Thus we have expressed the operator (∧2Â2)∧T as a polynomial in Â. Note

that ∧3Â2 is the second coefficient of the characteristic polynomial of Â.

Exercise 1: Consider a three-dimensional space V , a linear operator Â, and
show that

(∧2Â2)∧T Âv = (det Â)v, ∀v ∈ V.

Hint: Consider a ∧ b ∧ (∧2Â2)∧T Âc = Âa ∧ Âb ∧ Âc. �

These examples are straightforwardly generalized. We will now express

every operator of the form (∧N−1Âp)∧T as a polynomial in Â. For brevity, we
introduce the notation

Â(k) ≡ (∧N−1ÂN−k)∧T , 1 ≤ k ≤ N − 1.
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Lemma 1: For any operator Â ∈ End V and for an integer p, 1 ≤ p ≤ N , the
following formula holds as an identity of operators in V :

(
∧N−1Âp−1

)∧T
Â+

(
∧N−1Âp

)∧T
= (∧N Âp)1̂V .

Here, in order to provide a meaning for this formula in cases p = 1 and p = N ,

we define ∧N−1ÂN ≡ 0̂ and ∧N−1Â0 ≡ 1̂. In the shorter notation, this is

Â(k)Â+ Â(k−1) = (∧N ÂN−k+1)1̂V .

Note that ∧N ÂN−k+1 ≡ qk−1, where qj are the coefficients of the characteristic

polynomial of Â (see Sec. 3.9).
Proof: We use Statement 4 in Sec. 3.7 with ω ≡ v1 ∧ ... ∧ vN−1, m ≡ N − 1

and k ≡ p:

(
∧N−1Âpω

)
∧ u +

(
∧N−1Âp−1ω

)
∧ (Âu) = ∧N Âp (ω ∧ u) .

This holds for 1 ≤ p ≤ N − 1. Applying the definition of the exterior trans-
pose, we find

ω ∧
(
∧N−1Âp

)∧T
u + ω ∧

(
∧N−1Âp−1

)∧T
Âu = (∧N Âp)ω ∧ u.

Since this holds for all ω ∈ ∧N−1V and u ∈ V , we obtain the required for-
mula,

(
∧N−1Âp

)∧T
+ ω ∧

(
∧N−1Âp−1

)∧T
Â = (∧N Âp)1̂V .

It remains to verify the case p = N . In that case we compute directly,

(
∧N−1ÂN−1ω

)
∧ (Âu) = Âv1 ∧ ... ∧ ÂvN−1 ∧ Âu

= ∧N ÂN (ω ∧ u) .

Hence,
(
∧N−1ÂN−1

)∧T
Â = (∧N ÂN )1̂V ≡ (det Â)1̂V .

�

Remark: In these formulas we interpret the operators ∧N Âp ∈ End
(
∧NV

)

as simply numbers multiplying some operators. This is justified since ∧NV is
one-dimensional, and linear operators in it act as multiplication by numbers.
In other words, we implicitly use the canonical isomorphism End

(
∧NV

) ∼=
K. �

Exercise 2: Use induction in p (for 1 ≤ p ≤ N − 1) and Lemma 1 to express

Â(k) explicitly as polynomials in Â:

Â(N−p) ≡
(
∧N−1Âp

)∧T
=

p
∑

k=0

(−1)
k
(∧N Âp−k)(Â)

k
.

Hint: Start applying Lemma 1 with p = 1 and Â(N) ≡ 1̂. �
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Using the coefficients qk ≡ ∧N ÂN−k of the characteristic polynomial, the
result of Exercise 2 can be rewritten as

(
∧N−1Â1

)∧T ≡ Â(N−1) = qN−11̂V − Â,
(
∧N−1Â2

)∧T ≡ Â(N−2) = qN−21̂V − qN−1Â+ (Â)2,

......,
(
∧N−1ÂN−1

)∧T ≡ Â(1) = q11̂V + q2(−Â) + ...

+ qN−1(−Â)N−2 + (−Â)N−1.

Note that the characteristic polynomial of Â is

QÂ(λ) = q0 + q1(−λ) + ...+ qN−1(−λ)
N−1

+ (−λ)N .

Thus the operators denoted by Â(k) are computed as suitable “fragments”’ of

the characteristic polynomial into which Â is substituted instead of λ.
Exercise 3:* Using the definition of exterior transpose for general exterior
powers (Exercise 1 in Sec. 4.1.1), show that for 1 ≤ k ≤ N − 1 and 1 ≤ p ≤ k
the following identity holds,

p
∑

q=0

(
∧N−kÂp−q

)∧T
(∧kÂq) = (∧N Âp)1̂∧kV .

Deduce that the operators
(
∧N−kÂp

)∧T
can be expressed as polynomials in

the (mutually commuting) operators ∧kÂj (1 ≤ j ≤ k).
Hints: Follow the proof of Statement 4 in Sec. 3.7. The idea is to apply both

sides to ωk ∧ ωN−k, where ωk ≡ v1 ∧ ... ∧ vk and ωN−k = vN−k+1 ∧ ... ∧ vN .
Since ∧N Âp acts on ωk ∧ ωN−k by distributing p copies of Â among the N
vectors vj , one needs to show that the same terms will occur when one first

distributes q copies of Â among the first k vectors and p−q copies of Â among
the last N − k vectors, and then sums over all q from 0 to p. Once the identity

is proved, one can use induction to express the operators
(
∧N−kÂp

)∧T
. For

instance, the identity with k = 2 and p = 1 yields

(
∧N−2Â0

)∧T
(∧2Â1) +

(
∧N−2Â1

)∧T
(∧2Â0) = (∧N Â1)1̂∧kV .

Therefore
(
∧N−2Â1

)∧T
= (TrÂ)1̂∧kV − ∧2Â1.

Similarly, with k = 2 and p = 2 we find

(
∧N−2Â2

)∧T
= (∧N Â2)1̂∧kV −

(
∧N−2Â1

)∧T
(∧2Â1) − ∧2Â2

= (∧N Â2)1̂∧kV − (TrÂ)(∧2Â1) + (∧2Â1)2 − ∧2Â2.

It follows by induction that all the operators
(
∧N−kÂp

)∧T
are expressed as

polynomials in ∧kÂj . �
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At the end of the proof of Lemma 1 we have obtained a curious relation,

(
∧N−1ÂN−1

)∧T
Â = (det Â)1̂V .

If det Â 6= 0, we may divide by it and immediately find the following result.

Lemma 2: If det Â 6= 0, the inverse operator satisfies

Â−1 =
1

det Â

(
∧N−1ÂN−1

)∧T
.

Thus we are able to express the inverse operator Â−1 as a polynomial in Â. If

det Â = 0 then the operator Â has no inverse, but the operator
(
∧N−1ÂN−1

)∧T

is still well-defined and sufficiently useful to deserve a special name.

Definition: The algebraic complement (also called the adjoint) of Â is the
operator

˜̂
A ≡

(
∧N−1ÂN−1

)∧T ∈ EndV.

Exercise 4: Compute the algebraic complement of the operator Â = a ⊗ b∗,
where a ∈ V and b ∈ V ∗, and V is an N -dimensional space (N ≥ 2).
Answer: Zero if N ≥ 3. For N = 2 we use Example 1 to compute

(∧1Â1)∧T = (Tr Â)1̂ − Â = b∗(a)1̂ − a ⊗ b∗.

Exercise 5: For the operator Â = a ⊗ b∗ in N -dimensional space, as in Exer-

cise 4, show that
(
∧N−1Âp

)∧T
= 0 for p ≥ 2.

4.2.2 Algebraic complement of a matrix

The algebraic complement is usually introduced in terms of matrix determi-
nants. Namely, one takes a matrix Aij and deletes the column number k and
the row number l. Then one computes the determinant of the resulting matrix
and multiplies by (−1)k+l. The result is the element Bkl of the matrix that is
the algebraic complement ofAij . I will now show that our definition is equiv-
alent to this one, if we interpret matrices as coefficients of linear operators in
a basis.
Statement: Let Â ∈ EndV and let {ej} be a basis in V . Let Aij be the matrix

of the operator Â in this basis. Let B̂ =
(
∧N−1ÂN−1

)∧T
and let Bkl be the

matrix of B̂ in the same basis. Then Bkl is equal to (−1)
k+l times the determi-

nant of the matrix obtained from Aij by deleting the column number k and
the row number l.
Proof: Given an operator B̂, the matrix element Bkl in the basis {ej} can be

computed as the coefficient in the following relation (see Sec. 2.3.3),

Bkle1 ∧ ... ∧ eN = e1 ∧ ... ∧ ek−1 ∧ (B̂el) ∧ ek+1 ∧ ... ∧ eN .

Since B̂ =
(
∧N−1ÂN−1

)∧T
, we have

Bkle1 ∧ ... ∧ eN = Âe1 ∧ ... ∧ Âek−1 ∧ el ∧ Âek+1 ∧ ... ∧ ÂeN .
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Now the right side can be expressed as the determinant of another operator,

call it X̂ ,

Bkle1 ∧ ... ∧ eN = (det X̂)e1 ∧ ... ∧ eN

= X̂e1∧... ∧ X̂ek−1 ∧ X̂ek ∧ X̂ek+1 ∧ ... ∧ X̂eN ,

if we define X̂ as an operator such that X̂ek ≡ el while on other basis vectors

X̂ej ≡ Âej (j 6= k). Having defined X̂ in this way, we have Bkl = det X̂ .

We can now determine the matrix Xij representing X̂ in the basis {ej}. By
the definition of the matrix representation of operators,

Âej =
N∑

i=1

Aijei, X̂ej =
N∑

i=1

Xijei, 1 ≤ j ≤ N.

It follows that Xij = Aij for j 6= k while Xik = δil (1 ≤ i ≤ N ), which means
that the entire k-th column in the matrix Aij has been replaced by a column
containing zeros except for a single nonzero element Xlk = 1.

It remains to show that the determinant of the matrixXij is equal to (−1)
k+l

times the determinant of the matrix obtained from Aij by deleting column k
and row l. We may move in the matrixXij the k-th column to the first column
and the l-th row to the first row, without changing the order of any other rows

and columns. This produces the sign factor (−1)
k+l but otherwise does not

change the determinant. The result is

Bkl = det X̂ = (−1)
k+l

det

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 X12 ... X1N

0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗

∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)
k+l

det

∣
∣
∣
∣
∣
∣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∣
∣
∣
∣
∣
∣

,

where the stars represent the matrix obtained from Aij by deleting column k
and row l, and the numbers X12, ..., X1N do not enter the determinant. This
is the result we needed. �

Exercise 5:* Show that the matrix representation of the algebraic complement
can be written through the Levi-Civita symbol ε as

Ãi
k =

1

(N − 1)!

∑

i2,...,iN

∑

k2,...,kN

εkk2...kN
εii2...iNAk2

i2
...AkN

iN
.

Hint: See Sections 3.4.1 and 4.1.2.
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4.2.3 Further properties and generalizations

In our approach, the algebraic complement
˜̂
A of an operator Â comes from

considering the set of N − 1 operators

Â(k) ≡
(
∧N−1ÂN−k

)∧T
, 1 ≤ k ≤ N − 1.

(For convenience we might define Â(N) ≡ 1̂V .)

The operators Â(k) can be expressed as polynomials in Â through the iden-
tity (Lemma 1 in Sec. 4.2.1)

Â(k)Â+ Â(k−1) = qk−11̂, qj ≡ ∧N ÂN−j .

The numbers qj introduced here are the coefficients of the characteristic poly-

nomial of Â; for instance, det Â ≡ q0 and TrÂ ≡ qN−1. It follows by induction
(Exercise 2 in Sec. 4.2.1) that

Â(N−k) = qN−k1̂ − qN−k+1Â+ ...

+ qN−1(−Â)k−1 + (−Â)k.

The algebraic complement is
˜̂
A ≡ Â1, but it appears natural to study the

properties of all the operators Â(k). (The operators Â(k) do not seem to have
an established name for k ≥ 2.)
Statement 1: The coefficients of the characteristic polynomial of the algebraic

complement,
˜̂
A, are

∧N ˜̂
Ak = (det Â)k−1(∧N ÂN−k) ≡ qk−1

0 qk.

For instance,

Tr
˜̂
A = ∧N ˜̂

A1 = q1 = ∧N ÂN−1,

det
˜̂
A = ∧N ˜̂

AN = qN−1
0 qN = (det Â)N−1.

Proof: Let us first assume that det Â ≡ q0 6= 0. We use the property Â
˜̂
A =

q01̂ (Lemma 2 in Sec. 4.2.1) and the multiplicativity of determinants to find

det(
˜̂
A− λ1̂)q0 = det(q01̂ − λÂ) = (−λ)N det(Â− q0

λ
1̂)

= (−λN )QÂ(
q0
λ

),

hence the characteristic polynomial of
˜̂
A is

Q ˜̂
A
(λ) ≡ det(

˜̂
A− λ1̂) =

(−λN )

q0
QÂ(

q0
λ

)

=
(−λ)N

q0

[(

−q0
λ

)N

+ qN−1

(

−q0
λ

)N−1

+ ...+ q0

]

= (−λ)N + q1(−λ)N−1 + q2q0 (−λ)
N−2

+ ...+ qN−1
0 .
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This agrees with the required formula.

It remains to prove the case q0 ≡ det Â = 0. Although this result could be
achieved as a limit of nonzero q0 with q0 → 0, it is instructive to see a direct
proof without using the assumption q0 6= 0 or taking limits.

Consider a basis {vj} in V and the expression

(∧N ˜̂
Ak)v1 ∧ ... ∧ vN .

This expression contains
(
N
k

)
terms of the form

˜̂
Av1 ∧ ... ∧ ˜̂

Avk ∧ vk+1 ∧ ... ∧ vN ,

where
˜̂
A is applied only to k vectors. Using the definition of

˜̂
A, we can rewrite

such a term as follows. First, we use the definition of
˜̂
A to write

˜̂
Av1 ∧ ψ = v1 ∧

(
∧N−1ÂN−1

)
ψ,

for any ψ ∈ ∧N−1V . In our case, we use

ψ ≡ ˜̂
Av2 ∧ ... ∧ ˜̂

Avk ∧ vk+1 ∧ ... ∧ vN

and find

˜̂
Av1 ∧ ψ = v1 ∧ Â ˜̂

Av2 ∧ ... ∧ Â ˜̂
Avk ∧ Âvk+1 ∧ ... ∧ ÂvN .

By assumption q0 = 0, hence Â
˜̂
A = 0 =

˜̂
AÂ (since

˜̂
A, being a polynomial in

Â, commutes with Â) and thus

(∧N ˜̂
Ak)v1 ∧ ... ∧ vN = 0, k ≥ 2.

For k = 1 we find
˜̂
Av1 ∧ ψ = v1 ∧ Âv2 ∧ ... ∧ ÂvN .

Summing N such terms, we obtain the same expression as that in the defini-

tion of ∧N ÂN−1, hence

(∧N ˜̂
A1)v1 ∧ ... ∧ vN = ∧N ÂN−1v1 ∧ ... ∧ vN .

This concludes the proof for the case det Â = 0. �

Exercise:* Suppose that Â has the simple eigenvalue λ = 0 (i.e. this eigen-

value has multiplicity 1). Show that the algebraic complement,
˜̂
A, has rank 1,

and that the image of
˜̂
A is the one-dimensional subspace Span {v}.

Hint: An operator has rank 1 if its image is one-dimensional. The eigen-

value λ = 0 has multiplicity 1 if ∧N ÂN−1 6= 0. Choose a basis consisting of
the eigenvector v and N − 1 other vectors u2, ..., uN . Show that

˜̂
Av ∧ u2 ∧ ... ∧ uN = ∧N ÂN−1(v ∧ u2 ∧ ... ∧ uN ) 6= 0,
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while

v ∧ u2 ∧ ... ∧ ˜̂
Auj ∧ ... ∧ uN = 0, 2 ≤ j ≤ N.

Consider other expressions, such as

˜̂
Av ∧ v ∧ u3 ∧ ... ∧ uN or

˜̂
Auj ∧ v ∧ u3 ∧ ... ∧ uN ,

and finally deduce that the image of
˜̂
A is precisely the one-dimensional sub-

space Span {v}. �

Now we will demonstrate a useful property of the operators Â(k).

Statement 2: The trace of Â(k) satisfies

TrÂ(k)

k
= ∧N ÂN−k ≡ qk.

Proof: Consider the action of ∧N ÂN−k on a basis tensor ω ≡ v1 ∧ ... ∧ vN ;
the result is a sum of

(
N

N−k

)
terms,

∧N ÂN−kω = Âv1 ∧ ... ∧ ÂvN−k ∧ vN−k+1 ∧ ... ∧ vN

+ (permutations).

Consider now the action of TrÂ(k) on ω,

TrÂ(k)ω = ∧N [Â(k)]
1ω

=
N∑

j=1

v1 ∧ ... ∧ Â(k)vj ∧ ... ∧ vN .

Using the definition of Â(k), we rewrite

v1 ∧ ... ∧ Â(k)vj ∧ ... ∧ vN

= Âv1 ∧ ... ∧ ÂvN−k ∧ vN−k+1 ∧ ... ∧ vj ∧ ... ∧ vN

+ (permutations not including Âvj).

After summing over j, we will obtain all the same terms as were present in

the expression for ∧N ÂN−kω, but each term will occur several times. We can
show that each term will occur exactly k times. For instance, the term

Âv1 ∧ ... ∧ ÂvN−k ∧ vN−k+1 ∧ ... ∧ vj ∧ ... ∧ vN

will occur k times in the expression for TrÂ(k)ω because it will be generated
once by each of the terms

v1 ∧ ... ∧ Â(k)vj ∧ ... ∧ vN

with N − k + 1 ≤ j ≤ N . The same argument holds for every other term.
Therefore

TrÂ(k)ω = k (∧N ÂN−k)ω = kqkω.

Since this holds for any ω ∈ ∧NV , we obtain the required statement. �
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Remark: We have thus computed the trace of every operator Â(k), as well

as the characteristic polynomial of Â(1) ≡ ˜̂
A. Computing the entire charac-

teristic polynomial of each Âk is certainly possible but will perhaps lead to
cumbersome expressions. �

An interesting application of Statement 2 is the following algorithm for
computing the characteristic polynomial of an operator.1 This algorithm is

more economical compared with the computation of det(Â− λ1̂) via permu-
tations, and requires only operator (or matrix) multiplications and the com-
putation of a trace.

Statement 3: (Leverrier’s algorithm) The coefficients ∧N Âk ≡ qN−k (1 ≤
k ≤ N ) of the characteristic polynomial of an operator Â can be computed

together with the operators Â(j) by starting with Â(N) ≡ 1̂V and using the
descending recurrence relation for j = N − 1, ..., 0:

qj =
1

N − j
Tr [ÂÂ(j+1)],

Â(j) = qj 1̂ − ÂÂ(j+1). (4.2)

At the end of the calculation, we will have

q0 = det Â, Â(1) =
˜̂
A, Â(0) = 0.

Proof: At the beginning of the recurrence, we have

j = N − 1, qN−1 =
1

N − j
Tr [ÂÂ(j+1)] = TrÂ,

which is correct. The recurrence relation (4.2) for Â(j) coincides with the result

of Lemma 1 in Sec. 4.2.1 and thus yields at each step j the correct operator Â(j)

— as long as qj was computed correctly at that step. So it remains to verify
that qj is computed correctly. Taking the trace of Eq. (4.2) and using Tr 1̂ = N ,
we get

Tr [AÂ(j+1)] = Nqj − TrÂ(j).

We now substitute for TrÂ(j) the result of Statement 2 and find

Tr [AÂ(j+1)] = Nqj − jqj = (N − j) qj .

Thus qj is also computed correctly from the previously known Â(j+1) at each
step j. �

Remark: This algorithm provides another illustration for the “trace relations”
(see Exercises 1 and 2 in Sec. 3.9), i.e. for the fact that the coefficients qj of the

characteristic polynomial of Â can be expressed as polynomials in the traces

of Â and its powers. These expressions will be obtained in Sec. 4.5.3.

1I found this algorithm in an online note by W. Kahan, “Jordan’s normal form” (downloaded
from http://www.cs.berkeley.edu/~wkahan/MathH110/jordan.pdf on October 6,
2009). Kahan attributes this algorithm to Leverrier, Souriau, Frame, and Faddeev.
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4.3 Cayley-Hamilton theorem and beyond

The characteristic polynomial of an operator Â has roots λ that are eigenval-

ues of Â. It turns out that we can substitute Â as an operator into the charac-

teristic polynomial, and the result is the zero operator, as if Â were one of its

eigenvalues. In other words, Â satisfies (as an operator) its own characteristic
equation.

Theorem 1 (Cayley-Hamilton): IfQÂ (λ) ≡ det(Â−λ1̂V ) is the characteristic

polynomial of the operator Â then QÂ(Â) = 0̂V .

Proof: The coefficients of the characteristic polynomial are ∧N Âm. When

we substitute the operator Â into QÂ(λ), we obtain the operator

QÂ(Â) = (det Â)1̂V + (∧N ÂN−1)(−Â) + ...+ (−Â)N .

We note that this expression is similar to that for the algebraic complement of

Â (see Exercise 2 in Sec. 4.2.1), so

QÂ(Â) = (det Â)1̂V +
(
∧N ÂN−1 + ...+ (−Â)N−1

)
(−Â)

= (det Â)1̂V − (∧N−1ÂN−1)∧T Â = 0̂V

by Lemma 1 in Sec. 4.2.1. Hence QÂ(Â) = 0̂V for any operator Â. �

Remark: While it is true that the characteristic polynomial vanishes on Â, it is
not necessarily the simplest such polynomial. A polynomial of a lower degree

may vanish on Â. A trivial example of this is given by an operator Â = α1̂,
that is, the identity operator times a constant α. The characteristic polynomial

of Â is QÂ(λ) = (α− λ)
N . In agreement with the Cayley-Hamilton theorem,

(α1̂ − Â)N = 0̂. However, the simpler polynomial p(λ) = λ − α also has the

property p(Â) = 0̂. We will look into this at the end of Sec. 4.6. �

We have derived the Cayley-Hamilton theorem by considering the exterior

transpose of ∧N−1ÂN−1. A generalization is found if we similarly use the

operators of the form
(
∧aÂb

)∧T
.

Theorem 2 (Cayley-Hamilton in ∧kV ): For any operator Â in V and for 1 ≤
k ≤ N , 1 ≤ p ≤ N , the following identity holds,

p
∑

q=0

(
∧N−kÂp−q

)∧T
(∧kÂq) = (∧N Âp)1̂∧kV . (4.3)

In this identity, we set ∧kÂ0 ≡ 1̂∧kV and ∧kÂr ≡ 0 for r > k. Explicit expres-

sions can be derived for all operators
(
∧N−kÂp

)∧T
as polynomials in the (mu-

tually commuting) operators ∧kÂj , 1 ≤ j ≤ k. (See Exercise 3 in Sec. 4.2.1.)
Hence, there exist k identically vanishing operator-valued polynomials in-

volving ∧kÂj . (In the ordinary Cayley-Hamilton theorem, we have k = 1

and a single polynomial QÂ(Â) that identically vanishes as an operator in
V ≡ ∧1V .) The coefficients of those polynomials will be known functions of

Â. One can also obtain an identically vanishing polynomial in ∧kÂ1.
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Proof: Let us fix k and first write Eq. (4.3) for 1 ≤ p ≤ N − k. These N − k
equations are all of the form

(
∧N−kÂp

)∧T
+ [...] = (∧N Âp)1̂∧kV , 1 ≤ p ≤ N − k.

In the p-th equation, the omitted terms in square brackets contain only the

operators
(
∧N−kÂr

)∧T
with r < p and ∧kÂq with 1 ≤ q ≤ k. Therefore, these

equations can be used to express
(
∧N−kÂp

)∧T
for 1 ≤ p ≤ N − k through the

operators ∧kÂq explicitly as polynomials. Substituting these expressions into
Eq. (4.3), we obtain k identically vanishing polynomials in the k operators

∧kÂq (with 1 ≤ q ≤ k). These polynomials can be considered as a system of

polynomial equations in the variables α̂q ≡ ∧kÂq. (As an exercise, you may
verify that all the operators α̂q commute.) A system of polynomial equations
may be reduced to a single polynomial equation in one of the variables, say
α̂1. (The technique for doing this in practice, called the “Gröbner basis,” is
complicated and beyond the scope of this book.) �

The following two examples illustrate Theorem 2 in three and four dimen-
sions.
Example 1: Suppose V is a three-dimensional space (N = 3) and an operator

Â is given. The ordinary Cayley-Hamilton theorem is obtained from Theo-
rem 2 with k = 1,

q0 − q1Â+ q2Â
2 − Â3 = 0,

where qj ≡ ∧N ÂN−j are the coefficients of the characteristic polynomial of Â.
The generalization of the Cayley-Hamilton theorem is obtained with k = 2
(the only remaining case k = 3 will not yield interesting results).

We write the identity (4.3) for k = 2 and p = 1, 2, 3. Using the properties

∧kÂk+j = 0 (with j > 0) and ∧kÂ0 = 1̂, we get the following three identities
of operators in ∧2V :

(
∧1Â1

)∧T
+ ∧2Â1 = q21̂∧2V ,

(
∧1Â1

)∧T
(∧2Â1) + ∧2Â2 = q11̂∧2V ,

(
∧1Â1

)∧T
(∧2Â2) = q01̂∧2V .

Let us denote for brevity α̂1 ≡ ∧2Â1 and α̂2 ≡ ∧2Â2. Expressing
(
∧1Â1

)∧T

through α̂1 from the first line above and substituting into the last two lines,
we find

α̂2 = q11̂ − q2α̂1 + α̂2
1,

(q21̂ − α̂1)α̂2 = q01̂.

We can now express α̂2 through α̂1 and substitute into the last equation to
find

α̂3
1 − 2q2α̂

2
1 + (q1 + q22)α̂1 − (q1q2 − q0)1̂ = 0.

Thus, the generalization of the Cayley-Hamilton theorem in ∧2V yields an

identically vanishing polynomial in ∧2Â1 ≡ α̂1 with coefficients that are ex-
pressed through qj .
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Question: Is this the characteristic polynomial of α̂1?

Answer: I do not know! It could be since it has the correct degree. However,
not every polynomial p(x) such that p(α̂) = 0 for some operator α̂ is the
characteristic polynomial of α̂.

Example 2: Let us now consider the case N = 4 and k = 2. We use Eq. (4.3)
with p = 1, 2, 3, 4 and obtain the following four equations,

(∧2Â1)∧T + ∧2Â1 = (∧4Â1)1̂∧2V ,

(∧2Â2)∧T + (∧2Â1)∧T (∧2Â1) + ∧2Â2 = (∧4Â2)1̂∧2V ,

(∧2Â2)∧T (∧2Â1) + (∧2Â1)∧T (∧2Â2) = (∧4Â3)1̂∧2V ,

(∧2Â2)∧T (∧2Â2) = (∧4Â4)1̂∧2V .

Let us denote, as before, qj = ∧4Â4−j (with 0 ≤ j ≤ 3) and α̂r ≡ ∧2Âr (with

r = 1, 2). Using the first two equations above, we can then express (∧2Âr)∧T

through α̂r and substitute into the last two equations. We obtain

(∧2Â1)∧T = q31̂ − α̂1,

(∧2Â2)∧T = q21̂ + α̂2
1 − q3α̂1 − α̂2,

and finally

(q21̂ + α̂2
1 − q3α̂1 − α̂2)α̂1 + (q31̂ − α̂1)α̂2 = q11̂,

(q21̂ + α̂2
1 − q3α̂1 − α̂2)α̂2 = q01̂.

One cannot express α̂2 directly through α̂1 using these last equations. How-
ever, one can show (for instance, using a computer algebra program2) that
there exists an identically vanishing polynomial of degree 6 in α̂1, namely
p(α̂1) = 0 with

p(x) ≡ x6 − 3q3x
5 +

(
2q2 + 3q23

)
x4 −

(
4q2q3 + q33

)
x3

+
(
q22 − 4q0 + q1q3 + 2q2q

2
3

)
x2 −

(
q1q

2
3 + q22q3 − 4q0q3

)
x

+ q1q2q3 − q0q
2
3 − q21 .

The coefficients of p(x) are known functions of the coefficients qj of the char-

acteristic polynomial of Â. Note that the space ∧2V has dimension 6 in this
example; the polynomial p(x) has the same degree.

Question: In both examples we found an identically vanishing polynomial

in ∧kÂ1. Is there a general formula for the coefficients of this polynomial?

Answer: I do not know!

2This can be surely done by hand, but I have not yet learned the Gröbner basis technique nec-
essary to do this, so I cannot show the calculation here.
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4.4 Functions of operators

We will now consider some calculations with operators.

Let Â ∈ EndV . Since linear operators can be multiplied, it is straight-

forward to evaluate ÂÂ ≡ Â2 and other powers of Â, as well as arbitrary

polynomials in Â. For example, the operator Â can be substituted instead
of x into the polynomial p(x) = 2 + 3x + 4x2; the result is the operator

2̂ + 3Â+ 4Â2 ≡ p(Â).
Exercise: For a linear operator Â and an arbitrary polynomial p(x), show that

p(Â) has the same eigenvectors as Â (although perhaps with different eigen-
values). �

Another familiar function of Â is the inverse operator, Â−1. Clearly, we

can evaluate a polynomial in Â−1 as well (if Â−1 exists). It is interesting to

ask whether we can evaluate an arbitrary function of Â; for instance, whether

we can raise Â to a non-integer power, or compute exp(Â), ln(Â), cos(Â).

Generally, can we substitute Â instead of x in an arbitrary function f(x) and

evaluate an operator-valued function f(Â)? If so, how to do this in practice?

4.4.1 Definitions. Formal power series

The answer is that sometimes we can. There are two situations when f(Â)
makes sense, i.e. can be defined and has reasonable properties.

The first situation is when Â is diagonalizable, i.e. there exists a basis {ei}
such that every basis vector is an eigenvector of Â,

Âei = λiei.

In this case, we simply define f(Â) as the linear operator that acts on the basis
vectors as follows,

f(Â)ei ≡ f(λi)ei.

Definition 1: Given a function f(x) and a diagonalizable linear operator

Â =

N∑

i=1

λiei ⊗ e∗i ,

the function f(Â) is the linear operator defined by

f(Â) ≡
N∑

i=1

f(λi) ei ⊗ e∗i ,

provided that f(x) is well-defined at the points x = λi, i = 1, ..., N .
This definition might appear to be “cheating” since we simply substituted

the eigenvalues into f(x), rather than evaluate the operator f(Â) in some
“natural” way. However, the result is reasonable since we, in effect, define

f(Â) separately in each eigenspace Span {ei} where Â acts as multiplication
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by λi. It is natural to define f(Â) in each eigenspace as multiplication by
f(λi).

The second situation is when f(x) is an analytic function, that is, a function
represented by a power series

f(x) =
∞∑

n=0

cnx
n,

such that the series converges to the value f(x) for some x. Further, we need
this series to converge for a sufficiently wide range of values of x such that all

eigenvalues of Â are within that range. Then one can show that the operator-
valued series

f(Â) =

∞∑

n=0

cn(Â)n

converges. The technical details of this proof are beyond the scope of this
book; one needs to define the limit of a sequence of operators and other no-
tions studied in functional analysis. Here is a simple argument that gives a

condition for convergence. Suppose that the operator Â is diagonalizable and
has eigenvalues λi and the corresponding eigenvectors vi (i = 1, ..., N ) such

that {vi} is a basis and Â has a tensor representation

Â =

N∑

i=1

λivi ⊗ v∗
i .

Note that

Ân =

[
N∑

i=1

λivi ⊗ v∗
i

]n

=

N∑

i=1

λn
i vi ⊗ v∗

i

due to the property of the dual basis, v∗
i (vj) = δij . So if the series

∑∞
n=0 cnx

n

converges for every eigenvalue x = λi of the operator Â then the tensor-
valued series also converges and yields a new tensor

∞∑

n=0

cn(Â)n =

∞∑

n=0

cn

N∑

i=1

λn
i vi ⊗ v∗

i

=

N∑

i=1

[ ∞∑

n=0

cnλ
n

]

vi ⊗ v∗
i .

This argument indicates at least one case where the operator-valued power
series surely converges.

Instead of performing an in-depth study of operator-valued power series,
I will restrict myself to considering “formal power series” containing a pa-
rameter t, that is, infinite power series in t considered without regard for
convergence. Let us discuss this idea in more detail.
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By definition, a formal power series (FPS) is an infinite sequence of num-
bers (c0, c1, c2, ...). This sequence, however, is written as if it were a power
series in a parameter t,

c0 + c1t+ c2t
2 + ... =

∞∑

n=0

cnt
n.

It appears that we need to calculate the sum of the above series. However,
while we manipulate an FPS, we do not assign any value to t and thus do
not have to consider the issue of convergence of the resulting infinite series.
Hence, we work with an FPS as with an algebraic expression containing a
variable t, an expression that we do not evaluate (although we may simplify
it). These expressions can be manipulated term by term, so that, for exam-
ple, the sum and the product of two FPS are always defined; the result is
another FPS. Thus, the notation for FPS should be understood as a conve-
nient shorthand that simplifies working with FPS, rather than an actual sum
of an infinite series. At the same time, the notation for FPS makes it easy to
evaluate the actual infinite series when the need arises. Therefore, any results
obtained using FPS will hold whenever the series converges.

Now I will use the formal power series to define f(tÂ).
Definition 2: Given an analytic function f(x) shown above and a linear op-

erator Â, the function f(tÂ) denotes the operator-valued formal power series

f(tÂ) ≡
∞∑

n=0

cn(Â)ntn.

(According to the definition of formal power series, the variable t is a pa-
rameter that does not have a value and serves only to label the terms of the
series.)

One can define the derivative of a formal power series, without using the
notion of a limit (and without discussing convergence).
Definition 3: The derivative ∂t of a formal power series

∑

k akt
k is another

formal power series defined by

∂t

(
∞∑

k=0

akt
k
)
≡

∞∑

k=0

(k + 1) ak+1t
k.

This definition gives us the usual properties of the derivative. For instance,
it is obvious that ∂t is a linear operator in the space of formal power series.
Further, we have the important distributive property:
Statement 1: The Leibniz rule,

∂t [f(t)g(t)] = [∂tf(t)] g(t) + f(t) [∂tg(t)] ,

holds for formal power series.
Proof: Since ∂t is a linear operation, it is sufficient to check that the Leibniz

rule holds for single terms, f(t) = ta and g(t) = tb. Details left as exercise. �

This definition of f(tÂ) has reasonable and expected properties, such as:
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Exercise: For an analytic function f(x), show that

f(Â)Â = Âf(Â)

and that
d

dt
f(tÂ) = Âf ′(Â)

for an analytic function f(x). Here both sides are interpreted as formal power

series. Deduce that f(Â)g(Â) = g(Â)f(Â) for any two analytic functions f(x)
and g(x).

Hint: Linear operations with formal power series must be performed term
by term (by definition). So it is sufficient to consider a single term in f(x),
such as f(x) = xa. �

Now we can show that the two definitions of the operator-valued function

f(Â) agree when both are applicable.

Statement 2: If f(x) is an analytic function and Â is a diagonalizable op-

erator then the two definitions agree, i.e. for f(x) =
∑∞

n=0 cnx
n and Â =

∑N
i=1 λiei ⊗ e∗i we have the equality of formal power series,

∞∑

n=0

cn(tÂ)n =

N∑

i=1

f(tλi) ei ⊗ e∗i . (4.4)

Proof: It is sufficient to prove that the terms multiplying tn coincide for

each n. We note that the square of Â is

(
N∑

i=1

λiei ⊗ e∗i

)2

=

(
N∑

i=1

λiei ⊗ e∗i

)



N∑

j=1

λjej ⊗ e∗j





=
N∑

i=1

λ2
i ei ⊗ e∗i

because e∗i (ej) = δij . In this way we can compute any power of Â. Therefore,
the term in the left side of Eq. (4.4) is

cnt
n(Â)n = cnt

n

(
N∑

i=1

λiei ⊗ e∗i

)n

= cnt
n

N∑

i=1

λn
i ei ⊗ e∗i ,

which coincides with the term at tn in the right side. �

4.4.2 Computations: Sylvester’s method

Now that we know when an operator-valued function f(Â) is defined, how

can we actually compute the operator f(Â)? The first definition requires us

to diagonalize Â (this is already a lot of work since we need to determine
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every eigenvector). Moreover, Definition 1 does not apply when Â is non-
diagonalizable. On the other hand, Definition 2 requires us to evaluate in-
finitely many terms of a power series. Is there a simpler way?

There is a situation when f(Â) can be computed without such effort. Let

us first consider a simple example where the operator Â happens to be a pro-

jector, (Â)2 = Â. In this case, any power of Â is again equal to Â. It is then

easy to compute a power series in Â:

∞∑

n=0

cn(Â)n = c01̂ +
(

∞∑

n=1

cn
)
Â.

In this way we can compute any analytic function of Â (as long as the series
∑∞

n=1 cn converges). For example,

cos Â = 1̂ − 1

2!
(Â)2 +

1

4!
(Â)4 − ... = 1̂ − 1

2!
Â+

1

4!
Â− ...

= (1 − 1

2!
+

1

4!
− ...)Â+ 1̂ − Â

= [(cos 1) − 1] Â+ 1̂.

Remark: In the above computation, we obtained a formula that expresses the

end result through Â. We have that formula even though we do not know

an explicit form of the operator Â — not even the dimension of the space

where Â acts or whether Â is diagonalizable. We do not need to know any

eigenvectors of Â. We only use the given fact that Â2 = Â, and we are still

able to find a useful result. If such an operator Â is given explicitly, we can
substitute it into the formula

cos Â = [(cos 1) − 1] Â+ 1̂

to obtain an explicit expression for cos Â. Note also that the result is a formula

linear in Â.
Exercise 1: a) Given that (P̂ )2 = P̂ , express (λ1̂− P̂ )−1 and exp P̂ through P̂ .
Assume that |λ| > 1 so that the Taylor series for f(x) = (λ − x)−1 converges
for x = 1.

b) It is known only that (Â)2 = Â+ 2. Determine the possible eigenvalues

of Â. Show that any analytic function of Â can be reduced to the form α1̂+βÂ

with some suitable coefficients α and β. Express (Â)3, (Â)4, and Â−1 as linear

functions of Â.
Hint: Write Â−1 = α1̂ + βÂ with unknown α, β. Write ÂÂ−1 = 1̂ and

simplify to determine α and β.
Exercise 2: The operator Â is such that Â3 + Â = 0. Compute exp(λÂ) as a

quadratic polynomial of Â (here λ is a fixed number). �

Let us now consider a more general situation. Suppose we know the char-

acteristic polynomial QÂ(λ) of Â. The characteristic polynomial has the form

QÂ(λ) = (−λ)
N

+

N−1∑

k=0

(−1)
k
qN−kλ

k,
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where qi (i = 1, ..., N ) are known coefficients. The Cayley-Hamilton theorem

indicates that Â satisfies the polynomial identity,

(Â)N = −
N−1∑

k=0

qN−k (−1)
N−k

(Â)k.

It follows that any power of Â larger than N − 1 can be expressed as a lin-

ear combination of smaller powers of Â. Therefore, a power series in Â can

be reduced to a polynomial p(Â) of degree not larger than N − 1. The task

of computing an arbitrary function f(Â) is then reduced to the task of deter-
mining the N coefficients of p(x) ≡ p0 + ...+ pN−1x

n−1. Once the coefficients

of that polynomial are found, the function can be evaluated as f(Â) = p(Â)

for any operator Â that has the given characteristic polynomial.

Determining the coefficients of the polynomial p(Â) might appear to be
difficult because one can get rather complicated formulas when one converts

an arbitrary power of Â to smaller powers. This work can be avoided if the

eigenvalues of Â are known, by using the method of Sylvester, which I will
now explain.

The present task is to calculate f(Â) — equivalently, the polynomial p(Â)
— when the characteristic polynomial QÂ(λ) is known. The characteristic
polynomial has order N and hence has N (complex) roots, counting each

root with its multiplicity. The eigenvalues λi of the operator Â are roots of its
characteristic polynomial, and there exists at least one eigenvector vi for each
λi (Theorem 1 in Sec. 3.9). Knowing the characteristic polynomial QÂ(λ), we
may determine its roots λi.

Let us first assume that the roots λi (i = 1, ..., N ) are all different. Then
we have N different eigenvectors vi. The set {vi | i = 1, ..., N} is linearly in-

dependent (Statement 1 in Sec. 3.6.1) and hence is a basis in V ; that is, Â is
diagonalizable. We will not actually need to determine the eigenvectors vi; it

will be sufficient that they exist. Let us now apply the function f(Â) to each
of these N eigenvectors: we must have

f(Â)vi = f(λi)vi.

On the other hand, we may express

f(Â)vi = p(Â)vi = p(λi)vi.

Since the set {vi} is linearly independent, the vanishing linear combination

N∑

i=1

[f(λi) − p(λi)]vi = 0

must have all vanishing coefficients; hence we obtain a system ofN equations
for N unknowns {p0, ..., pN−1}:

p0 + p1λi + ...+ pN−1λ
N−1
i = f(λi), i = 1, ..., N.
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Note that this system of equations has the Vandermonde matrix (Sec. 3.6).
Since by assumption all λi’s are different, the determinant of this matrix is
nonzero, therefore the solution {p0, ..., pN−1} exists and is unique. The poly-
nomial p(x) is the interpolating polynomial for f(x) at the points x = λi

(i = 1, ..., N ).
We have proved the following theorem:

Theorem 1: If the roots {λ1, ..., λN} of the characteristic polynomial of Â are

all different, a function of Â can be computed as f(Â) = p(Â), where p(x) is
the interpolating polynomial for f(x) at the N points {λ1, ..., λN}.

Exercise 3: It is given that the operator Â has the characteristic polynomial

QÂ(λ) = λ2 − λ+ 6. Determine the eigenvalues of Â and calculate exp(Â) as

a linear expression in Â.

If we know that an operator Â satisfies a certain operator equation, say

(Â)2 − Â + 6 = 0, then it is not necessary to know the characteristic poly-

nomial in order to compute functions f(Â). It can be that the characteristic
polynomial has a high order due to many repeated eigenvalues; however, as
far as analytic functions are concerned, all that matters is the possibility to

reduce high powers of Â to low powers. This possibility can be provided by
a polynomial of a lower degree than the characteristic polynomial.

In the following theorem, we will determine f(Â) knowing only some poly-

nomial Q(x) for which p(Â) = 0.
Theorem 2: Suppose that a linear operator Â and a polynomialQ(x) are such

that Q(Â) = 0, and assume that the equation Q(λ) = 0 has all distinct roots
λi (i = 1, ..., n), where n is not necessarily equal to the dimension N of the

vector space. Then an analytic function f(Â) can be computed as

f(Â) = p(Â),

where p(x) is the interpolating polynomial for the function f(x) at the points
x = λi (i = 1, ..., n).
Proof: The polynomial p(x) is defined uniquely by substituting xk with

k ≥ n through lower powers of x in the series for f(x), using the equation

p(x) = 0. Consider the operator Â1 that acts as multiplication by λ1. This op-

erator satisfies p(Â1) = 0, and so f(Â1) is simplified to the same polynomial

p(Â1). Hence we must have f(Â1) = p(Â1). However, f(Â1) is simply the
operator of multiplication by f(λ1). Hence, p(x) must be equal to f(x) when
evaluated at x = λ1. Similarly, we find that p(λi) = f(λi) for i = 1, ..., n. The
interpolating polynomial for f(x) at the points x = λi (i = 1, ..., n) is unique
and has degree n− 1. Therefore, this polynomial must be equal to p(x). �

It remains to develop a procedure for the case when not all roots λi of the
polynomial Q(λ) are different. To be specific, let us assume that λ1 = λ2

and that all other eigenvalues are different. In this case we will first solve
an auxiliary problem where λ2 = λ1 + ε and then take the limit ε → 0. The
equations determining the coefficients of the polynomial p(x) are

p(λ1) = f(λ1), p(λ1 + ε) = f(λ1 + ε), p(λ3) = f(λ3), ...

169



4 Advanced applications

Subtracting the first equation from the second and dividing by ε, we find

p(λ1 + ε) − p(λ1)

ε
=
f(λ1 + ε) − f(λ1)

ε
.

In the limit ε→ 0 this becomes

p′(λ1) = f ′(λ1).

Therefore, the polynomial p(x) is determined by the requirements that

p(λ1) = f(λ1), p
′(λ1) = f ′(λ1), p(λ3) = f(λ3), ...

If three roots coincide, say λ1 = λ2 = λ3, we introduce two auxiliary parame-
ters ε2 and ε3 and first obtain the three equations

p(λ1) = f(λ1), p(λ1 + ε2) = f(λ1 + ε2),

p(λ1 + ε2 + ε3) = f(λ1 + ε2 + ε3).

Subtracting the equations and taking the limit ε2 → 0 as before, we find

p(λ1) = f(λ1), p
′(λ1) = f ′(λ1), p

′(λ1 + ε3) = f ′(λ1 + ε3).

Subtracting now the second equation from the third and taking the limit ε3 →
0, we find p′′(λ1) = f ′′(λ1). Thus we have proved the following.

Theorem 3: If a linear operator Â satisfies a polynomial operator equation

Q(Â) = 0, such that the equation Q(λ) = 0 has roots λi (i = 1, ..., n) with
multiplicities mi,

Q(λ) = const · (λ− λ1)
m1 ... (λ− λn)

mn ,

an analytic function f(Â) can be computed as

f(Â) = p(Â),

where p(x) is the polynomial determined by the conditions

p(λi) = f(λi), p
′(λi) = f ′(λi), ...,

dmi−1p(x)

dxmi−1

∣
∣
∣
∣
x=λi

=
dmi−1f(x)

dxmi−1

∣
∣
∣
∣
x=λi

, i = 1, ..., n.

Theorems 1 to 3, which comprise Sylvester’s method, allow us to compute
functions of an operator when only the eigenvalues are known, without de-
termining any eigenvectors and without assuming that the operator is diago-
nalizable.
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4.4.3 * Square roots of operators

In the previous section we have seen that functions of operators can be some-
times computed explicitly. However, our methods work either for diagonal-

izable operators Â or for functions f(x) given by a power series that con-

verges for every eigenvalue of the operator Â. If these conditions are not
met, functions of operators may not exist or may not be uniquely defined. As
an example where these problems arise, we will briefly consider the task of
computing the square root of a given operator.

Given an operator Â we would like to define its square root as an operator

B̂ such that B̂2 = Â. For a diagonalizable operator Â =
∑N

i=1 λiei⊗e∗i (where
{ei} is an eigenbasis and {e∗i } is the dual basis) we can easily find a suitable

B̂ by writing

B̂ ≡
N∑

i=1

√

λiei ⊗ e∗i .

Note that the numeric square root
√
λi has an ambiguous sign; so with each

possible choice of sign for each
√
λi, we obtain a possible choice of B̂. (De-

pending on the problem at hand, there might be a natural way of fixing the
signs; for instance, if all λi are positive then it might be useful to choose also
all

√
λi as positive.) The ambiguity of signs is expected; what is unexpected

is that there could be many other operators B̂ satisfying B̂2 = Â, as the fol-
lowing example shows.
Example 1: Let us compute the square root of the identity operator in a two-

dimensional space. We look for B̂ such that B̂2 = 1̂. Straightforward solu-

tions are B̂ = ±1̂. However, consider the following operator,

B̂ ≡
(
a b
c −a

)

, B̂2 =

(
a2 + bc 0

0 a2 + bc

)

=
(
a2 + bc

)
1̂.

This B̂ satisfies B̂2 = 1̂ for any a, b, c ∈ C as long as a2 + bc = 1. The square
root is quite ambiguous for the identity operator! �

We will now perform a simple analysis of square roots of operators in two-
and three-dimensional spaces using the Cayley-Hamilton theorem.

Let us assume that B̂2 = Â, where Â is a given operator, and denote for

brevity a ≡ TrÂ and b ≡ TrB̂ (where a is given but b is still unknown). In two

dimensions, any operator B̂ satisfies the characteristic equation

B̂2 − (TrB̂)B̂ + (det B̂)1̂ = 0.

Taking the trace of this equation, we can express the determinant as

det B̂ =
1

2
(TrB̂)2 − 1

2
Tr(B̂2)

and hence

bB̂ = Â+
b2 − a

2
1̂. (4.5)
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This equation will yield an explicit formula for B̂ through Â if we only deter-
mine the value of the constant b such that b 6= 0. Squaring the above equation
and taking the trace, we find

b4 − 2b2a+ c = 0, c ≡ 2Tr(Â2) − a2 = a2 − 4 det Â.

Hence, we obtain up to four possible solutions for b,

b = ±
√

a±
√

a2 − c = ±
√

TrÂ± 2
√

det Â. (4.6)

Each value of b such that b 6= 0 yield possible operators B̂ through Eq. (4.5).
Denoting by s1 = ±1 and s2 = ±1 the two free choices of signs in Eq. (4.6),
we may write the general solution (assuming b 6= 0) as

B̂ = s1
Â+ s2

√

det Â1̂
√

TrÂ+ 2s2
√

det Â

. (4.7)

It is straightforward to verify (using the Cayley-Hamilton theorem for Â) that

every such B̂ indeed satisfies B̂2 = Â.

Note also that B̂ is expressed as a linear polynomial in Â. Due to the Cayley-

Hamilton theorem, any analytic function of Â reduces to a linear polynomial
in the two-dimensional case. Hence, we can view Eq. (4.7) as a formula yield-

ing the analytic solutions of the equation B̂2 = Â.
If b = 0 is a solution of Eq. (4.6) then we must consider the possibility that

solutions B̂ with b ≡ Tr B̂ = 0 may exist. In that case, Eq. (4.5) indicates

that Â plus a multiple of 1̂ must be equal to the zero operator. Note that

Eq. (4.5) is a necessary consequence of B̂2 = Â, obtained only by assuming

that B̂ exists. Hence, when Â is not proportional to the identity operator, no

solutions B̂ with Tr B̂ = 0 can exist. On the other hand, if Â is proportional

to 1̂, solutions with Tr B̂ = 0 exist but the present method does not yield

these solutions. (Note that this method can only yield solutions B̂ that are

linear combinations of the operator Â and the identity operator!) It is easy to

see that the operators from Example 1 fall into this category, with TrB̂ = 0.
There are no other solutions except those shown in Example 1 because in that
example we have obtained all possible traceless solutions.

Another interesting example is found when Â is a nilpotent (but nonzero).

Example 2: Consider a nilpotent operator Â1 =

(
0 1
0 0

)

. In that case, both

the trace and the determinant of Â1 are equal to zero; it follows that b = 0 is

the only solution of Eq. (4.6). However, Â1 is not proportional to the identity

operator. Hence, a square root of Â1 does not exist.

Remark: This problem with the nonexistence of the square root is not the

same as the nonexistence of
√
−1 within real numbers; the square root of Â1

172
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does not exist even if we allow complex numbers! The reason is that the exis-

tence of
√

Â1 would be algebraically inconsistent (because it would contradict
the Cayley-Hamilton theorem). �

Let us summarize our results so far. In two dimensions, the general cal-

culation of a square root of a given operator Â proceeds as follows: If Â is
proportional to the identity operator, we have various solutions of the form
shown in Example 1. (Not every one of these solutions may be relevant for

the problem at hand, but they exist.) If Â is not proportional to the identity
operator, we solve Eq. (4.6) and obtain up to four possible values of b. If the

only solution is b = 0, the square root of Â does not exist. Otherwise, every

nonzero value of b yields a solution B̂ according to Eq. (4.5), and there are no
other solutions.

Example 3: We would like to determine a square root of the operator

Â =

(
1 3
0 4

)

.

We compute det Â = 4 and a = TrÂ = 5. Hence Eq. (4.6) gives four nonzero
values,

b = ±
√

5 ± 4 = {±1,±3} .
Substituting these values of b into Eq. (4.5) and solving for B̂, we compute the
four possible square roots

B̂ = ±
(

1 1
0 2

)

, B̂ = ±
(

−1 3
0 2

)

.

Since b = 0 is not a solution, while Â 6= λ1̂, there are no other square roots.

Exercise 1: Consider a diagonalizable operator represented in a certain basis
by the matrix

Â =

(
λ2 0
0 µ2

)

,

where λ and µ are any complex numbers, possibly zero, such that λ2 6= µ2.
Use Eqs. (4.5)–(4.6) to show that the possible square roots are

B̂ =

(
±λ 0
0 ±µ

)

.

and that there are no other square roots. �

Exercise 2: Obtain all possible square roots of the zero operator in two di-
mensions. �

Let us now consider a given operator Â in a three-dimensional space and

assume that there exists B̂ such that B̂2 = Â. We will be looking for a for-

mula expressing B̂ as a polynomial in Â. As we have seen, this will certainly

not give every possible solution B̂, but we do expect to get the interesting

solutions that can be expressed as analytic functions of Â.
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As before, we denote a ≡ TrÂ and b ≡ TrB̂. The Cayley-Hamilton theo-

rem for B̂ together with Exercise 1 in Sec. 3.9 (page 141) yields a simplified
equation,

0 = B̂3 − bB̂2 + sB̂ − (det B̂)1̂

= (Â+ s1̂)B̂ − bÂ− (det B̂)1̂, (4.8)

s ≡ b2 − a

2
.

Note that det B̂ = ±
√

det Â and hence can be considered known. Moving B̂
to another side in Eq. (4.8) and squaring the resulting equation, we find

(Â2 + 2sÂ+ s21̂)Â = (bÂ+ (det B̂)1̂)2.

Expanding the brackets and using the Cayley-Hamilton theorem for Â in the
form

Â3 − aÂ2 + pÂ− (det Â)1̂ = 0,

where the coefficient p can be expressed as

p =
1

2
(a2 − Tr(Â2)),

we obtain after simplifications

(s2 − p− 2bdet B̂)Â = 0.

This yields a fourth-order polynomial equation for b,

(
b2 − a

2

)2

− p− 2bdet B̂ = 0.

This equation can be solved, in principle. Since det B̂ has up to two possible

values, det B̂ = ±
√

det Â, we can then determine up to eight possible values
of b (and the corresponding values of s).

Now we use a trick to express B̂ as a function of Â. We rewrite Eq. (4.8) as

ÂB̂ = −sB̂ + bÂ+ (det B̂)1̂

and multiply both sides by B̂, substituting ÂB̂ back into the equation,

Â2 + sÂ = bÂB̂ + (det B̂)B̂

= b[−sB̂ + bÂ+ (det B̂)1̂] + (det B̂)B̂.

The last line yields

B̂ =
1

(det B̂) − sb
[Â2 + (s− b2)Â− b(det B̂)1̂].

This is the final result, provided that the denominator (det B̂ − sb) does not
vanish. In case this denominator vanishes, the present method cannot yield a

formula for B̂ in terms of Â.
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4.5 Formulas of Jacobi and Liouville

Exercise 3:* Verify that the square root of a diagonalizable operator,

Â =





p2 0 0
0 q2 0
0 0 r2



 ,

where p2, q2, r2 ∈ C are all different, can be determined using this approach,
which yields the eight possibilities

B̂ =





±p 0 0
0 ±q 0
0 0 ±r



 .

Hint: Rather than trying to solve the fourth-order equation for b directly (a
cumbersome task), one can just verify, by substituting into the equation, that
the eight values b = ±p±q±r (with all the possible choices of signs) are roots
of that equation.

Exercise 4:*3 It is given that a three-dimensional operator Â satisfies

Tr (Â2) =
1

2
(Tr Â)2, det Â 6= 0.

Show that there exists B̂, unique up to a sign, such that Tr B̂ = 0 and B̂2 = Â.
Answer:

B̂ = ± 1
√

det Â

[
Â2 − 1

2
(Tr Â)Â

]
.

4.5 Formulas of Jacobi and Liouville

Definition: The Liouville formula is the identity

det(exp Â) = exp(TrÂ), (4.9)

where Â is a linear operator and exp Â is defined by the power series,

exp Â ≡
∞∑

n=0

1

n!
(Â)n.

Example: Consider a diagonalizable operator Â (an operator such that there
exists an eigenbasis {ei | i = 1, ..., N}) and denote by λi the eigenvalues, so

that Âei = λiei. (The eigenvalues λi are not necessarily all different.) Then

we have (Â)nei = λn
i ei and therefore

(exp Â)ei =

∞∑

n=0

1

n!
(Â)nei =

∞∑

n=0

1

n!
λn

i ei = eλiei.

3This is motivated by the article by R. Capovilla, J. Dell, and T. Jacobson, Classical and Quantum
Gravity 8 (1991), pp. 59–73; see p. 63 in that article.
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The trace of Â is TrÂ =
∑N

i=1 λi and the determinant is det Â =
∏N

i=1 λi.
Hence we can easily verify the Liouville formula,

det(exp Â) = eλ1 ...eλN = exp(λ1 + ...+ λn) = exp(TrÂ).

However, the Liouville formula is valid also for non-diagonalizable opera-
tors. �

The formula (4.9) is useful in several areas of mathematics and physics.
A proof of Eq. (4.9) for matrices can be given through the use of the Jordan
canonical form of the matrix, which is a powerful but complicated construc-
tion that actually is not needed to derive the Liouville formula. We will derive
it using operator-valued differential equations for power series. A useful by-
product is a formula for the derivative of the determinant.

Theorem 1 (Liouville’s formula): For an operator Â in a finite-dimensional
space V ,

det exp(tÂ) = exp(tTrÂ). (4.10)

Here both sides are understood as formal power series in the variable t, e.g.

exp(tÂ) ≡
∞∑

n=0

tn

n!
(Â)n,

i.e. an infinite series considered without regard for convergence (Sec. 4.4).
Remark: Although we establish Theorem 1 only in the sense of equality of
formal power series, the result is useful because both sides of Eq. (4.10) will
be equal whenever both series converge. Since the series for exp(x) converges
for all x, one expects that Eq. (4.10) has a wide range of applicability. In par-
ticular, it holds for any operator in finite dimensions. �

The idea of the proof will be to represent both sides of Eq. (4.10) as power
series in t satisfying some differential equation. First we figure out how to
solve differential equations for formal power series. Then we will guess a
suitable differential equation that will enable us to prove the theorem.

Lemma 1: The operator-valued function F̂ (t) ≡ exp(tÂ) is the unique solu-
tion of the differential equation

∂tF̂ (t) = F̂ (t) Â, F̂ (t = 0) = 1̂V ,

where both sides of the equation are understood as formal power series.
Proof: The initial condition means that

F̂ (t) = 1̂ + F̂1t+ F̂2t
2 + ...,

where F̂1, F̂2, ..., are some operators. Then we equate terms with equal pow-

ers of t in the differential equation, which yields F̂j+1 = 1
j F̂jÂ, j = 1, 2, ...,

and so we obtain the desired exponential series. �

Lemma 2: If φ(t) and ψ(t) are power series in t with coefficients from ∧mV
and ∧nV respectively, then the Leibniz rule holds,

∂t (φ ∧ ψ) = (∂tφ) ∧ ψ + φ ∧ (∂tψ) .
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Proof: Since the derivative of formal power series, as defined above, is a
linear operation, it is sufficient to verify the statement in the case when φ =
taω1 and ψ = tbω2. Then we find

∂t (φ ∧ ψ) = (a+ b) ta+b−1ω1 ∧ ω2,

(∂tφ) ∧ ψ + φ ∧ (∂tψ) = ata−1ω1 ∧ tbω2 + taω1 ∧ btb−1ω2.

�

Lemma 3: The inverse to a formal power series φ(t) exists (as a formal power
series) if and only if φ(0) 6= 0.

Proof: The condition φ(0) 6= 0 means that we can express φ(t) = φ(0)+tψ(t)
where ψ(t) is another power series. Then we can use the identity of formal
power series,

1 = (1 + x)

[ ∞∑

n=0

(−1)
n
xn

]

,

to express 1/φ(t) as a formal power series,

1

φ(t)
=

1

φ(0) + tψ(t)
=

∞∑

n=0

(−1)
n

[φ(0)]
−n−1

[tψ(t)]
n
.

Since each term [tψ(t)]
n is expanded into a series that starts with tn, we can

compute each term of 1/φ(t) by adding finitely many other terms, i.e. the
above equation does specify a well-defined formal power series. �

Corollary: If Â(t) is an operator-valued formal power series, the inverse to

Â(t) exists (as a formal power series) if and only if det Â(0) 6= 0.
The next step towards guessing the differential equation is to compute the

derivative of a determinant.
Lemma 4 (Jacobi’s formula): If Â(t) is an operator-valued formal power se-

ries such that the inverse Â−1(t) exists, we have

∂t det Â(t) = (det Â)Tr [Â−1∂tÂ] = Tr [(det Â)Â−1∂tÂ]. (4.11)

If the inverse does not exist, we need to replace det Â · Â−1 in Eq. (4.11) by the
algebraic complement,

˜̂
A ≡

(
∧N−1ÂN−1

)∧T

(see Sec. 4.2.1), so that we obtain the formula of Jacobi,

∂t det Â = Tr [
˜̂
A∂tÂ].

Proof of Lemma 4: A straightforward calculation using Lemma 2 gives

(
∂t det Â(t)

)
v1 ∧ ... ∧ vN = ∂t[Âv1 ∧ ... ∧ ÂvN ]

=
N∑

k=1

Âv1 ∧ ... ∧ (∂tÂ)vk ∧ ... ∧ ÂvN .
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Now we use the definition of the algebraic complement operator to rewrite

Âv1 ∧ ... ∧ (∂tÂ)vk ∧ ... ∧ ÂvN = v1 ∧ ... ∧ (
˜̂
A∂tÂvk) ∧ ... ∧ vN .

Hence

(∂t det Â)v1 ∧ ... ∧ vN =
N∑

k=1

v1 ∧ ... ∧ (
˜̂
A∂tÂvk) ∧ ... ∧ vN

= ∧N (
˜̂
A∂tÂ)1v1 ∧ ... ∧ vN

= Tr [
˜̂
A∂tÂ]v1 ∧ ... ∧ vN .

Therefore ∂t det Â = Tr [
˜̂
A∂tÂ]. When Â−1 exists, we may express

˜̂
A through

the inverse matrix,
˜̂
A = (det Â)Â−1, and obtain Eq. (4.11).

Proof of Theorem 1: It follows from Lemma 3 that F̂−1(t) exists since F̂ (0) =

1̂, and it follows from Lemma 4 that the operator-valued function F̂ (t) =

exp(tÂ) satisfies the differential equation

∂t det F̂ (t) = det F̂ (t) · Tr[F̂−1∂tF̂ ].

From Lemma 1, we have F̂−1∂tF̂ = F̂−1F̂ Â = Â, therefore

∂t det F̂ (t) = det F̂ (t) · TrÂ.

This is a differential equation for the number-valued formal power series

f(t) ≡ det F̂ (t), with the initial condition f(0) = 1. The solution (which
we may still regard as a formal power series) is

f(t) = exp(tTrÂ).

Therefore
det F̂ (t) ≡ det exp(tÂ) = exp(tTrÂ).

�

Exercise 1: (generalized Liouville’s formula) If Â ∈ End V and p ≤ N ≡
dimV , show that

∧p(exp tÂ)p = exp
(
t(∧pÂ1)

)
,

where both sides are understood as formal power series of operators in ∧pV .
(The Liouville formula is a special case with p = N .)

Exercise 2:* (Sylvester’s theorem) For any two linear maps Â : V → W and

B̂ : W → V , we have well-defined composition maps ÂB̂ ∈ End W and

B̂Â ∈ End V . Then

det(1̂V + B̂Â) = det(1̂W + ÂB̂).

Note that the operators at both sides act in different spaces.
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Hint: Introduce a real parameter t and consider the functions f(t) ≡ det(1+

tÂB̂), g(t) ≡ det(1 + tB̂Â). These functions are polynomials of finite degree
in t. Consider the differential equation for these functions; show that f(t)
satisfies

df

dt
= f(t)Tr [ÂB̂(1 + tÂB̂)−1],

and similarly for g. Expand in series in t and use the identities Tr (ÂB̂) =

Tr (B̂Â), Tr (ÂB̂ÂB̂) = Tr (B̂ÂB̂Â), etc. Then show that f and g are solutions
of the same differential equation, with the same conditions at t = 0. There-
fore, show that these functions are identical as formal power series. Since f
and g are actually polynomials in t, they must be equal.

4.5.1 Derivative of characteristic polynomial

Jacobi’s formula expresses the derivative of the determinant, ∂t det Â, in terms

of the derivative ∂tÂ of the operator Â. The determinant is the last coefficient

q0 of the characteristic polynomial of Â. It is possible to obtain similar formu-
las for the derivatives of all other coefficients of the characteristic polynomial.
Statement: The derivative of the coefficient

qk ≡ ∧N ÂN−k

of the characteristic polynomial of Â is expressed (for 0 ≤ k ≤ N − 1) as

∂tqk = Tr
[
(∧N−1ÂN−k−1)∧T∂tÂ

]
.

Note that the first operator in the brackets is the one we denoted by Â(k+1) in
Sec. 4.2.3, so we can write

∂tqk = Tr [Â(k+1)∂tÂ].

Proof: We apply the operator ∂t(∧N ÂN−k) to the tensor ω ≡ v1 ∧ ... ∧ vN ,
where {vj} is a basis. We assume that the vectors vj do not depend on t, so
we can compute

[
∂t(∧N ÂN−k)

]
ω = ∂t

[
∧N ÂN−kω

]
.

The result is a sum of terms such as

Âv1 ∧ ... ∧ ÂvN−k−1 ∧ ∂tÂvN−k ∧ vN−k+1 ∧ ... ∧ vN

and other terms obtained by permuting the vectors vj (without introducing

any minus signs!). The total number of these terms is equal to N
(

N−1
N−k−1

)
,

since we need to choose a single vector to which ∂tÂ will apply, and then

(N − k − 1) vectors to which Â will apply, among the (N − 1) remaining vec-
tors. Now consider the expression

Tr
[
(∧N−1ÂN−k−1)∧T∂tÂ

]
ω.
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This expression is the sum of terms such as

Â(k+1)∂tÂv1 ∧ v2 ∧ ... ∧ vN

and other terms with permuted vectors vj . There will be N such terms, since

we choose one vector out of N to apply the operator Â(k+1)∂tÂ. Using the

definition of Â(k+1), we write

Â(k+1)∂tÂv1 ∧ v2 ∧ ... ∧ vN

= ∂tÂv1 ∧
[
∧N−1ÂN−k−1

]
(v2 ∧ ... ∧ vN )

= ∂tÂv1 ∧ Âv2 ∧ ... ∧ ÂvN−k ∧ vN−k+1 ∧ ... ∧ vN + ...,

where in the last line we omitted all other permutations of the vectors. (There

will be
(

N−1
N−k−1

)
such permutations.) It follows that the tensor expressions

∂tqkω ≡ ∂t(∧N ÂN−k)ω

and Tr [Â(k+1)∂tÂ]ω consist of the same terms; thus they are equal,

∂tqkω = Tr [Â(k+1)∂tÂ]ω.

Since this holds for any ω ∈ ∧NV , we obtain the required statement. �

Exercise: Assuming that Â(t) is invertible, derive a formula for the derivative

of the algebraic complement, ∂t
˜̂
A.

Hint: Compute ∂t of both sides of the identity
˜̂
AÂ = (det Â)1̂.

Answer:

∂t
˜̂
A =

Tr [
˜̂
A∂tÂ]

˜̂
A− ˜̂

A(∂tÂ)
˜̂
A

det Â
.

Remark: Since
˜̂
A is a polynomial in Â,

˜̂
A = q1 − q2Â+ ...+ qN−1(−Â)N−2 + (−Â)N−1,

all derivatives of
˜̂
Amay be expressed directly as polynomials in Â and deriva-

tives of Â, even when Â is not invertible. Explicit expressions not involving

Â−1 are cumbersome — for instance, the derivative of a polynomial in Â will
contain expressions like

∂t(Â
3) = (∂tÂ)Â2 + Â(∂tÂ)Â+ Â2∂tÂ.

Nevertheless, these expressions can be derived using the known formulas for

∂tqk and Â(k). �
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4.5.2 Derivative of a simple eigenvalue

Suppose an operator Â is a function of a parameter t; we will consider Â(t)
as a formal power series (FPS). Then the eigenvectors and the eigenvalues of

Â are also functions of t. We can obtain a simple formula for the derivative
of an eigenvalue λ if it is an eigenvalue of multiplicity 1. It will be sufficient

to know the eigenvalue λ and the algebraic complement of Â−λ1̂; we do not

need to know any eigenvectors of Â explicitly, nor the other eigenvalues.

Statement: Suppose Â(t) is an operator-valued formal power series and λ(0)

is a simple eigenvalue, i.e. an eigenvalue of Â(0) having multiplicity 1. We
also assume that there exists an FPS λ(t) and a vector-valued FPS v(t) such
that Âv = λv in the sense of formal power series. Then the following identity
of FPS holds,

∂tλ =
Tr (

˜̂
B∂tÂ)

∧N B̂N−1
=

Tr (
˜̂
B∂tÂ)

Tr
˜̂
B

,

B̂(t) ≡ Â(t) − λ(t)1̂V .

The number

Tr
˜̂
B(0) ≡ ∧N B̂N−1

∣
∣
∣
t=0

6= 0

if and only if λ(0) is a simple eigenvalue.

Proof: We consider the derivative ∂t of the identity det B̂ = 0:

0 = ∂t det B̂ = Tr (
˜̂
B∂tB̂) = Tr [

˜̂
B(∂tÂ− 1̂∂tλ)]

= Tr (
˜̂
B∂tÂ) − (Tr

˜̂
B)∂tλ.

We have from Statement 1 in Sec. 4.2.3 the relation

Tr
˜̂
B = ∧N B̂N−1

for any operator B̂. Since (by assumption) Tr
˜̂
B(t) 6= 0 at t = 0, we may

divide by Tr
˜̂
B(t) because 1/Tr

˜̂
B(t) is a well-defined FPS (Lemma 3 in Sec. 4.5).

Hence, we have

∂tλ =
Tr (

˜̂
B∂tÂ)

Tr
˜̂
B

=
Tr (

˜̂
B∂tÂ)

∧N B̂N−1
.

The condition ∧N B̂N−1 6= 0 is equivalent to

∂

∂µ
QB̂(µ) 6= 0 atµ = 0,

which is the same as the condition that µ = 0 is a simple zero of the charac-

teristic polynomial of B̂ ≡ Â− λ1̂. �
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Remark: If Â(t), say, at t = 0 has an eigenvalue λ(0) of multiplicity higher
than 1, the formula derived in Statement 1 does not apply, and the analysis re-
quires knowledge of the eigenvectors. For example, the eigenvalue λ(0) could
have multiplicity 2 because there are two eigenvalues λ1(t) and λ2(t), corre-
sponding to different eigenvectors, which are accidentally equal at t = 0. One
cannot compute ∂tλ without specifying which of the two eigenvalues, λ1(t)
or λ2(t), needs to be considered, i.e. without specifying the corresponding
eigenvectors v1(t) or v2(t). Here I do not consider these more complicated
situations but restrict attention to the case of a simple eigenvalue.

4.5.3 General trace relations

We have seen in Sec. 3.9 (Exercises 1 and 2) that the coefficients of the charac-
teristic polynomial of an operator Â can be expressed by algebraic formulas

through the N traces TrÂ, ..., Tr(ÂN ), and we called these formulas “trace
relations.” We will now compute the coefficients in the trace relations in the
general case.

We are working with a given operator Â in an N -dimensional space.

Statement: We denote for brevity qk ≡ ∧N Âk and tk ≡ Tr(Âk), where k =
1, 2, ..., and set qk ≡ 0 for k > N . Then all qk can be expressed as polynomials
in tk, and these polynomials are equal to the coefficients at xk of the formal
power series

G(x) = exp

[

t1x− t2
x2

2
+ ...+ (−1)

n−1
tn
xn

n
+ ...

]

≡
∞∑

k=1

xkqk

by collecting the powers of the formal variable x up to the desired order.

Proof: Consider the expression det(1̂+xÂ) as a formal power series in x. By
the Liouville formula, we have the following identity of formal power series,

ln det(1̂ + xÂ) = Tr
[

ln(1̂ + xÂ)
]

= Tr

[

xÂ− x2

2
Â2 + ...+ (−1)

n−1 x
n

n
Ân + ...

]

= xt1 −
x2

2
t2 + ...+ (−1)

n−1
tn
xn

n
+ ...,

where we substituted the power series for the logarithm function and used

the notation tk ≡ Tr(Âk). Therefore, we have

det(1̂ + xÂ) = expG(x)

as the identity of formal power series. On the other hand, det(1̂ + xÂ) is
actually a polynomial of degree N in x, i.e. a formal power series that has all
zero coefficients from xN+1 onwards. The coefficients of this polynomial are

found by using xÂ instead of Â in Lemma 1 of Sec. 3.9:

det(1̂ + xÂ) = 1 + q1x+ ...+ qNx
N .
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4.6 Jordan canonical form

Therefore, the coefficient at xk in the formal power series expG(x) is indeed
equal to qk for k = 1, ..., N . (The coefficients at xk for k > N are all zero!) �

Example: Expanding the given series up to terms of order x4, we find after
some straightforward calculations

G(x) = t1x+
t21 − t2

2
x2 +

[
t31
6
− t1t2

2
+
t3
3

]

x3

+

[
t41
24

− t21t2
4

+
t22
8

+
t1t3
3

− t4
4

]

x4 +O(x5).

Replacing tj with Tr(Âj) and collecting the terms at the k-th power of x, we
obtain the k-th trace relation. For example, the trace relation for k = 4 is

∧N Â4 =
1

24
(TrÂ)4 − 1

4
Tr(Â2)(TrÂ)2 +

1

8

[

Tr(Â2)
]2

+
1

3
Tr(Â3)TrÂ− 1

4
Tr(Â4).

Note that this formula is valid for all N , even for N < 4; in the latter case,
∧N Â4 = 0.

4.6 Jordan canonical form

We have seen in Sec. 3.9 that the eigenvalues of a linear operator are the roots
of the characteristic polynomial, and that there exists at least one eigenvector
corresponding to each eigenvalue. In this section we will assume that the
total number of roots of the characteristic polynomial, counting the algebraic
multiplicity, is equal to N (the dimension of the space). This is the case, for
instance, when the field K is that of the complex numbers (C); otherwise not
all polynomials will have roots belonging to K.

The dimension of the eigenspace corresponding to an eigenvalue λ (the
geometric multiplicity) is not larger than the algebraic multiplicity of the
root λ in the characteristic polynomial (Theorem 1 in Sec. 3.9). The geometric
multiplicity is in any case not less than 1 because at least one eigenvector
exists (Theorem 2 in Sec. 3.5.1). However, it may happen that the algebraic
multiplicity of an eigenvalue λ is larger than 1 but the geometric multiplicity
is strictly smaller than the algebraic multiplicity. For example, an operator
given in some basis by the matrix

(
0 1
0 0

)

has only one eigenvector corresponding to the eigenvalue λ = 0 of algebraic
multiplicity 2. Note that this has nothing to do with missing real roots of
algebraic equations; this operator has only one eigenvector even if we allow
complex eigenvectors. In this case, the operator is not diagonalizable because
there are insufficiently many eigenvectors to build a basis. The theory of the

183
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Jordan canonical form explains the structure of the operator in this case and
finds a suitable basis that contains all the eigenvectors and also some addi-
tional vectors (called the root vectors), such that the given operator has a
particularly simple form when expressed through that basis. This form is
block-diagonal and consists of Jordan cells, which are square matrices such
as 



λ 1 0
0 λ 1
0 0 λ



 ,

and similarly built matrices of higher dimension.
To perform the required analysis, it is convenient to consider each eigen-

value of a given operator separately and build the required basis gradually.
Since the procedure is somewhat long, we will organize it by steps. The result
of the procedure will be a construction of a basis (the Jordan basis) in which

the operator Â has the Jordan canonical form.

Step 0: Set up the initial basis. Let Â ∈ EndV be a linear operator having
the eigenvalues λ1,...,λn, and let us consider the first eigenvalue λ1; suppose
λ1 has algebraic multiplicity m. If the geometric multiplicity of λ1 is also
equal to m, we can choose a linearly independent set of m basis eigenvectors
{v1, ...,vm} and continue to work with the next eigenvalue λ2. If the geomet-
ric multiplicity of λ1 is less than m, we can only choose a set of r < m basis
eigenvectors {v1, ...,vr}.

In either case, we have found a set of eigenvectors with eigenvalue λ1 that
spans the entire eigenspace. We can repeat Step 0 for every eigenvalue λi

and obtain the spanning sets of eigenvectors. The resulting set of eigenvec-
tors can be completed to a basis in V . At the end of Step 0, we have a basis

{v1, ...,vk,uk+1, ...,uN}, where the vectors vi are eigenvectors of Â and the
vectors ui are chosen arbitrarily — as long as the result is a basis in V . By

construction, any eigenvector of Â is a linear combination of the vi’s. If the
eigenvectors vi are sufficiently numerous as to make a basis in V without any

ui’s, the operator Â is diagonalizable and its Jordan basis is the eigenbasis; the
procedure is finished. We need to proceed with the next steps only in the case
when the eigenvectors vi do not yet span the entire space V , so the Jordan
basis is not yet determined.
Step 1: Determine a root vector. We will now concentrate on an eigenvalue
λ1 for which the geometric multiplicity r is less than the algebraic multi-
plicity m. At the previous step, we have found a basis containing all the
eigenvectors needed to span every eigenspace. The basis presently has the
form {v1, ...,vr,ur+1, ...,uN}, where {vi | 1 ≤ i ≤ r} span the eigenspace of

the eigenvalue λ1, and {ui | r + 1 ≤ i ≤ N} are either eigenvectors of Â corre-
sponding to other eigenvalues, or other basis vectors. Without loss of gener-
ality, we may assume that λ1 = 0 (otherwise we need to consider temporarily

the operator Â − λ11̂V , which has all the same eigenvectors as Â). Since the

operator Â has eigenvalue 0 with algebraic multiplicity m, the characteristic
polynomial has the form QÂ(λ) = λmq̃(λ), where q̃(λ) is some other polyno-
mial. Since the coefficients of the characteristic polynomial are proportional
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4.6 Jordan canonical form

to the operators ∧N Âk for 1 ≤ k ≤ N , we find that

∧N ÂN−m 6= 0, while ∧N ÂN−k = 0, 0 ≤ k < m.

In other words, we have found that several operators of the form ∧N ÂN−k

vanish. Let us now try to obtain some information about the vectors ui by
considering the action of these operators on the N -vector

ω ≡ v1 ∧ ... ∧ vr ∧ ur+1 ∧ ... ∧ uN .

The result must be zero; for instance, we have

(∧N ÂN )ω = Âv1 ∧ ... = 0

since Âv1 = 0. We do not obtain any new information by considering the

operator ∧N ÂN because the application of ∧N ÂN on ω acts with Â on vi,
which immediately yields zero. A nontrivial result can be obtained only if we

do not act with Â on any of the r eigenvectors vi. Thus, we turn to considering

the operators ∧N ÂN−k with k ≥ r; these operators involve sufficiently few

powers of Â so that ∧N ÂN−kω may avoid containing any terms Âvi.
The first such operator is

0
!
=(∧N ÂN−r)ω = v1 ∧ ... ∧ vr ∧ Âur+1 ∧ ... ∧ ÂuN .

It follows that the set {v1, ...,vr, Âur+1, ..., ÂuN} is linearly dependent, so
there exists a vanishing linear combination

r∑

i=1

civi +

N∑

i=r+1

ciÂui = 0 (4.12)

with at least some ci 6= 0. Let us define the vectors

ṽ ≡
r∑

i=1

civi, x ≡ −
N∑

i=r+1

ciui,

so that Eq. (4.12) is rewritten as Âx = ṽ. Note that x 6= 0, for otherwise we
would have

∑r
i=1 civi = 0, which contradicts the linear independence of the

set {v1, ...,vr}. Further, the vector ṽ cannot be equal to zero, for otherwise we

would have Âx = 0, so there would exist an additional eigenvector x 6= 0 that
is not a linear combination of vi, which is impossible since (by assumption)
the set {v1, ...,vr} spans the entire subspace of all eigenvectors with eigen-
value 0. Therefore, ṽ 6= 0, so at least one of the coefficients {ci | 1 ≤ i ≤ r}
is nonzero. Without loss of generality, we assume that c1 6= 0. Then we can
replace v1 by ṽ in the basis; the set {ṽ,v2, ...,vr,ur+1, ...,uN} is still a basis
because

ṽ ∧ v2 ∧ ... ∧ vr = (c1v1 + ...) ∧ v2 ∧ ... ∧ vr

= c1v1 ∧ v2 ∧ ... ∧ vr 6= 0.
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Similarly, at least one of the coefficients {ci | r + 1 ≤ i ≤ N} is nonzero. We
would like to replace one of the ui’s in the basis by x; it is possible to re-
place ui by x as long as ci 6= 0. However, we do not wish to remove from
the basis any of the eigenvectors corresponding to other eigenvalues; so we
need to choose the index i such that ui is not one of the other eigenvectors
and at the same time ci 6= 0. This choice is possible; for were it impossible,

the vector x were a linear combination of other eigenvectors of Â (all having

nonzero eigenvalues), so Âx is again a linear combination of those eigenvec-

tors, which contradicts the equations Âx = ṽ and Âṽ = 0 because ṽ is linearly
independent of all other eigenvectors. Therefore, we can choose a vector ui

that is not an eigenvector and such that x can be replaced by ui. Without
loss of generality, we may assume that this vector is ur+1. The new basis,
{ṽ,v2, ...,vr,x,ur+2, ...,uN} is still linearly independent because

ω̃ ≡ ṽ ∧ v2 ∧ ... ∧ vr ∧ x ∧ ur+2... ∧ uN 6= 0

due to cr+1 6= 0. Renaming now ṽ → v1, x → x1, and ω̃ → ω, we obtain a

new basis {v1, ...,vr,x1,ur+2, ...,uN} such that vi are eigenvectors (Âvi = 0)

and Âx1 = v1. The vector x1 is called a root vector of order 1 corresponding
to the given eigenvalue λ1 = 0. Eventually the Jordan basis will contain all
the root vectors as well as all the eigenvectors for each eigenvalue. So our
goal is to determine all the root vectors.

Example 1: The operator Â = e1 ⊗ e∗2 in a two-dimensional space has an
eigenvector e1 with eigenvalue 0 and a root vector e2 (of order 1) so that

Âe2 = e1 and Âe1 = 0. The matrix representation of Â in the basis {e1, e2} is

Â =

(
0 1
0 0

)

.

Step 2: Determine other root vectors. If r+ 1 = m then we are finished with

the eigenvalue λ1; there are no more operators ∧N ÂN−k that vanish, and we
cannot extract any more information. Otherwise r + 1 < m, and we will

continue by considering the operator ∧N ÂN−r−1, which vanishes as well:

0 = (∧N ÂN−r−1)ω = v1 ∧ ... ∧ vr ∧ x1 ∧ Âur+2 ∧ ... ∧ ÂuN .

(Note that v1∧Âx1 = 0, so in writing (∧N ÂN−r−1)ω we omit the terms where

Â acts on vi or on x1 and write only the term where the operators Â act on
the N − r − 1 vectors ui.) As before, it follows that there exists a vanishing
linear combination

r∑

i=1

civi + cr+1x1 +
N∑

i=r+2

ciÂui = 0. (4.13)

We introduce the auxiliary vectors

ṽ ≡
r∑

i=1

civi, x ≡ −
N∑

i=r+2

ciui,

186



4.6 Jordan canonical form

and rewrite Eq. (4.13) as

Âx = cr+1x1 + ṽ. (4.14)

As before, we find that x 6= 0. There are now two possibilities: either cr+1 = 0
or cr+1 6= 0. If cr+1 = 0 then x is another root vector of order 1. As before, we
show that one of the vectors vi (but not v1) may be replaced by ṽ, and one of
the vectors ui (but not one of the other eigenvectors or root vectors) may be
replaced by x. After renaming the vectors (ṽ → vi and x → x2), the result is
a new basis

{v1, ...,vr,x1,x2,ur+3, ...,uN} , (4.15)

such that Âx1 = v1 and Âx2 = v2. It is important to keep the information
that x1 and x2 are root vectors of order 1.

The other possibility is that cr+1 6= 0. Without loss of generality, we may
assume that cr+1 = 1 (otherwise we divide Eq. (4.14) by cr+1 and redefine x

and ṽ). In this case x is a root vector of order 2; according to Eq. (4.14), acting

with Â on x yields a root vector of order 1 and a linear combination of some
eigenvectors. We will modify the basis again in order to simplify the action

of Â; namely, we redefine x̃1 ≡ x1 + ṽ so that Âx = x̃1. The new vector x̃1 is

still a root vector of order 1 because it satisfies Âx̃1 = v1, and the vector x1 in
the basis may be replaced by x̃1. As before, one of the ui’s can be replaced by
x. Renaming x̃1 → x1 and x → x2, we obtain the basis

{v1, ...,vr,x1,x2,ur+3, ...,uN} ,

where now we record that x2 is a root vector of order 2.
The procedure of determining the root vectors can be continued in this

fashion until all the root vectors corresponding to the eigenvalue 0 are found.
The end result will be a basis of the form

{v1, ...,vr,x1, ...,xm−r,um+1, ...,uN} ,

where {vi} are eigenvectors, {xi} are root vectors of various orders, and {ui}
are the vectors that do not belong to this eigenvalue.

Generally, a root vector of order k for the eigenvalue λ1 = 0 is a vector x

such that (Â)kx = 0. However, we have constructed the root vectors such that
they come in “chains,” for example Âx2 = x1, Âx1 = v1, Âv1 = 0. Clearly,
this is the simplest possible arrangement of basis vectors. There are at most
r chains for a given eigenvalue because each eigenvector vi (i = 1, ..., r) may
have an associated chain of root vectors. Note that the root chains for an
eigenvalue λ 6= 0 have the form Âv1 = λv1, Âx1 = λx1 +v1, Âx2 = λx2 +x1,
etc.

Example 2: An operator given by the matrix

Â =





20 1 0
0 20 1
0 0 20
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has an eigenvector e1 with eigenvalue λ = 20 and the root vectors e2 (of order

1) and e3 (of order 2) since Âe1 = 20e1, Âe2 = 20e2 +e1, and Âe3 = 20e3 +e2.
A tensor representation of Â is

Â = e1 ⊗ (20e∗1 + e∗2) + e2 ⊗ (20e∗2 + e∗3) + 20e3 ⊗ e∗3.

Step 3: Proceed to other eigenvalues. At Step 2, we determined all the root
vectors for one eigenvalue λ1. The eigenvectors and the root vectors belong-
ing to a given eigenvalue λ1 span a subspace called the Jordan cell for that
eigenvalue. We then repeat the same analysis (Steps 1 and 2) for another
eigenvalue and determine the corresponding Jordan cell. Note that it is im-
possible that a root vector for one eigenvalue is at the same time an eigenvec-
tor or a root vector for another eigenvalue; the Jordan cells have zero inter-
section. During the construction, we guarantee that we are not replacing any
root vectors or eigenvectors found for the previous eigenvalues. Therefore,
the final result is a basis of the form

{v1, ...,vr,x1, ...,xN−r} , (4.16)

where {vi} are the various eigenvectors and {xi} are the corresponding root
vectors of various orders.
Definition: The Jordan basis of an operator Â is a basis of the form (4.16)
such that vi are eigenvectors and xi are root vectors. For each root vector x

corresponding to an eigenvalue λ we have Âx = λx + y, where y is either an
eigenvector or a root vector belonging to the same eigenvalue.

The construction in this section constitutes a proof of the following state-
ment.
Theorem 1: Any linear operator Â in a vector space over C admits a Jordan
basis.
Remark: The assumption that the vector space is over complex numbers C is
necessary in order to be sure that every polynomial has as many roots (count-
ing with the algebraic multiplicity) as its degree. If we work in a vector space
over R, the construction of the Jordan basis will be complete only for opera-
tors whose characteristic polynomial has only real roots. Otherwise we will
be able to construct Jordan cells only for real eigenvalues.

Example 3: An operator Â defined by the matrix

Â =





0 1 0
0 0 1
0 0 0





in a basis {e1, e2, e3} can be also written in the tensor notation as

Â = e1 ⊗ e∗2 + e2 ⊗ e∗3.

The characteristic polynomial of Â is QÂ(λ) = (−λ)
3, so there is only one

eigenvalue, λ1 = 0. The algebraic multiplicity of λ1 is 3. However, there is
only one eigenvector, namely e1. The vectors e2 and e3 are root vectors since

Âe3 = e2 and Âe2 = e1. Note also that the operator Â is nilpotent, Â3 = 0.
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Example 4: An operator Â defined by the matrix

Â =









6 1 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 7 0
0 0 0 0 7









has the characteristic polynomial QÂ(λ) = (6 − λ)
3
(7 − λ)

2 and two eigen-
values, λ1 = 6 and λ2 = 7. The algebraic multiplicity of λ1 is 3. However,
there are only two eigenvectors for the eigenvalue λ1, namely e1 and e3. The
vector e2 is a root vector of order 1 for the eigenvalue λ1 since

Âe2 =









6 1 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 7 0
0 0 0 0 7

















0
1
0
0
0









=









1
6
0
0
0









= 6e2 + e1.

The algebraic multiplicity of λ2 is 2, and there are two eigenvectors for λ2,
namely e4 and e5. The vectors {e1, e2, e3} span the Jordan cell for the eigen-
value λ1, and the vectors {e4, e5} span the Jordan cell for the eigenvalue λ2.

Exercise 1: Show that root vectors of order k (with k ≥ 1) belonging to eigen-

value λ are at the same time eigenvectors of the operator (Â − λ1̂)k+1 with
eigenvalue 0. (This gives another constructive procedure for determining the
root vectors.)

4.6.1 Minimal polynomial

Recalling the Cayley-Hamilton theorem, we note that the characteristic poly-

nomial for the operator Â in Example 4 in the previous subsection vanishes

on Â:
(6 − Â)3(7 − Â)2 = 0.

However, there is a polynomial of a lower degree that also vanishes on Â,

namely p(x) = (6 − x)
2
(7 − x).

Let us consider the operator Â in Example 3 in the previous subsection. Its

characteristic polynomial is (−λ)
3, and it is clear that (Â)2 6= 0 but (Â)3 = 0.

Hence there is no lower-degree polynomial p(x) that makes Â vanish; the
minimal polynomial is λ3.

Let us also consider the operator

B̂ =









2 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









.
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The characteristic polynomial of this operator is (2 − λ)
2
(1 − λ)

3, but it is
clear that the following simpler polynomial, p(x) = (2 − x) (1 − x), also van-

ishes on B̂. If we are interested in the lowest-degree polynomial that vanishes

on B̂, we do not need to keep higher powers of the factors (2 − λ) and (1 − λ)
that appear in the characteristic polynomial.

We may ask: what is the polynomial p(x) of a smallest degree such that

p(Â) = 0? Is this polynomial unique?

Definition: The minimal polynomial for an operator Â is a monic polyno-

mial p(x) such that p(Â) = 0 and that no polynomial p̃(x) of lower degree

satisfies p̃(Â) = 0.
Exercise 1: Suppose that the characteristic polynomial of Â is given as

QÂ(λ) = (λ1 − λ)
n1 (λ2 − λ)n2 ...(λs − λ)ns .

Suppose that the Jordan canonical form of Â includes Jordan cells for eigen-
values λ1, ..., λs such that the largest-order root vector for λi has order ri
(i = 1, ..., s). Show that the polynomial of degree r1 + ...+ rs defined by

p(x) ≡ (−1)r1+...+rs (λ1 − λ)
r1 ... (λs − λ)

rs

is monic and satisfies p(Â) = 0. If p̃(x) is another polynomial of the same

degree as p(x) such that p̃(Â) = 0, show that p̃(x) is proportional to p(x).

Show that no polynomial q(x) of lower degree can satisfy q(Â) = 0. Hence,

p(x) is the minimal polynomial for Â.
Hint: It suffices to prove these statements for a single Jordan cell. �

We now formulate a criterion that shows whether a given operator Â is
diagonalizable.
Definition: A polynomial p(x) of degree n is square-free if all n roots of p(x)
have algebraic multiplicity 1, in other words,

p(x) = c (x− x1) ... (x− xn)

where all xi (i = 1, ..., n) are different. If a polynomial

q(x) = c (x− x1)
s1 ... (x− xm)

sm

is not square-free (i.e. some si 6= 1), its square-free reduction is the polyno-
mial

q̃(x) = c (x− x1) ... (x− xm) .

Remark: In order to compute the square-free reduction of a given polyno-
mial q(x), one does not need to obtain the roots xi of q(x). Instead, it suffices
to consider the derivative q′(x) and to note that q′(x) and q(x) have common
factors only if q(x) is not square-free, and moreover, the common factors are
exactly the factors that we need to remove from q(x) to make it square-free.
Therefore, one computes the greatest common divisor of q(x) and q′(x) us-
ing the Euclidean algorithm and then divides q(x) by gcd (q, q′) to obtain the
square-free reduction q̃(x).
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Theorem 2: An operator Â is diagonalizable if and only if p(Â) = 0 where
p(λ) is the square-free reduction of the characteristic polynomial QÂ(λ).

Proof: The Jordan canonical form of Â may contain several Jordan cells cor-
responding to different eigenvalues. Suppose that the set of the eigenvalues

of Â is {λi | i = 1, ..., n}, where λi are all different and have algebraic multi-

plicities si; then the characteristic polynomial of Â is

QÂ(x) = (λ1 − x)
s1 ... (λn − x)

sn ,

and its square-free reduction is the polynomial

p(x) = (λ1 − x) ... (λn − x) .

If the operator Â is diagonalizable, its eigenvectors {vj | j = 1, ..., N} are a

basis in V . Then p(Â)vj = 0 for all j = 1, ..., N . It follows that p(Â) = 0̂

as an operator. If the operator Â is not diagonalizable, there exists at least
one nontrivial Jordan cell with root vectors. Without loss of generality, let
us assume that this Jordan cell corresponds to λ1. Then there exists a root

vector x such that Âx = λ1x + v1 while Âv1 = λ1v1. Then we can compute

(λ1 − Â)x = −v1 and

p(Â)x = (λ1 − Â)...(λn − Â)x

(1)
= (λn − Â)...(λ2 − Â)(λ1 − Â)x

(2)
= − (λn − λ1) ... (λ2 − λ1)v1 6= 0,

where in
(1)
= we used the fact that operators (λi − Â) all commute with each

other, and in
(2)
= we used the property of an eigenvector, q(Â)v1 = q(λ1)v1 for

any polynomial q(x). Thus we have shown that p(Â) gives a nonzero vector

on x, which means that p(Â) is a nonzero operator. �

Exercise 2: a) It is given that the characteristic polynomial of an operator Â

(in a complex vector space) is λ3 + 1. Prove that the operator Â is invertible
and diagonalizable.

b) It is given that the operator Â satisfies the equation Â3 = Â2. Is Â in-

vertible? Is Â diagonalizable? (If not, give explicit counterexamples, e.g., in a
2-dimensional space.)

Exercise 3: A given operator Â has a Jordan cell Span {v1, ...,vk} with eigen-
value λ. Let

p(x) = p0 + p1x+ ...+ psx
s

be an arbitrary, fixed polynomial, and consider the operator B̂ ≡ p(Â). Show

that Span {v1, ...,vk} is a subspace of some Jordan cell of the operator B̂ (al-
though the eigenvalue of that cell may be different). Show that the orders of

the root vectors of B̂ are not larger than those of Â.
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Hint: Consider for simplicity λ = 0. The vectors vj belong to the eigenvalue

p0 ≡ p(0) of the operator B̂. The statement that {vj} are within a Jordan cell

for B̂ is equivalent to

v1 ∧ ... ∧ (B̂ − p01̂)vi ∧ ... ∧ vk = 0 for i = 1, ..., k.

If v1 is an eigenvector of Âwith eigenvalue λ = 0 then it is also an eigenvector

of B̂ with eigenvalue p0. If x is a root vector of order 1 such that Âx = v1 then

B̂x = p0x + p1v, which means that x could be a root vector of order 1 or an
eigenvector of B̂ depending on whether p1 = 0. Similarly, one can show that

the root chains of B̂ are sub-chains of the root chains Â (i.e. the root chains
can only get shorter).

Example 5: A nonzero nilpotent operator Â such that Â1000 = 0 may have

root vectors of orders up to 999. The operator B̂ ≡ Â500 satisfies B̂2 = 0 and
thus can have root vectors only up to order 1. More precisely, the root vectors

of Â of orders 1 through 499 are eigenvectors of B̂, while root vectors of Â of

orders 500 through 999 are root vectors of B̂ of order 1. However, the Jordan
cells of these operators are the same (the entire space V is a Jordan cell with

eigenvalue 0). Also, Â is not expressible as a polynomial in B̂. �

Exercise 3 gives a necessary condition for being able to express an operator

B̂ as a polynomial in Â: It is necessary to determine whether the Jordan cells

of Â and B̂ are “compatible” in the sense of Exercise 3. If Â’s Jordan cells

cannot be embedded as subspaces within B̂’s Jordan cells, or if B̂ has a root

chain that is not a sub-chain of some root chain of Â, then B̂ cannot be a
polynomial in Â.

Determining a sufficient condition for the existence of p(x) for arbitrary Â

and B̂ is a complicated task, and I do not consider it here. The following
exercise shows how to do this in a particularly simple case.

Exercise 4: Two operators Â and B̂ are diagonalizable in the same eigenbasis
{v1, ...,vN} with eigenvalues λ1, ..., λn and µ1, ..., µn that all have multiplicity

1. Show that B̂ = p(Â) for some polynomial p(x) of degree at most N − 1.
Hint: We need to map the eigenvalues {λj} into {µj}. Choose the polyno-

mial p(x) that maps p(λj) = µj for j = 1, ..., N . Such a polynomial surely
exists and is unique if we restrict to polynomials of degree not more than
N − 1. �

4.7 * Construction of projectors onto Jordan

cells

We now consider the problem of determining the Jordan cells. It turns out
that we can write a general expression for a projector onto a single Jordan cell

of an operator Â. The projector is expressed as a polynomial in Âwith known

coefficients. (Note that Â may or may not be diagonalizable.)
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The required projector P̂ can be viewed as an operator that has the same

Jordan cells as Â but the eigenvalues are 1 for a single chosen Jordan cell and

0 for all other Jordan cells. One way to construct the projector P̂ is to look for

a polynomial in Â such that the eigenvalues and the Jordan cells are mapped
as desired. Some examples of this were discussed at the end of the previous
subsection; however, the construction required a complete knowledge of the

Jordan canonical form of Â with all eigenvectors and root vectors. We will

consider a different method of computing the projector P̂ . With this method,

we only need to know the characteristic polynomial of Â, a single eigenvalue,
and the algebraic multiplicity of the chosen eigenvalue. We will develop this
method beginning with the simplest case.

Statement 1: If the characteristic polynomialQ (λ) of an operator Â has a zero
λ = λ0 of multiplicity 1, i.e. if Q(λ0) = 0 and Q′(λ0) 6= 0, then the operator

P̂λ0
defined by

P̂λ0
≡ − 1

Q′(λ0)

[
∧N−1(Â− λ01̂V )N−1

]∧T

is a projector onto the one-dimensional eigenspace of the eigenvalue λ0. The

prefactor can be computed also as −Q′(λ0) = ∧N (Â− λ01̂V )N−1.

Proof: We denote P̂ ≡ P̂λ0
for brevity. We will first show that for any vector

x, the vector P̂x is an eigenvector of Â with eigenvalue λ0, i.e. that the image

of P̂ is a subspace of the λ0-eigenspace. Then it will be sufficient to show that

P̂v0 = v0 for an eigenvector v0; it will follow that P̂ P̂ = P̂ and so it will be

proved that P̂ is a projector onto the eigenspace.
Without loss of generality, we may set λ0 = 0 (or else we consider the op-

erator Â − λ01̂V instead of Â). Then we have det Â = 0, while the number
∧N ÂN−1 is equal to the last-but-one coefficient in the characteristic polyno-
mial, which is the same as −Q′(λ0) and is nonzero. Thus we set

P̂ =
1

∧N ÂN−1

(
∧N−1ÂN−1

)∧T
=

1

∧N ÂN−1

˜̂
A

and note that by Lemma 1 in Sec. 4.2.1

P̂ Â =
1

∧N ÂN−1
(det Â)1̂V = 0̂V .

Since P̂ is a polynomial in Â, we have P̂ Â = ÂP̂ = 0. Therefore Â(P̂x) = 0

for all x ∈ V , so imP̂ is indeed a subspace of the eigenspace of the eigenvalue
λ0 = 0.

It remains to show that P̂v0 = v0 for an eigenvector v0 such that Âv0 = 0.
This is verified by a calculation: We use Lemma 1 in Sec. 4.2.1, which is the
identity

(
∧N−1ÂN−n

)∧T
Â+

(
∧N−1ÂN−n+1

)∧T
= (∧N ÂN−n+1)1̂V
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valid for all n = 1, ..., N , and apply both sides to the vector v0 with n = 2:

(
∧N−1ÂN−2

)∧T
Âv0 +

(
∧N−1ÂN−1

)∧T
v0 = (∧N ÂN−1)v0,

which yields the required formula,

(
∧N−1ÂN−1

)∧T
v0

∧N ÂN−1
= v0,

since Âv0 = 0. Therefore, P̂v0 = v0 as required. �

Remark: The projector P̂λ0
is a polynomial in Â with coefficients that are

known if the characteristic polynomial Q(λ) is known. The quantity Q′(λ0) is
also an algebraically constructed object that can be calculated without taking
derivatives. More precisely, the following formula holds.

Exercise 1: If Â is any operator in V , prove that

(−1)
k ∂k

∂λk
QÂ (λ) ≡ (−1)

k ∂k

∂λk
∧N (Â− λ1̂V )N

= k! ∧N (Â− λ1̂V )N−k. (4.17)

Solution: An easy calculation. For example, with k = 2 and N = 2,

∂2

∂λ2
∧2 (Â− λ1̂V )2u ∧ v =

∂2

∂λ2

[

(Â− λ1̂V )u ∧ (Â− λ1̂V )v
]

= 2u ∧ v.

The formula (4.17) shows that the derivatives of the characteristic polyno-
mial are algebraically defined quantities with a polynomial dependence on

the operator Â. �

Example 1: We illustrate this construction of the projector in a two-dimen-
sional space for simplicity. Let V be a space of polynomials in x of degree at
most 1, i.e. polynomials of the form α + βx with α, β ∈ C, and consider the

linear operator Â = x d
dx in this space. The basis in V is {1, x}, where we use

an underbar to distinguish the polynomials 1 and x from numbers such as 1.
We first determine the characteristic polynomial,

QÂ(λ) = det(Â− λ1̂) =
(Â− λ)1 ∧ (Â− λ)x

1 ∧ x
= −λ(1 − λ).

Let us determine the projector onto the eigenspace of λ = 0. We have ∧2Â1 =
−Q′(0) = 1 and

P̂0 = − 1

Q′(0)

(
∧1Â1

)∧T
= (∧2Â1)1̂ − Â = 1̂ − x

d

dx
.

Since P̂01 = 1 while P̂0x = 0, the image of P̂ is the subspace spanned by 1.
Hence, the eigenspace of λ = 0 is Span{1}. �

What if the eigenvalue λ0 has an algebraic multiplicity larger than 1? Let
us first consider the easier case when the geometric multiplicity is equal to
the algebraic multiplicity.
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Statement 2: If λ0 is an eigenvalue of both geometric and algebraic multiplic-

ity n then the operator P̂
(n)
λ0

defined by

P̂
(n)
λ0

≡
[
∧N ÂN−n

]−1[∧N−1(Â− λ01̂V )N−n
]∧T

(4.18)

is a projector onto the subspace of eigenvectors with eigenvalue λ0.

Proof: As in the proof of Statement 1, we first show that the image (im P̂
(n)
λ0

)

is a subspace of the λ0-eigenspace of Â, and then show that any eigenvector

v0 of Â with eigenvalue λ0 satisfies P̂
(n)
λ0

v0 = v0. Let us write P̂ ≡ P̂
(n)
λ0

for
brevity.

We first need to show that (Â − λ01̂)P̂ = 0. Since by assumption λ0 has
algebraic multiplicity n, the characteristic polynomial is of the form QÂ(λ) =
(λ0 − λ)

n
p(λ), where p(λ) is another polynomial such that p(λ0) 6= 0. With-

out loss of generality we set λ0 = 0. With λ0 = 0, the factor (−λn) in the

characteristic polynomial means that many of its coefficients qk ≡ ∧N ÂN−k

are equal to zero: qk = 0 for k = 0, ..., n−1 but qn 6= 0. (Thus the denominator
in Eq. (4.18) is nonzero.)

By Lemma 1 in Sec. 4.2.1, for every k = 1, ..., N we have the identity

(
∧N−1ÂN−k

)∧T
Â+

(
∧N−1ÂN−k+1

)∧T
= (∧N ÂN−k+1)1̂V .

We can rewrite this as

Â(k)Â+ Â(k−1) = qk−11̂, (4.19)

where we denoted, as before,

Â(k) ≡
(
∧N−1ÂN−k

)∧T
.

Setting k = n, we find

Â(n)Â = qnP̂
(n)Â = 0.

Since qn 6= 0, we find P̂ Â = 0. Since P̂ is a polynomial in Â, it commutes with

Â, so P̂ Â = ÂP̂ = 0. Hence the image of P̂ is a subspace of the eigenspace of

Â with λ0 = 0.

Now it remains to show that all vi’s are eigenvectors of P̂ with eigenvalue
1. We set k = n+ 1 in Eq. (4.19) and obtain

Â(n+1)Âvi + Â(n)vi = qnvi.

Since Âvi = 0, it follows that Â(n)vi = qnvi. Therefore P̂v1 = v1. �

It remains to consider the case when the geometric multiplicity of λ0 is less
than the algebraic multiplicity, i.e. if there exist some root vectors.
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Statement 3: We work with an operator Â whose characteristic polynomial
is known,

QÂ(λ) = q0 + (−λ) q1 + ...+ (−λ)
N−1

qN−1 + (−λ)
N
.

Without loss of generality, we assume that Â has an eigenvalue λ0 = 0 of
algebraic multiplicity n ≥ 1. The geometric multiplicity of λ0 may be less
than or equal to n. (For nonzero eigenvalues λ0, we consider the operator

Â− λ01̂ instead of Â.)
(1) A projector onto the Jordan cell of dimension n belonging to eigenvalue

λ0 is given by the operator

P̂λ0
≡

n∑

k=1

ckÂ(k) = 1̂ +

n∑

k=1

N−k∑

i=n

ckqi+k(−Â)i, (4.20)

where

Â(k) ≡ (∧N−1ÂN−k)∧T , 1 ≤ k ≤ N − 1,

and c1, ..., cn are the numbers that solve the system of equations











qn qn+1 qn+2 · · · q2n−1

0 qn qn+1 · · · q2n−2

... 0
. . .

. . .
...

0
...

. . . qn qn+1

0 0 · · · 0 qn




















c1
c2
...

cn−1

cn










=










0
0
...
0
1










.

For convenience, we have set qN ≡ 1 and qi ≡ 0 for i > N .
(2) No polynomial in Â can be a projector onto the subspace of eigenvectors

within the Jordan cell (rather than a projector onto the entire Jordan cell) when
the geometric multiplicity is strictly less than the algebraic.

Proof: (1) The Jordan cell consists of all vectors x such that Ânx = 0. We
proceed as in the proof of Statement 2, starting from Eq. (4.19). By induction
in k, starting from k = 1 until k = n, we obtain

ÂÂ(1) = q01̂ = 0,

Â2Â(2) + ÂÂ(1) = Âq11̂ = 0 ⇒ Â2Â(2) = 0,

..., ⇒ ÂnÂ(n) = 0.

So we find ÂnÂ(k) = 0 for all k (1 ≤ k ≤ n). Since P̂λ0
is by construction equal

to a linear combination of these Â(k), we have ÂnP̂λ0
= 0, i.e. the image of

P̂λ0
is contained in the Jordan cell.

It remains to prove that the Jordan cell is also contained in the image of P̂λ0
,

that is, to show that Ânx = 0 implies P̂λ0
x = x. We use the explicit formulas

for Â(k) that can be obtained by induction from Eq. (4.19) starting with k = N :
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we have Â(N) = 0, Â(N−1) = qN−11̂ − Â, and finally

Â(k) = qk1̂ − qk+1Â+ ...+ qN (−Â)
N−k

=

N−k∑

i=0

qk+i(−Â)i, k ≥ 1. (4.21)

The operator P̂λ0
is a linear combination of Â(k) with 1 ≤ k ≤ n. The Jordan

cell of dimension n consists of all x ∈ V such that Ânx = 0. Therefore, while
computing P̂λ0

x for any x such that Ânx = 0, we can restrict the summation
over i to 0 ≤ i ≤ n− 1,

P̂λ0
x =

n∑

k=1

ck

N−k∑

i=0

qk+i(−Â)ix =

n∑

k=1

n−1∑

i=0

ckqk+i(−Â)ix.

We would like to choose the coefficients ck such that the sum above contains
only the term (−Â)0x = x with coefficient 1, while all other powers of Â will
enter with zero coefficient. In other words, we require that

n∑

k=1

n−1∑

i=0

ckqk+i(−Â)i = 1̂ (4.22)

identically as polynomial in Â. This will happen if the coefficients ck satisfy

n∑

k=1

ckqk = 1,

n∑

k=1

ckqk+i = 0, i = 1, ..., n− 1.

This system of equations for the unknown coefficients ck can be rewritten in
matrix form as











qn qn+1 qn+2 · · · q2n−1

qn−1 qn qn+1 · · · q2n−2

... qn−1
. . .

. . .
...

q2
...

. . . qn qn+1

q1 q2 · · · qn−1 qn




















c1
c2
...

cn−1

cn










=










0
0
...
0
1










.

However, it is given that λ0 = 0 is a root of multiplicity n, therefore q0 = ... =
qn−1 = 0 while qn 6= 0. Therefore, the system of equations has the triangular
form as given in Statement 3. Its solution is unique since qn 6= 0. Thus, we

are able to choose ck such that P̂λ0
x = x for any x within the Jordan cell.

The formula for P̂λ0
can be simplified by writing

P̂λ0
=

n∑

k=1

[
n−1∑

i=0

ckqk+i(−Â)i +

N−k∑

i=n

ckqk+i(−Â)i

]

.
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The first sum yields 1̂ by Eq. (4.22), and so we obtain Eq. (4.20).
(2) A simple counterexample is the (non-diagonalizable) operator

Â =

(
0 1
0 0

)

= e1 ⊗ e∗2.

This operator has a Jordan cell with eigenvalue 0 spanned by the basis vectors
e1 and e2. The eigenvector with eigenvalue 0 is e1, and a possible projector

onto this eigenvector is P̂ = e1 ⊗ e∗1. However, no polynomial in Â can yield

P̂ or any other projector only onto e1. This can be seen as follows. We note

that ÂÂ = 0, and thus any polynomial in Â can be rewritten as a01̂V + a1Â.

However, if an operator of the form a01̂V + a1Â is a projector, and ÂÂ = 0,
then we can derive that a2

0 = a0 and a1 = 2a0a1, which forces a0 = 1 and
a1 = 0. Therefore the only result of a polynomial formula can be the projector
e1 ⊗ e∗1 + e2 ⊗ e∗2 onto the entire Jordan cell. �

Example 2: Consider the space of polynomials in x and y of degree at most
1, i.e. the space spanned by {1, x,y}, and the operator

Â = x
∂

∂x
+

∂

∂y
.

The characteristic polynomial of Â is found as

QÂ(λ) =
(Â− λ)1 ∧ (Â− λ)x ∧ (Â− λ)y

1 ∧ x ∧ y

= λ2 − λ3 ≡ q0 − q1λ+ q2λ
2 − q3λ

3.

Hence λ = 0 is an eigenvalue of algebraic multiplicity 2. It is easy to guess
the eigenvectors, v1 = 1 (λ = 0) and v2 = x (λ = 1), as well as the root vector
v3 = y (λ = 0). However, let us pretend that we do not know the Jordan

basis, and instead determine the projector P̂0 onto the Jordan cell belonging
to the eigenvalue λ0 = 0 using Statement 3 with n = 2 and N = 3.

We have q0 = q1 = 0, q2 = q3 = 1. The system of equations for the coeffi-
cients ck is

q2c1 + q3c2 = 0,

q2c2 = 1,

and the solution is c1 = −1 and c2 = 1. We note that in our example,

Â2 = x
∂

∂x
.

So we can compute the projector P̂0 by using Eq. (4.20):

P̂0 = 1̂ +

2∑

k=1

3−k∑

i=2

ckqi+k(−Â)i

= 1̂ + c1q3Â
2 = 1̂ − x

∂

∂x
.
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(The summation over k and i collapses to a single term k = 1, i = 2.) The

image of P̂0 is Span {1,y}, and we have P̂0P̂0 = P̂0. Hence P̂0 is indeed a
projector onto the Jordan cell Span {1,y} that belongs to the eigenvalue λ = 0.

Exercise 2: Suppose the operator Â has eigenvalue λ0 with algebraic multi-
plicity n. Show that one can choose a basis {v1, ...,vn, en+1, ..., eN} such that
vi are eigenvalues or root vectors belonging to the eigenvalue λ0, and ej are

such that the vectors (Â−λ01̂)ej (with j = n+1,...,N ) belong to the subspace
Span {en+1, ..., eN}. Deduce that the subspace Span {en+1, ..., eN} is mapped

one-to-one onto itself by the operator Â− λ01̂.

Hint: Assume that the Jordan canonical form of Â is known. Show that

∧N−n(Â− λ01̂)N−n(en+1 ∧ ... ∧ eN ) 6= 0.

(Otherwise, a linear combination of ej is an eigenvector with eigenvalue λ0.)
Remark: Operators of the form

R̂k ≡
[
∧N−1(Â− λ01̂V )N−k

]∧T
(4.23)

with k ≤ n are used in the construction of projectors onto the Jordan cell.
What if we use Eq. (4.23) with other values of k? It turns out that the resulting

operators are not projectors. If k ≥ n, the operator R̂k does not map into the

Jordan cell. If k < n, the operator R̂k does not map onto the entire Jordan

cell but rather onto a subspace of the Jordan cell; the image of R̂k contains
eigenvectors or root vectors of a certain order. An example of this property
will be shown in Exercise 3.
Exercise 3: Suppose an operator Â has an eigenvalue λ0 with algebraic multi-
plicity n and geometric multiplicity n−1. This means (according to the theory
of the Jordan canonical form) that there exist n− 1 eigenvectors and one root
vector of order 1. Let us denote that root vector by x1 and let v2, ...,vn be
the (n− 1) eigenvectors with eigenvalue λ0. Moreover, let us choose v2 such

that Âv1 = λ0x1 + v2 (i.e. the vectors x1,v2 are a root chain). Show that the
operator R̂k given by the formula (4.23), with k = n− 1, satisfies

R̂n−1x1 = const · v2; R̂n−1vj = 0, j = 2, ..., n;

R̂n−1ej = 0, j = n+ 1, ..., N.

In other words, the image of the operator R̂n−1 contains only the eigenvector
v2; that is, the image contains the eigenvector related to a root vector of order
1.

Hint: Use a basis of the form {x1,v2, ...,vn, en+1, ..., eN} as in Exercise 2.
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5 Scalar product

Until now we did not use any scalar product in our vector spaces. In this
chapter we explore the properties of spaces with a scalar product. The exte-
rior product techniques are especially powerful when used together with a
scalar product.

5.1 Vector spaces with scalar product

As you already know, the scalar product of vectors is related to the geometric
notions of angle and length. These notions are most useful in vector spaces
over real numbers, so in most of this chapter I will assume that K is a field
where it makes sense to compare numbers (i.e. the comparison x > y is de-
fined and has the usual properties) and where statements such as λ2 ≥ 0
(∀λ ∈ K) hold. (Scalar products in complex spaces are defined in a different
way and will be considered in Sec. 5.6.)

In order to understand the properties of spaces with a scalar product, it
is helpful to define the scalar product in a purely algebraic way, without any
geometric constructions. The geometric interpretation will be developed sub-
sequently.

The scalar product of two vectors is a number, i.e. the scalar product maps
a pair of vectors into a number. We will denote the scalar product by 〈u,v〉,
or sometimes by writing it in a functional form, S (u,v).

A scalar product must be compatible with the linear structure of the vector
space, so it cannot be an arbitrary map. The precise definition is the following.
Definition: A map B : V × V → K is a bilinear form in a vector space V if
for any vectors u,v,w ∈ V and for any λ ∈ K,

B (u,v + λw) = B (u,v) + λB (u,w) ,

B (v + λw,u) = B (v,u) + λB (w,u) .

A bilinear form B is symmetric if B (v,w) = B (w,v) for any v, w. A bi-
linear form is nondegenerate if for any nonzero vector v 6= 0 there exists
another vector w such that B (v,w) 6= 0. A bilinear form is positive-definite
if B (v,v) > 0 for all nonzero vectors v 6= 0.

A scalar product in V is a nondegenerate, positive-definite, symmetric bi-
linear form S : V ×V → K. The action of the scalar product on pairs of vectors
is also denoted by 〈v,w〉 ≡ S (v,w). A finite-dimensional vector space over
R with a scalar product is called a Euclidean space. The length of a vector v

is the non-negative number
√

〈v,v〉. (This number is also called the norm of
v.) �
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Verifying that a map S : V × V → K is a scalar product in V requires prov-
ing that S is a bilinear form satisfying certain properties. For instance, the
zero function B (v,w) = 0 is symmetric but is not a scalar product because it
is degenerate.
Remark: The above definition of the scalar product is an “abstract definition”
because it does not specify any particular scalar product in a given vector
space. To specify a scalar product, one usually gives an explicit formula for
computing 〈a,b〉. In the same space V , one could consider different scalar
products.
Example 1: In the space Rn, the standard scalar product is

〈(x1, ..., xN ) , (y1, ..., yN )〉 ≡
N∑

j=1

xjyj . (5.1)

Let us verify that this defines a symmetric, nondegenerate, and positive-
definite bilinear form. This is a bilinear form because it depends linearly
on each xj and on each yj . This form is symmetric because it is invariant
under the interchange of xj with yj . This form is nondegenerate because for
any x 6= 0 at least one of xj , say x1, is nonzero; then the scalar product of x

with the vector w ≡ (1, 0, 0, ..., 0) is nonzero. So for any x 6= 0 there exists
w such that 〈x,w〉 6= 0, which is the nondegeneracy property. Finally, the
scalar product is positive-definite because for any nonzero x there is at least
one nonzero xj and thus

〈x,x〉 = 〈(x1, ..., xN ) , (x1, ..., xN )〉 ≡
N∑

j=1

x2
j > 0.

Remark: The fact that a bilinear form is nondegenerate does not mean that
it must always be nonzero on any two vectors. It is perfectly possible that
〈a,b〉 = 0 while a 6= 0 and b 6= 0. In the usual Euclidean space, this would
mean that a and b are orthogonal to each other. Nondegeneracy means that
no vector is orthogonal to every other vector. It is also impossible that 〈a,a〉 = 0
while a 6= 0 (this contradicts the positive-definiteness).
Example 2: Consider the space EndV of linear operators in V . We can define

a bilinear form in the space EndV as follows: For any two operators Â, B̂ ∈
EndV we set 〈Â, B̂〉 ≡ Tr(ÂB̂). This bilinear form is not positive-definite. For

example, if there is an operator Ĵ such that Ĵ2 = −1̂V then Tr(Ĵ Ĵ) = −N < 0

while Tr(1̂1̂) = N > 0, so neither Tr(ÂB̂) nor −Tr(ÂB̂) can be positive-defin-
ite. (See Exercise 4 in Sec. 5.1.2 below for more information.)
Remark: Bilinear forms that are not positive-definite (or even degenerate)
are sometimes useful as “pseudo-scalar products.” We will not discuss these
cases here.
Exercise 1: Prove that two vectors are equal, u = v, if and only if 〈u,x〉 =
〈v,x〉 for all vectors x ∈ V .

Hint: Consider the vector u− v and the definition of nondegeneracy of the
scalar product.
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Solution: If u−v = 0 then by the linearity of the scalar product 〈u − v,x〉 =
0 = 〈u,x〉 − 〈v,x〉. Conversely, suppose that u 6= v; then u − v 6= 0, and (by
definition of nondegeneracy of the scalar product) there exists a vector x such
that 〈u − v,x〉 6= 0. �

Exercise 2: Prove that two linear operators Â and B̂ are equal as operators,

Â = B̂, if and only if 〈Âx,y〉 = 〈B̂x,y〉 for all vectors x,y ∈ V .

Hint: Consider the vector Âx − B̂x. �

5.1.1 Orthonormal bases

A scalar product defines an important property of a basis in V .

Definition: A set of vectors {e1, ..., ek} in a space V is orthonormal with
respect to the scalar product if

〈ei, ej〉 = δij , 1 ≤ i, j ≤ k.

If an orthonormal set {ej} is a basis in V , it is called an orthonormal basis.

Example 2: In the space RN of N -tuples of real numbers (x1, ..., xN ), the nat-
ural scalar product is defined by the formula (5.1). Then the standard basis in
RN , i.e. the basis consisting of vectors (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1),
is orthonormal with respect to this scalar product. �

The standard properties of orthonormal bases are summarized in the fol-
lowing theorems.

Statement: Any orthonormal set of vectors is linearly independent.

Proof: If an orthonormal set {e1, ..., ek} is linearly dependent, there exist
numbers λj , not all equal to zero, such that

k∑

j=1

λjej = 0.

By assumption, there exists an index s such that λs 6= 0; then the scalar prod-
uct of the above sum with es yields a contradiction,

0 = 〈0, es〉 =

〈
k∑

j=1

λjej , es

〉

=

k∑

j=1

δjsλj = λs 6= 0.

Hence, any orthonormal set is linearly independent (although it is not neces-
sarily a basis). �

Theorem 1: Assume that V is a finite-dimensional vector space with a scalar
product and K is a field where one can compute square roots (i.e. for any

λ ∈ K, λ > 0 there exists another number µ ≡
√
λ ∈ K such that λ = µ2).

Then there exists an orthonormal basis in V .
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Proof: We can build a basis by the standard orthogonalization procedure
(the Gram-Schmidt procedure). This procedure uses induction to determine
a sequence of orthonormal sets {e1, ..., ek} for k = 1, ..., N .

Basis of induction: Choose any nonzero vector v ∈ V and compute 〈v,v〉;
since v 6= 0, we have 〈v,v〉 > 0, so

√

〈v,v〉 exists, and we can define e1 by

e1 ≡ v
√

〈v,v〉
.

It follows that 〈e1, e1〉 = 1.
Induction step: If {e1, ..., ek} is an orthonormal set, we need to find a vector

ek+1 such that {e1, ..., ek, ek+1} is again an orthonormal set. To find a suitable
vector ek+1, we first take any vector v such that the set {e1, ..., ek,v} is lin-
early independent; such v exists if k < N , while for k = N there is nothing
left to prove. Then we define a new vector

w ≡ v −
k∑

j=1

〈ej ,v〉 ej .

This vector has the property 〈ej ,w〉 = 0 for 1 ≤ j ≤ k. We have w 6= 0
because (by construction) v is not a linear combination of e1, ..., ek; therefore
〈w,w〉 > 0. Finally, we define

ek+1 ≡ w
√

〈w,w〉
,

so that 〈ek+1, ek+1〉 = 1; then the set {e1, ..., ek, ek+1} is orthonormal. So the
required set {e1, ..., ek+1} is now constructed. �

Question: What about number fields K where the square root does not exist,
for example the field of rational numbers Q?
Answer: In that case, an orthonormal basis may or may not exist. For ex-

ample, suppose that we consider vectors in Q2 and the scalar product

〈(x1, x2), (y1, y2)〉 = x1y1 + 5x2y2.

Then we cannot normalize the vectors: there exists no vector x ≡ (x1, x2) ∈
Q2 such that 〈x,x〉 = x2

1 + 5x2
2 = 1. The proof of this is similar to the ancient

proof of the irrationality of
√

2. Thus, there exists no orthonormal basis in this
space with this scalar product.
Theorem 2: If {ej} is an orthonormal basis then any vector v ∈ V is ex-
panded according to the formula

v =

N∑

j=1

vjej , vj ≡ 〈ej ,v〉 .

In other words, the j-th component of the vector v in the basis {e1, ..., eN} is
equal to the scalar product 〈ej ,v〉.
Proof: Compute the scalar product 〈ej ,v〉 and obtain vj ≡ 〈ej ,v〉. �
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Remark: Theorem 2 shows that the components of a vector in an orthonor-
mal basis can be computed quickly. As we have seen before, the component
vj of a vector v in the basis {ej} is given by the covector e∗j from the dual

basis, vj = e∗j (v). Hence, the dual basis
{
e∗j
}

consists of linear functions

e∗j : x 7→ 〈ej ,x〉 . (5.2)

In contrast, determining the dual basis for a general (non-orthonormal) basis
requires a complicated construction, such as that given in Sec. 2.3.3.

Corollary: If {e1, ..., eN} is an arbitrary basis in V , there exists a scalar prod-
uct with respect to which {ej} is an orthonormal basis.
Proof: Let {e∗1, ..., e∗N} be the dual basis in V ∗. The required scalar product

is defined by the bilinear form

S (u,v) =
N∑

j=1

e∗j (u) e∗j (v) .

It is easy to show that the basis {ej} is orthonormal with respect to the bi-
linear form S, namely S(ei, ej) = δij (where δij is the Kronecker symbol). It
remains to prove that S is nondegenerate and positive-definite. To prove the
nondegeneracy: Suppose that u 6= 0; then we can decompose u in the basis
{ej},

u =
N∑

j=1

ujej .

There will be at least one nonzero coefficient us, thus S (es,u) = us 6= 0. To
prove that S is positive-definite, compute

S (u,u) =

N∑

j=1

u2
j > 0

as long as at least one coefficient uj is nonzero. �

Exercise 1: Let {v1, ...,vN} be a basis in V , and let {e1, ..., eN} be an orthonor-
mal basis. Show that the linear operator

Âx ≡
N∑

i=1

〈ei,x〉vi

maps the basis {ei} into the basis {vi}.

Exercise 2: Let {v1, ...,vn} with n < N be a linearly independent set (not
necessarily orthonormal). Show that this set can be completed to a basis
{v1, ...,vn, en+1, ..., eN} in V , such that every vector ej (j = n + 1, ..., N ) is
orthogonal to every vector vi (i = 1, ..., n).

Hint: Follow the proof of Theorem 1 but begin the Gram-Schmidt proce-
dure at step n, without orthogonalizing the vectors vi.
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Exercise 3: Let {e1, ..., eN} be an orthonormal basis, and let vi ≡ 〈v, ei〉.
Show that

〈v,v〉 =

N∑

i=1

|vi|2 .

Exercise 4: Consider the space of polynomials of degree at most 2 in the vari-
able x. Let us define the scalar product of two polynomials p1(x) and p2(x)
by the formula

〈p1, p2〉 =
1

2

∫ 1

−1

p1(x)p2(x)dx.

Find a linear polynomial q1(x) and a quadratic polynomial q2(x) such that
{1, q1, q2} is an orthonormal basis in this space.

Remark: Some of the properties of the scalar product are related in an essen-
tial way to the assumption that we are working with real numbers. As an
example of what could go wrong if we naively extended the same results to
complex vector spaces, let us consider a vector x = (1, i) ∈ C2 and compute
its scalar product with itself by the formula

〈x,x〉 = x2
1 + x2

2 = 12 + i2 = 0.

Hence we have a nonzero vector whose “length” is zero. To correct this prob-
lem when working with complex numbers, one usually considers a different
kind of scalar product designed for complex vector spaces. For instance, the
scalar product in Cn is defined by the formula

〈(x1, ..., xn), (y1, ..., yn)〉 =

n∑

j=1

x∗jyj ,

where x∗j is the complex conjugate of the component xj . This scalar product
is called Hermitian and has the property

〈x,y〉 = 〈y,x〉∗ ,

that is, it is not symmetric but becomes complex-conjugated when the order
of vectors is interchanged. According to this scalar product, we have for the
vector x = (1, i) ∈ C2 a sensible result,

〈x,x〉 = x∗1x1 + x∗2x2 = |1|2 + |i|2 = 2.

More generally, for x 6= 0

〈x,x〉 =

N∑

i=1

|xi|2 > 0.

In this text, I will use this kind of scalar product only once (Sec. 5.6).
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5.1.2 Correspondence between vectors and covectors

Let us temporarily consider the scalar product 〈v,x〉 as a function of x for a
fixed v. We may denote this function by f∗. So f∗ : x 7→ 〈v,x〉 is a linear map
V → K, i.e. (by definition) an element of V ∗. Thus, a covector f∗ ∈ V ∗ is
determined for every v. Therefore we have defined a map V → V ∗ whereby
a vector v is mapped to the covector f∗, which is defined by its action on
vectors x as follows,

v 7→ f∗; f∗ (x) ≡ 〈v,x〉 , ∀x ∈ V. (5.3)

This map is an isomorphism between V and V ∗ (not a canonical one, since
it depends on the choice of the scalar product), as the following statement
shows.
Statement 1: A nondegenerate bilinear form B : V ⊗ V → K defines an
isomorphism V → V ∗ by the formula v 7→ f∗, f∗(x) ≡ B(v,x).

Proof: We need to show that the map B̂ : V → V ∗ is a linear one-to-one
(bijective) map. Linearity easily follows from the bilinearity of B. Bijectivity
requires that no two different vectors are mapped into one and the same cov-
ector, and that any covector is an image of some vector. If two vectors u 6= v

are mapped into one covector f∗ then B̂ (u − v) = f∗ − f∗ = 0 ∈ V ∗, in other
words, B (u − v,x) = 0 for all x. However, from the nondegeneracy of B it
follows that there exists x ∈ V such that B (u − v,x) 6= 0, which gives a con-

tradiction. Finally, consider a basis {vj} in V . Its image {B̂v1, ..., B̂vN} must
be a linearly independent set in V ∗ because a vanishing linear combination

∑

k

λkB̂vk = 0 = B̂
(∑

k

λkvk

)

entails
∑

k λkvk = 0 (we just proved that a nonzero vector cannot be mapped

into the zero covector). Therefore {B̂v1, ..., B̂vN} is a basis in V ∗, and any
covector f∗ is a linear combination

f∗ =
∑

k

f∗k B̂vk = B̂
(∑

k

f∗kvk

)
.

It follows that any vector f∗ is an image of some vector from V . Thus B̂ is a
one-to-one map. �

Let us show explicitly how to use the scalar product in order to map vectors
to covectors and vice versa.
Example: We use the scalar product as the bilinear form B, so B(x,y) ≡
〈x,y〉. Suppose {ej} is an orthonormal basis. What is the covector B̂e1? By
Eq. (5.3), this covector acts on an arbitrary vector x as

B̂e1(x) = 〈e1,x〉 ≡ x1,

where x1 is the first component of the vector x in the basis {ej}, i.e. x =
∑N

i=1 xiei. We find that B̂e1 is the same as the covector e∗1 from the basis
{
e∗j
}

dual to {ej}.
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Suppose f∗ ∈ V ∗ is a given covector. What is its pre-image B̂−1f∗ ∈ V ? It
is a vector v such that f∗(x) = 〈v,x〉 for any x ∈ V . In order to determine v,
let us substitute the basis vectors ej instead of x; we then obtain

f∗(ej) = 〈v, ej〉 .

Since the covector f∗ is given, the numbers f∗(ej) are known, and hence

v =

n∑

i=1

ej 〈v, ej〉 =

N∑

i=1

ej f∗(ej).

�

Bilinear forms can be viewed as elements of the space V ∗ ⊗ V ∗.

Statement 2: All bilinear forms in V constitute a vector space canonically
isomorphic to V ∗⊗V ∗. A basis {ej} is orthonormal with respect to the bilinear
form

B ≡
N∑

j=1

e∗j ⊗ e∗j .

Proof: Left as exercise. �

Exercise 1: Let {v1, ...,vN} be a basis in V (not necessarily orthonormal), and
denote by {v∗

i } the dual basis to {vi}. The dual basis is a basis in V ∗. Now,
we can map {v∗

i } into a basis {ui} in V using the covector-vector correspon-
dence. Show that 〈vi,uj〉 = δij . Use this formula to show that this construc-
tion, applied to an orthonormal basis {ei}, yields again the same basis {ei}.

Hint: If vectors x and y have the same scalar products 〈vi,x〉 = 〈vi,y〉 (for
i = 1, ..., N ) then x = y.

Exercise 2: Let {v1, ...,vN} be a given (not necessarily orthonormal) basis in
V , and denote by {v∗

i } the dual basis to {vi}. Due to the vector-covector
correspondence, {v∗

i } is mapped into a basis {uj} in V , so the tensor

1̂V ≡
N∑

i=1

vi ⊗ v∗
i

is mapped into a bilinear form B acting as

B(x,y) =
N∑

i=1

〈vi,x〉 〈ui,y〉 .

Show that this bilinear form coincides with the scalar product, i.e.

B(x,y) = 〈x,y〉 , ∀x,y ∈ V.

Hint: Since
∑N

i=1 vi ⊗ v∗
i = 1̂V , we have

∑N
i=1 vi 〈ui,y〉 = y.
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Exercise 3: If a scalar product 〈·, ·〉 is given in V , a scalar product 〈·, ·〉∗ can be
constructed also in V ∗ as follows: Given any two covectors f∗,g∗ ∈ V ∗, we
map them into vectors u,v ∈ V and then define

〈f∗,g∗〉∗ ≡ 〈u,v〉 .

Show that this scalar product is bilinear and positive-definite if 〈·, ·〉 is. For an
orthonormal basis {ej}, show that the dual basis

{
e∗j
}

in V ∗ is also orthonor-
mal with respect to this scalar product.

Exercise 4:* Consider the space EndV of linear operators in a vector space V
with dimV ≥ 2. A bilinear form in the space EndV is defined as follows: for

any two operators Â, B̂ ∈ EndV we set 〈Â, B̂〉 ≡ Tr(ÂB̂). Show that 〈Â, B̂〉 is
bilinear, symmetric, and nondegenerate, but not positive-definite.

Hint: To show nondegeneracy, consider a nonzero operator Â; there exists

v ∈ V such that Âv 6= 0, and then one can choose f∗ ∈ V ∗ such that f∗(Âv) 6=
0; then define B̂ ≡ v ⊗ f∗ and verify that 〈Â, B̂〉 is nonzero. To show that

the scalar product is not positive-definite, consider Ĉ = v ⊗ f∗ + w ⊗ g∗ and

choose the vectors and the covectors appropriately so that Tr(Ĉ2) < 0.

5.1.3 * Example: bilinear forms on V ⊕ V
∗

If V is a vector space then the space V ⊕ V ∗ has two canonically defined bi-
linear forms that could be useful under certain circumstances (when positive-
definiteness is not required). This construction is used in abstract algebra, and
I mention it here as an example of a purely algebraic and basis-free definition
of a bilinear form.

If (u, f∗) and (v,g∗) are two elements of V ⊕ V ∗, a canonical bilinear form
is defined by the formula

〈(u, f∗) , (v,g∗)〉 = f∗ (v) + g∗ (u) . (5.4)

This formula does not define a positive-definite bilinear form because

〈(u, f∗) , (u, f∗)〉 = 2f∗ (u) ,

which can be positive, negative, or zero for some (u, f∗) ∈ V ⊕ V ∗.

Statement: The bilinear form defined by Eq. (5.4) is symmetric and nonde-
generate.
Proof: The symmetry is obvious from Eq. (5.4). Then for any nonzero vec-

tor (u, f∗) we need to find a vector (v,g∗) such that 〈(u, f∗) , (v,g∗)〉 6= 0. By
assumption, either u 6= 0 or f∗ 6= 0 or both. If u 6= 0, there exists a covector g∗

such that g∗ (u) 6= 0; then we choose v = 0. If f∗ 6= 0, there exists a vector v

such that f∗ (v) 6= 0, and then we choose g∗ = 0. Thus the nondegeneracy is
proved. �

Alternatively, there is a canonically defined antisymmetric bilinear form (or
2-form),

〈(u, f∗) , (v,g∗)〉 = f∗ (v) − g∗ (u) .
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This bilinear form is also nondegenerate (the same proof goes through as for
the symmetric bilinear form above). Nevertheless, none of the two bilinear
forms can serve as a scalar product: the former lacks positive-definiteness,
the latter is antisymmetric rather than symmetric.

5.1.4 Scalar product in index notation

In the index notation, the scalar product tensor S ∈ V ∗ ⊗ V ∗ is represented
by a matrix Sij (with lower indices), and so the scalar product of two vectors
is written as

〈u,v〉 = uivjSij .

Alternatively, one uses the vector-to-covector map Ŝ : V → V ∗ and writes

〈u,v〉 = u∗ (v) = uiv
i,

where the covector u∗ is defined by

u∗ ≡ Ŝu ⇒ ui ≡ Siju
j .

Typically, in the index notation one uses the same symbol to denote a vector,
ui, and the corresponding covector, ui. This is unambiguous as long as the
scalar product is fixed.

5.2 Orthogonal subspaces

From now on, we work in a real, N -dimensional vector space V equipped
with a scalar product.

We call two subspaces V1 ⊂ V and V2 ⊂ V orthogonal if every vector from
V1 is orthogonal to every vector from V2. An important example of orthogonal
subspaces is given by the construction of the orthogonal complement.
Definition: The set of vectors orthogonal to a given vector v is denoted by
v⊥ and is called the orthogonal complement of the vector v. Written as a
formula:

v⊥ = {x |x ∈ V, 〈x,v〉 = 0} .
Similarly, the set of vectors orthogonal to each of the vectors {v1, ...,vn} is

denoted by {v1, ...,vn}⊥.
Examples: If {e1, e2, e3, e4} is an orthonormal basis in V then the subspace
Span {e1, e3} is orthogonal to the subspace Span {e2, e4} because any linear
combination of e1 and e3 is orthogonal to any linear combination of e2 and
e4. The orthogonal complement of e1 is

e⊥1 = Span {e2, e3, e4} .

Statement 1: (1) The orthogonal complement {v1, ...,vn}⊥ is a subspace of
V .

(2) Every vector from the subspace Span {v1, ...,vn} is orthogonal to every

vector from {v1, ...,vn}⊥.
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Proof: (1) If two vectors x,y belong to {v1, ...,vn}⊥, it means that 〈vi,x〉 =
0 and 〈vi,y〉 = 0 for i = 1, ..., n. Since the scalar product is linear, it follows
that

〈vi, x + λy〉 = 0, i = 1, ..., n.

Therefore, any linear combination of x and y also belongs to {v1, ...,vn}⊥.

This is the same as to say that {v1, ...,vn}⊥ is a subspace of V .

(2) Suppose x ∈ Span {v1, ...,vn} and y ∈ {v1, ...,vn}⊥; then we may ex-
press x =

∑n
i=1 λivi with some coefficients λi, while 〈vi,y〉 = 0 for i =

1, ..., n. It follows from the linearity of the scalar product that

〈x,y〉 =

n∑

i=1

〈λivi,y〉 = 0.

Hence, every such x is orthogonal to every such y. �

Definition: If U ⊂ V is a given subspace, the orthogonal complement U⊥ is
defined as the subspace of vectors that are orthogonal to every vector from
U . (It is easy to see that all these vectors form a subspace.)

Exercise 1: Given a subspace U ⊂ V , we may choose a basis {u1, ...,un}
in U and then construct the orthogonal complement {u1, ...,un}⊥ as defined

above. Show that the subspace {u1, ...,un}⊥ is the same as U⊥ independently
of the choice of the basis {uj} in U . �

The space V can be decomposed into a direct sum of orthogonal subspaces.

Statement 2: Given a subspace U ⊂ V , we can construct its orthogonal com-
plement U⊥ ⊂ V . Then V = U ⊕ U⊥; in other words, every vector x ∈ V can
be uniquely decomposed as x = u + w where u ∈ U and w ∈ U⊥.
Proof: Choose a basis {u1, ...,un} of U . If n = N , the orthogonal comple-

ment U⊥ is the zero-dimensional subspace, so there is nothing left to prove.
If n < N , we may choose some additional vectors en+1, ..., eN such that the
set {u1, ...,un, en+1, ..., eN} is a basis in V and every vector ej is orthogonal to
every vector ui. Such a basis exists (see Exercise 2 in Sec. 5.1.1). Then every
vector x ∈ V can be decomposed as

x =

n∑

i=1

λiui +

N∑

i=n+1

µiei ≡ u + w.

This decomposition provides the required decomposition of x into two vec-
tors.

It remains to show that this decomposition is unique (in particular, inde-
pendent of the choice of bases). If there were two different such decomposi-
tions, say x = u + w = u′ + w′, we would have

0
!
= 〈u − u′ + w − w′,y〉 , ∀y ∈ V.

Let us now show that u = u′ and w = w′: Taking an arbitrary y ∈ U , we have
〈w − w′,y = 0〉 and hence find that u−u′ is orthogonal to y. It means that the
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vector u−u′ ∈ U is orthogonal to every vector y ∈ U , e.g. to y ≡ u−u′; since
the scalar product of a nonzero vector with itself cannot be equal to zero, we
must have u − u′ = 0. Similarly, by taking an arbitrary z ∈ U⊥, we find that
w − w′ is orthogonal to z, hence we must have w − w′ = 0. �

An important operation is the orthogonal projection onto a subspace.

Statement 3: There are many projectors onto a given subspace U ⊂ V , but

only one projector P̂U that preserves the scalar product with vectors from

U . Namely, there exists a unique linear operator P̂U , called the orthogonal
projector onto the subspace U , such that

P̂U P̂U = P̂U ; (P̂Ux) ∈ U for∀x ∈ V — projection property;

〈P̂Ux,a〉 = 〈x,a〉 , ∀x ∈ V, a ∈ U — preserves 〈·, ·〉 .

Remark: The name “orthogonal projections” (this is quite different from
“orthogonal transformations” defined in the next section!) comes from a ge-
ometric analogy: Projecting a three-dimensional vector orthogonally onto a
plane means that the projection does not add to the vector any components
parallel to the plane. The vector is “cast down” in the direction normal to the
plane. The projection modifies a vector x by adding to it some vector orthog-
onal to the plane; this modification preserves the scalar products of x with
vectors in the plane. Perhaps a better word would be “normal projection.”

Proof: Suppose {u1, ...,un} is a basis in the subspace U , and assume that
n < N (or else U = V and there exists only one projector onto U , namely
the identity operator, which preserves the scalar product, so there is noth-
ing left to prove). We may complete the basis {u1, ...,un} of U to a basis
{u1, ...,un, en+1, ..., eN} in the entire space V . Let

{
u∗

1, ...,u
∗
n, e

∗
n+1, ..., e

∗
N

}
be

the corresponding dual basis. Then a projector onto U can be defined by

P̂ =
n∑

i=1

ui ⊗ u∗
i ,

that is, P̂x simply omits the components of the vector x parallel to any ej

(j = n + 1, ..., N ). For example, the operator P̂ maps the linear combination
λu1 + µen+1 to λu1, omitting the component parallel to en+1. There are in-
finitely many ways of choosing {ej | j = n+ 1, ..., N}; for instance, one can
add to en+1 an arbitrary linear combination of {uj} and obtain another pos-
sible choice of en+1. Hence there are infinitely many possible projectors onto
U .

While all these projectors satisfy the projection property, not all of them pre-
serve the scalar product. The orthogonal projector is the one obtained from a
particular completion of the basis, namely such that every vector ej is orthog-
onal to every vector ui. Such a basis exists (see Exercise 2 in Sec. 5.1.1). Using

the construction shown above, we obtain a projector that we will denote P̂U .
We will now show that this projector is unique and satisfies the scalar product
preservation property.
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5.2 Orthogonal subspaces

The scalar product is preserved for the following reason. For any x ∈ V ,
we have a unique decomposition x = u + w, where u ∈ U and w ∈ U⊥. The

definition of P̂U guarantees that P̂Ux = u. Hence

〈x,a〉 = 〈u + w,a〉 = 〈u,a〉 = 〈P̂Ux,a〉, ∀x ∈ V, a ∈ U.

Now the uniqueness: If there were two projectors P̂U and P̂ ′
U , both satisfy-

ing the scalar product preservation property, then

〈(P̂U − P̂ ′
U )x,u〉 = 0 ∀x ∈ V, u ∈ U.

For a given x ∈ V , the vector y ≡ (P̂U − P̂ ′
U )x belongs to U and is orthogonal

to every vector in U . Therefore y = 0. It follows that (P̂U − P̂ ′
U )x = 0 for any

x ∈ V , i.e. the operator (P̂U − P̂ ′
U ) is equal to zero. �

Example: Given a nonzero vector v ∈ V , let us construct the orthogonal pro-
jector onto the subspace v⊥. It seems (judging from the proof of Statement 3)
that we need to chose a basis in v⊥. However, the projector (as we know) is in
fact independent of the choice of the basis and can be constructed as follows:

P̂v⊥x ≡ x − v
〈v,x〉
〈v,v〉 .

It is easy to check that this is indeed a projector onto v⊥, namely we can check

that 〈P̂v⊥x,v〉 = 0 for all x ∈ V , and that v⊥ is an invariant subspace under

P̂v⊥ .

Exercise 2: Construct an orthogonal projector P̂v onto the space spanned by
the vector v.

Answer: P̂vx = v
〈v,x〉
〈v,v〉 .

5.2.1 Affine hyperplanes

Suppose n ∈ V is a given vector and α a given number. The set of vectors x

satisfying the equation

〈n,x〉 = α

is called an affine hyperplane. Note that an affine hyperplane is not neces-
sarily a subspace of V because x = 0 does not belong to the hyperplane when
α 6= 0.

The geometric interpretation of a hyperplane follows from the fact that the
difference of any two vectors x1 and x2, both belonging to the hyperplane,
satisfies

〈n,x1 − x2〉 = 0.

Hence, all vectors in the hyperplane can be represented as a sum of one such
vector, say x0, and an arbitrary vector orthogonal to n. Geometrically, this
means that the hyperplane is orthogonal to the vector n and may be shifted
from the origin.
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Example: Let us consider an affine hyperplane given by the equation 〈n,x〉 =
1, and let us compute the shortest vector belonging to the hyperplane. Any
vector x ∈ V can be written as

x = λn + b,

where b is some vector such that 〈n,b〉 = 0. If x belongs to the hyperplane,
we have

1 = 〈n,x〉 = 〈n, λn + b〉 = λ 〈n,n〉 .
Hence, we must have

λ =
1

〈n,n〉 .

The squared length of x is then computed as

〈x,x〉 = λ2 〈n,n〉 + 〈b,b〉

=
1

〈n,n〉 + 〈b,b〉 ≥ 1

〈n,n〉 .

The inequality becomes an equality when b = 0, i.e. when x = λn. Therefore,

the smallest possible length of x is equal to
√
λ, which is equal to the inverse

length of n.
Exercise: Compute the shortest distance between two parallel hyperplanes
defined by equations 〈n,x〉 = α and 〈n,x〉 = β.
Answer:

|α− β|
√

〈n,n〉
.

5.3 Orthogonal transformations

Definition: An operator Â is called an orthogonal transformation with re-
spect to the scalar product 〈, 〉 if

〈Âv, Âw〉 = 〈v,w〉 , ∀v,w ∈ V.

(We use the words “transformation” and “operator” interchangeably since
we are always working within the same vector space V .)

5.3.1 Examples and properties

Example 1: Rotation by a fixed angle is an orthogonal transformation in a
Euclidean plane. It is easy to see that such a rotation preserves scalar products
(angles and lengths are preserved by a rotation). Let us define this transfor-
mation by a formula. If {e1, e2} is a positively oriented orthonormal basis in

the Euclidean plane, then we define the rotation R̂α of the plane by angle α
in the counter-clockwise direction by

R̂αe1 ≡ e1 cosα− e2 sinα,

R̂αe2 ≡ e1 sinα+ e2 cosα.
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5.3 Orthogonal transformations

One can quickly verify that the transformed basis {R̂αe1, R̂αe2} is also an
orthonormal basis; for example,

〈R̂αe1, R̂αe1〉 = 〈e1, e1〉 cos2 α+ 〈e2, e2〉 sin2 α = 1.

Example 2: Mirror reflections are also orthogonal transformations. A mirror
reflection with respect to the basis vector e1 maps a vector x = λ1e1 + λ2e2 +

...+λNeN into M̂e1
x = −λ1e1 +λ2e2 + ...+λNeN , i.e. only the first coefficient

changes sign. A mirror reflection with respect to an arbitrary axis n (where n

is a unit vector, i.e. 〈n,n〉 = 1) can be defined as the transformation

M̂nx ≡ x − 2 〈n,x〉n.

This transformation is interpreted geometrically as mirror reflection with re-
spect to the hyperplane n⊥. �

An interesting fact is that orthogonality entails linearity.

Statement 1: If a map Â : V → V is orthogonal then it is a linear map,

Â (u + λv) = Âu + λÂv.
Proof: Consider an orthonormal basis {e1, ..., eN}. The set {Âe1, ..., ÂeN}

is orthonormal because

〈Âei, Âej〉 = 〈ei, ej〉 = δij .

By Theorem 1 of Sec. 5.1 the set {Âe1, ..., ÂeN} is linearly independent and is
therefore an orthonormal basis in V . Consider an arbitrary vector v ∈ V and

its image Âv after the transformation Â. By Theorem 2 of Sec. 5.1.1, we can

decompose v in the basis {ej} and Âv in the basis {Âej} as follows,

v =

N∑

j=1

〈ej ,v〉 ej ,

Âv =

N∑

j=1

〈Âej , Âv〉 Âej =

N∑

j=1

〈ej ,v〉 Âej .

Any other vector u ∈ V can be similarly decomposed, and so we obtain

Â (u + λv) =

N∑

j=1

〈ej ,u + λv〉 Âej

=

N∑

j=1

〈ej ,u〉 Âej + λ

N∑

j=1

〈ej ,v〉 Âej

= Âu + λÂv, ∀u,v ∈ V, λ ∈ K,

showing that the map Â is linear. �

An orthogonal operator always maps an orthonormal basis into another
orthonormal basis (this was shown in the proof of Statement 1). The following
exercise shows that the converse is also true.
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Exercise 1: Prove that a transformation is orthogonal if and only if it maps
some orthonormal basis into another orthonormal basis. Deduce that any or-
thogonal transformation is invertible.

Exercise 2: If a linear transformation Â satisfies 〈Âx, Âx〉 = 〈x,x〉 for all x ∈
V , show that Â is an orthogonal transformation. (This shows how to check
more easily whether a given linear transformation is orthogonal.)

Hint: Substitute x = y + z.

Exercise 3: Show that for any two orthonormal bases {ej | j = 1, ..., N} and

{fj | j = 1, ..., N}, there exists an orthogonal operator R̂ that maps the basis

{ej} into the basis {fj}, i.e. R̂ej = fj for j = 1, ..., N .

Hint: A linear operator mapping {ej} into {fj} exists; show that this oper-
ator is orthogonal.

Exercise 4: Prove that M̂n (as defined in Example 2) is an orthogonal trans-

formation by showing that 〈M̂nx, M̂nx〉 = 〈x,x〉 for any x.

Exercise 5: Consider the orthogonal transformations R̂α and M̂n and an or-
thonormal basis {e1, e2} as defined in Examples 1 and 2. Show by a direct
calculation that

(R̂αe1) ∧ (R̂αe2) = e1 ∧ e2

and that

(M̂ne1) ∧ (M̂ne2) = −e1 ∧ e2.

This is the same as to say that det R̂α = 1 and det M̂n = −1. This indicates that
rotations preserve orientation while mirror reflections reverse orientation. �

5.3.2 Transposition

Another way to characterize orthogonal transformations is by using trans-

posed operators. Recall that the canonically defined transpose to Â is ÂT :
V ∗ → V ∗ (see Sec. 1.8.4, p. 59 for a definition). In a (finite-dimensional)
space with a scalar product, the one-to-one correspondence between V and

V ∗ means that ÂT can be identified with some operator acting in V (rather

than in V ∗). Let us also denote that operator by ÂT and call it the transposed

to Â. (This transposition is not canonical but depends on the scalar product.)

We can formulate the definition of ÂT as follows.

Definition 1: In a finite-dimensional space with a scalar product, the trans-

posed operator ÂT : V → V is defined by

〈ÂT x,y〉 ≡ 〈x, Ây〉, ∀x,y ∈ V.

Exercise 1: Show that (ÂB̂)T = B̂T ÂT .

Statement 1: If Â is orthogonal then ÂT Â = 1̂V .
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Proof: By definition of orthogonal transformation, 〈Âx, Ây〉 = 〈x,y〉 for all

x,y ∈ V . Then we use the definition of ÂT and obtain

〈x,y〉 = 〈Âx, Ây〉 = 〈ÂT Âx,y〉.

Since this holds for all x,y ∈ V , we conclude that ÂT Â = 1̂V (see Exercise 2
in Sec. 5.1). �

Let us now see how transposed operators appear in matrix form. Suppose

{ej} is an orthonormal basis in V ; then the operator Â can be represented

by some matrix Aij in this basis. Then the operator ÂT is represented by the
matrix Aji in the same basis (i.e. by the matrix transpose of Aij), as shown in

the following exercise. (Note that the operator ÂT is not represented by the
transposed matrix when the basis is not orthonormal.)

Exercise 2: Show that the operator ÂT is represented by the transposed ma-

trix Aji in the same (orthonormal) basis in which the operator Â has the ma-

trix Aij . Deduce that det Â = det (ÂT ).

Solution: The matrix elementAij with respect to an orthonormal basis {ej}
is the coefficient in the tensor decomposition Â =

∑N
i,j=1Aijei ⊗ e∗j and can

be computed using the scalar product as

Aij = 〈ei, Âej〉.

The transposed operator satisfies

〈ei, Â
T ej〉 = 〈Âei, ej〉 = Aji.

Hence, the matrix elements of ÂT areAji, i.e. the matrix elements of the trans-
posed matrix. We know that det(Aji) = det(Aij). If the basis {ej} is not or-

thonormal, the propertyAij = 〈ei, Âej〉 does not hold and the argument fails.
�

We have seen in Exercise 5 (Sec. 5.3.1) that the determinants of some or-
thogonal transformations were equal to +1 or −1. This is, in fact, a general
property.

Statement 2: The determinant of an orthogonal transformation is equal to 1
or to −1.

Proof: An orthogonal transformation Â satisfies ÂT Â = 1̂V . Compute the
determinant of both sides; since the determinant of the transposed operator

is equal to that of the original operator, we have (det Â)2 = 1. �

5.4 Applications of exterior product

We will now apply the exterior product techniques to spaces with a scalar
product and obtain several important results.
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5 Scalar product

5.4.1 Orthonormal bases, volume, and ∧N
V

If an orthonormal basis {ej} is chosen, we can consider a special tensor in
∧NV , namely

ω ≡ e1 ∧ ... ∧ eN .

Since ω 6= 0, the tensor ω can be considered a basis tensor in the one-dimen-
sional space ∧NV . This choice allows one to identify the space ∧NV with
scalars (the one-dimensional space of numbers, K). Namely, any tensor τ ∈
∧NV must be proportional to ω (since ∧NV is one-dimensional), so τ = tω
where t ∈ K is some number. The number t corresponds uniquely to each
τ ∈ ∧NV .

As we have seen before, tensors from ∧NV have the interpretation of ori-
ented volumes. In this interpretation, ω represents the volume of a paral-
lelepiped spanned by the unit basis vectors {ej}. Since the vectors {ej} are
orthonormal and have unit length, it is reasonable to assume that they span
a unit volume. Hence, the oriented volume represented by ω is equal to ±1
depending on the orientation of the basis {ej}. The tensor ω is called the unit
volume tensor.

Once ω is fixed, the (oriented) volume of a parallelepiped spanned by arbi-
trary vectors {v1, ...,vN} is equal to the constant C in the equality

v1 ∧ ... ∧ vN = Cω. (5.5)

In our notation of “tensor division,” we can also write

Vol {v1, ...,vN} ≡ C =
v1 ∧ ... ∧ vN

ω
.

It might appear that ω is arbitrarily chosen and will change when we select
another orthonormal basis. However, it turns out that the basis tensor ω does
not actually depend on the choice of the orthonormal basis, up to a sign. (The
sign of ω is necessarily ambiguous because one can always interchange, say,
e1 and e2 in the orthonormal basis, and then the sign of ω will be flipped.) We
will now prove that a different orthonormal basis yields again either ω or −ω,
depending on the order of vectors. In other words, ω depends on the choice
of the scalar product but not on the choice of an orthonormal basis, up to a
sign.
Statement: Given two orthonormal bases {ej} and {fj}, let us define two
tensors ω ≡ e1 ∧ ... ∧ eN and ω′ ≡ f1 ∧ ... ∧ fN . Then ω′ = ±ω.
Proof: There exists an orthogonal transformation R̂ that maps the basis

{ej} into the basis {fj}, i.e. R̂ej = fj for j = 1, ..., N . Then det R̂ = ±1
and thus

ω′ = R̂e1 ∧ ... ∧ R̂eN = (det R̂)ω = ±ω.
�

The sign factor ±1 in the definition of the unit-volume tensor ω is an es-
sential ambiguity that cannot be avoided; instead, one simply chooses some
orthonormal basis {ej}, computes ω ≡ e1 ∧ ... ∧ eN , and declares this ω to
be “positively oriented.” Any other nonzero N -vector ψ ∈ ∧NV can then be
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compared with ω as ψ = Cω, yielding a constant C 6= 0. If C > 0 then ψ
is also “positively oriented,” otherwise ψ is “negatively oriented.” Similarly,
any given basis {vj} is then deemed to be “positively oriented” if Eq. (5.5)
holds with C > 0. Choosing ω is therefore called “fixing the orientation of
space.”
Remark: right-hand rule. To fix the orientation of the basis in the 3-dimen-
sional space, frequently the “right-hand rule” is used: The thumb, the index
finger, and the middle finger of a relaxed right hand are considered the “pos-
itively oriented” basis vectors {e1, e2, e3}. However, this is not really a def-
inition in the mathematical sense because the concept of “fingers of a right
hand” is undefined and actually cannot be defined in geometric terms. In
other words, it is impossible to give a purely algebraic or geometric defini-
tion of a “positively oriented” basis in terms of any properties of the vectors
{ej} alone! (Not to mention that there is no human hand in N dimensions.)
However, once an arbitrary basis {ej} is selected and declared to be “posi-
tively oriented,” we may look at any other basis {vj}, compute

C ≡ v1 ∧ ... ∧ vN

e1 ∧ ... ∧ eN
=

v1 ∧ ... ∧ vN

ω
,

and examine the sign of C. We will have C 6= 0 since {vj} is a basis. If
C > 0, the basis {vj} is positively oriented. If C < 0, we need to change the
ordering of vectors in {vj}; for instance, we may swap the first two vectors
and use {v2,v1,v3, ...,vN} as the positively oriented basis. In other words,
“a positive orientation of space” simply means choosing a certain ordering of
vectors in each basis. As we have seen, it suffices to choose the unit volume
tensor ω (rather than a basis) to fix the orientation of space. The choice of
sign of ω is quite arbitrary and does not influence the results of any calcula-
tions because the tensor ω always appears on both sides of equations or in a
quadratic combination. �

5.4.2 Vector product in R3 and Levi-Civita symbol ε

In the familiar three-dimensional Euclidean space, V = R3, there is a vector
product a × b and a scalar product a · b. We will now show how the vector
product can be expressed through the exterior product.

A positively oriented orthonormal basis {e1, e2, e3} defines the unit vol-
ume tensor ω ≡ e1∧e2∧e3 in ∧3V . Due to the presence of the scalar product,
V can be identified with V ∗, as we have seen.

Further, the space ∧2V can be identified with V by the following construc-
tion. A 2-vector A ∈ ∧2V generates a covector f∗ by the formula

f∗(x) ≡ x ∧A
ω

, ∀x ∈ V.

Now the identification of vectors and covectors shows that f∗ corresponds to
a certain vector c. Thus, a 2-vector A ∈ ∧2V is mapped to a vector c ∈ V . Let
us denote this map by the “star” symbol and write c = ∗A. This map is called
the Hodge star; it is a linear map ∧2V → V .
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Example 1: Let us compute ∗(e2 ∧ e3). The 2-vector e2 ∧ e3 is mapped to the
covector f∗ defined by

f∗(x)e1 ∧ e2 ∧ e3 ≡ x ∧ e2 ∧ e3 = x1e1 ∧ e2 ∧ e3,

where x is an arbitrary vector and x1 ≡ e∗1(x) is the first component of x in
the basis. Therefore f∗ = e∗1. By the vector-covector correspondence, f∗ is
mapped to the vector e1 since

x1 = e∗1(x) = 〈e1,x〉 .

Therefore ∗(e2 ∧ e3) = e1.
Similarly we compute ∗(e1 ∧ e3) = −e2 and ∗(e1 ∧ e2) = e3. �

Generalizing Example 1 to a single-term product a ∧ b, where a and b are
vectors from V , we find that the vector c = ∗(a ∧ b) is equal to the usually
defined vector product or “cross product” c = a× b. We note that the vector
product depends on the choice of the orientation of the basis; exchanging the
order of any two basis vectors will change the sign of the tensor ω and hence
will change the sign of the vector product.
Exercise 1: The vector product in R3 is usually defined through the compo-
nents of vectors in an orthogonal basis, as in Eq. (1.2). Show that the definition

a × b ≡ ∗(a ∧ b)

is equivalent to that.
Hint: Since the vector product is bilinear, it is sufficient to show that ∗(a∧b)

is linear in both a and b, and then to consider the pairwise vector products
e1 × e2, e2 × e3, e3 × e1 for an orthonormal basis {e1, e2, e3}. Some of these
calculations were performed in Example 1. �

The Hodge star is a one-to-one map because ∗(a ∧ b) = 0 if and only if
a∧b = 0. Hence, the inverse map V → ∧2V exists. It is convenient to denote
the inverse map also by the same “star” symbol, so that we have the map
∗ : V → ∧2V . For example,

∗(e1) = e2 ∧ e3, ∗(e2) = −e1 ∧ e3,

∗ ∗ (e1) = ∗(e2 ∧ e3) = e1.

We may then write symbolically ∗∗ = 1̂; here one of the stars stands for the
map V → ∧2V , and the other star is the map ∧2V → V .

The triple product is defined by the formula

(a,b, c) ≡ 〈a,b × c〉 .

The triple product is fully antisymmetric,

(a,b, c) = − (b,a, c) = − (a, c,b) = + (c,a,b) = ...

The geometric interpretation of the triple product is that of the oriented vol-
ume of the parallelepiped spanned by the vectors a, b, c. This suggests a
connection with the exterior power ∧3(R3).

220



5.4 Applications of exterior product

Indeed, the triple product can be expressed through the exterior product.
We again use the tensor ω = e1 ∧ e2 ∧ e3. Since {ej} is an orthonormal basis,
the volume of the parallelepiped spanned by e1, e2, e3 is equal to 1. Then we
can express a ∧ b ∧ c as

a ∧ b ∧ c = 〈a, ∗(b ∧ c)〉ω = 〈a,b × c〉ω = (a,b, c)ω.

Therefore we may write

(a,b,c) =
a ∧ b ∧ c

ω
.

In the index notation, the triple product is written as

(a,b, c) ≡ εjkla
jbkcl.

Here the symbol εjkl (the Levi-Civita symbol) is by definition ε123 = 1 and
εijk = −εjik = −εikj . This antisymmetric array of numbers, εijk, can be
also thought of as the index representation of the unit volume tensor ω =
e1 ∧ e2 ∧ e3 because

ω = e1 ∧ e2 ∧ e3 =
1

3!

3∑

i,j,k=1

εijkei ∧ ej ∧ ek.

Remark: Geometric interpretation. The Hodge star is useful in conjunction
with the interpretation of bivectors as oriented areas. If a bivector a ∧ b rep-
resents the oriented area of a parallelogram spanned by the vectors a and b,
then ∗(a ∧ b) is the vector a × b, i.e. the vector orthogonal to the plane of the
parallelogram whose length is numerically equal to the area of the parallelo-
gram. Conversely, if n is a vector then ∗(n) is a bivector that may represent
some parallelogram orthogonal to n with the appropriate area.

Another geometric example is the computation of the intersection of two
planes: If a ∧ b and c ∧ d represent two parallelograms in space then

∗
(
[∗(a ∧ b)] ∧ [∗(c ∧ d)]

)
= (a × b) × (c × d)

is a vector parallel to the line of intersection of the two planes containing
the two parallelograms. While in three dimensions the Hodge star yields the
same results as the cross product, the advantage of the Hodge star is that it is
defined in any dimensions, as the next section shows. �

5.4.3 Hodge star and Levi-Civita symbol in N dimensions

We would like to generalize our results to an N -dimensional space. We begin
by defining the unit volume tensor ω = e1∧ ...∧eN , where {ej} is a positively
oriented orthonormal basis. As we have seen, the tensor ω is independent of
the choice of the orthonormal basis {ej} and depends only on the scalar prod-
uct and on the choice of the orientation of space. (Alternatively, the choice of
ω rather than −ω as the unit volume tensor defines the fact that the basis {ej}
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is positively oriented.) Below we will always assume that the orthonormal
basis {ej} is chosen to be positively oriented.

The Hodge star is now defined as a linear map V → ∧N−1V through its
action on the basis vectors,

∗(ej) ≡ (−1)j−1e1 ∧ ... ∧ ej−1 ∧ ej+1 ∧ ... ∧ eN ,

where we write the exterior product of all the basis vectors except ej . To
check the sign, we note the identity

ej ∧ ∗(ej) = ω, 1 ≤ j ≤ N.

Remark: The Hodge star map depends on the scalar product and on the
choice of the orientation of the space V , i.e. on the choice of the sign in the
basis tensor ω ≡ e1 ∧ ... ∧ eN , but not on the choice of the vectors {ej} in
a positively oriented orthonormal basis. This is in contrast with the “com-
plement” operation defined in Sec. 2.3.3, where the scalar product was not
available: the “complement” operation depends on the choice of every vec-
tor in the basis. The “complement” operation is equivalent to the Hodge star
only if we use an orthonormal basis.

Alternatively, given some basis {vj}, we may temporarily introduce a new
scalar product such that {vj} is orthonormal. The “complement” operation is
then the same as the Hodge star defined with respect to the new scalar prod-
uct. The “complement” operation was introduced by H. Grassmann (1844)
long before the now standard definitions of vector space and scalar product
were developed. �

The Hodge star can be also defined more generally as a map of ∧kV to
∧N−kV . The construction of the Hodge star map is as follows. We require that
it be a linear map. So it suffices to define the Hodge star on single-term prod-
ucts of the form a1 ∧ ...∧ak. The vectors {ai | i = 1, ..., k} define a subspace of
V , which we temporarily denote by U ≡ Span {ai}. Through the scalar prod-
uct, we can construct the orthogonal complement subspace U⊥; this subspace
consists of all vectors that are orthogonal to every ai. Thus, U is an (N − k)-
dimensional subspace of V . We can find a basis {bi | i = k + 1, ..., N} in U⊥

such that
a1 ∧ ... ∧ ak ∧ bk+1 ∧ ... ∧ bN = ω. (5.6)

Then we define

∗(a1 ∧ ... ∧ ak) ≡ bk+1 ∧ ... ∧ bN ∈ ∧N−kV.

Examples:

∗(e1 ∧ e3) = −e2 ∧ e4 ∧ ... ∧ eN ;

∗(1) = e1 ∧ ... ∧ eN ; ∗(e1 ∧ ... ∧ eN ) = 1.

The fact that we denote different maps by the same star symbol will not cause
confusion because in each case we will write the tensor to which the Hodge
star is applied. �

Even though (by definition) ej ∧ ∗(ej) = ω for the basis vectors ej , it is not
true that x ∧ ∗(x) = ω for any x ∈ V .
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Exercise 1: Show that x ∧ (∗x) = 〈x,x〉ω for any x ∈ V . Then set x = a + b

and show (using ∗ω = 1) that

〈a,b〉 = ∗(a ∧ ∗b) = ∗(b ∧ ∗a), ∀a,b ∈ V.

Statement: The Hodge star map ∗ : ∧kV → ∧N−kV , as defined above, is
independent of the choice of the basis in U⊥.
Proof: A different choice of basis in U⊥, say {b′

i} instead of {bi}, will yield
a tensor b′

k+1 ∧ ...∧ b′
N that is proportional to bk+1 ∧ ...∧ bN . The coefficient

of proportionality is fixed by Eq. (5.6). Therefore, no ambiguity remains. �

The insertion map ιa∗ was defined in Sec. 2.3.1 for covectors a∗. Due to the
correspondence between vectors and covectors, we may now use the inser-
tion map with vectors. Namely, we define

ιxψ ≡ ιx∗ψ,

where the covector x∗ is defined by

x∗(v) ≡ 〈x,v〉 , ∀v ∈ V.

For example, we then have

ιx(a ∧ b) = 〈x,a〉b − 〈x,b〉a.

Exercise 2: Show that ∗(ei) = ιei
ω for basis vectors ei. Deduce that ∗x = ιxω

for any x ∈ V .
Exercise 3: Show that

∗x =

N∑

i=1

〈x, ei〉 ιei
ω =

N∑

i=1

(ιei
x)(ιei

ω).

Here ιab ≡ 〈a,b〉. �

In the previous section, we saw that ∗ ∗ e1 = e1 (in three dimensions).
The following exercise shows what happens in N dimensions: we may get a
minus sign.
Exercise 4: a) Given a vector x ∈ V , define ψ ∈ ∧N−1V as ψ ≡ ∗x. Then
show that

∗ψ ≡ ∗(∗x) = (−1)N−1x.

b) Show that ∗∗ = (−1)k(N−k)1̂ when applied to the space ∧kV or ∧N−kV .
Hint: Since ∗ is a linear map, it is sufficient to consider its action on a basis

vector, say e1, or a basis tensor e1 ∧ ...∧ ek ∈ ∧kV , where {ej} is an orthonor-
mal basis.
Exercise 5: Suppose that a1, ..., ak, x ∈ V are such that 〈x,ai〉 = 0 for all
i = 1, ..., k while 〈x,x〉 = 1. The k-vector ψ ∈ ∧kV is then defined as a
function of t by

ψ(t) ≡ (a1 + tx) ∧ ... ∧ (ak + tx) .

Show that t∂tψ = x ∧ ιxψ.
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5 Scalar product

Exercise 6: For x ∈ V and ψ ∈ ∧kV (1 ≤ k ≤ N ), the tensor ιxψ ∈ ∧k−1V is
called the interior product of x and ψ. Show that

ιxψ = ∗(x ∧ ∗ψ).

(Note however that ψ ∧ ∗x = 0 for k ≥ 2.)
Exercise 7: a) Suppose x ∈ V and ψ ∈ ∧kV are such that x ∧ ψ = 0 while
〈x,x〉 = 1. Show that

ψ = x ∧ ιxψ.
Hint: Use Exercise 2 in Sec. 2.3.2 with a suitable f∗.

b) For any ψ ∈ ∧kV , show that

ψ =
1

k

N∑

j=1

ej ∧ ιej
ψ,

where {ej} is an orthonormal basis.
Hint: It suffices to consider ψ = ei1 ∧ ... ∧ eik

. �

The Levi-Civita symbol εi1...iN
is defined in an N -dimensional space as the

coordinate representation of the unit volume tensor ω ≡ e1 ∧ ... ∧ eN ∈ ∧NV
(see also Sections 2.3.6 and 3.4.1). When a scalar product is fixed, the tensor
ω is unique up to a sign; if we assume that ω corresponds to a positively
oriented basis, the Levi-Civita symbol is the index representation of ω in any
positively oriented orthonormal basis. It is instructive to see how one writes
the Hodge star in the index notation using the Levi-Civita symbol. (I will
write the summations explicitly here, but keep in mind that in the physics
literature the summations are implicit.)

Given an orthonormal basis {ej}, the natural basis in ∧kV is the set of ten-
sors {ei1 ∧ ... ∧ eik

} where all indices i1, ..., ik are different (or else the exterior
product vanishes). Therefore, an arbitrary tensor ψ ∈ ∧kV can be expanded
in this basis as

ψ =
1

k!

N∑

i1,...,ik=1

Ai1...ikei1 ∧ ... ∧ eik
,

where Ai1...ik are some scalar coefficients. I have included the prefactor 1/k!
in order to cancel the combinatorial factor k! that appears due to the summa-
tion over all the indices i1, ..., ik.

Let us write the tensor ψ ≡ ∗(e1) in this way. The corresponding coeffi-
cientsAi1...iN−1 are zero unless the set of indices (i1, ..., iN−1) is a permutation
of the set (2, 3, ..., N). This statement can be written more concisely as

(∗e1)
i1...iN−1 ≡ Ai1...iN−1 = ε1i1...iN−1 .

Generalizing to an arbitrary vector x =
∑N

j=1 xjej , we find

(∗x)i1...iN−1 ≡
N∑

j=1

xj(∗ej)
i1...iN−1 =

N∑

i,j=1

xjδjiε
ii1...iN−1 .
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5.4 Applications of exterior product

Remark: The extra Kronecker symbol above is introduced for consistency of
the notation (summing only over a pair of opposite indices). However, this
Kronecker symbol can be interpreted as the coordinate representation of the
scalar product in the orthonormal basis. This formula then shows how to
write the Hodge star in another basis: replace δji with the matrix representa-
tion of the scalar product. �

Similarly, we can write the Hodge star of an arbitrary k-vector in the index
notation through the ε symbol. For example, in a four-dimensional space one
maps a 2-vector

∑

i,j A
ijei ∧ ej into

∗
(∑

i,j

Aijei ∧ ej

)
=
∑

k,l

Bklek ∧ el,

where

Bkl ≡ 1

2!

∑

i,j,m,n

δkmδlnεijmnA
ij .

A vector v =
∑

i v
iei is mapped into

∗(v) = ∗
(∑

i

viei

)
=

1

3!

∑

i,j,k,l

εijklv
iej ∧ ek ∧ el.

Note the combinatorial factors 2! and 3! appearing in these formulas, accord-
ing to the number of indices in ε that are being summed over.

5.4.4 Reciprocal basis

Suppose {v1, ...,vN} is a basis in V , not necessarily orthonormal. For any x ∈
V , we can compute the components of x in the basis {vj} by first computing
the dual basis,

{
v∗

j

}
, as in Sec. 2.3.3, and then writing

x =

N∑

i=1

xivi, xi ≡ v∗
i (x).

The scalar product in V provides a vector-covector correspondence. Hence,
each v∗

i has a corresponding vector; let us denote that vector temporarily by
ui. We then obtain a set ofN vectors, {u1, ...,uN}. By definition of the vector-
covector correspondence, the vector ui is such that

〈ui,x〉 = v∗
i (x) ≡ xi, ∀x ∈ V.

We will now show that the set {u1, ...,uN} is a basis in V . It is called the
reciprocal basis for the basis {vj}. The reciprocal basis is useful, in partic-
ular, because the components of a vector x in the basis {vj} are computed
conveniently through scalar products with the vectors {uj}, as shown by the
formula above.

Statement 1: The set {u1, ...,uN} is a basis in V .
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5 Scalar product

Proof: We first note that

〈ui,vj〉 ≡ v∗
i (vj) = δij .

We need to show that the set {u1, ...,uN} is linearly independent. Suppose
a vanishing linear combination exists,

N∑

i=1

λiui = 0,

and take its scalar product with the vector v1,

0 =
〈
v1,

N∑

i=1

λiui

〉
=

N∑

i=1

λiδ1i = λ1.

In the same way we show that all λi are zero. A linearly independent set of
N vectors in an N -dimensional space is always a basis, hence {uj} is a basis.
�

Exercise 1: Show that computing the reciprocal basis to an orthonormal basis
{ej} gives again the same basis {ej}. �

The following statement shows that, in some sense, the reciprocal basis is
the “inverse” of the basis {vj}.

Statement 2: The oriented volume of the parallelepiped spanned by {uj} is
the inverse of that spanned by {vj}.
Proof: The volume of the parallelepiped spanned by {uj} is found as

Vol {uj} =
u1 ∧ ... ∧ uN

e1 ∧ ... ∧ eN
,

where {ej} is a positively oriented orthonormal basis. Let us introduce an

auxiliary transformation M̂ that maps {ej} into {vj}; such a transformation

surely exists and is invertible. Since M̂ej = vj (j = 1, ..., N ), we have

det M̂ =
M̂e1 ∧ ... ∧ M̂eN

e1 ∧ ... ∧ eN
=

v1 ∧ ... ∧ vN

e1 ∧ ... ∧ eN
= Vol {vj} .

Consider the transposed operator M̂T (the transposition is performed using

the scalar product, see Definition 1 in Sec. 5.3.1). We can now show that M̂T

maps the dual basis {uj} into {ej}. To show this, we consider the scalar
products

〈ei, M̂
T uj〉 = 〈M̂ei,uj〉 = 〈vi,uj〉 = δij .

Since the above is true for any i, j = 1, ..., N , it follows that M̂T uj = ej as
desired.

Since det M̂T = det M̂ , we have

e1 ∧ ... ∧ eN = M̂T u1 ∧ ... ∧ M̂T uN = (det M̂)u1 ∧ ... ∧ uN .
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5.5 Scalar product in ∧kV

It follows that

Vol {uj} =
u1 ∧ ... ∧ uN

e1 ∧ ... ∧ eN
=

1

det M̂
=

1

Vol {vj}
.

�

The vectors of the reciprocal basis can be also computed using the Hodge
star, as follows.

Exercise 2: Suppose that {vj} is a basis (not necessarily orthonormal) and
{uj} is its reciprocal basis. Show that

u1 = ∗(v2 ∧ ... ∧ vN )
ω

v1 ∧ ... ∧ vN
,

where ω ≡ e1 ∧ ... ∧ eN , {ej} is a positively oriented orthonormal basis, and
we use the Hodge star as a map from ∧N−1V to V .

Hint: Use the formula for the dual basis (Sec. 2.3.3),

v∗
1(x) =

x ∧ v2 ∧ ... ∧ vN

v1 ∧ v2 ∧ ... ∧ vN
,

and the property

〈x,u〉ω = x ∧ ∗u.

5.5 Scalar product in ∧kV
In this section we will apply the techniques developed until now to the prob-
lem of computing k-dimensional volumes.

If a scalar product is given in V , one can naturally define a scalar prod-
uct also in each of the spaces ∧kV (k = 2, ..., N ). We will show that this scalar
product allows one to compute the ordinary (number-valued) volumes repre-
sented by tensors from ∧kV . This is fully analogous to computing the lengths
of vectors through the scalar product in V . A vector v in a Euclidean space
represents at once the orientation and the length of a straight line segment

between two points; the length is found as
√

〈v,v〉 using the scalar product
in V . Similarly, a tensor ψ = v1 ∧ ... ∧ vk ∈ ∧kV represents at once the ori-
entation and the volume of a parallelepiped spanned by the vectors {vj}; the

unoriented volume of the parallelepiped will be found as
√

〈ψ,ψ〉 using the
scalar product in ∧kV .

We begin by considering the space ∧NV .

5.5.1 Scalar product in ∧N
V

Suppose {uj} and {vj} are two bases in V , not necessarily orthonormal, and
consider the pairwise scalar products

Gjk ≡ 〈uj ,vk〉 , j, k = 1, ..., N.
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5 Scalar product

The coefficients Gjk can be arranged into a square-shaped table, i.e. into a
matrix. The determinant of this matrix, det(Gjk), can be computed using
Eq. (3.1). Now consider two tensors ω1, ω2 ∈ ∧NV defined as

ω1 ≡ u1 ∧ ... ∧ uN , ω2 ≡ v1 ∧ ... ∧ vN .

Then det(Gjk), understood as a function of the tensors ω1 and ω2, is bilinear
and symmetric, and thus can be interpreted as the scalar product of ω1 and
ω2. After some work proving the necessary properties, we obtain a scalar
product in the space ∧NV , given a scalar product in V .

Exercise 1: We try to define the scalar product in the space ∧NV as follows:
Given a scalar product 〈·, ·〉 in V and given two tensors ω1, ω2 ∈ ∧NV , we
first represent these tensors in some way as products

ω1 ≡ u1 ∧ ... ∧ uN , ω2 ≡ v1 ∧ ... ∧ vN ,

where {ui} and {vi} are some suitable sets of vectors, then consider the ma-
trix of pairwise scalar products 〈ui,vj〉, and finally define the scalar product
〈ω1, ω2〉 as the determinant of that matrix:

〈ω1, ω2〉 ≡ det 〈ui,vj〉 .

Prove that this definition really yields a symmetric bilinear form in ∧NV ,
independently of the particular representation of ω1, ω2 through vectors.

Hint: The known properties of the determinant show that 〈ω1, ω2〉 is an
antisymmetric and multilinear function of every ui and vj . A linear trans-
formation of the vectors {ui} that leaves ω1 constant will also leave 〈ω1, ω2〉
constant. Therefore, it can be considered as a linear function of the tensors ω1

and ω2. Symmetry follows from det(Gij) = det(Gji).

Exercise 2: Given an orthonormal basis {ej | j = 1, ..., N}, let us consider the
unit volume tensor ω ≡ e1 ∧ ... ∧ eN ∈ ∧NV .

a) Show that 〈ω, ω〉 = 1, where the scalar product in ∧NV is chosen accord-
ing to the definition in Exercise 1.

b) Given a linear operator Â, show that det Â = 〈ω,∧N ÂNω〉.

Exercise 3: For any φ, ψ ∈ ∧NV , show that

〈φ, ψ〉 =
φ

ω

ψ

ω
,

where ω is the unit volume tensor. Deduce that 〈φ, ψ〉 is a positive-definite
bilinear form.

Statement: The volume of a parallelepiped spanned by vectors v1, ..., vN is
equal to

√

det(Gij), where Gij ≡ 〈vi,vj〉 is the matrix of the pairwise scalar
products.
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5.5 Scalar product in ∧kV

Proof: If v1 ∧ ... ∧ vN 6= 0, the set of vectors {vj | j = 1, ..., N} is a basis in
V . Let us also choose some orthonormal basis {ej | j = 1, ..., N}. There exists

a linear transformation Â that maps the basis {ej} into the basis {vj}. Then

we have Âej = vj and hence

Gij = 〈vi,vj〉 = 〈Âei, Âej〉 = 〈ÂT Âei, ej〉.

It follows that the matrix Gij is equal to the matrix representation of the op-

erator ÂT Â in the basis {ej}. Therefore,

det(Gij) = det(ÂT Â) = (det Â)2.

Finally, we note that the volume v of the parallelepiped spanned by {vj} is
the coefficient in the tensor equality

ve1 ∧ ... ∧ eN = v1 ∧ ... ∧ vN = (det Â)e1 ∧ ... ∧ eN .

Hence v2 = (det Â)2 = det(Gij). �

We have found that the (unoriented, i.e. number-valued) N -dimensional
volume of a parallelepiped spanned by a set ofN vectors {vj} is expressed as

v =
√

〈ψ,ψ〉, where ψ ≡ v1 ∧ ... ∧ vN is the tensor representing the oriented
volume of the parallelepiped, and 〈ψ,ψ〉 is the scalar product in the space

∧NV . The expression |ψ| ≡
√

〈ψ,ψ〉 is naturally interpreted as the “length”
of the tensor ψ. In this way, we obtain a geometric interpretation of tensors
ψ ∈ ∧NV as oriented volumes of parallelepipeds: The tensor ψ represents at
once the orientation of the parallelepiped and the magnitude of the volume.

5.5.2 Volumes of k-dimensional parallelepipeds

In a similar way we treat k-dimensional volumes.
We begin by defining a scalar product in the spaces ∧kV for 2 ≤ k ≤ N . Let

us choose an orthonormal basis {ej} in V and consider the set of
(
N
k

)
tensors

ωi1...ik
≡ ei1 ∧ ... ∧ eik

∈ ∧kV.

Since the set of these tensors (for all admissible sets of indices) is a basis in
∧kV , it is sufficient to define the scalar product of any two tensors ωi1...ik

. It
is natural to define the scalar product such that ωi1...ik

are orthonormal:

〈ωi1...ik
, ωi1...ik

〉 = 1,

〈ωi1...ik
, ωj1...jk

〉 = 0 if ωi1...ik
6= ±ωj1...jk

.

For any two tensors ψ1, ψ2 ∈ ∧kV , we then define 〈ψ1, ψ2〉 by expressing
ψ1, ψ2 through the basis tensors ωi1...ik

and requiring the bilinearity of the
scalar product.

In the following exercise, we derive an explicit formula for the scalar prod-
uct 〈ψ1, ψ2〉 through scalar products of the constituent vectors.
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5 Scalar product

Exercise 1: Use the definition above to prove that

〈u1 ∧ ... ∧ uk,v1 ∧ ... ∧ vk〉 = det 〈ui,vj〉 . (5.7)

Hints: The right side of Eq. (5.7) is a totally antisymmetric, linear function of
every ui due to the known properties of the determinant. Also, the function is
invariant under the interchange of uj with vj . The left side of Eq. (5.7) has the
same symmetry and linearity properties. Therefore, it is sufficient to verify
Eq. (5.7) when vectors ui and vj are chosen from the set of orthonormal basis
vectors {ej}. Then u1 ∧ ... ∧ uk and v1 ∧ ... ∧ vk are among the basis tensors
ωi1...ik

. Show that the matrix 〈ui,vj〉 has at least one row or one column
of zeros unless the sets {ui} and {vj} coincide as unordered sets of vectors,
i.e. unless

u1 ∧ ... ∧ uk = ±v1 ∧ ... ∧ vk.

If the above does not hold, both sides of Eq. (5.7) are zero. It remains to
verify that both sides of Eq. (5.7) are equal to 1 when we choose identical
vectors ui = vi from the orthonormal basis, for instance if uj = vj = ej for
j = 1, ..., k. �

We now come back to the problem of computing the volume of a k-dimen-
sional parallelepiped spanned by vectors {v1, ...,vk} in an n-dimensional Eu-
clidean space Rn. In Sec. 2.1.2 we considered a parallelogram (i.e. we had

k = 2), and we projected the parallelogram onto the
(
N
2

)
coordinate planes

to define a “vector-valued” area. We now generalize that construction to k-
dimensional parallelepipeds. We project the given parallelepiped onto each
of the k-dimensional coordinate hyperplanes in the space, which are the sub-

spaces Span {ei1 , ..., eik
} (with 1 ≤ i1 < ... < ik ≤ n). There will be

(
N
k

)

such coordinate hyperplanes and, accordingly, we may determine the
(
N
k

)

oriented k-dimensional volumes of these projections. It is natural to view
these numbers as the components of the oriented volume of the k-dimensional

parallelepiped in some basis in the
(
N
k

)
-dimensional “space of oriented vol-

umes.” As we have shown before, oriented volumes are antisymmetric in the
vectors vj . The space of all antisymmetric combinations of k vectors is, in our
present notation, ∧kV . Thus the oriented volume of the k-dimensional paral-
lelepiped is represented by the tensor v1 ∧ ... ∧ vk ∈ ∧kV . The unoriented
volume is computed as the “length” of the oriented volume, defined via the
scalar product in ∧kV .

Statement: The unoriented k-dimensional volume v of a parallelepiped span-

ned by k vectors {v1, ...,vk} is equal to
√

〈ψ,ψ〉, where ψ ≡ v1 ∧ ... ∧ vk and
〈ψ,ψ〉 is the scalar product defined above.
Proof: Consider the orthogonal projection of the given k-dimensional paral-

lelepiped onto some k-dimensional coordinate hyperplane, e.g. onto the hy-
perplane Span {e1, ..., ek}. Each vector vi is projected orthogonally, i.e. by
omitting the components of vi at ek+1, ..., eN . Let us denote the projected
vectors by ṽi (i = 1, ..., k). The projection is a k-dimensional parallelepi-
ped spanned by {ṽi} in the coordinate hyperplane. Let us now restrict at-
tention to the subspace Span {e1, ..., ek}. In this subspace, the oriented k-
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5.5 Scalar product in ∧kV

dimensional volume of the projected parallelepiped is represented by the ten-

sor ψ̃ ≡ ṽ1 ∧ ... ∧ ṽk. By construction, ψ̃ is proportional to the unit volume

tensor in the subspace, ψ̃ = λe1 ∧ ... ∧ ek for some λ. Therefore, the oriented
k-dimensional volume of the projected parallelepiped is equal to λ.

Let us now decompose the tensor ψ into the basis tensors in ∧kV ,

ψ =
∑

1≤i1<...<ik≤N

ci1...ik
ωi1...ik

= c1...ke1 ∧ ... ∧ ek + c13...(k+1)e1 ∧ e3 ∧ ... ∧ ek+1 + ...,

where we have only written down the first two of the
(
N
k

)
possible terms of

the expansion. The projection of {vi} onto the hyperplane Span {e1, ..., ek}
removes the components proportional to ek+1, ..., eN , hence ψ̃ is equal to the
first term c1...ke1 ∧ ... ∧ ek. Therefore, the oriented volume of the projection
onto the hyperplane Span {e1, ..., ek} is equal to c1...k.

By definition of the scalar product in ∧kV , all the basis tensors ωi1...ik
are

orthonormal. Hence, the coefficients ci1...ik
can be computed as

ci1...ik
= 〈ψ, ei1 ∧ ... ∧ eik

〉 ≡ 〈ψ, ωi1...ik
〉 .

For brevity, we may introduce the multi-index I ≡ {i1, ..., ik} and rewrite the
above as

cI = 〈ψ, ωI〉 .
Then the value 〈ψ,ψ〉 can be computed as

〈ψ,ψ〉 =
〈∑

I

cIωI ,
∑

J

cJωJ

〉
=
∑

I,J

cIcJ 〈ωI , ωJ 〉

=
∑

I,J

cIcJδIJ =
∑

I

|cI |2 .

In other words, we have shown that 〈ψ,ψ〉 is equal to the sum of all
(
N
k

)

squared projected volumes,

〈ψ,ψ〉 =
∑

1≤i1<...<ik≤N

|ci1...ik
|2 .

It remains to show that
√

〈ψ,ψ〉 is actually equal to the unoriented vol-
ume v of the parallelepiped. To this end, let us choose a new orthonormal
basis {ẽj} (j = 1, ..., N ) such that every vector vi (i = 1, ..., k) lies entirely
within the hyperplane spanned by the first k basis vectors. (This choice of
basis is certainly possible, for instance, by choosing an orthonormal basis in
Span {vi} and then completing it to an orthonormal basis in V .) Then we will

have ψ = λ̃ẽ1 ∧ ... ∧ ẽk, i.e. with zero coefficients for all other basis tensors.
Restricting attention to the subspace Span {ẽ1, ..., ẽk}, we can use the results

of Sec. 5.5.1 to find that the volume v is equal to |λ̃|. It remains to show that
√

〈ψ,ψ〉 = |λ̃|.
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5 Scalar product

The transformation from the old basis {ej} to {ẽj} can be performed us-

ing a certain orthogonal transformation R̂ such that R̂ej = ẽj (j = 1, ..., N).
Since the scalar product in ∧kV is defined directly through scalar products of

vectors in V (Exercise 1) and since R̂ is orthogonal, we have for any {ai} and
{bi} that

〈R̂a1 ∧ ... ∧ R̂ak, R̂b1 ∧ ... ∧ R̂bk〉 = det〈R̂ai, R̂bj〉
= det 〈ai,bj〉 = 〈a1 ∧ ... ∧ ak,b1 ∧ ... ∧ bk〉 .

In other words, the operator ∧kR̂k is an orthogonal transformation in ∧kV .
Therefore,

ψ = λ̃ẽ1 ∧ ... ∧ ẽk = λ̃R̂e1 ∧ ... ∧ R̂ek = λ̃
(
∧kR̂kω1...k

)
;

〈ψ,ψ〉 = λ̃2〈∧kR̂kω1...k,∧kR̂kω1...k〉 = λ̃2 〈ω1...k, ω1...k〉 = λ̃2.

Therefore,
√

〈ψ,ψ〉 = |λ̃| = v as required. �

Remark: The scalar product in the space ∧kV is related the k-dimensional
volume of a body embedded in the space V , in the same way as the scalar
product in V is related to the length of a straight line segment embedded in
V . The tensor ψ = v1∧ ...∧vk fully represents the orientation of the k-dimen-
sional parallelepiped spanned by the vectors {v1, ...,vk}, while the “length”
√

〈ψ,ψ〉 of this tensor gives the numerical value of the volume of the parallel-
epiped. This is a multidimensional generalization of the Pythagoras theorem
that is not easy to visualize! The techniques of exterior algebra enables us to
calculate these quantities without visualizing them.

Example 1: In a Euclidean space R4 with a standard orthonormal basis {ej},
a three-dimensional parallelepiped is spanned by the given vectors

a = e1 + 2e2, b = e3 − e1, c = e2 + e3 + e4.

We would like to determine the volume of the parallelepiped. We compute
the wedge product ψ ≡ a ∧ b ∧ c using Gaussian elimination,

ψ = (e1 + 2e2) ∧ (e3 − e1) ∧ (e2 + e3 + e4)

= (e1 + 2e2) ∧ (e3 + 2e2) ∧ (e2 + e3 + e4)

= [(e1 + 2e2) ∧ e3 + 2e1 ∧ e2] ∧
(

1
2e3 + e4

)

= e1 ∧ e2 ∧ e3 + e1 ∧ e3 ∧ e4

+ 2e2 ∧ e3 ∧ e4 + 2e1 ∧ e2 ∧ e4.

We see that the volumes of the projections onto the four coordinate hyper-
planes are 1, 1, 2, 2. Therefore the numerical value of the volume is

v =
√

〈ψ,ψ〉 =
√

1 + 1 + 4 + 4 =
√

10.
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5.6 Scalar product for complex spaces

Exercise 2: Show that the scalar product of two tensors ψ1, ψ2 ∈ ∧kV can be
expressed through the Hodge star as

〈ψ1, ψ2〉 = ∗
(
ψ1 ∧ ∗ψ2

)
or as 〈ψ1, ψ2〉 = ∗

(
ψ2 ∧ ∗ψ1

)
,

depending on whether 2k ≤ N or 2k ≥ N .
Hint: Since both sides are linear in ψ1 and ψ2, it is sufficient to show that

the relationship holds for basis tensors ωi1...ik
≡ ei1 ∧ ... ∧ eik

.
Exercise 3: Intersection of hyperplanes. Suppose U1, ..., UN−1 ⊂ V are some
(N − 1)-dimensional subspaces (hyperplanes) in V . Each Ui can be repre-
sented by a tensor ψi ∈ ∧N−1V , e.g. by choosing ψi as the exterior product of
all vectors in a basis in U . Define the vector

v ≡ ∗
[
(∗ψ1) ∧ ... ∧ (∗ψN−1)

]
.

If v 6= 0, show that v belongs to the intersection of all the (N−1)-dimensional
hyperplanes.

Hint: Show that v ∧ ψi = 0 for each i = 1, ..., N − 1. Use Exercise 2.
Exercise 4: Show that 〈v,v〉 = 〈∗v, ∗v〉 for v ∈ V (noting that ∗v ∈ ∧N−1V
and using the scalar product in that space). Show more generally that

〈ψ1, ψ2〉 = 〈∗ψ1, ∗ψ2〉 ,

where ψ1, ψ2 ∈ ∧kV and thus ∗ψ1 and ∗ψ2 belong to ∧N−kV . Deduce that the
Hodge star is an orthogonal transformation in ∧N/2V (if N is even).

Hint: Use Exercise 2.

5.6 Scalar product for complex spaces

In complex spaces, one can get useful results if one defines the scalar product
in a different way. In this section we work in a complex vector space V .

A Hermitian scalar product is a complex function of two vectors a,b ∈ V
with the properties

〈a, λb〉 = λ 〈a,b〉 , 〈λa,b〉 = λ∗ 〈a,b〉 ,
〈a + b, c〉 = 〈a, c〉 + 〈b, c〉 , 〈b,a〉 = 〈a,b〉∗ ,

and nondegeneracy (∀a ∈ V , ∃b ∈ V such that 〈a,b 6= 0〉). (Note that λ∗ in
the formula above means the complex conjugate to λ.) It follows that 〈x,x〉
is real-valued. One usually also imposes the property 〈x,x〉 > 0 for x 6= 0,
which is positive-definiteness.
Remark: Note that the scalar product is not linear in the first argument be-
cause we have the factor λ∗ instead of λ; one says that it is antilinear. One
can also define a Hermitian scalar product that is linear in the first argument
but antilinear in the second argument, i.e. 〈a, λb〉 = λ∗ 〈a,b〉 and 〈λa,b〉 =
λ 〈a,b〉. Here we follow the definition used in the physics literature. This
definition is designed to be compatible with the Dirac notation for complex
spaces (see Example 3 below).

233



5 Scalar product

Example 1: In the vector space Cn, vectors are n-tuples of complex numbers,
x = (x1, ..., xn). A Hermitian scalar product is defined by the formula

〈x,y〉 =

n∑

i=1

x∗i yi.

This scalar product is nondegenerate and positive-definite.
Example 2: Suppose we have a real, N -dimensional vector space V with an
ordinary (real) scalar product 〈·, ·〉. We can construct a complex vector space
out of V by the following construction (called the complexification of V ).
First we consider the space C as a real, two-dimensional vector space over
R. Then we consider the tensor product V ⊗ C, still a vector space over R.
Elements of V ⊗ C are linear combinations of terms of the form v ⊗ λ, where
v ∈ V and λ ∈ C. However, the (2N -dimensional, real) vector space V ⊗ C
can be also viewed as a vector space over C: the multiplication of v ⊗ λ by
a complex number z yields v ⊗ (λz). Then V ⊗ C is interpreted as an N -
dimensional, complex vector space. A Hermitian scalar product in this space
is defined by

〈a ⊗ λ,b ⊗ µ〉 ≡ 〈a,b〉λ∗µ.
Here 〈a,b〉 is the ordinary (real) scalar product in V . It is easy to verify that
the properties of a Hermitian scalar product are satisfied by the above defini-
tion. �

Using the Hermitian scalar product, one defines an orthonormal basis and
other constructions analogous to those defined using the ordinary (real) scalar
product. For instance, the Hermitian scalar product allows one to identify
vectors and covectors.
Example 3: The vector-covector correspondence in complex spaces is slightly
different from that in real spaces. Consider a vector v ∈ V ; the corresponding
covector f∗ : V → C may be defined as

f∗(x) ≡ 〈v,x〉 ∈ C.

We denote the map v 7→ f∗ by a dagger symbol, called Hermitian conjuga-

tion, so that (v)
†

= f∗. Due to the antilinearity of the scalar product, we have
the property

(λv)
†

= λ∗ (v)
†
.

In the Dirac notation, one denotes covectors by the “bra” symbols such as 〈v|.
One then may write

(|v〉)† = 〈v| ,
i.e. one uses the same label “v” inside the special brackets. We then have

(λ |v〉)† = λ∗ 〈v| .

The Hermitian scalar product of vectors |a〉 and |b〉 is equal to the action of

(|a〉)† on |b〉 and denoted 〈a|b〉. Thus, the scalar product of |a〉 and λ |b〉 is
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equal to 〈a|λ |b〉 = λ 〈a|b〉, while the scalar product of λ |a〉 and |b〉 is equal to
λ∗ 〈a|b〉. �

Similarly to the transposed operator ÂT , the Hermitian conjugate operator

Â† is defined by

〈Â†x,y〉 ≡ 〈x, Ây〉, ∀x,y ∈ V.

In an orthonormal basis, the matrix describing the Hermitian conjugate oper-

ator Â† is obtained from the matrix of Â by transposing and complex conju-
gating each matrix element.
Example 4: In the space of linear operators EndV , a bilinear form can be
defined by

〈Â, B̂〉 ≡ Tr (Â†B̂).

As we will see in the next section (Exercise 2), this bilinear form is a positive-
definite scalar product in the space EndV . �

In the following sections, we consider some applications of the Hermitian
scalar product.

5.6.1 Symmetric and Hermitian operators

An operator Â is symmetric with respect to the scalar product if

〈u, Âv〉 = 〈Âu,v〉, ∀u,v ∈ V.

According to the definition of the transposed operator, the above property is

the same as ÂT = Â.
The notion of a symmetric operator is suitable for a real vector space. In a

complex vector space, one uses Hermitian conjugation instead of transposi-

tion: An operator Â is called Hermitian if Â† = Â.
Symmetric as well as Hermitian operators often occur in applications and

have useful properties.
Statement 1: a) All eigenvalues of a Hermitian operator are real (have zero
imaginary part).

b) If Â is a symmetric or Hermitian operator and v1, v2 are eigenvectors of

Â corresponding to different eigenvalues λ1 6= λ2, then v1 and v2 are orthog-
onal to each other: 〈v1,v2〉 = 0.

Proof: a) If v is an eigenvector of a Hermitian operator Â with eigenvalue
λ, we have

〈v, Âv〉 = 〈v, λv〉 = λ 〈v,v〉
= 〈Âv,v〉 = 〈λv,v〉 = λ∗ 〈v,v〉 .

Since 〈v,v〉 6= 0, we have λ = λ∗, i.e. λ is purely real.
b) We compute

〈v1, Âv2〉 = λ2 〈v1,v2〉
!
= 〈Âv1,v2〉 = λ1 〈v1,v2〉 .

(In the case of Hermitian operators, we have used the fact that λ1 is real.)
Hence, either λ1 = λ2 or 〈v1,v2〉 = 0. �
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Statement 2: If Â is either symmetric or Hermitian and has an eigenvector

v, the subspace orthogonal to v is invariant under Â.

Proof: We need to show that 〈x,v〉 = 0 entails 〈Âx,v〉 = 0. We compute

〈Âx,v〉 = 〈x, Âv〉 = λ 〈x,v〉 = 0.

Hence, Âx also belongs to the subspace orthogonal to v. �

Statement 3: A Hermitian operator is diagonalizable.
Proof: We work in an N -dimensional space V . The characteristic polyno-

mial of an operator Â has at least one (perhaps complex-valued) root λ, which

is an eigenvalue of Â, and thus there exists at least one eigenvector v corre-
sponding to λ. By Statement 2, the subspace v⊥ (the orthogonal complement

of v) is invariant under Â. The space V splits into a direct sum of Span {v}
and the subspace v⊥. We may consider the operator Â in that subspace; again
we find that there exists at least one eigenvector in v⊥. Continuing this argu-
ment, we split the entire space into a direct sum ofN orthogonal eigenspaces.

Hence, there exist N eigenvectors of Â. �

Statement 4: A symmetric operator in a real N -dimensional vector space is
diagonalizable, i.e. it has N real eigenvectors with real eigenvalues.
Proof: We cannot repeat the proof of Statement 3 literally, since we do not

know a priori that the characteristic polynomial of a symmetric operator has
all real roots; this is something we need to prove. Therefore we complexify
the space V , i.e. we consider the space V ⊗C as a vector space over C. In this
space, we introduce a Hermitian scalar product as in Example 2 in Sec. 5.6. In
the space V ⊗C there is a special notion of “real” vectors; these are vectors of
the form v ⊗ c with real c.

The operator Â is extended to the space V ⊗ C by

Â(v ⊗ c) ≡ (Âv) ⊗ c.

It is important to observe that the operator Â transforms real vectors into real

vectors, and moreover that Â is Hermitian in V ⊗ C if Â is symmetric in V .

Therefore, Â is diagonalizable in V ⊗ C with real eigenvalues.

It remains to show that all the eigenvectors of Â can be chosen real; this will

prove that Â is also diagonalizable in the original space V . So far we only

know that Â has N eigenvectors in V ⊗ C. Any vector from V ⊗ C can be
transformed into the expression u ⊗ 1 + v ⊗ i with u,v ∈ V . Let us assume

that u ⊗ 1 + v ⊗ i is an eigenvector of Â with eigenvalue λ. If v = 0, the
eigenvector is real, and there is nothing left to prove; so we assume v 6= 0.
Since λ is real, we have

Â(u ⊗ 1 + v ⊗ i) = (Âu) ⊗ 1 + (Âv) ⊗ i

!
=λu ⊗ 1 + λv ⊗ i.

If both u 6= 0 and v 6= 0, it follows that u and v are both eigenvectors of

Â with eigenvalue λ. Hence, the operator Â in V ⊗ C can be diagonalized
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by choosing the real eigenvectors as u ⊗ 1 and v ⊗ 1 instead of the complex
eigenvector u ⊗ 1 + v ⊗ i. If u = 0, we only need to replace the complex
eigenvector v ⊗ i by the equivalent real eigenvector v ⊗ 1. We have thus

shown that the eigenvectors of Â in V ⊗ C can be chosen real. �

Exercise 1: If an operator Â satisfies Â† = −Â, it is called anti-Hermitian.

Show that all eigenvalues of Â are pure imaginary or zero, that eigenvectors

of Â are orthogonal to each other, and that Â is diagonalizable.

Hint: The operator B̂ ≡ iÂ is Hermitian; use the properties of Hermitian
operators (Statements 1,2,3).

Exercise 2: Show that Tr(ÂT Â) > 0 for operators in a real space with a scalar

product, and Tr(Â†Â) > 0 for operators in a complex space with a Hermitian

scalar product. Deduce that 〈Â, B̂〉 ≡ Tr (ÂT B̂) and 〈Â, B̂〉 ≡ Tr (Â†B̂) are
positive-definite scalar products in the spaces of operators (assuming real or,
respectively, complex space V with a scalar product).

Hint: Compute Tr(ÂT Â) or Tr(Â†Â) directly through components of Â in
an orthonormal basis.

Exercise 3: Show that the set of all Hermitian operators is a subspace of
EndV , and the same for anti-Hermitian operators. Then show that these two
subspaces are orthogonal to each other with respect to the scalar product of
Exercise 2.

Exercise 4: Consider the space EndV of linear operators and two of its sub-

spaces: the subspace of traceless operators (i.e. operators Â with TrÂ = 0)
and the subspace of operators proportional to the identity (i.e. operators λ1̂V

for λ ∈ R). Show that these two subspaces are orthogonal with respect to the

scalar products 〈Â, B̂〉 ≡ Tr(ÂT B̂) or 〈Â, B̂〉 ≡ Tr (Â†B̂).

5.6.2 Unitary transformations

In complex spaces, the notion analogous to orthogonal transformations is uni-
tary transformations.

Definition: An operator is called unitary if it preserves the Hermitian scalar
product:

〈Âx, Ây〉 = 〈x,y〉 , ∀x,y ∈ V.

It follows that a unitary operator Â satisfies Â†Â = 1̂.

Exercise 2: If Â is Hermitian, show that the operators (1 + iÂ)−1(1− iÂ) and

exp (iÂ) are unitary.

Hint: The Hermitian conjugate of f(iÂ) is f(−iÂ†) if f(z) is an analytic
function. This can be shown by considering each term in the power series for
f(z).

Exercise 3: Show that the determinant of a unitary operator is a complex
number c such that |c| = 1.

Hint: First show that det(Â†) is the complex conjugate of det Â.
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5.7 Antisymmetric operators

In this and the following sections we work in a real vector space V in which
a scalar product 〈·, ·〉 is defined. The dimension of V is N ≡ dimV .

An operator Â is antisymmetric with respect to the scalar product if

〈u, Âv〉 + 〈Âu,v〉 = 0, ∀u,v ∈ V.

Exercise 1: Show that the set of all antisymmetric operators is a subspace of
V ⊗ V ∗.
Exercise 2: Show that ÂT + Â = 0 if and only if the operator Â is antisym-
metric.
Remark: Exercise 2 shows that antisymmetric operators are represented by
antisymmetric matrices — in an orthonormal basis. However, the matrix of an
operator in some other basis does not have to be antisymmetric. An operator
can be antisymmetric with respect to one scalar product and not antisymmet-
ric with respect to another.
Question: Surely an antisymmetric matrix has rather special properties. Why
is it that the corresponding operator is only antisymmetric with respect to some
scalar product? Is it not true that the corresponding operator has by itself
special properties, regardless of any scalar product?
Answer: Yes, it is true. It is a special property of an operator that there

exists a scalar product with respect to which the operator is antisymmetric. If
we know that this is true, we can derive some useful properties of the given
operator by using that scalar product. �

Statement 1: A 2-vector a ∧ b ∈ ∧2V can be mapped to an operator in V by

a ∧ b 7→ Â; Âx ≡ a 〈b,x〉 − b 〈a,x〉 , ∀x ∈ V.

This formula defines a canonical isomorphism between the space of anti-
symmetric operators (with respect to the given scalar product) and ∧2V . In

other words, any antisymmetric operator Â can be represented by a 2-vector
A ∈ ∧2V and vice versa.
Proof: Left as exercise.

Statement 2: Any 2-vector A ∈ ∧2V can be written as a sum
∑n

j=1 ak ∧ bk

using n terms, where n is some number such that n ≤ 1
2N (here N ≡ dimV ),

and the set of vectors {a1,b1, ...,an,bn} is linearly independent.
Proof: By definition, a 2-vector A is representable as a linear combination

of the form

A =

n∑

j=1

aj ∧ bj ,

with some vectors aj ,bj ∈ V and some value of n. We will begin with this
representation and transform it in order to minimize the number of terms.

The idea is to make sure that the set of vectors {a1,b1, ...,an,bn} is linearly
independent. If this is not so, there exists a linear relation, say

a1 = β1b1 +

n∑

j=2

(αjaj + βjbj) ,
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with some coefficients αj and βj . Using this relation, the term a1 ∧ b1 can be
rewritten as

a1 ∧ b1 =
n∑

j=2

(αjaj + βjbj) ∧ b1.

These terms can be absorbed by other terms aj ∧ bj (j = 2, ..., N ). For exam-
ple, by rewriting

a2 ∧ b2 + α2a2 ∧ b1 + β2b2 ∧ b1

= (a2 − β2b1) ∧ (b2 + α2b1)

≡ ã2 ∧ b̃2

we can absorb the term (αjaj + βjbj) ∧ b1 with j = 2 into a2 ∧ b2, replacing

the vectors a2 and b2 by new vectors ã2 and b̃2. In this way, we can redefine
the vectors aj ,bj (j = 2, ..., N ) so that the term a1 ∧ b1 is eliminated from the
expression for A. We continue this procedure until the set of all the vectors
aj ,bj is linearly independent. We now denote again by {a1,b1, ...,an,bn}
the resulting linearly independent set of vectors such that the representation
A =

∑n
j=1 aj ∧ bj still holds. Note that the final number n may be smaller

than the initial number. Since the number of vectors (2n) in the final, linearly
independent set {a1,b1, ...,an,bn} cannot be greater than N , the dimension
of the space V , we have 2n ≤ N and so n ≤ 1

2N . �

Exercise 3: A 2-vector A ∈ ∧2V satisfies A ∧ A = 0. Show that A can be
expressed as a single-term exterior product, A = a ∧ b.

Hint: Express A as a sum of smallest number of single-term products, A =
∑n

j=1 ak ∧bk, and show that A∧A = 0 implies n = 1: By Statement 2, the set
{ai,bi} is linearly independent. If n > 1, the expression A ∧ A will contain
terms such as a1 ∧ b1 ∧ a2 ∧ b2; a linear combination of these terms cannot
vanish, since they are all linearly independent of each other. To show that
rigorously, apply suitably chosen covectors a∗

i and b∗
i . �

Antisymmetric operators have the following properties.

Exercise 4: Show that the trace of an antisymmetric operator is equal to zero.

Hint: Use the property Tr(ÂT ) = Tr(Â).

Exercise 5: Show that the determinant of the antisymmetric operator is equal
to zero in an odd-dimensional space.

Remark: Note that the property of being antisymmetric is defined only with
respect to a chosen scalar product. (An operator may be represented by an an-
tisymmetric matrix in some basis, but not in another basis. An antisymmetric
operator is represented by an antisymmetric matrix only in an orthonormal

basis.) The properties shown in Exercises 3 and 4 will hold for any operator Â

such that some scalar product exists with respect to which Â is antisymmetric.

If Â is represented by an antisymmetric matrix in a given basis {ej}, we may
define the scalar product by requiring that {ej} be an orthonormal basis; then

Â will be antisymmetric with respect to that scalar product.
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Exercise 6: Show that the canonical scalar product 〈A,B〉 in the space ∧2V

(see Sec. 5.5.2) coincides with the scalar product 〈Â, B̂〉 ≡ Tr(ÂT B̂) when the

2-vectors A and B are mapped into antisymmetric operators Â and B̂.

Hint: It is sufficient to consider the basis tensors ei ∧ ej as operators Â and

B̂.
Exercise 7:* Show that any 2-vector A can be written as A =

∑n
i=1 λiai ∧ bi,

where the set {a1,b1, ...,an,bn} is orthonormal.
Outline of solution: Consider the complexified vector space V ⊗C in which a

Hermitian scalar product is defined; extend Â into that space, and show that

Â is anti-Hermitian. Then Â is diagonalizable and has all imaginary eigenval-

ues. However, the operator Â is real; therefore, its eigenvalues come in pairs
of complex conjugate imaginary values {iλ1,−iλ1, ..., iλn,−iλn}. The corre-
sponding eigenvectors {v1, v̄1, ...,vn, v̄n} are orthogonal and can be rescaled
so that they are orthonormal. Further, we may choose these vectors such that

v̄i is the vector complex conjugate to vi. The tensor representation of Â is

Â =
n∑

i=1

iλi (vi ⊗ v∗
i − v̄i ⊗ v̄∗

i ) ,

where {v∗
i , v̄

∗
i } is the basis dual to {vi, v̄i}. We now define the vectors

ai ≡
vi + v̄i√

2
, bi ≡

vi − v̄i

i
√

2
,

and verify that

Âai = −λibi, Âbi = λiai (i = 1, ..., n).

Furthermore, the set of vectors {a1,b1, ...,an,bn} is orthonormal, and all the
vectors ai, bi are real. Therefore, we can represent Â in the original space V
by the 2-vector

A ≡
n∑

i=1

λi (ai ∧ bi) .

The set {a1,b1, ...,an,bn} yields the solution to the problem.

5.8 * Pfaffians

The Pfaffian is a construction analogous to the determinant, except that it
applies only to antisymmetric operators in even-dimensional spaces with a
scalar product.

Definition: If Â is an antisymmetric operator in V and N ≡ dimV is even,

the Pfaffian of Â is the number Pf Â defined (up to a sign) as the constant
factor in the tensor equality

(Pf Â)e1 ∧ ... ∧ eN =
1

(N/2)!
A ∧ ... ∧A
︸ ︷︷ ︸

N/2

=
1

(N/2)!

N/2
∧

k=1

A,
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where {e1, ..., eN} is an orthonormal basis in V and A ∈ ∧2V is the tensor
corresponding to the operator Â. (Note that both sides in the equation above
are tensors from ∧NV .)

Remark: The sign of the Pfaffian depends on the orientation of the orthonor-
mal basis. Other than that, the Pfaffian does not depend on the choice of the
orthonormal basis {ej}. If this ambiguity is not desired, one could consider a
tensor-valued Pfaffian, A ∧ ... ∧ A ∈ ∧NV ; this tensor does not depend on the
choice of the orientation of the orthonormal basis. This is quite similar to the
ambiguity of the definition of volume and to the possibility of defining an un-
ambiguous but tensor-valued “oriented volume.” However, it is important to
note that {ej} must be a positively oriented orthonormal basis; if we change to
an arbitrary basis, the tensor e1 ∧ ... ∧ eN will be multiplied by some number

not equal to ±1, which will make the definition of Pf Â impossible.

Question: Can we define the Pfaffian of an operator if we do not have a scalar
product in V ? Can we define the Pfaffian of an antisymmetric matrix?

Answer: We need a scalar product in order to map an operator Â ∈ EndV
to a bivector A ∈ ∧2V ; this is central in the construction of the Pfaffian. If we
know that an operator Â is antisymmetric with respect to some scalar product
(i.e. if we know that such a scalar product exists) then we can use that scalar

product in order to define the Pfaffian of Â. In the language of matrices: If an
antisymmetric matrix is given, we can postulate that this matrix represents
an operator in some basis; then we can introduce a scalar product such that
this basis is orthonormal, so that this operator is an antisymmetric operator
with respect to this scalar product; and then the Pfaffian can be defined. �

To make the correspondence between operators and bivectors more visual,
let us represent operators by their matrices in an orthonormal basis. Anti-
symmetric operators are then represented by antisymmetric matrices.

Examples: First we consider a two-dimensional space V . Any 2 × 2 antisym-

metric matrix Â is necessarily of the form Â =

(
0 a
−a 0

)

, where a is some

number; the determinant of Â is then a2. Let us compute the Pfaffian of Â.

We find the representation of Â as an element of ∧2V as follows, Â = ae1∧e2,

and hence Pf Â = a. We note that the determinant is equal to the square of
the Pfaffian.

Let us now consider a four-dimensional space V and a 4× 4 antisymmetric
matrix; such a matrix must be of the form

B̂ =







0 a b c
−a 0 x y
−b −x 0 z
−c −y −z 0






,

where the numbers a, b, c, x, y, z are arbitrary. Let us compute the Pfaffian
and the determinant of the operator represented by this matrix. We find the

241



5 Scalar product

representation of B̂ as an element of ∧2V as follows,

B̂ = ae1 ∧ e2 + be1 ∧ e3 + ce1 ∧ e4

+ xe2 ∧ e3 + ye2 ∧ e4 + ze3 ∧ e4.

Therefore,
1

2!
B̂ ∧ B̂ = (az − by + cx) e1 ∧ e2 ∧ e3 ∧ e4.

(Note that the factor 1
2! cancels the combinatorial factor 2 resulting from the

antisymmetry of the exterior product.) Hence, Pf B̂ = az − by + cx.

Exercise: Compute the determinant of B̂ in the example above; show that

det B̂ = a2z2 − 2abyz + b2y2 − 2bcxy + c2x2 + 2acxz.

We see that, again, the determinant is equal to the square of the Pfaffian
(which is easier to compute).
Remark: The factor 1/(N/2)! used in the definition of the Pfaffian is a com-
binatorial factor. This factor could be inconvenient if we were calculating in
a finite number field where one cannot divide by (N/2)!. This inconvenience
can be avoided if we define the Pfaffian of a tensorA = v1∧v2+...+vn−1∧vn

as zero if n < N and as the coefficient in the tensor equality

v1 ∧ ... ∧ vN
!
=(Pf Â)e1 ∧ ... ∧ eN

if n = N . For example, consider the tensor

A = a ∧ b + c ∧ d

in a four-dimensional space (N = 4). We compute

A ∧A = (a ∧ b + c ∧ d) ∧ (a ∧ b + c ∧ d)

= 0 + a ∧ b ∧ c ∧ d + c ∧ d ∧ a ∧ b + 0

= 2a ∧ b ∧ c ∧ d.

It is clear that the factor 2 = (N/2)! arises due to the presence of 2 possible
permutations of the two tensors a∧b and c∧d and is therefore a combinatorial
factor. We can avoid the division by 2 in the definition of the Pfaffian if we
consider the tensor a∧ b∧ c∧ d right away, instead of dividing A∧A by 2.�

5.8.1 Determinants are Pfaffians squared

In the examples in the previous section, we have seen that the determinant
turned out to be equal to the square of the Pfaffian of the same operator. We
will now prove this correspondence in the general case.

Theorem: Given a linear operator Â in an even-dimensional space V where

a scalar product is defined, and given that the operator Â is antisymmetric
with respect to that scalar product, we have

(Pf Â)2 = det Â.
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Proof: We know that the tensor A ∈ ∧2V corresponding to the operator Â
can be written in the form

A = v1 ∧ v2 + ...+ vn−1 ∧ vk,

where the set of vectors {v1, ...,vk} is linearly independent (Statement 2 in
Sec. 5.7) and k ≤ N is an even number.

We begin by considering the case k < N . In this case the exterior product
A ∧ ... ∧ A (where A is taken N/2 times) will be equal to zero because there
are only k different vectors in that exterior product, while the total number

of vectors is N , so at least two vectors vi must be repeated. Also det Â = 0
in this case; this can be shown explicitly by completing {v1, ...,vk} to a basis
{v1, ...,vk, ek+1, ..., eN} such that all ej are orthogonal to all vi. (This can be
done by first completing {v1, ...,vk} to a basis and then applying the Gram-
Schmidt orthogonalization procedure to the vectors ej , j = k+1, ..., N .) Then

we will have Âej = 0 (j = k + 1, ..., N ). Acting with ∧N ÂN on the tensor
v1 ∧ ... ∧ vk ∧ ek+1 ∧ ... ∧ eN , we find

(∧N ÂN )(v1 ∧ ... ∧ vk ∧ ek+1 ∧ ... ∧ eN ) = ... ∧ ÂeN = 0

and hence det Â = 0. Thus (Pf Â)2 = 0 = det Â, and there is nothing left to
prove in case k < N .

It remains to consider the interesting case k = N . In this case, the set

{v1, ...,vN} is a basis in V . The Pfaffian Pf Â is the coefficient in the tensor
equality

1

(N/2)!

N/2
∧

k=1

A = v1 ∧ ... ∧ vN
!
=(Pf Â)e1 ∧ ... ∧ eN ,

where {ej} is an orthonormal basis. In other words, Pf Â is the (oriented)
volume of the parallelepiped spanned by the vectors {vj | j = 1, ..., N}, if we

assume that the vectors {ej} span a unit volume. Now it is clear that Pf Â 6= 0.
Let us denote by

{
v∗

j

}
the dual basis to {vj}. Due to the one-to-one corre-

spondence between vectors and covectors, we map
{
v∗

j

}
into the reciprocal

basis {uj}. We now apply the operator Â to the reciprocal basis {uj} and find

by a direct calculation (using the property 〈vi,uj〉 = δij) that Âu1 = −v2,

Âu2 = v1, and so on. Hence

Âu1 ∧ ... ∧ ÂuN = (−v2) ∧ v1 ∧ ... ∧ (−vN ) ∧ vN−1

= v1 ∧ v2 ∧ ... ∧ vN .

It follows that det Â is the coefficient in the tensor equality

Âu1 ∧ ... ∧ ÂuN = v1 ∧ ... ∧ vN
!
=(det Â)u1 ∧ ... ∧ uN . (5.8)

In particular, det Â 6= 0.
In order to prove the desired relationship between the determinant and the

Pfaffian, it remains to compute the volume spanned by the dual basis {uj},

243



5 Scalar product

so that the tensor u1 ∧ ...∧uN can be related to e1 ∧ ...∧eN . By Statement 2 in
Sec. 5.4.4, the volume spanned by {uj} is the inverse of the volume spanned

by {vj}. Therefore the volume spanned by {uj} is equal to 1/Pf Â. Now we

can compute the Pfaffian of Â using

u1 ∧ ... ∧ uN = (Pf Â)−1e1 ∧ ... ∧ eN

together with Eq. (5.8):

Pf Â =
v1 ∧ ... ∧ vN

e1 ∧ ... ∧ eN
=

(det Â)(Pf Â)−1e1 ∧ ... ∧ eN

e1 ∧ ... ∧ eN

= (det Â)(Pf Â)−1.

Hence det Â = (Pf Â)2. �

5.8.2 Further properties

Having demonstrated the techniques of working with antisymmetric opera-
tors and Pfaffians, I propose to you the following exercises that demonstrate
some other properties of Pfaffians. These exercises conclude this book.

Exercise 1: Let Â be an antisymmetric operator; let B̂ be an arbitrary opera-

tor. Prove that Pf (B̂ÂB̂T ) = det(B̂)Pf Â.
Hint: If Â corresponds to the bivector A = v1 ∧ v2 + ... + vk−1 ∧ vk, show

that B̂ÂB̂T corresponds to the bivector B̂v1 ∧ B̂v2 + ...+ B̂vk−1 ∧ B̂vk.

Exercise 2: Let Â be an antisymmetric operator such that det Â 6= 0; let
{ei | i = 1, ..., 2n} be a given orthonormal basis. Prove that there exists an

operator B̂ such that the operator B̂ÂB̂T is represented by the bivector e1 ∧
e2 + ...+ e2n−1 ∧ e2n. Deduce that det Â = (Pf Â)2.

Hint: This is a paraphrase of the proof of Theorem 5.8.1. Use the previous

exercise and represent Â by the bivector v1 ∧ v2 + ... + v2n−1 ∧ v2n, where

the set {vi} is a basis. Define B̂ as a map ei 7→ vi; then B̂−1 exists and maps

vi 7→ ei. Show that Pf Â = 1/(det B̂).
Exercise 3: Use the result of Exercise 5 in Sec. 5.7 to prove that det Â =

(Pf Â)2.
Hint: For an operator Â =

∑n
i=1 λiai ∧ bi, where {a1,b1, ...,an,bn} is a

positively oriented orthonormal basis and 2n ≡ N , show that Pf Â = λ1...λn

and det Â = λ2
1...λ

2
n.

Exercise 4:* An operator Â is antisymmetric and is represented in some or-
thonormal basis by a block matrix of the form

Â =

(
0 M̂

−M̂T 0

)

,

where M̂ is an arbitrary n-dimensional matrix. Show that

Pf Â = (−1)
1
2
n(n−1) det M̂.
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Solution: We need to represent Â by a bivector from ∧2V . The given form

of the matrix Â suggests that we consider the splitting of the space V into a
direct sum of two orthogonal n-dimensional subspaces, V = U1 ⊕ U2, where
U1 and U2 are two copies of the same n-dimensional space U . A scalar prod-
uct in U is defined naturally (by restriction), given the scalar product in V .

We will denote by 〈·, ·〉 the scalar product in U . The given matrix form of Â

means that we have a given operator M̂ ∈ EndU such that Â acts on vectors
from V as

Â (v1 ⊕ v2) = (M̂v2) ⊕ (−M̂T v1), v1,v2 ∈ U. (5.9)

We can choose an orthonormal basis {ci | i = 1, ..., n} in U and represent the

operator M̂ through some suitable vectors {mi| i = 1, ..., n} (not necessarily
orthogonal) such that

M̂u =

n∑

i=1

mi 〈ci,u〉 , u ∈ U.

Note that the vectors mi are found from M̂ci = mi. It follows that M̂T u =
∑n

i=1 ci 〈mi,u〉. Using Eq. (5.9), we can then write the tensor representation

of Â as

Â =

n∑

i=1

[(mi ⊕ 0) ⊗ (0 ⊕ ci)
∗ − (0 ⊕ ci) ⊗ (mi ⊕ 0)∗] .

Hence, Â can be represented by the 2-vector

A =

n∑

i=1

(mi ⊕ 0) ∧ (0 ⊕ ci) ∈ ∧2V.

The Pfaffian of Â is then found from

Pf Â =
(m1 ⊕ 0) ∧ (0 ⊕ c1) ∧ ... ∧ (mn ⊕ 0) ∧ (0 ⊕ cn)

e1 ∧ ... ∧ e2n
,

where {ei | i = 1, ..., 2n} is an orthonormal basis in V . We can choose this
basis as ei = ci ⊕ 0, en+i = 0 ⊕ ci (for i = 1, ..., n). By introducing the sign

factor (−1)
1
2
n(n−1), we may rearrange the exterior products so that all mi are

together. Hence

Pf Â = (−1)
1
2
n(n−1)

× (m1 ⊕ 0) ∧ ... ∧ (mn ⊕ 0) ∧ (0 ⊕ c1) ∧ ... ∧ (0 ⊕ cn)

(c1 ⊕ 0) ∧ ... ∧ (cn ⊕ 0) ∧ (0 ⊕ c1) ∧ ... ∧ (0 ⊕ cn)
.

Vectors corresponding to different subspaces can be factorized, and then the
factors containing 0 ⊕ ci can be canceled:

Pf Â = (−1)
1
2
n(n−1) m1 ∧ ... ∧ mn

c1 ∧ ... ∧ cn

c1 ∧ ... ∧ cn

c1 ∧ ... ∧ cn

= (−1)
1
2
n(n−1) m1 ∧ ... ∧ mn

c1 ∧ ... ∧ cn
.
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5 Scalar product

Finally, we have

m1 ∧ ... ∧ mn

c1 ∧ ... ∧ cn
=
M̂c1 ∧ ... ∧ M̂cn

c1 ∧ ... ∧ cn
= det M̂.

This concludes the calculation. �
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A Complex numbers

This appendix is a crash course on complex numbers.

A.1 Basic definitions

A complex number is a formal expression a+ ib, where a, b are real numbers.
In other words, a complex number is simply a pair (a, b) of real numbers,
written in a more convenient notation as a + ib. One writes, for example,
2 + i3 or 2 + 3i or 3 + i or −5i − 8, etc. The imaginary unit, denoted “i”, is
not a real number; it is a symbol which has the property i2 = −1. Using this
property, we can apply the usual algebraic rules to complex numbers; this is
emphasized by the algebraic notation a + ib. For instance, we can add and
multiply complex numbers,

(1 + i) + 5i = 1 + 6i;

(1 − i) (2 + i) = 2 − 2i + i − i2

= 3 − i;

i3 = ii2 = −i.

It is straightforward to see that the result of any arithmetic operation on com-
plex numbers turns out to be again a complex number. In other words, one
can multiply, divide, add, subtract complex numbers just as directly as real
numbers.

The set of all complex numbers is denoted by C. The set of all real numbers
is R.

Exercise: Using directly the definition of the imaginary unit, compute the
following complex numbers.

1

i
=? i4 =? i5 =?

(

1

2
+

i
√

3

2

)3

=?

The complex number a− ib is called complex conjugate to a+ ib. Conjuga-
tion is denoted either with an overbar or with a star superscript,

z = a+ ib, z̄ = z∗ = a− ib,

according to convenience. Note that

zz∗ = (a+ ib) (a− ib) = a2 + b2 ∈ R.
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In order to divide by a complex number more easily, one multiplies the
numerator and the denominator by the complex conjugate number, e.g.

1

3 + i
=? =

1

3 + i
· 3 − i

3 − i
=

3 − i

9 − i2
=

3 − i

10
=

3

10
− 1

10
i.

Exercise: Compute the following complex numbers,

1 − i

1 + i
=?

1 − i

4 + i
− 1 + i

4 − i
=?

1

a+ ib
=?

where a, b ∈ R. �

Another view of complex numbers is that they are linear polynomials in the
formal variable “i.” Since we may replace i2 by −1 and i−1 by −i wherever
any power of “i” appears, we can reduce any power series in i and/or in i−1

to a linear combination of 1 and i.
If z = a + ib where a, b ∈ R then a is called the real part, Re z, and b is the

imaginary part, Im z. In other words,

Re (a+ ib) = a, Im (a+ ib) = b.

The absolute value or modulus of z = a+ib is the real number |z| ≡
√
a2 + b2.

Exercise: Compute

Re
[

(2 + i)2
]

=? |3 + 4i| =?

Prove that

Re z =
z + z̄

2
; Im z =

z − z̄

2i
; |z|2 = zz̄;

|z| = |z̄| ; |z1z2| = |z1| |z2| ; (z1z2)
∗

= z∗1z
∗
2

for any complex numbers z, z1, z2 ∈ C.

A.2 Geometric representation

Let us draw a complex number z = x+ iy as a point with coordinates (x, y) in
the Euclidean plane, or a vector with real components (x, y). You can check
that the sum z1 +z2 and the product of z with a real number λ, that is z 7→ zλ,
correspond to the familiar operations of adding two vectors and multiplying
a vector by a scalar. Also, the absolute value |z| is equal to the length of the
two-dimensional vector (x, y) as computed in the usual Euclidean space.

Exercise: Show that the multiplication of z = x + iy by a complex number
r ≡ cosφ+ i sinφ corresponds to rotating the vector (x, y) by angle φ counter-
clockwise (assuming that the x axis is horizontal and points to the right, and
the y axis points vertically upwards). Show that |rz| = |z|, which corresponds
to the fact that the length of a vector does not change after a rotation.
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A.3 Analytic functions

A.3 Analytic functions

Analytic functions are such functions f(x) that can be represented by a power
series f(x) =

∑∞
n=0 cnx

n with some coefficients cn such that the series con-
verges at least for some real x. In that case, the series will converge also for
some complex x. In this sense, analytic functions are naturally extended from
real to complex numbers. For example, f(x) = x2 + 1 is an analytic function;
it can be computed just as well for any complex x as for real x.

An example of a non-analytic function is the Heaviside step function

θ(x) =

{

0, x < 0;

1, x ≥ 0.

This function cannot be represented by a power series and thus cannot be
naturally extended to complex numbers. In other words, there is no useful
way to define the value of, say, θ(2i). On the other hand, functions such as

cosx,
√
x, x/ lnx,

∫ x

0
e−t2dt, and so on, are analytic and can be evaluated for

complex x.

Exercise: Compute (1 + 2i) (1 + 3i) and (1 − 2i) (1 − 3i). What did you no-
tice? Prove that f(z∗) = [f(z)]

∗ for any analytic function f(z).

Remark: Although
√
x has no power series expansion at x = 0, it has a Taylor

expansion at x = 1, which is sufficient for analyticity; one can also define
√
z

for complex z through the property (
√
z)

2
= z.

Exercise: Derive an explicit formula for the square root of a complex number,√
a+ ib, where a, b ∈ R.
Hint: Write

√
a+ ib = x+ iy, square both sides, and solve for x and y.

Answer:

√
a+ ib = ±





√√
a2 + b2 + a

2
+ i sign(b)

√√
a2 + b2 − a

2



 ,

where sign(b) = 1, 0,−1 when b is positive, zero, or negative. Note that this
formula may be rewritten for quicker calculation as

√
a+ ib = ±

(

r + i
b

2r

)

, r ≡

√√
a2 + b2 + a

2
.

(In this formula, the square roots in the definition of r are purely real and
positive.)

A.4 Exponent and logarithm

The exponential function and the logarithmic function are analytic functions.
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The exponential function is defined through the power series

ez ≡ exp z ≡ 1 +
1

1!
z +

1

2!
z2 + ... =

∞∑

n=0

zn

n!
.

This series converges for all complex z.
Exercise: Verify the Euler formula,

eiφ = cosφ+ i sinφ, φ ∈ R,

by using the known Taylor series for sinx and cosx. Calculate:

e2i =? eπi =? e
1
2
πi =? e2πi =?

Exercise: Use the identity ea+b = eaeb, which holds also for complex num-
bers a, b, to show that

ea+ib = ea (cos b+ i sin b) , a, b ∈ R.

Calculate:

exp
[

ln 2 +
π

2
i
]

=? exp [1 + πi] =? cos

(
1

2
πi

)

=?

The logarithm of a complex number z is a complex number denoted ln z
such that eln z = z. It is easy to see that

exp [z + 2πi] = exp z, z ∈ C,

in other words, the logarithm is defined only up to adding 2πi. So the log-
arithm (at least in our simple-minded approach here) is not a single-valued
function. For example, we have ln (−1) = πi or 3πi or −πi, so one can write

ln (−1) = {πi + 2πni |n ∈ Z} .

Exercise: a) Calculate:
ln i =? ln (−8i) =?

b) Show that the geometric or polar representation of a complex number
z = x+ iy = ρeiφ can be computed using the logarithm:

ρ = exp (Re ln z) = |z| , φ = Im ln z = arctan
y

x
.

Determine the polar representation of the following complex numbers: z1 =
2 + 2i, z2 =

√
3 + i. Calculate also ln z1 and ln z2.

c) Powers of a complex number can be defined by zx ≡ exp [x ln z]. Here x
can be also a complex number! As a rule, zx is not uniquely defined (unless
x is a real integer). Calculate:

√
i =?

√
√
√
√

(

1

2
+

√
3

2
i

)

=? 6
√
−1 =? ii =? 32πi =?
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In this appendix I briefly review some basic properties of permutations.
We consider the ordered set (1, ..., N) of integers. A permutation of the set

(1, ..., N) is a map σ : (1, ..., N) 7→ (k1, ..., kN ) where the kj are all different
and again range from 1 to N . In other words, a permutation σ is a one-to-one
map of the set (1, ..., N) to itself. For example,

σ : (1, 2, 3, 4, 5) 7→ (4, 1, 5, 3, 2)

is a permutation of the set of five elements.
We call a permutation elementary if it exchanges only two adjacent num-

bers, for example (1, 2, 3, 4) 7→ (1, 3, 2, 4). The identity permutation, denoted
by id, does not permute anything. Two permutations σ1 and σ2 can be ex-
ecuted one after another; the result is also a permutation called the prod-
uct (composition) of the elementary permutations σ1 and σ2 and denoted
σ2σ1 (where σ1 is executed first, and then σ2). For example, the product of
(1, 2, 3) 7→ (1, 3, 2) and (1, 2, 3) 7→ (2, 1, 3) is (1, 2, 3) 7→ (3, 1, 2). The effect of
this (non-elementary) permutation is to move 3 through 1 and 2 into the first
place. Note that in this way we can move any number into any other place;
for that, we need to use as many elementary permutations as places we are
passing through.

The set of all permutations of N elements is a group with respect to the
product of permutations. This group is not commutative.

For brevity, let us write EP for “elementary permutation.” Note that σσ =
id when σ is an EP. Now we will prove that the permutation group is gener-
ated by EPs.
Statement 1: Any permutation can be represented as a product of some finite
number of EPs.
Proof: Suppose σ : (1, ..., N) 7→ (k1, ..., kN ) is a given permutation. Let us

try to reduce it to EPs. If k1 6= 1 then 1 is somewhere among the ki, say at the
place i1. We can move 1 from the i1-th place to the first place by executing a
product of i1−1 EPs (since we pass through i1−1 places). Then we repeat the
same operation with 2, moving it to the second place, and so on. The result
will be that we obtain some (perhaps a large number of) EPs σ1, ..., σn, such
that σ1...σnσ = id. Using the property σ2

i = id, we move σi’s to the right and
obtain σ = σn...σ1. �

Any given permutation σ is thus equal to a product of EPs σ1 to σn, but this
representation is in any case not unique because, say, we may insert σ1σ1 = id
in any place of the product σn...σ1 without changing the result. So the number
of required EPs can be changed. However, it is very important (and we will
prove this now) that the number of required EPs can only be changed by 2,
never by 1.
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In other words, we are going to prove the following statement: When a
given permutation σ is represented as a product of EPs, σ = σn...σ1, the
number n of these EPs is always either even or odd, depending on σ but
independent of the choice of the representation σn...σ1. Since the parity of n
(parity is whether n is even or odd) is a property of the permutation σ rather
than of the representation of σ through EPs, it will make sense to say that the
permutation σ is itself even or odd.
Statement 2: If σ is represented as a product of EPs in two different ways,
namely by a product of n1 EPs and also by a product of n2 EPs, then the
integers n1 and n2 are both even or both odd.
Proof: Let us denote by |σ| the smallest number of EPs required to represent

a given permutation σ.1 We will now show that |σ| is equal to the number of
order violations in σ, i.e. the number of instances when some larger number
is situated to the left of some smaller number. For example, in the permu-
tation (1, 2, 3, 4) 7→ (4, 1, 3, 2) there are four order violations: the pairs (4, 1),
(4, 3), (4, 2), and (3, 2). It is clear that the correct order can be restored only
when each order violation is resolved, which requires one EP for each order
violation.

The construction in the proof of Statement 1 shows that there exists a choice
of exactly |σ| EPs whose product equals σ. Therefore, |σ| (the smallest num-
ber of EPs required to represent σ) is indeed equal to the number of order
violations in σ.

Now consider multiplying σ by some EP σ0; it is clear that the number of
order violations changes by 1, that is, |σ0σ| = |σ| ± 1, depending on whether
σ0 violates the order existing in σ at the two adjacent places affected by σ0.
For example, the permutation σ = (4, 1, 3, 2) has four order violations, |σ| = 4;
when we multiply σ by σ0 = (1, 3, 2, 4), which is an EP exchanging 2 and 3,
we remove the order violation in σ in the pair (1, 3) since σ0σ = (4, 3, 1, 2);

hence |σ0σ| = 3. Since |σ| is changed by ±1, we have (−1)
|σ0σ|

= − (−1)
|σ| in

any case. Now we consider two representations of σ through n1 and through
n2 EPs. If σ = σn1

...σ1, where σj are EPs, we find by induction

(−1)
|σ|

= (−1)|σn1
...σ1| = (−1)

n1 .

Similarly for the second representation. So it follows that

(−1)
|σ|

= (−1)
n1 = (−1)

n2 .

Hence, the numbers n1 and n2 are either both even or both odd. �

It follows from the proof of Statement 2 that the number (−1)
|σ| is indepen-

dent of the representation of σ through EPs. This number is called the parity
of a permutation σ. For example, the permutation

σ : (1, 2, 3, 4) 7→ (1, 4, 3, 2)

1In Definition D0 we used the notation |σ| to mean 0 or 1 for even or odd permutations. How-

ever, the formula uses only (−1)|σ|, so the present definition of |σ| is still consistent with
Definition D0.
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has four order violations, |σ| = 4, and is therefore an even permutation with
parity +1.
Definition: For a permutation σ, the inverse permutation σ−1 is defined by
σ−1σ = σσ−1 = id.
Statement 3: The inverse permutation σ−1 exists for every permutation σ, is
unique, and the parity of σ−1 is the same as the parity of σ.
Proof: By Statement 1, we have σ = σ1...σn where σi are EPs. Since σiσi = id,
we can define explicitly the inverse permutation as

σ−1 ≡ σnσn−1...σ1.

It is obvious that σσ−1 = σ−1σ = 1, and so σ−1 exists. If there were two
different inverse permutations, say σ−1 and σ′, we would have

σ−1 = σ−1σσ′ = σ′.

Therefore, the inverse is unique. Finally, by Statement 2, the parity of σ−1

is equal to the parity of the number n, and thus equal to the parity of σ.
(Alternatively, we may show that |σ−1| = |σ|.) �
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C Matrices

This appendix is a crash course on vector and matrix algebra.

C.1 Definitions

Matrices are rectangular tables of numbers; here is an example of a 4 × 4
matrix:







1 0 0 −
√

2
2 1 0 0
3 2 1 0
4 3 2 1






.

Matrices are used whenever it is convenient to arrange some numbers in a
rectangular table.

To write matrices symbolically, one uses two indices, for example Aij is
the matrix element in the i-th row and the j-th column. In this convention,
the indices are integers ranging from 1 to each dimension of the matrix. For
example, a 3 × 2 rectangular matrix can be written as a set of coefficients
{Bij | 1 ≤ i ≤ 3, 1 ≤ j ≤ 2} and is displayed as





B11 B12

B21 B22

B31 B32



 .

A matrix with dimensions n× 1 is called a column since it has the shape






A11

...
An1




 .

A matrix with dimensions 1 × n is called a row since it has the shape

[
A11 . . . A1n

]
.

Rows and columns are sometimes distinguished from other matrices by using
square brackets.
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C.2 Matrix multiplication

Matrices can be multiplied by a number just like vectors: each matrix element
is multiplied by the number. For example,

2





u v
w x
y z



 =





2u 2v
2w 2x
2y 2z



 .

Now we will see how to multiply a matrix with another matrix.

The easiest is to define the multiplication of a row with a column:

[
a1 a2 a3

]





x1

x2

x3



 = a1x1 + a2x2 + a3x3.

So the result of a multiplication of a 1×nmatrix with an n×1 matrix is simply
a number. The general definition is

[
a1 . . . an

]






x1

...
xn




 =

n∑

i=1

aixi.

Let us try to guess how to define the multiplication of a column with a
matrix consisting of several rows. Start with just two rows:

(
a1 a2 a3

b1 b2 b3

)




x1

x2

x3



 =?

We can multiply each of the two rows with the column [xi] as before. Then
we obtain two numbers, and it is natural to put them into a column:

(
a1 a2 a3

b1 b2 b3

)




x1

x2

x3



 =

[
a1x1 + a2x2 + a3x3

b1x1 + b2x2 + b3x3

]

.

In general, we define the product of an m× n matrix with an n× 1 matrix (a
column); the result is an m× 1 matrix (again a column):






a11 ... a1n

...
...

...
am1 . . . amn











x1

...
xn




 =






∑n
i=1 a1ixi

...
∑n

i=1 amixi




 .
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C.2 Matrix multiplication

Exercise: Calculate the following products of matrices and columns:

(
−1 3
4 1

)[
−2
−1

]

=?

( √
5 − 1 2

2
√

5 + 1

)[ √
5 + 1√
5 − 1

]

=?





1 9 −2
3 0 3
−6 4 3









−2
0
4



 =?







1 0 0 0
2 1 0 0
0 2 1 0
0 0 2 1













a
b
c
d







=?













2 1 0 0 · · · 0
1 2 1 0 · · · 0

0 1 2 1
...

0 0 1 2 0
...

...
. . . 1

0 0 · · · 1 2
























1
−1
1
...

−1
1












=?

Finally, we can extend this definition to products of two matrices of sizes
m×n and n×p. We first multiply them×nmatrix by each of the n×1 columns
in the n×p matrix, yielding p columns of size m×1, and then arrange these p
columns into an m× p matrix. The resulting general definition can be written
as a formula for matrix multiplication: ifA is anm×nmatrix andB is an n×p
matrix then the product of A and B is an m × p matrix C whose coefficients
are given by

Cik =

n∑

j=1

AijBjk, 1 ≤ i ≤ m, 1 ≤ k ≤ p.

Exercise: Calculate the following matrix products:

[
2 3

]
(

−3 9
2 −6

)

=?

(
−5 6
−6 5

)(
−5 5
−6 6

)

=?

( √
1+

√
2√

3
0

0
√

1−
√

2√
3

)( √
1−

√
2√

3
0

0
√

1+
√

2√
3

)

=?

[
0 1 2

]





3 2 1
2 1 0
1 0 0









−2
0
0



 =?
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[
w x y z

]







2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2













3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3













a
b
c
d







=?

Matrices of size n × n are called square matrices. They can be multiplied
with each other and, according to the rules of matrix multiplication, again
give square matrices of the same size.
Exercise 1: If A and B are two square matrices such that AB = BA then one
says that the matricesA andB commute with each other. Determine whether
the following pairs of matrices commute:

a) A =

(
1 1
0 2

)

and B =

(
3 0
1 −2

)

.

b) A =





2 0 0
0 2 0
0 0 2



 and B =





3 1 −1
0 −1 2
2 8 −7



.

c) A =





√
3 0 0

0
√

3 0

0 0
√

3



 and B =





97 12 −55
−8 54 26
31 53 −78



. What have you

noticed?

d) Determine all possible matrices B =

(
w x
y z

)

that commute with the

given matrix A =

(
1 1
0 2

)

. �

Note that a square matrix having the elements 1 at the diagonal and zeros
elsewhere, for example





1 0 0
0 1 0
0 0 1



 ,

has the property that it does not modify anything it multiplies. Therefore
such matrices are called the identity matrices and denoted by 1̂. One has
1̂A = A and A1̂ = A for any matrix A (for which the product is defined).
Exercise 2: We consider real-valued 2 × 2 matrices.

a) The matrix-valued function A(φ) is defined by

A(φ) =

(
cosφ − sinφ
sinφ cosφ

)

.

Show that A(φ1)A(φ2) = A(φ1 + φ2). Deduce that A(φ1) commutes with
A(φ2) for arbitrary φ1, φ2.

b) For every complex number z = x+ iy = reiφ, let us now define a matrix

C(z) =

(
r cosφ −r sinφ
r sinφ r cosφ

)

=

(
x −y
y x

)

.

Show that C(z1) commutes with C(z2) for arbitrary complex z1, z2, and that
C(z1) + C(z2) = C(z1 + z2) and C(z1)C(z2) = C(z1z2). In this way, complex
numbers could be replaced by matrices of the form C(z). The addition and
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the multiplication of matrices of this form corresponds exactly to the addition
and the multiplication of complex numbers.

Exercise 3: The Pauli matrices σ1, σ2, σ3 are defined as follows,

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

.

Verify that σ2
1 = 1̂ (the 2 × 2 identity matrix), σ1σ2 = iσ3, σ2σ3 = iσ1, and in

general

σaσb = δab1̂ + i
∑

c

εabcσc.

b) The expression AB−BA where A,B are two matrices is called the com-
mutator of A and B and is denoted by

[A,B] = AB −BA.

Using the result of part a), compute [σa, σb].

C.3 Linear equations

A system of linear algebraic equations, for example,

2x+ y = −11

3x− y = 6

can be formulated in the matrix language as follows. One introduces the
column vectors x ≡

(
x
y

)
and b ≡

(−11
6

)
and the matrix

A ≡
(

2 1
3 −1

)

.

Then the above system of equations is equivalent to the single matrix equa-
tion,

Ax = b,

where x is understood as the unknown vector.

Exercise: Rewrite the following system of equations in matrix form:

x+ y − z = 0

y − x+ 2z = 0

3y = 2

Remark: In a system of equations, the number of unknowns may differ from
the number of equations. In that case we need to use a rectangular (non-
square) matrix to rewrite the system in a matrix form.
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C.4 Inverse matrix

We consider square matrices A and B. If AB = 1 and BA = 1 then B is called
the inverse matrix to A (and vice versa). The inverse matrix to A is denoted
by A−1, so that one has AA−1 = A−1A = 1.
Remark: The inverse matrix does not always exist; for instance, the matrix

(
1 1
2 2

)

does not have an inverse. For finite-dimensional square matrices A and B, one
can derive from AB = 1 that also BA = 1. �

The inverse matrix is useful for solving linear equations. For instance, if
a matrix A has an inverse, A−1, then any equation Ax = b can be solved
immediately as x = A−1b.

Exercise 1: a) Show that the inverse to a 2 × 2 matrix A =

(
w x
y z

)

exists

when wz − xy 6= 0 and is given explicitly by the formula

A−1 =
1

wz − xy

(
z −x
−y w

)

.

b) Compute the inverse matrices A−1 and B−1 for A =

(
1 1
0 2

)

and B =
(

3 0
1 −2

)

. Then compute the solutions of the linear systems

(
1 1
0 2

)[
x
y

]

=

[
−3
5

]

;

(
3 0
1 −2

)[
x
y

]

=

[
−6
0

]

.

Exercise 2: Show that (AB)−1 = B−1A−1, assuming that the inverse matrices
to A and B exist.

Hint: Simplify the expression (AB)(B−1A−1).
Exercise 3: Show that

(1̂ +BA)−1 = A−1(1̂ +AB)−1A,

assuming that all the needed inverse matrices exist.
Hint: Use the property A(1̂ +BA) = A+ABA = (1̂ +AB)A. �

The inverse matrix to a given n × n matrix A can be computed by solving
n systems of equations,

Ax1 = e1, ..., Axn = en,

where the vectors ei are the standard basis vectors,

e1 = (1, 0, ..., 0) , e2 = (0, 1, 0, ..., 0) ,

..., en = (0, ..., 0, 1) ,

while the vectors x1, ...,xn are unknown. When {xi} are determined, their
components xij form the inverse matrix.
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C.5 Determinants

In the construction of the inverse matrix for a given matrix Aij , one finds a
formula of a peculiar type: Each element of the inverse matrix A−1 is equal
to some polynomial in Aij , divided by a certain function of Aij . For example,
Exercise 1a in Sec. C.4 gives such a formula for 2 × 2 matrices; that formula
contains the expression wz − xy in every denominator.

The expression in the denominator is the same for every element of A−1.
This expression needs to be nonzero in that formula, or else we cannot divide
by it (and then the inverse matrix does not exist). In other words, this expres-
sion (which is a function of the matrix Aij) “determines” whether the inverse
matrix exists. Essentially, this function (after fixing a numerical prefactor) is
called the determinant of the matrix Aij .

The determinant for a 2 × 2 or 3 × 3 matrix is given1 by the formulas

det

(
a b
x y

)

= ay − bx,

det





a b c
p q r
x y z



 = aqz + brx+ cpy − bpz − cqx− ary.

Determinants are also sometimes written as matrices with straight vertical
lines at both sides, e.g.

det

(
1 2
0 3

)

≡
∣
∣
∣
∣

1 2
0 3

∣
∣
∣
∣
= 3.

In this notation, a determinant resembles a matrix, so it requires that we
clearly distinguish between a matrix (a table of numbers) and a determinant
(which is a single number computed from a matrix).

To compute the determinant of an arbitrary n × n matrix A, one can use
the procedure called the Laplace expansion.2 First one defines the notion of
a minor Mij corresponding to some element Aij : By definition, Mij is the
determinant of a matrix obtained from A by deleting row i and column j. For
example, the minor corresponding to the element b of the matrix

A =





a b c
p q r
x y z





is the minor corresponding to A12, hence we delete row 1 and column 2 from
A and obtain

M12 =

∣
∣
∣
∣

p r
x z

∣
∣
∣
∣
= pz − rx.

1I do not derive this result here; a derivation is given in the main text.
2Here I will only present the Laplace expansion as a computational procedure without deriva-

tion. A derivation is given as an exercise in Sec. 3.4.
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Then, one sums over all the elements A1i (i = 1, ..., n) in the first row of A,
multiplied by the corresponding minors and the sign factor (−1)

i−1. In other
words, the Laplace expansion is the formula

det(A) =

n∑

i=1

(−1)
i−1

A1iM1i.

A similar formula holds for any other row j instead of the first row; one needs

an additional sign factor (−1)
j−1 in that case.

Example: We compute the determinant of the matrix

A =





a b c
p q r
x y z





using the Laplace expansion in the first row. The minors are

M11 =

∣
∣
∣
∣

q r
y z

∣
∣
∣
∣
= qz − ry,

M12 =

∣
∣
∣
∣

p r
x z

∣
∣
∣
∣
= pz − rx,

M13 =

∣
∣
∣
∣

p q
x y

∣
∣
∣
∣
= py − qx.

Hence

detA = aM11 − bM12 + bM13

= a(qx− ry) − b(pz − rx) + c(py − qx).

This agrees with the formula given previously.
Exercise: Compute the following determinants.

a)
∣
∣
∣
∣

15 −12
− 1

2
2
5

∣
∣
∣
∣
=?

∣
∣
∣
∣

1 + x2 1 + x2

1 + x2 1 + x4

∣
∣
∣
∣
=?

∣
∣
∣
∣
∣
∣
∣
∣

1 −99 −99 −99
0 2 −99 −99
0 0 3 −99
0 0 0 4

∣
∣
∣
∣
∣
∣
∣
∣

=?

∣
∣
∣
∣
∣
∣

1 2 3
4 5 6
7 8 9

∣
∣
∣
∣
∣
∣

=?

b)

A2 =

∣
∣
∣
∣

2 −1
−1 2

∣
∣
∣
∣
=? A3 =

∣
∣
∣
∣
∣
∣

2 −1 0
−1 2 −1
0 −1 2

∣
∣
∣
∣
∣
∣

=?

A4 =

∣
∣
∣
∣
∣
∣
∣
∣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

∣
∣
∣
∣
∣
∣
∣
∣

=?
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Guess and then prove (using the Laplace expansion) the general formula for
determinants An of this form for arbitrary n,

An =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 −1 0 · · · 0

−1 2 −1 · · ·
...

0 −1 2 · · · 0
...

...
...

. . . −1
0 · · · 0 −1 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=?

Hint: Use the Laplace expansion to prove the recurrence relation An+1 =
2An −An−1.

C.6 Tensor product

A matrix with rows and columns reversed is called the transposed matrix.
For example, if

A =

(
a b c
x y z

)

is a given 2 × 3 matrix then the transposed matrix, denoted by AT , is the
following 3 × 2 matrix:

AT =





a x
b y
c z



 .

Note that a row vector becomes a column vector when transposed, and vice
versa. In general, anm×nmatrix becomes an n×mmatrix when transposed.

The scalar product of vectors, q · r, can be represented as a matrix product
qT r. For example, if q = (a, b, c) and r = (x, y, z) then

q · r = ax+ by + cz =
[
x y z

]





a
b
c



 = qT r = rT q.

A matrix product taken in the opposite order (i.e. a column vector times a
row vector) gives a matrix as a result,

qrT =





a
b
c




[
x y z

]
=





ax ay az
bx by bz
cx cy cz



 .

This is known as the tensor product of two vectors. An alternative notation is
q⊗ rT . Note that the result of the tensor product is not a vector but a matrix,
i.e. an object of a different kind. (The space of n × n matrices is also denoted
by Rn ⊗ Rn.)
Exercise: Does the tensor product commute? In a three-dimensional space,
compute the matrix q ⊗ rT − r ⊗ qT . Compare that matrix with the vector
product q × r.
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D Distribution of this text

D.1 Motivation

A scientist receives financial support from the society and the freedom to do
research in any field. I believe it is a duty of scientists to make the results
of their science freely available to the interested public in the form of un-
derstandable, clearly written textbooks. This task has been significantly al-
leviated by modern technology. Especially in theoretical sciences where no
experimentally obtained photographs or other such significant third-party
material need to be displayed, authors are able (if not always willing) to pre-
pare the entire book on a personal computer, typing the text and drawing the
diagrams using freely available software. Ubiquitous access to the Internet
makes it possible to create texts of high typographic quality in ready-to-print
form, such as a PDF file, and to distribute these texts essentially at no cost.

The distribution of texts in today’s society is inextricably connected with
the problem of intellectual property. One could simply upload PDF files to
a Web site and declare these texts to be in public domain, so that everyone
would be entitled to download them for free, print them, or distribute fur-
ther. However, malicious persons might then prepare a slightly modified
version and inhibit further distribution of the text by imposing a non-free
license on the modified version and by threatening to sue anyone who wants
to distribute any version of the text, including the old public-domain version.
Merely a threat of a lawsuit suffices for an Internet service provider to take
down any web page allegedly violating copyright, even if the actual lawsuit
may be unsuccessful.

To protect the freedom of the readers, one thus needs to release the text
under a copyright rather than into public domain, and at the same time one
needs to make sure that the text, as well as any future revisions thereof, re-
mains freely distributable. I believe that a free license, such as GNU FDL (see
the next subsection), is an appropriate way of copyrighting a science text-
book.

The present book is released under GNU FDL. According to the license,
everyone is allowed to print this book or distribute it in any other way. In
particular, any commercial publisher may offer professionally printed and
bound copies of the book for sale; the permission to do so is already granted.
Since the FDL disallows granting exclusive distribution rights, I (or anybody
else) will not be able to sign a standard exclusive-rights contract with a pub-
lisher for printing this book (or any further revision of this book). I am happy
that lulu.com offers commercial printing of the book at low cost and at the
same time adheres to the conditions of a free license (the GNU FDL). The full
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text of the license follows.

D.2 GNU Free Documentation License

Version 1.2, November 2002

Copyright (c) 2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

D.2.1 Preamble

The purpose of this License is to make a manual, textbook, or other functional and use-
ful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of sub-
ject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

D.2.2 Applicability and definitions

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute the
work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position re-
garding them.
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The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is re-
leased under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic trans-
lation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transpar-
ent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LATEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.)
To “Preserve the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are considered
to be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

D.2.3 Verbatim copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
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use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section D.2.4.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

D.2.4 Copying in quantity

If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

D.2.5 Modifications

You may copy and distribute a Modified Version of the Document under the condi-
tions of sections D.2.3 and D.2.4 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previ-
ous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
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the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qual-

ify as Secondary Sections and contain no material copied from the Document, you
may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements
of peer review or that the text has been approved by an organization as the authorita-
tive definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Docu-
ment already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add
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another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

D.2.6 Combining documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice, and that you preserve all their Warranty Disclaimers.
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the combined work.

In the combination, you must combine any sections Entitled “History” in the var-
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You must delete all sections Entitled “Endorsements.”

D.2.7 Collections of documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

D.2.8 Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit
the legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section D.2.4 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the Doc-
ument’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.
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D.2.9 Translation

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section D.2.5. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original ver-
sions of these Invariant Sections. You may include a translation of this License, and all
the license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section D.2.5) to Preserve its Title (section D.2.2) will typ-
ically require changing the actual title.

D.2.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

D.2.11 Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

D.2.12 Addendum: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright (c) <year> <your name>. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.
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“with...Texts.” line with this:

with the Invariant Sections being <list their titles>, with the Front-Cover Texts being
<list>, and with the Back-Cover Texts being <list>.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.

D.2.13 Copyright

Copyright (c) 2000, 2001, 2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.
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Preface


In a first course of linear algebra, one learns the various uses of matrices, for
instance the properties of determinants, eigenvectors and eigenvalues, and
methods for solving linear equations. The required calculations are straight-
forward (because, conceptually, vectors and matrices are merely “arrays of
numbers”) if cumbersome. However, there is a more abstract and more pow-
erful approach: Vectors are elements of abstract vector spaces, and matrices
represent linear transformations of vectors. This invariant or coordinate-free
approach is important in algebra and has found many applications in science.


The purpose of this book is to help the reader make a transition to the ab-
stract coordinate-free approach, and also to give a hands-on introduction to
exterior products, a powerful tool of linear algebra. I show how the coordin-
ate-free approach together with exterior products can be used to clarify the
basic results of matrix algebra, at the same time avoiding all the laborious
matrix calculations.


Here is a simple theorem that illustrates the advantages of the exterior
product approach. A triangle is oriented arbitrarily in three-dimensional
space; the three orthogonal projections of this triangle are triangles in the
three coordinate planes. Let S be the area of the initial triangle, and letA,B,C
be the areas of the three projections. Then


S2 = A2 +B2 + C2.


If one uses bivectors to represent the oriented areas of the triangle and of its
three projections, the statement above is equivalent to the Pythagoras theo-
rem in the space of bivectors, and the proof requires only a few straightfor-
ward definitions and checks. A generalization of this result to volumes of
k-dimensional bodies embedded in N -dimensional spaces is then obtained
with no extra work. I hope that the readers will appreciate the beauty of an
approach to linear algebra that allows us to obtain such results quickly and
almost without calculations.


The exterior product is widely used in connection with n-forms, which are
exterior products of covectors. In this book I do not use n-forms — instead
I use vectors, n-vectors, and their exterior products. This approach allows
a more straightforward geometric interpretation and also simplifies calcula-
tions and proofs.


To make the book logically self-contained, I present a proof of every basic
result of linear algebra. The emphasis is not on computational techniques,
although the coordinate-free approach does make many computations easier
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Preface


and more elegant.1 The main topics covered are tensor products; exterior


products; coordinate-free definitions of the determinant det Â, the trace TrÂ,
and the characteristic polynomial QÂ (λ); basic properties of determinants;
solution of linear equations, including over-determined or under-determined


systems, using Kramer’s rule; the Liouville formula det exp Â = exp TrÂ as an
identity of formal series; the algebraic complement (cofactor) matrix; Jacobi’s
formula for the variation of the determinant; variation of the characteristic
polynomial and of eigenvalue; the Cayley-Hamilton theorem; analytic func-
tions of operators; Jordan canonical form; construction of projectors onto Jor-
dan cells; Hodge star and the computation of k-dimensional volumes through


k-vectors; definition and properties of the Pfaffian PfÂ for antisymmetric op-


erators Â. All these standard results are derived without matrix calculations;
instead, the exterior product is used as a main computational tool.


This book is largely pedagogical, meaning that the results are long known,
and the emphasis is on a clear and self-contained, logically motivated pre-
sentation aimed at students. Therefore, some exercises with hints and partial
solutions are included, but not references to literature.2 I have tried to avoid
being overly pedantic while keeping the exposition mathematically rigorous.


Sections marked with a star ∗ are not especially difficult but contain ma-
terial that may be skipped at first reading. (Exercises marked with a star are
more difficult.)


The first chapter is an introduction to the invariant approach to vector
spaces. I assume that readers are familiar with elementary linear algebra in
the language of row/column vectors and matrices; Appendix C contains a
brief overview of that material. Good introductory books (which I did not
read in detail but which have a certain overlap with the present notes) are
“Finite-dimensional Vector Spaces” by P. Halmos and “Linear Algebra” by J.
Hefferon (the latter is a free book).


I started thinking about the approach to linear algebra based on exterior
products while still a student. I am especially grateful to Sergei Arkhipov,
Leonid Positsel’sky, and Arkady Vaintrob who have stimulated my interest
at that time and taught me much of what I could not otherwise learn about
algebra. Thanks are also due to Prof. Howard Haber (UCSC) for constructive
feedback on an earlier version of this text.


1Elegant means shorter and easier to remember. Usually, elegant derivations are those in which
some powerful basic idea is exploited to obtain the result quickly.


2The approach to determinants via exterior products has been known since at least 1880 but
does not seem especially popular in textbooks, perhaps due to the somewhat abstract nature
of the tensor product. I believe that this approach to determinants and to other results in
linear algebra deserves to be more widely appreciated.
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0 Introduction and summary


All the notions mentioned in this section will be explained below. If you
already know the definition of tensor and exterior products and are familiar
with statements such as End V ∼= V ⊗ V ∗, you may skip to Chapter 2.


0.1 Notation


The following conventions are used throughout this text.
I use the bold emphasis to define a new word, term, or notion, and the


definition always appears near the boldface text (whether or not I write the
word “Definition”).


Ordered sets are denoted by round parentheses, e.g. (1, 2, 3). Unordered
sets are denoted using the curly parentheses, e.g. {a, b, c}.


The symbol ≡ means “is now being defined as” or “equals by a previously
given definition.”


The symbol
!
= means “as we already know, equals.”


A set consisting of all elements x satisfying some property P (x) is denoted
by {x |P (x) is true }.


A map f from a set V to W is denoted by f : V →W . An element v ∈ V is
then mapped to an elementw ∈W , which is written as f : v 7→ w or f(v) = w.


The sets of rational numbers, real numbers, and complex numbers are de-
noted respectively by Q, R, and C.


Statements, Lemmas, Theorems, Examples, and Exercises are numbered
only within a single subsection, so references are always to a certain state-
ment in a certain subsection.1 A reference to “Theorem 1.1.4” means the un-
numbered theorem in Sec. 1.1.4.


Proofs, solutions, examples, and exercises are separated from the rest by
the symbol �. More precisely, this symbol means “I have finished with this;
now we look at something else.”
V is a finite-dimensional vector space over a field K. Vectors from V are


denoted by boldface lowercase letters, e.g. v ∈ V . The dimension of V is
N ≡ dimV .


The standardN -dimensional space over real numbers (the space consisting
of N -tuples of real numbers) is denoted by RN .


The subspace spanned by a given set of vectors {v1, ...,vn} is denoted by
Span {v1, ...,vn}.


1I was too lazy to implement a comprehensive system of numbering for all these items.
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0 Introduction and summary


The vector space dual to V is V ∗. Elements of V ∗ (covectors) are denoted
by starred letters, e.g. f∗ ∈ V ∗. A covector f∗ acts on a vector v and produces
a number f∗(v).


The space of linear maps (homomorphisms) V → W is Hom (V,W ). The
space of linear operators (also called endomorphisms) of a vector space V ,
i.e. the space of all linear maps V → V , is End V . Operators are denoted


by the circumflex accent, e.g. Â. The identity operator on V is 1̂V ∈ End V
(sometimes also denoted 1̂ for brevity).


The direct sum of spaces V and W is V ⊕W . The tensor product of spaces
V and W is V ⊗W . The exterior (anti-commutative) product of V and V is
V∧V . The exterior product of n copies of V is ∧nV . Canonical isomorphisms
of vector spaces are denoted by the symbol ∼=; for example, End V ∼= V ⊗ V ∗.


The scalar product of vectors is denoted by 〈u,v〉. The notation a × b is
used only for the traditional vector product (also called cross product) in 3-
dimensional space. Otherwise, the product symbol × is used to denote the
continuation a long expression that is being split between lines.


The exterior (wedge) product of vectors is denoted by a ∧ b ∈ ∧2V .
Any two nonzero tensors a1∧ ...∧aN and b1∧ ...∧bN in anN -dimensional


space are proportional to each other, say


a1 ∧ ... ∧ aN = λb1 ∧ ... ∧ bN .


It is then convenient to denote λ by the “tensor ratio”


λ ≡ a1 ∧ ... ∧ aN


b1 ∧ ... ∧ bN
.


The number of unordered choices of k items from n is denoted by


(
n


k


)


=
n!


k!(n− k)!
.


The k-linear action of a linear operator Â in the space ∧nV is denoted by


∧nÂk. (Here 0 ≤ k ≤ n ≤ N .) For example,


(∧3Â2)a ∧ b ∧ c ≡ Âa ∧ Âb ∧ c + Âa ∧ b ∧ Âc


+ a ∧ Âb ∧ Âc.


The imaginary unit (
√
−1) is denoted by a roman “i,” while the base of natu-


ral logarithms is written as an italic “e.” For example, I would write eiπ = −1.
This convention is designed to avoid conflicts with the much used index i
and with labeled vectors such as ei.


I write an italic d in the derivatives, such as df/dx, and in integrals, such
as
∫
f(x)dx, because in these cases the symbols dx do not refer to a separate


well-defined object “dx” but are a part of the traditional symbolic notation
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used in calculus. Differential forms (or, for that matter, nonstandard calcu-
lus) do make “dx” into a well-defined object; in that case I write a roman
“d” in “dx.” Neither calculus nor differential forms are actually used in this
book; the only exception is the occasional use of the derivative d/dx applied
to polynomials in x. I will not need to make a distinction between d/dx and
∂/∂x; the derivative of a function f with respect to x is denoted by ∂xf .


0.2 Sample quiz problems


The following problems can be solved using techniques explained in this
book. (These problems are of varying difficulty.) In these problems V is an
N -dimensional vector space (with a scalar product if indicated).
Exterior multiplication: If two tensors ω1, ω2 ∈ ∧kV (with 1 ≤ k ≤ N − 1)
are such that ω1 ∧ v = ω2 ∧ v for all vectors v ∈ V , show that ω1 = ω2.
Insertions: a) It is given that ψ ∈ ∧kV (with 1 ≤ k ≤ N − 1) and ψ ∧ a = 0,
where a ∈ V and a 6= 0. Further, a covector f∗ ∈ V ∗ is given such that
f∗(a) 6= 0. Show that


ψ =
1


f∗(a)
a ∧ (ιf∗ψ).


b) It is given that ψ ∧ a = 0 and ψ ∧ b = 0, where ψ ∈ ∧kV (with 2 ≤ k ≤
N − 1) and a,b ∈ V such that a ∧ b 6= 0. Show that there exists χ ∈ ∧k−2V
such that ψ = a ∧ b ∧ χ.


c) It is given that ψ ∧ a ∧ b = 0, where ψ ∈ ∧kV (with 2 ≤ k ≤ N − 2) and
a,b ∈ V such that a ∧ b 6= 0. Is it always true that ψ = a ∧ b ∧ χ for some
χ ∈ ∧k−2V ?
Determinants: a) Suppose Â is a linear operator defined by Â =


∑N
i=1 ai⊗b∗


i ,
where ai ∈ V are given vectors and bi ∈ V ∗ are given covectors; N = dimV .
Show that


det Â =
a1 ∧ ... ∧ aN


e1 ∧ ... ∧ eN


b∗
1 ∧ ... ∧ b∗


N


e∗1 ∧ ... ∧ e∗N
,


where {ej} is an arbitrary basis and
{
e∗j
}


is the corresponding dual basis.
Show that the expression above is independent of the choice of the basis {ej}.


b) Suppose that a scalar product is given in V , and an operator Â is defined
by


Âx ≡
N∑


i=1


ai 〈bi,x〉 .


Further, suppose that {ej} is an orthonormal basis in V . Show that


det Â =
a1 ∧ ... ∧ aN


e1 ∧ ... ∧ eN


b1 ∧ ... ∧ bN


e1 ∧ ... ∧ eN
,


and that this expression is independent of the choice of the orthonormal basis
{ej} and of the orientation of the basis.
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Hyperplanes: a) Let us suppose that the “price” of the vector x ∈ V is given
by the formula


Cost (x) ≡ C(x,x),


where C(a,b) is a known, positive-definite bilinear form. Determine the
“cheapest” vector x belonging to the affine hyperplane a∗(x) = α, where
a∗ ∈ V ∗ is a nonzero covector and α is a number.


b) We are now working in a vector space with a scalar product, and the
“price” of a vector x is 〈x,x〉. Two affine hyperplanes are given by equations
〈a,x〉 = α and 〈b,x〉 = β, where a and b are given vectors, α and β are
numbers, and x ∈ V . (It is assured that a and b are nonzero and not parallel to
each other.) Determine the “cheapest” vector x belonging to the intersection
of the two hyperplanes.


Too few equations: A linear operator Â is defined by Â =
∑k


i=1 ai ⊗ b∗
i ,


where ai ∈ V are given vectors and b∗
i ∈ V ∗ are given covectors, and k <


N = dimV . Show that the vector equation Âx = c has no solutions if a1 ∧
...∧ ak ∧ c 6= 0. In case a1 ∧ ...∧ ak ∧ c = 0, show that solutions x surely exist
when b∗


1 ∧ ... ∧ b∗
k 6= 0 but may not exist otherwise.


Operator functions: It is known that the operator Â satisfies the operator


equation Â2 = −1̂. Simplify the operator-valued functions 1+Â
3−Â


, cos(λÂ), and
√


Â+ 2 to linear formulas involving Â. (Here λ is a number, while the num-
bers 1, 2, 3 stand for multiples of the identity operator.) Compare the results
with the complex numbers 1+i


3−i , cos(λi),
√


i + 2 and generalize the conclusion


to a theorem about computing analytic functions f(Â).


Inverse operator: It is known that ÂB̂ = λ1̂V , where λ 6= 0 is a number.


Prove that also B̂Â = λ1̂V . (Both Â and B̂ are linear operators in a finite-
dimensional space V .)


Trace and determinant: Consider the space of polynomials in the variables
x and y, where we admit only polynomials of the form a0 + a1x+ a2y+ a3xy


(with aj ∈ R). An operator Â is defined by


Â ≡ x
∂


∂x
− ∂


∂y
.


Show that Â is a linear operator in this space. Compute the trace and the


determinant of Â. If Â is invertible, compute Â−1(x+ y).


Cayley-Hamilton theorem: Express det Â through TrÂ and Tr(Â2) for an ar-


bitrary operator Â in a two-dimensional space.


Algebraic complement: Let Â be a linear operator and
˜̂
A its algebraic com-


plement.
a) Show that


Tr
˜̂
A = ∧N ÂN−1.
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Here ∧N ÂN−1 is the coefficient at (−λ) in the characteristic polynomial of Â
(that is, minus the coefficient preceding the determinant).


b) For t-independent operators Â and B̂, show that


∂


∂t
det(Â+ tB̂) = Tr(


˜̂
AB̂).


Liouville formula: Suppose X̂(t) is a defined as solution of the differential
equation


∂tX̂(t) = Â(t)X̂(t) − X̂(t)Â(t),


where Â(t) is a given operator. (Operators that are functions of t can be un-
derstood as operator-valued formal power series.)


a) Show that the determinant of X̂(t) is independent of t.


b) Show that all the coefficients of the characteristic polynomial of X̂(t) are
independent of t.
Hodge star: Suppose {v1, ...,vN} is a basis in V , not necessarily orthonormal,
while {ej} is a positively oriented orthonormal basis. Show that


∗(v1 ∧ ... ∧ vN ) =
v1 ∧ ... ∧ vN


e1 ∧ ... ∧ eN
.


Volume in space: Consider the space of polynomials of degree at most 4 in
the variable x. The scalar product of two polynomials p1(x) and p2(x) is de-
fined by


〈p1, p2〉 ≡
1


2


∫ 1


−1


p1(x)p2(x)dx.


Determine the three-dimensional volume of the tetrahedron with vertices at
the “points” 0, 1 + x, x2 + x3, x4 in this five-dimensional space.


0.3 A list of results


Here is a list of some results explained in this book. If you already know all
these results and their derivations, you may not need to read any further.


Vector spaces may be defined over an abstract number field, without spec-
ifying the number of dimensions or a basis.


The set
{
a+ b


√
41 | a, b ∈ Q


}
is a number field.


Any vector can be represented as a linear combination of basis vectors. All
bases have equally many vectors.


The set of all linear maps from one vector space to another is denoted
Hom(V,W ) and is a vector space.


The zero vector is not an eigenvector (by definition).


An operator having in some basis the matrix representation


(
0 1
0 0


)


can-


not be diagonalized.
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The dual vector space V ∗ has the same dimension as V (for finite-dimen-
sional spaces).


Given a nonzero covector f∗ ∈ V ∗, the set of vectors v ∈ V such that
f∗(v) = 0 is a subspace of codimension 1 (a hyperplane).


The tensor product of Rm and Rn has dimension mn.


Any linear map Â : V → W can be represented by a tensor of the form
∑k


i=1 v∗
i ⊗ wi ∈ V ∗ ⊗W . The rank of Â is equal to the smallest number of


simple tensor product terms v∗
i ⊗ wi required for this representation.


The identity map 1̂V : V → V is represented as the tensor
∑N


i=1 e∗i ⊗ ei ∈
V ∗ ⊗ V , where {ei} is any basis and {e∗i } its dual basis. This tensor does not
depend on the choice of the basis {ei}.


A set of vectors {v1, ...,vk} is linearly independent if and only if v1 ∧ ... ∧
vk 6= 0. If v1 ∧ ... ∧ vk 6= 0 but v1 ∧ ... ∧ vk ∧ x = 0 then the vector x belongs
to the subspace Span {v1, ...,vk}.


The dimension of the space ∧kV is
(
N
k


)
, where N ≡ dimV .


Insertion ιa∗ω of a covector a∗ ∈ V ∗ into an antisymmetric tensor ω ∈ ∧kV
has the property


v ∧ (ιa∗ω) + ιa∗(v ∧ ω) = a∗(v)ω.


Given a basis {ei}, the dual basis {e∗i } may be computed as


e∗i (x) =
e1 ∧ ... ∧ x ∧ ... ∧ eN


e1 ∧ ... ∧ eN
,


where x replaces ei in the numerator.
The subspace spanned by a set of vectors {v1, ...,vk}, not necessarily lin-


early independent, can be characterized by a certain antisymmetric tensor ω,
which is the exterior product of the largest number of vi’s such that ω 6= 0.
The tensor ω, computed in this way, is unique up to a constant factor.


The n-vector (antisymmetric tensor) v1∧...∧vn represents geometrically the
oriented n-dimensional volume of the parallelepiped spanned by the vectors
vi.


The determinant of a linear operator Â is the coefficient that multiplies the


oriented volume of any parallelepiped transformed by Â. In our notation, the


operator ∧N ÂN acts in ∧NV as multiplication by det Â.
If each of the given vectors {v1, ...,vN} is expressed through a basis {ei} as


vj =
∑N


i=1 vijei, the determinant of the matrix vij is found as


det(vij) = det(vji) =
v1 ∧ ... ∧ vN


e1 ∧ ... ∧ eN
.


A linear operator Â : V → V and its canonically defined transpose ÂT :
V ∗ → V ∗ have the same characteristic polynomials.


If det Â 6= 0 then the inverse operator Â−1 exists, and a linear equation


Âx = b has the unique solution x = Â−1b. Otherwise, solutions exist
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if b belongs to the image of Â. Explicit solutions may be constructed us-
ing Kramer’s rule: If a vector b belongs to the subspace spanned by vectors
{v1, ...,vn} then b =


∑n
i=1 bivi, where the coefficients bi may be found (as-


suming v1 ∧ ... ∧ vn 6= 0) as


bi =
v1 ∧ ... ∧ x ∧ ... ∧ vn


v1 ∧ ... ∧ vn


(here x replaces vi in the exterior product in the numerator).
Eigenvalues of a linear operator are roots of its characteristic polynomial.


For each root λi, there exists at least one eigenvector corresponding to the
eigenvalue λi.


If {v1, ...,vk} are eigenvectors corresponding to all different eigenvalues
λ1, ..., λk of some operator, then the set {v1, ...,vk} is linearly independent.


The dimension of the eigenspace corresponding to λi is not larger than the
algebraic multiplicity of the root λi in the characteristic polynomial.


(Below in this section we always denote by N the dimension of the space V .)


The trace of an operator Â can be expressed as ∧N Â1.


We have Tr(ÂB̂) = Tr(B̂Â). This holds even if Â, B̂ are maps between


different spaces, i.e. Â : V →W and B̂ : W → V .


If an operator Â is nilpotent, its characteristic polynomial is (−λ)
N , i.e. the


same as the characteristic polynomial of a zero operator.


The j-th coefficient of the characteristic polynomial of Â is (−1)
j
(∧N Âj).


Each coefficient of the characteristic polynomial of Â can be expressed as a


polynomial function of N traces of the form Tr(Âk), k = 1, ..., N .
The space ∧N−1V is N -dimensional like V itself, and there is a canonical


isomorphism between End(∧N−1V ) and End(V ). This isomorphism, called
exterior transposition, is denoted by (...)∧T . The exterior transpose of an


operator X̂ ∈ EndV is defined by


(X̂∧Tω) ∧ v ≡ ω ∧ X̂v, ∀ω ∈ ∧N−1V, v ∈ V.


Similarly, one defines the exterior transposition map between End(∧N−kV )
and End(∧kV ) for all k = 1, ..., N .


The algebraic complement operator (normally defined as a matrix con-
sisting of minors) is canonically defined through exterior transposition as
˜̂
A ≡ (∧N−1ÂN−1)∧T . It can be expressed as a polynomial in Â and satisfies


the identity
˜̂
AÂ = (det Â)1̂V . Also, all other operators


Â(k) ≡
(
∧N−1ÂN−k


)∧T
, k = 1, ..., N


can be expressed as polynomials in Â with known coefficients.


The characteristic polynomial of Â gives the zero operator if applied to the


operator Â (the Cayley-Hamilton theorem). A similar theorem holds for each


of the operators ∧kÂ1, 2 ≤ k ≤ N − 1 (with different polynomials).
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A formal power series f(t) can be applied to the operator tÂ; the result is


an operator-valued formal series f(tÂ) that has the usual properties, e.g.


∂tf(tÂ) = Âf ′(tÂ).


If Â is diagonalized with eigenvalues {λi} in the eigenbasis {ei}, then a


formal power series f(tÂ) is diagonalized in the same basis with eigenvalues
f(tλi).


If an operator Â satisfies a polynomial equation such as p(Â) = 0, where
p(x) is a known polynomial of degree k (not necessarily, but possibly, the


characteristic polynomial of Â) then any formal power series f(tÂ) is reduced


to a polynomial in tÂ of degree not larger than k − 1. This polynomial can
be computed as the interpolating polynomial for the function f(tx) at points
x = xi where xi are the (all different) roots of p(x). Suitable modifications are
available when not all roots are different. So one can compute any analytic


function f(Â) of the operator Â as long as one knows a polynomial equation


satisfied by Â.


A square root of an operator Â (i.e. a linear operator B̂ such that B̂B̂ = Â)
is not unique and does not always exist. In two and three dimensions, one


can either obtain all square roots explicitly as polynomials in Â, or determine


that some square roots are not expressible as polynomials in Â or that square


roots of Â do not exist at all.
If an operator Â depends on a parameter t, one can express the derivative of


the determinant of Â through the algebraic complement
˜̂
A (Jacobi’s formula),


∂t det Â(t) = Tr(
˜̂
A∂tÂ).


Derivatives of other coefficients qk ≡ ∧N ÂN−k of the characteristic polyno-
mial are given by similar formulas,


∂tqk = Tr
[
(∧N−1ÂN−k−1)∧T∂tÂ


]
.


The Liouville formula holds: det exp Â = exp TrÂ.
Any operator (not necessarily diagonalizable) can be reduced to a Jordan


canonical form in a Jordan basis. The Jordan basis consists of eigenvectors
and root vectors for each eigenvalue.


Given an operator Â whose characteristic polynomial is known (hence all
roots λi and their algebraic multiplicities mi are known), one can construct


explicitly a projector P̂λi
onto a Jordan cell for any chosen eigenvalue λi. The


projector is found as a polynomial in Â with known coefficients.
(Below in this section we assume that a scalar product is fixed in V .)
A nondegenerate scalar product provides a one-to-one correspondence be-


tween vectors and covectors. Then the canonically transposed operator ÂT :
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V ∗ → V ∗ can be mapped into an operator in V , denoted also by ÂT . (This op-
erator is represented by the transposed matrix only in an orthonormal basis.)


We have (ÂB̂)T = B̂T ÂT and det(ÂT ) = det Â.
Orthogonal transformations have determinants equal to ±1. Mirror reflec-


tions are orthogonal transformations and have determinant equal to −1.
Given an orthonormal basis {ei}, one can define the unit volume tensor


ω = e1 ∧ ...∧ eN . The tensor ω is then independent of the choice of {ei} up to
a factor ±1 due to the orientation of the basis (i.e. the ordering of the vectors
of the basis), as long as the scalar product is kept fixed.


Given a fixed scalar product 〈·, ·〉 and a fixed orientation of space, the Hodge
star operation is uniquely defined as a linear map (isomorphism) ∧kV →
∧N−kV for each k = 0, ..., N . For instance,


∗e1 = e2 ∧ e3 ∧ ... ∧ eN ; ∗(e1 ∧ e2) = e3 ∧ ... ∧ eN ,


if {ei} is any positively oriented, orthonormal basis.
The Hodge star map satisfies


〈a,b〉 = ∗(a ∧ ∗b) = ∗(b ∧ ∗a), a,b ∈ V.


In a three-dimensional space, the usual vector product and triple product
can be expressed through the Hodge star as


a × b = ∗(a ∧ b), a · (b × c) = ∗(a ∧ b ∧ c).


The volume of anN -dimensional parallelepiped spanned by {v1, ...,vN} is
equal to


√


det(Gij), where Gij ≡ 〈vi,vj〉 is the matrix of the pairwise scalar
products.


Given a scalar product in V , a scalar product is canonically defined also in
the spaces ∧kV for all k = 2, ..., N . This scalar product can be defined by


〈ω1, ω2〉 = ∗(ω1 ∧ ∗ω2) = ∗(ω2 ∧ ∗ω1) = 〈ω2, ω1〉 ,


where ω1,2 ∈ ∧kV . Alternatively, this scalar product is defined by choosing an
orthonormal basis {ej} and postulating that ei1∧...∧eik


is normalized and or-
thogonal to any other such tensor with different indices {ij |j = 1, ..., k}. The
k-dimensional volume of a parallelepiped spanned by vectors {v1, ...,vk} is


found as
√


〈ψ,ψ〉 with ψ ≡ v1 ∧ ... ∧ vk ∈ ∧kV .
The insertion ιvψ of a vector v into a k-vector ψ ∈ ∧kV (or the “interior


product”) can be expressed as


ιvψ = ∗(v ∧ ∗ψ).


If ω ≡ e1 ∧ ... ∧ eN is the unit volume tensor, we have ιvω = ∗v.
Symmetric, antisymmetric, Hermitian, and anti-Hermitian operators are


always diagonalizable (if we allow complex eigenvalues and eigenvectors).
Eigenvectors of these operators can be chosen orthogonal to each other.
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Antisymmetric operators are representable as elements of ∧2V of the form
∑n


i=1 ai∧bi, where one needs no more than N/2 terms, and the vectors ai, bi


can be chosen mutually orthogonal to each other. (For this, we do not need
complex vectors.)


The Pfaffian of an antisymmetric operator Â in even-dimensional space is


the number Pf Â defined as


1


(N/2)!
A ∧ ... ∧A
︸ ︷︷ ︸


N/2


= (Pf Â)e1 ∧ ... ∧ eN ,


where {ei} is an orthonormal basis. Some basic properties of the Pfaffian are


(Pf Â)2 = det Â,


Pf (B̂ÂB̂T ) = (det B̂)(Pf Â),


where Â is an antisymmetric operator (ÂT = −Â) and B̂ is an arbitrary oper-
ator.
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1 Linear algebra without


coordinates


1.1 Vector spaces


Abstract vector spaces are developed as a generalization of the familiar vec-
tors in Euclidean space.


1.1.1 Three-dimensional Euclidean geometry


Let us begin with something you already know. Three-dimensional vectors
are specified by triples of coordinates, r ≡ (x, y, z). The operations of vector
sum and vector product of such vectors are defined by


(x1, y1, z1) + (x2, y2, z2) ≡ (x1 + x2, y1 + y2, z1 + z2) ; (1.1)


(x1, y1, z1) × (x2, y2, z2) ≡ (y1z2 − z1y2, z1x2 − x1z2,


x1y2 − y1x2). (1.2)


(I assume that these definitions are familiar to you.) Vectors can be rescaled
by multiplying them with real numbers,


cr = c (x, y, z) ≡ (cx, cy, cz) . (1.3)


A rescaled vector is parallel to the original vector and points either in the
same or in the opposite direction. In addition, a scalar product of two vectors
is defined,


(x1, y1, z1) · (x2, y2, z2) ≡ x1x2 + y1y2 + z1z2. (1.4)


These operations encapsulate all of Euclidean geometry in a purely algebraic
language. For example, the length of a vector r is


|r| ≡
√


r · r =
√


x2 + y2 + z2, (1.5)


the angle α between vectors r1 and r2 is found from the relation (the cosine
theorem)


|r1| |r2| cosα = r1 · r2,


while the area of a triangle spanned by vectors r1 and r2 is


S =
1


2
|r1 × r2| .
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1 Linear algebra without coordinates


Using these definitions, one can reformulate every geometric statement
(such as, “a triangle having two equal sides has also two equal angles”) in
terms of relations between vectors, which are ultimately reducible to alge-
braic equations involving a set of numbers. The replacement of geometric
constructions by algebraic relations is useful because it allows us to free our-
selves from the confines of our three-dimensional intuition; we are then able
to solve problems in higher-dimensional spaces. The price is a greater com-
plication of the algebraic equations and inequalities that need to be solved.
To make these equations more transparent and easier to handle, the theory
of linear algebra is developed. The first step is to realize what features of
vectors are essential and what are just accidental facts of our familiar three-
dimensional Euclidean space.


1.1.2 From three-dimensional vectors to abstract vectors


Abstract vector spaces retain the essential properties of the familiar Euclidean
geometry but generalize it in two ways: First, the dimension of space is not
3 but an arbitrary integer number (or even infinity); second, the coordinates
are “abstract numbers” (see below) instead of real numbers. Let us first pass
to higher-dimensional vectors.


Generalizing the notion of a three-dimensional vector to a higher (still fi-
nite) dimension is straightforward: instead of triples (x, y, z) one considers
sets of n coordinates (x1, ..., xn). The definitions of the vector sum (1.1), scal-
ing (1.3) and scalar product (1.4) are straightforwardly generalized to n-tuples
of coordinates. In this way we can describe n-dimensional Euclidean geome-
try. All theorems of linear algebra are proved in the same way regardless of
the number of components in vectors, so the generalization to n-dimensional
spaces is a natural thing to do.


Question: The scalar product can be generalized to n-dimensional spaces,


(x1, ..., xn) · (y1, ..., yn) ≡ x1y1 + ...+ xnyn,


but what about the vector product? The formula (1.2) seems to be compli-
cated, and it is hard to guess what should be written, say, in four dimensions.


Answer: It turns out that the vector product (1.2) cannot be generalized to
arbitrary n-dimensional spaces.1 At this point we will not require the vector
spaces to have either a vector or a scalar product; instead we will concentrate
on the basic algebraic properties of vectors. Later we will see that there is an
algebraic construction (the exterior product) that replaces the vector product
in higher dimensions.


1A vector product exists only in some cases, e.g. n = 3 and n = 7. This is a theorem of higher
algebra which we will not prove here.
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1.1 Vector spaces


Abstract numbers


The motivation to replace the real coordinates x, y, z by complex coordinates,
rational coordinates, or by some other, more abstract numbers comes from
many branches of physics and mathematics. In any case, the statements of
linear algebra almost never rely on the fact that coordinates of vectors are real
numbers. Only certain properties of real numbers are actually used, namely
that one can add or multiply or divide numbers. So one can easily replace
real numbers by complex numbers or by some other kind of numbers as long
as one can add, multiply and divide them as usual. (The use of the square
root as in Eq. (1.5) can be avoided if one considers only squared lengths of
vectors.)


Instead of specifying each time that one works with real numbers or with
complex numbers, one says that one is working with some “abstract num-
bers” that have all the needed properties of numbers. The required properties
of such “abstract numbers” are summarized by the axioms of a number field.


Definition: A number field (also called simply a field) is a set K which is
an abelian group with respect to addition and multiplication, such that the
distributive law holds. More precisely: There exist elements 0 and 1, and the
operations +, −, ∗, and / are defined such that a + b = b + a, a ∗ b = b ∗ a,
0+a = a, 1∗a = a, 0∗a = 0, and for every a ∈ K the numbers −a and 1/a (for
a 6= 0) exist such that a+(−a) = 0, a∗(1/a) = 1, and also a∗(b+c) = a∗b+a∗c.
The operations − and / are defined by a− b ≡ a+ (−b) and a/b = a ∗ (1/b).


In a more visual language: A field is a set of elements on which the opera-
tions +, −, ∗, and / are defined, the elements 0 and 1 exist, and the familiar
arithmetic properties such as a + b = b + a, a + 0 = 0, a − a = 0, a ∗ 1 = 1,
a/b∗b = a (for b 6= 0), etc. are satisfied. Elements of a field can be visualized as
“abstract numbers” because they can be added, subtracted, multiplied, and
divided, with the usual arithmetic rules. (For instance, division by zero is
still undefined, even with abstract numbers!) I will call elements of a number
field simply numbers when (in my view) it does not cause confusion.


Examples of number fields


Real numbers R are a field, as are rational numbers Q and complex numbers
C, with all arithmetic operations defined as usual. Integer numbers Z with
the usual arithmetic are not a field because e.g. the division of 1 by a nonzero
number 2 cannot be an integer.


Another interesting example is the set of numbers of the form a + b
√


3,
where a, b ∈ Q are rational numbers. It is easy to see that sums, products, and
ratios of such numbers are again numbers from the same set, for example


(a1 + b1
√


3)(a2 + b2
√


3)


= (a1a2 + 3b1b2) + (a1b2 + a2b1)
√


3.
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1 Linear algebra without coordinates


Let’s check the division property:


1


a+ b
√


3
=
a− b


√
3


a− b
√


3


1


a+ b
√


3
=
a− b


√
3


a2 − 3b2
.


Note that
√


3 is irrational, so the denominator a2 − 3b2 is never zero as long
as a and b are rational and at least one of a, b is nonzero. Therefore, we can
divide numbers of the form a+ b


√
3 and again get numbers of the same kind.


It follows that the set
{
a+ b


√
3 | a, b ∈ Q


}
is indeed a number field. This field


is usually denoted by Q[
√


3] and called an extension of rational numbers by√
3. Fields of this form are useful in algebraic number theory.
A field might even consist of a finite set of numbers (in which case it is


called a finite field). For example, the set of three numbers {0, 1, 2} can be
made a field if we define the arithmetic operations as


1 + 2 ≡ 0, 2 + 2 ≡ 1, 2 ∗ 2 ≡ 1, 1/2 ≡ 2,


with all other operations as in usual arithmetic. This is the field of integers
modulo 3 and is denoted by F3. Fields of this form are useful, for instance, in
cryptography.


Any field must contain elements that play the role of the numbers 0 and 1;
we denote these elements simply by 0 and 1. Therefore the smallest possible
field is the set {0, 1} with the usual relations 0 + 1 = 1, 1 · 1 = 1 etc. This field
is denoted by F2.


Most of the time we will not need to specify the number field; it is all right
to imagine that we always use R or C as the field. (See Appendix A for a brief
introduction to complex numbers.)
Exercise: Which of the following sets are number fields:


a)
{
x+ iy


√
2 |x, y ∈ Q


}
, where i is the imaginary unit.


b)
{
x+ y


√
2 |x, y ∈ Z


}
.


Abstract vector spaces


After a generalization of the three-dimensional vector geometry to n-dimen-
sional spaces and real numbers R to abstract number fields, we arrive at the
following definition of a vector space.
Definition V1: An n-dimensional vector space over a field K is the set of all
n-tuples (x1, ..., xn), where xi ∈ K; the numbers xi are called components of
the vector (in older books they were called coordinates). The operations of
vector sum and the scaling of vectors by numbers are given by the formulas


(x1, ..., xn) + (y1, ..., yn) ≡ (x1 + y1, ..., xn + yn) , xi, yi ∈ K;


λ (x1, ..., xn) ≡ (λx1, ..., λxn) , λ ∈ K.


This vector space is denoted by Kn.
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1.1 Vector spaces


Most problems in physics involve vector spaces over the field of real num-
bers K = R or complex numbers K = C. However, most results of basic linear
algebra hold for arbitrary number fields, and for now we will consider vector
spaces over an arbitrary number field K.


Definition V1 is adequate for applications involving finite-dimensional vec-
tor spaces. However, it turns out that further abstraction is necessary when
one considers infinite-dimensional spaces. Namely, one needs to do away
with coordinates and define the vector space by the basic requirements on
the vector sum and scaling operations.


We will adopt the following “coordinate-free” definition of a vector space.


Definition V2: A set V is a vector space over a number field K if the follow-
ing conditions are met:


1. V is an abelian group; the sum of two vectors is denoted by the “+”
sign, the zero element is the vector 0. So for any u,v ∈ V the vector
u + v ∈ V exists, u + v = v + u, and in particular v + 0 = v for any
v ∈ V .


2. An operation of multiplication by numbers is defined, such that for
each λ ∈ K, v ∈ V the vector λv ∈ V is determined.


3. The following properties hold, for all vectors u,v ∈ V and all numbers
λ, µ ∈ K:


(λ+ µ)v = λv + µv, λ (v + u) = λv + λu,


1v = v, 0v = 0.


These properties guarantee that the multiplication by numbers is com-
patible with the vector sum, so that usual rules of arithmetic and algebra
are applicable.


Below I will not be so pedantic as to write the boldface 0 for the zero vec-
tor 0 ∈ V ; denoting the zero vector simply by 0 never creates confusion in
practice.


Elements of a vector space are called vectors; in contrast, numbers from
the field K are called scalars. For clarity, since this is an introductory text,
I will print all vectors in boldface font so that v, a, x are vectors but v, a, x
are scalars (i.e. numbers). Sometimes, for additional clarity, one uses Greek
letters such as α, λ, µ to denote scalars and Latin letters to denote vectors. For
example, one writes expressions of the form λ1v1 + λ2v2 + ... + λnvn; these
are called linear combinations of vectors v1, v2, ..., vn.


The definition V2 is standard in abstract algebra. As we will see below, the
coordinate-free language is well suited to proving theorems about general
properties of vectors.


15







1 Linear algebra without coordinates


Question: I do not understand how to work with abstract vectors in abstract
vector spaces. According to the vector space axioms (definition V2), I should
be able to add vectors together and multiply them by scalars. It is clear how to
add the n-tuples (v1, ..., vn), but how can I compute anything with an abstract
vector v that does not seem to have any components?
Answer: Definition V2 is “abstract” in the sense that it does not explain


how to add particular kinds of vectors, instead it merely lists the set of prop-
erties any vector space must satisfy. To define a particular vector space, we
of course need to specify a particular set of vectors and a rule for adding its
elements in an explicit fashion (see examples below in Sec. 1.1.3). Definition
V2 is used in the following way: Suppose someone claims that a certain setX
of particular mathematical objects is a vector space over some number field,
then we only need to check that the sum of vectors and the multiplication of
vector by a number are well-defined and conform to the properties listed in
Definition V2. If every property holds, then the set X is a vector space, and
all the theorems of linear algebra will automatically hold for the elements of
the set X . Viewed from this perspective, Definition V1 specifies a particular
vector space—the space of rows of numbers (v1, ..., vn). In some cases the
vector space at hand is exactly that of Definition V1, and then it is convenient
to work with components vj when performing calculations with specific vec-
tors. However, components are not needed for proving general theorems. In
this book, when I say that “a vector v ∈ V is given,” I imagine that enough
concrete information about v will be available when it is actually needed.


1.1.3 Examples of vector spaces


Example 0. The familiar example is the three-dimensional Euclidean space.
This space is denoted by R3 and is the set of all triples (x1, x2, x3), where xi


are real numbers. This is a vector space over R.
Example 1. The set of complex numbers C is a vector space over the field of
real numbers R. Indeed, complex numbers can be added and multiplied by
real numbers.
Example 2. Consider the set of all three-dimensional vectors v ∈ R3 which
are orthogonal to a given vector a 6= 0; here we use the standard scalar prod-
uct (1.4); vectors a and b are called orthogonal to each other if a · b = 0. This
set is closed under vector sum and scalar multiplication because if u · a = 0
and v · a = 0, then for any λ ∈ R we have (u + λv) · a = 0. Thus we obtain a
vector space (a certain subset of R3) which is defined not in terms of compo-
nents but through geometric relations between vectors of another (previously
defined) space.
Example 3. Consider the set of all real-valued continuous functions f (x) de-
fined for x ∈ [0, 1] and such that f (0) = 0 and f (1) = 0. This set is a vec-
tor space over R. Indeed, the definition of a vector space is satisfied if we
define the sum of two functions as f (x) + f (y) and the multiplication by
scalars, λf (x), in the natural way. It is easy to see that the axioms of the
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1.1 Vector spaces


vector space are satisfied: If h (x) = f (x) + λg (x), where f (x) and g (x) are
vectors from this space, then the function h (x) is continuous on [0, 1] and sat-
isfies h (0) = h (1) = 0, i.e. the function h (x) is also an element of the same
space.
Example 4. To represent the fact that there are λ1 gallons of water and λ2


gallons of oil, we may write the expression λ1X + λ2Y, where X and Y are
formal symbols and λ1,2 are numbers. The set of all such expressions is a
vector space. This space is called the space of formal linear combinations of
the symbols X and Y. The operations of sum and scalar multiplication are
defined in the natural way, so that we can perform calculations such as


1


2
(2X + 3Y) − 1


2
(2X − 3Y) = 3Y.


For the purpose of manipulating such expressions, it is unimportant that X


and Y stand for water and oil. We may simply work with formal expressions
such as 2X+3Y, where X and Y and “+” are symbols that do not mean any-
thing by themselves except that they can appear in such linear combinations
and have familiar properties of algebraic objects (the operation “+” is commu-
tative and associative, etc.). Such formal constructions are often encountered
in mathematics.
Question: It seems that such “formal” constructions are absurd and/or use-
less. I know how to add numbers or vectors, but how can I add X + Y if X


and Y are, as you say, “meaningless symbols”?
Answer: Usually when we write “a + b” we imply that the operation “+”


is already defined, so a + b is another number if a and b are numbers. How-
ever, in the case of formal expressions described in Example 4, the “+” sign is
actually going to acquire a new definition. So X+Y is not equal to a new sym-
bol Z, instead X + Y is just an expression that we can manipulate. Consider
the analogy with complex numbers: the number 1 + 2i is an expression that
we manipulate, and the imaginary unit, i, is a symbol that is never “equal to
something else.” According to its definition, the expression X + Y cannot be
simplified to anything else, just like 1 + 2i cannot be simplified. The symbols
X, Y, i are not meaningless: their meaning comes from the rules of computations
with these symbols.


Maybe it helps to change notation. Let us begin by writing a pair (a, b)
instead of aX + bY. We can define the sum of such pairs in the natural way,
e.g.


(2, 3) + (−2, 1) = (0, 4) .


It is clear that these pairs build a vector space. Now, to remind ourselves
that the numbers of the pair stand for, say, quantities of water and oil, we
write (2X, 3Y) instead of (2, 3). The symbols X and Y are merely part of the
notation. Now it is natural to change the notation further and to write simply
2X instead of (2X, 0Y) and aX + bY instead of (aX, bY). It is clear that we
do not introduce anything new when we write aX + bY instead of (aX, bY):
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1 Linear algebra without coordinates


We merely change the notation so that computations appear easier. Similarly,
complex numbers can be understood as pairs of real numbers, such as (3, 2),
for which 3 + 2i is merely a more convenient notation that helps remember
the rules of computation. �


Example 5. The set of all polynomials of degree at most n in the variable
x with complex coefficients is a vector space over C. Such polynomials are
expressions of the form p (x) = p0 + p1x + ... + pnx


n, where x is a formal
variable (i.e. no value is assigned to x), n is an integer, and pi are complex
numbers.


Example 6. Consider now the set of all polynomials in the variables x, y, and
z, with complex coefficients, and such that the combined degree in x, in y,
and in z is at most 2. For instance, the polynomial 1 + 2ix − yz −


√
3x2 is an


element of that vector space (while x2y is not because its combined degree is
3). It is clear that the degree will never increase above 2 when any two such
polynomials are added together, so these polynomials indeed form a vector
space over the field C.


Exercise. Which of the following are vector spaces over R?


1. The set of all complex numbers z whose real part is equal to 0. The
complex numbers are added and multiplied by real constants as usual.


2. The set of all complex numbers z whose imaginary part is equal to 3.
The complex numbers are added and multiplied by real constants as
usual.


3. The set of pairs of the form (apples, $3.1415926), where the first element
is always the word “apples” and the second element is a price in dollars
(the price may be an arbitrary real number, not necessarily positive or
with an integer number of cents). Addition and multiplication by real
constants is defined as follows:


(apples, $x) + (apples, $y) ≡ (apples, $(x+ y))


λ · (apples, $x) ≡ (apples, $(λ · x))


4. The set of pairs of the form either (apples, $x) or (chocolate, $y), where
x and y are real numbers. The pairs are added as follows,


(apples, $x) + (apples, $y) ≡ (apples, $(x+ y))


(chocolate, $x) + (chocolate, $y) ≡ (chocolate, $(x+ y))


(chocolate, $x) + (apples, $y) ≡ (chocolate, $(x+ y))


(that is, chocolate “takes precedence” over apples). The multiplication
by a number is defined as in the previous question.
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5. The set of “bracketed complex numbers,” denoted [z], where z is a com-
plex number such that |z| = 1. For example: [i],


[
1
2 − 1


2 i
√


3
]
, [−1]. Ad-


dition and multiplication by real constants λ are defined as follows,


[z1] + [z2] = [z1z2] , λ · [z] =
[
zeiλ


]
.


6. The set of infinite arrays (a1, a2, ...) of arbitrary real numbers. Addition
and multiplication are defined term-by-term.


7. The set of polynomials in the variable x with real coefficients and of
arbitrary (but finite) degree. Addition and multiplication is defined as
usual in algebra.


Question: All these abstract definitions notwithstanding, would it be all
right if I always keep in the back of my mind that a vector v is a row of
components (v1, ..., vn)?
Answer: It will be perfectly all right as long as you work with finite-dimen-


sional vector spaces. (This intuition often fails when working with infinite-
dimensional spaces!) Even if all we need is finite-dimensional vectors, there is
another argument in favor of the coordinate-free thinking. Suppose I persist
in visualizing vectors as rows (v1, ..., vn); let us see what happens. First, I
introduce the vector notation and write u+v instead of (u1 + v1, ..., un + vn);
this is just for convenience and to save time. Then I check the axioms of the
vector space (see the definition V2 above); row vectors of course obey these
axioms. Suppose I somehow manage to produce all proofs and calculations
using only the vector notation and the axioms of the abstract vector space,
and suppose I never use the coordinates vj explicitly, even though I keep
them in the back of my mind. Then all my results will be valid not only for
collections of components (v1, ..., vn) but also for any mathematical objects
that obey the axioms of the abstract vector space. In fact I would then realize
that I have been working with abstract vectors all along while carrying the
image of a row vector (v1, ..., vn) in the back of my mind.


1.1.4 Dimensionality and bases


Unlike the definition V1, the definition V2 does not include any informa-
tion about the dimensionality of the vector space. So, on the one hand, this
definition treats finite- and infinite-dimensional spaces on the same footing;
the definition V2 lets us establish that a certain set is a vector space without
knowing its dimensionality in advance. On the other hand, once a particular
vector space is given, we may need some additional work to figure out the
number of dimensions in it. The key notion used for that purpose is “linear
independence.”


We say, for example, the vector w ≡ 2u − 3v is “linearly dependent” on u


and v. A vector x is linearly independent of vectors u and v if x cannot be
expressed as a linear combination λ1u + λ2v.
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1 Linear algebra without coordinates


A set of vectors is linearly dependent if one of the vectors is a linear com-
bination of others. This property can be formulated more elegantly:
Definition: The set of vectors {v1, ...,vn} is a linearly dependent set if there
exist numbers λ1, ..., λn ∈ K, not all equal to zero, such that


λ1v1 + ...+ λnvn = 0. (1.6)


If no such numbers exist, i.e. if Eq. (1.6) holds only with all λi = 0, the vectors
{vi} constitute a linearly independent set.
Interpretation: As a first example, consider the set {v} consisting of a sin-


gle nonzero vector v 6= 0. The set {v} is a linearly independent set because
λv = 0 only if λ = 0. Now consider the set {u,v,w}, where u = 2v and w


is any vector. This set is linearly dependent because there exists a nontrivial
linear combination (i.e. a linear combination with some nonzero coefficients)
which is equal to zero,


u − 2v = 1u + (−2)v + 0w = 0.


More generally: If a set {v1, ...,vn} is linearly dependent, then there exists
at least one vector equal to a linear combination of other vectors. Indeed, by
definition there must be at least one nonzero number among the numbers λi


involved in Eq. (1.6); suppose λ1 6= 0, then we can divide Eq. (1.6) by λ1 and
express v1 through other vectors,


v1 = − 1


λ1
(λ2v2 + ...+ λnvn) .


In other words, the existence of numbers λi, not all equal to zero, is indeed the
formal statement of the idea that at least some vector in the set {vi} is a linear
combination of other vectors. By writing a linear combination


∑


i λivi = 0
and by saying that “not all λi are zero” we avoid specifying which vector is
equal to a linear combination of others.
Remark: Often instead of saying “a linearly independent set of vectors” one
says “a set of linearly independent vectors.” This is intended to mean the
same thing but might be confusing because, taken literally, the phrase “a set
of independent vectors” means a set in which each vector is “independent”
by itself. Keep in mind that linear independence is a property of a set of vec-
tors; this property depends on the relationships between all the vectors in the
set and is not a property of each vector taken separately. It would be more
consistent to say e.g. “a set of mutually independent vectors.” In this text, I
will pedantically stick to the phrase “linearly independent set.”
Example 1: Consider the vectors a = (0, 1), b = (1, 1) in R2. Is the set {a,b}
linearly independent? Suppose there exists a linear combination αa+βb = 0
with at least one of α, β 6= 0. Then we would have


αa + βb = (0, α) + (β, β) = (β, α+ β)
!
= 0.


This is possible only if β = 0 and α = 0. Therefore, {a,b} is linearly indepen-
dent.
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Exercise 1: a) A set {v1, ...,vn} is linearly independent. Prove that any sub-
set, say {v1, ...,vk}, where k < n, is also a linearly independent set.


b) Decide whether the given sets {a,b} or {a,b, c} are linearly independent
sets of vectors from R2 or other spaces as indicated. For linearly dependent
sets, find a linear combination showing this.


1. a =
(
2,
√


2
)
, b = ( 1√


2
, 1


2 ) in R2


2. a = (−2, 3), b = (6,−9) in R2


3. a = (1 + 2i, 10, 20), b = (1 − 2i, 10, 20) in C3


4. a = (0, 10i, 20i, 30i), b = (0, 20i, 40i, 60i), c = (0, 30i, 60i, 90i) in C4


5. a = (3, 1, 2), b = (1, 0, 1), c = (0,−1, 2) in R3


The number of dimensions (or simply the dimension) of a vector space is
the maximum possible number of vectors in a linearly independent set. The
formal definition is the following.
Definition: A vector space is n-dimensional if linearly independent sets of n
vectors can be found in it, but no linearly independent sets of n + 1 vectors.
The dimension of a vector space V is then denoted by dimV ≡ n. A vector
space is infinite-dimensional if linearly independent sets having arbitrarily
many vectors can be found in it.


By this definition, in an n-dimensional vector space there exists at least one
linearly independent set of n vectors {e1, ..., en}. Linearly independent sets
containing exactly n = dimV vectors have useful properties, to which we
now turn.
Definition: A basis in the space V is a linearly independent set of vectors
{e1, ..., en} such that for any vector v ∈ V there exist numbers vk ∈ K such
that v =


∑n
k=1 vkek. (In other words, every other vector v is a linear com-


bination of basis vectors.) The numbers vk are called the components (or
coordinates) of the vector v with respect to the basis {ei}.
Example 2: In the three-dimensional Euclidean space R3, the set of three
triples (1, 0, 0), (0, 1, 0), and (0, 0, 1) is a basis because every vector x = (x, y, z)
can be expressed as


x = (x, y, z) = x (1, 0, 0) + y (0, 1, 0) + z (0, 0, 1) .


This basis is called the standard basis. Analogously one defines the standard
basis in Rn. �


The following statement is standard, and I write out its full proof here as
an example of an argument based on the abstract definition of vectors.
Theorem: (1) If a set {e1, ..., en} is linearly independent and n = dimV ,
then the set {e1, ..., en} is a basis in V . (2) For a given vector v ∈ V and
a given basis {e1, ..., en}, the coefficients vk involved in the decomposition
v =


∑n
k=1 vkek are uniquely determined.
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Proof: (1) By definition of dimension, the set {v, e1, ..., en} must be linearly
dependent. By definition of linear dependence, there exist numbers λ0, ..., λn,
not all equal to zero, such that


λ0v + λ1e1 + ...+ λnen = 0. (1.7)


Now if we had λ0 = 0, it would mean that not all numbers in the smaller
set {λ1, ..., λn} are zero; however, in that case Eq. (1.7) would contradict the
linear independence of the set {e1, ..., en}. Therefore λ0 6= 0 and Eq. (1.7)
shows that the vector v can be expressed through the basis, v =


∑n
k=1 vkek


with the coefficients vk ≡ −λk/λ0.
(2) To show that the set of coefficients {vk} is unique, we assume that there


are two such sets, {vk} and {v′k}. Then


0 = v − v =


n∑


k=1


vkek −
n∑


k=1


v′kek =


n∑


k=1


(vk − v′k) ek.


Since the set {e1, ..., en} is linearly independent, all coefficients in this linear
combination must vanish, so vk = v′k for all k. �


If we fix a basis {ei} in a finite-dimensional vector space V then all vectors
v ∈ V are uniquely represented by n-tuples {v1, ..., vn} of their components.
Thus we recover the original picture of a vector space as a set of n-tuples of
numbers. (Below we will prove that every basis in an n-dimensional space
has the same number of vectors, namely n.) Now, if we choose another basis
{e′i}, the same vector v will have different components v′k:


v =


n∑


k=1


vkek =


n∑


k=1


v′ke
′
k.


Remark: One sometimes reads that “the components are transformed” or
that “vectors are sets of numbers that transform under a change of basis.” I
do not use this language because it suggests that the components vk, which
are numbers such as 1


3 or
√


2, are somehow not simply numbers but “know
how to transform.” I prefer to say that the components vk of a vector v in a
particular basis {ek} express the relationship of v to that basis and are there-
fore functions of the vector v and of all basis vectors ej . �


For many purposes it is better to think about a vector v not as a set of its
components {v1, ..., vn} in some basis, but as a geometric object; a “directed
magnitude” is a useful heuristic idea. Geometric objects exist in the vector
space independently of a choice of basis. In linear algebra, one is typically
interested in problems involving relations between vectors, for example u =
av + bw, where a, b ∈ K are numbers. No choice of basis is necessary to
describe such relations between vectors; I will call such relations coordinate-
free or geometric. As I will demonstrate later in this text, many statements
of linear algebra are more transparent and easier to prove in the coordinate-
free language. Of course, in many practical applications one absolutely needs
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to perform specific calculations with components in an appropriately chosen
basis, and facility with such calculations is important. But I find it helpful to
keep a coordinate-free (geometric) picture in the back of my mind even when
I am doing calculations in coordinates.


Question: I am not sure how to determine the number of dimensions in a
vector space. According to the definition, I should figure out whether there
exist certain linearly independent sets of vectors. But surely it is impossible
to go over all sets of n vectors checking the linear independence of each set?
Answer: Of course it is impossible when there are infinitely many vectors.


This is simply not the way to go. We can determine the dimensionality of a
given vector space by proving that the space has a basis consisting of a certain
number of vectors. A particular vector space must be specified in concrete
terms (see Sec. 1.1.3 for examples), and in each case we should manage to
find a general proof that covers all sets of n vectors at once.


Exercise 2: For each vector space in the examples in Sec. 1.1.3, find the di-
mension or show that the dimension is infinite.


Solution for Example 1: The set C of complex numbers is a two-dimen-
sional vector space over R because every complex number a + ib can be rep-
resented as a linear combination of two basis vectors (1 and i) with real coeffi-
cients a, b. The set {1, i} is linearly independent because a+ ib = 0 only when
both a = b = 0.
Solution for Example 2: The space V is defined as the set of triples (x, y, z)


such that ax + by + cz = 0, where at least one of a, b, c is nonzero. Suppose,
without loss of generality, that a 6= 0; then we can express


x = − b


a
y − c


a
z.


Now the two parameters y and z are arbitrary while x is determined. Hence
it appears plausible that the space V is two-dimensional. Let us prove this
formally. Choose as the possible basis vectors e1 = (− b


a , 1, 0) and e2 =
(
− c


a , 0, 1
)
. These vectors belong to V , and the set {e1, e2} is linearly inde-


pendent (straightforward checks). It remains to show that every vector x ∈ V
is expressed as a linear combination of e1 and e2. Indeed, any such x must
have components x, y, z that satisfy x = − b


ay − c
az. Hence, x = ye1 + ze2.


Exercise 3: Describe a vector space that has dimension zero.
Solution: If there are no linearly independent sets in a space V , it means


that all sets consisting of just one vector {v} are already linearly dependent.
More formally, ∀v ∈ V : ∃λ 6= 0 such that λv = 0. Thus v = 0, that is,
all vectors v ∈ V are equal to the zero vector. Therefore a zero-dimensional
space is a space that consists of only one vector: the zero vector.


Exercise 4∗: Usually a vector space admits infinitely many choices of a basis.
However, above I cautiously wrote that a vector space “has at least one basis.”
Is there an example of a vector space that has only one basis?
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Hints: The answer is positive. Try to build a new basis from an existing one
and see where that might fail. This has to do with finite number fields (try
F2), and the only available example is rather dull.


1.1.5 All bases have equally many vectors


We have seen that any linearly independent set of n vectors in an n-dimen-
sional space is a basis. The following statement shows that a basis cannot
have fewer than n vectors. The proof is somewhat long and can be skipped
unless you would like to gain more facility with coordinate-free manipula-
tions.
Theorem: In a finite-dimensional vector space, all bases have equally many
vectors.
Proof: Suppose that {e1, ..., em} and {f1, ..., fn} are two bases in a vector


space V and m 6= n. I will show that this assumption leads to contradiction,
and then it will follow that any two bases must have equally many vectors.


Assume thatm > n. The idea of the proof is to take the larger set {e1, ..., em}
and to replace one of its vectors, say es, by f1, so that the resulting set of m
vectors


{e1, ..., es−1, f1, es+1, ..., em} (1.8)


is still linearly independent. I will prove shortly that such a replacement is
possible, assuming only that the initial set is linearly independent. Then I will
continue to replace other vectors ek by f2, f3, etc., always keeping the result-
ing set linearly independent. Finally, I will arrive to the linearly independent
set


{
f1, ..., fn, ek1


, ek2
, ..., ekm−n


}
,


which contains all fj as well as (m− n) vectors ek1
, ek2


, ..., ekm−n
left over


from the original set; there must be at least one such vector left over because
(by assumption) there are more vectors in the basis {ej} than in the basis {fj},
in other words, because m − n ≥ 1. Since the set {fj} is a basis, the vector
ek1


is a linear combination of {f1, ..., fn}, so the set {f1, ..., fn, ek1
, ...} cannot


be linearly independent. This contradiction proves the theorem.
It remains to show that it is possible to find the index s such that the


set (1.8) is linearly independent. The required statement is the following: If
{ej | 1 ≤ j ≤ m} and {fj | 1 ≤ j ≤ n} are two bases in the space V , and if the
set S ≡ {e1, ..., ek, f1, ..., fl} (where l < n) is linearly independent then there
exists an index s such that es in S can be replaced by fl+1 and the new set


T ≡ {e1, ..., es−1, fl+1, es+1, ..., ek, f1, ..., fl} (1.9)


is still linearly independent. To find a suitable index s, we try to decom-
pose fl+1 into a linear combination of vectors from S. In other words, we ask
whether the set


S′ ≡ S ∪ {fl+1} = {e1, ..., ek, f1, ..., fl+1}
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is linearly independent. There are two possibilities: First, if S′ is linearly
independent, we can remove any es, say e1, from it, and the resulting set


T = {e2, ..., ek, f1, ..., fl+1}


will be again linearly independent. This set T is obtained from S by replacing
e1 with fl+1, so now there is nothing left to prove. Now consider the second
possibility: S′ is linearly dependent. In that case, fl+1 can be decomposed as


fl+1 =


k∑


j=1


λjej +


l∑


j=1


µjfj , (1.10)


where λj , µj are some constants, not all equal to zero. Suppose all λj are zero;
then fl+1 would be a linear combination of other fj ; but this cannot happen for
a basis {fj}. Therefore not all λj , 1 ≤ j ≤ k are zero; for example, λs 6= 0. This
gives us the index s. Now we can replace es in the set S by fl+1; it remains to
prove that the resulting set T defined by Eq. (1.9) is linearly independent.


This last proof is again by contradiction: if T is linearly dependent, there
exists a vanishing linear combination of the form


s−1∑


j=1


ρjej + σl+1fl+1 +


k∑


j=s+1


ρjej +


l∑


j=1


σjfj = 0, (1.11)


where ρj , σj are not all zero. In particular, σl+1 6= 0 because otherwise the
initial set S would be linearly dependent,


s−1∑


j=1


ρjej +
k∑


j=s+1


ρjej +
l∑


j=1


σjfj = 0.


If we now substitute Eq. (1.10) into Eq. (1.11), we will obtain a vanishing lin-
ear combination that contains only vectors from the initial set S in which the
coefficient at the vector es is σl+1λs 6= 0. This contradicts the linear indepen-
dence of the set S. Therefore the set T is linearly independent. �


Exercise 1: Completing a basis. If a set {v1, ...,vk}, vj ∈ V is linearly inde-
pendent and k < n ≡ dimV , the theorem says that the set {vj} is not a basis
in V . Prove that there exist (n− k) additional vectors vk+1, ..., vn ∈ V such
that the set {v1, ...,vn} is a basis in V .


Outline of proof: If {vj} is not yet a basis, it means that there exists at least
one vector v ∈ V which cannot be represented by a linear combination of
{vj}. Add it to the set {vj}; prove that the resulting set is still linearly inde-
pendent. Repeat these steps until a basis is built; by the above Theorem, the
basis will contain exactly n vectors.
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Exercise 2: Eliminating unnecessary vectors. Suppose that a set of vectors
{e1, ..., es} spans the space V , i.e. every vector v ∈ V can be represented by a
linear combination of {vj}; and suppose that s > n ≡ dimV . By definition of
dimension, the set {ej} must be linearly dependent, so it is not a basis in V .
Prove that one can remove certain vectors from this set so that the remaining
vectors are a basis in V .


Hint: The set has too many vectors. Consider a nontrivial linear combina-
tion of vectors {e1, ..., es} that is equal to zero. Show that one can remove
some vector ek from the set {e1, ..., es} such that the remaining set still spans
V . The procedure can be repeated until a basis in V remains.


Exercise 3: Finding a basis. Consider the vector space of polynomials of de-
gree at most 2 in the variable x, with real coefficients. Determine whether the
following four sets of vectors are linearly independent, and which of them
can serve as a basis in that space. The sets are {1 + x, 1 − x}; {1, 1 + x, 1 − x};
{
1, 1 + x− x2


}
;
{
1, 1 + x, 1 + x+ x2


}
.


Exercise 4: Not a basis. Suppose that a set {v1, ...,vn} in an n-dimensional
space V is not a basis; show that this set must be linearly dependent.


1.2 Linear maps in vector spaces


An important role in linear algebra is played by matrices, which usually rep-
resent linear transformations of vectors. Namely, with the definition V1 of
vectors as n-tuples vi, one defines matrices as square tables of numbers, Aij ,
that describe transformations of vectors according to the formula


ui ≡
n∑


j=1


Aijvj . (1.12)


This transformation takes a vector v into a new vector u = Âv in the same
vector space. For example, in two dimensions one writes the transformation
of column vectors as


[
u1


u2


]


=


(
A11 A12


A21 A22


)[
v1
v2


]


≡
[
A11v1 +A12v2
A21v1 +A22v2


]


.


The composition of two transformations Aij and Bij is a transformation de-
scribed by the matrix


Cij =


n∑


k=1


AikBkj . (1.13)


This is the law of matrix multiplication. (I assume that all this is familiar to
you.)


More generally, a map from anm-dimensional space V to an n-dimensional
space W is described by a rectangular m× n matrix that transforms m-tuples
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into n-tuples in an analogous way. Most of the time we will be working with
transformations within one vector space (described by square matrices).


This picture of matrix transformations is straightforward but relies on the
coordinate representation of vectors and so has two drawbacks: (i) The cal-
culations with matrix components are often unnecessarily cumbersome. (ii)
Definitions and calculations cannot be easily generalized to infinite-dimen-
sional spaces. Nevertheless, many of the results have nothing to do with
components and do apply to infinite-dimensional spaces. We need a different
approach to characterizing linear transformations of vectors.


The way out is to concentrate on the linearity of the transformations, i.e. on
the properties


Â (λv) = λÂ (v) ,


Â (v1 + v2) = Â (v1) + Â (v2) ,


which are easy to check directly. In fact it turns out that the multiplication
law and the matrix representation of transformations can be derived from the
above requirements of linearity. Below we will see how this is done.


1.2.1 Abstract definition of linear maps


First, we define an abstract linear map as follows.


Definition: A map Â : V → W between two vector spaces V , W is linear if
for any λ ∈ K and u,v ∈ V ,


Â (u + λv) = Âu + λÂv. (1.14)


(Note, pedantically, that the “+” in the left side of Eq. (1.14) is the vector sum
in the space V , while in the right side it is the vector sum in the space W .)


Linear maps are also called homomorphisms of vector spaces. Linear maps
acting from a space V to the same space are called linear operators or endo-
morphisms of the space V .


At first sight it might appear that the abstract definition of a linear transfor-
mation offers much less information than the definition in terms of matrices.
This is true: the abstract definition does not specify any particular linear map,
it only gives conditions for a map to be linear. If the vector space is finite-
dimensional and a basis {ei} is selected then the familiar matrix picture is
immediately recovered from the abstract definition. Let us first, for simplic-


ity, consider a linear map Â : V → V .


Statement 1: If Â is a linear map V → V and {ej} is a basis then there


exist numbers Ajk (j, k = 1, ..., n) such that the vector Âv has components
∑


k Ajkvk if a vector v has components vk in the basis {ej}.
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Proof: For any vector v we have a decomposition v =
∑n


k=1 vkek with


some components vk. By linearity, the result of application of the map Â to
the vector v is


Âv = Â
(


n∑


k=1


vkek


)
=


n∑


k=1


vk(Âek).


Therefore, it is sufficient to know how the map Â transforms the basis vectors


ek, k = 1, ..., n. Each of the vectors Âek has (in the basis {ei}) a decomposition


Âek =


n∑


j=1


Ajkej , k = 1, ..., n,


where Ajk with 1 ≤ j, k ≤ n are some coefficients; these Ajk are just some
numbers that we can calculate for a specific given linear transformation and
a specific basis. It is convenient to arrange these numbers into a square table


(matrix) Ajk. Finally, we compute Âv as


Âv =


n∑


k=1


vk


n∑


j=1


Ajkej =


n∑


j=1


ujej ,


where the components uj of the vector u ≡ Âv are


uj ≡
n∑


k=1


Ajkvk.


This is exactly the law (1.12) of multiplication of the matrix Ajk by a column
vector vk. Therefore the formula of the matrix representation (1.12) is a nec-
essary consequence of the linearity of a transformation. �


The analogous matrix representation holds for linear maps Â : V → W
between different vector spaces.


It is helpful to imagine that the linear transformation Â somehow exists as
a geometric object (an object that “knows how to transform vectors”), while
the matrix representation Ajk is merely a set of coefficients needed to de-
scribe that transformation in a particular basis. The matrix Ajk depends on
the choice of the basis, but there any many properties of the linear transfor-


mation Â that do not depend on the basis; these properties can be thought
of as the “geometric” properties of the transformation.2 Below we will be
concerned only with geometric properties of objects.


Definition: Two linear maps Â, B̂ are equal if Âv = B̂v for all v ∈ V . The


composition of linear maps Â, B̂ is the map ÂB̂ which acts on vectors v as


(ÂB̂)v ≡ Â(B̂v).


2Example: the properties A11 = 0, A11 > A12, and Aij = −2Aji are not geometric properties


of the linear transformation Â because they may hold in one basis but not in another basis.
However, the number


Pn
i=1


Aii turns out to be geometric (independent of the basis), as we
will see below.
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Statement 2: The composition of two linear transformations is again a linear
transformation.
Proof: I give two proofs to contrast the coordinate-free language with the


language of matrices, and also to show the derivation of the matrix multipli-
cation law.


(Coordinate-free proof :) We need to demonstrate the property (1.14). If Â and


B̂ are linear transformations then we have, by definition,


ÂB̂ (u + λv) = Â(B̂u + λB̂v) = ÂB̂u + λÂB̂v.


Therefore the composition ÂB̂ is a linear map.
(Proof using matrices:) We need to show that for any vector v with compo-


nents vi and for any two transformation matrices Aij and Bij , the result of
first transforming with Bij and then with Aij is equivalent to transforming v


with some other matrix. We calculate the components v′i of the transformed
vector,


v′i =


n∑


j=1


Aij


n∑


k=1


Bjkvk =


n∑


k=1








n∑


j=1


AijBjk





 vk ≡
n∑


k=1


Cikvk,


where Cik is the matrix of the new transformation. �


Note that we need to work more in the second proof because matrices
are defined through their components, as “tables of numbers.” So we cannot
prove linearity without also finding an explicit formula for the matrix product
in terms of matrix components. The first proof does not use such a formula.


1.2.2 Examples of linear maps


The easiest example of a linear map is the identity operator 1̂V . This is a map
V → V defined by 1̂V v = v. It is clear that this map is linear, and that its
matrix elements in any basis are given by the Kronecker delta symbol


δij ≡
{


1, i = j;
0, i 6= j.


We can also define a map which multiplies all vectors v ∈ V by a fixed
number λ. This is also obviously a linear map, and we denote it by λ1̂V . If
λ = 0, we may write 0̂V to denote the map that transforms all vectors into the
zero vector.


Another example of a linear transformation is the following. Suppose that
the set {e1, ..., en} is a basis in the space V ; then any vector v ∈ V is uniquely
expressed as a linear combination v =


∑n
j=1 vjej . We denote by e∗1 (v) the


function that gives the component v1 of a vector v in the basis {ej}. Then we


define the map M̂ by the formula


M̂v ≡ v1e2 = e∗1 (v) e2.
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In other words, the new vector M̂v is always parallel to e2 but has the coeffi-
cient v1. It is easy to prove that this map is linear (you need to check that the
first component of a sum of vectors is equal to the sum of their first compo-


nents). The matrix corresponding to M̂ in the basis {ej} is


Mij =










0 0 0 ...
1 0 0 ...
0 0 0 ...
... ... ... ...








.


The map that shifts all vectors by a fixed vector, Ŝav ≡ v + a, is not linear
because


Ŝa (u + v) = u + v + a 6= Ŝa (u) + Ŝa (v) = u + v + 2a.


Question: I understand how to work with a linear transformation specified


by its matrix Ajk. But how can I work with an abstract “linear map” Â if the


only thing I know about Â is that it is linear? It seems that I cannot specify
linear transformations or perform calculations with them unless I use matri-
ces.
Answer: It is true that the abstract definition of a linear map does not in-


clude a specification of a particular transformation, unlike the concrete def-
inition in terms of a matrix. However, it does not mean that matrices are
always needed. For a particular problem in linear algebra, a particular trans-
formation is always specified either as a certain matrix in a given basis, or in a


geometric, i.e. basis-free manner, e.g. “the transformation B̂ multiplies a vector
by 3/2 and then projects onto the plane orthogonal to the fixed vector a.” In
this book I concentrate on general properties of linear transformations, which
are best formulated and studied in the geometric (coordinate-free) language
rather than in the matrix language. Below we will see many coordinate-free
calculations with linear maps. In Sec. 1.8 we will also see how to specify arbi-
trary linear transformations in a coordinate-free manner, although it will then
be quite similar to the matrix notation.


Exercise 1: If V is a one-dimensional vector space over a field K, prove that


any linear operator Â on V must act simply as a multiplication by a number.
Solution: Let e 6= 0 be a basis vector; note that any nonzero vector e is a


basis in V , and that every vector v ∈ V is proportional to e. Consider the


action of Â on the vector e: the vector Âe must also be proportional to e, say


Âe = ae where a ∈ K is some constant. Then by linearity of Â, for any vector


v = ve we get Âv = Âve = ave = av, so the operator Â multiplies all vectors
by the same number a. �


Exercise 2: If {e1, ..., eN} is a basis in V and {v1, ...,vN} is a set ofN arbitrary


vectors, does there exist a linear map Â such that Âej = vj for j = 1, ..., N? If
so, is this map unique?
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Solution: For any x ∈ V there exists a unique set of N numbers x1, ..., xN


such that x =
∑N


i=1 xiei. Since Â must be linear, the action of Â on x must


be given by the formula Âx =
∑N


i=1 xivi. This formula defines Âx for all x.


Hence, the map Â exists and is unique. �


1.2.3 Vector space of all linear maps


Suppose that V and W are two vector spaces and consider all linear maps


Â : V → W . The set of all such maps is itself a vector space because we
can add two linear maps and multiply linear maps by scalars, getting again


a linear map. More formally, if Â and B̂ are linear maps from V to W and


λ ∈ K is a number (a scalar) then we define λÂ and Â+ B̂ in the natural way:


(λÂ)v ≡ λ(Âv),


(Â+ B̂)v ≡ Âv + B̂v, ∀v ∈ V.


In words: the map λÂ acts on a vector v by first acting on it with Â and then


multiplying the result by the scalar λ; the map Â + B̂ acts on a vector v by


adding the vectors Âv and B̂v. It is straightforward to check that the maps


λÂ and Â + B̂ defined in this way are linear maps V → W . Therefore, the
set of all linear maps V → W is a vector space. This vector space is denoted
Hom (V,W ), meaning the “space of homomorphisms” from V to W .


The space of linear maps from V to itself is called the space of endomor-
phisms of V and is denoted EndV . Endomorphisms of V are also called
linear operators in the space V . (We have been talking about linear operators
all along, but we did not call them endomorphisms until now.)


1.2.4 Eigenvectors and eigenvalues


Definition 1: Suppose Â : V → V is a linear operator, and a vector v 6= 0


is such that Âv = λv where λ ∈ K is some number. Then v is called the
eigenvector of Â with the eigenvalue λ.


The geometric interpretation is that v is a special direction for the transfor-


mation Â such that Â acts simply as a scaling by a certain number λ in that
direction.


Remark: Without the condition v 6= 0 in the definition, it would follow that
the zero vector is an eigenvector for any operator with any eigenvalue, which
would not be very useful, so we exclude the trivial case v = 0.


Example 1: Suppose Â is the transformation that rotates vectors around some
fixed axis by a fixed angle. Then any vector v parallel to the axis is unchanged


by the rotation, so it is an eigenvector of Â with eigenvalue 1.
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Example 2: Suppose Â is the operator of multiplication by a number α, i.e. we


define Âx ≡ αx for all x. Then all nonzero vectors x 6= 0 are eigenvectors of


Â with eigenvalue α.


Exercise 1: Suppose v is an eigenvector of Â with eigenvalue λ. Show that
cv for any c ∈ K, c 6= 0, is also an eigenvector with the same eigenvalue.


Solution: Â(cv) = cÂv = cλv = λ(cv).


Example 3: Suppose that an operator Â ∈ End V is such that it has N =
dimV eigenvectors v1, ..., vN that constitute a basis in V . Suppose that λ1,
..., λN are the corresponding eigenvalues (not necessarily different). Then the


matrix representation of Â in the basis {vj} is a diagonal matrix


Aij = diag (λ1, ..., λN ) ≡











λ1 0 . . . 0
0 λ2 . . . 0
...


...
. . .


...
0 0 . . . λN









.


Thus a basis consisting of eigenvectors (the eigenbasis), if it exists, is a par-
ticularly convenient choice of basis for a given operator.


Remark: The task of determining the eigenbasis (also called the diagonaliza-
tion of an operator) is a standard, well-studied problem for which efficient
numerical methods exist. (This book is not about these methods.) However, it
is important to know that not all operators can be diagonalized. The simplest
example of a non-diagonalizable operator is one with the matrix representa-


tion


(
0 1
0 0


)


in R2. This operator has only one eigenvector,
(
1
0


)
, so we have


no hope of finding an eigenbasis. The theory of the “Jordan canonical form”
(see Sec. 4.6) explains how to choose the basis for a non-diagonalizable oper-
ator so that its matrix in that basis becomes as simple as possible.


Definition 2: A map Â : V → W is invertible if there exists a map Â−1 :


W → V such that ÂÂ−1 = 1̂W and Â−1Â = 1̂V . The map Â−1 is called the


inverse of Â.


Exercise 2: Suppose that an operator Â ∈ End V has an eigenvector with


eigenvalue 0. Show that Â describes a non-invertible transformation.


Outline of the solution: Show that the inverse of a linear operator (if the
inverse exists) is again a linear operator. A linear operator must transform


the zero vector into the zero vector. We have Âv = 0 and yet we must have


Â−10 = 0 if Â−1 exists. �


Exercise 3: Suppose that an operator Â ∈ End V in an n-dimensional vector


space V describes a non-invertible transformation. Show that the operator Â
has at least one eigenvector v with eigenvalue 0.
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Outline of the solution: Let {e1, ..., en} be a basis; consider the set of vec-


tors {Âe1, ..., Âen} and show that it is not a basis, hence linearly dependent


(otherwise Â would be invertible). Then there exists a linear combination
∑


j cj(Âej) = 0 where not all cj are zero; v ≡∑j cjej is then nonzero, and is
the desired eigenvector. �


1.3 Subspaces


Definition: A subspace of a vector space V is a subset S ⊂ V such that S is
itself a vector space.


A subspace is not just any subset of V . For example, if v ∈ V is a nonzero
vector then the subset S consisting of the single vector, S = {v}, is not a
subspace: for instance, v + v = 2v, but 2v 6∈ S.


Example 1. The set {λv | ∀λ ∈ K} is called the subspace spanned by the vec-
tor v. This set is a subspace because we can add vectors from this set to
each other and obtain again vectors from the same set. More generally, if
v1, ...,vn ∈ V are some vectors, we define the subspace spanned by {vj} as
the set of all linear combinations


Span {v1, ...,vn} ≡ {λ1v1 + ...+ λnvn | ∀λi ∈ K} .


It is obvious that Span {v1, ...,vn} is a subspace of V .
If {ej} is a basis in the space V then the subspace spanned by the vectors


{ej} is equal to V itself.


Exercise 1: Show that the intersection of two subspaces is also a subspace.


Example 2: Kernel of an operator. Suppose Â ∈ EndV is a linear operator.


The set of all vectors v such that Âv = 0 is called the kernel of the operator Â


and is denoted by ker Â. In formal notation,


ker Â ≡ {u ∈ V | Âu = 0}.


This set is a subspace of V because if u,v ∈ ker Â then


Â (u + λv) = Âu + λÂv = 0,


and so u + λv ∈ ker Â.


Example 3: Image of an operator. Suppose Â : V → V is a linear operator.


The image of the operator Â, denoted imA, is by definition the set of all


vectors v obtained by acting with Â on some other vectors u ∈ V . In formal
notation,


im Â ≡ {Âu | ∀u ∈ V }.


This set is also a subspace of V (prove this!).
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Exercise 2: In a vector space V , let us choose a vector v 6= 0. Consider the


set S0 of all linear operators Â ∈ EndV such that Âv = 0. Is S0 a subspace?


Same question for the set S3 of operators Â such that Âv = 3v. Same question


for the set S′ of all operators Â for which there exists some λ ∈ K such that


Âv = λv, where λ may be different for each Â.


1.3.1 Projectors and subspaces


Definition: A linear operator P̂ : V → V is called a projector if P̂ P̂ = P̂ .
Projectors are useful for defining subspaces: The result of a projection re-


mains invariant under further projections, P̂ (P̂v) = P̂v, so a projector P̂


defines a subspace im P̂ , which consists of all vectors invariant under P̂ .
As an example, consider the transformation of R3 given by the matrix


P̂ =








1 0 a
0 1 b
0 0 0





 ,


where a, b are arbitrary numbers. It is easy to check that P̂ P̂ = P̂ for any a, b.
This transformation is a projector onto the subspace spanned by the vectors
(1, 0, 0) and (0, 1, 0). (Note that a and b can be chosen at will; there are many
projectors onto the same subspace.)
Statement: Eigenvalues of a projector can be only the numbers 0 and 1.


Proof: If v ∈ V is an eigenvector of a projector P̂ with the eigenvalue λ
then


λv = P̂v = P̂ P̂v = P̂ λv = λ2v ⇒ λ (λ− 1)v = 0.


Since v 6= 0, we must have either λ = 0 or λ = 1. �


1.3.2 Eigenspaces


Another way to specify a subspace is through eigenvectors of some operator.


Exercise 1: For a linear operator Â and a fixed number λ ∈ K, the set of all


vectors v ∈ V such that Âv = λv is a subspace of V .


The subspace of all such vectors is called the eigenspace of Â with the


eigenvalue λ. Any nonzero vector from that subspace is an eigenvector of Â
with eigenvalue λ.


Example: If P̂ is a projector then im P̂ is the eigenspace of P̂ with eigenvalue
1.
Exercise 2: Show that eigenspaces Vλ and Vµ corresponding to different eigen-
values, λ 6= µ, have only one common vector — the zero vector. (Vλ ∩ Vµ =
{0}.)


By definition, a subspace U ⊂ V is invariant under the action of some


operator Â if Âu ∈ U for all u ∈ U .
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Exercise 3: Show that the eigenspace of Â with eigenvalue λ is invariant un-


der Â.
Exercise 4: In a space of polynomials in the variable x of any (finite) degree,
consider the subspace U of polynomials of degree not more than 2 and the


operator Â ≡ x d
dx , that is,


Â : p(x) 7→ x
dp(x)


dx
.


Show that U is invariant under Â.


1.4 Isomorphisms of vector spaces


Two vector spaces are isomorphic if there exists a one-to-one linear map be-
tween them. This linear map is called the isomorphism.
Exercise 1: If {v1, ...,vN} is a linearly independent set of vectors (vj ∈ V )


and M̂ : V → W is an isomorphism then the set {M̂v1, ..., M̂vN} is also


linearly independent. In particular, M̂ maps a basis in V into a basis in W .


Hint: First show that M̂v = 0 if and only if v = 0. Then consider the result


of M̂ (λ1v1 + ...+ λNvN ).
Statement 1: Any vector space V of dimension n is isomorphic to the space
Kn of n-tuples.
Proof: To demonstrate this, it is sufficient to present some isomorphism. We


can always choose a basis {ei} in V , so that any vector v ∈ V is decomposed


as v =
∑n


i=1 λiei. Then we define the isomorphism map M̂ between V and
the space Kn as


M̂v ≡ (λ1, ..., λn) .


It is easy to see that M̂ is linear and one-to-one. �


Vector spaces Km and Kn are isomorphic only if they have equal dimen-
sion, m = n. The reason they are not isomorphic for m 6= n is that they have
different numbers of vectors in a basis, while one-to-one linear maps must
preserve linear independence and map a basis to a basis. (For m 6= n, there
are plenty of linear maps from Km to Kn but none of them is a one-to-one
map. It also follows that a one-to-one map between Km and Kn cannot be
linear.)


Note that the isomorphism M̂ constructed in the proof of Statement 1 will
depend on the choice of the basis: a different basis {e′i} yields a different map


M̂ ′. For this reason, the isomorphism M̂ is not canonical.
Definition: A linear map between two vector spaces V and W is canonically
defined or canonical if it is defined independently of a choice of bases in
V and W . (We are of course allowed to choose a basis while constructing
a canonical map, but at the end we need to prove that the resulting map
does not depend on that choice.) Vector spaces V and W are canonically
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isomorphic if there exists a canonically defined isomorphism between them;
I write V ∼= W in this case.
Examples of canonical isomorphisms:


1. Any vector space V is canonically isomorphic to itself, V ∼= V ; the iso-
morphism is the identity map v → v which is defined regardless of any
basis. (This is trivial but still, a valid example.)


2. If V is a one-dimensional vector space then EndV ∼= K. You have seen
the map End V → K in the Exercise 1.2.2, where you had to show that
any linear operator in V is a multiplication by a number; this number
is the element of K corresponding to the given operator. Note that V 6∼=
K unless there is a “preferred” vector e ∈ V , e 6= 0 which would be
mapped into the number 1 ∈ K. Usually vector spaces do not have any
special vectors, so there is no canonical isomorphism. (However, EndV
does have a special element — the identity 1̂V .)


At this point I cannot give more interesting examples of canonical maps, but
I will show many of them later. My intuitive picture is that canonically iso-
morphic spaces have a fundamental structural similarity. An isomorphism
that depends on the choice of basis, as in the Statement 1 above, is unsatisfac-
tory if we are interested in properties that can be formulated geometrically
(independently of any basis).


1.5 Direct sum of vector spaces


If V andW are two given vector spaces over a field K, we define a new vector
space V ⊕ W as the space of pairs (v,w), where v ∈ V and w ∈ W . The
operations of vector sum and scalar multiplication are defined in the natural
way,


(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2) ,


λ (v1,w1) = (λv1, λw1) .


The new vector space is called the direct sum of the spaces V and W .
Statement: The dimension of the direct sum is dim (V ⊕W ) = dimV+dimW .
Proof: If v1, ..., vm and w1, ..., wn are bases in V and W respectively, con-


sider the set of m+ n vectors


(v1, 0) , ..., (vm, 0) , (0,w1) , ..., (0,wn) .


It is easy to prove that this set is linearly independent. Then it is clear that
any vector (v,w) ∈ V ⊕ W can be represented as a linear combination of
the vectors from the above set, therefore that set is a basis and the dimension
of V ⊕W is m + n. (This proof is sketchy but the material is standard and
straightforward.) �
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Exercise 1: Complete the proof.
Hint: If (v,w) = 0 then v = 0 and w = 0 separately.


1.5.1 V and W as subspaces of V ⊕ W ; canonical
projections


If V andW are two vector spaces then the space V ⊕W has a certain subspace
which is canonically isomorphic to V . This subspace is the set of all vectors
from V ⊕W of the form (v, 0), where v ∈ V . It is obvious that this set forms
a subspace (it is closed under linear operations) and is isomorphic to V . To


demonstrate this, we present a canonical isomorphism which we denote P̂V :


V ⊕W → V . The isomorphism P̂V is the canonical projection defined by


P̂V (v,w) ≡ v.


It is easy to check that this is a linear and one-to-one map of the subspace


{(v, 0) |v ∈ V } to V , and that P̂ is a projector. This projector is canonical be-
cause we have defined it without reference to any basis. The relation is so
simple that it is convenient to write v ∈ V ⊕W instead of (v, 0) ∈ V ⊕W .


Similarly, we define the subspace isomorphic to W and the corresponding
canonical projection.


It is usually convenient to denote vectors from V ⊕ W by formal linear
combinations, e.g. v + w, instead of the pair notation (v,w). A pair (v, 0) is
denoted simply by v ∈ V ⊕W .


Exercise 1: Show that the space Rn ⊕ Rm is isomorphic to Rn+m, but not
canonically.


Hint: The image of Rn ⊂ Rn ⊕ Rm under the isomorphism is a subspace of
Rn+m, but there are no canonically defined subspaces in that space.


1.6 Dual (conjugate) vector space


Given a vector space V , we define another vector space V ∗ called the dual or
the conjugate to V . The elements of V ∗ are linear functions on V , that is to
say, maps f∗ : V → K having the property


f∗ (u + λv) = f∗ (u) + λf∗ (v) , ∀u,v ∈ V, ∀λ ∈ K.


The elements of V ∗ are called dual vectors, covectors or linear forms; I will
say “covectors” to save space.


Definition: A covector is a linear map V → K. The set of all covectors is the
dual space to the vector space V . The zero covector is the linear function that
maps all vectors into zero. Covectors f∗ and g∗ are equal if


f∗ (v) = g∗ (v) , ∀v ∈ V.
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It is clear that the set of all linear functions is a vector space because e.g. the
sum of linear functions is again a linear function. This “space of all linear
functions” is the space we denote by V ∗. In our earlier notation, this space is
the same as Hom(V,K).


Example 1: For the space R2 with vectors v ≡ (x, y), we may define the func-
tions f∗ (v) ≡ 2x, g∗ (v) ≡ y − x. It is straightforward to check that these
functions are linear.


Example 2: Let V be the space of polynomials of degree not more than 2 in
the variable x with real coefficients. This space V is three-dimensional and
contains elements such as p ≡ p(x) = a+ bx+ cx2. A linear function f∗ on V
could be defined in a way that might appear nontrivial, such as


f∗(p) =


∫ ∞


0


e−xp(x)dx.


Nevertheless, it is clear that this is a linear function mapping V into R. Simi-
larly,


g∗(p) =
d


dx


∣
∣
∣
∣
x=1


p(x)


is a linear function. Hence, f∗ and g∗ belong to V ∗.


Remark: One says that a covector f∗ is applied to a vector v and yields a
number f∗(v), or alternatively that a covector acts on a vector. This is similar
to writing cos(0) = 1 and saying that the cosine function is applied to the
number 0, or “acts on the number 0,” and then yields the number 1. Other
notations for a covector acting on a vector are 〈f∗,v〉 and f∗ · v, and also ιvf


∗


or ιf∗v (here the symbol ι stands for “insert”). However, in this text I will
always use the notation f∗(v) for clarity. The notation 〈x,y〉 will be used for
scalar products.


Question: It is unclear how to visualize the dual space when it is defined in
such abstract terms, as the set of all functions having some property. How do
I know which functions are there, and how can I describe this space in more
concrete terms?


Answer: Indeed, we need some work to characterize V ∗ more explicitly.
We will do this in the next subsection by constructing a basis in V ∗.


1.6.1 Dual basis


Suppose {e1, ..., en} is a basis in V ; then any vector v ∈ V is uniquely ex-
pressed as a linear combination


v =


n∑


j=1


vjej .
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The coefficient v1, understood as a function of the vector v, is a linear function
of v because


u + λv =


n∑


j=1


ujej + λ


n∑


j=1


vjej =


n∑


j=1


(ui + λvj) ej ,


therefore the first coefficient of the vector u+λv is u1+λv1. So the coefficients
vk, 1 ≤ k ≤ n, are linear functions of the vector v; therefore they are covectors,
i.e. elements of V ∗. Let us denote these covectors by e∗1, ..., e∗n. Please note that
e∗1 depends on the entire basis {ej} and not only on e1, as it might appear from
the notation e∗1. In other words, e∗1 is not a result of some “star” operation
applied only to e1. The covector e∗1 will change if we change e2 or any other
basis vector. This is so because the component v1 of a fixed vector v depends
not only on e1 but also on every other basis vector ej .


Theorem: The set of n covectors e∗1, ..., e∗n is a basis in V ∗. Thus, the dimen-
sion of the dual space V ∗ is equal to that of V .
Proof: First, we show by an explicit calculation that any covector f∗ is a


linear combination of
{
e∗j
}


. Namely, for any f∗ ∈ V ∗ and v ∈ V we have


f∗ (v) = f∗
(


n∑


j=1


vjej


)
=


n∑


j=1


vjf
∗ (ej) =


n∑


j=1


e∗j (v) f∗ (ej) .


Note that in the last line the quantities f∗ (ej) are some numbers that do not
depend on v. Let us denote φj ≡ f∗ (ej) for brevity; then we obtain the
following linear decomposition of f∗ through the covectors


{
e∗j
}


,


f∗ (v) =
n∑


j=1


φje
∗
j (v) ⇒ f∗ =


n∑


j=1


φje
∗
j .


So indeed all covectors f∗ are linear combinations of e∗j .


It remains to prove that the set
{
e∗j
}


is linearly independent. If this were
not so, we would have


∑


i λie
∗
i = 0 where not all λi are zero. Act on a vector


ek (k = 1, ..., n) with this linear combination and get


0
!
= (


n∑


i=1


λie
∗
i )(ek) = λk, k = 1, ..., n.


Hence all λk are zero. �


Remark: The theorem holds only for finite-dimensional spaces! For infinite-
dimensional spaces V , the dual space V ∗ may be “larger” or “smaller” than
V . Infinite-dimensional spaces are subtle, and one should not think that they
are simply “spaces with infinitely many basis vectors.” More detail (much
more detail!) can be found in standard textbooks on functional analysis. �
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The set of covectors
{
e∗j
}


is called the dual basis to the basis {ej}. The
covectors e∗j of the dual basis have the useful property


e∗i (ej) = δij


(please check this!). Here δij is the Kronecker symbol: δij = 0 if i 6= j and
δii = 1. For instance, e∗1 (e1) = 1 and e∗1 (ek) = 0 for k ≥ 2.


Question: I would like to see a concrete calculation. How do I compute f∗ (v)
if a vector v ∈ V and a covector f∗ ∈ V ∗ are “given”?
Answer: Vectors are usually “given” by listing their components in some


basis. Suppose {e1, ..., eN} is a basis in V and {e∗1, ..., e∗N} is its dual basis. If
the vector v has components vk in a basis {ek} and the covector f∗ ∈ V ∗ has
components f∗k in the dual basis {e∗k}, then


f∗ (v) =
N∑


k=1


f∗ke∗k
(


N∑


l=1


vlel


)
=


N∑


k=1


f∗kvk. (1.15)


Question: The formula (1.15) looks like the scalar product (1.4). How come?
Answer: Yes, it does look like that, but Eq. (1.15) does not describe a scalar


product because for one thing, f∗ and v are from different vector spaces. I
would rather say that the scalar product resembles Eq. (1.15), and this hap-
pens only for a special choice of basis (an orthonormal basis) in V . This will be
explained in more detail in Sec. 5.1.


Question: The dual basis still seems too abstract to me. Suppose V is the
three-dimensional space of polynomials in the variable xwith real coefficients
and degree no more than 2. The three polynomials


{
1, x, x2


}
are a basis in V .


How can I compute explicitly the dual basis to this basis?
Answer: An arbitrary vector from this space is a polynomial a + bx + cx2.


The basis dual to
{
1, x, x2


}
consists of three covectors. Let us denote the set


of these covectors by {e∗1, e∗2, e∗3}. These covectors are linear functions defined
like this:


e∗1
(
a+ bx+ cx2


)
= a,


e∗2
(
a+ bx+ cx2


)
= b,


e∗3
(
a+ bx+ cx2


)
= c.


If you like, you can visualize them as differential operators acting on the poly-
nomials p(x) like this:


e∗1(p) = p(x)|x=0 ; e∗2(p) =
dp


dx


∣
∣
∣
∣
x=0


; e∗3(p) =
1


2


d2p


dx2


∣
∣
∣
∣
x=0


.


However, this is a bit too complicated; the covector e∗3 just extracts the coef-
ficient of the polynomial p(x) at x2. To make it clear that, say, e∗2 and e∗3 can
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be evaluated without taking derivatives or limits, we may write the formulas
for e∗j (p) in another equivalent way, e.g.


e∗2(p) =
p(1) − p(−1)


2
, e∗3(p) =


p(1) − 2p(0) + p(−1)


2
.


It is straightforward to check that these formulas are indeed equivalent by
substituting p(x) = a+ bx+ cx2.
Exercise 1: Compute f∗ and g∗ from Example 2 in terms of the basis {e∗i }
defined above.
Question: I’m still not sure what to do in the general case. For example, the
set
{
1, 1 + x, 1 + x+ 1


2x
2
}


is also a basis in the space V of quadratic polyno-
mials. How do I explicitly compute the dual basis now? The previous trick
with derivatives does not work.
Answer: Let’s denote this basis by {f1, f2, f3}; we are looking for the dual


basis {f∗1 , f∗2 , f∗3 }. It will certainly be sufficiently explicit if we manage to ex-
press the covectors f∗j through the covectors {e∗1, e∗2, e∗3} that we just found
previously. Since the set of covectors {e∗1, e∗2, e∗3} is a basis in V ∗, we expect
that f∗1 is a linear combination of {e∗1, e∗2, e∗3} with some constant coefficients,
and similarly f∗2 and f∗3 . Let us, for instance, determine f∗1 . We write


f∗1 = Ae∗1 +Be∗2 + Ce∗3


with unknown coefficients A,B,C. By definition, f∗1 acting on an arbitrary
vector v = c1f1 + c2f2 + c3f3 must yield c1. Recall that e∗i , i = 1, 2, 3 yield the
coefficients of the polynomial at 1, x, and x2. Therefore


c1
!
= f∗1 (v) = f∗1 (c1f1 + c2f2 + c3f3)


= (Ae∗1 +Be∗2 + Ce∗3) (c1f1 + c2f2 + c3f3)


= (Ae∗1 +Be∗2 + Ce∗3)
(
c1 + c2 (1 + x) + c3


(
1 + x+ 1


2x
2
))


= Ac1 +Ac2 +Ac3 +Bc2 +Bc3 + 1
2Cc3.


Since this must hold for every c1, c2, c3, we obtain a system of equations for
the unknown constants A,B,C:


A = 1;


A+B = 0;


A+B + 1
2C = 0.


The solution is A = 1, B = −1, C = 0. Therefore f∗1 = e∗1 − e∗2. In the same
way we can determine f∗2 and f∗3 . �


Here are some useful properties of covectors.
Statement: (1) If f∗ 6= 0 is a given covector, there exists a basis {v1, ...,vN} of
V such that f∗ (v1) = 1 while f∗ (vi) = 0 for 2 ≤ i ≤ N .


(2) Once such a basis is found, the set {a,v2, ...,vN} will still be a basis in
V for any vector a such that f∗ (a) 6= 0.
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Proof: (1) By definition, the property f∗ 6= 0 means that there exists at least
one vector u ∈ V such that f∗(u) 6= 0. Given the vector u, we define the
vector v1 by


v1 ≡ 1


f∗ (u)
u.


It follows (using the linearity of f∗) that f∗(v1) = 1. Then by Exercise 1 in
Sec. 1.1.5 the vector v1 can be completed to some basis {v1,w2, ...,wN}. There-
after we define the vectors v2, ..., vN by the formula


vi ≡ wi − f∗ (wi)v1, 2 ≤ i ≤ N,


and obtain a set of vectors {v1, ...,vN} such that f∗(v1) = 1 and f∗(vi) = 0
for 2 ≤ i ≤ N . This set is linearly independent because a linear dependence
among {vj},


0 =


N∑


i=1


λivi =
(
λ1 −


N∑


i=2


λif
∗(wi)


)
v1 +


N∑


i=2


λiwi,


together with the linear independence of the basis {v1,w2, ...,wN}, forces
λi = 0 for all i ≥ 2 and hence also λ1 = 0. Therefore, the set {v1, ...,vN} is the
required basis.


(2) If the set {a,v2, ...,vN} were linearly dependent,


λa +


N∑


j=2


λjvj = 0,


with λj , λ not all zero, then we would have


f∗
(
λa +


N∑


j=2


λjvj


)
= λf∗ (a) = 0,


which forces λ = 0 since by assumption f∗(a) 6= 0. However, λ = 0 entails


N∑


j=2


λjvj = 0,


with λj not all zero, which contradicts the linear independence of the set
{v2, ...,vN}. �


Exercise 2: Suppose that {v1, ...,vk}, vj ∈ V is a linearly independent set
(not necessarily a basis). Prove that there exists at least one covector f∗ ∈ V ∗


such that
f∗(v1) = 1, while f∗(v2) = ... = f∗(vk) = 0.


Outline of proof: The set {v1, ...,vk} can be completed to a basis in V , see
Exercise 1 in Sec. 1.1.5. Then f∗ is the covector dual to v1 in that basis.


42







1.6 Dual (conjugate) vector space


Exercise 3: Prove that the space dual to V ∗ is canonically isomorphic to V ,
i.e. V ∗∗ ∼= V (for finite-dimensional V ).


Hint: Vectors v ∈ V can be thought of as linear functions on V ∗, defined by
v(f∗) ≡ f∗(v). This provides a map V → V ∗∗, so the space V is a subspace
of V ∗∗. Show that this map is injective. The dimensions of the spaces V , V ∗,
and V ∗∗ are the same; deduce that V as a subspace of V ∗∗ coincides with the
whole space V ∗∗.


1.6.2 Hyperplanes


Covectors are convenient for characterizing hyperplanes.
Let us begin with a familiar example: In three dimensions, the set of points


with coordinate x = 0 is a plane. The set of points whose coordinates satisfy
the linear equation x+ 2y − z = 0 is another plane.


Instead of writing a linear equation with coordinates, one can write a covec-
tor applied to the vector of coordinates. For example, the equation x+2y−z =
0 can be rewritten as f∗(x) = 0, where x ≡ {x, y, z} ∈ R3, while the covector
f∗ ∈


(
R3
)∗


is expressed through the dual basis
{
e∗j
}


as


f∗ ≡ e∗1 + 2e∗2 − e∗3.


The generalization of this to N dimensions is as follows.


Definition 1: The hyperplane (i.e. subspace of codimension 1) annihilated
by a covector f∗ ∈ V ∗ is the set of all vectors x ∈ V such that f∗(x) = 0. (Note
that the zero vector, x = 0, belongs to the hyperplane.)


Statement: The hyperplane annihilated by a nonzero covector f∗ is a sub-
space of V of dimension N − 1 (where N ≡ dimV ).
Proof: It is clear that the hyperplane is a subspace of V because for any x1


and x2 in the hyperplane we have


f∗(x1 + λx2) = f∗(x1) + λf∗(x2) = 0.


Hence any linear combination of x1 and x2 also belongs to the hyperplane, so
the hyperplane is a subspace.


To determine the dimension of this subspace, we would like to construct
a basis for the hyperplane. Since f∗ ∈ V ∗ is a nonzero covector, there exists
some vector u ∈ V such that f∗ (u) 6= 0. (This vector does not belong to
the hyperplane.) The idea is to complete u to a basis {u,v1, ...,vN−1} in V ,
such that f∗(u) 6= 0 but f∗(vi) = 0; then {v1, ...,vN−1} will be a basis in the
hyperplane. To find such a basis {u,v1, ...,vN−1}, let us first complete u to
some basis {u,u1, ...,uN−1}. Then we define vi = ui − ciu with appropriately
chosen ci. To achieve f∗(vi) = 0, we set


ci =
f∗(ui)


f∗(u)
.
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It remains to prove that {u,v1, ...,vN−1} is again a basis. Applying f∗ to a
supposedly existing vanishing linear combination,


λu +


N−1∑


i=1


λivi = 0,


we obtain λ = 0. Expressing vi through u and ui, we obtain a vanishing linear
combination of vectors {u,u1, ...,uN−1} with coefficients λi at ui. Hence, all
λi are zero, and so the set {u,v1, ...,vN−1} is linearly independent and thus a
basis in V .


Finally, we show that {v1, ...,vN−1} is a basis in the hyperplane. By con-
struction, every vi belongs to the hyperplane, and so does every linear com-
bination of the vi’s. It remains to show that every x such that f∗(x) = 0 can
be expressed as a linear combination of the {vj}. For any such x we have the
decomposition in the basis{u,v1, ...,vN−1},


x = λu +


N−1∑


i=1


λivi.


Applying f∗ to this, we find λ = 0. Hence, x is a linear combination only of
the {vj}. This shows that the set {vj} spans the hyperplane. The set {vj} is
linearly independent since it is a subset of a basis in V . Hence, {vj} is a basis
in the hyperplane. Therefore, the hyperplane has dimension N − 1. �


Hyperplanes considered so far always contain the zero vector. Another
useful construction is that of an affine hyperplane: Geometrically speaking,
this is a hyperplane that has been shifted away from the origin.


Definition 2: An affine hyperplane is the set of all vectors x ∈ V such that
f∗(x) = α, where f∗ ∈ V ∗ is nonzero, and α is a number.


Remark: An affine hyperplane with α 6= 0 is not a subspace of V and may be
described more constructively as follows. We first obtain a basis {v1, ...,vN−1}
of the hyperplane f∗(x) = 0, as described above. We then choose some vector
u such that f∗(u) 6= 0; such a vector exists since f∗ 6= 0. We can then multiply
u by a constant λ such that f∗(λu) = α, that is, the vector λu belongs to the
affine hyperplane. Now, every vector x of the form


x = λu +
N−1∑


i=1


λivi,


with arbitrary λi, belongs to the hyperplane since f∗(x) = α by construction.
Thus, the set {x | f∗(x) = α} is a hyperplane drawn through λu parallel to the
vectors {vi}. Affine hyperplanes described by the same covector f∗ but with
different values of α will differ only in the choice of the initial vector λu and
thus are parallel to each other, in the geometric sense.
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Exercise: Intersection of many hyperplanes. a) Suppose f∗1 , ..., f
∗
k ∈ V . Show


that the set of all vectors x ∈ V such that f∗i (x) = 0 (i = 1, ...k) is a subspace
of V .


b)* Show that the dimension of that subspace is equal to N − k (where
N ≡ dimV ) if the set {f∗1 , ..., f∗k} is linearly independent.


1.7 Tensor product of vector spaces


The tensor product is an abstract construction which is important in many
applications. The motivation is that we would like to define a product of
vectors, u ⊗ v, which behaves as we expect a product to behave, e.g.


(a + λb) ⊗ c = a ⊗ c + λb ⊗ c, ∀λ ∈ K, ∀a,b, c ∈ V,


and the same with respect to the second vector. This property is called bi-
linearity. A “trivial” product would be a ⊗ b = 0 for all a,b; of course, this
product has the bilinearity property but is useless. It turns out to be impos-
sible to define a nontrivial product of vectors in a general vector space, such
that the result is again a vector in the same space.3 The solution is to define
a product of vectors so that the resulting object u ⊗ v is not a vector from
V but an element of another space. This space is constructed in the following
definition.
Definition: Suppose V and W are two vector spaces over a field K; then one
defines a new vector space, which is called the tensor product of V and W
and denoted by V ⊗W . This is the space of expressions of the form


v1 ⊗ w1 + ...+ vn ⊗ wn, (1.16)


where vi ∈ V , wi ∈W . The plus sign behaves as usual (commutative and as-
sociative). The symbol ⊗ is a special separator symbol. Further, we postulate
that the following combinations are equal,


λ (v ⊗ w) = (λv) ⊗ w = v ⊗ (λw) , (1.17)


(v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w, (1.18)


v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, (1.19)


for any vectors v,w,v1,2,w1,2 and for any constant λ. (One could say that
the symbol ⊗ “behaves as a noncommutative product sign”.) The expression
v⊗w, which is by definition an element of V ⊗W , is called the tensor product
of vectors v and w. In the space V ⊗W , the operations of addition and mul-
tiplication by scalars are defined in the natural way. Elements of the tensor
product space are called tensors.
Question: The set V ⊗W is a vector space. What is the zero vector in that
space?


3The impossibility of this is proved in abstract algebra but I do not know the proof.
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Answer: Since V ⊗W is a vector space, the zero element 0 ∈ V ⊗W can
be obtained by multiplying any other element of V ⊗ W by the number 0.
So, according to Eq. (1.17), we have 0 = 0 (v ⊗ w) = (0v) ⊗ w = 0 ⊗ w =
0 ⊗ (0w) = 0 ⊗ 0. In other words, the zero element is represented by the
tensor 0 ⊗ 0. It will not cause confusion if we simply write 0 for this zero
tensor. �


Generally, one calls something a tensor if it belongs to a space that was
previously defined as a tensor product of some other vector spaces.


According to the above definition, we may perform calculations with the
tensor product expressions by expanding brackets or moving scalar factors,
as if ⊗ is a kind of multiplication. For example, if vi ∈ V and wi ∈W then


1


3
(v1 − v2) ⊗ (w1 − 2w2) =


1


3
v1 ⊗ w1 −


1


3
v2 ⊗ w1


− 2


3
v1 ⊗ w2 +


2


3
v2 ⊗ w2.


Note that we cannot simplify this expression any further, because by defini-
tion no other combinations of tensor products are equal except those specified
in Eqs. (1.17)–(1.19). This calculation illustrates that ⊗ is a formal symbol, so
in particular v ⊗w is not a new vector from V or from W but is a new entity,
an element of a new vector space that we just defined.


Question: The logic behind the operation ⊗ is still unclear. How could we
write the properties (1.17)–(1.19) if the operation ⊗ was not yet defined?
Answer: We actually define the operation ⊗ through these properties. In


other words, the object a⊗b is defined as an expression with which one may
perform certain manipulations. Here is a more formal definition of the tensor
product space. We first consider the space of all formal linear combinations


λ1v1 ⊗ w1 + ...+ λnvn ⊗ wn,


which is a very large vector space. Then we introduce equivalence relations
expressed by Eqs. (1.17)–(1.19). The space V ⊗ W is, by definition, the set
of equivalence classes of linear combinations with respect to these relations.
Representatives of these equivalence classes may be written in the form (1.16)
and calculations can be performed using only the axioms (1.17)–(1.19). �


Note that v⊗w is generally different from w⊗v because the vectors v and
w can belong to different vector spaces. Pedantically, one can also define the
tensor product space W ⊗ V and then demonstrate a canonical isomorphism
V ⊗W ∼= W ⊗ V .


Exercise: Prove that the spaces V ⊗W andW⊗V are canonically isomorphic.
Answer: A canonical isomorphism will map the expression v⊗w ∈ V ⊗W


into w ⊗ v ∈W ⊗ V . �


The representation of a tensor A ∈ V ⊗W in the form (1.16) is not unique,
i.e. there may be many possible choices of the vectors vj and wj that give the
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same tensor A. For example,


A ≡ v1 ⊗ w1 + v2 ⊗ w2 = (v1 − v2) ⊗ w1 + v2 ⊗ (w1 + w2) .


This is quite similar to the identity 2 + 3 = (2 − 1) + (3 + 1), except that in
this case we can simplify 2 + 3 = 5 while in the tensor product space no such
simplification is possible. I stress that two tensor expressions


∑


k vk⊗wk and
∑


k v′
k ⊗w′


k are equal only if they can be related by a chain of identities of the
form (1.17)–(1.19); such are the axioms of the tensor product.


1.7.1 First examples


Example 1: polynomials. Let V be the space of polynomials having a degree
≤ 2 in the variable x, and let W be the space of polynomials of degree ≤ 2 in
the variable y. We consider the tensor product of the elements p(x) = 1 + x
and q(y) = y2 − 2y. Expanding the tensor product according to the axioms,
we find


(1 + x) ⊗
(
y2 − 2y


)
= 1 ⊗ y2 − 1 ⊗ 2y + x⊗ y2 − x⊗ 2y.


Let us compare this with the formula we would obtain by multiplying the
polynomials in the conventional way,


(1 + x)
(
y2 − 2y


)
= y2 − 2y + xy2 − 2xy.


Note that 1 ⊗ 2y = 2 ⊗ y and x ⊗ 2y = 2x ⊗ y according to the axioms of
the tensor product. So we can see that the tensor product space V ⊗W has a
natural interpretation through the algebra of polynomials. The space V ⊗W
can be visualized as the space of polynomials in both x and y of degree at
most 2 in each variable. To make this interpretation precise, we can construct
a canonical isomorphism between the space V ⊗W and the space of polyno-
mials in x and y of degree at most 2 in each variable. The isomorphism maps
the tensor p(x) ⊗ q(y) to the polynomial p(x)q(y).
Example 2: R3 ⊗ C. Let V be the three-dimensional space R3, and let W be
the set of all complex numbers C considered as a vector space over R. Then
the tensor product of V and W is, by definition, the space of combinations of
the form


(x1, y1, z1) ⊗ (a1 + b1i) + (x2, y2, z2) ⊗ (a2 + b2i) + ...


Here “i” can be treated as a formal symbol; of course we know that i2 = −1,
but our vector spaces are over R and so we will not need to multiply complex
numbers when we perform calculations in these spaces. Since


(x, y, z) ⊗ (a+ bi) = (ax, ay, az) ⊗ 1 + (bx, by, bz) ⊗ i,


any element of R3 ⊗ C can be represented by the expression v1 ⊗ 1 + v2 ⊗ i,
where v1,2 ∈ R3. For brevity one can write such expressions as v1 + v2i. One
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also writes R3 ⊗R C to emphasize the fact that it is a space over R. In other
words, R3 ⊗R C is the space of three-dimensional vectors “with complex co-
efficients.” This space is six-dimensional.
Exercise: We can consider R3 ⊗R C as a vector space over C if we define the
multiplication by a complex number λ by λ(v ⊗ z) ≡ v ⊗ (λz) for v ∈ V and
λ, z ∈ C. Compute explicitly


λ (v1 ⊗ 1 + v2 ⊗ i) =?


Determine the dimension of the space R3 ⊗R C when viewed as a vector space
over C in this way.
Example 3: V ⊗ K is isomorphic to V . Since K is a vector space over itself,
we can consider the tensor product of V and K. However, nothing is gained:
the space V ⊗K is canonically isomorphic to V . This can be easily verified: an
element x of V ⊗K is by definition an expression of the form x = v1⊗λ1+...+
vn ⊗ λn, however, it follows from the axiom (1.17) that v1 ⊗ λ1 = (λ1v1) ⊗ 1,
therefore x = (λ1v1 + ...+ λnvn) ⊗ 1. Thus for any x ∈ V ⊗ K there exists
a unique v ∈ V such that x = v ⊗ 1. In other words, there is a canonical
isomorphism V → V ⊗ K which maps v into v ⊗ 1.


1.7.2 Example: Rm ⊗ Rn


Let {e1, ..., em} and {f1, ..., fn} be the standard bases in Rm and Rn respec-
tively. The vector space Rm ⊗Rn consists, by definition, of expressions of the
form


v1 ⊗ w1 + ...+ vk ⊗ wk =
k∑


i=1


vi ⊗ wi, vi ∈ Rm, wi ∈ Rn.


The vectors vi,wi can be decomposed as follows,


vi =


m∑


j=1


λijej , wi =


n∑


l=1


µilfl, (1.20)


where λij and µij are some coefficients. Then


k∑


i=1


vi ⊗ wi =


k∑


i=1








m∑


j=1


λijej





⊗
(


n∑


l=1


µilfl


)


=


m∑


j=1


n∑


l=1


(
k∑


i=1


λijµil


)


(ej ⊗ fl)


=


m∑


j=1


n∑


l=1


Cjlej ⊗ fl,
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where Cjl ≡
∑k


i=1 λijµil is a certain set of numbers. In other words, an arbi-
trary element of Rm ⊗ Rn can be expressed as a linear combination of ej ⊗ fl.
In Sec. 1.7.3 (after some preparatory work) we will prove that the the set of
tensors


{ej ⊗ fl | 1 ≤ j ≤ m, 1 ≤ l ≤ n}


is linearly independent and therefore is a basis in the space Rm⊗Rn. It follows
that the space Rm ⊗ Rn has dimension mn and that elements of Rm ⊗ Rn can
be represented by rectangular tables of components Cjl, where 1 ≤ j ≤ m,
1 ≤ l ≤ n. In other words, the space Rm⊗Rn is isomorphic to the linear space
of rectangular m × n matrices with coefficients from K. This isomorphism is
not canonical because the components Cjl depend on the choice of the bases
{ej} and {fj}.


1.7.3 Dimension of tensor product is the product of
dimensions


We have seen above that the dimension of a direct sum V ⊕W is the sum of
dimensions of V and of W . Now the analogous statement: The dimension of
a tensor product space V ⊗W is equal to dimV · dimW .


To prove this statement, we will explicitly construct a basis in V ⊗W out of
two given bases in V and in W . Throughout this section, we consider finite-
dimensional vector spaces V and W and vectors vj ∈ V , wj ∈W .


Lemma 1: a) If {v1, ...,vm} and {w1, ...,wn} are two bases in their respective
spaces then any element A ∈ V ⊗W can be expressed as a linear combination
of the form


A =


m∑


j=1


n∑


k=1


λjkvj ⊗ wk


with some coefficients λjk.
b) Any tensor A ∈ V ⊗ W can be written as a linear combination A =


∑


k ak ⊗ bk, where ak ∈ V and bk ∈ W , with at most min (m,n) terms in the
sum.
Proof: a) The required decomposition was given in Example 1.7.2.
b) We can group the n terms λjkwk into new vectors bj and obtain the


required formula with m terms:


A =


m∑


j=1


n∑


k=1


λjkvj ⊗ wk =


m∑


j=1


vj ⊗ bj , bj ≡
n∑


k=1


λjkwk.


I will call this formula the decomposition of the tensor A in the basis {vj}.
Since a similar decomposition with n terms exists for the basis {wk}, it fol-
lows that A has a decomposition with at most min (m,n) terms (not all terms
in the decomposition need to be nonzero). �
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We have proved that the set {vj ⊗ wk} allows us to express any tensor A
as a linear combination; in other words, the set


{vj ⊗ wk | 1 ≤ j ≤ m, 1 ≤ k ≤ n}


spans the space V ⊗ W . This set will be a basis in V ⊗ W if it is linearly
independent, which we have not yet proved. This is a somewhat subtle point;
indeed, how do we show that there exists no linear dependence, say, of the
form


λ1v1 ⊗ w1 + λ2v2 ⊗ w2 = 0


with some nonzero coefficients λi? Is it perhaps possible to juggle tensor
products to obtain such a relation? The answer is negative, but the proof is
a bit circumspect. We will use covectors from V ∗ in a nontraditional way,
namely not as linear maps V → K but as maps V ⊗W →W .
Lemma 2: If f∗ ∈ V ∗ is any covector, we define the map f∗ : V ⊗W → W
(tensors into vectors) by the formula


f∗
(∑


k


vk ⊗ wk


)
≡
∑


k


f∗ (vk)wk. (1.21)


Then this map is a linear map V ⊗W →W .
Proof: The formula (1.21) defines the map explicitly (and canonically!). It


is easy to see that any linear combinations of tensors are mapped into the
corresponding linear combinations of vectors,


f∗ (vk ⊗ wk + λv′
k ⊗ w′


k) = f∗ (vk)wk + λf∗ (v′
k)w′


k.


This follows from the definition (1.21) and the linearity of the map f∗. How-
ever, there is one potential problem: there exist many representations of an
element A ∈ V ⊗W as an expression of the form


∑


k vk ⊗ wk with different
choices of vk,wk. Thus we need to show that the map f∗ is well-defined by
Eq. (1.21), i.e. that f∗(A) is always the same vector regardless of the choice of
the vectors vk and wk used to represent A as A =


∑


k vk ⊗ wk. Recall that
different expressions of the form


∑


k vk ⊗ wk can be equal as a consequence
of the axioms (1.17)–(1.19).


In other words, we need to prove that a tensor equality


∑


k


vk ⊗ wk =
∑


k


v′
k ⊗ w′


k (1.22)


entails
f∗
(∑


k


vk ⊗ wk


)
= f∗


(∑


k


v′
k ⊗ w′


k


)
.


To prove this, we need to use the definition of the tensor product. Two expres-
sions in Eq. (1.22) can be equal only if they are related by a chain of identities
of the form (1.17)–(1.19), therefore it is sufficient to prove that the map f∗
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transforms both sides of each of those identities into the same vector. This is
verified by explicit calculations, for example we need to check that


f∗ (λv ⊗ w) = λf∗ (v ⊗ w) ,


f∗ [(v1 + v2) ⊗ w] = f∗ (v1 ⊗ w) + f∗ (v2 ⊗ w) ,


f∗ [v ⊗ (w1 + w2)] = f∗ (v ⊗ w1) + f∗ (v ⊗ w2) .


These simple calculations look tautological, so please check that you can do
them and explain why they are necessary for this proof. �


Lemma 3: If {v1, ...,vm} and {u1, ...,un} are two linearly independent sets
in their respective spaces then the set


{vj ⊗ wk} ≡ {v1 ⊗ w1,v1 ⊗ w2, ...,vm ⊗ wn−1,vm ⊗ wn}


is linearly independent in the space V ⊗W .
Proof: We need to prove that a vanishing linear combination


m∑


j=1


n∑


k=1


λjkvj ⊗ wk = 0 (1.23)


is possible only if all λjk = 0. Let us choose some fixed value j1; we will now
prove that λj1k = 0 for all k. By the result of Exercise 1 in Sec. 1.6 there exists
a covector f∗ ∈ V ∗ such that f∗ (vj) = δj1j for j = 1, ..., n. Then we apply the
map f∗ : V ⊗W → W defined in Lemma 1 to Eq. (1.23). On the one hand, it
follows from Eq. (1.23) that


f∗
[


m∑


j=1


n∑


k=1


λjkvj ⊗ wk


]
= f∗ (0) = 0.


On the other hand, by definition of the map f∗ we have


f∗
[


m∑


j=1


n∑


k=1


λjkvj ⊗ wk


]
=


m∑


j=1


n∑


k=1


λjkf
∗ (vj)wk


=
m∑


j=1


n∑


k=1


λjkδj1jwk =
n∑


k=1


λj1kwk.


Therefore
∑


k λj1kwk = 0. Since the set {wk} is linearly independent, we
must have λj1k = 0 for all k = 1, ..., n. �


Now we are ready to prove the main statement of this section.


Theorem: If V and W are finite-dimensional vector spaces then


dim (V ⊗W ) = dimV · dimW.
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Proof: By definition of dimension, there exist linearly independent sets of
m ≡ dimV vectors in V and of n ≡ dimW vectors in W , and by the basis
theorem these sets are bases in V and W respectively. By Lemma 1 the set of
mn elements {vj ⊗ wk} spans the space V ⊗W , and by Lemma 3 this set is
linearly independent. Therefore this set is a basis. Hence, there are no linearly
independent sets of mn+ 1 elements in V ⊗W , so dim (V ⊗W ) = mn. �


1.7.4 Higher-rank tensor products


The tensor product of several spaces is defined similarly, e.g. U ⊗ V ⊗W is
the space of expressions of the form


u1 ⊗ v1 ⊗ w1 + ...+ un ⊗ vn ⊗ wn, ui,vi,wi ∈ V.


Alternatively (and equivalently) one can define the space U ⊗ V ⊗W as the
tensor product of the spaces U ⊗ V and W .


Exercise∗: Prove that (U ⊗ V ) ⊗W ∼= U ⊗ (V ⊗W ).


Definition: If we only work with one space V and if all other spaces are
constructed out of V and V ∗ using the tensor product, then we only need
spaces of the form


V ⊗ ...⊗ V
︸ ︷︷ ︸


m


⊗V ∗ ⊗ ...⊗ V ∗
︸ ︷︷ ︸


n


.


Elements of such spaces are called tensors of rank (m,n). For example, vec-
tors v ∈ V have rank (1, 0), covectors f∗ ∈ V ∗ have rank (0, 1), tensors from
V ⊗V ∗ have rank (1, 1), tensors from V ⊗V have rank (2, 0), and so on. Scalars
from K have rank (0, 0).


In many applications, the spaces V and V ∗ are identified (e.g. using a scalar
product; see below). In that case, the rank is reduced to a single number —
the sum of m and n. Thus, in this simplified counting, tensors from V ⊗ V ∗


as well as tensors from V ⊗ V have rank 2.


1.7.5 * Distributivity of tensor product


We have two operations that build new vector spaces out of old ones: the
direct sum V ⊕ W and the tensor product V ⊗ W . Is there something like
the formula (U ⊕ V ) ⊗ W ∼= (U ⊗W ) ⊕ (V ⊗W )? The answer is positive.
I will not need this construction below; this is just another example of how
different spaces are related by a canonical isomorphism.


Statement: The spaces (U ⊕ V )⊗W and (U ⊗W )⊕ (V ⊗W ) are canonically
isomorphic.
Proof: An element (u,v) ⊗ w ∈ (U ⊕ V ) ⊗ W is mapped into the pair


(u ⊗ w,v ⊗ w) ∈ (U ⊗W ) ⊕ (V ⊗W ). It is easy to see that this map is a
canonical isomorphism. I leave the details to you. �
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Exercise: Let U , V , andW be some vector spaces. Demonstrate the following
canonical isomorphisms:


(U ⊕ V )
∗ ∼= U∗ ⊕ V ∗,


(U ⊗ V )
∗ ∼= U∗ ⊗ V ∗.


1.8 Linear maps and tensors


The tensor product construction may appear an abstract plaything at this
point, but in fact it is a universal tool to describe linear maps.


We have seen that the set of all linear operators Â : V → V is a vector space
because one can naturally define the sum of two operators and the product
of a number and an operator. This vector space is called the space of endo-
morphisms of V and denoted by End V .


In this section I will show that linear operators can be thought of as ele-
ments of the space V ⊗ V ∗. This gives a convenient way to represent a lin-
ear operator by a coordinate-free formula. Later we will see that the space
Hom (V,W ) of linear maps V →W is canonically isomorphic to W ⊗ V ∗.


1.8.1 Tensors as linear operators


First, we will show that any tensor from the space V ⊗V ∗ acts as a linear map
V → V .


Lemma: A tensor A ∈ V ⊗ V ∗ expressed as


A ≡
k∑


j=1


vj ⊗ f∗j


defines a linear operator Â : V → V according to the formula


Âx ≡
k∑


j=1


f∗j (x)vj . (1.24)


Proof: Compare this linear map with the linear map defined in Eq. (1.21),
Lemma 2 of Sec. 1.7.3. We need to prove two statements:


(1) The transformation is linear, Â(x + λy) = Âx + λÂy.
(2) The operator Â does not depend on the decomposition of the tensor


A using particular vectors vj and covectors f∗j : two decompositions of the
tensor A,


A =


k∑


j=1


vj ⊗ f∗j =


l∑


j=1


wj ⊗ g∗
j ,
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yield the same operator,


Âx =


k∑


j=1


f∗j (x)vj =


l∑


j=1


g∗
j (x)wj , ∀x.


The first statement, Â (x + λy) = Âx + λÂy, follows from the linearity of
f∗j as a map V → K and is easy to verify by explicit calculation:


Â(x + λy) =


k∑


j=1


f∗j (x + λy)vj


=


k∑


j=1


f∗j (x)vj + λ


k∑


j=1


f∗j (y)vj


= Âx + λÂy.


The second statement is proved using the axioms (1.17)–(1.19) of the tensor
product. Two different expressions for the tensor A can be equal only if they
are related through the axioms (1.17)–(1.19). So it suffices to check that the


operator Â remains unchanged when we use each of the three axioms to re-


place
∑k


j=1 vj ⊗ f∗j by an equivalent tensor expression. Let us check the first
axiom: We need to compare the action of


∑


j (uj + vj)⊗ f∗j on a vector x ∈ V
and the action of the sum of


∑


j uj ⊗ f∗j and
∑


j vj ⊗ f∗j on the same vector:


Âx =


[
∑


j


(uj + vj) ⊗ f∗j


]


x


=
∑


j


f∗j (x) (uj + vj)


=


[
∑


j


uj ⊗ f∗j


]


x +


[
∑


j


vj ⊗ f∗j


]


x.


The action of Â on x remains unchanged for every x, which means that the


operator Â itself is unchanged. Similarly, we (more precisely, you) can check


directly that the other two axioms also leave Â unchanged. It follows that the


action of Â on a vector x, as defined by Eq. (1.24), is independent of the choice
of representation of the tensor A through vectors vj and covectors f∗j . �


Question: I am wondering what kind of operators correspond to tensor ex-
pressions. For example, take the single-term tensor A = v ⊗ w∗. What is the


geometric meaning of the corresponding operator Â?


Answer: Let us calculate: Âx = w∗ (x)v, i.e. the operator Â acts on any
vector x ∈ V and produces a vector that is always proportional to the fixed


vector v. Hence, the image of the operator Â is the one-dimensional subspace
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spanned by v. However, Â is not necessarily a projector because in general


ÂÂ 6= Â:


Â(Âx) = w∗ (v)w∗ (x)v 6= w∗ (x)v, unless w∗ (v) = 1.


Exercise 1: An operator Â is given by the formula


Â = 1̂V + λv ⊗ w∗,


where λ ∈ K, v ∈ V , w∗ ∈ V ∗. Compute Âx for any x ∈ V .


Answer: Âx = x + λw∗ (x)v.


Exercise 2: Let n ∈ V and f∗ ∈ V ∗ such that f∗(n) = 1. Show that the
operator P̂ ≡ 1̂V − n ⊗ f∗ is a projector onto the subspace annihilated by f∗.


Hint: You need to show that P̂ P̂ = P̂ ; that any vector x annihilated by f∗


is invariant under P̂ (i.e. if f∗(x) = 0 then P̂x = x); and that for any vector x,


f∗(P̂x) = 0.


1.8.2 Linear operators as tensors


We have seen that any tensor A ∈ V ⊗ V ∗ has a corresponding linear map in


End V . Now conversely, let Â ∈ End V be a linear operator and let {v1, ...,vn}
be a basis in V . We will now find such covectors f∗k ∈ V ∗ that the tensor
∑


k vk ⊗ f∗k corresponds to Â. The required covectors f∗k ∈ V ∗ can be defined
by the formula


f∗k (x) ≡ v∗
k(Âx), ∀x ∈ V,


where {v∗
k} is the dual basis. With this definition, we have


[ n∑


k=1


vk ⊗ f∗k


]


x =


n∑


k=1


f∗k (x)vk =


n∑


k=1


v∗
k(Âx)vk = Âx.


The last equality is based on the formula


n∑


k=1


v∗
k (y)vk = y,


which holds because the components of a vector y in the basis {vk} are v∗
k (y).


Then it follows from the definition (1.24) that
[∑


k vk ⊗ f∗k
]
x = Âx.


Let us look at this construction in another way: we have defined a map
ˆ : V ⊗ V ∗ → End V whereby any tensor A ∈ V ⊗ V ∗ is transformed into a


linear operator Â ∈ End V .
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Theorem: (1) There is a canonical isomorphism A → Â between the spaces
V ⊗ V ∗ and End V . In other words, linear operators are canonically (without
choosing a basis) and uniquely mapped into tensors of the form


v1 ⊗ f∗1 + ...+ vn ⊗ f∗n.


Conversely, a tensor
∑n


k=1 vk ⊗ f∗k is mapped into the operator Â defined by
Eq. (1.24).


(2) It is possible to write a tensor A as a sum of not more than N ≡ dimV
terms,


A =


n∑


k=1


vk ⊗ f∗k , n ≤ N.


Proof: (1) To prove that a map is an isomorphism of vector spaces, we need
to show that this map is linear and bijective (one-to-one). Linearity easily
follows from the definition of the map ˆ: if A,B ∈ V ⊗ V ∗ are two tensors


then A + λB ∈ V ⊗ V ∗ is mapped into Â + λB̂. To prove the bijectivity,


we need to show that for any operator Â there exists a corresponding tensor
A =


∑


k vk ⊗ f∗k (this we have already shown above), and that two different


tensors A 6= B cannot be mapped into the same operator Â = B̂. If two


different tensorsA 6= B were mapped into the same operator Â = B̂, it would


follow from the linearity of ˆ that Â−B = Â − B̂ = 0, in other words, that


a nonzero tensor C ≡ A − B 6= 0 is mapped into the zero operator, Ĉ = 0.
We will now arrive to a contradiction. The tensor C has a decomposition C =
∑


k vk ⊗ c∗k in the basis {vk}. Since C 6= 0, it follows that at least one covector
c∗k is nonzero. Suppose c∗1 6= 0; then there exists at least one vector x ∈ V


such that c∗1 (x) 6= 0. We now act on x with the operator Ĉ: by assumption,


Ĉ = Â− B̂ = 0, but at the same time


0 = Ĉx ≡
∑


k


vkc
∗
k (x) = v1c1 (x) + ...


This is a contradiction because a linear combination of vectors vk with at least
one nonzero coefficient cannot vanish (the vectors {vk} are a basis).


Note that we did use a basis {vk} in the construction of the map End V →
V ⊗ V ∗, when we defined the covectors f∗k . However, this map is canonical
because it is the same map for all choices of the basis. Indeed, if we choose
another basis {v′


k} then of course the covectors f ′∗k will be different from f∗k ,
but the tensor A will remain the same,


A =


n∑


k=1


vk ⊗ f∗k = A′ =


n∑


k=1


v′
k ⊗ f ′∗k ∈ V ⊗ V ∗,


because (as we just proved) different tensors are always mapped into differ-
ent operators.
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(2) This follows from Lemma 1 of Sec. 1.7.3. �


From now on, I will not use the map ˆ explicitly. Rather, I will simply not
distinguish between the spaces End V and V ⊗ V ∗. I will write things like


v ⊗ w∗ ∈ End V or Â = x ⊗ y∗. The space implied in each case will be clear
from the context.


1.8.3 Examples and exercises


Example 1: The identity operator. How to represent the identity operator 1̂V


by a tensor A ∈ V ⊗ V ∗?
Choose a basis {vk} in V ; this choice defines the dual basis {v∗


k} in V ∗ (see
Sec. 1.6) such that v∗


j (vk) = δjk. Now apply the construction of Sec. 1.8.2 to
find


A =


n∑


k=1


vk ⊗ f∗k , f∗k (x) = v∗
k


(
1̂V x


)
= v∗


k (x) ⇒ f∗k = v∗
k.


Therefore


1̂V =


n∑


k=1


vk ⊗ v∗
k. (1.25)


Question: The identity operator 1̂V is defined canonically, i.e. independently
of a basis in V ; it is simply the transformation that does not change any vec-
tors. However, the tensor representation (1.25) seems to depend on the choice
of a basis {vk}. What is going on? Is the tensor 1̂ ∈ V ⊗ V ∗ defined canoni-
cally?
Answer: Yes. The tensor


∑


k vk ⊗ v∗
k is the same tensor regardless of which


basis {vk} we choose; of course the correct dual basis {v∗
k} must be used. In


other words, for any two bases {vk} and {ṽk}, and with {v∗
k} and {ṽ∗


k} being
the corresponding dual bases, we have the tensor equality


∑


k


vk ⊗ v∗
k =


∑


k


ṽk ⊗ ṽ∗
k.


We have proved this in Theorem 1.8.2 when we established that two different
tensors are always mapped into different operators by the map .̂ One can say
that


∑


k vk ⊗ v∗
k is a canonically defined tensor in V ⊗ V ∗ since it is the unique


tensor corresponding to the canonically defined identity operator 1̂V . Recall
that a given tensor can be written as a linear combination of tensor products
in many different ways! Here is a worked-out example:


Let {v1,v2} be a basis in a two-dimensional space; let {v∗
1,v


∗
2} be the cor-


responding dual basis. We can choose another basis, e.g.


{w1,w2} ≡ {v1 + v2,v1 − v2} .


Its dual basis is (verify this!)


w∗
1 =


1


2
(v∗


1 + v∗
2) , w∗


2 =
1


2
(v∗


1 − v∗
2) .
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Then we compute the identity tensor:


1̂ = w1 ⊗ w∗
1 + w2 ⊗ w∗


2 = (v1 + v2) ⊗
1


2
(v∗


1 + v∗
2)


+ (v1 − v2) ⊗
1


2
(v∗


1 − v∗
2)


= v1 ⊗ v∗
1 + v2 ⊗ v∗


2.


The tensor expressions w1 ⊗ w∗
1 + w2 ⊗ w∗


2 and v1 ⊗ v∗
1 + v2 ⊗ v∗


2 are equal
because of distributivity and linearity of tensor product, i.e. due to the axioms
of the tensor product.


Exercise 1: Matrices as tensors. Now suppose we have a matrix Ajk that


specifies the linear operator Â in a basis {ek}. Which tensor A ∈ V ⊗ V ∗


corresponds to this operator?
Answer: A =


∑n
j,k=1Ajkej ⊗ e∗k.


Exercise 2: Product of linear operators. Suppose Â =
∑n


k=1 vk ⊗ f∗k and


B̂ =
∑n


l=1 wl ⊗ g∗
l are two operators. Obtain the tensor representation of the


product ÂB̂.


Answer: ÂB̂ =
∑n


k=1


∑n
l=1 f∗k (wl)vk ⊗ g∗


l .


Exercise 3: Verify that 1̂V 1̂V = 1̂V by explicit computation using the tensor
representation (1.25).


Hint: Use the formula v∗
j (vk) = δjk.


Exercise 4: Eigenvalues. Suppose Â = α1̂V +u⊗ f∗ and B̂ = u⊗ f∗ +v⊗g∗,
where u,v ∈ V are a linearly independent set, α ∈ K, and f∗,g∗ ∈ V ∗ are
nonzero but such that f∗(v) = 0 and g∗(u) = 0 while f∗(u) 6= 0 and g∗(v) 6= 0.
Determine the eigenvalues and eigenvectors of the operators Â and B̂.
Solution: (I give a solution because it is an instructive calculation showing


how to handle tensors in the index-free approach. Note that the vectors u,v
and the covectors f∗,g∗ are “given,” which means that numbers such as f∗(u)
are known constants.)


For the operator Â, the eigenvalue equation Âx = λx yields


αx + uf∗(x) = λx.


Either λ = α and then f∗ (x) = 0, or λ 6= α and then x is proportional to u;
substituting x = u into the above equation, we find λ = α+ f∗ (u). Therefore


the operator Â has two eigenvalues, λ = α and λ = α+f∗ (u). The eigenspace
with the eigenvalue λ = α is the set of all x ∈ V such that f∗ (x) = 0. The
eigenspace with the eigenvalue λ = α+f∗ (u) is the set of vectors proportional
to u. (It might happen that f∗ (u) = 0; then there is only one eigenvalue,
λ = α, and no second eigenspace.)


For the operator B̂, the calculations are longer. Since {u,v} is a linearly
independent set, we may add some vectors ek to that set in order to com-
plete it to a basis {u,v, e3, ..., eN}. It is convenient to adapt this basis to
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the given covectors f∗ and g∗; namely, it is possible to choose this basis
such that f∗(ek) = 0 and g∗(ek) = 0 for k = 3, ..., N . (We may replace
ek 7→ ek − aku − bkv with some suitable constants ak, bk to achieve this,
using the given properties f∗(v) = 0, g∗(u) = 0, f∗(u) 6= 0, and g∗(v) 6= 0.)
Suppose x is an unknown eigenvector with the eigenvalue λ; then x can be


expressed as x = αu + βv +
∑N


k=3 ykek in this basis, where α, β, and yk are
unknown constants. Our goal is therefore to determine α, β, yk, and λ. De-


note y ≡
∑N


k=3 ykek and transform the eigenvalue equation using the given
conditions f∗(v) = g∗(u) = 0 as well as the properties f∗(y) = g∗(y) = 0,


B̂x − λx =u (αf∗ (u) + βf∗ (v) + f∗ (y) − αλ)


+ v (αg∗ (u) + βg∗ (v) + g∗ (y) − βλ) − λy


=u (αf∗ (u) − αλ) + v (βg∗ (v) − βλ) − λy = 0.


The above equation says that a certain linear combination of the vectors u,
v, and y is zero. If y 6= 0, the set {u,v,y} is linearly independent since
{u,v, e3, ..., eN} is a basis (see Exercise 1 in Sec. 1.1.4). Then the linear combi-
nation of the three vectors u, v, and y can be zero only if all three coefficients
are zero. On the other hand, if y = 0 then we are left only with two coeffi-
cients that must vanish. Thus, we can proceed by considering separately the
two possible cases, y 6= 0 and y = 0.


We begin with the case y = 0. In this case, B̂x− λx = 0 is equivalent to the
vanishing of the linear combination


u (αf∗(u) − αλ) + v (βg∗(v) − βλ) = 0.


Since {u,v} is linearly independent, this linear combination can vanish only
when both coefficients vanish:


α (f∗ (u) − λ) = 0,


β (g∗ (v) − λ) = 0.


This is a system of two linear equations for the two unknowns α and β; when
we solve it, we will determine the possible eigenvectors x = αu+βv and the
corresponding eigenvalues λ. Note that we are looking for nonzero solutions,
so α and β cannot be both zero. If α 6= 0, we must have λ = f∗(u). If f∗(u) 6=
g∗(v), the second equation forces β = 0. Otherwise, any β is a solution.
Likewise, if β 6= 0 then we must have λ = g∗(v). Therefore we obtain the
following possibilities:


a) f∗(u) 6= g∗(v), two nonzero eigenvalues λ1 = f∗(u) with eigenvector
x1 = αu (with any α 6= 0) and λ2 = g∗(v) with eigenvector x2 = βv (with
any β 6= 0).


b) f∗(u) = g∗(v), one nonzero eigenvalue λ = f∗(u) = g∗(v), two-dimen-
sional eigenspace with eigenvectors x = αu + βv where at least one of α, β is
nonzero.
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Now we consider the case y 6= 0 (recall that y is an unknown vector from
the subspace Span {e3, ..., eN}). In this case, we obtain a system of linear
equations for the set of unknowns (α, β, λ,y):


αf∗ (u) − αλ = 0,


βg∗ (v) − βλ = 0,


−λ = 0.


This system is simplified, using λ = 0, to


αf∗ (u) = 0,


βg∗ (v) = 0.


Since f∗(u) 6= 0 and g∗(v) 6= 0, the only solution is α = β = 0. Hence, the
eigenvector is x = y for any nonzero y ∈ Span {e3, ..., eN}. In other words,
there is an (N − 2)-dimensional eigenspace corresponding to the eigenvalue
λ = 0. �


Remark: The preceding exercise serves to show that calculations in the coord-
inate-free approach are not always short! (I even specified some additional
constraints on u,v, f∗,g∗ in order to make the solution shorter. Without these
constraints, there are many more cases to be considered.) The coordinate-free
approach does not necessarily provide a shorter way to find eigenvalues of
matrices than the usual methods based on the evaluation of determinants.
However, the coordinate-free method is efficient for the operator Â. The end
result is that we are able to determine eigenvalues and eigenspaces of opera-


tors such as Â and B̂, regardless of the number of dimensions in the space, by
using the special structure of these operators, which is specified in a purely
geometric way.


Exercise 5: Find the inverse operator to Â = 1̂V + u ⊗ f∗, where u ∈ V ,


f∗ ∈ V ∗. Determine when Â−1 exists.
Answer: The inverse operator exists only if f∗(u) 6= −1: then


Â−1 = 1̂V − 1


1 + f∗(u)
u ⊗ f∗.


When f∗(u) = −1, the operator Â has an eigenvector u with eigenvalue 0, so


Â−1 cannot exist.


1.8.4 Linear maps between different spaces


So far we have been dealing with linear operators that map a space V into
itself; what about linear maps V →W between different spaces? If we replace
V ∗ by W ∗ in many of our definitions and proofs, we will obtain a parallel set
of results for linear maps V →W .
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Theorem 1: Any tensor A ≡ ∑k
j=1 wj ⊗ f∗j ∈ W ⊗ V ∗ acts as a linear map


V →W according to the formula


Ax ≡
k∑


j=1


f∗j (x)wj .


The space Hom (V,W ) of all linear operators V → W is canonically isomor-
phic to the space W ⊗ V ∗.
Proof: Left as an exercise since it is fully analogous to previous proofs.


Example 1: Covectors as tensors. We know that the number field K is a vec-
tor space over itself and V ∼= V ⊗K. Therefore linear maps V → K are tensors
from V ∗ ⊗ K ∼= V ∗, i.e. covectors, in agreement with the definition of V ∗.


Example 2: If V and W are vector spaces, what are tensors from V ∗ ⊗W ∗?
They can be viewed as (1) linear maps from V into W ∗, (2) linear maps


from W into V ∗, (3) linear maps from V ⊗W into K. These possibilities can
be written as canonical isomorphisms:


V ∗ ⊗W ∗ ∼= Hom (V,W ∗) ∼= Hom (W,V ∗) ∼= Hom (V ⊗W,K) .


Exercise 1: How can we interpret the space V ⊗ V ⊗ V ∗? Same question for
the space V ∗ ⊗ V ∗ ⊗ V ⊗ V .
Answer: In many different ways:


V ⊗ V ⊗ V ∗ ∼= Hom (V, V ⊗ V )
∼= Hom (End V, V ) ∼= Hom (V ∗,End V ) ∼= ... and


V ∗ ⊗ V ∗ ⊗ V ⊗ V ∼= Hom (V, V ∗ ⊗ V ⊗ V )
∼= Hom (V ⊗ V, V ⊗ V ) ∼= Hom (End V,End V ) ∼= ...


For example, V ⊗ V ⊗ V ∗ can be visualized as the space of linear maps from
V ∗ to linear operators in V . The action of a tensor u ⊗ v ⊗ w∗ ∈ V ⊗ V ⊗ V ∗


on a covector f∗ ∈ V ∗ may be defined either as f∗ (u)v ⊗ w∗ ∈ V ⊗ V ∗ or
alternatively as f∗ (v)u ⊗ w∗ ∈ V ⊗ V ∗. Note that these two definitions are
not equivalent, i.e. the same tensors are mapped to different operators. In each
case, one of the copies of V (from V ⊗ V ⊗ V ∗) is “paired up” with V ∗.


Question: We have seen in the proof of Lemma 1 in Sec. 1.7.3 that covectors
f∗ ∈ V ∗ act as linear maps V ⊗ W → W . However, I am now sufficiently
illuminated to know that linear maps V ⊗W → W are elements of the space
W ⊗W ∗ ⊗ V ∗ and not elements of V ∗. How can this be reconciled?
Answer: There is an injection map V ∗ → W ⊗ W ∗ ⊗ V ∗ defined by the


formula f∗ → 1̂W ⊗ f∗, where 1̂W ∈ W ⊗W ∗ is the identity operator. Since
1̂W is a canonically defined element ofW ⊗W ∗, the map is canonical (defined
without choice of basis, i.e. geometrically). Thus covectors f∗ ∈ V ∗ can be
naturally considered as elements of the space Hom (V ⊗W,W ).
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Question: The space V ⊗ V ∗ can be interpreted as End V , as End V ∗, or as
Hom (V ⊗ V ∗,K). This means that one tensor A ∈ V ⊗ V ∗ represents an
operator in V , an operator in V ∗, or a map from operators into numbers.
What is the relation between all these different interpretations of the tensorA?
For example, what is the interpretation of the identity operator 1̂V ∈ V ⊗ V ∗


as an element of Hom (V ⊗ V ∗,K)?


Answer: The identity tensor 1̂V represents the identity operator in V and in
V ∗. It also represents the following map V ⊗ V ∗ → K,


1̂V : v ⊗ f∗ 7→ f∗ (v) .


This map applied to an operator Â ∈ V ⊗ V ∗ yields the trace of that operator
(see Sec. 3.8).


The definition below explains the relation between operators in V and op-
erators in V ∗ represented by the same tensor.


Definition: If Â : V → W is a linear map then the transposed operator ÂT :
W ∗ → V ∗ is the map defined by


(ÂT f∗) (v) ≡ f∗(Âv), ∀v ∈ V, ∀f∗ ∈W ∗. (1.26)


In particular, this defines the transposed operator ÂT : V ∗ → V ∗ given an


operator Â : V → V .


Remark: The above definition is an example of “mathematical style”: I just
wrote formula (1.26) and left it for you to digest. In case you have trouble


with this formula, let me translate: The operator ÂT is by definition such that


it will transform an arbitrary covector f∗ ∈ W ∗ into a new covector (ÂT f∗) ∈
V ∗, which is a linear function defined by its action on vectors v ∈ V . The
formula says that the value of that linear function applied to an arbitrary


vector v should be equal to the number f∗(Âv); thus we defined the action of


the covector ÂT f∗ on any vector v. Note how in the formula (ÂT f∗) (v) the
parentheses are used to show that the first object is acting on the second.


Since we have defined the covector ÂT f∗ for any f∗ ∈ W ∗, it follows that


we have thereby defined the operator ÂT acting in the spaceW ∗ and yielding
a covector from V ∗. Please read the formula again and check that you can
understand it. The difficulty of understanding equations such as Eq. (1.26)
is that one needs to keep in mind all the mathematical notations introduced
previously and used here, and one also needs to guess the argument implied
by the formula. In this case, the implied argument is that we will define a new


operator ÂT if we show, for any f∗ ∈ W ∗, how the new covector (ÂT f∗) ∈ V ∗


works on any vector v ∈ V . Only after some practice with such arguments
will it become easier to read mathematical definitions. �


Note that the transpose map ÂT is defined canonically (i.e. without choos-


ing a basis) through the original map Â.
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Question: How to use this definition when the operator Â is given? Eq. (1.26)


is not a formula that gives ÂT f∗ directly; rather, it is an identity connecting
some values for arbitrary v and f∗.


Answer: In order to use this definition, we need to apply ÂT f∗ to an arbi-
trary vector v and transform the resulting expression. We could also compute


the coefficients of the operator ÂT in some basis.
Exercise 2: If A =


∑


k wk ⊗ f∗k ∈W ⊗V ∗ is a linear map V →W , what is the
tensor representation of its transpose AT ? What is its matrix representation
in a suitable basis?
Answer: The transpose operator AT maps W ∗ → V ∗, so the corresponding


tensor is AT =
∑


k f∗k ⊗ wk ∈ V ∗ ⊗W . Its tensor representation consists of
the same vectors wk ∈ W and covectors f∗k ∈ V ∗ as the tensor representation
of A. The matrix representation of AT is the transposed matrix of A if we use
the same basis {ej} and its dual basis


{
e∗j
}


. �


An important characteristic of linear operators is the rank. (Note that we
have already used the word “rank” to denote the degree of a tensor product;
the following definition presents a different meaning of the word “rank.”)
Definition: The rank of a linear map Â : V → W is the dimension of the


image subspace im Â ⊂ W . (Recall that im Â is a linear subspace of W that


contains all vectors w ∈W expressed as w = Âv with some v ∈ V .) The rank


may be denoted by rank Â ≡ dim(im Â).
Theorem 2: The rank of Â is the smallest number of terms necessary to write


an operator Â : V → W as a sum of single-term tensor products. In other


words, the operator Â can be expressed as


Â =


rank Â∑


k=1


wk ⊗ f∗k ∈W ⊗ V ∗,


with suitably chosen wk ∈W and f∗k ∈ V ∗, but not as a sum of fewer terms.


Proof: We know that Â can be written as a sum of tensor product terms,


Â =
n∑


k=1


wk ⊗ f∗k , (1.27)


where wk ∈W , f∗k ∈ V ∗ are some vectors and covectors, and n is some integer.
There are many possible choices of these vectors and the covectors. Let us
suppose that Eq. (1.27) represents a choice such that n is the smallest possible


number of terms. We will first show that n is not smaller than the rank of Â;
then we will show that n is not larger than the rank of Â.


If n is the smallest number of terms, the set {w1, ...,wn} must be linearly
independent, or else we can reduce the number of terms in the sum (1.27). To
show this, suppose that w1 is equal to a linear combination of other wk,


w1 =


n∑


k=2


λkwk,
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then we can rewrite Â as


Â = w1 ⊗ f∗1 +
n∑


k=2


wk ⊗ f∗k =
n∑


k=2


wk ⊗ (f∗k + λkf
∗
1 ) ,


reducing the number of terms from n to n− 1. Since by assumption the num-
ber of terms cannot be made less than n, the set {wk} must be linearly inde-
pendent. In particular, the subspace spanned by {wk} is n-dimensional. (The
same reasoning shows that the set {f∗k} must be also linearly independent,
but we will not need to use this.)


The rank of Â is the dimension of the image of Â; let us denotem ≡ rank Â.


It follows from the definition of the map Â that for any v ∈ V , the image Âv


is a linear combination of the vectors wk,


Âv =
n∑


k=1


f∗k (v)wk.


Therefore, them-dimensional subspace imÂ is contained within the n-dimen-
sional subspace Span {w1, ...,wn}, so m ≤ n.


Now, we may choose a basis {b1, ...,bm} in the subspace imÂ; then for
every v ∈ V we have


Âv =
m∑


i=1


βibi


with some coefficients βi that are uniquely determined for each vector v; in
other words, βi are functions of v. It is easy to see that the coefficients βi are
linear functions of the vector v since


Â(v + λu) =
m∑


i=1


(βi + λαi)bi


if Âu =
∑m


i=1 αibi. Hence there exist some covectors g∗
i such that βi = g∗


i (v).


It follows that we are able to express Â as the tensor
∑m


i=1 bi ⊗ g∗
i using m


terms. Since the smallest possible number of terms is n, we must havem ≥ n.


We have shown that m ≤ n and m ≥ n, therefore n = m = rank Â. �


Corollary: The rank of a map Â : V →W is equal to the rank of its transpose


ÂT : W ∗ → V ∗.
Proof: The maps Â and ÂT are represented by the same tensor from the


space W ⊗ V ∗. Since the rank is equal to the minimum number of terms


necessary to express that tensor, the ranks of Â and ÂT always coincide. �


We conclude that tensor product is a general construction that represents
the space of linear maps between various previously defined spaces. For ex-
ample, matrices are representations of linear maps from vectors to vectors;
tensors from V ∗ ⊗ V ⊗ V can be viewed as linear maps from matrices to vec-
tors, etc.
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Exercise 3: Prove that the tensor equality a⊗ a + b⊗b = v⊗w where a 6= 0
and b 6= 0 can hold only when a = λb for some scalar λ.


Hint: If a 6= λb then there exists a covector f∗ such that f∗(a) = 1 and
f∗(b) = 0. Define the map f∗ : V ⊗ V→ V as f∗(x ⊗ y) = f∗(x)y. Compute


f∗(a ⊗ a + b ⊗ b) = a = f∗(v)w,


hence w is proportional to a. Similarly you can show that w is proportional
to b.


1.9 Index notation for tensors


So far we have used a purely coordinate-free formalism to define and describe
tensors from spaces such as V ⊗V ∗. However, in many calculations a basis in
V is fixed, and one needs to compute the components of tensors in that basis.
Also, the coordinate-free notation becomes cumbersome for computations in
higher-rank tensor spaces such as V ⊗V ⊗V ∗ because there is no direct means
of referring to an individual component in the tensor product. The index
notation makes such calculations easier.


Suppose a basis {e1, ..., eN} in V is fixed; then the dual basis {e∗k} is also
fixed. Any vector v ∈ V is decomposed as v =


∑


k vkek and any covector as
f∗ =


∑


k fke
∗
k. Any tensor from V ⊗ V is decomposed as


A =
∑


j,k


Ajkej ⊗ ek ∈ V ⊗ V


and so on. The action of a covector on a vector is f∗ (v) =
∑


k fkvk, and the
action of an operator on a vector is


∑


j,k Ajkvkek. However, it is cumber-
some to keep writing these sums. In the index notation, one writes only the
components vk or Ajk of vectors and tensors.


1.9.1 Definition of index notation


The rules are as follows:


• Basis vectors ek and basis tensors ek ⊗ e∗l are never written explicitly.
(It is assumed that the basis is fixed and known.)


• Instead of a vector v ∈ V , one writes its array of components vk with
the superscript index. Covectors f∗ ∈ V ∗ are written fk with the subscript
index. The index k runs over integers from 1 to N . Components of
vectors and tensors may be thought of as numbers (e.g. elements of the
number field K).


• Tensors are written as multidimensional arrays of components with su-
perscript or subscript indices as necessary, for example Ajk ∈ V ∗ ⊗ V ∗
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or Blm
k ∈ V ⊗ V ⊗ V ∗. Thus e.g. the Kronecker delta symbol is written


as δj
k when it represents the identity operator 1̂V .


• The choice of indices must be consistent; each index corresponds to a
particular copy of V or V ∗. Thus it is wrong to write vj = uk or vi +
ui = 0. Correct equations are vj = uj and vi + ui = 0. This disallows
meaningless expressions such as v∗ + u (one cannot add vectors from
different spaces).


• Sums over indices such as
∑N


k=1 akbk are not written explicitly, the
∑


symbol is omitted, and the Einstein summation convention is used in-
stead: Summation over all values of an index is always implied when
that index letter appears once as a subscript and once as a superscript.
In this case the letter is called a dummy (or mute) index. Thus one
writes fkv


k instead of
∑


k fkvk and Aj
kv


k instead of
∑


k Ajkvk.


• Summation is allowed only over one subscript and one superscript but
never over two subscripts or two superscripts and never over three or
more coincident indices. This corresponds to requiring that we are only
allowed to compute the canonical pairing of V and V ∗ [see Eq. (1.15)]
but no other pairing. The expression vkvk is not allowed because there


is no canonical pairing of V and V , so, for instance, the sum
∑N


k=1 v
kvk


depends on the choice of the basis. For the same reason (dependence on
the basis), expressions such as uiviwi or AiiB


ii are not allowed. Correct
expressions are uiv


iwk and AikB
ik.


• One needs to pay close attention to the choice and the position of the
letters such as j, k, l,... used as indices. Indices that are not repeated are
free indices. The rank of a tensor expression is equal to the number


of free subscript and superscript indices. Thus Aj
kv


k is a rank 1 tensor


(i.e. a vector) because the expressionAj
kv


k has a single free index, j, and
a summation over k is implied.


• The tensor product symbol ⊗ is never written. For example, if v ⊗ f∗ =
∑


jk vjf
∗
kej ⊗ e∗k, one writes vkfj to represent the tensor v ⊗ f∗. The in-


dex letters in the expression vkfj are intentionally chosen to be different
(in this case, k and j) so that no summation would be implied. In other
words, a tensor product is written simply as a product of components,
and the index letters are chosen appropriately. Then one can interpret
vkfj as simply the product of numbers. In particular, it makes no differ-
ence whether one writes fjv


k or vkfj . The position of the indices (rather
than the ordering of vectors) shows in every case how the tensor prod-
uct is formed. Note that it is not possible to distinguish V ⊗ V ∗ from
V ∗ ⊗ V in the index notation.


Example 1: It follows from the definition of δi
j that δi


jv
j = vi. This is the


index representation of 1̂v = v.
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Example 2: Suppose w, x, y, and z are vectors from V whose components are
wi, xi, yi, zi. What are the components of the tensor w⊗x+ 2y⊗ z ∈ V ⊗ V ?
Answer: wixk +2yizk. (We need to choose another letter for the second free


index, k, which corresponds to the second copy of V in V ⊗ V .)


Example 3: The operator Â ≡ 1̂V + λv⊗u∗ ∈ V ⊗ V ∗ acts on a vector x ∈ V .


Calculate the resulting vector y ≡ Âx.
In the index-free notation, the calculation is


y = Âx =
(
1̂V + λv ⊗ u∗)x = x + λu∗ (x)v.


In the index notation, the calculation looks like this:


yk =
(
δk
j + λvkuj


)
xj = xk + λvkujx


j .


In this formula, j is a dummy index and k is a free index. We could have also
written λxjvkuj instead of λvkujx


j since the ordering of components makes
no difference in the index notation.
Exercise: In a physics book you find the following formula,


Hα
µν =


1


2
(hβµν + hβνµ − hµνβ) gαβ .


To what spaces do the tensors H , g, h belong (assuming these quantities rep-
resent tensors)? Rewrite this formula in the coordinate-free notation.
Answer: H ∈ V ⊗ V ∗ ⊗ V ∗, h ∈ V ∗ ⊗ V ∗ ⊗ V ∗, g ∈ V ⊗ V . Assuming the


simplest case,
h = h∗


1 ⊗ h∗
2 ⊗ h∗


3, g = g1 ⊗ g2,


the coordinate-free formula is


H =
1


2
g1 ⊗ (h∗


1 (g2)h
∗
2 ⊗ h∗


3 + h∗
1 (g2)h


∗
3 ⊗ h∗


2 − h∗
3 (g2)h


∗
1 ⊗ h∗


2) .


Question: I would like to decompose a vector v in the basis {ej} using the
index notation, v = vjej . Is it okay to write the lower index j on the basis
vectors ej? I also want to write vj = e∗j (v) using the dual basis


{
e∗j
}


, but then
the index j is not correctly matched at both sides.
Answer: The index notation is designed so that you never use the basis vec-


tors ej or e∗j — you only use components such as vj or fj . The only way to
keep the upper and the lower indices consistent (i.e. having the summation
always over one upper and one lower index) when you want to use both the
components vj and the basis vectors ej is to use upper indices on the dual
basis, i.e. writing


{
e∗j
}


. Then a covector will have components with lower
indices, f∗ = fje


∗j , and the index notation remains consistent. A further
problem occurs when you have a scalar product and you would like to ex-
press the component vj as vj = 〈v, ej〉. In this case, the only way to keep the
notation consistent is to use explicitly a suitable matrix, say gij , in order to
represent the scalar product. Then one would be able to write vj = gjk 〈v, ek〉
and keep the index notation consistent.
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1.9.2 Advantages and disadvantages of index notation


Index notation is conceptually easier than the index-free notation because one
can imagine manipulating “merely” some tables of numbers, rather than “ab-
stract vectors.” In other words, we are working with less abstract objects. The
price is that we obscure the geometric interpretation of what we are doing,
and proofs of general theorems become more difficult to understand.


The main advantage of the index notation is that it makes computations
with complicated tensors quicker. Consider, for example, the space V ⊗ V ⊗
V ∗⊗V ∗ whose elements can be interpreted as operators from Hom (V ⊗V, V ⊗
V ). The action of such an operator on a tensor ajk ∈ V ⊗ V is expressed in
the index notation as


blm = Alm
jk a


jk,


where alm and blm represent tensors from V ⊗ V and Alm
jk is a tensor from


V ⊗ V ⊗ V ∗ ⊗ V ∗, while the summation over the indices j and k is implied.
Each index letter refers unambiguously to one tensor product factor. Note
that the formula


blm = Alm
kj a


jk


describes another (inequivalent) way to define the isomorphism between the
spaces V ⊗V ⊗V ∗⊗V ∗ and Hom (V ⊗V, V ⊗V ). The index notation expresses
this difference in a concise way; of course, one needs to pay close attention to
the position and the order of indices.


Note that in the coordinate-free notation it is much more cumbersome to
describe and manipulate such tensors. Without the index notation, it is cum-
bersome to perform calculations with a tensor such as


Bik
jl ≡ δi


jδ
k
l − δk


j δ
i
l ∈ V ⊗ V ⊗ V ∗ ⊗ V ∗


which acts as an operator in V ⊗ V , exchanging the two vector factors:


(
δi
jδ


k
l − δk


j δ
i
l


)
ajl = aik − aki.


The index-free definition of this operator is simple with single-term tensor
products,


B̂ (u ⊗ v) ≡ u ⊗ v − v ⊗ u.


Having defined B̂ on single-term tensor products, we require linearity and so


define the operator B̂ on the entire space V ⊗ V . However, practical calcula-


tions are cumbersome if we are applying B̂ to a complicated tensorX ∈ V ⊗V
rather than to a single-term product u ⊗ v, because, in particular, we are
obliged to decompose X into single-term tensor products in order to perform
such a calculation.


Some disadvantages of the index notation are as follows: (1) If the basis is
changed, all components need to be recomputed. In textbooks that use the
index notation, quite some time is spent studying the transformation laws of
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tensor components under a change of basis. If different bases are used simul-
taneously, confusion may result as to which basis is implied in a particular
formula. (2) If we are using unrelated vector spaces V and W , we need to
choose a basis in each of them and always remember which index belongs to
which space. The index notation does not show this explicitly. To alleviate
this problem, one may use e.g. Greek and Latin indices to distinguish differ-
ent spaces, but this is not always convenient or sufficient. (3) The geometrical
meaning of many calculations appears hidden behind a mass of indices. It
is sometimes unclear whether a long expression with indices can be simpli-
fied and how to proceed with calculations. (Do we need to try all possible
relabellings of indices and see what happens?)


Despite these disadvantages, the index notation enables one to perform
practical calculations with high-rank tensor spaces, such as those required
in field theory and in general relativity. For this reason, and also for histor-
ical reasons (Einstein used the index notation when developing the theory
of relativity), most physics textbooks use the index notation. In some cases,
calculations can be performed equally quickly using index and index-free no-
tations. In other cases, especially when deriving general properties of tensors,
the index-free notation is superior.4 I use the index-free notation in this book
because calculations in coordinates are not essential for this book’s central
topics. However, I will occasionally show how to do some calculations also
in the index notation.


1.10 Dirac notation for vectors and covectors


The Dirac notation was developed for quantum mechanics where one needs
to perform many computations with operators, vectors and covectors (but not
with higher-rank tensors!). The Dirac notation is index-free.


1.10.1 Definition of Dirac notation


The rules are as follows:


• One writes the symbol |v〉 for a vector v ∈ V and 〈f | for a covector
f∗ ∈ V ∗. The labels inside the special brackets | 〉 and 〈 | are chosen
according to the problem at hand, e.g. one can denote specific vectors
by |0〉, |1〉, |x〉, |v1〉, or even


〈
(0)ãij ; l,m


∣
∣ if that helps. (Note that |0〉 is


normally not the zero vector; the latter is denoted simply by 0, as usual.)


• Linear combinations of vectors are written like this: 2 |v〉 − 3 |u〉 instead
of 2v − 3u.


4I have developed an advanced textbook on general relativity entirely in the index-free notation
and displayed the infrequent cases where the index notation is easier to use.
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• The action of a covector on a vector is written as 〈f |v〉; the result is a
number. The mnemonic for this is “bra-ket”, so 〈f | is a “bra vector”
and |v〉 is a “ket vector.” The action of an operator Â on a vector |v〉 is


written Â |v〉.


• The action of the transposed operator ÂT on a covector 〈f | is written


〈f | Â. Note that the transposition label (T ) is not used. This is consistent


within the Dirac notation: The covector 〈f | Â acts on a vector |v〉 as
〈f | Â |v〉, which is the same (by definition of ÂT ) as the covector 〈f |
acting on Â |v〉.


• The tensor product symbol ⊗ is omitted. Instead of v ⊗ f∗ ∈ V ⊗ V ∗


or a ⊗ b ∈ V ⊗ V , one writes |v〉 〈f | and |a〉 |b〉 respectively. The tensor
space to which a tensor belongs will be clear from the notation or from
explanations in the text. Note that one cannot write f∗⊗v as 〈f | |v〉 since
〈f | |v〉 already means f∗(v) in the Dirac notation. Instead, one always
writes |v〉 〈f | and does not distinguish between f∗ ⊗ v and v ⊗ f∗.


Example 1: The action of an operator a⊗ b∗ ∈ V ⊗ V ∗ on a vector v ∈ V has
been defined by (a ⊗ b∗)v = b∗(v)a. In the Dirac notation, this is very easy
to express: one acts with |a〉 〈b| on a vector |v〉 by writing


(|a〉 〈b|) |v〉 = |a〉 〈b| |v〉 = |a〉 〈b|v〉 .


In other words, we mentally remove one vertical line and get the vector |a〉
times the number 〈b|v〉. This is entirely consistent with the definition of the
operator a ⊗ b∗ ∈ EndV .


Example 2: The action of Â ≡ 1̂V + 1
2v ⊗ u∗ ∈ V ⊗ V ∗ on a vector x ∈ V is


written as follows:


|y〉 = Â |x〉 =
(
1̂ + 1


2 |v〉 〈u|
)
|x〉 = |x〉 + 1


2 |v〉 〈u| |x〉


= |x〉 +
〈u|x〉


2
|v〉 .


Note that we have again “simplified” 〈u| |x〉 to 〈u|x〉, and the result is correct.
Compare this notation with the same calculation written in the index-free
notation:


y = Âx =
(
1̂ + 1


2v ⊗ u∗)x = x +
u∗(x)


2
v.


Example 3: If |e1〉, ..., |eN 〉 is a basis, we denote by 〈ek| the covectors from the
dual basis, so that 〈ej |ek〉 = δjk. A vector |v〉 is expressed through the basis
vectors as


|v〉 =
∑


k


vk |ek〉 ,


70







1.10 Dirac notation for vectors and covectors


where the coefficients vk can be computed as vk = 〈ek|v〉. An arbitrary oper-


ator Â is decomposed as


Â =
∑


j,k


Ajk |ej〉 〈ek| .


The matrix elements Ajk of the operator Â in this basis are found as


Ajk = 〈ej | Â |ek〉 .


The identity operator is decomposed as follows,


1̂ =
∑


k


|ek〉 〈ek| .


Expressions of this sort abound in quantum mechanics textbooks.


1.10.2 Advantages and disadvantages of Dirac notation


The Dirac notation is convenient when many calculations with vectors and
covectors are required. But calculations become cumbersome if we need
many tensor powers. For example, suppose we would like to apply a cov-
ector 〈f | to the second vector in the tensor product |a〉 |b〉 |c〉, so that the an-
swer is |a〉 〈f |b〉 |c〉. Now one cannot simply write 〈f |X with X = |a〉 |b〉 |c〉
because 〈f |X is ambiguous in this case. The desired kind of action of covec-
tors on tensors is difficult to express using the Dirac notation. Only the index
notation allows one to write and to carry out arbitrary operations with this
kind of tensor product. In the example just mentioned, one writes fja


ibjck to
indicate that the covector fj acts on the vector bj but not on the other vectors.
Of course, the resulting expression is harder to read because one needs to pay
close attention to every index.
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2 Exterior product


In this chapter I introduce one of the most useful constructions in basic linear
algebra — the exterior product, denoted by a ∧ b, where a and b are vectors
from a space V . The basic idea of the exterior product is that we would like
to define an antisymmetric and bilinear product of vectors. In other words, we
would like to have the properties a∧b = −b∧a and a∧(b+λc) = a∧b+λa∧c.


2.1 Motivation


Here I discuss, at some length, the motivation for introducing the exterior
product. The motivation is geometrical and comes from considering the prop-
erties of areas and volumes in the framework of elementary Euclidean geom-
etry. I will proceed with a formal definition of the exterior product in Sec. 2.2.
In order to understand the definition explained there, it is not necessary to
use this geometric motivation because the definition will be purely algebraic.
Nevertheless, I feel that this motivation will be helpful for some readers.


2.1.1 Two-dimensional oriented area


We work in a two-dimensional Euclidean space, such as that considered in
elementary geometry. We assume that the usual geometrical definition of the
area of a parallelogram is known.


Consider the area Ar(a,b) of a parallelogram spanned by vectors a and b.
It is known from elementary geometry that Ar(a,b) = |a| · |b| · sinα where
α is the angle between the two vectors, which is always between 0 and π (we
do not take into account the orientation of this angle). Thus defined, the area
Ar is always non-negative.


Let us investigateAr(a,b) as a function of the vectors a and b. If we stretch
the vector a, say, by factor 2, the area is also increased by factor 2. However, if
we multiply a by the number −2, the area will be multiplied by 2 rather than
by −2:


Ar(a, 2b) = Ar(a,−2b) = 2Ar(a,b).


Similarly, for some vectors a,b, c such as shown in Fig. 2.2, we haveAr(a,b+
c) = Ar(a,b) +Ar(a, c). However, if we consider b = −c then we obtain


Ar(a,b + c) = Ar(a, 0) = 0


6= Ar(a,b) +Ar(a,−b) = 2Ar(a,b).
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0


A


B


D


C


E


b


a


b + αa


Figure 2.1: The area of the parallelogram 0ACB spanned by a and b is equal
to the area of the parallelogram 0ADE spanned by a and b + αa


due to the equality of areas ACD and 0BE.


Hence, the area Ar(a,b) is, strictly speaking, not a linear function of the
vectors a and b:


Ar(λa,b) = |λ|Ar(a,b) 6= λAr(a,b),


Ar(a,b + c) 6= Ar(a,b) +Ar(a, c).


Nevertheless, as we have seen, the properties of linearity hold in some cases.
If we look closely at those cases, we find that linearly holds precisely when
we do not change the orientation of the vectors. It would be more convenient
if the linearity properties held in all cases.


The trick is to replace the area function Ar with the oriented area function
A(a,b). Namely, we define the function A(a,b) by


A(a,b) = ± |a| · |b| · sinα,


where the sign is chosen positive when the angle α is measured from the
vector a to the vector b in the counterclockwise direction, and negative oth-
erwise.


Statement: The oriented area A(a,b) of a parallelogram spanned by the vec-
tors a and b in the two-dimensional Euclidean space is an antisymmetric and
bilinear function of the vectors a and b:


A(a,b) = −A(b,a),


A(λa,b) = λA(a,b),


A(a,b + c) = A(a,b) +A(a, c). (the sum law)
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eplacements


A B


DC


FE


a


a


b


b


c


b + c


Figure 2.2: The area of the parallelogram spanned by a and b (equal to the
area of CEFD) plus the area of the parallelogram spanned by a


and c (the area of ACDB) equals the area of the parallelogram
spanned by a and b+c (the area ofAEFB) because of the equality
of the areas of ACE and BDF .


Proof: The first property is a straightforward consequence of the sign rule
in the definition of A.


Proving the second property requires considering the cases λ > 0 and λ < 0
separately. If λ > 0 then the orientation of the pair (a,b) remains the same
and then it is clear that the property holds: When we rescale a by λ, the
parallelogram is stretched and its area increases by factor λ. If λ < 0 then the
orientation of the parallelogram is reversed and the oriented area changes
sign.


To prove the sum law, we consider two cases: either c is parallel to a or it is
not. If c is parallel to a, say c = αa, we use Fig. 2.1 to show thatA(a,b+λa) =
A(a,b), which yields the desired statement since A(a, λa) = 0. If c is not par-
allel to a, we use Fig. 2.2 to show that A(a,b + c) = A(a,b) +A(a, c). Analo-
gous geometric constructions can be made for different possible orientations
of the vectors a, b, c. �


It is relatively easy to compute the oriented area because of its algebraic
properties. Suppose the vectors a and b are given through their components
in a standard basis {e1, e2}, for instance


a = α1e1 + α2e2, b = β1e1 + β2e2.


We assume, of course, that the vectors e1 and e2 are orthogonal to each other
and have unit length, as is appropriate in a Euclidean space. We also assume
that the right angle is measured from e1 to e2 in the counter-clockwise direc-
tion, so that A(e1, e2) = +1. Then we use the Statement and the properties
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A(e1, e1) = 0, A(e1, e2) = 1, A(e2, e2) = 0 to compute


A(a,b) = A(α1e1 + α2e2, β1e1 + β2e2)


= α1β2A(e1, e2) + α2β1A(e2, e1)


= α1β2 − α2β1.


The ordinary (unoriented) area is then obtained as the absolute value of
the oriented area, Ar(a,b) = |A(a,b)|. It turns out that the oriented area,
due to its strict linearity properties, is a much more convenient and powerful
construction than the unoriented area.


2.1.2 Parallelograms in R3 and in Rn


Let us now work in the Euclidean space R3 with a standard basis {e1, e2, e3}.
We can similarly try to characterize the area of a parallelogram spanned by
two vectors a, b. It is, however, not possible to characterize the orientation
of the area simply by a sign. We also cannot use a geometric construction
such as that in Fig. 2.2; in fact it is not true in three dimensions that the area
spanned by a and b + c is equal to the sum of Ar(a,b) and Ar(a, c). Can we
still define some kind of “oriented area” that obeys the sum law?


Let us consider Fig. 2.2 as a figure showing the projection of the areas of the
three parallelograms onto some coordinate plane, say, the plane of the basis
vectors {e1, e2}. It is straightforward to see that the projections of the areas
obey the sum law as oriented areas.


Statement: Let a,b be two vectors in R3, and let P (a,b) be the parallelogram
spanned by these vectors. Denote by P (a,b)e1,e2


the parallelogram within
the coordinate plane Span {e1, e2} obtained by projecting P (a,b) onto that
coordinate plane, and similarly for the other two coordinate planes. Denote
byA(a,b)e1,e2


the oriented area of P (a,b)e1,e2
. ThenA(a,b)e1,e2


is a bilinear,
antisymmetric function of a and b.
Proof: The projection onto the coordinate plane of e1, e2 is a linear transfor-


mation. Hence, the vector a + λb is projected onto the sum of the projections
of a and λb. Then we apply the arguments in the proof of Statement 2.1.1 to
the projections of the vectors; in particular, Figs. 2.1 and 2.2 are interpreted as
showing the projections of all vectors onto the coordinate plane e1, e2. It is
then straightforward to see that all the properties of the oriented area hold
for the projected oriented areas. Details left as exercise. �


It is therefore convenient to consider the oriented areas of the three pro-
jections — A(a,b)e1,e2


, A(a,b)e2,e3
, A(a,b)e3,e1


— as three components of a
vector-valued area A(a,b) of the parallelogram spanned by a,b. Indeed, it can
be shown that these three projected areas coincide with the three Euclidean
components of the vector product a×b. The vector product is the traditional
way such areas are represented in geometry: the vector a × b represents at
once the magnitude of the area and the orientation of the parallelogram. One
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computes the unoriented area of a parallelogram as the length of the vector
a × b representing the oriented area,


Ar(a,b) =
[
A(a,b)2e1,e2


+A(a,b)2e2,e3
+A(a,b)2e3,e1


] 1
2 .


However, the vector product cannot be generalized to all higher-dimen-
sional spaces. Luckily, the vector product does not play an essential role in
the construction of the oriented area.


Instead of working with the vector product, we will generalize the idea of
projecting the parallelogram onto coordinate planes. Consider a parallelo-
gram spanned by vectors a,b in an n-dimensional Euclidean space V with
the standard basis {e1, ..., en}. While in three-dimensional space we had just
three projections (onto the coordinate planes xy, xz, yz), in an n-dimension-
al space we have 1


2n(n − 1) coordinate planes, which can be denoted by
Span {ei, ej} (with 1 ≤ i < j ≤ n). We may construct the 1


2n(n − 1) pro-
jections of the parallelogram onto these coordinate planes. Each of these pro-
jections has an oriented area; that area is a bilinear, antisymmetric number-
valued function of the vectors a,b. (The proof of the Statement above does
not use the fact that the space is three-dimensional!) We may then regard these
1
2n(n − 1) numbers as the components of a vector representing the oriented
area of the parallelogram. It is clear that all these components are needed in
order to describe the actual geometric orientation of the parallelogram in the
n-dimensional space.


We arrived at the idea that the oriented area of the parallelogram spanned
by a,b is an antisymmetric, bilinear function A(a,b) whose value is a vector
with 1


2n(n−1) components, i.e. a vector in a new space — the “space of oriented
areas,” as it were. This space is 1


2n(n− 1)-dimensional. We will construct this
space explicitly below; it is the space of bivectors, to be denoted by ∧2V .


We will see that the unoriented area of the parallelogram is computed as
the length of the vector A(a,b), i.e. as the square root of the sum of squares of
the areas of the projections of the parallelogram onto the coordinate planes.
This is a generalization of the Pythagoras theorem to areas in higher-dimen-
sional spaces.


The analogy between ordinary vectors and vector-valued areas can be un-
derstood visually as follows. A straight line segment in an n-dimensional
space is represented by a vector whose n components (in an orthonormal ba-
sis) are the signed lengths of the n projections of the line segment onto the
coordinate axes. (The components are signed, or oriented, i.e. taken with a
negative sign if the orientation of the vector is opposite to the orientation of
the axis.) The length of a straight line segment, i.e. the length of the vector


v, is then computed as
√


〈v,v〉. The scalar product 〈v,v〉 is equal to the sum
of squared lengths of the projections because we are using an orthonormal
basis. A parallelogram in space is represented by a vector ψ whose


(
n
2


)
com-


ponents are the oriented areas of the
(
n
2


)
projections of the parallelogram onto


the coordinate planes. (The vector ψ belongs to the space of oriented areas,
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not to the original n-dimensional space.) The numerical value of the area of


the parallelogram is then computed as
√


〈ψ,ψ〉. The scalar product 〈ψ,ψ〉 in
the space of oriented areas is equal to the sum of squared areas of the projec-
tions because the


(
n
2


)
unit areas in the coordinate planes are an orthonormal


basis (according to the definition of the scalar product in the space of oriented
areas).


The generalization of the Pythagoras theorem holds not only for areas but
also for higher-dimensional volumes. A general proof of this theorem will be
given in Sec. 5.5.2, using the exterior product and several other constructions
to be developed below.


2.2 Exterior product


In the previous section I motivated the introduction of the antisymmetric
product by showing its connection to areas and volumes. In this section I
will give the definition and work out the properties of the exterior product
in a purely algebraic manner, without using any geometric intuition. This
will enable us to work with vectors in arbitrary dimensions, to obtain many
useful results, and eventually also to appreciate more fully the geometric sig-
nificance of the exterior product.


As explained in Sec. 2.1.2, it is possible to represent the oriented area of
a parallelogram by a vector in some auxiliary space. The oriented area is
much more convenient to work with because it is a bilinear function of the
vectors a and b (this is explained in detail in Sec. 2.1). “Product” is another
word for “bilinear function.” We have also seen that the oriented area is an
antisymmetric function of the vectors a and b.


In three dimensions, an oriented area is represented by the cross product
a × b, which is indeed an antisymmetric and bilinear product. So we expect
that the oriented area in higher dimensions can be represented by some kind
of new antisymmetric product of a and b; let us denote this product (to be
defined below) by a∧ b, pronounced “a wedge b.” The value of a∧ b will be
a vector in a new vector space. We will also construct this new space explicitly.


2.2.1 Definition of exterior product


Like the tensor product space, the space of exterior products can be defined
solely by its algebraic properties. We can consider the space of formal expres-
sions like a ∧ b, 3a ∧ b + 2c ∧ d, etc., and require the properties of an antisym-
metric, bilinear product to hold.


Here is a more formal definition of the exterior product space: We will con-
struct an antisymmetric product “by hand,” using the tensor product space.


Definition 1: Given a vector space V , we define a new vector space V ∧ V
called the exterior product (or antisymmetric tensor product, or alternating
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product, or wedge product) of two copies of V . The space V ∧ V is the sub-
space in V ⊗V consisting of all antisymmetric tensors, i.e. tensors of the form


v1 ⊗ v2 − v2 ⊗ v1, v1,2 ∈ V,


and all linear combinations of such tensors. The exterior product of two vec-
tors v1 and v2 is the expression shown above; it is obviously an antisymmetric
and bilinear function of v1 and v2.


For example, here is one particular element from V ∧ V , which we write in
two different ways using the axioms of the tensor product:


(u + v) ⊗ (v + w) − (v + w) ⊗ (u + v) = u ⊗ v − v ⊗ u


+u ⊗ w − w ⊗ u + v ⊗ w − w ⊗ v ∈ V ∧ V. (2.1)


Remark: A tensor v1 ⊗ v2 ∈ V ⊗ V is not equal to the tensor v2 ⊗ v1 if
v1 6= v2. This is so because there is no identity among the axioms of the
tensor product that would allow us to exchange the factors v1 and v2 in the
expression v1 ⊗ v2.


Exercise 1: Prove that the “exchange map” T̂ (v1 ⊗ v2) ≡ v2 ⊗ v1 is a canon-


ically defined, linear map of V ⊗ V into itself. Show that T̂ has only two
eigenvalues which are ±1. Give examples of eigenvectors with eigenvalues
+1 and −1. Show that the subspace V ∧ V ⊂ V ⊗ V is the eigenspace of the


exchange operator T̂ with eigenvalue −1


Hint: T̂ T̂ = 1̂V ⊗V . Consider tensors of the form u⊗ v± v⊗u as candidate
eigenvectors of T̂ . �


It is quite cumbersome to perform calculations in the tensor product nota-
tion as we did in Eq. (2.1). So let us write the exterior product as u∧v instead
of u⊗ v − v ⊗ u. It is then straightforward to see that the “wedge” symbol ∧
indeed works like an anti-commutative multiplication, as we intended. The
rules of computation are summarized in the following statement.


Statement 1: One may save time and write u⊗v−v⊗u ≡ u∧v ∈ V ∧V , and
the result of any calculation will be correct, as long as one follows the rules:


u ∧ v = −v ∧ u, (2.2)


(λu) ∧ v = λ (u ∧ v) , (2.3)


(u + v) ∧ x = u ∧ x + v ∧ x. (2.4)


It follows also that u ∧ (λv) = λ (u ∧ v) and that v ∧ v = 0. (These identities
hold for any vectors u,v ∈ V and any scalars λ ∈ K.)
Proof: These properties are direct consequences of the axioms of the tensor


product when applied to antisymmetric tensors. For example, the calcula-
tion (2.1) now requires a simple expansion of brackets,


(u + v) ∧ (v + w) = u ∧ v + u ∧ w + v ∧ w.
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Here we removed the term v ∧ v which vanishes due to the antisymmetry of
∧. Details left as exercise. �


Elements of the space V ∧ V , such as a ∧ b + c ∧ d, are sometimes called
bivectors.1 We will also want to define the exterior product of more than
two vectors. To define the exterior product of three vectors, we consider the
subspace of V ⊗ V ⊗ V that consists of antisymmetric tensors of the form


a ⊗ b ⊗ c − b ⊗ a ⊗ c + c ⊗ a ⊗ b − c ⊗ b ⊗ a


+b ⊗ c ⊗ a − a ⊗ c ⊗ b (2.5)


and linear combinations of such tensors. These tensors are called totally an-
tisymmetric because they can be viewed as (tensor-valued) functions of the
vectors a,b, c that change sign under exchange of any two vectors. The ex-
pression in Eq. (2.5) will be denoted for brevity by a ∧ b ∧ c, similarly to the
exterior product of two vectors, a ⊗ b − b ⊗ a, which is denoted for brevity
by a ∧ b. Here is a general definition.


Definition 2: The exterior product of k copies of V (also called the k-th exte-
rior power of V ) is denoted by ∧kV and is defined as the subspace of totally
antisymmetric tensors within V ⊗ ... ⊗ V . In the concise notation, this is the
space spanned by expressions of the form


v1 ∧ v2 ∧ ... ∧ vk, vj ∈ V,


assuming that the properties of the wedge product (linearity and antisymme-
try) hold as given by Statement 1. For instance,


u ∧ v1 ∧ ... ∧ vk = (−1)
k
v1 ∧ ... ∧ vk ∧ u (2.6)


(“pulling a vector through k other vectors changes sign k times”). �


The previously defined space of bivectors is in this notation V ∧ V ≡ ∧2V .
A natural extension of this notation is ∧0V = K and ∧1V = V . I will also use
the following “wedge product” notation,


n∧


k=1


vk ≡ v1 ∧ v2 ∧ ... ∧ vn.


Tensors from the space ∧nV are also called n-vectors or antisymmetric ten-
sors of rank n.


Question: How to compute expressions containing multiple products such
as a ∧ b ∧ c?


1It is important to note that a bivector is not necessarily expressible as a single-term product of
two vectors; see the Exercise at the end of Sec. 2.3.2.
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Answer: Apply the rules shown in Statement 1. For example, one can per-
mute adjacent vectors and change sign,


a ∧ b ∧ c = −b ∧ a ∧ c = b ∧ c ∧ a,


one can expand brackets,


a ∧ (x + 4y) ∧ b = a ∧ x ∧ b + 4a ∧ y ∧ b,


and so on. If the vectors a,b, c are given as linear combinations of some basis
vectors {ej}, we can thus reduce a ∧ b ∧ c to a linear combination of exterior
products of basis vectors, such as e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, etc.


Question: The notation a ∧ b ∧ c suggests that the exterior product is asso-
ciative,


a ∧ b ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c).


How can we make sense of this?
Answer: If we want to be pedantic, we need to define the exterior product


operation ∧ between a single-term bivector a∧b and a vector c, such that the
result is by definition the 3-vector a∧b∧ c. We then define the same operation
on linear combinations of single-term bivectors,


(a ∧ b + x ∧ y) ∧ c ≡ a ∧ b ∧ c + x ∧ y ∧ c.


Thus we have defined the exterior product between ∧2V and V , the result
being a 3-vector from ∧3V . We then need to verify that the results do not de-
pend on the choice of the vectors such as a,b,x,y in the representation of a
bivector: A different representation can be achieved only by using the proper-
ties of the exterior product (i.e. the axioms of the tensor product), e.g. we may
replace a∧b by −b∧ (a + λb). It is easy to verify that any such replacements
will not modify the resulting 3-vector, e.g.


a ∧ b ∧ c = −b ∧ (a + λb) ∧ c,


again due to the properties of the exterior product. This consideration shows
that calculations with exterior products are consistent with our algebraic in-
tuition. We may indeed compute a ∧ b ∧ c as (a ∧ b) ∧ c or as a ∧ (b ∧ c).


Example 1: Suppose we work in R3 and have vectors a =
(
0, 1


2 ,− 1
2


)
, b =


(2,−2, 0), c = (−2, 5,−3). Let us compute various exterior products. Calcu-
lations are easier if we introduce the basis {e1, e2, e3} explicitly:


a =
1


2
(e2 − e3) , b = 2(e1 − e2), c = −2e1 + 5e2 − 3e3.


We compute the 2-vector a∧b by using the properties of the exterior product,
such as x ∧ x = 0 and x ∧ y = −y ∧ x, and simply expanding the brackets as
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usual in algebra:


a ∧ b =
1


2
(e2 − e3) ∧ 2 (e1 − e2)


= (e2 − e3) ∧ (e1 − e2)


= e2 ∧ e1 − e3 ∧ e1 − e2 ∧ e2 + e3 ∧ e2


= −e1 ∧ e2 + e1 ∧ e3 − e2 ∧ e3.


The last expression is the result; note that now there is nothing more to com-
pute or to simplify. The expressions such as e1 ∧ e2 are the basic expressions
out of which the space R3 ∧ R3 is built. Below (Sec. 2.3.2) we will show for-
mally that the set of these expressions is a basis in the space R3 ∧ R3.


Let us also compute the 3-vector a ∧ b ∧ c,


a ∧ b ∧ c = (a ∧ b) ∧ c


= (−e1 ∧ e2 + e1 ∧ e3 − e2 ∧ e3) ∧ (−2e1 + 5e2 − 3e3).


When we expand the brackets here, terms such as e1 ∧ e2 ∧ e1 will vanish
because


e1 ∧ e2 ∧ e1 = −e2 ∧ e1 ∧ e1 = 0,


so only terms containing all different vectors need to be kept, and we find


a ∧ b ∧ c = 3e1 ∧ e2 ∧ e3 + 5e1 ∧ e3 ∧ e2 + 2e2 ∧ e3 ∧ e1


= (3 − 5 + 2) e1 ∧ e2 ∧ e3 = 0.


We note that all the terms are proportional to the 3-vector e1 ∧e2 ∧e3, so only
the coefficient in front of e1 ∧ e2 ∧ e3 was needed; then, by coincidence, that
coefficient turned out to be zero. So the result is the zero 3-vector. �


Question: Our original goal was to introduce a bilinear, antisymmetric prod-
uct of vectors in order to obtain a geometric representation of oriented areas.
Instead, a ∧ b was defined algebraically, through tensor products. It is clear
that a∧b is antisymmetric and bilinear, but why does it represent an oriented
area?
Answer: Indeed, it may not be immediately clear why oriented areas should


be elements of V ∧ V . We have seen that the oriented area A(x,y) is an an-
tisymmetric and bilinear function of the two vectors x and y. Right now we
have constructed the space V ∧ V simply as the space of antisymmetric prod-
ucts. By constructing that space merely out of the axioms of the antisymmet-
ric product, we already covered every possible bilinear antisymmetric product.
This means that any antisymmetric and bilinear function of the two vectors x


and y is proportional to x ∧ y or, more generally, is a linear function of x ∧ y


(perhaps with values in a different space). Therefore, the space of oriented
areas (that is, the space of linear combinations of A(x,y) for various x and
y) is in any case mapped to a subspace of V ∧ V . We have also seen that


oriented areas in N dimensions can be represented through
(
N
2


)
projections,
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which indicates that they are vectors in some
(
N
2


)
-dimensional space. We


will see below that the space V ∧ V has exactly this dimension (Theorem 2
in Sec. 2.3.2). Therefore, we can expect that the space of oriented areas co-
incides with V ∧ V . Below we will be working in a space V with a scalar
product, where the notions of area and volume are well defined. Then we
will see (Sec. 5.5.2) that tensors from V ∧ V and the higher exterior powers of
V indeed correspond in a natural way to oriented areas, or more generally to
oriented volumes of a certain dimension.


Remark: Origin of the name “exterior.” The construction of the exterior
product is a modern formulation of the ideas dating back to H. Grassmann
(1844). A 2-vector a∧b is interpreted geometrically as the oriented area of the
parallelogram spanned by the vectors a and b. Similarly, a 3-vector a ∧ b ∧ c


represents the oriented 3-volume of a parallelepiped spanned by {a,b, c}.
Due to the antisymmetry of the exterior product, we have (a∧b)∧(a∧c) = 0,
(a ∧ b ∧ c) ∧ (b ∧ d) = 0, etc. We can interpret this geometrically by saying
that the “product” of two volumes is zero if these volumes have a vector in
common. This motivated Grassmann to call his antisymmetric product “ex-
terior.” In his reasoning, the product of two “extensive quantities” (such as
lines, areas, or volumes) is nonzero only when each of the two quantities is
geometrically “to the exterior” (outside) of the other.


Exercise 2: Show that in a two-dimensional space V , any 3-vector such as
a ∧ b ∧ c can be simplified to the zero 3-vector. Prove the same for n-vectors
in N -dimensional spaces when n > N . �


One can also consider the exterior powers of the dual space V ∗. Tensors
from ∧nV ∗ are usually (for historical reasons) called n-forms (rather than “n-
covectors”).


Question: Where is the star here, really? Is the space ∧n (V ∗) different from
(∧nV )


∗?
Answer: Good that you asked. These spaces are canonically isomorphic,


but there is a subtle technical issue worth mentioning. Consider an example:
a∗ ∧ b∗ ∈ ∧2(V ∗) can act upon u ∧ v ∈ ∧2V by the standard tensor product
rule, namely a∗ ⊗ b∗ acts on u ⊗ v as


(a∗ ⊗ b∗) (u ⊗ v) = a∗(u)b∗(v),


so by using the definition of a∗∧b∗ and u∧v through the tensor product, we
find


(a∗ ∧ b∗) (u ∧ v) = (a∗ ⊗ b∗ − b∗ ⊗ a∗) (u ⊗ v − v ⊗ u)


= 2a∗(u)b∗(v) − 2b∗(u)a∗(v).


We got a combinatorial factor 2, that is, a factor that arises because we have
two permutations of the set (a,b). With ∧n (V ∗) and (∧nV )


∗ we get a factor
n!. It is not always convenient to have this combinatorial factor. For example,
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in a finite number field the number n! might be equal to zero for large enough
n. In these cases we could redefine the action of a∗ ∧ b∗ on u ∧ v as


(a∗ ∧ b∗) (u ∧ v) ≡ a∗(u)b∗(v) − b∗(u)a∗(v).


If we are not working in a finite number field, we are able to divide by any
integer, so we may keep combinatorial factors in the denominators of expres-
sions where such factors appear. For example, if {ej} is a basis in V and
ω = e1 ∧ ... ∧ eN is the corresponding basis tensor in the one-dimensional


space ∧NV , the dual basis tensor in
(
∧NV


)∗
could be defined by


ω∗ =
1


N !
e∗1 ∧ ... ∧ e∗N , so that ω∗(ω) = 1.


The need for such combinatorial factors is a minor technical inconvenience
that does not arise too often. We may give the following definition that avoids
dividing by combinatorial factors (but now we use permutations; see Ap-
pendix B).
Definition 3: The action of a k-form f∗1 ∧ ... ∧ f∗k on a k-vector v1 ∧ ... ∧ vk is
defined by


∑


σ


(−1)|σ|f∗1 (vσ(1))...f
∗
k (vσ(k)),


where the summation is performed over all permutations σ of the ordered set
(1, ..., k).
Example 2: With k = 3 we have


(p∗ ∧ q∗ ∧ r∗)(a ∧ b ∧ c)


= p∗(a)q∗(b)r∗(c) − p∗(b)q∗(a)r∗(c)


+ p∗(b)q∗(c)r∗(a) − p∗(c)q∗(b)r∗(a)


+ p∗(c)q∗(a)r∗(b) − p∗(c)q∗(b)r∗(a).


Exercise 3: a) Show that a ∧ b ∧ ω = ω ∧ a ∧ b where ω is any antisymmetric
tensor (e.g. ω = x ∧ y ∧ z).


b) Show that


ω1 ∧ a ∧ ω2 ∧ b ∧ ω3 = −ω1 ∧ b ∧ ω2 ∧ a ∧ ω3,


where ω1, ω2, ω3 are arbitrary antisymmetric tensors and a,b are vectors.
c) Due to antisymmetry, a ∧ a = 0 for any vector a ∈ V . Is it also true that


ω ∧ ω = 0 for any bivector ω ∈ ∧2V ?


2.2.2 * Symmetric tensor product


Question: At this point it is still unclear why the antisymmetric definition
is at all useful. Perhaps we could define something else, say the symmetric
product, instead of the exterior product? We could try to define a product,
say a ⊙ b, with some other property, such as


a ⊙ b = 2b ⊙ a.
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Answer: This does not work because, for example, we would have


b ⊙ a = 2a ⊙ b = 4b ⊙ a,


so all the “⊙” products would have to vanish.
We can define the symmetric tensor product, ⊗S , with the property


a ⊗S b = b ⊗S a,


but it is impossible to define anything else in a similar fashion.2


The antisymmetric tensor product is the eigenspace (within V ⊗ V ) of the


exchange operator T̂ with eigenvalue −1. That operator has only eigenvec-
tors with eigenvalues ±1, so the only other possibility is to consider the eigen-
space with eigenvalue +1. This eigenspace is spanned by symmetric tensors
of the form u ⊗ v + v ⊗ u, and can be considered as the space of symmetric
tensor products. We could write


a ⊗S b ≡ a ⊗ b + b ⊗ a


and develop the properties of this product. However, it turns out that the
symmetric tensor product is much less useful for the purposes of linear alge-
bra than the antisymmetric subspace. This book derives most of the results
of linear algebra using the antisymmetric product as the main tool!


2.3 Properties of spaces ∧kV
As we have seen, tensors from the space V ⊗ V are representable by linear
combinations of the form a ⊗ b + c ⊗ d + ..., but not uniquely representable
because one can transform one such linear combination into another by us-
ing the axioms of the tensor product. Similarly, n-vectors are not uniquely
representable by linear combinations of exterior products. For example,


a ∧ b + a ∧ c + b ∧ c = (a + b) ∧ (b + c)


since b ∧ b = 0. In other words, the 2-vector ω ≡ a ∧ b + a ∧ c + b ∧ c has
an alternative representation containing only a single-term exterior product,
ω = r ∧ s where r = a + b and s = b + c.
Exercise: Show that any 2-vector in a three-dimensional space is representable
by a single-term exterior product, i.e. to a 2-vector of the form a ∧ b.


Hint: Choose a basis {e1, e2, e3} and show that αe1∧e2+βe1∧e3+γe2∧e3


is equal to a single-term product. �


What about higher-dimensional spaces? We will show (see the Exercise at
the end of Sec. 2.3.2) that n-vectors cannot be in general reduced to a single-
term product. This is, however, always possible for (N − 1)-vectors in an
N -dimensional space. (You showed this for N = 3 in the exercise above.)


2This is a theorem due to Grassmann (1862).
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Statement: Any (N − 1)-vector in an N -dimensional space can be written as
a single-term exterior product of the form a1 ∧ ... ∧ aN−1.
Proof: We prove this by using induction in N . The basis of induction is


N = 2, where there is nothing to prove. The induction step: Suppose that
the statement is proved for (N − 1)-vectors in N -dimensional spaces, we
need to prove it for N -vectors in (N + 1)-dimensional spaces. Choose a basis
{e1, ..., eN+1} in the space. Any N -vector ω can be written as a linear combi-
nation of exterior product terms,


ω = α1e2 ∧ ... ∧ eN+1 + α2e1 ∧ e3 ∧ ... ∧ eN+1 + ...


+ αNe1 ∧ ... ∧ eN−1 ∧ eN+1 + αN+1e1 ∧ ... ∧ eN ,


where {αi} are some constants.
Note that any tensor ω ∈ ∧N−1V can be written in this way simply by ex-


pressing every vector through the basis and by expanding the exterior prod-
ucts. The result will be a linear combination of the form shown above, con-
taining at most N + 1 single-term exterior products of the form e1 ∧ ... ∧ eN ,
e2 ∧ ... ∧ eN+1, and so on. We do not yet know whether these single-term ex-
terior products constitute a linearly independent set; this will be established
in Sec. 2.3.2. Presently, we will not need this property.


Now we would like to transform the expression above to a single term. We
move eN+1 outside brackets in the first N terms:


ω =
(
α1e2 ∧ ... ∧ eN + ...+ αNe1 ∧ ... ∧ eN−1


)
∧ eN+1


+ αN+1e1 ∧ ... ∧ eN


≡ ψ ∧ eN+1 + αN+1e1 ∧ ... ∧ eN ,


where in the last line we have introduced an auxiliary (N − 1)-vector ψ. If it
happens that ψ = 0, there is nothing left to prove. Otherwise, at least one of
the αi must be nonzero; without loss of generality, suppose that αN 6= 0 and
rewrite ω as


ω = ψ ∧ eN+1 + αN+1e1 ∧ ... ∧ eN = ψ ∧
(
eN+1 +


αN+1


αN
eN


)
.


Now we note that ψ belongs to the space of (N − 1)-vectors over the N -
dimensional subspace spanned by {e1, ..., eN}. By the inductive assumption,
ψ can be written as a single-term exterior product, ψ = a1∧ ...∧aN−1, of some
vectors {ai}. Denoting


aN ≡ eN+1 +
αN+1


αN
eN ,


we obtain
ω = a1 ∧ ... ∧ aN−1 ∧ aN ,


i.e. ω can be represented as a single-term exterior product. �
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2.3.1 Linear maps between spaces ∧k
V


Since the spaces ∧kV are vector spaces, we may consider linear maps between
them.


A simplest example is a map


La : ω 7→ a ∧ ω,


mapping ∧kV → ∧k+1V ; here the vector a is fixed. It is important to check that
La is a linear map between these spaces. How do we check this? We need to
check that La maps a linear combination of tensors into linear combinations;
this is easy to see,


La(ω + λω′) = a ∧ (ω + λω′)


= a ∧ ω + λa ∧ ω′ = Laω + λLaω
′.


Let us now fix a covector a∗. A covector is a map V → K. In Lemma 2
of Sec. 1.7.3 we have used covectors to define linear maps a∗ : V ⊗W → W
according to Eq. (1.21), mapping v ⊗ w 7→ a∗ (v)w. Now we will apply the
analogous construction to exterior powers and construct a map V ∧ V → V .
Let us denote this map by ιa∗ .


It would be incorrect to define the map ιa∗ by the formula ιa∗(v ∧ w) =
a∗ (v)w because such a definition does not respect the antisymmetry of the
wedge product and thus violates the linearity condition,


ιa∗ (w ∧ v)
!
= ιa∗ ((−1)v ∧ w) = −ιa∗ (v ∧ w) 6= a∗(v)w.


So we need to act with a∗ on each of the vectors in a wedge product and make
sure that the correct minus sign comes out. An acceptable formula for the
map ιa∗ : ∧2V → V is


ιa∗ (v ∧ w) ≡ a∗ (v)w − a∗ (w)v.


(Please check that the linearity condition now holds!) This is how we will
define the map ιa∗ on ∧2V .


Let us now extend ιa∗ : ∧2V → V to a map


ιa∗ : ∧kV → ∧k−1V,


defined as follows:


ιa∗v ≡ a∗(v),


ιa∗(v ∧ ω) ≡ a∗(v)ω − v ∧ (ιa∗ω). (2.7)


This definition is inductive, i.e. it shows how to define ιa∗ on ∧kV if we know
how to define it on ∧k−1V . The action of ιa∗ on a sum of terms is defined by
requiring linearity,


ιa∗ (A+ λB) ≡ ιa∗ (A) + λιa∗ (B) , A,B ∈ ∧kV.
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We can convert this inductive definition into a more explicit formula: if
ω = v1 ∧ ... ∧ vk ∈ ∧kV then


ιa∗(v1 ∧ ... ∧ vk) ≡ a∗(v1)v2 ∧ ... ∧ vk − a∗(v2)v1 ∧ v3 ∧ ... ∧ vk


+ ...+ (−1)
k−1


a∗(vk)v1 ∧ ... ∧ vk−1.


This map is called the interior product or the insertion map. This is a use-
ful operation in linear algebra. The insertion map ιa∗ψ “inserts” the covector
a∗ into the tensor ψ ∈ ∧kV by acting with a∗ on each of the vectors in the
exterior product that makes up ψ.


Let us check formally that the insertion map is linear.
Statement: The map ιa∗ : ∧kV → ∧k−1V for 1 ≤ k ≤ N is a well-defined
linear map, according to the inductive definition.
Proof: First, we need to check that it maps linear combinations into lin-


ear combinations; this is quite easy to see by induction, using the fact that
a∗ : V → K is linear. However, this type of linearity is not sufficient; we also
need to check that the result of the map, i.e. the tensor ιa∗(ω), is defined in-
dependently of the representation of ω through vectors such as vi. The problem
is, there are many such representations, for example some tensor ω ∈ ∧3V
might be written using different vectors as


ω = v1 ∧ v2 ∧ v3 = v2 ∧ (v3 − v1) ∧ (v3 + v2) ≡ ṽ1 ∧ ṽ2 ∧ ṽ3.


We need to verify that any such equivalent representation yields the same
resulting tensor ιa∗(ω), despite the fact that the definition of ιa∗ appears to
depend on the choice of the vectors vi. Only then will it be proved that ιa∗ is
a linear map ∧kV → ∧k−1V .


An equivalent representation of a tensor ω can be obtained only by using
the properties of the exterior product, namely linearity and antisymmetry.
Therefore, we need to verify that ιa∗(ω) does not change when we change the
representation of ω in these two ways: 1) expanding a linear combination,


(x + λy) ∧ ... 7→ x ∧ ...+ λy ∧ ...; (2.8)


2) interchanging the order of two vectors in the exterior product and change
the sign,


x ∧ y ∧ ... 7→ −y ∧ x ∧ ... (2.9)


It is clear that a∗(x + λy) = a∗(x) + λa∗(y); it follows by induction that ιa∗ω
does not change under a change of representation of the type (2.8). Now we
consider the change of representation of the type (2.9). We have, by definition
of ιa∗ ,


ιa∗(v1 ∧ v2 ∧ χ) = a∗(v1)v2 ∧ χ− a∗(v2)v1 ∧ χ+ v1 ∧ v2 ∧ ιa∗(χ),


where we have denoted by χ the rest of the exterior product. It is clear from
the above expression that


ιa∗(v1 ∧ v2 ∧ χ) = −ιa∗(v2 ∧ v1 ∧ χ) = ιa∗(−v2 ∧ v1 ∧ χ).
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This proves that ιa∗(ω) does not change under a change of representation of
ω of the type (2.9). This concludes the proof. �


Remark: It is apparent from the proof that the minus sign in the inductive
definition (2.7) is crucial for the linearity of the map ιa∗ . Indeed, if we attempt
to define a map by a formula such as


v1 ∧ v2 7→ a∗(v1)v2 + a∗(v2)v1,


the result will not be a linear map ∧2V → V despite the appearance of linear-
ity. The correct formula must take into account the fact that v1∧v2 = −v2∧v1.


Exercise: Show by induction in k that


Lxιa∗ω + ιa∗Lxω = a∗(x)ω, ∀ω ∈ ∧kV.


In other words, the linear operator Lxιa∗ + ιa∗Lx : ∧kV → ∧kV is simply the
multiplication by the number a∗(x).


2.3.2 Exterior product and linear dependence


The exterior product is useful in many ways. One powerful property of the
exterior product is its close relation to linear independence of sets of vectors.
For example, if u = λv then u ∧ v = 0. More generally:


Theorem 1: A set {v1, ...,vk} of vectors from V is linearly independent if and
only if (v1 ∧ v2 ∧ ... ∧ vk) 6= 0, i.e. it is a nonzero tensor from ∧kV .
Proof: If {vj} is linearly dependent then without loss of generality we may


assume that v1 is a linear combination of other vectors, v1 =
∑k


j=2 λjvj .
Then


v1 ∧ v2 ∧ ... ∧ vk =


k∑


j=2


λjvj ∧ v2 ∧ ... ∧ vj ∧ ... ∧ vk


=
k∑


j=2


(−1)
j−1


v2 ∧ ...vj ∧ vj ∧ ... ∧ vk = 0.


Conversely, we need to prove that the tensor v1∧ ...∧vk 6= 0 if {vj} is linearly
independent. The proof is by induction in k. The basis of induction is k =
1: if {v1} is linearly independent then clearly v1 6= 0. The induction step:
Assume that the statement is proved for k−1 and that {v1, ...,vk} is a linearly
independent set. By Exercise 1 in Sec. 1.6 there exists a covector f∗ ∈ V ∗


such that f∗ (v1) = 1 and f∗ (vi) = 0 for 2 ≤ i ≤ k. Now we apply the
interior product map ιf∗ : ∧kV → ∧k−1V constructed in Sec. 2.3.1 to the
tensor v1 ∧ ... ∧ vk and find


ιf∗ (v1 ∧ ... ∧ vk) = v2 ∧ ... ∧ vk.
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By the induction step, the linear independence of k − 1 vectors {v2, ...,vk}
entails v2 ∧ ... ∧ vk 6= 0. The map ιf∗ is linear and cannot map a zero tensor
into a nonzero tensor, therefore v1 ∧ ... ∧ vk 6= 0. �


It is also important to know that any tensor from the highest exterior power
∧NV can be represented as just a single-term exterior product of N vectors.
(Note that the same property for ∧N−1V was already established in Sec. 2.3.)


Lemma 1: For any tensor ω ∈ ∧NV there exist vectors {v1, ...,vN} such that
ω = v1 ∧ ... ∧ vN .
Proof: If ω = 0 then there is nothing to prove, so we assume ω 6= 0. By defi-


nition, the tensor ω has a representation as a sum of several exterior products,
say


ω = v1 ∧ ... ∧ vN + v′
1 ∧ ... ∧ v′


N + ...


Let us simplify this expression to just one exterior product. First, let us omit
any zero terms in this expression (for instance, a ∧ a ∧ b ∧ ... = 0). Then
by Theorem 1 the set {v1, ...,vN} is linearly independent (or else the term
v1 ∧ ... ∧ vN would be zero). Hence, {v1, ...,vN} is a basis in V . All other
vectors such as v′


i can be decomposed as linear combinations of vectors in
that basis. Let us denote ψ ≡ v1 ∧ ... ∧ vN . By expanding the brackets in
exterior products such as v′


1 ∧ ...∧v′
N , we will obtain every time the tensor ψ


with different coefficients. Therefore, the final result of simplification will be
that ω equals ψ multiplied with some coefficient. This is sufficient to prove
Lemma 1. �


Now we would like to build a basis in the space ∧mV . For this we need to
determine which sets of tensors from ∧mV are linearly independent within
that space.


Lemma 2: If {e1, ..., eN} is a basis in V then any tensor A ∈ ∧mV can be
decomposed as a linear combination of the tensors ek1


∧ ek2
∧ ... ∧ ekm


with
some indices kj , 1 ≤ j ≤ m.
Proof: The tensor A is a linear combination of expressions of the form v1 ∧


...∧vm, and each vector vi ∈ V can be decomposed in the basis {ej}. Expand-
ing the brackets around the wedges using the rules (2.2)–(2.4), we obtain a
decomposition of an arbitrary tensor through the basis tensors. For example,


(e1 + 2e2) ∧ (e1 − e2 + e3) − 2 (e2 − e3) ∧ (e1 − e3)


= −e1 ∧ e2 − e1 ∧ e3 + 4e2 ∧ e3


(please verify this yourself!). �


By Theorem 1, all tensors ek1
∧ ek2


∧ ... ∧ ekm
constructed out of subsets of


vectors from the basis {e1, ..., ek} are nonzero, and by Lemma 2 any tensor
can be decomposed into a linear combination of these tensors. But are these
tensors a basis in the space ∧mV ? Yes:


Lemma 3: If {v1, ...,vn} is a linearly independent set of vectors (not neces-
sarily a basis in V since n ≤ N ), then:
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(1) The set of
(
n
2


)
tensors


{vj ∧ vk, 1 ≤ j < k ≤ n} ≡ {v1 ∧ v2,v1 ∧ v3, ...,vn−1 ∧ vn}
is linearly independent in the space ∧2V .


(2) The set of
(


n
m


)
tensors


{vk1
∧ vk2


∧ ... ∧ vkm
, 1 ≤ k1 < k2 < ... < km ≤ n}


is linearly independent in the space ∧mV for 2 ≤ m ≤ n.
Proof: (1) The proof is similar to that of Lemma 3 in Sec. 1.7.3. Suppose the


set {vj} is linearly independent but the set {vj ∧ vk} is linearly dependent, so
that there exists a linear combination


∑


1≤j<k≤n


λjkvj ∧ vk = 0


with at least some λjk 6= 0. Without loss of generality, λ12 6= 0 (or else we can
renumber the vectors vj). There exists a covector f∗ ∈ V ∗ such that f∗ (v1) =
1 and f∗ (vi) = 0 for 2 ≤ i ≤ n. Apply the interior product with this covector
to the above tensor,


0 = ιf∗






∑


1≤j<k≤n


λjkvj ∧ vk





 =


n∑


k=2


λ1kvk,


therefore by linear independence of {vk} all λ1k = 0, contradicting the as-
sumption λ12 6= 0.


(2) The proof of part (1) is straightforwardly generalized to the space ∧mV ,
using induction in m. We have just proved the basis of induction, m = 2.
Now the induction step: assume that the statement is proved for m − 1 and
consider a set {vk1


∧ ... ∧ vkm
}, of tensors of rank m, where {vj} is a basis.


Suppose that this set is linearly dependent; then there is a linear combination


ω ≡
∑


k1,...,km


λk1...km
vk1


∧ ... ∧ vkm
= 0


with some nonzero coefficients, e.g. λ12...m 6= 0. There exists a covector f∗


such that f∗ (v1) = 1 and f∗ (vi) = 0 for 2 ≤ i ≤ n. Apply this covector to the
tensor ω and obtain ιf∗ω = 0, which yields a vanishing linear combination
of tensors vk1


∧ ... ∧ vkm−1
of rank m− 1 with some nonzero coefficients. But


this contradicts the induction assumption, which says that any set of tensors
vk1


∧ ... ∧ vkm−1
of rank m− 1 is linearly independent. �


Now we are ready to compute the dimension of ∧mV .
Theorem 2: The dimension of the space ∧mV is


dim∧mV =


(
N


m


)


=
N !


m! (N −m)!
,


where N ≡ dimV . For m > N we have dim∧mV = 0, i.e. the spaces ∧mV for
m > N consist solely of the zero tensor.
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Proof: We will explicitly construct a basis in the space ∧mV . First choose a


basis {e1, ..., eN} in V . By Lemma 3, the set of
(
N
m


)
tensors


{ek1
∧ ek2


∧ ... ∧ ekm
, 1 ≤ k1 < k2 < ... < km ≤ N}


is linearly independent, and by Lemma 2 any tensor A ∈ ∧mV is a linear
combination of these tensors. Therefore the set {ek1


∧ ek2
∧ ... ∧ ekm


} is a ba-
sis in ∧mV . By Theorem 1.1.5, the dimension of space is equal to the number


of vectors in any basis, therefore dim∧mN =
(
N
m


)
.


For m > N , the existence of a nonzero tensor v1 ∧ ... ∧ vm contradicts
Theorem 1: The set {v1, ...,vm} cannot be linearly independent since it has
more vectors than the dimension of the space. Therefore all such tensors are
equal to zero (more pedantically, to the zero tensor), which is thus the only
element of ∧mV for every m > N . �


Exercise 1: It is given that the set of four vectors {a,b, c,d} is linearly inde-
pendent. Show that the tensor ω ≡ a ∧ b + c ∧ d ∈ ∧2V cannot be equal to a
single-term exterior product of the form x ∧ y.


Outline of solution:
1. Constructive solution. There exists f∗ ∈ V ∗ such that f∗(a) = 1 and


f∗(b) = 0, f∗(c) = 0, f∗(d) = 0. Compute ιf∗ω = b. If ω = x ∧ y, it will
follow that a linear combination of x and y is equal to b, i.e. b belongs to the
two-dimensional space Span {x,y}. Repeat this argument for the remaining
three vectors (a, c, d) and obtain a contradiction.


2. Non-constructive solution. Compute ω∧ω = 2a∧b∧c∧d 6= 0 by linear
independence of {a,b, c,d}. If we could express ω = x ∧ y then we would
have ω ∧ ω = 0. �


Remark: While a ∧ b is interpreted geometrically as the oriented area of a
parallelogram spanned by a and b, a general linear combination such as a ∧
b + c ∧ d + e ∧ f does not have this interpretation (unless it can be reduced
to a single-term product x ∧ y). If not reducible to a single-term product,
a ∧ b + c ∧ d can be interpreted only as a formal linear combination of two
areas.


Exercise 2: Suppose that ψ ∈ ∧kV and x ∈ V are such that x ∧ ψ = 0 while
x 6= 0. Show that there exists χ ∈ ∧k−1V such that ψ = x∧χ. Give an example
where ψ and χ are not representable as a single-term exterior product.


Outline of solution: There exists f∗ ∈ V ∗ such that f∗(x) = 1. Apply ιf∗ to
the given equality x ∧ ψ = 0:


0
!
= ιf∗(x ∧ ψ) = ψ − x ∧ ιf∗ψ,


which means that ψ = x ∧ χ with χ ≡ ιf∗ψ. An example can be found with
χ = a ∧ b + c ∧ d as in Exercise 1, and x such that the set {a,b, c,d,x} is
linearly independent; then ψ ≡ x ∧ ψ is also not reducible to a single-term
product.
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2.3.3 Computing the dual basis


The exterior product allows us to compute explicitly the dual basis for a given
basis.


We begin with some motivation. Suppose {v1, ...,vN} is a given basis; we
would like to compute its dual basis. For instance, the covector v∗


1 of the dual
basis is the linear function such that v∗


1(x) is equal to the coefficient at v1 in
the decomposition of x in the basis {vj},


x =


N∑


i=1


xivi; v∗
1(x) = x1.


We start from the observation that the tensor ω ≡ v1∧ ...∧vN is nonzero since
{vj} is a basis. The exterior product x ∧ v2 ∧ ... ∧ vN is equal to zero if x is a
linear combination only of v2, ..., vN , with a zero coefficient x1. This suggests
that the exterior product of x with the (N − 1)-vector v2 ∧ ... ∧ vN is quite
similar to the covector v∗


1 we are looking for. Indeed, let us compute


x ∧ v2 ∧ ... ∧ vN = x1v1 ∧ v2 ∧ ... ∧ vN = x1ω.


Therefore, exterior multiplication with v2 ∧ ...∧ vN acts quite similarly to v∗
1 .


To make the notation more concise, let us introduce a special complement
operation3 denoted by a star:


∗ (v1) ≡ v2 ∧ ... ∧ vN .


Then we can write v∗
1(x)ω = x∧∗(v1). This equation can be used for comput-


ing v∗
1 : namely, for any x ∈ V the number v∗


1(x) is equal to the constant λ in
the equation x∧ ∗(v1) = λω. To make this kind of equation more convenient,
let us write


λ ≡ v∗
1(x) =


x ∧ v2 ∧ ... ∧ vN


v1 ∧ v2 ∧ ... ∧ vN
=


x ∧ ∗(v1)


ω
,


where the “division” of one tensor by another is to be understood as follows:
We first compute the tensor x∧∗(v1); this tensor is proportional to the tensor
ω since both belong to the one-dimensional space ∧NV , so we can determine
the number λ such that x ∧ ∗(v1) = λω; the proportionality coefficient λ is
then the result of the division of x ∧ ∗(v1) by ω.


For v2 we have


v1 ∧ x ∧ v3 ∧ ... ∧ vN = x2ω = v∗
2(x)ω.


If we would like to have x2ω = x∧∗(v2), we need to add an extra minus sign
and define


∗ (v2) ≡ −v1 ∧ v3 ∧ ... ∧ vN .


3The complement operation was introduced by H. Grassmann (1844).
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Then we indeed obtain v∗
2(x)ω = x ∧ ∗(v2).


It is then clear that we can define the tensors ∗(vi) for i = 1, ..., N in this
way. The tensor ∗(vi) is obtained from ω by removing the vector vi and by
adding a sign that corresponds to shifting the vector vi to the left position
in the exterior product. The “complement” map, ∗ : V → ∧N−1V , satisfies
vj ∧ ∗(vj) = ω for each basis vector vj . (Once defined on the basis vectors,
the complement map can be then extended to all vectors from V by requiring
linearity. However, we will apply the complement operation only to basis
vectors right now.)


With these definitions, we may express the dual basis as


v∗
i (x)ω = x ∧ ∗(vi), x ∈ V, i = 1, ..., N.


Remark: The notation ∗(vi) suggests that e.g. ∗(v1) is some operation ap-
plied to v1 and is a function only of the vector v1, but this is not so: The
“complement” of a vector depends on the entire basis and not merely on the
single vector! Also, the property v1 ∧ ∗(v1) = ω is not sufficient to define the
tensor ∗v1. The proper definition of ∗(vi) is the tensor obtained from ω by
removing vi as just explained.
Example: In the space R2, let us compute the dual basis to the basis {v1,v2}
where v1 =


(
2
1


)
and v2 =


(−1
1


)
.


Denote by e1 and e2 the standard basis vectors
(
1
0


)
and


(
0
1


)
. We first com-


pute the 2-vector


ω = v1 ∧ v2 = (2e1 + e2) ∧ (−e1 + e2) = 3e1 ∧ e2.


The “complement” operation for the basis {v1,v2} gives ∗(v1) = v2 and
∗(v2) = −v1. We now define the covectors v∗


1,2 by their action on arbitrary
vector x ≡ x1e1 + x2e2,


v∗
1(x)ω = x ∧ v2 = (x1e1 + x2e2) ∧ (−e1 + e2)


= (x1 + x2) e1 ∧ e2 =
x1 + x2


3
ω,


v∗
2(x)ω = −x ∧ v1 = − (x1e1 + x2e2) ∧ (2e1 + e2)


= (−x1 + 2x2) e1 ∧ e2 =
−x1 + 2x2


3
ω.


Therefore, v∗
1 = 1


3e
∗
1 + 1


3e
∗
2 and v∗


2 = − 1
3e


∗
1 + 2


3e
∗
2.


Question: Can we define the complement operation for all x ∈ V by the
equation x∧∗(x) = ω where ω ∈ ∧NV is a fixed tensor? Does the complement
really depend on the entire basis? Or perhaps a choice of ω is sufficient?
Answer: No, yes, no. Firstly, ∗(x) is not uniquely specified by that equa-


tion alone, since x ∧ A = ω defines A only up to tensors of the form x ∧ ...;
secondly, the equation x∧∗(x) = ω indicates that ∗(λx) = 1


λ ∗(x), so the com-
plement map would not be linear if defined like that. It is important to keep
in mind that the complement map requires an entire basis for its definition
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and depends not only on the choice of a tensor ω, but also on the choice of all
the basis vectors. For example, in two dimensions we have ∗(e1) = e2; it is
clear that ∗(e1) depends on the choice of e2!
Remark: The situation is different when the vector space is equipped with
a scalar product (see Sec. 5.4.2 below). In that case, one usually chooses an
orthonormal basis to define the complement map; then the complement map
is called the Hodge star. It turns out that the Hodge star is independent of the
choice of the basis as long as the basis is orthonormal with respect to the given
scalar product, and as long as the orientation of the basis is unchanged (i.e. as
long as the tensor ω does not change sign). In other words, the Hodge star op-
eration is invariant under orthogonal and orientation-preserving transforma-
tions of the basis; these transformations preserve the tensor ω. So the Hodge
star operation depends not quite on the detailed choice of the basis, but rather
on the choice of the scalar product and on the orientation of the basis (the sign
of ω). However, right now we are working with a general space without a
scalar product. In this case, the complement map depends on the entire basis.


2.3.4 Gaussian elimination


Question: How much computational effort is actually needed to compute
the exterior product of n vectors? It looks easy in two or three dimensions,
but in N dimensions the product of n vectors {x1, ...,xn} gives expressions
such as


n∧


i=1


xn = (x11e1 + ...+ x1NeN ) ∧ ... ∧ (xn1e1 + ...+ xnNeN ) ,


which will be reduced to an exponentially large number (of order Nn) of
elementary tensor products when we expand all brackets.
Answer: Of course, expanding all brackets is not the best way to compute


long exterior products. We can instead use a procedure similar to the Gaus-
sian elimination for computing determinants. The key observation is that


x1 ∧ x2 ∧ ... = x1 ∧ (x2 − λx1) ∧ ...
for any number λ, and that it is easy to compute an exterior product of the
form


(α1e1 + α2e2 + α3e3) ∧ (β2e2 + β3e3) ∧ e3 = α1β2e1 ∧ e2 ∧ e3.


It is easy to compute this exterior product because the second vector (β2e2 +
β3e3) does not contain the basis vector e1 and the third vector does not con-
tain e1 or e2. So we can simplify the computation of a long exterior product
if we rewrite


n∧


i=1


xn = x1 ∧ x̃2 ∧ ... ∧ x̃n


≡ x1 ∧ (x2 − λ11x1) ∧ ... ∧ (xn − λn1x1 − ...− λn−1,n−1xn−1) ,
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where the coefficients {λij | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ i} are chosen appropriately
such that the vector x̃2 ≡ x2 −λ11x1 does not contain the basis vector e1, and
generally the vector


x̃k ≡ xk − λk1x1 − ...− λk−1,k−1xk−1


does not contain the basis vectors e1,..., ek−1. (That is, these basis vectors
have been “eliminated” from the vector xk, hence the name of the method.)
Eliminating e1 from x2 can be done with λ11 = x21


x11
, which is possible pro-


vided that x11 6= 0; if x11 = 0, we need to renumber the vectors {xj}. If none
of them contains e1, we skip e1 and proceed with e2 instead. Elimination of
other basis vectors proceeds similarly. After performing this algorithm, we
will either find that some vector x̃k is itself zero, which means that the entire
exterior product vanishes, or we will find the product of vectors of the form


x̃1 ∧ ... ∧ x̃n,


where the vectors x̃i are linear combinations of ei, ..., eN (not containing e1,
..., ei).


If n = N , the product can be evaluated immediately since the last vector,
x̃N , is proportional to eN , so


x̃1 ∧ ... ∧ x̃n = (c11e1 + ...) ∧ ... ∧ (cnneN )


= c11c22...cnne1 ∧ ... ∧ eN .


The computation is somewhat longer if n < N , so that


x̃n = cnnen + ...+ cnNeN .


In that case, we may eliminate, say, en from x̃1, ..., x̃n−1 by subtracting a
multiple of x̃n from them, but we cannot simplify the product any more; at
that point we need to expand the last bracket (containing x̃n) and write out
the terms.
Example 1: We will calculate the exterior product


a ∧ b ∧ c


≡ (7e1 − 8e2 + e3) ∧ (e1 − 2e2 − 15e3) ∧ (2e1 − 5e2 − e3).


We will eliminate e1 from a and c (just to keep the coefficients simpler):


a ∧ b ∧ c = (a − 7b) ∧ b ∧ (c − 2b)


= (6e2 + 106e3) ∧ b ∧ (−e2 + 9e3)


≡ a1 ∧ b ∧ c1.


Now we eliminate e2 from a1, and then the product can be evaluated quickly:


a ∧ b ∧ c = a1 ∧ b ∧ c1 = (a1 + 6c1) ∧ b ∧ c1


= (160e3) ∧ (e1 − 2e2 − 5e3) ∧ (−e2 + 9e3)


= 160e3 ∧ e1 ∧ (−e2) = −160e1 ∧ e2 ∧ e3.
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Example 2: Consider


a ∧ b ∧ c ≡ (e1 + 2e2 − e3 + e4)


∧ (2e1 + e2 − e3 + 3e4) ∧ (−e1 − e2 + e4).


We eliminate e1 and e2:


a ∧ b ∧ c = a ∧ (b − 2a) ∧ (c + a)


= a ∧ (−3e2 + e3 + e4) ∧ (e2 − e3 + 2e4)


≡ a ∧ b1 ∧ c1 = a ∧ b1 ∧ (c1 + 3b1)


= a ∧ b1 ∧ (2e3 + 5e4) ≡ a ∧ b1 ∧ c2.


We can now eliminate e3 from a and b1:


a ∧ b1 ∧ c2 = (a +
1


2
c2) ∧ (b1 −


1


2
c2) ∧ c2 ≡ a2 ∧ b2 ∧ c2


= (e1 + 2e2 +
7


2
e4) ∧ (−3e2 −


3


2
e4) ∧ (2e3 + 5e4).


Now we cannot eliminate any more vectors, so we expand the last bracket
and simplify the result by omitting the products of equal vectors:


a2 ∧ b2 ∧ c2 = a2 ∧ b2 ∧ 2e3 + a2 ∧ b2 ∧ 5e4


= (e1 + 2e2) ∧ (−3


2
e4) ∧ 2e3 + e1 ∧ (−3e2) ∧ 2e3


+ e1 ∧ (−3e2) ∧ 5e4


= 3e1 ∧ e3 ∧ e4 + 6e2 ∧ e3 ∧ e4 − 6e1 ∧ e2 ∧ e3 − 15e1 ∧ e2 ∧ e4.


2.3.5 Rank of a set of vectors


We have defined the rank of a map (Sec. 1.8.4) as the dimension of the image
of the map, and we have seen that the rank is equal to the minimum number
of tensor product terms needed to represent the map as a tensor. An analo-
gous concept can be introduced for sets of vectors.
Definition: If S = {v1, ...,vn} is a set of vectors (where n is not necessarily
smaller than the dimensionN of space), the rank of the set S is the dimension
of the subspace spanned by the vectors {v1, ...,vn}. Written as a formula,


rank (S) = dim SpanS.


The rank of a set S is equal to the maximum number of vectors in any
linearly independent subset of S. For example, consider the set {0,v, 2v, 3v}
where v 6= 0. The rank of this set is 1 since these four vectors span a one-
dimensional subspace,


Span {0,v, 2v, 3v} = Span {v} .
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Any subset of S having two or more vectors is linearly dependent.
We will now show how to use the exterior product for computing the rank


of a given (finite) set S = {v1, ...,vn}.
According to Theorem 1 in Sec. 2.3.2, the set S is linearly independent if


and only if v1 ∧ ... ∧ vn 6= 0. So we first compute the tensor v1 ∧ ... ∧ vn.
If this tensor is nonzero then the set S is linearly independent, and the rank
of S is equal to n. If, on the other hand, v1 ∧ ... ∧ vn = 0, the rank is less
than n. We can determine the rank of S by the following procedure. First,
we assume that all vj 6= 0 (any zero vectors can be omitted without changing
the rank of S). Then we compute v1 ∧ v2; if the result is zero, we may omit
v2 since v2 is proportional to v1 and try v1 ∧ v3. If v1 ∧ v2 6= 0, we try
v1 ∧ v2 ∧ v3, and so on. The procedure can be formulated using induction in
the obvious way. Eventually we will arrive at a subset {vi1 , ...,vik


} ⊂ S such
that vi1 ∧ ... ∧ ...vik


6= 0 but vi1 ∧ ... ∧ ...vik
∧ vj = 0 for any other vj . Thus,


there are no linearly independent subsets of S having k + 1 or more vectors.
Then the rank of S is equal to k.


The subset {vi1 , ...,vik
} is built by a procedure that depends on the order


in which the vectors vj are selected. However, the next statement says that
the resulting subspace spanned by {vi1 , ...,vik


} is the same regardless of the
order of vectors vj . Hence, the subset {vi1 , ...,vik


} yields a basis in SpanS.


Statement: Suppose a set S of vectors has rank k and contains two different
linearly independent subsets, say S1 = {v1, ...,vk} and S2 = {u1, ...,uk},
both having k vectors (but no linearly independent subsets having k + 1 or
more vectors). Then the tensors v1 ∧ ...∧vk and u1 ∧ ...∧uk are proportional
to each other (as tensors from ∧kV ).
Proof: The tensors v1∧...∧vk and u1∧...∧uk are both nonzero by Theorem 1


in Sec. 2.3.2. We will now show that it is possible to replace v1 by one of the
vectors from the set S2, say ul, such that the new tensor ul ∧ v2 ∧ ... ∧ vk is
nonzero and proportional to the original tensor v1∧ ...∧vk. It will follow that
this procedure can be repeated for every other vector vi, until we replace all
vi’s by some ui’s and thus prove that the tensors v1 ∧ ...∧vk and u1 ∧ ...∧uk


are proportional to each other.
It remains to prove that the vector v1 can be replaced. We need to find


a suitable vector ul. Let ul be one of the vectors from S2, and let us check
whether v1 could be replaced by ul. We first note that v1 ∧ ... ∧ vk ∧ ul = 0
since there are no linearly independent subsets of S having k + 1 vectors.
Hence the set {v1, ...,vk,ul} is linearly dependent. It follows (since the set
{vi | i = 1, ..., k} was linearly independent before we added ul to it) that ul


can be expressed as a linear combination of the vi’s with some coefficients αi:


ul = α1v1 + ...+ αkvk.


If α1 6= 0 then we will have


ul ∧ v2 ∧ ... ∧ vk = α1v1 ∧ v2 ∧ ... ∧ vk.
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The new tensor is nonzero and proportional to the old tensor, so we can re-
place v1 by ul.


However, it could also happen that α1 = 0. In that case we need to choose a
different vector ul′ ∈ S2 such that the corresponding coefficient α1 is nonzero.
It remains to prove that such a choice is possible. If this were impossible then
all ui’s would have been expressible as linear combinations of vi’s with zero
coefficients at the vector v1. In that case, the exterior product u1 ∧ ... ∧ uk


would be equal to a linear combination of exterior products of vectors vi


with i = 2, ..., k. These exterior products contain k vectors among which
only (k − 1) vectors are different. Such exterior products are all equal to zero.
However, this contradicts the assumption u1 ∧ ...∧uk 6= 0. Therefore, at least
one vector ul exists such that α1 6= 0, and the required replacement is always
possible. �


Remark: It follows from the above Statement that the subspace spanned by
S can be uniquely characterized by a nonzero tensor such as v1 ∧ ... ∧ vk in
which the constituents — the vectors v1,..., vk — form a basis in the subspace
SpanS. It does not matter which linearly independent subset we choose for
this purpose. We also have a computational procedure for determining the
subspace SpanS together with its dimension. Thus, we find that a k-dimen-
sional subspace is adequately specified by selecting a nonzero tensor ω ∈ ∧kV
of the form ω = v1∧...∧vk. For a given subspace, this tensor ω is unique up to
a nonzero constant factor. Of course, the decomposition of ω into an exterior
product of vectors {vi | i = 1, ..., k} is not unique, but any such decomposition
yields a set {vi | i = 1, ..., k} spanning the same subspace.
Exercise 1: Let {v1, ...,vn} be a linearly independent set of vectors, ω ≡ v1 ∧
...∧ vn 6= 0, and x be a given vector such that ω ∧ x = 0. Show that x belongs
to the subspace Span {v1, ...,vn}.
Exercise 2: Given a nonzero covector f∗ and a vector n such that f∗(n) 6= 0,
show that the operator P̂ defined by


P̂x = x − n
f∗(x)


f∗(n)


is a projector onto the subspace f∗⊥, i.e. that f∗(P̂x) = 0 for all x ∈ V . Show
that


(P̂x) ∧ n = x ∧ n, ∀x ∈ V.


2.3.6 Exterior product in index notation


Here I show how to perform calculations with the exterior product using the
index notation (see Sec. 1.9), although I will not use this later because the
index-free notation is more suitable for the purposes of this book.


Let us choose a basis {ej} in V ; then the dual basis
{
e∗j
}


in V and the basis
{ek1


∧ ... ∧ ekm
} in ∧mV are fixed. By definition, the exterior product of two


vectors u and v is
A ≡ u ∧ v = u ⊗ v − v ⊗ u,
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therefore it is written in the index notation as Aij = uivj −ujvi. Note that the
matrix Aij is antisymmetric: Aij = −Aji.


Another example: The 3-vector u ∧ v ∧ w can be expanded in the basis as


u ∧ v ∧ w =
N∑


i,j,k=1


Bijkei ∧ ej ∧ ek.


What is the relation between the components ui, vi, wi of the vectors and the
components Bijk? A direct calculation yields


Bijk = uivjwk − uivkwj + ukviwj − ukwjvi + ujwkvi − ujwiwk. (2.10)


In other words, every permutation of the set (i, j, k) of indices enters with the
sign corresponding to the parity of that permutation.


Remark: Readers familiar with the standard definition of the matrix deter-
minant will recognize a formula quite similar to the determinant of a 3 × 3
matrix. The connection between determinants and exterior products will be
fully elucidated in Chapter 3.


Remark: The “three-dimensional array” Bijk is antisymmetric with respect
to any pair of indices:


Bijk = −Bjik = −Bikj = ...


Such arrays are called totally antisymmetric. �


The formula (2.10) for the components Bijk of u ∧ v ∧w is not particularly
convenient and cannot be easily generalized. We will now rewrite Eq. (2.10)
in a different form that will be more suitable for expressing exterior products
of arbitrary tensors.


Let us first consider the exterior product of three vectors as a map Ê :
V ⊗ V ⊗ V → ∧3V . This map is linear and can be represented, in the in-
dex notation, in the following way:


uivjwk 7→ (u ∧ v ∧ w)
ijk


=
∑


l,m,n


Eijk
lmnu


lvmwn,


where the array Eijk
lmn is the component representation of the map E. Com-


paring with the formula (2.10), we find that Eijk
lmn can be expressed through


the Kronecker δ-symbol as


Eijk
lmn = δi


lδ
j
mδ


k
n − δi


lδ
k
mδ


j
n + δk


l δ
i
mδ


j
n − δk


l δ
j
mδ


i
n + δj


l δ
k
mδ


i
n − δj


l δ
i
mδ


k
n.


It is now clear that the exterior product of two vectors can be also written as


(u ∧ v)ij =
∑


l,m


Eij
lmu


lvm,
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where
Eij


lm = δi
lδ


j
m − δj


l δ
i
m.


By analogy, the map Ê : V ⊗...⊗V → ∧nV (for 2 ≤ n ≤ N ) can be represented
in the index notation by the array of components Ei1...in


j1...jn
. This array is totally


antisymmetric with respect to all the indices {is} and separately with respect
to all {js}. Using this array, the exterior product of two general antisymmetric
tensors, say φ ∈ ∧mV and ψ ∈ ∧nV , such that m+n ≤ N , can be represented
in the index notation by


(φ ∧ ψ)i1...im+n =
1


m!n!


∑


(js,ks)


E
i1...im+n


j1...jmk1...kn
φj1...jmψk1...kn .


The combinatorial factorm!n! is needed to compensate for them! equal terms
arising from the summation over (j1, ..., jm) due to the fact that φj1...jm is
totally antisymmetric, and similarly for the n! equal terms arising from the
summation over (k1, ..., km).


It is useful to have a general formula for the array Ei1...in


j1...jn
. One way to


define it is


Ei1...in


j1...jn
=


{


(−1)
|σ| if (i1, ..., in) is a permutation σ of (j1, ..., jn) ;


0 otherwise.


We will now show how one can express Ei1...in


j1...jn
through the Levi-Civita sym-


bol ε.
The Levi-Civita symbol is defined as a totally antisymmetric array with N


indices, whose values are 0 or ±1 according to the formula


εi1...iN =


{


(−1)
|σ| if (i1, ..., iN ) is a permutation σ of (1, ..., N) ;


0 otherwise.


Comparing this with the definition of Ei1...in


j1...jn
, we notice that


εi1...iN = Ei1...iN


1...N .


Depending on convenience, we may write εwith upper or lower indices since
ε is just an array of numbers in this calculation.


In order to express Ei1...in


j1...jn
through εi1...iN , we obviously need to use at


least two copies of ε — one with upper and one with lower indices. Let us
therefore consider the expression


Ẽi1...in


j1...jn
≡


∑


k1,...,kN−n


εi1...ink1...kN−nεj1...jnk1...kN−n
, (2.11)


where the summation is performed only over the N −n indices {ks}. This ex-
pression has 2n free indices i1, ..., in and j1, ..., jn, and is totally antisymmetric
in these free indices (since ε is totally antisymmetric in all indices).
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Statement: The exterior product operator Ei1...in


j1...jn
is expressed through the


Levi-Civita symbol as


Ei1...in


j1...jn
=


1


(N − n)!
Ẽi1...in


j1...jn
, (2.12)


where Ẽ is defined by Eq. (2.11).


Proof: Let us compare the values of Ei1...in


j1...jn
and Ẽi1...in


j1...jn
, where the indices


{is} and {js} have some fixed values. There are two cases: either the set
(i1, ..., in) is a permutation of the set (j1, ..., jn); in that case we may denote
this permutation by σ; or (i1, ..., in) is not a permutation of (j1, ..., jn).


Considering the case when a permutation σ brings (j1, ..., jn) into (i1, ..., in),
we find that the symbols ε in Eq. (2.11) will be nonzero only if the indices
(k1, ..., kN−n) are a permutation of the complement of the set (i1, ..., in). There
are (N − n)! such permutations, each contributing the same value to the sum
in Eq. (2.11). Hence, we may write4 the sum as


Ẽi1...in


j1...jn
= (N − n)! εi1...ink1...kN−nεj1...jnk1...kN−n


(no sums!),


where the indices {ks} are chosen such that the values of ε are nonzero. Since


σ (j1, ..., jn) = (i1, ..., in) ,


we may permute the first n indices in εj1...jnk1...kN−n


Ẽi1...in


j1...jn
= (N − n)!(−1)|σ|εi1...ink1...kN−nεi1...ink1...kN−n


(no sums!)


= (N − n)!(−1)|σ|.


(In the last line, we replaced the squared ε by 1.) Thus, the required formula


for Ẽ is valid in the first case.


In the case when σ does not exist, we note that


Ẽi1...in


j1...jn
= 0,


because in that case one of the ε’s in Eq. (2.11) will have at least some indices


equal and thus will be zero. Therefore Ẽ and E are equal to zero for the same
sets of indices. �


Note that the formula for the top exterior power (n = N ) is simple and
involves no summations and no combinatorial factors:


Ei1...iN


j1...jN
= εi1...iN εj1...jN


.


4In the equation below, I have put the warning “no sums” for clarity: A summation over all
repeated indices is often implicitly assumed in the index notation.
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Exercise: The operator Ê : V ⊗ V ⊗ V → ∧3V can be considered within the


subspace ∧3V ⊂ V ⊗V ⊗V , which yields an operator Ê : ∧3V → ∧3V . Show
that in this subspace,


Ê = 3! 1̂∧3V .


Generalize to ∧nV in the natural way.


Hint: Act with Ê on a ∧ b ∧ c.
Remark: As a rule, a summation of the Levi-Civita symbol ε with any anti-
symmetric tensor (e.g. another ε) gives rise to a combinatorial factor n! when
the summation goes over n indices.


2.3.7 * Exterior algebra (Grassmann algebra)


The formalism of exterior algebra is used e.g. in physical theories of quantum
fermionic fields and supersymmetry.
Definition: An algebra is a vector space with a distributive multiplication.
In other words, A is an algebra if it is a vector space over a field K and if for
any a, b ∈ A their product ab ∈ A is defined, such that a (b+ c) = ab+ ac and
(a+ b) c = ac+ bc and λ (ab) = (λa) b = a (λb) for λ ∈ K. An algebra is called
commutative if ab = ba for all a, b.


The properties of the multiplication in an algebra can be summarized by
saying that for any fixed element a ∈ A, the transformations x 7→ ax and
x 7→ xa are linear maps of the algebra into itself.
Examples of algebras:


1. All N × N matrices with coefficients from K are a N2-dimensional al-
gebra. The multiplication is defined by the usual matrix multiplication
formula. This algebra is not commutative because not all matrices com-
mute.


2. The field K is a one-dimensional algebra over itself. (Not a very exciting
example.) This algebra is commutative.


Statement: If ω ∈ ∧mV then we can define the map Lω : ∧kV → ∧k+mV by
the formula


Lω (v1 ∧ ... ∧ vk) ≡ ω ∧ v1 ∧ ... ∧ vk.


For elements of ∧0V ≡ K, we define Lλω ≡ λω and also Lωλ ≡ λω for any
ω ∈ ∧kV , λ ∈ K. Then the map Lω is linear for any ω ∈ ∧mV , 0 ≤ m ≤ N .
Proof: Left as exercise. �


Definition: The exterior algebra (also called the Grassmann algebra) based
on a vector space V is the space ∧V defined as the direct sum,


∧V ≡ K ⊕ V ⊕ ∧2V ⊕ ...⊕ ∧NV,


with the multiplication defined by the map L, which is extended to the whole
of ∧V by linearity.
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For example, if u,v ∈ V then 1 + u ∈ ∧V ,


A ≡ 3 − v + u − 2v ∧ u ∈ ∧V,


and


L1+uA = (1 + u) ∧ (3 − v + u − 2v ∧ u) = 3 − v + 4u − v ∧ u.


Note that we still write the symbol ∧ to denote multiplication in ∧V although
now it is not necessarily anticommutative; for instance, 1 ∧ x = x ∧ 1 = x for
any x in this algebra.


Remark: The summation in expressions such as 1 + u above is formal in the
usual sense: 1+u is not a new vector or a new tensor, but an element of a new
space. The exterior algebra is thus the space of formal linear combinations of
numbers, vectors, 2-vectors, etc., all the way to N -vectors. �


Since ∧V is a direct sum of ∧0V , ∧1V , etc., the elements of ∧V are sums
of scalars, vectors, bivectors, etc., i.e. of objects having a definite “grade” —
scalars being “of grade” 0, vectors of grade 1, and generally k-vectors being
of grade k. It is easy to see that k-vectors and l-vectors either commute or
anticommute, for instance


(a ∧ b) ∧ c = c ∧ (a ∧ b) ,


(a ∧ b ∧ c) ∧ 1 = 1 ∧ (a ∧ b ∧ c) ,


(a ∧ b ∧ c) ∧ d = −d ∧ (a ∧ b ∧ c) .


The general law of commutation and anticommutation can be written as


ωk ∧ ωl = (−1)
kl
ωl ∧ ωk,


where ωk ∈ ∧kV and ωl ∈ ∧lV . However, it is important to note that sums
of elements having different grades, such as 1 + a, are elements of ∧V that
do not have a definite grade, because they do not belong to any single sub-
space ∧kV ⊂ ∧V . Elements that do not have a definite grade can of course
still be multiplied within ∧V , but they neither commute nor anticommute, for
example:


(1 + a) ∧ (1 + b) = 1 + a + b + a ∧ b,


(1 + b) ∧ (1 + a) = 1 + a + b − a ∧ b.


So ∧V is a noncommutative (but associative) algebra. Nevertheless, the fact
that elements of ∧V having a pure grade either commute or anticommute is
important, so this kind of algebra is called a graded algebra.


Exercise 1: Compute the dimension of the algebra ∧V as a vector space, if
dimV = N .
Answer: dim (∧V ) =


∑N
i=0


(
N
i


)
= 2N .
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Exercise 2: Suppose that an element x ∈ ∧V is a sum of elements of pure even
grade, e.g. x = 1 + a ∧ b. Show that x commutes with any other element of
∧V .
Exercise 3: Compute exp (a) and exp (a ∧ b + c ∧ d) by writing the Taylor
series using the multiplication within the algebra ∧V .


Hint: Simplify the expression exp(x) = 1+x+ 1
2x∧x+ ... for the particular


x as given.
Answer: exp (a) = 1 + a;


exp (a ∧ b + c ∧ d) = 1 + a ∧ b + c ∧ d + a ∧ b ∧ c ∧ d.
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3 Basic applications


In this section we will consider finite-dimensional vector spaces V without a
scalar product. We will denote by N the dimensionality of V , i.e. N = dimV .


3.1 Determinants through permutations: the hard


way


In textbooks on linear algebra, the following definition is found.
Definition D0: The determinant of a square N ×N matrix Aij is the number


det(Aij) ≡
∑


σ


(−1)
|σ|
Aσ(1)1...Aσ(N)N , (3.1)


where the summation goes over all permutations σ : (1, ..., N) 7→ (k1, ..., kN )
of the ordered set (1, ..., N), and the parity function |σ| is equal to 0 if the per-
mutation σ is even and to 1 if it is odd. (An even permutation is reducible to
an even number of elementary exchanges of adjacent numbers; for instance,
the permutation (1, 3, 2) is odd while (3, 1, 2) is even. See Appendix B if you
need to refresh your knowledge of permutations.)


Let us illustrate Eq. (3.1) with 2× 2 and 3× 3 matrices. Since there are only
two permutations of the set (1, 2), namely


(1, 2) 7→ (1, 2) and (1, 2) 7→ (2, 1) ,


and six permutations of the set (1, 2, 3), namely


(1, 2, 3) , (1, 3, 2) , (2, 1, 3) , (2, 3, 1) , (3, 1, 2) , (3, 2, 1) ,


we can write explicit formulas for these determinants:


det


(
a11 a12


a21 a22


)


= a11a22 − a21a12;


det








a11 a12 a13


a21 a22 a23


a31 a32 a33





 = a11a22a33 − a11a32a23 − a21a12a33


+ a21a32a13 + a31a12a23 − a31a22a13.


We note that the determinant of an N ×N matrix has N ! terms in this type of
formula, because there are N ! different permutations of the set (1, ..., N). A
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numerical evaluation of the determinant of a large matrix using this formula
is prohibitively long.


Using the definition D0 and the properties of permutations, one can di-
rectly prove various properties of determinants, for instance their antisym-
metry with respect to exchanges of matrix rows or columns, and finally the
relevance of det(Aij) to linear equations


∑


j Aijxj = ai, as well as the impor-
tant property


det (AB) = (detA) (detB) .


Deriving these properties in this way will require long calculations.


Question: To me, definition D0 seems unmotivated and strange. It is not
clear why this complicated combination of matrix elements has any useful
properties at all. Even if so then maybe there exists another complicated com-
bination of matrix elements that is even more useful?


Answer: Yes, indeed: There exist other complicated combinations that are
also useful. All this is best understood if we do not begin by studying the
definition (3.1). Instead, we will proceed in a coordinate-free manner and
build upon geometric intuition.


We will interpret the matrix Ajk not as a “table of numbers” but as a co-


ordinate representation of a linear transformation Â in some vector space V


with respect to some given basis. We will define an action of the operator Â
on the exterior product space ∧NV in a certain way. That action will allow
us to understand the properties and the uses of determinants without long
calculations.


Another useful interpretation of the matrix Ajk is to regard it as a table of
components of a set of N vectors v1, ...,vN in a given basis {ej}, that is,


vj =
N∑


k=1


Ajkek, j = 1, ..., N.


The determinant of the matrix Ajk is then naturally related to the exterior
product v1 ∧ ... ∧ vN . This construction is especially useful for solving linear
equations.


These constructions and related results occupy the present chapter. Most of
the derivations are straightforward and short but require some facility with
calculations involving the exterior product. I recommend that you repeat all
the calculations yourself.


Exercise: If {v1, ...,vN} are N vectors and σ is a permutation of the ordered
set (1, ..., N), show that


v1 ∧ ... ∧ vN = (−1)
|σ|


vσ(1) ∧ ... ∧ vσ(N).
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3.2 The space ∧NV and oriented volume


Of all the exterior power spaces ∧kV (k = 1, 2, ...), the last nontrivial space is
∧NV whereN ≡ dimV , for it is impossible to have a nonzero exterior product
of (N + 1) or more vectors. In other words, the spaces ∧N+1V , ∧N+2V etc. are
all zero-dimensional and thus do not contain any nonzero tensors.


By Theorem 2 from Sec. 2.3.2, the space ∧NV is one-dimensional. There-
fore, all nonzero tensors from ∧NV are proportional to each other. Hence,
any nonzero tensor ω1 ∈ ∧NV can serve as a basis tensor in ∧NV .


The space ∧NV is extremely useful because it is so simple and yet is directly
related to determinants and volumes; this idea will be developed now. We
begin by considering an example.
Example: In a two-dimensional space V , let us choose a basis {e1, e2} and
consider two arbitrary vectors v1 and v2. These vectors can be decomposed
in the basis as


v1 = a11e1 + a12e2, v2 = a21e1 + a22e2,


where {aij} are some coefficients. Let us now compute the 2-vector v1 ∧v2 ∈
∧2V :


v1 ∧ v2 = (a11e1 + a12e2) ∧ (a21e1 + a22e2)


= a11a22e1 ∧ e2 + a12a21e2 ∧ e1


= (a11a22 − a12a21) e1 ∧ e2.


We may observe that firstly, the 2-vector v1 ∧ v2 is proportional to e1 ∧ e2,
and secondly, the proportionality coefficient is equal to the determinant of
the matrix aij .


If we compute the exterior product v1∧v2∧v3 of three vectors in a 3-dimen-
sional space, we will similarly notice that the result is proportional to e1∧e2∧
e3, and the proportionality coefficient is again equal to the determinant of the
matrix aij . �


Let us return to considering a general, N -dimensional space V . The ex-
amples just given motivate us to study N -vectors (i.e. tensors from the top
exterior power space ∧NV ) and their relationships of the form v1 ∧ ...∧vN =
λe1 ∧ ... ∧ eN .


By Lemma 1 from Sec. 2.3.2, every nonzero element of ∧NV must be of
the form v1 ∧ ... ∧ vN , where the set {v1, ...,vN} is linearly independent and
thus a basis in V . Conversely, each basis {vj} in V yields a nonzero tensor
v1∧...∧vN ∈ ∧NV . This tensor has a useful geometric interpretation because,
in some sense, it represents the volume of the N -dimensional parallelepiped
spanned by the vectors {vj}. I will now explain this idea.


A rigorous definition of “volume” in N -dimensional space requires much
background work in geometry and measure theory; I am not prepared to ex-
plain all this here. However, we can motivate the interpretation of the tensor
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v1 ∧ ...∧vN as the volume by appealing to the visual notion of the volume of
a parallelepiped.1


Statement: Consider anN -dimensional space V where the (N -dimensional)
volume of solid bodies can be computed through some reasonable2 geometric
procedure. Then:


(1) Two parallelepipeds spanned by the sets of vectors {u1,u2, ...,uN} and
{v1,v2, ...,vN} have equal volumes if and only if the corresponding tensors
from ∧NV are equal up to a sign,


u1 ∧ ... ∧ uN = ±v1 ∧ ... ∧ vN . (3.2)


Here “two bodies have equal volumes” means (in the style of ancient Greek
geometry) that the bodies can be cut into suitable pieces, such that the vol-
umes are found to be identical by inspection after a rearrangement of the
pieces.


(2) If u1 ∧ ... ∧ uN = λv1 ∧ ... ∧ vN , where λ ∈ K is a number, λ 6= 0, then
the volumes of the two parallelepipeds differ by a factor of |λ|.


To prove these statements, we will use the following lemma.
Lemma: In an N -dimensional space:


(1) The volume of a parallelepiped spanned by {λv1,v2...,vN} is λ times
greater than that of {v1,v2, ...,vN}.


(2) Two parallelepipeds spanned by the sets of vectors {v1,v2, ...,vN} and
{v1 + λv2,v2, ...,vN} have equal volume.
Proof of Lemma: (1) This is clear from geometric considerations: When a


parallelepiped is stretched λ times in one direction, its volume must increase
by the factor λ. (2) First, we ignore the vectors v3,...,vN and consider the two-
dimensional plane containing v1 and v2. In Fig. 3.1 one can see that the par-
allelograms spanned by {v1,v2} and by {v1 + λv2,v2} can be cut into appro-
priate pieces to demonstrate the equality of their area. Now, we consider the
N -dimensional volume (a three-dimensional example is shown in Fig. 3.2).
Similarly to the two-dimensional case, we find that the N -dimensional par-
allelepipeds spanned by {v1,v2, ...,vN} and by {v1 + λv2,v2, ...,vN} have
equal N -dimensional volume. �


Proof of Statement: (1) To prove that the volumes are equal when the tensors
are equal, we will transform the first basis {u1,u2, ...,uN} into the second ba-
sis {v1,v2, ...,vN} by a sequence of transformations of two types: either we
will multiply one of the vectors vj by a number λ, or add λvj to another
vector vk. We first need to demonstrate that any basis can be transformed
into any other basis by this procedure. To demonstrate this, recall the proof


1In this text, we do not actually need a mathematically rigorous notion of “volume” — it is
used purely to develop geometrical intuition. All formulations and proofs in this text are
completely algebraic.


2Here by “reasonable” I mean that the volume has the usual properties: for instance, the volume
of a body consisting of two parts equals the sum of the volumes of the parts. An example of
such procedure would be the N -fold integral


R


dx1...
R


dxN , where xj are coordinates of
points in an orthonormal basis.
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0


A


B


D
C


E


v1


v2


v1 + λv2


Figure 3.1: The area of the parallelogram 0ACB spanned by {v1,v2} is equal
to the area of the parallelogram 0ADE spanned by {v1 + λv2,v2}.


a


b


c


a + λb


Figure 3.2: Parallelepipeds spanned by {a,b, c} and by {a + λb,b, c} have
equal volume since the volumes of the shaded regions are equal.
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of Theorem 1.1.5 in which vectors from the first basis were systematically re-
placed by vectors of the second one. Each replacement can be implemented
by a certain sequence of replacements of the kind uj → λuj or uj → uj +λui.
Note that the tensor u1 ∧ ... ∧ uN changes in the same way as the volume
under these replacements: The tensor u1 ∧ ... ∧ uN gets multiplied by λ after
uj → λuj and remains unchanged after uj → uj + λui. At the end of the
replacement procedure, the basis {uj} becomes the basis {vj} (up to the or-
dering of vectors), while the volume is multiplied by the same factor as the
tensor u1∧ ...∧uN . The ordering of the vectors in the set {vj} can be changed
with possibly a sign change in the tensor u1 ∧ ... ∧ uN . Therefore the state-
ment (3.2) is equivalent to the assumption that the volumes of {vj} and {uj}
are equal. (2) A transformation v1 → λv1 increases the volume by a factor of
|λ| and makes the two tensors equal, therefore the volumes differ by a factor
of |λ|. �


Let us now consider the interpretation of the above Statement. Suppose we
somehow know that the parallelepiped spanned by the vectors {u1, ...,uN}
has unit volume. Given this knowledge, the volume of any other parallelepi-
ped spanned by some other vectors {v1, ...,vN} is easy to compute. Indeed,
we can compute the tensors u1∧...∧uN and v1∧...∧vN . Since the space ∧NV
is one-dimensional, these two tensors must be proportional to each other. By
expanding the vectors vj in the basis {uj}, it is straightforward to compute
the coefficient λ in the relationship


v1 ∧ ... ∧ vN = λu1 ∧ ... ∧ uN .


The Statement now says that the volume of a parallelepiped spanned by the
vectors {v1, ...,vN} is equal to |λ|.
Exercise 1: The volume of a parallelepiped spanned by vectors a, b, c is equal
to 19. Compute the volume of a parallelepiped spanned by the vectors 2a−b,
c + 3a, b.
Solution: Since (2a − b)∧(c + 3a)∧b = 2a∧c∧b = −2a∧b∧c, the volume


is 38 (twice 19; we ignored the minus sign since we are interested only in the
absolute value of the volume). �


It is also clear that the tensor v1 ∧ ...∧vN allows us only to compare the vol-
umes of two parallelepipeds; we cannot determine the volume of one paral-
lelepiped taken by itself. A tensor such as v1 ∧ ... ∧ vN can be used to de-
termine the numerical value of the volume only if we can compare it with
another given tensor, u1 ∧ ... ∧ uN , which (by assumption) corresponds to a
parallelepiped of unit volume. A choice of a “reference” tensor u1 ∧ ... ∧ uN


can be made, for instance, if we are given a basis in V ; without this choice,
there is no natural map from ∧NV to numbers (K). In other words, the space
∧NV is not canonically isomorphic to the space K (even though both ∧NV and
K are one-dimensional vector spaces). Indeed, a canonical isomorphism be-
tween ∧NV and K would imply that the element 1 ∈ K has a corresponding
canonically defined tensor ω1 ∈ ∧NV . In that case there would be some basis
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{ej} in V such that e1 ∧ ...∧ eN = ω1, which indicates that the basis {ej} is in
some sense “preferred” or “natural.” However, there is no “natural” or “pre-
ferred” choice of basis in a vector space V , unless some additional structure
is given (such as a scalar product). Hence, no canonical choice of ω1 ∈ ∧NV
is possible.


Remark: When a scalar product is defined in V , there is a preferred choice of
basis, namely an orthonormal basis {ej} such that 〈ei, ej〉 = δij (see Sec. 5.1).
Since the length of each of the basis vectors is 1, and the basis vectors are or-
thogonal to each other, the volume of the parallelepiped spanned by {ej} is
equal to 1. (This is the usual Euclidean definition of volume.) Then the tensor


ω1 ≡ ∧N
j=1 ej can be computed using this basis and used as a unit volume


tensor. We will see below (Sec. 5.5.2) that this tensor does not depend on the
choice of the orthonormal basis, up to the orientation. The isomorphism be-
tween ∧NV and K is then fixed (up to the sign), thanks to the scalar product.
�


In the absence of a scalar product, one can say that the value of the vol-
ume in an abstract vector space is not a number but a tensor from the space
∧NV . It is sufficient to regard the element v1 ∧ ... ∧ vN ∈ ∧NV as the def-
inition of the “∧NV -valued volume” of the parallelepiped spanned by {vj}.
The space ∧NV is one-dimensional, so the “tensor-valued volume” has the
familiar properties we expect (it is “almost a number”). One thing is unusual
about this “volume”: It is oriented, that is, it changes sign if we exchange the
order of two vectors from the set {vj}.


Exercise 2: Suppose {u1, ...,uN} is a basis in V . Let x be some vector whose
components in the basis {uj} are given, x =


∑


j αjuj . Compute the (tensor-
valued) volume of the parallelepiped spanned by {u1 + x, ...,uN + x}.
Hints: Use the linearity property, (a + x)∧ ... = a∧ ...+ x∧ ..., and notice the
simplification


x ∧ (a + x) ∧ (b + x) ∧ ... ∧ (c + x) = x ∧ a ∧ b ∧ ... ∧ c.


Answer: The volume tensor is


(u1 + x) ∧ ... ∧ (uN + x) = (1 + α1 + ...+ αN )u1 ∧ ... ∧ uN .


Remark: tensor-valued area. The idea that the volume is “oriented” can be
understood perhaps more intuitively by considering the area of the parallel-
ogram spanned by two vectors a, b in the familiar 3-dimensional space. It is
customary to draw the vector product a×b as the representation of this area,
since the length |a × b| is equal to the area, and the direction of a×b is normal
to the area. Thus, the vector a × b can be understood as the “oriented area”
of the parallelogram. However, note that the direction of the vector a × b


depends not only on the angular orientation of the parallelogram in space,
but also on the order of the vectors a, b. The 2-vector a∧b is the natural ana-
logue of the vector product a × b in higher-dimensional spaces. Hence, it is
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algebraically natural to regard the tensor a ∧ b ∈ ∧2V as the “tensor-valued”
representation of the area of the parallelogram spanned by {a,b}.


Consider now a parallelogram spanned by a,b in a two-dimensional plane.
We can still represent the oriented area of this parallelogram by the vector
product a×b, where we imagine that the plane is embedded in a three-dimen-
sional space. The area of the parallelogram does not have a nontrivial angular
orientation any more since the vector product a × b is always orthogonal to
the plane; the only feature left from the orientation is the positive or negative
sign of a × b relative to an arbitrarily chosen vector n normal to the plane.
Hence, we may say that the sign of the oriented volume of a parallelepiped
is the only remnant of the angular orientation of the parallelepiped in space
when the dimension of the parallelepiped is equal to the dimension of space.
(See Sec. 2.1 for more explanations about the geometrical interpretation of
volume in terms of exterior product.) �


3.3 Determinants of operators


Let Â ∈ End V be a linear operator. Consider its action on tensors from the


space ∧NV defined in the following way, v1 ∧ ...∧ ...vN 7→ Âv1 ∧ ...∧ ÂvN . I


denote this operation by ∧N ÂN , so


∧N ÂN (v1 ∧ ... ∧ vN ) ≡ (Âv1) ∧ ... ∧ (ÂvN ).


The notation ∧N ÂN underscores the fact that there are N copies of Â acting
simultaneously.


We have just defined ∧N ÂN on single-term products v1∧...∧vN ; the action


of ∧N ÂN on linear combinations of such products is obtained by requiring
linearity.


Let us verify that ∧N ÂN is a linear map; it is sufficient to check that it is
compatible with the exterior product axioms:


Â(v + λu) ∧ Âv2 ∧ ... ∧ ÂvN = Âv ∧ Âv2 ∧ ... ∧ ÂvN


+ λÂu ∧ Âv2 ∧ ... ∧ ÂvN ;


Âv1 ∧ Âv2 ∧ ... ∧ ÂvN = −Âv2 ∧ Âv1 ∧ ... ∧ ÂvN .


Therefore, ∧N ÂN is now defined as a linear operator ∧NV → ∧NV .


By Theorem 2 in Sec. 2.3.2, the space ∧NV is one-dimensional. So ∧N ÂN ,
being a linear operator in a one-dimensional space, must act simply as mul-
tiplication by a number. (Every linear operator in a one-dimensional space
must act as multiplication by a number!) Thus we can write


∧N ÂN = α1̂∧N V ,
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where α ∈ K is a number which is somehow associated with the operator Â.
What is the significance of this number α? This number is actually equal to


the determinant of the operator Â as given by Definition D0. But let us pretend
that we do not know anything about determinants; it is very convenient to
use this construction to define the determinant and to derive its properties.


Definition D1: The determinant det Â of an operator Â ∈ End V is the num-


ber by which any nonzero tensor ω ∈ ∧NV is multiplied when ∧N ÂN acts on
it:


(∧N ÂN )ω = (det Â)ω. (3.3)


In other words, ∧NAN = (det Â)1̂∧N V .
We can immediately put this definition to use; here are the first results.


Statement 1: The determinant of a product is the product of determinants:


det(ÂB̂) = (det Â)(det B̂).
Proof: Act with ∧N ÂN and then with ∧N B̂N on a nonzero tensor ω ∈ ∧NV .


Since these operators act as multiplication by a number, the result is the mul-
tiplication by the product of these numbers. We thus have


(∧N ÂN )(∧N B̂N )ω = (∧N ÂN )(det B̂)ω = (det Â)(det B̂)ω.


On the other hand, for ω = v1 ∧ ... ∧ vN we have


(∧N ÂN )(∧N B̂N )ω = (∧N ÂN )B̂v1 ∧ ... ∧ B̂vN


= ÂB̂v1 ∧ ... ∧ ÂB̂vN = ∧N (ÂB̂)Nω


= (det(ÂB̂))ω.


Therefore, det(ÂB̂) = (det Â)(det B̂). �


Exercise 1: Prove that det(λÂ) = λN det Â for any λ ∈ K and Â ∈ End V .
Now let us clarify the relation between the determinant and the volume.


We will prove that the determinant of a transformation Â is the coefficient


by which the volume of parallelepipeds will grow when we act with Â on
the vector space. After proving this, I will derive the relation (3.1) for the


determinant through the matrix coefficients of Â in some basis; it will follow
that the formula (3.1) gives the same results in any basis.


Statement 2: When a parallelepiped spanned by the vectors {v1, ...,vN} is


transformed by a linear operator Â, so that vj 7→ Âvj , the volume of the


parallelepiped grows by the factor |det Â |.
Proof: Suppose the volume of the parallelepiped spanned by the vec-


tors {v1, ...,vN} is v. The transformed parallelepiped is spanned by vectors


{Âv1, ..., ÂvN}. According to the definition of the determinant, det Â is a
number such that


Âv1 ∧ ... ∧ ÂvN = (det Â)v1 ∧ ... ∧ vN .
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By Statement 3.2, the volume of the transformed parallelepiped is |det Â |
times the volume of the original parallelepiped. �


If we consider the oriented (i.e. tensor-valued) volume, we find that it
grows by the factor det Â (without the absolute value). Therefore we could
define the determinant also in the following way:


Definition D2: The determinant det Â of a linear transformation Â is the
number by which the oriented volume of any parallelepiped grows after the
transformation. (One is then obliged to prove that this number does not de-
pend on the choice of the initial parallelepiped! We just proved this in State-
ment 1 using an algebraic definition D1 of the determinant.)


With this definition of the determinant, the property


det(ÂB̂) = (det Â)(det B̂)


is easy to understand: The composition of the transformations Â and B̂ mul-
tiplies the volume by the product of the individual volume growth factors


det Â and det B̂.


Finally, here is a derivation of the formula (3.1) from Definition D1.


Statement 3: If {ej} is any basis in V ,
{
e∗j
}


is the dual basis, and a linear


operator Â is represented by a tensor,


Â =


N∑


j,k=1


Ajkej ⊗ e∗k, (3.4)


then the determinant of Â is given by the formula (3.1).


Proof: The operator Â defined by Eq. (3.4) acts on the basis vectors {ej} as
follows,


Âek =
N∑


j=1


Ajkej .


A straightforward calculation is all that is needed to obtain the formula for
the determinant. I first consider the case N = 2 as an illustration:


∧2Â2 (e1 ∧ e2) = Âe1 ∧ Âe2


= (A11e1 +A21e2) ∧ (A12e1 +A22e2)


= A11A22e1 ∧ e2 +A21A12e2 ∧ e1


= (A11A22 −A12A21) e1 ∧ e2.


Hence det Â = A11A22 −A12A21, in agreement with the usual formula.


Now I consider the general case. The action of ∧N ÂN on the basis element
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e1 ∧ ... ∧ eN ∈ ∧NV is


∧N ÂN (e1 ∧ ... ∧ eN ) = Âe1 ∧ ... ∧ ÂeN


=








N∑


j1=1


Aj11ej1





 ∧ ... ∧








N∑


jN=1


AjN NejN








=


N∑


j1=1


...


N∑


jN=1


Aj11ej1 ∧ ... ∧AjN NejN


=
N∑


j1=1


...
N∑


jN=1


(Aj11...AjN N )ej1 ∧ ... ∧ ejN
. (3.5)


In the last sum, the only nonzero terms are those in which the indices j1, ..., jN
do not repeat; in other words, (j1, ..., jN ) is a permutation of the set (1, ..., N ).
Let us therefore denote this permutation by σ and write σ(1) ≡ j1, ..., σ(N) ≡
jN . Using the antisymmetry of the exterior product and the definition of the
parity |σ| of the permutation σ, we can express


ej1 ∧ ... ∧ ejN
= eσ(1) ∧ ... ∧ eσ(N) = (−1)


|σ|
e1 ∧ ... ∧ eN .


Now we can rewrite the last line in Eq. (3.5) in terms of sums over all permu-
tations σ instead of sums over all {j1, ..., jN}:


∧N ÂN (e1 ∧ ... ∧ eN ) =
∑


σ


Aσ(1)1...Aσ(N)Neσ(1) ∧ ... ∧ eσ(N)


=
∑


σ


Aσ(1)1...Aσ(N)N (−1)
|σ|


e1 ∧ ... ∧ eN .


Thus we have reproduced the formula (3.1). �


We have seen three equivalent definitions of the determinant, each with its
own advantages: first, a direct but complicated definition (3.1) in terms of ma-
trix coefficients; second, an elegant but abstract definition (3.3) that depends
on the construction of the exterior product; third, an intuitive and visual def-
inition in terms of the volume which, however, is based on the geometric
notion of “volume of an N -dimensional domain” rather than on purely al-
gebraic constructions. All three definitions are equivalent when applied to
linear operators in finite-dimensional spaces.


3.3.1 Examples: computing determinants


Question: We have been working with operators more or less in the same
way as with matrices, like in Eq. (3.4). What is the advantage of the coordin-
ate-free approach if we are again computing with the elements of matrices?
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Answer: In some cases, there is no other way except to represent an oper-
ator in some basis through a matrix such as Aij . However, in many cases an
interesting operator can be represented geometrically, i.e. without choosing a
basis. It is often useful to express an operator in a basis-free manner because
this yields some nontrivial information that would otherwise be obscured by
an unnecessary (or wrong) choice of basis. It is useful to be able to employ
both the basis-free and the component-based techniques. Here are some ex-
amples where we compute determinants of operators defined without a basis.
Example 1: Operators of the form 1̂V +a⊗b∗ are useful in geometry because
they can represent reflections or projections with respect to an axis or a plane
if a and b∗ are chosen appropriately. For instance, if b∗ 6= 0, we can define a
hyperplane Hb∗ ⊂ V as the subspace annihilated by the covector b∗, i.e. the
subspace consisting of vectors v ∈ V such that b∗ (v) = 0. If a vector a ∈ V
is such that b∗ (a) 6= 0, i.e. a 6∈ Hb∗ , then


P̂ ≡ 1̂V − 1


b∗ (a)
a ⊗ b∗


is a projector onto Hb∗ , while the operator


R̂ ≡ 1̂V − 2


b∗ (a)
a ⊗ b∗


describes a mirror reflection with respect to the hyperplane Hb∗ , in the sense


that v + R̂v ∈ Hb∗ for any v ∈ V . �


The following statement shows how to calculate determinants of such op-


erators. For instance, with the above definitions we would find det P̂ = 0 and
det R̂ = −1 by a direct application of Eq. (3.6).
Statement: Let a ∈ V and b∗ ∈ V ∗. Then


det
(
1̂V + a ⊗ b∗) = 1 + b∗ (a) . (3.6)


Proof: If b∗ = 0, the formula is trivial, so we assume that b∗ 6= 0. Then
we need to consider two cases: b∗(a) 6= 0 or b∗(a) = 0; however, the final
formula (3.6) is the same in both cases.


Case 1. By Statement 1.6, if b∗ (a) 6= 0 there exists a basis {a,v2, ...,vN}
such that b∗ (vi) = 0 for 2 ≤ i ≤ N , where N = dimV . Then we compute


the determinant by applying the operator ∧N
(
1̂V + a ⊗ b∗)N to the tensor


a ∧ v2 ∧ ... ∧ vN : since
(
1̂V + a ⊗ b∗)a = (1 + b∗ (a))a,


(
1̂V + a ⊗ b∗)vi = vi, i = 2, ..., N,


we get


∧N
(
1̂V + a ⊗ b∗)N a ∧ v2 ∧ ... ∧ vN


= (1 + b∗ (a))a ∧ v2 ∧ ... ∧ vN .
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Therefore det
(
1̂V + a ⊗ b∗) = 1 + b∗ (a), as required.


Case 2. If b∗ (a) = 0, we will show that det
(
1̂V + a ⊗ b∗) = 1. We can-


not choose the basis {a,v2, ...,vN} as in case 1, so we need to choose another
basis. There exists some vector w ∈ V such that b∗ (w) 6= 0 because by
assumption b∗ 6= 0. It is clear that {w,a} is a linearly independent set: oth-
erwise we would have b∗(w) = 0. Therefore, we can complete this set to a
basis {w,a,v3, ...,vN}. Further, the vectors v3, ...,vN can be chosen such that
b∗ (vi) = 0 for 3 ≤ i ≤ N . Now we compute the determinant by acting with


the operator ∧N
(
1̂V + a ⊗ b∗)N on the tensor a ∧ w ∧ v3 ∧ ... ∧ vN : since


(
1̂V + a ⊗ b∗)a = a,
(
1̂V + a ⊗ b∗)w = w + b∗ (w)a,
(
1̂V + a ⊗ b∗)vi = vi, i = 3, ..., N,


we get


∧N
(
1̂V + a ⊗ b∗)N a ∧ w ∧ v3 ∧ ... ∧ vN


= a ∧ (w + b∗ (w)a) ∧ v3 ∧ ... ∧ vN


= a ∧ w ∧ v3 ∧ ... ∧ vN .


Therefore det
(
1̂V + a ⊗ b∗) = 1. �


Exercise 1: In a similar way, prove the following statement: If ai ∈ V and
b∗


i ∈ V ∗ for 1 ≤ i ≤ n < N are such that b∗
i (aj) = 0 for all i > j, then


det


(


1̂V +


n∑


i=1


ai ⊗ b∗
i


)


=


n∏


i=1


(1 + b∗
i (ai)) .


Exercise 2: Consider the three-dimensional space of polynomials p(x) in the


variable x of degree at most 2 with real coefficients. The operators Â and B̂
are defined by


(Âp)(x) ≡ p(x) + x
dp(x)


dx
,


(B̂p)(x) ≡ x2p(1) + 2p(x).


Check that these operators are linear. Compute the determinants of Â and B̂.
Solution: The operators are linear because they are expressed as formulas


containing p(x) linearly. Let us use the underbar to distinguish the polynomi-
als 1, x from numbers such as 1. A convenient basis tensor of the 3rd exterior
power is 1 ∧ x ∧ x2, so we perform the calculation,


(det Â)(1 ∧ x ∧ x2) = (Â1) ∧ (Âx) ∧ (Âx2)


= 1 ∧ (2x) ∧ (3x2) = 6(1 ∧ x ∧ x2),


and find that det Â = 6. Similarly we find det B̂ = 12. �
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Exercise 3: Suppose the space V is decomposed into a direct sum ofU andW ,


and an operator Â is such that U and W are invariant subspaces (Âx ∈ U for


all x ∈ U , and the same for W ). Denote by ÂU the restriction of the operator


Â to the subspace U . Show that


det Â = (det ÂU )(det ÂW ).


Hint: Choose a basis in V as the union of a basis in U and a basis in W . In
this basis, the operator Â is represented by a block-diagonal matrix.


3.4 Determinants of square tables


Note that the determinant formula (3.1) applies to any square matrix, with-
out referring to any transformations in any vector spaces. Sometimes it is
useful to compute the determinants of matrices that do not represent linear
transformations. Such matrices are really just tables of numbers. The prop-
erties of determinants of course remain the same whether or not the matrix
represents a linear transformation in the context of the problem we are solv-
ing. The geometric construction of the determinant through the space ∧NV
is useful because it helps us understand heuristically where the properties of
the determinant come from.


Given just a square table of numbers, it is often useful to introduce a linear
transformation corresponding to the matrix in some (conveniently chosen)
basis; this often helps solve problems. An example frequently used in linear
algebra is a matrix consisting of the components of some vectors in a basis.
Suppose {ej | j = 1, ..., N} is a basis and {vj | j = 1, ..., N} are some vectors.
Since each of the vj can be decomposed through the basis {ej}, say


vi =


N∑


j=1


vijej , i = 1, ..., N,


we may consider the coefficients vij as a square matrix. This matrix, at first
glance, does not represent a linear transformation; it’s just a square-shaped


table of the coefficients vij . However, let us define a linear operator Â by the


condition that Âei = vi for all i = 1, ..., N . This condition defines Âx for
any vector x if we assume the linearity of Â (see Exercise 2 in Sec. 1.2.2). The


operator Â has the following matrix representation with respect to the basis
{ei} and the dual basis {e∗i }:


Â =


N∑


i=1


vi ⊗ e∗i =


N∑


i=1


N∑


j=1


vijej ⊗ e∗i .


So the matrix vji (the transpose of vij) is the matrix representing the transfor-


mation Â. Let us consider the determinant of this transformation:


(det Â)e1 ∧ ... ∧ eN = Âe1 ∧ ... ∧ ÂeN = v1 ∧ ... ∧ vN .
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The determinant of the matrix vji is thus equal to the determinant of the trans-


formation Â. Hence, the computation of the determinant of the matrix vji is
equivalent to the computation of the tensor v1 ∧ ... ∧ vN ∈ ∧NV and its com-
parison with the basis tensor e1 ∧ ...∧eN . We have thus proved the following
statement.
Statement 1: The determinant of the matrix vji made up by the components
of the vectors {vj} in a basis {ej} (j = 1, ..., N ) is the number C defined as
the coefficient in the tensor equality


v1 ∧ ... ∧ vN = Ce1 ∧ ... ∧ eN .


Corollary: The determinant of a matrix does not change when a multiple of
one row is added to another row. The determinant is linear as a function of
each row. The determinant changes sign when two rows are exchanged.
Proof: We consider the matrix vij as the table of coefficients of vectors {vj}


in a basis {ej}, as explained above. Since


(det vji)e1 ∧ ... ∧ eN = v1 ∧ ... ∧ vN ,


we need only to examine the properties of the tensor ω ≡ v1 ∧ ... ∧ vN under
various replacements. When a multiple of row k is added to another row j,
we replace vj 7→ vj + λvk for fixed j, k; then the tensor ω does not change,


v1 ∧ ... ∧ vj ∧ ... ∧ vN = v1 ∧ ... ∧ (vj + λvk) ∧ ... ∧ vN ,


hence the determinant of vij does not change. To show that the determinant is
linear as a function of each row, we consider the replacement vj 7→ u+λv for
fixed j; the tensor ω is then equal to the sum of the tensors v1∧ ...∧u∧ ...∧vN


and λv1 ∧ ...∧ v ∧ ...∧ vN . Finally, exchanging the rows k and l in the matrix
vij corresponds to exchanging the vectors vk and vl, and then the tensor ω
changes sign. �


It is an important property that matrix transposition leaves the determinant
unchanged.
Statement 2: The determinant of the transposed operator is unchanged:


det ÂT = det Â.


Proof: I give two proofs, one based on Definition D0 and the properties of
permutations, another entirely coordinate-free — based on Definition D1 of
the determinant and definition 1.8.4 of the transposed operator.


First proof : According to Definition D0, the determinant of the transposed
matrix Aji is given by the formula


det(Aji) ≡
∑


σ


(−1)
|σ|
A1,σ(1)...AN,σ(N), (3.7)


so the only difference between det(Aij) and det(Aji) is the order of indices
in the products of matrix elements, namely Aσ(i),i instead of Ai,σ(i). We can
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show that the sum in Eq. (3.7) consists of exactly the same terms as the sum in
Eq. (3.1), only the terms occur in a different order. This is sufficient to prove
that det(Aij) = det(Aji).


The sum in Eq. (3.7) consists of terms of the form A1,σ(1)...AN,σ(N), where
σ is some permutation. We may reorder factors in this term,


A1,σ(1)...AN,σ(N) = Aσ′(1),1...Aσ′(N),N ,


where σ′ is another permutation such that Ai,σ(i) = Aσ′(i),i for i = 1, ..., N .
This is achieved when σ′ is the permutation inverse to σ, i.e. we need to use
σ′ ≡ σ−1. Since there exists precisely one inverse permutation σ−1 for each
permutation σ, we may transform the sum in Eq. (3.7) into a sum over all
inverse permutations σ′; each permutation will still enter exactly once into
the new sum. Since the parity of the inverse permutation σ−1 is the same as


the parity of σ (see Statement 3 in Appendix B), the factor (−1)
|σ| will remain


unchanged. Therefore, the sum will remain the same.
Second proof : The transposed operator is defined as


(ÂT f∗)(x) = f∗(Âx), ∀f∗ ∈ V ∗, x ∈ V.


In order to compare the determinants det Â and det(ÂT ) according to Defini-


tion D1, we need to compare the numbers ∧N ÂN and ∧N (ÂT )N .
Let us choose nonzero tensors ω ∈ ∧NV and ω∗ ∈ ∧NV ∗. By Lemma 1 in


Sec. 2.3.2, these tensors have representations of the form ω = v1∧ ...∧vN and
ω∗ = f∗1 ∧ ... ∧ f∗N . We have


(det Â)v1 ∧ ... ∧ vN = Âv1 ∧ ... ∧ ÂvN .


Now we would like to relate this expression with the analogous expression


for ÂT . In order to use the definition of ÂT , we need to act on the vectors
Âvi by the covectors f∗j . Therefore, we act with the N -form ω∗ ∈ ∧NV ∗ ∼=
(∧NV )∗ on the N -vector ∧N ÂNω ∈ ∧NV (this canonical action was defined
by Definition 3 in Sec. 2.2). Since this action is linear, we find


ω∗(∧N ÂNω) = (det Â)ω∗(ω).


(Note that ω∗(ω) 6= 0 since by assumption the tensors ω and ω∗ are nonzero.)
On the other hand,


ω∗(∧N ÂNω
)


=
∑


σ


(−1)|σ|f∗1 (Âvσ(1))...f
∗
N (Âvσ(N))


=
∑


σ


(−1)|σ|(ÂT f∗1 )(vσ(1))...(Â
T f∗N )(vσ(N))


=
(
∧N (ÂT )Nω∗)(ω) = (det ÂT )ω∗(ω).


Hence det ÂT = det Â. �
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Exercise* (Laplace expansion): As shown in the Corollary above, the deter-
minant of the matrix vij is a linear function of each of the vectors {vi}. Con-
sider det(vij) as a linear function of the first vector, v1; this function is a cov-
ector that we may temporarily denote by f∗1 . Show that f∗1 can be represented
in the dual basis


{
e∗j
}


as


f∗1 =


N∑


i=1


(−1)
i−1


B1ie
∗
i ,


where the coefficients B1i are minors of the matrix vij , that is, determinants
of the matrix vij from which row 1 and column i have been deleted.
Solution: Consider one of the coefficients, for example B11 ≡ f∗1 (e1). This


coefficient can be determined from the tensor equality


e1 ∧ v2 ∧ ... ∧ vN = B11e1 ∧ ... ∧ eN . (3.8)


We could reduce B11 to a determinant of an (N − 1) × (N − 1) matrix if we
could cancel e1 on both sides of Eq. (3.8). We would be able to cancel e1 if we
had a tensor equality of the form


e1 ∧ ψ = B11e1 ∧ e2 ∧ ... ∧ eN ,


where the (N − 1)-vector ψ were proportional to e2 ∧ ... ∧ eN . However,
v2 ∧ ... ∧ vN in Eq. (3.8) is not necessarily proportional to e2 ∧ ... ∧ eN ; so
we need to transform Eq. (3.8) to a suitable form. In order to do this, we
transform the vectors vi into vectors that belong to the subspace spanned by
{e2, ..., eN}. We subtract from each vi (i = 2, ..., N ) a suitable multiple of e1


and define the vectors ṽi (i = 2, ..., N ) such that e∗1(ṽi) = 0:


ṽi ≡ vi − e∗1(vi)e1, i = 2, ..., N.


Then ṽi ∈ Span {e2, ..., eN} and also


e1 ∧ v2 ∧ ... ∧ vN = e1 ∧ ṽ2 ∧ ... ∧ ṽN .


Now Eq. (3.8) is rewritten as


e1 ∧ ṽ2 ∧ ... ∧ ṽN = B11e1 ∧ e2 ∧ ... ∧ eN .


Since ṽi ∈ Span {e2, ..., eN}, the tensors ṽ2 ∧ ... ∧ ṽN and e2 ∧ ... ∧ eN are
proportional to each other. Now we are allowed to cancel e1 and obtain


ṽ2 ∧ ... ∧ ṽN = B11e2 ∧ ... ∧ eN .


Note that the vectors ṽi have the first components equal to zero. In other
words, B11 is equal to the determinant of the matrix vij from which row 1
(i.e. the vector v1) and column 1 (the coefficients at e1) have been deleted.
The coefficients B1j for j = 2, ..., N are calculated similarly. �
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3.4.1 * Index notation for ∧N
V and determinants


Let us see how determinants are written in the index notation.
In order to use the index notation, we need to fix a basis {ej} and represent


each vector and each tensor by their components in that basis. Determinants
are related to the space ∧NV . Let us consider a set of vectors {v1, ...,vN} and
the tensor


ψ ≡ v1 ∧ ... ∧ vN ∈ ∧NV.


Since the space ∧NV is one-dimensional and its basis consists of the single
tensor e1 ∧ ... ∧ eN , the index representation of ψ consists, in principle, of the
single number C in a formula such as


ψ = Ce1 ∧ ... ∧ eN .


However, it is more convenient to use a totally antisymmetric array of num-
bers having N indices, ψi1...iN , so that


ψ =
1


N !


N∑


i1,...,iN=1


ψi1...iN ei1 ∧ ... ∧ eiN
.


Then the coefficient C is C ≡ ψ12...N . In the formula above, the combinato-
rial factor N ! compensates the fact that we are summing an antisymmetric
product of vectors with a totally antisymmetric array of coefficients.


To write such arrays more conveniently, one can use Levi-Civita symbol
εi1...iN (see Sec. 2.3.6). It is clear that any other totally antisymmetric array
of numbers with N indices, such as ψi1...iN , is proportional to εi1...iN : For
indices {i1, ..., iN} that correspond to a permutation σ we have


ψi1...iN = ψ12...N (−1)|σ|,


and hence
ψi1...iN = (ψ12...N )εi1...iN .


How to compute the index representation of ψ given the array vk
j of the


components of the vectors {vj}? We need to represent the tensor


ψ ≡
∑


σ


(−1)
|σ|


vσ(1) ⊗ vσ(2) ⊗ ...⊗ vσ(N).


Hence, we can use the Levi-Civita symbol and write


ψ12...N =
∑


σ


(−1)
|σ|
v1


σ(1) ⊗ v2
σ(2) ⊗ ...⊗ vN


σ(N)


=


N∑


i1,...,iN=1


εi1...iN v1
i1 ...v


N
iN
.
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The component ψ12...N is the only number we need to represent ψ in the basis
{ej}.


The Levi-Civita symbol itself can be seen as the index representation of the
tensor


ω ≡ e1 ∧ ... ∧ eN


in the basis {ej}. (The components of ω in a different basis will, of course,
differ from εi1...iN by a constant factor.)


Now let us construct the index representation of the determinant of an op-


erator Â. The operator is given by its matrix Ai
j and acts on a vector v with


components vi yielding a vector u ≡ Âv with components


uk =
N∑


i=1


Ak
i v


i.


Hence, the operator ∧N ÂN acting on ψ yields an antisymmetric tensor whose
component with the indices k1...kN is


[


(∧N ÂN )ψ
]k1...kN


=
[


Âv1 ∧ ... ∧ ÂvN


]k1...kN


=
∑


is,js


εi1...iNAk1


j1
vj1


i1
...AkN


jN
vjN


iN
.


Since the tensor ∧N ÂNψ is proportional to ψ with the coefficient det Â, the
same proportionality holds for the components of these tensors:


∑


is,js


εi1...iNAk1


j1
vj1


i1
...AkN


jN
vjN


iN
= (det Â)ψk1...kN


= (det Â)
∑


is


εi1...iN vk1


i1
...vkN


iN
.


The relation above must hold for arbitrary vectors {vj}. This is sufficient to


derive a formula for det Â. Since {vj} are arbitrary, we may select {vj} as the
basis vectors {ej}, so that vk


i = δk
i . Substituting this into the equation above,


we find ∑


is,js


εi1...iNAk1


i1
...AkN


iN
= (det Â)εk1...kN .


We can now solve for det Â by multiplying with another Levi-Civita symbol
εk1...kN


, written this time with lower indices to comply with the summation
convention, and summing over all ks. By elementary combinatorics (there are
N ! possibilities to choose the indices k1, ..., kN such that they are all different),
we have ∑


k1,...,kN


εk1...kN
εk1...kN = N !,
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and therefore


det(Â) =
1


N !


∑


is,ks


εk1...kN
εi1...iNAk1


i1
...AkN


iN
.


This formula can be seen as the index representation of


det Â = ω∗(∧N ÂNω),


where ω∗ ∈ (∧NV )∗ is the tensor dual to ω and such that ω∗(ω) = 1. The
components of ω∗ are


1


N !
εk1...kN


.


We have shown how the index notation can express calculations with de-
terminants and tensors in the space ∧NV . Such calculations in the index no-
tation are almost always more cumbersome than in the index-free notation.


3.5 Solving linear equations


Determinants allow us to “determine” whether a system of linear equations
has solutions. I will now explain this using exterior products. I will also
show how to use exterior products for actually finding the solutions of linear
equations when they exist.


A system of N linear equations for N unknowns x1, ..., xN can be written
in the matrix form,


N∑


j=1


Aijxj = bi, i = 1, ..., N. (3.9)


HereAij is a given matrix of coefficients, and theN numbers bi are also given.
The first step in studying Eq. (3.9) is to interpret it in a geometric way, so


that Aij is not merely a “table of numbers” but a geometric object. We intro-
duce an N -dimensional vector space V = RN , in which a basis {ei} is fixed.
There are two options (both will turn out to be useful). The first option is to
interpret Aij , bj , and xj as the coefficients representing some linear operator


Â and some vectors b,x in the basis {ej}:


Â ≡
N∑


i,j=1


Aijei ⊗ e∗j , b ≡
N∑


j=1


bjej , x ≡
N∑


j=1


xjej .


Then we reformulate Eq. (3.9) as the vector equation


Âx = b, (3.10)


from which we would like to find the unknown vector x.
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The second option is to interpretAij as the components of a set ofN vectors
{a1, ...,aN} with respect to the basis,


aj ≡
N∑


i=1


Aijei, j = 1, ..., N,


to define b as before,


b ≡
N∑


j=1


bjej ,


and to rewrite Eq. (3.9) as an equation expressing b as a linear combination
of {aj} with unknown coefficients {xj},


N∑


j=1


xjaj = b. (3.11)


In this interpretation, {xj} is just a set of N unknown numbers. These num-
bers could be interpreted the set of components of the vector b in the basis
{aj} if {aj} were actually a basis, which is not necessarily the case.


3.5.1 Existence of solutions


Let us begin with the first interpretation, Eq. (3.10). When does Eq. (3.10) have


solutions? The solution certainly exists when the operator Â is invertible,


i.e. the inverse operator Â−1 exists such that ÂÂ−1 = Â−1Â = 1̂V ; then the


solution is found as x = Â−1b. The condition for the existence of Â−1 is
that the determinant of Â is nonzero. When the determinant of Â is zero,
the solution may or may not exist, and the solution is more complicated. I
will give a proof of these statements based on the new definition D1 of the
determinant.


Theorem 1: If det Â 6= 0, the equation Âx = b has a unique solution x for


any b ∈ V . There exists a linear operator Â−1 such that the solution x is


expressed as x = Â−1b.


Proof: Suppose {ei | i = 1, ..., N} is a basis in V . It follows from det Â 6= 0
that


∧N ÂN (e1 ∧ ... ∧ eN ) = (Âe1) ∧ ... ∧ (ÂeN ) 6= 0.


By Theorem 1 of Sec. 2.3.2, the set of vectors {Âe1, ..., ÂeN} is linearly in-
dependent and therefore is a basis in V . Thus there exists a unique set of
coefficients {ci} such that


b =


N∑


i=1


ci(Âei).
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Then due to linearity of Â we have


b = Â
N∑


i=1


ciei;


in other words, the solution of the equation Âx = b is x ≡ ∑N
i=1 ciei. Since


the coefficients {ci} are determined uniquely, the solution x is unique.


The solution x can be expressed as a function of b as follows. Since {Âei}
is a basis, there exists the corresponding dual basis, which we may denote by
{
v∗


j


}
. Then the coefficients ci can be expressed as ci = v∗


i (b), and the vector
x as


x =
N∑


i=1


ciei =
N∑


i=1


eiv
∗
i (b) =


(
N∑


i=1


ei ⊗ v∗
i


)
b ≡ Â−1b.


This shows explicitly that the operator Â−1 exists and is linear. �


Corollary: If det Â 6= 0, the equation Âv = 0 has only the (trivial) solution
v = 0.
Proof: The zero vector v = 0 is a solution of Âv = 0. By the above theorem


the solution of that equation is unique, thus there are no other solutions. �


Theorem 2 (existence of eigenvectors): If det Â = 0, there exists at least one
eigenvector with eigenvalue 0, that is, at least one nonzero vector v such that


Âv = 0.
Proof: Choose a basis {ej} and consider the set {Âe1, ..., ÂeN}. This set


must be linearly dependent since


Âe1 ∧ ... ∧ ÂeN = (det Â)e1 ∧ ... ∧ eN = 0.


Hence, there must exist at least one linear combination
∑N


i=1 λiÂei = 0 with


λi not all zero. Then the vector v ≡∑N
i=1 λiei is nonzero and satisfies Âv = 0.


�


Remark: If det Â = 0, there may exist more than one eigenvector v such that


Âv = 0; more detailed analysis is needed to fully determine the eigenspace
of zero eigenvalue, but we found that at least one eigenvector v exists. If


det Â = 0 then the equation Âx = b with b 6= 0 may still have solutions,
although not for every b. Moreover, when a solution x exists it will not be
unique because x + λv is another solution if x is one. The full analysis of


solvability of the equation Âx = b when det Â = 0 is more complicated (see
the end of Sec. 3.5.2). �


Once the inverse operator Â−1 is determined, it is easy to compute solu-


tions of any number of equations Âx = b1, Âx = b2, etc., for any number
of vectors b1, b2, etc. However, if we only need to solve one such equa-


tion, Âx = b, then computing the full inverse operator is too much work:
We have to determine the entire dual basis


{
v∗


j


}
and construct the operator


Â−1 =
∑N


i=1 ei ⊗ v∗
i . An easier method is then provided by Kramer’s rule.
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3.5.2 Kramer’s rule and beyond


We will now use the second interpretation, Eq. (3.11), of a linear system. This
equation claims that b is a linear combination of the N vectors of the set
{a1, ...,aN}. Clearly, this is true for any b if {a1, ...,aN} is a basis in V ; in
that case, the solution {xj} exists and is unique because the dual basis,


{
a∗


j


}
,


exists and allows us to write the solution as


xj = a∗
j (b).


On the other hand, when {a1, ...,aN} is not a basis in V it is not certain that
some given vector b is a linear combination of aj . In that case, the solution
{xj} may or may not exist, and when it exists it will not be unique.


We first consider the case where {aj} is a basis in V . In this case, the solu-
tion {xj} exists, and we would like to determine it more explicitly. We recall
that an explicit computation of the dual basis was shown in Sec. 2.3.3. Moti-
vated by the constructions given in that section, we consider the tensor


ω ≡ a1 ∧ ... ∧ aN ∈ ∧NV


and additionally the N tensors {ωj | j = 1, ..., N}, defined by


ωj ≡ a1 ∧ ... ∧ aj−1 ∧ b ∧ aj+1 ∧ ... ∧ aN ∈ ∧NV. (3.12)


The tensor ωj is the exterior product of all the vectors a1 to aN except that aj


is replaced by b. Since we know that the solution xj exists, we can substitute


b =
∑N


i=1 xiai into Eq. (3.12) and find


ωj = a1 ∧ ... ∧ xjaj ∧ ... ∧ aN = xjω.


Since {aj} is a basis, the tensor ω ∈ ∧NV is nonzero (Theorem 1 in Sec. 2.3.2).
Hence xj (j = 1, ..., N ) can be computed as the coefficient of proportionality
between ωj and ω:


xj =
ωj


ω
=


a1 ∧ ... ∧ aj−1 ∧ b ∧ aj+1 ∧ ... ∧ aN


a1 ∧ ... ∧ aN
.


As before, the “division” of tensors means that the nonzero tensor ω is to be
factored out of the numerator and canceled with the denominator, leaving a
number.


This formula represents Kramer’s rule, which yields explicitly the coeffi-
cients xj necessary to represent a vector b through vectors {a1, ...,aN}. In
its matrix formulation, Kramer’s rule says that xj is equal to the determinant
of the modified matrix Aij where the j-th column has been replaced by the
column (b1, ..., bN ), divided by the determinant of the unmodified Aij .


It remains to consider the case where {aj} is not a basis in V . We have seen
in Statement 2.3.5 that there exists a maximal nonzero exterior product of
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some linearly independent subset of {aj}; this subset can be found by trying
various exterior products of the aj ’s. Let us now denote by ω this maximal
exterior product. Without loss of generality, we may renumber the aj ’s so
that ω = a1 ∧ ... ∧ ar, where r is the rank of the set {aj}. If the equation
∑n


j=1 xjaj = b has a solution then b is expressible as a linear combination
of the aj ’s; thus we must have ω ∧ b = 0. We can check whether ω ∧ b = 0
since we have already computed ω. If we find that ω ∧ b 6= 0 we know that
the equation


∑n
j=1 xjaj = b has no solutions.


If we find that ω ∧ b = 0 then we can conclude that the vector b belongs
to the subspace Span {a1, ...,ar}, and so the equation


∑n
j=1 xjaj = b has so-


lutions, — in fact infinitely many of them. To determine all solutions, we will
note that the set {a1, ...,ar} is linearly independent, so b is uniquely repre-
sented as a linear combination of the vectors a1, ...,ar. In other words, there
is a unique solution of the form


x
(1)
i = (x


(1)
1 , ..., x(1)


r , 0, ..., 0)


that may have nonzero coefficients x
(1)
1 , ..., x


(1)
r only up to the component


number r, after which x
(1)
i = 0 (r + 1 ≤ i ≤ n). To obtain the coefficients


x
(1)
i , we use Kramer’s rule for the subspace Span {a1, ...,ar}:


x
(1)
i =


a1 ∧ ... ∧ aj−1 ∧ b ∧ aj+1 ∧ ... ∧ ar


a1 ∧ ... ∧ ar
.


We can now obtain the general solution of the equation
∑n


j=1 xjaj = b by


adding to the solution x
(1)
i an arbitrary solution x


(0)
i of the homogeneous


equation,
∑n


j=1 x
(0)
j aj = 0. The solutions of the homogeneous equation build


a subspace that can be determined as an eigenspace of the operator Â as con-
sidered in the previous subsection. We can also determine the homogeneous
solutions using the method of this section, as follows.


We decompose the vectors ar+1, ...,an into linear combinations of a1, ..., ar


again by using Kramer’s rule:


ak =


r∑


j=1


αkjaj , k = r + 1, ..., n,


αkj ≡ a1 ∧ ... ∧ aj−1 ∧ ak ∧ aj+1 ∧ ... ∧ ar


a1 ∧ ... ∧ ar
.


Having computed the coefficients αkj , we determine the (n− r)-dimensional
space of homogeneous solutions. This space is spanned by the (n− r) solu-


130







3.5 Solving linear equations


tions that can be chosen, for example, as follows:


x
(0)(r+1)
i = (α(r+1)1, ..., α(r+1)r,−1, 0, ..., 0),


x
(0)(r+2)
i = (α(r+2)1, ..., α(r+2)r, 0,−1, ..., 0),


...


x
(0)(n)
i = (αn1, ..., αnr, 0, 0, ...,−1).


Finally, the solution of the equation
∑n


j=1 xjaj = b can be written as


xi = x
(1)
i +


n∑


k=r+1


βkx
(0)(k)
i , i = 1, ..., n,


where {βk | k = r + 1, ...n} are arbitrary coefficients. The formula above ex-
plicitly contains (n− r) arbitrary constants and is called the general solution
of
∑n


i=1 xiai = b. (The general solution of something is a formula with arbi-
trary constants that describes all solutions.)


Example: Consider the linear system


2x+ y = 1


2x+ 2y + z = 4


y + z = 3


Let us apply the procedure above to this system. We interpret this system
as the vector equation xa + yb + zc = p where a = (2, 2, 0), b = (1, 2, 1),
c = (0, 1, 1), and p = (1, 4, 3) are given vectors. Introducing an explicit basis
{e1, e2, e3}, we compute (using elimination)


a ∧ b = (2e1 + 2e2) ∧ (e1 + 2e2 + e3)


= 2 (e1 + e2) ∧ (e1 + 2e2 + e3)


= 2 (e1 + e2) ∧ (e2 + e3) = a ∧ c.


Therefore a ∧ b ∧ c = 0, and the maximal nonzero exterior product can be
chosen as ω ≡ a ∧ b. Now we check whether the vector p belongs to the
subspace Span {a,b}:


ω ∧ p = 2 (e1 + e2) ∧ (e2 + e3) ∧ (e1 + 4e2 + 3e3)


= 2 (e1 + e2) ∧ (e2 + e3) ∧ 3(e2 + e3) = 0.
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Therefore, p can be represented as a linear combination of a and b. To deter-
mine the coefficients, we use Kramer’s rule: p = αa + βb where


α =
p ∧ b


a ∧ b
=


(e1 + 4e2 + 3e3) ∧ (e1 + 2e2 + e3)


2 (e1 + e2) ∧ (e2 + e3)


=
−2e1 ∧ e2 − 2e1 ∧ e3 − 2e2 ∧ e3


2 (e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3)
= −1;


β =
a ∧ p


a ∧ b
=


2 (e1 + e2) ∧ (e1 + 4e2 + 3e3)


2 (e1 + e2) ∧ (e2 + e3)


=
3e1 ∧ e2 + 3e1 ∧ e3 + 3e2 ∧ e3


e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3
= 3.


Therefore, p = −a+3b; thus the inhomogeneous solution is x(1) = (−1, 3, 0).
To determine the space of homogeneous solutions, we decompose c into a


linear combination of a and b by the same method; the result is c = − 1
2a+b.


So the space of homogeneous solutions is spanned by the single solution


x
(0)(1)
i =


(
− 1


2 , 1,−1
)
.


Finally, we write the general solution as


xi = x
(1)
i + βx


(0)(1)
i =


(
−1 − 1


2β, 3 + β,−β
)
,


where β is an arbitrary constant. �


Remark: In the calculations of the coefficients according to Kramer’s rule the
numerators and the denominators always contain the same tensor, such as
e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3, multiplied by a constant factor. We have seen
this in the above examples. This is guaranteed to happen in every case; it is
impossible that a numerator should contain e1∧e2+e1∧e3+2e2∧e3 or some
other tensor not proportional to ω. Therefore, in practical calculations it is
sufficient to compute just one coefficient, say at e1∧e2, in both the numerator
and the denominator.


Exercise: Techniques based on Kramer’s rule can be applied also to non-
square systems. Consider the system


x+ y = 1


y + z = 1


This system has infinitely many solutions. Determine the general solution.
Answer: For example, the general solution can be written as


xi = (1, 0, 1) + α (1,−1, 1) ,


where α is an arbitrary number.
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3.6 Vandermonde matrix


The Vandermonde matrix is defined by


Vand (x1, ..., xN ) ≡













1 1 · · · 1
x1 x2 xN


x2
1 x2


2 x2
N


...
...


. . .


xN−1
1 xN−1


2 · · · xN−1
N













.


It is a curious matrix that is useful in several ways. A classic result is an
explicit formula for the determinant of this matrix. Let us first compute the
determinant for a Vandermonde matrix of small size.
Exercise 1: Verify that the Vandermonde determinants for N = 2 and N = 3
are as follows,


∣
∣
∣
∣


1 1
x y


∣
∣
∣
∣
= y − x;


∣
∣
∣
∣
∣
∣


1 1 1
x y z
x2 y2 z2


∣
∣
∣
∣
∣
∣


= (y − x) (z − x) (z − y) .


It now appears plausible from these examples that the determinant that
we denote by det (Vand(x1, ..., xN )) is equal to the product of the pairwise
differences between all the xi’s.
Statement 1: The determinant of the Vandermonde matrix is given by


det (Vand (x1, ..., xN ))


= (x2 − x1) (x3 − x1) ... (xN − xN−1)


=
∏


1≤i<j≤N


(xj − xi). (3.13)


Proof: Let us represent the Vandermonde matrix as a table of the compo-
nents of a set of N vectors {vj} with respect to some basis {ej}. Looking at
the Vandermonde matrix, we find that the components of the vector v1 are
(1, 1, ..., 1), so


v1 = e1 + ...+ eN .


The components of the vector v2 are (x1, x2, ..., xN ); the components of the
vector v3 are


(
x2


1, x
2
2, ..., x


2
N


)
. Generally, the vector vj (j = 1, ..., N ) has com-


ponents (xj−1
1 , ..., xj−1


N ). It is convenient to introduce a linear operator Â such


that Âe1 = x1e1, ..., ÂeN = xNeN ; in other words, the operator Â is diagonal


in the basis {ej}, and ej is an eigenvector of Â with the eigenvalue xj . A


tensor representation of Â is


Â =


N∑


j=1


xjej ⊗ e∗j .
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Then we have a short formula for vj :


vj = Âj−1u, j = 1, ..., N ; u ≡ v1 = e1 + ...+ eN .


According to Statement 1 of Sec. 3.4, the determinant of the Vandermonde
matrix is equal to the coefficient C in the equation


v1 ∧ ... ∧ vN = Ce1 ∧ ... ∧ eN .


So our purpose now is to determineC. Let us use the formula for vj to rewrite


v1 ∧ ... ∧ vN = u ∧ Âu ∧ Â2u ∧ ... ∧ ÂN−1u. (3.14)


Now we use the following trick: since a∧b = a∧ (b + λa) for any λ, we may
replace


u ∧ Âu = u ∧ (Âu + λu) = u ∧ (Â+ λ1̂)u.


Similarly, we may replace the factor Â2u by (Â2 + λ1Â+ λ2)u, with arbitrary
coefficients λ1 and λ2. We may pull this trick in every factor in the tensor


product (3.14) starting from the second factor. In effect, we may replace Âk


by an arbitrary polynomial pk(Â) of degree k as long as the coefficient at Âk


remains 1. (Such polynomials are called monic polynomials.) So we obtain


u ∧ Âu ∧ Â2u ∧ ... ∧ ÂN−1u


= u ∧ p1(Â)u ∧ p2(Â)Âu ∧ ... ∧ pN−1(Â)u.


Since we may choose the monic polynomials pj(Â) arbitrarily, we would like
to choose them such that the formula is simplified as much as possible.


Let us first choose the polynomial pN−1 because that polynomial has the
highest degree (N − 1) and so affords us the most freedom. Here comes an-
other trick: If we choose


pN−1(x) ≡ (x− x1) (x− x2) ... (x− xN−1) ,


then the operator pN−1(Â) will be much simplified:


pN−1(Â)eN = pN−1(xN )eN ; pN−1(Â)ej = 0, j = 1, ..., N − 1.


Therefore pN−1(Â)u = pN−1(xN )eN . Now we repeat this trick for the poly-
nomial pN−2, choosing


pN−2(x) ≡ (x− x1) ... (x− xN−2)


and finding


pN−2(Â)u = pN−2(xN−1)eN−1 + pN−2(xN )eN .
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We need to compute the exterior product, which simplifies:


pN−2(Â)u ∧ pN−1(Â)u


= (pN−2(xN−1)eN−1 + pN−2(xN )eN ) ∧ pN−1(xN )eN


= pN−2(xN−1)eN−1 ∧ pN−1(xN )eN .


Proceeding inductively in this fashion, we find


u ∧ p1(Â)u ∧ ... ∧ pN−1(Â)u


= u ∧ p1(x2)e2 ∧ ... ∧ pN−1(xN )eN


= p1(x2)...pN−1(xN )e1 ∧ ... ∧ eN ,


where we defined each monic polynomial pj(x) as


pj(x) ≡ (x− x1)...(x− xj), j = 1, ..., N − 1.


For instance, p1(x) = x− x1. The product of the polynomials,


p1(x2)p2(x3)...pN−1(xN )


= (x2 − x1) (x3 − x1)(x3 − x2)...(xN − xN−1)


=
∏


1≤i<j≤N


(xj − xi) .


yields the required formula (3.13). �


Remark: This somewhat long argument explains the procedure of subtract-
ing various rows of the Vandermonde matrix from each other in order to sim-
plify the determinant. (The calculation appears long because I have moti-
vated every step, rather than just go through the equations.) One can observe
that the determinant of the Vandermonde matrix is nonzero if and only if all
the values xj are different. This property allows one to prove the Vander-
monde formula in a much more elegant way.3 Namely, one can notice that
the expression v1 ∧ ... ∧ vN is a polynomial in xj of degree not more than
1
2N(N − 1); that this polynomial is equal to zero unless every xj is different;
therefore this polynomial must be equal to Eq. (3.13) times a constant. To find
that constant, one computes explicitly the coefficient at the term x2x


2
3...x


N−1
N ,


which is equal to 1, hence the constant is 1. �


In the next two subsections we will look at two interesting applications of
the Vandermonde matrix.


3.6.1 Linear independence of eigenvectors


Statement: Suppose that the vectors e1, ..., en are nonzero and are eigenvec-


tors of an operator Â with all different eigenvalues λ1, ..., λn. Then the set


3I picked this up from a paper by C. Krattenthaler (see online
arxiv.org/abs/math.co/9902004) where many other special determinants
are evaluated using similar techniques.


135







3 Basic applications


{e1, ..., en} is linearly independent. (The number n may be less than the di-
mension N of the vector space V ; the statement holds also for infinite-dimen-
sional spaces).
Proof. Let us show that the set {ej | j = 1, ..., n} is linearly independent.


By definition of linear independence, we need to show that
∑n


j=1 cjej = 0
is possible only if all the coefficients cj are equal to zero. Let us denote u =
∑n


j=1 cjej and assume that u = 0. Consider the vectors u, Âu, ..., Ân−1u;
by assumption all these vectors are equal to zero. The condition that these
vectors are equal to zero is a system of vector equations that looks like this,


c1e1 + ...+ cnen = 0,


c1λ1e1 + ...+ cnλnen = 0,


...


c1λ
n−1
1 e1 + ...+ cnλ


n−1
n en = 0.


This system of equations can be written in a matrix form with the Vander-
monde matrix,











1 1 · · · 1
λ1 λ2 λn


...
...


. . .


λn−1
1 λn−1


2 · · · λn−1
n




















c1e1


c2e2


...
cnen











=











0
0
...
0









.


Since the eigenvalues λj are (by assumption) all different, the determinant of
the Vandermonde matrix is nonzero. Therefore, this system of equations has
only the trivial solution, cjej = 0 for all j. Since ej 6= 0, it is necessary that all
cj = 0, j = 1, ...n. �


Exercise: Show that we are justified in using the matrix method for solving a
system of equations with vector-valued unknowns ciei.


Hint: Act with an arbitrary covector f∗ on all the equations.


3.6.2 Polynomial interpolation


The task of polynomial interpolation consists of finding a polynomial that
passes through specified points.
Statement: If the numbers x1, ..., xN are all different and numbers y1, ..., yN


are arbitrary then there exists a unique polynomial p(x) of degree at most
N − 1 that has values yj at the points xj (j = 1, ..., N ).
Proof. Let us try to determine the coefficients of the polynomial p(x). We


write a polynomial with unknown coefficients,


p(x) = p0 + p1x+ ...+ pN−1x
N−1,


and obtain a system of N linear equations, p(xj) = yj (j = 1, ..., N ), for the N
unknowns pj . The crucial observation is that this system of equations has the
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Vandermonde matrix. For example, with N = 3 we have three equations,


p(x1) = p0 + p1x1 + p2x
2
1 = y1,


p(x2) = p0 + p1x2 + p2x
2
2 = y2,


p(x3) = p0 + p1x3 + p2x
2
3 = y3,


which can be rewritten in the matrix form as






1 x1 x2
1


1 x2 x2
2


1 x3 x2
3














p0


p1


p2





 =








y1
y2
y3





 .


Since the determinant of the Vandermonde matrix is nonzero as long as all xj


are different, these equations always have a unique solution {pj}. Therefore
the required polynomial always exists and is unique. �


Question: The polynomial p(x) exists, but how can I write it explicitly?
Answer: One possibility is the Lagrange interpolating polynomial; let us


illustrate the idea on an example with three points:


p(x) = y1
(x− x2) (x− x3)


(x1 − x2) (x1 − x3)
+ y2


(x− x1) (x− x3)


(x2 − x1) (x2 − x3)


+ y3
(x− x1) (x− x2)


(x3 − x1) (x3 − x2)
.


It is easy to check directly that this polynomial indeed has values p(xi) = yi


for i = 1, 2, 3. However, other (equivalent, but computationally more effi-
cient) formulas are used in numerical calculations.


3.7 Multilinear actions in exterior powers


As we have seen, the action of Â on the exterior power ∧NV by


v1 ∧ ... ∧ vN 7→ Âv1 ∧ ... ∧ ÂvN


has been very useful. However, this is not the only way Â can act on an N -
vector. Let us explore other possibilities; we will later see that they have their
uses as well.


A straightforward generalization is to promote an operator Â ∈ End V to a
linear operator in the space ∧kV , k < N (rather than in the top exterior power


∧NV ). We denote this by ∧kÂk:


(∧kÂk)v1 ∧ ... ∧ vk = Âv1 ∧ ... ∧ Âvk.


This is, of course, a linear map of ∧kÂk to itself (but not any more a mere
multiplication by a scalar!). For instance, in ∧2V we have


(∧2Â2)u ∧ v = Âu ∧ Âv.
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However, this is not the only possibility. We could, for instance, define an-
other map of ∧2V to itself like this,


u ∧ v 7→ (Âu) ∧ v + u ∧ (Âv).


This map is linear in Â (as well as being a linear map of ∧2V to itself), so


I denote this map by ∧2Â1 to emphasize that it contains Â only linearly. I


call such maps extensions of Â to the exterior power space ∧2V (this is not a
standard terminology).


It turns out that operators of this kind play an important role in many
results related to determinants. Let us now generalize the examples given


above. We denote by ∧mÂk a linear map ∧mV → ∧mV that acts on v1∧...∧vm


by producing a sum of terms with k copies of Â in each term. For instance,


∧2Â1 (a ∧ b) ≡ Âa ∧ b + a ∧ Âb;


∧3Â3 (a ∧ b ∧ c) ≡ Âa ∧ Âb ∧ Âc;


∧3Â2 (a ∧ b ∧ c) ≡ Âa ∧ Âb ∧ c + Âa ∧ b ∧ Âc


+ a ∧ Âb ∧ Âc.


More generally, we can write


∧kÂk (v1 ∧ ... ∧ vk) = Âv1 ∧ ... ∧ Âvk;


∧kÂ1 (v1 ∧ ... ∧ vk) =
k∑


j=1


v1 ∧ ... ∧ Âvj ∧ ... ∧ vk;


∧kÂm (v1 ∧ ... ∧ vk) =
∑


s1, ..., sk = 0, 1
∑


j sj = m


Âs1v1 ∧ ... ∧ Âskvk.


In the last line, the sum is over all integers sj , each being either 0 or 1, so that


Âsj is either 1̂ or Â, and the total power of Â is m.


So far we defined the action of ∧mÂk only on tensors of the form v1 ∧ ... ∧
vm ∈ ∧mV . Since an arbitrary element of ∧mV is a linear combination of


such “elementary” tensors, and since we intend ∧mÂk to be a linear map,


we define the action of ∧mÂk on every element of ∧mV using linearity. For
example,


∧2Â2 (a ∧ b + c ∧ d) ≡ Âa ∧ Âb + Âc ∧ Âd.


By now it should be clear that the extension ∧mÂk is indeed a linear map
∧mV → ∧mV . Here is a formal definition.


Definition: For a linear operator Â in V , the k-linear extension of Â to the


space ∧mV is a linear transformation ∧mV → ∧mV denoted by ∧mÂk and
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defined by the formula


∧m Âk
(


m∧


j=1


vj


)
=


∑


(s1,...,sm)


m∧


j=1


Âsjvj , sj = 0 or 1,


m∑


j=1


sj = k. (3.15)


In words: To describe the action of ∧mÂk on a term v1 ∧ ... ∧ vm ∈ ∧mV , we
sum over all possible ways to act with Â on the various vectors vj from the


term v1 ∧ ... ∧ vm, where Â appears exactly k times. The action of ∧mÂk on
a linear combination of terms is by definition the linear combination of the


actions on each term. Also by definition we set ∧mÂ0 ≡ 1̂∧mV and ∧mÂk ≡
0̂∧mV for k < 0 or k > m or m > N . The meaningful values of m and k for


∧mÂk are thus 0 ≤ k ≤ m ≤ N .
Example: Let the operator Â and the vectors a,b, c be such that Âa = 0,


Âb = 2b, Âc = b + c. We can then apply the various extensions of the


operator Â to various tensors. For instance,


∧2Â1(a ∧ b) = Âa ∧ b + a ∧ Âb = 2a ∧ b,


∧2Â2(a ∧ b) = Âa ∧ Âb = 0,


∧3Â2(a ∧ b ∧ c) = a ∧ Âb ∧ Âc = a ∧ 2b ∧ c = 2(a ∧ b ∧ c)


(in the last line, we dropped terms containing Âa).


Before we move on to see why the operators ∧mÂk are useful, let us obtain
some basic properties of these operators.


Statement 1: The k-linear extension of Â is a linear operator in the space
∧mV .
Proof: To prove the linearity of the map, we need to demonstrate not only


that ∧mÂk maps linear combinations into linear combinations (this is obvi-


ous), but also that the result of the action of ∧mÂk on a tensor ω ∈ ∧mV does
not depend on the particular representation of ω through terms of the form
v1 ∧ ... ∧ vm. Thus we need to check that


∧mÂk (ω ∧ v1 ∧ v2 ∧ ω′) = −∧mÂk (ω ∧ v2 ∧ v1 ∧ ω′) ,


where ω and ω′ are arbitrary tensors such that ω ∧ v1 ∧ v2 ∧ ω′ ∈ ∧mV . But


this property is a simple consequence of the definition of ∧mÂk which can be
verified by explicit computation. �


Statement 2: For any two operators Â, B̂ ∈ End V , we have


∧m(ÂB̂)
m


=
(
∧mÂm


)(
∧mB̂m


)
.


For example,


∧2 (ÂB̂)
2
(u ∧ v) = ÂB̂u ∧ ÂB̂v


= ∧2Â2(B̂u ∧ B̂v) = ∧2Â2
(
∧2B̂2


)
(u ∧ v) .
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Proof: This property is a direct consequence of the definition of the opera-


tor ∧kÂk:


∧kÂk (v1 ∧ ... ∧ vk) = Âv1 ∧ Âv2 ∧ ... ∧ Âvk =
k∧


j=1


Âvj ,


therefore


∧m(ÂB̂)
m(


k∧


j=1


vj


)
=


k∧


j=1


ÂB̂vj ,


∧mÂm ∧m B̂m
(


k∧


j=1


vj


)
= ∧mÂm


(
k∧


j=1


B̂vj


)
=


k∧


j=1


ÂB̂vj .


�


Statement 3: The operator ∧mÂk is k-linear in Â,


∧m(λÂ)k = λk(∧mÂk).


For this reason, ∧mÂk is called a k-linear extension.
Proof: This follows directly from the definition of the operator ∧mÂk. �


Finally, a formula that will be useful later (you can skip to Sec. 3.8 if you


would rather see how ∧mÂk is used).


Statement 4: The following identity holds for any Â ∈ End V and for any
vectors {vj | 1 ≤ j ≤ m} and u,


[
∧mÂk (v1 ∧ ... ∧ vm)


]
∧ u +


[
∧mÂk−1 (v1 ∧ ... ∧ vm)


]
∧ (Âu)


= ∧m+1Âk (v1 ∧ ... ∧ vm ∧ u) .


For example,


∧2 Â2 (u ∧ v) ∧ w + ∧2Â1 (u ∧ v) ∧ Âw = ∧3Â2 (u ∧ v ∧ w) . (3.16)


Proof: By definition, ∧m+1Âk (v1 ∧ ... ∧ vm ∧ u) is a sum of terms where


Â acts k times on the vectors vj and u. We can gather all terms containing Âu


and separately all terms containing u, and we will get the required expres-
sions. Here is an explicit calculation for the given example:


∧2Â2 (u ∧ v) ∧ w = Âu ∧ Âv ∧ w;


∧2Â1 (u ∧ v) ∧ Âw =
(
Âu ∧ v + u ∧ Âv


)
∧ Âw.


The formula (3.16) follows.
It should now be clear how the proof proceeds in the general case. A formal


proof using Eq. (3.15) is as follows. Applying Eq. (3.15), we need to sum over
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s1, ..., sm+1. We can consider terms where sm+1 = 0 separately from terms
where sm+1 = 1:


∧m+1Âk (v1 ∧ ... ∧ vm ∧ u) =
∑


(s1,...,sm);
P


sj=k


(
m∧


j=1


Âsjvj


)
∧ u


+
∑


(s1,...,sm);
P


sj=k−1


(
m∧


j=1


Âsjvj


)
∧ Âu


=
[
∧mÂk (v1 ∧ ... ∧ vm)


]
∧ u +


[
∧mÂk−1 (v1 ∧ ... ∧ vm)


]
∧ Âu.


�


3.7.1 * Index notation


Let us briefly note how the multilinear action such as ∧mÂk can be expressed
in the index notation.


Suppose that the operator Â has the index representation Aj
i in a fixed ba-


sis. The operator ∧mÂk acts in the space ∧mV ; tensors ψ in that space are
represented in the index notation by totally antisymmetric arrays with m in-


dices, such as ψi1...im . An operator B̂ ∈ End (∧mV ) must be therefore repre-


sented by an array with 2m indices, Bj1...jm


i1...im
, which is totally antisymmetric


with respect to the indices {is} and separately with respect to {js}.


Let us begin with ∧mÂm as the simplest case. The action of ∧mÂm on ψ is
written in the index notation as


[∧mÂmψ]i1...im =


N∑


j1,...,jm=1


Ai1
j1
...Aim


jm
ψj1...jm .


This array is totally antisymmetric in i1, ..., im as usual.


Another example is the action of ∧mÂ1 on ψ:


[∧mÂ1ψ]i1...im =


m∑


s=1


N∑


j=1


Ais


j ψ
i1...is−1jis+1...im .


In other words, Â acts only on the sth index of ψ, and we sum over all s.


In this way, every ∧mÂk can be written in the index notation, although the
expressions become cumbersome.


3.8 Trace


The trace of a square matrixAjk is defined as the sum of its diagonal elements,
TrA ≡ ∑n


j=1Ajj . This definition is quite simple at first sight. However, if
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this definition is taken as fundamental then one is left with many questions.
Suppose Ajk is the representation of a linear transformation in a basis; is the
number TrA independent of the basis? Why is this particular combination of
the matrix elements useful? (Why not compute the sum of the elements of
Ajk along the other diagonal of the square,


∑n
j=1A(n+1−j)j?)


To clarify the significance of the trace, I will give two other definitions of
the trace: one through the canonical linear map V ⊗ V ∗ → K, and another
using the exterior powers construction, quite similar to the definition of the
determinant in Sec. 3.3.


Definition Tr1: The trace TrA of a tensor A ≡ ∑


k vk ⊗ f∗k ∈ V ⊗ V ∗ is the
number canonically defined by the formula


TrA =
∑


k


f∗k (vk) . (3.17)


If we represent the tensor A through the basis tensors ej ⊗ e∗k, where {ej} is
some basis and {e∗k} is its dual basis,


A =
N∑


j=1


N∑


k=1


Ajkej ⊗ e∗k,


then e∗k(ej) = δij , and it follows that


TrA =
N∑


j,k=1


Ajke
∗
k(ej) =


N∑


j,k=1


Ajkδkj =
N∑


j=1


Ajj ,


in agreement with the traditional definition.


Exercise 1: Show that the trace (according to Definition Tr1) does not depend
on the choice of the tensor decomposition A =


∑


k vk ⊗ f∗k . �


Here is another definition of the trace.


Definition Tr2: The trace TrÂ of an operator Â ∈ End V is the number by


which any nonzero tensor ω ∈ ∧NV is multiplied when ∧N Â1 acts on it:


(∧N Â1)ω = (TrÂ)ω, ∀ω ∈ ∧NV. (3.18)


Alternatively written,


∧N Â1 = (TrÂ)1̂∧N V .


First we will show that the definition Tr2 is equivalent to the traditional


definition of the trace. Recall that, according to the definition of ∧N Â1,


∧N Â1 (v1 ∧ ... ∧ vN ) = Âv1 ∧ v2 ∧ ... ∧ vN + ...


+ v1 ∧ ... ∧ vN−1 ∧ ÂvN .
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Statement 1: If {ej} is any basis in V ,
{
e∗j
}


is the dual basis, and a linear


operator Â is represented by a tensor Â =
∑N


j,k=1Ajkej ⊗ e∗k, then the trace


of Â computed according to Eq. (3.18) will agree with the formula TrÂ =
∑N


j=1Ajj .


Proof: The operator Â acts on the basis vectors {ej} as follows,


Âek =


N∑


j=1


Ajkej .


Therefore e1 ∧ ...∧ Âej ∧ ...∧eN = Ajje1 ∧ ...∧eN , and definition (3.18) gives


(TrÂ) e1 ∧ ... ∧ eN =


N∑


j=1


e1 ∧ ... ∧ Âej ∧ ... ∧ eN


=
(


N∑


j=1


Ajj


)
e1 ∧ ... ∧ eN .


Thus TrÂ =
∑N


j=1Ajj . �


Now we prove some standard properties of the trace.


Statement 2: For any operators Â, B̂ ∈ End V :


(1) Tr(Â+ B̂) = TrÂ+ TrB̂.
(2) Tr(ÂB̂) = Tr(B̂Â).
Proof: The formula (3.17) allows one to derive these properties more easily,


but I will give proofs using the definition (3.18).
(1) Since


e1 ∧ ... ∧ (Â+ B̂)ej ∧ ... ∧ eN = e1 ∧ ... ∧ Âej ∧ ... ∧ eN


+ e1 ∧ ... ∧ B̂ej ∧ ... ∧ eN ,


from the definition of ∧N Â1 we easily obtain ∧N (Â+ B̂)1 = ∧N Â1 + ∧N B̂1.


(2) Since ∧N Â1 and ∧N B̂1 are operators in one-dimensional space ∧NV ,
they commute, that is


(∧N Â1)(∧N B̂1) = (∧N B̂1)(∧N Â1) = (TrÂ)(TrB̂)1̂∧N V .


Now we explicitly compute the composition (∧N Â1)(∧N B̂1) acting on e1 ∧
.... ∧ eN . First, an example with N = 2,


(∧N Â1)(∧N B̂1) (e1 ∧ e2) = ∧N Â1(B̂e1 ∧ e2 + e1 ∧ B̂e2)


= ÂB̂e1 ∧ e2 + B̂e1 ∧ Âe2


+ Âe1 ∧ B̂e2 + e1 ∧ ÂB̂e2


= ∧N (ÂB̂)1e1 ∧ e2 + Âe1 ∧ B̂e2 + B̂e1 ∧ Âe2.
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Now the general calculation:


(∧N Â1)(∧N B̂1)e1 ∧ .... ∧ eN =


N∑


j=1


e1 ∧ ... ∧ ÂB̂ej ∧ ... ∧ eN


+
N∑


j=1


N∑


k = 1
(k 6= j)


e1 ∧ ... ∧ Âej ∧ ... ∧ B̂ek ∧ ... ∧ eN .


The second sum is symmetric in Â and B̂, therefore the identity


(∧N Â1)(∧N B̂1)e1 ∧ .... ∧ eN = (∧N B̂1)(∧N Â1)e1 ∧ .... ∧ eN


entails


N∑


j=1


e1 ∧ ... ∧ ÂB̂ej ∧ ... ∧ eN =


N∑


j=1


e1 ∧ ... ∧ B̂Âej ∧ ... ∧ eN ,


that is Tr(ÂB̂) = Tr(B̂Â). �


Exercise 2: The operator L̂b acts on the entire exterior algebra ∧V and is de-


fined by L̂b : ω 7→ b∧ω, where ω ∈ ∧V and b ∈ V . Compute the trace of this
operator. Hint: Use Definition Tr1 of the trace.


Answer: TrL̂b = 0.
Exercise 3: Suppose ÂÂ = 0; show that TrÂ = 0 and det Â = 0.


Solution: We see that det Â = 0 because 0 = det(ÂÂ) = (det Â)2. Now we
apply the operator ∧N Â1 to a nonzero tensor ω = v1 ∧ ... ∧ vN ∈ ∧NV twice
in a row:


(∧N Â1)(∧N Â1)ω = (TrÂ)2ω


= (∧N Â1)


N∑


j=1


v1 ∧ ... ∧ Âvj ∧ ... ∧ vN


=


N∑


i=1


N∑


j=1


v1 ∧ ... ∧ Âvi ∧ ... ∧ Âvj ∧ ... ∧ vN


= 2(∧N Â2)ω.


(In this calculation, we omitted the terms containing ÂÂvi since ÂÂ = 0.)
Using this trick, we can prove by induction that for 1 ≤ k ≤ N


(TrÂ)
k
ω = (∧N Â1)kω = k!(∧N Âk)ω.


Note that ∧N ÂN multiplies by the determinant of Â, which is zero. Therefore


(TrÂ)N = N !(det Â) = 0 and so TrÂ = 0. �
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3.9 Characteristic polynomial


Definition: The characteristic polynomial QÂ (x) of an operator Â ∈ End V
is defined as


QÂ (x) ≡ det
(
Â− x1̂V


)
.


This is a polynomial of degree N in the variable x.


Example 1: The characteristic polynomial of the operator a1̂V , where a ∈ K,
is


Qa1̂V
(x) = (a− x)


N
.


Setting a = 0, we find that the characteristic polynomial of the zero operator


0̂V is simply (−x)N .


Example 2: Consider a diagonalizable operator Â, i.e. an operator having a
basis {v1, ...,vN} of eigenvectors with eigenvalues λ1, ..., λN (the eigenvalues
are not necessarily all different). This operator can be then written in a tensor
form as


Â =


N∑


i=1


λivi ⊗ v∗
i ,


where {v∗
i } is the basis dual to {vi}. The characteristic polynomial of this


operator is found from


det(Â− x1̂)v1 ∧ ... ∧ vN = (Âv1 − xv1) ∧ ... ∧ (ÂvN − xvN )


= (λ1 − x)v1 ∧ ... ∧ (λN − x)vN .


Hence


QÂ(x) = (λ1 − x) ... (λN − x) .


Note also that the trace of a diagonalizable operator is equal to the sum of the


eigenvalues, Tr Â = λ1 + ...+λN , and the determinant is equal to the product


of the eigenvalues, det Â = λ1λ2...λN . This can be easily verified by direct


calculations in the eigenbasis of Â.


Exercise 1: If an operator Â has the characteristic polynomial QÂ (x) then


what is the characteristic polynomial of the operator aÂ, where a ∈ K is a
scalar?
Answer:


QaÂ (x) = aNQÂ


(
a−1x


)
.


Note that the right side of the above formula does not actually contain a in
the denominator because of the prefactor aN . �


The principal use of the characteristic polynomial is to determine the eigen-
values of linear operators. We remind the reader that a polynomial p(x) of
degree N has N roots if we count each root with its algebraic multiplicity;
the number of different roots may be smaller than N . A root λ has algebraic
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multiplicity k if p(x) contains a factor (x− λ)
k but not a factor (x− λ)


k+1.
For example, the polynomial


p(x) = (x− 3)2(x− 1) = x3 − 7x2 + 15x− 9


has two distinct roots, x = 1 and x = 3, and the root x = 3 has multiplicity
2. If we count each root with its multiplicity, we will find that the polynomial
p(x) has 3 roots (“not all of them different” as we would say in this case).
Theorem 1: a) The set of all the roots of the characteristic polynomial QÂ(x)


is the same as the set of all the eigenvalues of the operator Â.
b) The geometric multiplicity of an eigenvalue λ (i.e. the dimension of the


space of all eigenvectors with the given eigenvalue λ) is at least 1 but not
larger than the algebraic multiplicity of a root λ in the characteristic polyno-
mial.
Proof: a) By definition, an eigenvalue of an operator Â is such a number


λ ∈ K that there exists at least one vector v ∈ V , v 6= 0, such that Âv = λv.
This equation is equivalent to (Â− λ1̂V )v = 0. By Corollary 3.5, there would


be no solutions v 6= 0 unless det(Â− λ1̂V ) = 0. It follows that all eigenvalues
λ must be roots of the characteristic polynomial. Conversely, if λ is a root


then det(Â − λ1̂V ) = 0 and hence the vector equation (Â − λ1̂V )v = 0 will
have at least one nonzero solution v (see Theorem 2 in Sec. 3.5).


b) Suppose {v1, ...,vk} is a basis in the eigenspace of eigenvalue λ0. We
need to show that λ0 is a root of QÂ(x) with multiplicity at least k. We may
obtain a basis in the space V as {v1, ...,vk, ek+1, ..., eN} by adding suitable
new vectors {ej}, j = k + 1, ..., N . Now compute the characteristic polyno-
mial:


QÂ(x)(v1 ∧ ... ∧ vk ∧ ek+1 ∧ ... ∧ eN )


= (Â− x1̂)v1 ∧ ... ∧ (Â− x1̂)vk


∧ (Â− x1̂)ek+1 ∧ ... ∧ (Â− x1̂)eN


= (λ0 − x)
k
v1 ∧ ... ∧ vk ∧ (Â− x1̂)ek+1 ∧ ... ∧ (Â− x1̂)eN .


It follows that QÂ(x) contains the factor (λ0 − x)
k, which means that λ0 is a


root of QÂ(x) of multiplicity at least k. �


Remark: If an operator’s characteristic polynomial has a root λ0 of algebraic
multiplicity k, it may or may not have a k-dimensional eigenspace for the
eigenvalue λ0. We only know that λ0 is an eigenvalue, i.e. that the eigenspace
is at least one-dimensional. �


Theorem 1 shows that all the eigenvalues λ of an operator Â can be com-
puted as roots of the equation QÂ(λ) = 0, which is called the characteristic


equation for the operator Â.
Now we will demonstrate that the coefficients of the characteristic poly-


nomial QÂ(x) are related in a simple way to the operators ∧N Âk. First we
need an auxiliary calculation to derive an explicit formula for determinants


of operators of the form Â− λ1̂V .
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Lemma 1: For any Â ∈ End V , we have


∧N (Â+ 1̂V )N =
N∑


r=0


(∧N Âr).


More generally, for 0 ≤ q ≤ p ≤ N , we have


∧p (Â+ 1̂V )q =


q
∑


r=0


(
p− r


p− q


)


(∧pÂr). (3.19)


Proof: I first give some examples, then prove the most useful case p = q,
and then show a proof of Eq. (3.19) for arbitrary p and q.


For p = q = 2, we compute


∧2(Â+ 1̂V )2a ∧ b = (Â+ 1̂V )a ∧ (Â+ 1̂V )b


= Âa ∧ Âb + Âa ∧ b + a ∧ Âb + a ∧ b


= [∧2Â2 + ∧2Â1 + ∧2Â0] (a ∧ b) .


This can be easily generalized to arbitrary p = q: The action of the operator


∧p(Â+ 1̂V )p on e1 ∧ ... ∧ ep is


∧p(Â+ 1̂V )pe1 ∧ ... ∧ ep = (Â+ 1̂V )e1 ∧ ... ∧ (Â+ 1̂V )ep,


and we can expand the brackets to find first one term with p operators Â, then


p terms with (p− 1) operators Â, etc., and finally one term with no operators


Â acting on the vectors ej . All terms which contain r operators Â (with 0 ≤
r ≤ p) are those appearing in the definition of the operator ∧pÂr. Therefore


∧p(Â+ 1̂V )p =


p
∑


r=0


(∧pÂr).


This is precisely the formula (3.19) because in the particular case p = q the
combinatorial coefficient is trivial,


(
p− r


p− q


)


=


(
p− r


0


)


= 1.


Now we consider the general case 0 ≤ q ≤ p. First an example: for p = 2
and q = 1, we compute


∧2(Â+ 1̂V )1a ∧ b = (Â+ 1̂V )a ∧ b + a ∧ (Â+ 1̂V )b


= 2a ∧ b + Âa ∧ b + a ∧ Âb


=
[(


2
1


)
(∧2Â0) +


(
2
0


)
(∧2Â1)


]


a ∧ b,
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since
(
2
1


)
= 2 and


(
2
0


)
= 1.


To prove the formula (3.19) in the general case, we use induction. The ba-
sis of induction consists of the trivial case (p ≥ 0, q = 0) where all operators


∧0Âp with p ≥ 1 are zero operators, and of the case p = q, which was al-
ready proved. Now we will prove the induction step (p, q) & (p, q + 1) ⇒
(p+ 1, q + 1). Figure 3.3 indicates why this induction step is sufficient to
prove the statement for all 0 ≤ q ≤ p ≤ N .


Let v ∈ V be an arbitrary vector and ω ∈ ∧pV be an arbitrary tensor. The
induction step is proved by the following chain of equations,


∧p+1 (Â+ 1̂V )q+1 (v ∧ ω)


(1) = (Â+ 1̂V )v ∧
[


∧p(Â+ 1̂V )qω
]


+ v ∧
[


∧p(Â+ 1̂V )q+1ω
]


(2) = Âv ∧
q
∑


r=0


(
p− r


p− q


)


(∧pÂr)ω + v ∧
q
∑


r=0


(
p− r


p− q


)


(∧pÂr)ω


+ v ∧
q+1
∑


r=0


(
p− r


p− q − 1


)


(∧pÂr)ω


(3) = Âv ∧
q+1
∑


k=1


(
p− k + 1


p− q


)


(∧pÂk−1)ω


+ v ∧
q+1
∑


r=0


[(
p− r


p− q − 1


)


+


(
p− r


p− q


)]


(∧pÂr)ω


(4) =


q+1
∑


k=0


(
p− k + 1


p− q


){


Âv ∧
[


∧pÂk−1ω
]


+ v ∧
[


∧pÂkω
]}


(1) =


q+1
∑


k=0


(
p− k + 1


p− q


)


(∧p+1Âk) (v ∧ ω) ,


where (1) is Statement 4 of Sec. 3.7, (2) uses the induction step assumptions for
(p, q) and (p, q + 1), (3) is the relabeling r = k− 1 and rearranging terms (note
that the summation over 0 ≤ r ≤ q was formally extended to 0 ≤ r ≤ q + 1
because the term with r = q + 1 vanishes), and (4) is by the binomial identity


(
n


m− 1


)


+


(
n


m


)


=


(
n+ 1


m


)


and a further relabeling r → k in the preceding summation. �


Corollary: For any Â ∈ End V and α ∈ K,


∧p(Â+ α1̂V )q =


q
∑


r=0


αq−r


(
p− r


p− q


)


(∧pÂr).
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Figure 3.3: Deriving Lemma 1 by induction. White circles correspond to the
basis of induction. Black circles are reached by induction steps.


Proof: By Statement 3 of Sec. 3.7, ∧p(αÂ)q = αq(∧pÂq). Set Â = αB̂, where


B̂ is an auxiliary operator, and compute


∧p(αB̂ + α1̂V )q = αq ∧p (B̂ + 1̂V )q = αq


q
∑


r=0


(
p− r


p− q


)


(∧pB̂r)


=


q
∑


r=0


αq−r


(
p− r


p− q


)


(∧p(αB̂)r)


=


q
∑


r=0


αq−r


(
p− r


p− q


)


(∧pÂr).


�


Theorem 2: The coefficients qm(Â), 1 ≤ m ≤ N of the characteristic polyno-
mial, defined by


QÂ (λ) = (−λ)
N


+


N−1∑


k=0


(−1)
k
qN−k(Â)λk,


are the numbers corresponding to the operators ∧N Âm ∈ End(∧NV ):


qm(Â)1̂∧N V = ∧N Âm.


In particular, qN (Â) = det Â and q1(Â) = TrÂ. More compactly, the statement
can be written as


QÂ (λ) 1̂∧N V =


N∑


k=0


(−λ)
N−k


(∧N Âk).


Proof: This is now a consequence of Lemma 1 and its Corollary, where we
set p = q = N and obtain


∧N (Â− λ1̂V )N =


N∑


r=0


(−λ)
N−r


(∧N Âr).
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�


Exercise 1: Show that the characteristic polynomial of an operator Â in a
three-dimensional space V can be written as


QÂ(λ) = det Â− 1
2


[
(TrÂ)2 − Tr(Â2)


]
λ+ (TrÂ)λ2 − λ3.


Solution: The first and the third coefficients of QÂ(λ) are, as usual, the de-


terminant and the trace of Â. The second coefficient is equal to −∧3Â2, so we
need to show that


∧3Â2 =
1


2


[
(TrÂ)2 − Tr(Â2)


]
.


We apply the operator ∧3Â1 twice to a tensor a ∧ b ∧ c and calculate:


(TrÂ)2a ∧ b ∧ c = (∧3Â1)(∧3Â1)(a ∧ b ∧ c)


= (∧3Â1)(Âa ∧ b ∧ c + a ∧ Âb ∧ c + a ∧ b ∧ Âc)


= Â2a ∧ b ∧ c + 2Âa ∧ Âb ∧ c + a ∧ Â2b ∧ c


+ 2Âa ∧ b ∧ Âc + 2a ∧ Âb ∧ Âc + a ∧ b ∧ Â2c


=
[
Tr(Â2) + 2 ∧3 Â2


]
a ∧ b ∧ c.


Then the desired formula follows. �


Exercise 2 (general trace relations): Generalize the result of Exercise 1 to N
dimensions:


a) Show that
∧N Â2 = 1


2


[
(TrÂ)2 − Tr(Â2)


]
.


b)* Show that all coefficients ∧N Âk (k = 1, ..., N ) can be expressed as poly-


nomials in TrÂ, Tr(Â2), ..., Tr(ÂN ).
Hint: Define a “mixed” operator ∧N (Ân)jÂk as a sum of exterior products


containing j times Ân and k times Â; for example,


[
∧3(Â2)1Â1


]
a ∧ b ∧ c ≡ Â2a ∧ (Âb ∧ c + b ∧ Âc)


+ Âa ∧ (Â2b ∧ c + b ∧ Â2c) + a ∧ (Â2b ∧ Âc + Âb ∧ Â2c).


By applying several operators ∧N Âk and Tr(Âk) to an exterior product, de-


rive identities connecting these operators and ∧N Âk:


(∧N Â1)(∧N Âk) = (k + 1) ∧N Âk+1 + ∧N (Â2)1Âk−1,


Tr(Âk)Tr(Â) = Tr(Âk+1) + ∧N (Âk)1Â1,


for k = 2, ..., N − 1. Using these identities, show by induction that operators


of the form ∧N Âk (k = 1, ..., N ) can be all expressed through TrÂ, Tr(Â2), ...,


Tr(ÂN−1) as polynomials.
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As an example, here is the trace relation for ∧N Â3:


∧N Â3 = 1
6 (TrÂ)3 − 1


2 (TrÂ)Tr(Â2) + 1
3Tr(Â3).


Note that in three dimensions this formula directly yields the determinant of


Â expressed through traces of powers of Â. Below (Sec. 4.5.3) we will derive
a formula for the general trace relation. �


Since operators in ∧NV act as multiplication by a number, it is convenient


to omit 1̂∧N V and regard expressions such as ∧N Âk as simply numbers. More
formally, there is a canonical isomorphism between End


(
∧NV


)
and K (even


though there is no canonical isomorphism between ∧NV and K).
Exercise 3: Give an explicit formula for the canonical isomorphism: a) be-


tween
(
∧kV


)∗
and ∧k(V ∗); b) between End


(
∧NV


)
and K.


Answer: a) A tensor f∗1 ∧ ... ∧ f∗k ∈ ∧k(V ∗) acts as a linear function on a
tensor v1 ∧ ... ∧ vk ∈ ∧kV by the formula


(f∗1 ∧ ... ∧ f∗k ) (v1 ∧ ... ∧ vk) ≡ det(Ajk),


where Ajk is the square matrix defined by Ajk ≡ f∗j (vk).


b) Since (∧NV )∗ is canonically isomorphic to ∧N (V ∗), an operator N̂ ∈
End


(
∧NV


)
can be represented by a tensor


N̂ = (v1 ∧ ... ∧ vN ) ⊗ (f∗1 ∧ ... ∧ f∗N ) ∈
(
∧NV


)
⊗
(
∧NV ∗) .


The isomorphism maps N̂ into the number det(Ajk), where Ajk is the square
matrix defined by Ajk ≡ f∗j (vk). �


Exercise 4: Show that an operator Â ∈ End V and its canonical transpose


operator ÂT ∈ End V ∗ have the same characteristic polynomials.


Hint: Consider the operator (Â− x1̂V )T . �


Exercise 5: Given an operator Â of rank r < N , show that ∧N Âk = 0 for


k ≥ r + 1 but ∧N Âr 6= 0.
Hint: If Â has rank r < N then Âv1 ∧ ... ∧ Âvr+1 = 0 for any set of vectors


{v1, ...,vr+1}.


3.9.1 Nilpotent operators


There are many operators with the same characteristic polynomial. In partic-
ular, there are many operators which have the simplest possible characteristic


polynomial, Q0(x) = (−x)N . Note that the zero operator has this character-


istic polynomial. We will now see how to describe all such operators Â that


QÂ(x) = (−x)N .


Definition: An operator Â ∈ End V is nilpotent if there exists an integer


p ≥ 1 such that (Â)p = 0̂, where 0̂ is the zero operator and (Â)p is the p-th


power of the operator Â.
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Examples: a) The operator defined by the matrix


(
0 α
0 0


)


in some basis


{e1, e2} is nilpotent for any number α. This operator can be expressed in
tensor form as αe1 ⊗ e∗2.


b) In the space of polynomials of degree at most n in the variable x, the
linear operator d


dx is nilpotent because the (n + 1)-th power of this operator
will evaluate the (n+ 1)-th derivative, which is zero on any polynomial of
degree at most n. �


Statement: If Â is a nilpotent operator then Q̂Â (x) = (−x)N .


Proof: First an example: suppose that N = 2 and that Â3 = 0. By Theo-


rem 2, the coefficients of the characteristic polynomial of the operator Â cor-


respond to the operators ∧N Âk. We need to show that all these operators are
equal to zero.


Consider, for instance, ∧2Â2 = q21̂∧2V . This operator raised to the power 3
acts on a tensor a ∧ b ∈ ∧2V as


(
∧2Â2


)3
a ∧ b = Â3a ∧ Â3b = 0


since Â3 = 0. On the other hand,


(
∧2Â2


)3
a ∧ b = (q2)


3
a ∧ b.


Therefore q2 = 0. Now consider ∧2Â1 to the power 3,


(
∧2Â1


)3
a ∧ b = Â2a ∧ Âb + Âa ∧ Â2b


(all other terms vanish because Â3 = 0). It is clear that the operator ∧2Â1 to


the power 6 vanishes because there will be at least a third power of Â acting
on each vector. Therefore q1 = 0 as well.


Now a general argument. Let p be a positive integer such that Âp = 0,


and consider the (pN)-th power of the operator ∧N Âk for some k ≥ 1. We


will prove that (∧N Âk)pN = 0̂. Since ∧N Âk is a multiplication by a number,


from (∧N Âk)pN = 0 it will follow that ∧N Âk is a zero operator in ∧NV for all
k ≥ 1. If all the coefficients qk of the characteristic polynomial vanish, we will


have QÂ (x) = (−x)N .


To prove that (∧N Âk)pN = 0̂, consider the action of the operator (∧N Âk)pN


on a tensor e1 ∧ ...∧ eN ∈ ∧NV . By definition of ∧N Âk, this operator is a sum
of terms of the form


Âs1e1 ∧ ... ∧ ÂsN eN ,


where sj = 0 or sj = 1 are chosen such that
∑N


j=1 sj = k. Therefore, the same
operator raised to the power pN is expressed as


(∧N Âk)pN =
∑


(s1,...,sn)


Âs1e1 ∧ ... ∧ ÂsN eN , (3.20)
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where now sj are non-negative integers, 0 ≤ sj ≤ pN , such that
∑N


j=1 sj =
kpN . It is impossible that all sj in Eq. (3.20) are less than p, because then we


would have
∑N


j=1 sj < Np, which would contradict the condition
∑N


j=1 sj =
kpN (since k ≥ 1 by construction). So each term of the sum in Eq. (3.20)


contains at least a p-th power of Â. Since (Â)p = 0, each term in the sum in


Eq. (3.20) vanishes. Hence (∧N Âk)pN = 0 as required. �


Remark: The converse statement is also true: If the characteristic polynomial


of an operator Â is QÂ(x) = (−x)N then Â is nilpotent. This follows easily


from the Cayley-Hamilton theorem (see below), which states thatQÂ(Â) = 0,


so we obtain immediately (Â)N = 0, i.e. the operator Â is nilpotent. We find
that one cannot distinguish a nilpotent operator from the zero operator by
looking only at the characteristic polynomial.
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4 Advanced applications


In this chapter we work in an N -dimensional vector space over a number
field K.


4.1 The space ∧N−1
V


So far we have been using only the top exterior power, ∧NV . The next-to-top
exterior power space, ∧N−1V , has the same dimension as V and is therefore
quite useful since it is a space, in some special sense, associated with V . We
will now find several important uses of this space.


4.1.1 Exterior transposition of operators


We have seen that a linear operator in the space ∧NV is equivalent to multi-
plication by a number. We can reformulate this statement by saying that the
space of linear operators in ∧NV is canonically isomorphic to K. Similarly,
the space of linear operators in ∧N−1V is canonically isomorphic to EndV ,
the space of linear operators in V . The isomorphism map will be denoted by
the superscript ∧T . We will begin by defining this map explicitly.


Question: What is a nontrivial example of a linear operator in ∧N−1V ?


Answer: Any operator of the form ∧N−1Âp with 1 ≤ p ≤ N − 1 and


Â ∈ EndV . In this book, operators constructed in this way will be the only
instance of operators in ∧N−1V .


Definition: If X̂ ∈ EndV is a given linear operator then the exterior trans-
pose operator


X̂∧T ∈ End
(
∧N−1V


)


is canonically defined by the formula


(
X̂∧Tω


)
∧ v ≡ ω ∧ X̂v,


which must hold for all ω ∈ ∧N−1V and all v ∈ V . If Ŷ ∈ End(∧N−1V ) is
a linear operator then its exterior transpose Ŷ ∧T ∈ EndV is defined by the
formula


ω ∧
(
Ŷ ∧T v


)
≡ (Ŷ ω) ∧ v, ∀ω ∈ ∧N−1V, v ∈ V.


We need to check that the definition makes sense, i.e. that the operators
defined by these formulas exist and are uniquely defined.
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Statement 1: The exterior transpose operators are well-defined, i.e. they ex-
ist, are unique, and are linear operators in the respective spaces. The exterior
transposition has the linearity property


(Â+ λB̂)∧T = Â∧T + λB̂∧T .


If X̂ ∈ EndV is an exterior transpose of Ŷ ∈ End
(
∧N−1V


)
, i.e. X̂ = Ŷ ∧T ,


then also conversely Ŷ = X̂∧T .
Proof: We need to show that the formula


(
X̂∧Tω


)
∧ v ≡ ω ∧ X̂v


actually defines an operator X̂∧T uniquely when X̂ ∈ EndV is a given op-


erator. Let us fix a tensor ω ∈ ∧N−1V ; to find X̂∧Tω we need to determine a
tensor ψ ∈ ∧N−1V such that ψ ∧ v = ω ∧ X̂v for all v ∈ V . When we find
such a ψ, we will also show that it is unique; then we will have shown that


X̂∧Tω ≡ ψ is well-defined.
An explicit computation of the tensor ψ can be performed in terms of a


basis {e1, ..., eN} in V . A basis in the space ∧N−1V is formed by the set of
N tensors of the form ωi ≡ e1 ∧ ... ∧ ei−1 ∧ ei+1 ∧ ... ∧ eN , that is, ωi is the
exterior product of the basis vectors without the vector ei (1 ≤ i ≤ N ). In the
notation of Sec. 2.3.3, we have ωi = ∗(ei)(−1)i−1. It is sufficient to determine
the components of ψ in this basis,


ψ =


N∑


i=1


ciωi.


Taking the exterior product of ψ with ei, we find that only the term with ci
survives,


ψ ∧ ei = (−1)N−icie1 ∧ ... ∧ eN .


Therefore, the coefficient ci is uniquely determined from the condition


cie1 ∧ ... ∧ eN = (−1)N−iψ ∧ ei
!
=(−1)N−iω ∧ X̂ei.


Since the operator X̂ is given, we know all X̂ei and can compute ω ∧ X̂ei ∈
∧NV . So we find that every coefficient ci is uniquely determined.


It is seen from the above formula that each coefficient ci depends linearly


on the operator X̂ . Therefore the linearity property holds,


(Â+ λB̂)∧T = Â∧T + λB̂∧T .


The linearity of the operator X̂∧T follows straightforwardly from the iden-
tity


(
X̂∧T (ω + λω′)


)
∧ v


!
= (ω + λω′) ∧ X̂v


= ω ∧ X̂v + λω′ ∧ X̂v


!
=(X̂∧Tω) ∧ v + λ(X̂∧Tω′) ∧ v.
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In the same way we prove the existence, the uniqueness, and the linearity of
the exterior transpose of an operator from End(∧N−1V ). It is then clear that
the transpose of the transpose is again the original operator. Details left as
exercise. �


Remark: Note that the space ∧N−1V is has the same dimension as V but
is not canonically isomorphic to V . Rather, an element ψ ∈ ∧N−1V natu-
rally acts by exterior multiplication on a vector v ∈ V and yields a tensor
from ∧NV , i.e. ψ is a linear map V → ∧NV , and we may express this as
∧N−1V ∼= V ∗ ⊗ ∧NV . Nevertheless, as we will now show, the exterior trans-
pose map allows us to establish that the space of linear operators in ∧N−1V
is canonically isomorphic to the space of linear operators in V . We will use
this isomorphism extensively in the following sections. A formal statement
follows.


Statement 2: The spaces End(∧N−1V ) and EndV are canonically isomor-
phic.
Proof: The map ∧T between these spaces is one-to-one since no two dif-


ferent operators are mapped to the same operator. If two different operators


Â, B̂ had the same exterior transpose, we would have (Â − B̂)∧T = 0 and


yet Â − B̂ 6= 0. There exists at least one ω ∈ ∧N−1V and v ∈ V such that


ω ∧ (Â− B̂)v 6= 0, and then


0 =
(
(Â− B̂)∧Tω


)
∧ v = ω ∧ (Â− B̂)v 6= 0,


which is a contradiction. The map ∧T is linear (Statement 1). Therefore, it is
an isomorphism between the vector spaces End


(
∧N−1V


)
and EndV . �


A generalization of Statement 1 is the following.


Exercise 1: Show that the spaces End(∧kV ) and End(∧N−kV ) are canoni-


cally isomorphic (1 ≤ k < N ). Specifically, if X̂ ∈ End(∧kV ) then the linear


operator X̂∧T ∈ End(∧N−kV ) is uniquely defined by the formula


(
X̂∧TωN−k


)
∧ ωk ≡ ωN−k ∧ X̂ωk,


which must hold for arbitrary tensors ωk ∈ ∧kV , ωN−k ∈ ∧N−kV .


Remark: It follows that the exterior transpose of ∧N ÂN ∈ End
(
∧NV


)
is


mapped by the canonical isomorphism to an element of End K, that is, a mul-
tiplication by a number. This is precisely the map we have been using in the
previous section to define the determinant. In this notation, we have


det Â ≡
(
∧N ÂN


)∧T
.


Here we identify End K with K.


Exercise 2: For any operators Â, B̂ ∈ End
(
∧kV


)
, show that


(ÂB̂)∧T = B̂∧T Â∧T .
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4.1.2 * Index notation


Let us see how the exterior transposition is expressed in the index notation.
(Below we will not use the resulting formulas.)


If an operator Â ∈ EndV is given in the index notation by a matrix Aj
i , the


exterior transpose Â∧T ∈ End
(
∧N−1V


)
is represented by an array B


j1...jN−1


i1...iN−1
,


which is totally antisymmetric with respect to its N − 1 lower and upper


indices separately. The action of the operator B̂ ≡ Â∧T on a tensor ψ ∈
∧N−1V is written in the index notation as


∑


is


B
j1...jN−1


i1...iN−1
ψi1...iN−1 .


(Here we did not introduce any combinatorial factors; the factor (N − 1)! will
therefore appear at the end of the calculation.)


By definition of the exterior transpose, for any vector v ∈ V and for any
ψ ∈ ∧N−1V we must have


(B̂ψ) ∧ v = ψ ∧ (Âv).


Using the index representation of the exterior product through the projection


operators Ê (see Sec. 2.3.6), we represent the equation above in the the index
notation as


∑


i,is,js


Ek1...kN


j1...jN−1i(B
j1...jN−1


i1...iN−1
ψi1...iN−1)vi


=
∑


js,i,j


Ek1...kN


j1...jN−1jψ
j1...jN−1(Aj


iv
i).


We may simplify this to


∑


i,is,js


εj1...jN−1i(B
j1...jN−1


i1...iN−1
ψi1...iN−1)vi


=
∑


is,i,j


εi1...iN−1jψ
i1...iN−1(Aj


iv
i),


because Ek1...kN


j1...jN
= εj1...jN


εk1...kN , and we may cancel the common factor


εk1...kN whose indices are not being summed over.
Since the equation above should hold for arbitrary ψi1...iN−1 and vi, the


equation with the corresponding free indices is and i should hold:


∑


js


εj1...jN−1iB
j1...jN−1


i1...iN−1
=
∑


j


εi1...iN−1jA
j
i . (4.1)


This equation can be solved for B as follows. We note that the ε symbol in
the left-hand side of Eq. (4.1) has one free index, i. Let us therefore multiply
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with an additional ε and sum over that index; this will yield the projection


operator Ê (see Sec. 2.3.6). Namely, we multiply both sides of Eq. (4.1) with
εk1...kN−1i and sum over i:


∑


j,i


εk1...kN−1iεi1...iN−1jA
j
i =


∑


js,i


εk1...kN−1iεj1...jN−1iB
j1...jN−1


i1...iN−1


=
∑


js


E
k1...kN−1


j1...jN−1
B


j1...jN−1


i1...iN−1
,


where in the last line we used the definition (2.11)–(2.12) of the operator Ê.
Now we note that the right-hand side is the index representation of the prod-


uct of the operators Ê and B̂ (both operators act in ∧N−1V ). The left-hand


side is also an operator in ∧N−1V ; denoting this operator for brevity by X̂ ,
we rewrite the equation as


ÊB̂ = X̂ ∈ End
(
∧N−1V


)
.


Using the property


Ê = (N − 1)!1̂∧N−1V


(see Exercise in Sec. 2.3.6), we may solve the equation ÊB̂ = X̂ for B̂ as


B̂ =
1


(N − 1)!
X̂.


Hence, the components of B̂ ≡ Â∧T are expressed as


B
k1...kN−1


i1...iN−1
=


1


(N − 1)!


∑


j,i


εk1...kN−1iεi1...iN−1jA
j
i .


An analogous formula holds for the exterior transpose of an operator in
∧nV , for any n = 2, ..., N . I give the formula without proof and illustrate it
by an example.


Statement: If Â ∈ End (∧nV ) is given by its components Aj1...jn


i1...in
then the


components of Â∧T are


(
Â∧T


)k1...kN−n


l1...lN−n


=
1


n!(N − n)!


∑


js,is


εk1...kN−ni1...inεl1...lN−nj1...jn
Aj1...jn


i1...in
.


Example: Consider the exterior transposition Â∧T of the identity operator


Â ≡ 1̂∧2V . The components of the identity operator are given by


Aj1j2
i1i2


= δj1
i1
δj2
i2
,
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so the components of Â∧T are


(
Â∧T


)k1...kN−2


l1...lN−2
=


1


2!(N − 2)!


∑


js,is


εk1...kN−2i1i2εl1...lN−2j1j2A
j1j2
i1i2


=
1


2!(N − 2)!


∑


i1,i2


εk1...kN−2i1i2εl1...lN−2i1i2 .


Let us check that this array of components is the same as that representing
the operator 1̂∧N−2V . We note that the expression above is the same as


1


(N − 2)!
E


k1...kN−2


l1...lN−2
,


where the numbers Ek1...kn


l1...ln
are defined by Eqs. (2.11)–(2.12). Since the opera-


tor Ê in ∧N−2V is equal to (N − 2)!1̂∧N−2V , we obtain that


Â∧T = 1̂∧N−2V


as required.


4.2 Algebraic complement (adjoint) and beyond


In Sec. 3.3 we defined the determinant and derived various useful properties


by considering, essentially, the exterior transpose of ∧N Âp with 1 ≤ p ≤ N
(although we did not introduce this terminology back then). We have just
seen that the exterior transposition can be defined more generally — as a map
from End(∧kV ) to End(∧N−kV ). We will see in this section that the exterior
transposition of the operators ∧N−1Âp with 1 ≤ p ≤ N − 1 yields operators
acting in V that are quite useful as well.


4.2.1 Definition of algebraic complement


While we proved that operators like (∧N−1Âp)∧T are well-defined, we still
have not obtained any explicit formulas for these operators. We will now
compute these operators explicitly because they play an important role in the
further development of the theory. It will turn out that every operator of the


form (∧N−1Âp)∧T is a polynomial in Â with coefficients that are known if we


know the characteristic polynomial of Â.
Example 1: Let us compute (∧N−1Â1)∧T . We consider, as a first example, a


three-dimensional (N = 3) vector space V and a linear operator Â ∈ EndV .


We are interested in the operator (∧2Â1)∧T . By definition of the exterior trans-
pose,


a ∧ b ∧ (∧2Â1)∧T c =
(
(∧2Â1)(a ∧ b)


)
∧ c


= Âa ∧ b ∧ c + a ∧ Âb ∧ c.
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We recognize a fragment of the operator ∧3Â1 and write


(∧3Â1)(a ∧ b ∧ c) = Âa ∧ b ∧ c + a ∧ Âb ∧ c + a ∧ b ∧ Âc


= (Tr Â)a ∧ b ∧ c,


since this operator acts as multiplication by the trace of Â (Section 3.8). It
follows that


a ∧ b ∧ (∧2Â1)∧T c = (Tr Â)a ∧ b ∧ c − a ∧ b ∧ Âc


= a ∧ b ∧
(
(Tr Â)c − Âc


)
.


Since this must hold for arbitrary a,b, c ∈ V , it follows that


(∧2Â1)∧T = (Tr Â)1̂V − Â.


Thus we have computed the operator (∧2Â1)∧T in terms of Â and the trace


of Â.
Example 2: Let us now consider the operator (∧2Â2)∧T . We have


a ∧ b ∧ (∧2Â2)∧T c =
(
(∧2Â2)(a ∧ b)


)
∧ c = Âa ∧ Âb ∧ c.


We recognize a fragment of the operator ∧3Â2 and write


(∧3Â2)(a ∧ b ∧ c) = Âa ∧ Âb ∧ c + a ∧ Âb ∧ Âc + Âa ∧ b ∧ Âc.


Therefore,


a ∧ b ∧ (∧2Â2)∧T c = (∧3Â2)(a ∧ b ∧ c)


− (a ∧ Âb + Âa ∧ b) ∧ Âc


(1) = (∧3Â2)(a ∧ b ∧ c) − a ∧ b ∧ (∧2Â1)∧T Âc


= a ∧ b∧
(
∧3Â2 − (∧2Â1)∧T Â


)
c,


where (1) used the definition of the operator (∧2Â1)∧T . It follows that


(∧2Â2)∧T = (∧3Â2)1̂V − (∧2Â1)∧T Â


= (∧3Â2)1̂V − (Tr Â)Â+ ÂÂ.


Thus we have expressed the operator (∧2Â2)∧T as a polynomial in Â. Note


that ∧3Â2 is the second coefficient of the characteristic polynomial of Â.
Exercise 1: Consider a three-dimensional space V , a linear operator Â, and
show that


(∧2Â2)∧T Âv = (det Â)v, ∀v ∈ V.


Hint: Consider a ∧ b ∧ (∧2Â2)∧T Âc = Âa ∧ Âb ∧ Âc. �


These examples are straightforwardly generalized. We will now express


every operator of the form (∧N−1Âp)∧T as a polynomial in Â. For brevity, we
introduce the notation


Â(k) ≡ (∧N−1ÂN−k)∧T , 1 ≤ k ≤ N − 1.
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Lemma 1: For any operator Â ∈ End V and for an integer p, 1 ≤ p ≤ N , the
following formula holds as an identity of operators in V :


(
∧N−1Âp−1


)∧T
Â+


(
∧N−1Âp


)∧T
= (∧N Âp)1̂V .


Here, in order to provide a meaning for this formula in cases p = 1 and p = N ,


we define ∧N−1ÂN ≡ 0̂ and ∧N−1Â0 ≡ 1̂. In the shorter notation, this is


Â(k)Â+ Â(k−1) = (∧N ÂN−k+1)1̂V .


Note that ∧N ÂN−k+1 ≡ qk−1, where qj are the coefficients of the characteristic


polynomial of Â (see Sec. 3.9).
Proof: We use Statement 4 in Sec. 3.7 with ω ≡ v1 ∧ ... ∧ vN−1, m ≡ N − 1


and k ≡ p:


(
∧N−1Âpω


)
∧ u +


(
∧N−1Âp−1ω


)
∧ (Âu) = ∧N Âp (ω ∧ u) .


This holds for 1 ≤ p ≤ N − 1. Applying the definition of the exterior trans-
pose, we find


ω ∧
(
∧N−1Âp


)∧T
u + ω ∧


(
∧N−1Âp−1


)∧T
Âu = (∧N Âp)ω ∧ u.


Since this holds for all ω ∈ ∧N−1V and u ∈ V , we obtain the required for-
mula,


(
∧N−1Âp


)∧T
+ ω ∧


(
∧N−1Âp−1


)∧T
Â = (∧N Âp)1̂V .


It remains to verify the case p = N . In that case we compute directly,


(
∧N−1ÂN−1ω


)
∧ (Âu) = Âv1 ∧ ... ∧ ÂvN−1 ∧ Âu


= ∧N ÂN (ω ∧ u) .


Hence,
(
∧N−1ÂN−1


)∧T
Â = (∧N ÂN )1̂V ≡ (det Â)1̂V .


�


Remark: In these formulas we interpret the operators ∧N Âp ∈ End
(
∧NV


)


as simply numbers multiplying some operators. This is justified since ∧NV is
one-dimensional, and linear operators in it act as multiplication by numbers.
In other words, we implicitly use the canonical isomorphism End


(
∧NV


) ∼=
K. �


Exercise 2: Use induction in p (for 1 ≤ p ≤ N − 1) and Lemma 1 to express


Â(k) explicitly as polynomials in Â:


Â(N−p) ≡
(
∧N−1Âp


)∧T
=


p
∑


k=0


(−1)
k
(∧N Âp−k)(Â)


k
.
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Hint: Start applying Lemma 1 with p = 1 and Â(N) ≡ 1̂. �


Using the coefficients qk ≡ ∧N ÂN−k of the characteristic polynomial, the
result of Exercise 2 can be rewritten as


(
∧N−1Â1


)∧T ≡ Â(N−1) = qN−11̂V − Â,
(
∧N−1Â2


)∧T ≡ Â(N−2) = qN−21̂V − qN−1Â+ (Â)2,


......,
(
∧N−1ÂN−1


)∧T ≡ Â(1) = q11̂V + q2(−Â) + ...


+ qN−1(−Â)N−2 + (−Â)N−1.


Note that the characteristic polynomial of Â is


QÂ(λ) = q0 + q1(−λ) + ...+ qN−1(−λ)
N−1


+ (−λ)N .


Thus the operators denoted by Â(k) are computed as suitable “fragments”’ of


the characteristic polynomial into which Â is substituted instead of λ.
Exercise 3:* Using the definition of exterior transpose for general exterior
powers (Exercise 1 in Sec. 4.1.1), show that for 1 ≤ k ≤ N − 1 and 1 ≤ p ≤ k
the following identity holds,


p
∑


q=0


(
∧N−kÂp−q


)∧T
(∧kÂq) = (∧N Âp)1̂∧kV .


Deduce that the operators
(
∧N−kÂp


)∧T
can be expressed as polynomials in


the (mutually commuting) operators ∧kÂj (1 ≤ j ≤ k).
Hints: Follow the proof of Statement 4 in Sec. 3.7. The idea is to apply both


sides to ωk ∧ ωN−k, where ωk ≡ v1 ∧ ... ∧ vk and ωN−k = vN−k+1 ∧ ... ∧ vN .
Since ∧N Âp acts on ωk ∧ ωN−k by distributing p copies of Â among the N
vectors vj , one needs to show that the same terms will occur when one first


distributes q copies of Â among the first k vectors and p−q copies of Â among
the last N − k vectors, and then sums over all q from 0 to p. Once the identity


is proved, one can use induction to express the operators
(
∧N−kÂp


)∧T
. For


instance, the identity with k = 2 and p = 1 yields


(
∧N−2Â0


)∧T
(∧2Â1) +


(
∧N−2Â1


)∧T
(∧2Â0) = (∧N Â1)1̂∧kV .


Therefore
(
∧N−2Â1


)∧T
= (TrÂ)1̂∧kV − ∧2Â1.


Similarly, with k = 2 and p = 2 we find


(
∧N−2Â2


)∧T
= (∧N Â2)1̂∧kV −


(
∧N−2Â1


)∧T
(∧2Â1) − ∧2Â2


= (∧N Â2)1̂∧kV − (TrÂ)(∧2Â1) + (∧2Â1)2 − ∧2Â2.
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It follows by induction that all the operators
(
∧N−kÂp


)∧T
are expressed as


polynomials in ∧kÂj . �


At the end of the proof of Lemma 1 we have obtained a curious relation,


(
∧N−1ÂN−1


)∧T
Â = (det Â)1̂V .


If det Â 6= 0, we may divide by it and immediately find the following result.


Lemma 2: If det Â 6= 0, the inverse operator satisfies


Â−1 =
1


det Â


(
∧N−1ÂN−1


)∧T
.


Thus we are able to express the inverse operator Â−1 as a polynomial in Â. If


det Â = 0 then the operator Â has no inverse, but the operator
(
∧N−1ÂN−1


)∧T


is still well-defined and sufficiently useful to deserve a special name.


Definition: The algebraic complement (also called the adjoint) of Â is the
operator


˜̂
A ≡


(
∧N−1ÂN−1


)∧T ∈ EndV.


Exercise 4: Compute the algebraic complement of the operator Â = a ⊗ b∗,
where a ∈ V and b ∈ V ∗, and V is an N -dimensional space (N ≥ 2).
Answer: Zero if N ≥ 3. For N = 2 we use Example 1 to compute


(∧1Â1)∧T = (Tr Â)1̂ − Â = b∗(a)1̂ − a ⊗ b∗.


Exercise 5: For the operator Â = a ⊗ b∗ in N -dimensional space, as in Exer-


cise 4, show that
(
∧N−1Âp


)∧T
= 0 for p ≥ 2.


4.2.2 Algebraic complement of a matrix


The algebraic complement is usually introduced in terms of matrix determi-
nants. Namely, one takes a matrix Aij and deletes the column number k and
the row number l. Then one computes the determinant of the resulting matrix
and multiplies by (−1)k+l. The result is the element Bkl of the matrix that is
the algebraic complement ofAij . I will now show that our definition is equiv-
alent to this one, if we interpret matrices as coefficients of linear operators in
a basis.


Statement: Let Â ∈ EndV and let {ej} be a basis in V . Let Aij be the matrix


of the operator Â in this basis. Let B̂ =
(
∧N−1ÂN−1


)∧T
and let Bkl be the


matrix of B̂ in the same basis. Then Bkl is equal to (−1)
k+l times the determi-


nant of the matrix obtained from Aij by deleting the column number k and
the row number l.
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4.2 Algebraic complement (adjoint) and beyond


Proof: Given an operator B̂, the matrix element Bkl in the basis {ej} can be
computed as the coefficient in the following relation (see Sec. 2.3.3),


Bkle1 ∧ ... ∧ eN = e1 ∧ ... ∧ ek−1 ∧ (B̂el) ∧ ek+1 ∧ ... ∧ eN .


Since B̂ =
(
∧N−1ÂN−1


)∧T
, we have


Bkle1 ∧ ... ∧ eN = Âe1 ∧ ... ∧ Âek−1 ∧ el ∧ Âek+1 ∧ ... ∧ ÂeN .


Now the right side can be expressed as the determinant of another operator,


call it X̂ ,


Bkle1 ∧ ... ∧ eN = (det X̂)e1 ∧ ... ∧ eN


= X̂e1∧... ∧ X̂ek−1 ∧ X̂ek ∧ X̂ek+1 ∧ ... ∧ X̂eN ,


if we define X̂ as an operator such that X̂ek ≡ el while on other basis vectors


X̂ej ≡ Âej (j 6= k). Having defined X̂ in this way, we have Bkl = det X̂ .


We can now determine the matrix Xij representing X̂ in the basis {ej}. By
the definition of the matrix representation of operators,


Âej =
N∑


i=1


Aijei, X̂ej =
N∑


i=1


Xijei, 1 ≤ j ≤ N.


It follows that Xij = Aij for j 6= k while Xik = δil (1 ≤ i ≤ N ), which means
that the entire k-th column in the matrix Aij has been replaced by a column
containing zeros except for a single nonzero element Xlk = 1.


It remains to show that the determinant of the matrixXij is equal to (−1)
k+l


times the determinant of the matrix obtained from Aij by deleting column k
and row l. We may move in the matrixXij the k-th column to the first column
and the l-th row to the first row, without changing the order of any other rows


and columns. This produces the sign factor (−1)
k+l but otherwise does not


change the determinant. The result is


Bkl = det X̂ = (−1)
k+l


det


∣
∣
∣
∣
∣
∣
∣
∣
∣


1 X12 ... X1N


0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗


∣
∣
∣
∣
∣
∣
∣
∣
∣


= (−1)
k+l


det


∣
∣
∣
∣
∣
∣


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


∣
∣
∣
∣
∣
∣


,


where the stars represent the matrix obtained from Aij by deleting column k
and row l, and the numbers X12, ..., X1N do not enter the determinant. This
is the result we needed. �


165







4 Advanced applications


Exercise 5:* Show that the matrix representation of the algebraic complement
can be written through the Levi-Civita symbol ε as


Ãi
k =


1


(N − 1)!


∑


i2,...,iN


∑


k2,...,kN


εkk2...kN
εii2...iNAk2


i2
...AkN


iN
.


Hint: See Sections 3.4.1 and 4.1.2.


4.2.3 Further properties and generalizations


In our approach, the algebraic complement
˜̂
A of an operator Â comes from


considering the set of N − 1 operators


Â(k) ≡
(
∧N−1ÂN−k


)∧T
, 1 ≤ k ≤ N − 1.


(For convenience we might define Â(N) ≡ 1̂V .)


The operators Â(k) can be expressed as polynomials in Â through the iden-
tity (Lemma 1 in Sec. 4.2.1)


Â(k)Â+ Â(k−1) = qk−11̂, qj ≡ ∧N ÂN−j .


The numbers qj introduced here are the coefficients of the characteristic poly-


nomial of Â; for instance, det Â ≡ q0 and TrÂ ≡ qN−1. It follows by induction
(Exercise 2 in Sec. 4.2.1) that


Â(N−k) = qN−k1̂ − qN−k+1Â+ ...


+ qN−1(−Â)k−1 + (−Â)k.


The algebraic complement is
˜̂
A ≡ Â1, but it appears natural to study the


properties of all the operators Â(k). (The operators Â(k) do not seem to have
an established name for k ≥ 2.)


Statement 1: The coefficients of the characteristic polynomial of the algebraic


complement,
˜̂
A, are


∧N ˜̂
Ak = (det Â)k−1(∧N ÂN−k) ≡ qk−1


0 qk.


For instance,


Tr
˜̂
A = ∧N ˜̂


A1 = q1 = ∧N ÂN−1,


det
˜̂
A = ∧N ˜̂


AN = qN−1
0 qN = (det Â)N−1.
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4.2 Algebraic complement (adjoint) and beyond


Proof: Let us first assume that det Â ≡ q0 6= 0. We use the property Â
˜̂
A =


q01̂ (Lemma 2 in Sec. 4.2.1) and the multiplicativity of determinants to find


det(
˜̂
A− λ1̂)q0 = det(q01̂ − λÂ) = (−λ)N det(Â− q0


λ
1̂)


= (−λN )QÂ(
q0
λ


),


hence the characteristic polynomial of
˜̂
A is


Q ˜̂
A
(λ) ≡ det(


˜̂
A− λ1̂) =


(−λN )


q0
QÂ(


q0
λ


)


=
(−λ)N


q0


[(


−q0
λ


)N


+ qN−1


(


−q0
λ


)N−1


+ ...+ q0


]


= (−λ)N + q1(−λ)N−1 + q2q0 (−λ)
N−2


+ ...+ qN−1
0 .


This agrees with the required formula.


It remains to prove the case q0 ≡ det Â = 0. Although this result could be
achieved as a limit of nonzero q0 with q0 → 0, it is instructive to see a direct
proof without using the assumption q0 6= 0 or taking limits.


Consider a basis {vj} in V and the expression


(∧N ˜̂
Ak)v1 ∧ ... ∧ vN .


This expression contains
(
N
k


)
terms of the form


˜̂
Av1 ∧ ... ∧ ˜̂


Avk ∧ vk+1 ∧ ... ∧ vN ,


where
˜̂
A is applied only to k vectors. Using the definition of


˜̂
A, we can rewrite


such a term as follows. First, we use the definition of
˜̂
A to write


˜̂
Av1 ∧ ψ = v1 ∧


(
∧N−1ÂN−1


)
ψ,


for any ψ ∈ ∧N−1V . In our case, we use


ψ ≡ ˜̂
Av2 ∧ ... ∧ ˜̂


Avk ∧ vk+1 ∧ ... ∧ vN


and find


˜̂
Av1 ∧ ψ = v1 ∧ Â ˜̂


Av2 ∧ ... ∧ Â ˜̂
Avk ∧ Âvk+1 ∧ ... ∧ ÂvN .


By assumption q0 = 0, hence Â
˜̂
A = 0 =


˜̂
AÂ (since


˜̂
A, being a polynomial in


Â, commutes with Â) and thus


(∧N ˜̂
Ak)v1 ∧ ... ∧ vN = 0, k ≥ 2.
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4 Advanced applications


For k = 1 we find


˜̂
Av1 ∧ ψ = v1 ∧ Âv2 ∧ ... ∧ ÂvN .


Summing N such terms, we obtain the same expression as that in the defini-


tion of ∧N ÂN−1, hence


(∧N ˜̂
A1)v1 ∧ ... ∧ vN = ∧N ÂN−1v1 ∧ ... ∧ vN .


This concludes the proof for the case det Â = 0. �


Exercise:* Suppose that Â has the simple eigenvalue λ = 0 (i.e. this eigen-


value has multiplicity 1). Show that the algebraic complement,
˜̂
A, has rank 1,


and that the image of
˜̂
A is the one-dimensional subspace Span {v}.


Hint: An operator has rank 1 if its image is one-dimensional. The eigen-


value λ = 0 has multiplicity 1 if ∧N ÂN−1 6= 0. Choose a basis consisting of
the eigenvector v and N − 1 other vectors u2, ..., uN . Show that


˜̂
Av ∧ u2 ∧ ... ∧ uN = ∧N ÂN−1(v ∧ u2 ∧ ... ∧ uN ) 6= 0,


while


v ∧ u2 ∧ ... ∧ ˜̂
Auj ∧ ... ∧ uN = 0, 2 ≤ j ≤ N.


Consider other expressions, such as


˜̂
Av ∧ v ∧ u3 ∧ ... ∧ uN or


˜̂
Auj ∧ v ∧ u3 ∧ ... ∧ uN ,


and finally deduce that the image of
˜̂
A is precisely the one-dimensional sub-


space Span {v}. �


Now we will demonstrate a useful property of the operators Â(k).


Statement 2: The trace of Â(k) satisfies


TrÂ(k)


k
= ∧N ÂN−k ≡ qk.


Proof: Consider the action of ∧N ÂN−k on a basis tensor ω ≡ v1 ∧ ... ∧ vN ;
the result is a sum of


(
N


N−k


)
terms,


∧N ÂN−kω = Âv1 ∧ ... ∧ ÂvN−k ∧ vN−k+1 ∧ ... ∧ vN


+ (permutations).


Consider now the action of TrÂ(k) on ω,


TrÂ(k)ω = ∧N [Â(k)]
1ω


=


N∑


j=1


v1 ∧ ... ∧ Â(k)vj ∧ ... ∧ vN .
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4.2 Algebraic complement (adjoint) and beyond


Using the definition of Â(k), we rewrite


v1 ∧ ... ∧ Â(k)vj ∧ ... ∧ vN


= Âv1 ∧ ... ∧ ÂvN−k ∧ vN−k+1 ∧ ... ∧ vj ∧ ... ∧ vN


+ (permutations not including Âvj).


After summing over j, we will obtain all the same terms as were present in


the expression for ∧N ÂN−kω, but each term will occur several times. We can
show that each term will occur exactly k times. For instance, the term


Âv1 ∧ ... ∧ ÂvN−k ∧ vN−k+1 ∧ ... ∧ vj ∧ ... ∧ vN


will occur k times in the expression for TrÂ(k)ω because it will be generated
once by each of the terms


v1 ∧ ... ∧ Â(k)vj ∧ ... ∧ vN


with N − k + 1 ≤ j ≤ N . The same argument holds for every other term.
Therefore


TrÂ(k)ω = k (∧N ÂN−k)ω = kqkω.


Since this holds for any ω ∈ ∧NV , we obtain the required statement. �


Remark: We have thus computed the trace of every operator Â(k), as well


as the characteristic polynomial of Â(1) ≡ ˜̂
A. Computing the entire charac-


teristic polynomial of each Âk is certainly possible but will perhaps lead to
cumbersome expressions. �


An interesting application of Statement 2 is the following algorithm for
computing the characteristic polynomial of an operator.1 This algorithm is


more economical compared with the computation of det(Â− λ1̂) via permu-
tations, and requires only operator (or matrix) multiplications and the com-
putation of a trace.


Statement 3: (Leverrier’s algorithm) The coefficients ∧N Âk ≡ qN−k (1 ≤
k ≤ N ) of the characteristic polynomial of an operator Â can be computed


together with the operators Â(j) by starting with Â(N) ≡ 1̂V and using the
descending recurrence relation for j = N − 1, ..., 0:


qj =
1


N − j
Tr [ÂÂ(j+1)],


Â(j) = qj 1̂ − ÂÂ(j+1). (4.2)


At the end of the calculation, we will have


q0 = det Â, Â(1) =
˜̂
A, Â(0) = 0.


1I found this algorithm in an online note by W. Kahan, “Jordan’s normal form” (downloaded
from http://www.cs.berkeley.edu/~wkahan/MathH110/jordan.pdf on October 6,
2009). Kahan attributes this algorithm to Leverrier, Souriau, Frame, and Faddeev.
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Proof: At the beginning of the recurrence, we have


j = N − 1, qN−1 =
1


N − j
Tr [ÂÂ(j+1)] = TrÂ,


which is correct. The recurrence relation (4.2) for Â(j) coincides with the result


of Lemma 1 in Sec. 4.2.1 and thus yields at each step j the correct operator Â(j)


— as long as qj was computed correctly at that step. So it remains to verify
that qj is computed correctly. Taking the trace of Eq. (4.2) and using Tr 1̂ = N ,
we get


Tr [AÂ(j+1)] = Nqj − TrÂ(j).


We now substitute for TrÂ(j) the result of Statement 2 and find


Tr [AÂ(j+1)] = Nqj − jqj = (N − j) qj .


Thus qj is also computed correctly from the previously known Â(j+1) at each
step j. �


Remark: This algorithm provides another illustration for the “trace relations”
(see Exercises 1 and 2 in Sec. 3.9), i.e. for the fact that the coefficients qj of the


characteristic polynomial of Â can be expressed as polynomials in the traces


of Â and its powers. These expressions will be obtained in Sec. 4.5.3.


4.3 Cayley-Hamilton theorem and beyond


The characteristic polynomial of an operator Â has roots λ that are eigenval-


ues of Â. It turns out that we can substitute Â as an operator into the charac-


teristic polynomial, and the result is the zero operator, as if Â were one of its


eigenvalues. In other words, Â satisfies (as an operator) its own characteristic
equation.


Theorem 1 (Cayley-Hamilton): IfQÂ (λ) ≡ det(Â−λ1̂V ) is the characteristic


polynomial of the operator Â then QÂ(Â) = 0̂V .


Proof: The coefficients of the characteristic polynomial are ∧N Âm. When


we substitute the operator Â into QÂ(λ), we obtain the operator


QÂ(Â) = (det Â)1̂V + (∧N ÂN−1)(−Â) + ...+ (−Â)N .


We note that this expression is similar to that for the algebraic complement of


Â (see Exercise 2 in Sec. 4.2.1), so


QÂ(Â) = (det Â)1̂V +
(
∧N ÂN−1 + ...+ (−Â)N−1


)
(−Â)


= (det Â)1̂V − (∧N−1ÂN−1)∧T Â = 0̂V


by Lemma 1 in Sec. 4.2.1. Hence QÂ(Â) = 0̂V for any operator Â. �
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4.3 Cayley-Hamilton theorem and beyond


Remark: While it is true that the characteristic polynomial vanishes on Â, it is
not necessarily the simplest such polynomial. A polynomial of a lower degree


may vanish on Â. A trivial example of this is given by an operator Â = α1̂,
that is, the identity operator times a constant α. The characteristic polynomial


of Â is QÂ(λ) = (α− λ)
N . In agreement with the Cayley-Hamilton theorem,


(α1̂ − Â)N = 0̂. However, the simpler polynomial p(λ) = λ − α also has the


property p(Â) = 0̂. We will look into this at the end of Sec. 4.6. �


We have derived the Cayley-Hamilton theorem by considering the exterior


transpose of ∧N−1ÂN−1. A generalization is found if we similarly use the


operators of the form
(
∧aÂb


)∧T
.


Theorem 2 (Cayley-Hamilton in ∧kV ): For any operator Â in V and for 1 ≤
k ≤ N , 1 ≤ p ≤ N , the following identity holds,


p
∑


q=0


(
∧N−kÂp−q


)∧T
(∧kÂq) = (∧N Âp)1̂∧kV . (4.3)


In this identity, we set ∧kÂ0 ≡ 1̂∧kV and ∧kÂr ≡ 0 for r > k. Explicit ex-


pressions can be derived for all operators
(
∧N−kÂp


)∧T
as polynomials in


the (mutually commuting) operators ∧kÂj , 1 ≤ j ≤ k. (See Exercise 3 in
Sec. 4.2.1.) Hence, there exist k identically vanishing operator-valued poly-


nomials involving ∧kÂj . (In the ordinary Cayley-Hamilton theorem, we have


k = 1 and a single polynomial QÂ(Â) that identically vanishes as an operator
in V ≡ ∧1V .) The coefficients of those polynomials will be known functions


of Â. One can also obtain an identically vanishing polynomial in ∧kÂ1.
Proof: Let us fix k and first write Eq. (4.3) for 1 ≤ p ≤ N − k. These N − k


equations are all of the form


(
∧N−kÂp


)∧T
+ [...] = (∧N Âp)1̂∧kV , 1 ≤ p ≤ N − k.


In the p-th equation, the omitted terms in square brackets contain only the


operators
(
∧N−kÂr


)∧T
with r < p and ∧kÂq with 1 ≤ q ≤ k. Therefore, these


equations can be used to express
(
∧N−kÂp


)∧T
for 1 ≤ p ≤ N − k through the


operators ∧kÂq explicitly as polynomials. Substituting these expressions into
Eq. (4.3), we obtain k identically vanishing polynomials in the k operators


∧kÂq (with 1 ≤ q ≤ k). These polynomials can be considered as a system of


polynomial equations in the variables α̂q ≡ ∧kÂq. (As an exercise, you may
verify that all the operators α̂q commute.) A system of polynomial equations
may be reduced to a single polynomial equation in one of the variables, say
α̂1. (The technique for doing this in practice, called the “Gröbner basis,” is
complicated and beyond the scope of this book.) �


The following two examples illustrate Theorem 2 in three and four dimen-
sions.
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4 Advanced applications


Example 1: Suppose V is a three-dimensional space (N = 3) and an operator


Â is given. The ordinary Cayley-Hamilton theorem is obtained from Theo-
rem 2 with k = 1,


q0 − q1Â+ q2Â
2 − Â3 = 0,


where qj ≡ ∧N ÂN−j are the coefficients of the characteristic polynomial of Â.
The generalization of the Cayley-Hamilton theorem is obtained with k = 2
(the only remaining case k = 3 will not yield interesting results).


We write the identity (4.3) for k = 2 and p = 1, 2, 3. Using the properties


∧kÂk+j = 0 (with j > 0) and ∧kÂ0 = 1̂, we get the following three identities
of operators in ∧2V :


(
∧1Â1


)∧T
+ ∧2Â1 = q21̂∧2V ,


(
∧1Â1


)∧T
(∧2Â1) + ∧2Â2 = q11̂∧2V ,


(
∧1Â1


)∧T
(∧2Â2) = q01̂∧2V .


Let us denote for brevity α̂1 ≡ ∧2Â1 and α̂2 ≡ ∧2Â2. Expressing
(
∧1Â1


)∧T


through α̂1 from the first line above and substituting into the last two lines,
we find


α̂2 = q11̂ − q2α̂1 + α̂2
1,


(q21̂ − α̂1)α̂2 = q01̂.


We can now express α̂2 through α̂1 and substitute into the last equation to
find


α̂3
1 − 2q2α̂


2
1 + (q1 + q22)α̂1 − (q1q2 − q0)1̂ = 0.


Thus, the generalization of the Cayley-Hamilton theorem in ∧2V yields an


identically vanishing polynomial in ∧2Â1 ≡ α̂1 with coefficients that are ex-
pressed through qj .


Question: Is this the characteristic polynomial of α̂1?
Answer: I do not know! It could be since it has the correct degree. However,


not every polynomial p(x) such that p(α̂) = 0 for some operator α̂ is the
characteristic polynomial of α̂.


Example 2: Let us now consider the case N = 4 and k = 2. We use Eq. (4.3)
with p = 1, 2, 3, 4 and obtain the following four equations,


(∧2Â1)∧T + ∧2Â1 = (∧4Â1)1̂∧2V ,


(∧2Â2)∧T + (∧2Â1)∧T (∧2Â1) + ∧2Â2 = (∧4Â2)1̂∧2V ,


(∧2Â2)∧T (∧2Â1) + (∧2Â1)∧T (∧2Â2) = (∧4Â3)1̂∧2V ,


(∧2Â2)∧T (∧2Â2) = (∧4Â4)1̂∧2V .
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Let us denote, as before, qj = ∧4Â4−j (with 0 ≤ j ≤ 3) and α̂r ≡ ∧2Âr (with


r = 1, 2). Using the first two equations above, we can then express (∧2Âr)∧T


through α̂r and substitute into the last two equations. We obtain


(∧2Â1)∧T = q31̂ − α̂1,


(∧2Â2)∧T = q21̂ + α̂2
1 − q3α̂1 − α̂2,


and finally


(q21̂ + α̂2
1 − q3α̂1 − α̂2)α̂1 + (q31̂ − α̂1)α̂2 = q11̂,


(q21̂ + α̂2
1 − q3α̂1 − α̂2)α̂2 = q01̂.


One cannot express α̂2 directly through α̂1 using these last equations. How-
ever, one can show (for instance, using a computer algebra program2) that
there exists an identically vanishing polynomial of degree 6 in α̂1, namely
p(α̂1) = 0 with


p(x) ≡ x6 − 3q3x
5 +


(
2q2 + 3q23


)
x4 −


(
4q2q3 + q33


)
x3


+
(
q22 − 4q0 + q1q3 + 2q2q


2
3


)
x2 −


(
q1q


2
3 + q22q3 − 4q0q3


)
x


+ q1q2q3 − q0q
2
3 − q21 .


The coefficients of p(x) are known functions of the coefficients qj of the char-


acteristic polynomial of Â. Note that the space ∧2V has dimension 6 in this
example; the polynomial p(x) has the same degree.
Question: In both examples we found an identically vanishing polynomial


in ∧kÂ1. Is there a general formula for the coefficients of this polynomial?
Answer: I do not know!


4.4 Functions of operators


We will now consider some calculations with operators.


Let Â ∈ EndV . Since linear operators can be multiplied, it is straight-


forward to evaluate ÂÂ ≡ Â2 and other powers of Â, as well as arbitrary


polynomials in Â. For example, the operator Â can be substituted instead
of x into the polynomial p(x) = 2 + 3x + 4x2; the result is the operator


2̂ + 3Â+ 4Â2 ≡ p(Â).
Exercise: For a linear operator Â and an arbitrary polynomial p(x), show


that p(Â) has the same eigenvectors as Â (although perhaps with different
eigenvalues). �


Another familiar function of Â is the inverse operator, Â−1. Clearly, we


can evaluate a polynomial in Â−1 as well (if Â−1 exists). It is interesting to


2This can be surely done by hand, but I have not yet learned the Gröbner basis technique nec-
essary to do this, so I cannot show the calculation here.
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ask whether we can evaluate an arbitrary function of Â; for instance, whether


we can raise Â to a non-integer power, or compute exp(Â), ln(Â), cos(Â).


Generally, can we substitute Â instead of x in an arbitrary function f(x) and


evaluate an operator-valued function f(Â)? If so, how to do this in practice?


4.4.1 Definitions. Formal power series


The answer is that sometimes we can. There are two situations when f(Â)
makes sense, i.e. can be defined and has reasonable properties.


The first situation is when Â is diagonalizable, i.e. there exists a basis {ei}
such that every basis vector is an eigenvector of Â,


Âei = λiei.


In this case, we simply define f(Â) as the linear operator that acts on the basis
vectors as follows,


f(Â)ei ≡ f(λi)ei.


Definition 1: Given a function f(x) and a diagonalizable linear operator


Â =


N∑


i=1


λiei ⊗ e∗i ,


the function f(Â) is the linear operator defined by


f(Â) ≡
N∑


i=1


f(λi) ei ⊗ e∗i ,


provided that f(x) is well-defined at the points x = λi, i = 1, ..., N .
This definition might appear to be “cheating” since we simply substituted


the eigenvalues into f(x), rather than evaluate the operator f(Â) in some
“natural” way. However, the result is reasonable since we, in effect, define


f(Â) separately in each eigenspace Span {ei} where Â acts as multiplication


by λi. It is natural to define f(Â) in each eigenspace as multiplication by
f(λi).


The second situation is when f(x) is an analytic function, that is, a function
represented by a power series


f(x) =
∞∑


n=0


cnx
n,


such that the series converges to the value f(x) for some x. Further, we need
this series to converge for a sufficiently wide range of values of x such that all
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eigenvalues of Â are within that range. Then one can show that the operator-
valued series


f(Â) =


∞∑


n=0


cn(Â)n


converges. The technical details of this proof are beyond the scope of this
book; one needs to define the limit of a sequence of operators and other no-
tions studied in functional analysis. Here is a simple argument that gives a


condition for convergence. Suppose that the operator Â is diagonalizable and
has eigenvalues λi and the corresponding eigenvectors vi (i = 1, ..., N ) such


that {vi} is a basis and Â has a tensor representation


Â =


N∑


i=1


λivi ⊗ v∗
i .


Note that


Ân =


[
N∑


i=1


λivi ⊗ v∗
i


]n


=


N∑


i=1


λn
i vi ⊗ v∗


i


due to the property of the dual basis, v∗
i (vj) = δij . So if the series


∑∞
n=0 cnx


n


converges for every eigenvalue x = λi of the operator Â then the tensor-
valued series also converges and yields a new tensor


∞∑


n=0


cn(Â)n =


∞∑


n=0


cn


N∑


i=1


λn
i vi ⊗ v∗


i


=


N∑


i=1


[ ∞∑


n=0


cnλ
n


]


vi ⊗ v∗
i .


This argument indicates at least one case where the operator-valued power
series surely converges.


Instead of performing an in-depth study of operator-valued power series,
I will restrict myself to considering “formal power series” containing a pa-
rameter t, that is, infinite power series in t considered without regard for
convergence. Let us discuss this idea in more detail.


By definition, a formal power series (FPS) is an infinite sequence of num-
bers (c0, c1, c2, ...). This sequence, however, is written as if it were a power
series in a parameter t,


c0 + c1t+ c2t
2 + ... =


∞∑


n=0


cnt
n.


It appears that we need to calculate the sum of the above series. However,
while we manipulate an FPS, we do not assign any value to t and thus do
not have to consider the issue of convergence of the resulting infinite series.


175







4 Advanced applications


Hence, we work with an FPS as with an algebraic expression containing a
variable t, an expression that we do not evaluate (although we may simplify
it). These expressions can be manipulated term by term, so that, for exam-
ple, the sum and the product of two FPS are always defined; the result is
another FPS. Thus, the notation for FPS should be understood as a conve-
nient shorthand that simplifies working with FPS, rather than an actual sum
of an infinite series. At the same time, the notation for FPS makes it easy to
evaluate the actual infinite series when the need arises. Therefore, any results
obtained using FPS will hold whenever the series converges.


Now I will use the formal power series to define f(tÂ).


Definition 2: Given an analytic function f(x) shown above and a linear op-


erator Â, the function f(tÂ) denotes the operator-valued formal power series


f(tÂ) ≡
∞∑


n=0


cn(Â)ntn.


(According to the definition of formal power series, the variable t is a pa-
rameter that does not have a value and serves only to label the terms of the
series.)


One can define the derivative of a formal power series, without using the
notion of a limit (and without discussing convergence).


Definition 3: The derivative ∂t of a formal power series
∑


k akt
k is another


formal power series defined by


∂t


(
∞∑


k=0


akt
k
)
≡


∞∑


k=0


(k + 1) ak+1t
k.


This definition gives us the usual properties of the derivative. For instance,
it is obvious that ∂t is a linear operator in the space of formal power series.
Further, we have the important distributive property:


Statement 1: The Leibniz rule,


∂t [f(t)g(t)] = [∂tf(t)] g(t) + f(t) [∂tg(t)] ,


holds for formal power series.
Proof: Since ∂t is a linear operation, it is sufficient to check that the Leibniz


rule holds for single terms, f(t) = ta and g(t) = tb. Details left as exercise. �


This definition of f(tÂ) has reasonable and expected properties, such as:


Exercise: For an analytic function f(x), show that


f(Â)Â = Âf(Â)


and that
d


dt
f(tÂ) = Âf ′(Â)
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for an analytic function f(x). Here both sides are interpreted as formal power


series. Deduce that f(Â)g(Â) = g(Â)f(Â) for any two analytic functions f(x)
and g(x).


Hint: Linear operations with formal power series must be performed term
by term (by definition). So it is sufficient to consider a single term in f(x),
such as f(x) = xa. �


Now we can show that the two definitions of the operator-valued function


f(Â) agree when both are applicable.


Statement 2: If f(x) is an analytic function and Â is a diagonalizable op-


erator then the two definitions agree, i.e. for f(x) =
∑∞


n=0 cnx
n and Â =


∑N
i=1 λiei ⊗ e∗i we have the equality of formal power series,


∞∑


n=0


cn(tÂ)n =


N∑


i=1


f(tλi) ei ⊗ e∗i . (4.4)


Proof: It is sufficient to prove that the terms multiplying tn coincide for


each n. We note that the square of Â is


(
N∑


i=1


λiei ⊗ e∗i


)2


=


(
N∑


i=1


λiei ⊗ e∗i


)





N∑


j=1


λjej ⊗ e∗j








=


N∑


i=1


λ2
i ei ⊗ e∗i


because e∗i (ej) = δij . In this way we can compute any power of Â. Therefore,
the term in the left side of Eq. (4.4) is


cnt
n(Â)n = cnt


n


(
N∑


i=1


λiei ⊗ e∗i


)n


= cnt
n


N∑


i=1


λn
i ei ⊗ e∗i ,


which coincides with the term at tn in the right side. �


4.4.2 Computations: Sylvester’s method


Now that we know when an operator-valued function f(Â) is defined, how


can we actually compute the operator f(Â)? The first definition requires us


to diagonalize Â (this is already a lot of work since we need to determine


every eigenvector). Moreover, Definition 1 does not apply when Â is non-
diagonalizable. On the other hand, Definition 2 requires us to evaluate in-
finitely many terms of a power series. Is there a simpler way?


There is a situation when f(Â) can be computed without such effort. Let


us first consider a simple example where the operator Â happens to be a pro-


jector, (Â)2 = Â. In this case, any power of Â is again equal to Â. It is then


177







4 Advanced applications


easy to compute a power series in Â:


∞∑


n=0


cn(Â)n = c01̂ +
(


∞∑


n=1


cn
)
Â.


In this way we can compute any analytic function of Â (as long as the series
∑∞


n=1 cn converges). For example,


cos Â = 1̂ − 1


2!
(Â)2 +


1


4!
(Â)4 − ... = 1̂ − 1


2!
Â+


1


4!
Â− ...


= (1 − 1


2!
+


1


4!
− ...)Â+ 1̂ − Â


= [(cos 1) − 1] Â+ 1̂.


Remark: In the above computation, we obtained a formula that expresses the


end result through Â. We have that formula even though we do not know


an explicit form of the operator Â — not even the dimension of the space


where Â acts or whether Â is diagonalizable. We do not need to know any


eigenvectors of Â. We only use the given fact that Â2 = Â, and we are still


able to find a useful result. If such an operator Â is given explicitly, we can
substitute it into the formula


cos Â = [(cos 1) − 1] Â+ 1̂


to obtain an explicit expression for cos Â. Note also that the result is a formula


linear in Â.


Exercise 1: a) Given that (P̂ )2 = P̂ , express (λ1̂− P̂ )−1 and exp P̂ through P̂ .
Assume that |λ| > 1 so that the Taylor series for f(x) = (λ − x)−1 converges
for x = 1.


b) It is known only that (Â)2 = Â+ 2. Determine the possible eigenvalues


of Â. Show that any analytic function of Â can be reduced to the form α1̂+βÂ


with some suitable coefficients α and β. Express (Â)3, (Â)4, and Â−1 as linear


functions of Â.


Hint: Write Â−1 = α1̂ + βÂ with unknown α, β. Write ÂÂ−1 = 1̂ and
simplify to determine α and β.


Exercise 2: The operator Â is such that Â3 + Â = 0. Compute exp(λÂ) as a


quadratic polynomial of Â (here λ is a fixed number). �


Let us now consider a more general situation. Suppose we know the char-


acteristic polynomial QÂ(λ) of Â. The characteristic polynomial has the form


QÂ(λ) = (−λ)
N


+


N−1∑


k=0


(−1)
k
qN−kλ


k,
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where qi (i = 1, ..., N ) are known coefficients. The Cayley-Hamilton theorem


indicates that Â satisfies the polynomial identity,


(Â)N = −
N−1∑


k=0


qN−k (−1)
N−k


(Â)k.


It follows that any power of Â larger than N − 1 can be expressed as a lin-


ear combination of smaller powers of Â. Therefore, a power series in Â can


be reduced to a polynomial p(Â) of degree not larger than N − 1. The task


of computing an arbitrary function f(Â) is then reduced to the task of deter-
mining the N coefficients of p(x) ≡ p0 + ...+ pN−1x


n−1. Once the coefficients


of that polynomial are found, the function can be evaluated as f(Â) = p(Â)


for any operator Â that has the given characteristic polynomial.


Determining the coefficients of the polynomial p(Â) might appear to be
difficult because one can get rather complicated formulas when one converts


an arbitrary power of Â to smaller powers. This work can be avoided if the


eigenvalues of Â are known, by using the method of Sylvester, which I will
now explain.


The present task is to calculate f(Â) — equivalently, the polynomial p(Â)
— when the characteristic polynomial QÂ(λ) is known. The characteristic
polynomial has order N and hence has N (complex) roots, counting each


root with its multiplicity. The eigenvalues λi of the operator Â are roots of its
characteristic polynomial, and there exists at least one eigenvector vi for each
λi (Theorem 1 in Sec. 3.9). Knowing the characteristic polynomial QÂ(λ), we
may determine its roots λi.


Let us first assume that the roots λi (i = 1, ..., N ) are all different. Then
we have N different eigenvectors vi. The set {vi | i = 1, ..., N} is linearly in-


dependent (Statement 1 in Sec. 3.6.1) and hence is a basis in V ; that is, Â is
diagonalizable. We will not actually need to determine the eigenvectors vi; it


will be sufficient that they exist. Let us now apply the function f(Â) to each
of these N eigenvectors: we must have


f(Â)vi = f(λi)vi.


On the other hand, we may express


f(Â)vi = p(Â)vi = p(λi)vi.


Since the set {vi} is linearly independent, the vanishing linear combination


N∑


i=1


[f(λi) − p(λi)]vi = 0
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must have all vanishing coefficients; hence we obtain a system ofN equations
for N unknowns {p0, ..., pN−1}:


p0 + p1λi + ...+ pN−1λ
N−1
i = f(λi), i = 1, ..., N.


Note that this system of equations has the Vandermonde matrix (Sec. 3.6).
Since by assumption all λi’s are different, the determinant of this matrix is
nonzero, therefore the solution {p0, ..., pN−1} exists and is unique. The poly-
nomial p(x) is the interpolating polynomial for f(x) at the points x = λi


(i = 1, ..., N ).
We have proved the following theorem:


Theorem 1: If the roots {λ1, ..., λN} of the characteristic polynomial of Â are


all different, a function of Â can be computed as f(Â) = p(Â), where p(x) is
the interpolating polynomial for f(x) at the N points {λ1, ..., λN}.


Exercise 3: It is given that the operator Â has the characteristic polynomial


QÂ(λ) = λ2 − λ+ 6. Determine the eigenvalues of Â and calculate exp(Â) as


a linear expression in Â.


If we know that an operator Â satisfies a certain operator equation, say


(Â)2 − Â + 6 = 0, then it is not necessary to know the characteristic poly-


nomial in order to compute functions f(Â). It can be that the characteristic
polynomial has a high order due to many repeated eigenvalues; however, as
far as analytic functions are concerned, all that matters is the possibility to


reduce high powers of Â to low powers. This possibility can be provided by
a polynomial of a lower degree than the characteristic polynomial.


In the following theorem, we will determine f(Â) knowing only some poly-


nomial Q(x) for which p(Â) = 0.
Theorem 2: Suppose that a linear operator Â and a polynomialQ(x) are such


that Q(Â) = 0, and assume that the equation Q(λ) = 0 has all distinct roots
λi (i = 1, ..., n), where n is not necessarily equal to the dimension N of the


vector space. Then an analytic function f(Â) can be computed as


f(Â) = p(Â),


where p(x) is the interpolating polynomial for the function f(x) at the points
x = λi (i = 1, ..., n).
Proof: The polynomial p(x) is defined uniquely by substituting xk with


k ≥ n through lower powers of x in the series for f(x), using the equation


p(x) = 0. Consider the operator Â1 that acts as multiplication by λ1. This op-


erator satisfies p(Â1) = 0, and so f(Â1) is simplified to the same polynomial


p(Â1). Hence we must have f(Â1) = p(Â1). However, f(Â1) is simply the
operator of multiplication by f(λ1). Hence, p(x) must be equal to f(x) when
evaluated at x = λ1. Similarly, we find that p(λi) = f(λi) for i = 1, ..., n. The
interpolating polynomial for f(x) at the points x = λi (i = 1, ..., n) is unique
and has degree n− 1. Therefore, this polynomial must be equal to p(x). �
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It remains to develop a procedure for the case when not all roots λi of the
polynomial Q(λ) are different. To be specific, let us assume that λ1 = λ2


and that all other eigenvalues are different. In this case we will first solve
an auxiliary problem where λ2 = λ1 + ε and then take the limit ε → 0. The
equations determining the coefficients of the polynomial p(x) are


p(λ1) = f(λ1), p(λ1 + ε) = f(λ1 + ε), p(λ3) = f(λ3), ...


Subtracting the first equation from the second and dividing by ε, we find


p(λ1 + ε) − p(λ1)


ε
=
f(λ1 + ε) − f(λ1)


ε
.


In the limit ε→ 0 this becomes


p′(λ1) = f ′(λ1).


Therefore, the polynomial p(x) is determined by the requirements that


p(λ1) = f(λ1), p
′(λ1) = f ′(λ1), p(λ3) = f(λ3), ...


If three roots coincide, say λ1 = λ2 = λ3, we introduce two auxiliary parame-
ters ε2 and ε3 and first obtain the three equations


p(λ1) = f(λ1), p(λ1 + ε2) = f(λ1 + ε2),


p(λ1 + ε2 + ε3) = f(λ1 + ε2 + ε3).


Subtracting the equations and taking the limit ε2 → 0 as before, we find


p(λ1) = f(λ1), p
′(λ1) = f ′(λ1), p


′(λ1 + ε3) = f ′(λ1 + ε3).


Subtracting now the second equation from the third and taking the limit ε3 →
0, we find p′′(λ1) = f ′′(λ1). Thus we have proved the following.
Theorem 3: If a linear operator Â satisfies a polynomial operator equation


Q(Â) = 0, such that the equation Q(λ) = 0 has roots λi (i = 1, ..., n) with
multiplicities mi,


Q(λ) = const · (λ− λ1)
m1 ... (λ− λn)


mn ,


an analytic function f(Â) can be computed as


f(Â) = p(Â),


where p(x) is the polynomial determined by the conditions


p(λi) = f(λi), p
′(λi) = f ′(λi), ...,


dmi−1p(x)


dxmi−1


∣
∣
∣
∣
x=λi


=
dmi−1f(x)


dxmi−1


∣
∣
∣
∣
x=λi


, i = 1, ..., n.


Theorems 1 to 3, which comprise Sylvester’s method, allow us to compute
functions of an operator when only the eigenvalues are known, without de-
termining any eigenvectors and without assuming that the operator is diago-
nalizable.
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4.4.3 * Square roots of operators


In the previous section we have seen that functions of operators can be some-
times computed explicitly. However, our methods work either for diagonal-


izable operators Â or for functions f(x) given by a power series that con-


verges for every eigenvalue of the operator Â. If these conditions are not
met, functions of operators may not exist or may not be uniquely defined. As
an example where these problems arise, we will briefly consider the task of
computing the square root of a given operator.


Given an operator Â we would like to define its square root as an operator


B̂ such that B̂2 = Â. For a diagonalizable operator Â =
∑N


i=1 λiei⊗e∗i (where
{ei} is an eigenbasis and {e∗i } is the dual basis) we can easily find a suitable


B̂ by writing


B̂ ≡
N∑


i=1


√


λiei ⊗ e∗i .


Note that the numeric square root
√
λi has an ambiguous sign; so with each


possible choice of sign for each
√
λi, we obtain a possible choice of B̂. (De-


pending on the problem at hand, there might be a natural way of fixing the
signs; for instance, if all λi are positive then it might be useful to choose also
all


√
λi as positive.) The ambiguity of signs is expected; what is unexpected


is that there could be many other operators B̂ satisfying B̂2 = Â, as the fol-
lowing example shows.


Example 1: Let us compute the square root of the identity operator in a two-


dimensional space. We look for B̂ such that B̂2 = 1̂. Straightforward solu-


tions are B̂ = ±1̂. However, consider the following operator,


B̂ ≡
(
a b
c −a


)


, B̂2 =


(
a2 + bc 0


0 a2 + bc


)


=
(
a2 + bc


)
1̂.


This B̂ satisfies B̂2 = 1̂ for any a, b, c ∈ C as long as a2 + bc = 1. The square
root is quite ambiguous for the identity operator! �


We will now perform a simple analysis of square roots of operators in two-
and three-dimensional spaces using the Cayley-Hamilton theorem.


Let us assume that B̂2 = Â, where Â is a given operator, and denote for


brevity a ≡ TrÂ and b ≡ TrB̂ (where a is given but b is still unknown). In two


dimensions, any operator B̂ satisfies the characteristic equation


B̂2 − (TrB̂)B̂ + (det B̂)1̂ = 0.


Taking the trace of this equation, we can express the determinant as


det B̂ =
1


2
(TrB̂)2 − 1


2
Tr(B̂2)
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and hence


bB̂ = Â+
b2 − a


2
1̂. (4.5)


This equation will yield an explicit formula for B̂ through Â if we only deter-
mine the value of the constant b such that b 6= 0. Squaring the above equation
and taking the trace, we find


b4 − 2b2a+ c = 0, c ≡ 2Tr(Â2) − a2 = a2 − 4 det Â.


Hence, we obtain up to four possible solutions for b,


b = ±
√


a±
√


a2 − c = ±
√


TrÂ± 2
√


det Â. (4.6)


Each value of b such that b 6= 0 yield possible operators B̂ through Eq. (4.5).
Denoting by s1 = ±1 and s2 = ±1 the two free choices of signs in Eq. (4.6),
we may write the general solution (assuming b 6= 0) as


B̂ = s1
Â+ s2


√


det Â1̂
√


TrÂ+ 2s2
√


det Â


. (4.7)


It is straightforward to verify (using the Cayley-Hamilton theorem for Â) that


every such B̂ indeed satisfies B̂2 = Â.


Note also that B̂ is expressed as a linear polynomial in Â. Due to the Cayley-


Hamilton theorem, any analytic function of Â reduces to a linear polynomial
in the two-dimensional case. Hence, we can view Eq. (4.7) as a formula yield-


ing the analytic solutions of the equation B̂2 = Â.
If b = 0 is a solution of Eq. (4.6) then we must consider the possibility that


solutions B̂ with b ≡ Tr B̂ = 0 may exist. In that case, Eq. (4.5) indicates


that Â plus a multiple of 1̂ must be equal to the zero operator. Note that


Eq. (4.5) is a necessary consequence of B̂2 = Â, obtained only by assuming


that B̂ exists. Hence, when Â is not proportional to the identity operator, no


solutions B̂ with Tr B̂ = 0 can exist. On the other hand, if Â is proportional


to 1̂, solutions with Tr B̂ = 0 exist but the present method does not yield


these solutions. (Note that this method can only yield solutions B̂ that are


linear combinations of the operator Â and the identity operator!) It is easy to


see that the operators from Example 1 fall into this category, with TrB̂ = 0.
There are no other solutions except those shown in Example 1 because in that
example we have obtained all possible traceless solutions.


Another interesting example is found when Â is a nilpotent (but nonzero).


Example 2: Consider a nilpotent operator Â1 =


(
0 1
0 0


)


. In that case, both


the trace and the determinant of Â1 are equal to zero; it follows that b = 0 is


the only solution of Eq. (4.6). However, Â1 is not proportional to the identity


operator. Hence, a square root of Â1 does not exist.
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Remark: This problem with the nonexistence of the square root is not the


same as the nonexistence of
√
−1 within real numbers; the square root of Â1


does not exist even if we allow complex numbers! The reason is that the exis-


tence of
√


Â1 would be algebraically inconsistent (because it would contradict
the Cayley-Hamilton theorem). �


Let us summarize our results so far. In two dimensions, the general cal-


culation of a square root of a given operator Â proceeds as follows: If Â is
proportional to the identity operator, we have various solutions of the form
shown in Example 1. (Not every one of these solutions may be relevant for


the problem at hand, but they exist.) If Â is not proportional to the identity
operator, we solve Eq. (4.6) and obtain up to four possible values of b. If the


only solution is b = 0, the square root of Â does not exist. Otherwise, every


nonzero value of b yields a solution B̂ according to Eq. (4.5), and there are no
other solutions.


Example 3: We would like to determine a square root of the operator


Â =


(
1 3
0 4


)


.


We compute det Â = 4 and a = TrÂ = 5. Hence Eq. (4.6) gives four nonzero
values,


b = ±
√


5 ± 4 = {±1,±3} .


Substituting these values of b into Eq. (4.5) and solving for B̂, we compute the
four possible square roots


B̂ = ±
(


1 1
0 2


)


, B̂ = ±
(


−1 3
0 2


)


.


Since b = 0 is not a solution, while Â 6= λ1̂, there are no other square roots.


Exercise 1: Consider a diagonalizable operator represented in a certain basis
by the matrix


Â =


(
λ2 0
0 µ2


)


,


where λ and µ are any complex numbers, possibly zero, such that λ2 6= µ2.
Use Eqs. (4.5)–(4.6) to show that the possible square roots are


B̂ =


(
±λ 0
0 ±µ


)


.


and that there are no other square roots. �
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Exercise 2: Obtain all possible square roots of the zero operator in two di-
mensions. �


Let us now consider a given operator Â in a three-dimensional space and


assume that there exists B̂ such that B̂2 = Â. We will be looking for a for-


mula expressing B̂ as a polynomial in Â. As we have seen, this will certainly


not give every possible solution B̂, but we do expect to get the interesting


solutions that can be expressed as analytic functions of Â.


As before, we denote a ≡ TrÂ and b ≡ TrB̂. The Cayley-Hamilton theo-


rem for B̂ together with Exercise 1 in Sec. 3.9 (page 150) yields a simplified
equation,


0 = B̂3 − bB̂2 + sB̂ − (det B̂)1̂


= (Â+ s1̂)B̂ − bÂ− (det B̂)1̂, (4.8)


s ≡ b2 − a


2
.


Note that det B̂ = ±
√


det Â and hence can be considered known. Moving B̂
to another side in Eq. (4.8) and squaring the resulting equation, we find


(Â2 + 2sÂ+ s21̂)Â = (bÂ+ (det B̂)1̂)2.


Expanding the brackets and using the Cayley-Hamilton theorem for Â in the
form


Â3 − aÂ2 + pÂ− (det Â)1̂ = 0,


where the coefficient p can be expressed as


p =
1


2
(a2 − Tr(Â2)),


we obtain after simplifications


(s2 − p− 2bdet B̂)Â = 0.


This yields a fourth-order polynomial equation for b,


(
b2 − a


2


)2


− p− 2bdet B̂ = 0.


This equation can be solved, in principle. Since det B̂ has up to two possible


values, det B̂ = ±
√


det Â, we can then determine up to eight possible values
of b (and the corresponding values of s).


Now we use a trick to express B̂ as a function of Â. We rewrite Eq. (4.8) as


ÂB̂ = −sB̂ + bÂ+ (det B̂)1̂
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and multiply both sides by B̂, substituting ÂB̂ back into the equation,


Â2 + sÂ = bÂB̂ + (det B̂)B̂


= b[−sB̂ + bÂ+ (det B̂)1̂] + (det B̂)B̂.


The last line yields


B̂ =
1


(det B̂) − sb
[Â2 + (s− b2)Â− b(det B̂)1̂].


This is the final result, provided that the denominator (det B̂ − sb) does not
vanish. In case this denominator vanishes, the present method cannot yield a


formula for B̂ in terms of Â.


Exercise 3:* Verify that the square root of a diagonalizable operator,


Â =








p2 0 0
0 q2 0
0 0 r2





 ,


where p2, q2, r2 ∈ C are all different, can be determined using this approach,
which yields the eight possibilities


B̂ =








±p 0 0
0 ±q 0
0 0 ±r





 .


Hint: Rather than trying to solve the fourth-order equation for b directly (a
cumbersome task), one can just verify, by substituting into the equation, that
the eight values b = ±p±q±r (with all the possible choices of signs) are roots
of that equation.


Exercise 4:*3 It is given that a three-dimensional operator Â satisfies


Tr (Â2) =
1


2
(Tr Â)2, det Â 6= 0.


Show that there exists B̂, unique up to a sign, such that Tr B̂ = 0 and B̂2 = Â.


Answer:


B̂ = ± 1
√


det Â


[
Â2 − 1


2
(Tr Â)Â


]
.


3This is motivated by the article by R. Capovilla, J. Dell, and T. Jacobson, Classical and Quantum
Gravity 8 (1991), pp. 59–73; see p. 63 in that article.
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4.5 Formulas of Jacobi and Liouville


Definition: The Liouville formula is the identity


det(exp Â) = exp(TrÂ), (4.9)


where Â is a linear operator and exp Â is defined by the power series,


exp Â ≡
∞∑


n=0


1


n!
(Â)n.


Example: Consider a diagonalizable operator Â (an operator such that there
exists an eigenbasis {ei | i = 1, ..., N}) and denote by λi the eigenvalues, so


that Âei = λiei. (The eigenvalues λi are not necessarily all different.) Then


we have (Â)nei = λn
i ei and therefore


(exp Â)ei =


∞∑


n=0


1


n!
(Â)nei =


∞∑


n=0


1


n!
λn


i ei = eλiei.


The trace of Â is TrÂ =
∑N


i=1 λi and the determinant is det Â =
∏N


i=1 λi.
Hence we can easily verify the Liouville formula,


det(exp Â) = eλ1 ...eλN = exp(λ1 + ...+ λn) = exp(TrÂ).


However, the Liouville formula is valid also for non-diagonalizable opera-
tors. �


The formula (4.9) is useful in several areas of mathematics and physics.
A proof of Eq. (4.9) for matrices can be given through the use of the Jordan
canonical form of the matrix, which is a powerful but complicated construc-
tion that actually is not needed to derive the Liouville formula. We will derive
it using operator-valued differential equations for power series. A useful by-
product is a formula for the derivative of the determinant.


Theorem 1 (Liouville’s formula): For an operator Â in a finite-dimensional
space V ,


det exp(tÂ) = exp(tTrÂ). (4.10)


Here both sides are understood as formal power series in the variable t, e.g.


exp(tÂ) ≡
∞∑


n=0


tn


n!
(Â)n,


i.e. an infinite series considered without regard for convergence (Sec. 4.4).
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Remark: Although we establish Theorem 1 only in the sense of equality of
formal power series, the result is useful because both sides of Eq. (4.10) will
be equal whenever both series converge. Since the series for exp(x) converges
for all x, one expects that Eq. (4.10) has a wide range of applicability. In par-
ticular, it holds for any operator in finite dimensions. �


The idea of the proof will be to represent both sides of Eq. (4.10) as power
series in t satisfying some differential equation. First we figure out how to
solve differential equations for formal power series. Then we will guess a
suitable differential equation that will enable us to prove the theorem.


Lemma 1: The operator-valued function F̂ (t) ≡ exp(tÂ) is the unique solu-
tion of the differential equation


∂tF̂ (t) = F̂ (t) Â, F̂ (t = 0) = 1̂V ,


where both sides of the equation are understood as formal power series.
Proof: The initial condition means that


F̂ (t) = 1̂ + F̂1t+ F̂2t
2 + ...,


where F̂1, F̂2, ..., are some operators. Then we equate terms with equal pow-


ers of t in the differential equation, which yields F̂j+1 = 1
j F̂jÂ, j = 1, 2, ...,


and so we obtain the desired exponential series. �


Lemma 2: If φ(t) and ψ(t) are power series in t with coefficients from ∧mV
and ∧nV respectively, then the Leibniz rule holds,


∂t (φ ∧ ψ) = (∂tφ) ∧ ψ + φ ∧ (∂tψ) .


Proof: Since the derivative of formal power series, as defined above, is a
linear operation, it is sufficient to verify the statement in the case when φ =
taω1 and ψ = tbω2. Then we find


∂t (φ ∧ ψ) = (a+ b) ta+b−1ω1 ∧ ω2,


(∂tφ) ∧ ψ + φ ∧ (∂tψ) = ata−1ω1 ∧ tbω2 + taω1 ∧ btb−1ω2.


�


Lemma 3: The inverse to a formal power series φ(t) exists (as a formal power
series) if and only if φ(0) 6= 0.
Proof: The condition φ(0) 6= 0 means that we can express φ(t) = φ(0)+tψ(t)


where ψ(t) is another power series. Then we can use the identity of formal
power series,


1 = (1 + x)


[ ∞∑


n=0


(−1)
n
xn


]


,


to express 1/φ(t) as a formal power series,


1


φ(t)
=


1


φ(0) + tψ(t)
=


∞∑


n=0


(−1)
n


[φ(0)]
−n−1


[tψ(t)]
n
.
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Since each term [tψ(t)]
n is expanded into a series that starts with tn, we can


compute each term of 1/φ(t) by adding finitely many other terms, i.e. the
above equation does specify a well-defined formal power series. �


Corollary: If Â(t) is an operator-valued formal power series, the inverse to


Â(t) exists (as a formal power series) if and only if det Â(0) 6= 0.


The next step towards guessing the differential equation is to compute the
derivative of a determinant.


Lemma 4 (Jacobi’s formula): If Â(t) is an operator-valued formal power se-


ries such that the inverse Â−1(t) exists, we have


∂t det Â(t) = (det Â)Tr [Â−1∂tÂ] = Tr [(det Â)Â−1∂tÂ]. (4.11)


If the inverse does not exist, we need to replace det Â · Â−1 in Eq. (4.11) by the
algebraic complement,


˜̂
A ≡


(
∧N−1ÂN−1


)∧T


(see Sec. 4.2.1), so that we obtain the formula of Jacobi,


∂t det Â = Tr [
˜̂
A∂tÂ].


Proof of Lemma 4: A straightforward calculation using Lemma 2 gives


(
∂t det Â(t)


)
v1 ∧ ... ∧ vN = ∂t[Âv1 ∧ ... ∧ ÂvN ]


=


N∑


k=1


Âv1 ∧ ... ∧ (∂tÂ)vk ∧ ... ∧ ÂvN .


Now we use the definition of the algebraic complement operator to rewrite


Âv1 ∧ ... ∧ (∂tÂ)vk ∧ ... ∧ ÂvN = v1 ∧ ... ∧ (
˜̂
A∂tÂvk) ∧ ... ∧ vN .


Hence


(∂t det Â)v1 ∧ ... ∧ vN =


N∑


k=1


v1 ∧ ... ∧ (
˜̂
A∂tÂvk) ∧ ... ∧ vN


= ∧N (
˜̂
A∂tÂ)1v1 ∧ ... ∧ vN


= Tr [
˜̂
A∂tÂ]v1 ∧ ... ∧ vN .


Therefore ∂t det Â = Tr [
˜̂
A∂tÂ]. When Â−1 exists, we may express


˜̂
A through


the inverse matrix,
˜̂
A = (det Â)Â−1, and obtain Eq. (4.11).
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Proof of Theorem 1: It follows from Lemma 3 that F̂−1(t) exists since F̂ (0) =


1̂, and it follows from Lemma 4 that the operator-valued function F̂ (t) =


exp(tÂ) satisfies the differential equation


∂t det F̂ (t) = det F̂ (t) · Tr[F̂−1∂tF̂ ].


From Lemma 1, we have F̂−1∂tF̂ = F̂−1F̂ Â = Â, therefore


∂t det F̂ (t) = det F̂ (t) · TrÂ.


This is a differential equation for the number-valued formal power series


f(t) ≡ det F̂ (t), with the initial condition f(0) = 1. The solution (which
we may still regard as a formal power series) is


f(t) = exp(tTrÂ).


Therefore


det F̂ (t) ≡ det exp(tÂ) = exp(tTrÂ).


�


Exercise 1: (generalized Liouville’s formula) If Â ∈ End V and p ≤ N ≡
dimV , show that


∧p(exp tÂ)p = exp
(
t(∧pÂ1)


)
,


where both sides are understood as formal power series of operators in ∧pV .
(The Liouville formula is a special case with p = N .)


Exercise 2:* (Sylvester’s theorem) For any two linear maps Â : V → W and


B̂ : W → V , we have well-defined composition maps ÂB̂ ∈ End W and


B̂Â ∈ End V . Then


det(1̂V + B̂Â) = det(1̂W + ÂB̂).


Note that the operators at both sides act in different spaces.
Hint: Introduce a real parameter t and consider the functions f(t) ≡ det(1+


tÂB̂), g(t) ≡ det(1 + tB̂Â). These functions are polynomials of finite degree
in t. Consider the differential equation for these functions; show that f(t)
satisfies


df


dt
= f(t)Tr [ÂB̂(1 + tÂB̂)−1],


and similarly for g. Expand in series in t and use the identities Tr (ÂB̂) =


Tr (B̂Â), Tr (ÂB̂ÂB̂) = Tr (B̂ÂB̂Â), etc. Then show that f and g are solutions
of the same differential equation, with the same conditions at t = 0. There-
fore, show that these functions are identical as formal power series. Since f
and g are actually polynomials in t, they must be equal.
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4.5.1 Derivative of characteristic polynomial


Jacobi’s formula expresses the derivative of the determinant, ∂t det Â, in terms


of the derivative ∂tÂ of the operator Â. The determinant is the last coefficient


q0 of the characteristic polynomial of Â. It is possible to obtain similar formu-
las for the derivatives of all other coefficients of the characteristic polynomial.
Statement: The derivative of the coefficient


qk ≡ ∧N ÂN−k


of the characteristic polynomial of Â is expressed (for 0 ≤ k ≤ N − 1) as


∂tqk = Tr
[
(∧N−1ÂN−k−1)∧T∂tÂ


]
.


Note that the first operator in the brackets is the one we denoted by Â(k+1) in
Sec. 4.2.3, so we can write


∂tqk = Tr [Â(k+1)∂tÂ].


Proof: We apply the operator ∂t(∧N ÂN−k) to the tensor ω ≡ v1 ∧ ... ∧ vN ,
where {vj} is a basis. We assume that the vectors vj do not depend on t, so
we can compute


[
∂t(∧N ÂN−k)


]
ω = ∂t


[
∧N ÂN−kω


]
.


The result is a sum of terms such as


Âv1 ∧ ... ∧ ÂvN−k−1 ∧ ∂tÂvN−k ∧ vN−k+1 ∧ ... ∧ vN


and other terms obtained by permuting the vectors vj (without introducing


any minus signs!). The total number of these terms is equal to N
(


N−1
N−k−1


)
,


since we need to choose a single vector to which ∂tÂ will apply, and then


(N − k − 1) vectors to which Â will apply, among the (N − 1) remaining vec-
tors. Now consider the expression


Tr
[
(∧N−1ÂN−k−1)∧T∂tÂ


]
ω.


This expression is the sum of terms such as


Â(k+1)∂tÂv1 ∧ v2 ∧ ... ∧ vN


and other terms with permuted vectors vj . There will be N such terms, since


we choose one vector out of N to apply the operator Â(k+1)∂tÂ. Using the


definition of Â(k+1), we write


Â(k+1)∂tÂv1 ∧ v2 ∧ ... ∧ vN


= ∂tÂv1 ∧
[
∧N−1ÂN−k−1


]
(v2 ∧ ... ∧ vN )


= ∂tÂv1 ∧ Âv2 ∧ ... ∧ ÂvN−k ∧ vN−k+1 ∧ ... ∧ vN + ...,
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where in the last line we omitted all other permutations of the vectors. (There


will be
(


N−1
N−k−1


)
such permutations.) It follows that the tensor expressions


∂tqkω ≡ ∂t(∧N ÂN−k)ω


and Tr [Â(k+1)∂tÂ]ω consist of the same terms; thus they are equal,


∂tqkω = Tr [Â(k+1)∂tÂ]ω.


Since this holds for any ω ∈ ∧NV , we obtain the required statement. �


Exercise: Assuming that Â(t) is invertible, derive a formula for the derivative


of the algebraic complement, ∂t
˜̂
A.


Hint: Compute ∂t of both sides of the identity
˜̂
AÂ = (det Â)1̂.


Answer:


∂t
˜̂
A =


Tr [
˜̂
A∂tÂ]


˜̂
A− ˜̂


A(∂tÂ)
˜̂
A


det Â
.


Remark: Since
˜̂
A is a polynomial in Â,


˜̂
A = q1 − q2Â+ ...+ qN−1(−Â)N−2 + (−Â)N−1,


all derivatives of
˜̂
Amay be expressed directly as polynomials in Â and deriva-


tives of Â, even when Â is not invertible. Explicit expressions not involving


Â−1 are cumbersome — for instance, the derivative of a polynomial in Â will
contain expressions like


∂t(Â
3) = (∂tÂ)Â2 + Â(∂tÂ)Â+ Â2∂tÂ.


Nevertheless, these expressions can be derived using the known formulas for


∂tqk and Â(k). �


4.5.2 Derivative of a simple eigenvalue


Suppose an operator Â is a function of a parameter t; we will consider Â(t)
as a formal power series (FPS). Then the eigenvectors and the eigenvalues of


Â are also functions of t. We can obtain a simple formula for the derivative
of an eigenvalue λ if it is an eigenvalue of multiplicity 1. It will be sufficient


to know the eigenvalue λ and the algebraic complement of Â−λ1̂; we do not


need to know any eigenvectors of Â explicitly, nor the other eigenvalues.


Statement: Suppose Â(t) is an operator-valued formal power series and λ(0)


is a simple eigenvalue, i.e. an eigenvalue of Â(0) having multiplicity 1. We
also assume that there exists an FPS λ(t) and a vector-valued FPS v(t) such
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that Âv = λv in the sense of formal power series. Then the following identity
of FPS holds,


∂tλ =
Tr (


˜̂
B∂tÂ)


∧N B̂N−1
=


Tr (
˜̂
B∂tÂ)


Tr
˜̂
B


,


B̂(t) ≡ Â(t) − λ(t)1̂V .


The number


Tr
˜̂
B(0) ≡ ∧N B̂N−1


∣
∣
∣
t=0


6= 0


if and only if λ(0) is a simple eigenvalue.


Proof: We consider the derivative ∂t of the identity det B̂ = 0:


0 = ∂t det B̂ = Tr (
˜̂
B∂tB̂) = Tr [


˜̂
B(∂tÂ− 1̂∂tλ)]


= Tr (
˜̂
B∂tÂ) − (Tr


˜̂
B)∂tλ.


We have from Statement 1 in Sec. 4.2.3 the relation


Tr
˜̂
B = ∧N B̂N−1


for any operator B̂. Since (by assumption) Tr
˜̂
B(t) 6= 0 at t = 0, we may


divide by Tr
˜̂
B(t) because 1/Tr


˜̂
B(t) is a well-defined FPS (Lemma 3 in Sec. 4.5).


Hence, we have


∂tλ =
Tr (


˜̂
B∂tÂ)


Tr
˜̂
B


=
Tr (


˜̂
B∂tÂ)


∧N B̂N−1
.


The condition ∧N B̂N−1 6= 0 is equivalent to


∂


∂µ
QB̂(µ) 6= 0 atµ = 0,


which is the same as the condition that µ = 0 is a simple zero of the charac-


teristic polynomial of B̂ ≡ Â− λ1̂. �


Remark: If Â(t), say, at t = 0 has an eigenvalue λ(0) of multiplicity higher
than 1, the formula derived in Statement 1 does not apply, and the analysis re-
quires knowledge of the eigenvectors. For example, the eigenvalue λ(0) could
have multiplicity 2 because there are two eigenvalues λ1(t) and λ2(t), corre-
sponding to different eigenvectors, which are accidentally equal at t = 0. One
cannot compute ∂tλ without specifying which of the two eigenvalues, λ1(t)
or λ2(t), needs to be considered, i.e. without specifying the corresponding
eigenvectors v1(t) or v2(t). Here I do not consider these more complicated
situations but restrict attention to the case of a simple eigenvalue.
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4.5.3 General trace relations


We have seen in Sec. 3.9 (Exercises 1 and 2) that the coefficients of the charac-
teristic polynomial of an operator Â can be expressed by algebraic formulas


through the N traces TrÂ, ..., Tr(ÂN ), and we called these formulas “trace
relations.” We will now compute the coefficients in the trace relations in the
general case.


We are working with a given operator Â in an N -dimensional space.
Statement: We denote for brevity qk ≡ ∧N Âk and tk ≡ Tr(Âk), where k =
1, 2, ..., and set qk ≡ 0 for k > N . Then all qk can be expressed as polynomials
in tk, and these polynomials are equal to the coefficients at xk of the formal
power series


G(x) = exp


[


t1x− t2
x2


2
+ ...+ (−1)


n−1
tn
xn


n
+ ...


]


≡
∞∑


k=1


xkqk


by collecting the powers of the formal variable x up to the desired order.


Proof: Consider the expression det(1̂+xÂ) as a formal power series in x. By
the Liouville formula, we have the following identity of formal power series,


ln det(1̂ + xÂ) = Tr
[


ln(1̂ + xÂ)
]


= Tr


[


xÂ− x2


2
Â2 + ...+ (−1)


n−1 x
n


n
Ân + ...


]


= xt1 −
x2


2
t2 + ...+ (−1)


n−1
tn
xn


n
+ ...,


where we substituted the power series for the logarithm function and used


the notation tk ≡ Tr(Âk). Therefore, we have


det(1̂ + xÂ) = expG(x)


as the identity of formal power series. On the other hand, det(1̂ + xÂ) is
actually a polynomial of degree N in x, i.e. a formal power series that has all
zero coefficients from xN+1 onwards. The coefficients of this polynomial are


found by using xÂ instead of Â in Lemma 1 of Sec. 3.9:


det(1̂ + xÂ) = 1 + q1x+ ...+ qNx
N .


Therefore, the coefficient at xk in the formal power series expG(x) is indeed
equal to qk for k = 1, ..., N . (The coefficients at xk for k > N are all zero!) �


Example: Expanding the given series up to terms of order x4, we find after
some straightforward calculations


G(x) = t1x+
t21 − t2


2
x2 +


[
t31
6
− t1t2


2
+
t3
3


]


x3


+


[
t41
24


− t21t2
4


+
t22
8


+
t1t3
3


− t4
4


]


x4 +O(x5).
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Replacing tj with Tr(Âj) and collecting the terms at the k-th power of x, we
obtain the k-th trace relation. For example, the trace relation for k = 4 is


∧N Â4 =
1


24
(TrÂ)4 − 1


4
Tr(Â2)(TrÂ)2 +


1


8


[


Tr(Â2)
]2


+
1


3
Tr(Â3)TrÂ− 1


4
Tr(Â4).


Note that this formula is valid for all N , even for N < 4; in the latter case,
∧N Â4 = 0.


4.6 Jordan canonical form


We have seen in Sec. 3.9 that the eigenvalues of a linear operator are the roots
of the characteristic polynomial, and that there exists at least one eigenvector
corresponding to each eigenvalue. In this section we will assume that the
total number of roots of the characteristic polynomial, counting the algebraic
multiplicity, is equal to N (the dimension of the space). This is the case, for
instance, when the field K is that of the complex numbers (C); otherwise not
all polynomials will have roots belonging to K.


The dimension of the eigenspace corresponding to an eigenvalue λ (the
geometric multiplicity) is not larger than the algebraic multiplicity of the
root λ in the characteristic polynomial (Theorem 1 in Sec. 3.9). The geometric
multiplicity is in any case not less than 1 because at least one eigenvector
exists (Theorem 2 in Sec. 3.5.1). However, it may happen that the algebraic
multiplicity of an eigenvalue λ is larger than 1 but the geometric multiplicity
is strictly smaller than the algebraic multiplicity. For example, an operator
given in some basis by the matrix


(
0 1
0 0


)


has only one eigenvector corresponding to the eigenvalue λ = 0 of algebraic
multiplicity 2. Note that this has nothing to do with missing real roots of
algebraic equations; this operator has only one eigenvector even if we allow
complex eigenvectors. In this case, the operator is not diagonalizable because
there are insufficiently many eigenvectors to build a basis. The theory of the
Jordan canonical form explains the structure of the operator in this case and
finds a suitable basis that contains all the eigenvectors and also some addi-
tional vectors (called the root vectors), such that the given operator has a
particularly simple form when expressed through that basis. This form is
block-diagonal and consists of Jordan cells, which are square matrices such
as 





λ 1 0
0 λ 1
0 0 λ





 ,
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and similarly built matrices of higher dimension.


To perform the required analysis, it is convenient to consider each eigen-
value of a given operator separately and build the required basis gradually.
Since the procedure is somewhat long, we will organize it by steps. The result
of the procedure will be a construction of a basis (the Jordan basis) in which


the operator Â has the Jordan canonical form.


Step 0: Set up the initial basis. Let Â ∈ EndV be a linear operator having
the eigenvalues λ1,...,λn, and let us consider the first eigenvalue λ1; suppose
λ1 has algebraic multiplicity m. If the geometric multiplicity of λ1 is also
equal to m, we can choose a linearly independent set of m basis eigenvectors
{v1, ...,vm} and continue to work with the next eigenvalue λ2. If the geomet-
ric multiplicity of λ1 is less than m, we can only choose a set of r < m basis
eigenvectors {v1, ...,vr}.


In either case, we have found a set of eigenvectors with eigenvalue λ1 that
spans the entire eigenspace. We can repeat Step 0 for every eigenvalue λi


and obtain the spanning sets of eigenvectors. The resulting set of eigenvec-
tors can be completed to a basis in V . At the end of Step 0, we have a basis


{v1, ...,vk,uk+1, ...,uN}, where the vectors vi are eigenvectors of Â and the
vectors ui are chosen arbitrarily — as long as the result is a basis in V . By


construction, any eigenvector of Â is a linear combination of the vi’s. If the
eigenvectors vi are sufficiently numerous as to make a basis in V without


any ui’s, the operator Â is diagonalizable and its Jordan basis is the eigenba-
sis; the procedure is finished. We need to proceed with the next steps only in
the case when the eigenvectors vi do not yet span the entire space V , so the
Jordan basis is not yet determined.


Step 1: Determine a root vector. We will now concentrate on an eigenvalue
λ1 for which the geometric multiplicity r is less than the algebraic multi-
plicity m. At the previous step, we have found a basis containing all the
eigenvectors needed to span every eigenspace. The basis presently has the
form {v1, ...,vr,ur+1, ...,uN}, where {vi | 1 ≤ i ≤ r} span the eigenspace of


the eigenvalue λ1, and {ui | r + 1 ≤ i ≤ N} are either eigenvectors of Â corre-
sponding to other eigenvalues, or other basis vectors. Without loss of gener-
ality, we may assume that λ1 = 0 (otherwise we need to consider temporarily


the operator Â − λ11̂V , which has all the same eigenvectors as Â). Since the


operator Â has eigenvalue 0 with algebraic multiplicity m, the characteristic
polynomial has the form QÂ(λ) = λmq̃(λ), where q̃(λ) is some other polyno-
mial. Since the coefficients of the characteristic polynomial are proportional


to the operators ∧N Âk for 1 ≤ k ≤ N , we find that


∧N ÂN−m 6= 0, while ∧N ÂN−k = 0, 0 ≤ k < m.


In other words, we have found that several operators of the form ∧N ÂN−k


vanish. Let us now try to obtain some information about the vectors ui by
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considering the action of these operators on the N -vector


ω ≡ v1 ∧ ... ∧ vr ∧ ur+1 ∧ ... ∧ uN .


The result must be zero; for instance, we have


(∧N ÂN )ω = Âv1 ∧ ... = 0


since Âv1 = 0. We do not obtain any new information by considering the


operator ∧N ÂN because the application of ∧N ÂN on ω acts with Â on vi,
which immediately yields zero. A nontrivial result can be obtained only if we


do not act with Â on any of the r eigenvectors vi. Thus, we turn to considering


the operators ∧N ÂN−k with k ≥ r; these operators involve sufficiently few


powers of Â so that ∧N ÂN−kω may avoid containing any terms Âvi.
The first such operator is


0
!
=(∧N ÂN−r)ω = v1 ∧ ... ∧ vr ∧ Âur+1 ∧ ... ∧ ÂuN .


It follows that the set {v1, ...,vr, Âur+1, ..., ÂuN} is linearly dependent, so
there exists a vanishing linear combination


r∑


i=1


civi +
N∑


i=r+1


ciÂui = 0 (4.12)


with at least some ci 6= 0. Let us define the vectors


ṽ ≡
r∑


i=1


civi, x ≡ −
N∑


i=r+1


ciui,


so that Eq. (4.12) is rewritten as Âx = ṽ. Note that x 6= 0, for otherwise we
would have


∑r
i=1 civi = 0, which contradicts the linear independence of the


set {v1, ...,vr}. Further, the vector ṽ cannot be equal to zero, for otherwise we


would have Âx = 0, so there would exist an additional eigenvector x 6= 0 that
is not a linear combination of vi, which is impossible since (by assumption)
the set {v1, ...,vr} spans the entire subspace of all eigenvectors with eigen-
value 0. Therefore, ṽ 6= 0, so at least one of the coefficients {ci | 1 ≤ i ≤ r}
is nonzero. Without loss of generality, we assume that c1 6= 0. Then we can
replace v1 by ṽ in the basis; the set {ṽ,v2, ...,vr,ur+1, ...,uN} is still a basis
because


ṽ ∧ v2 ∧ ... ∧ vr = (c1v1 + ...) ∧ v2 ∧ ... ∧ vr


= c1v1 ∧ v2 ∧ ... ∧ vr 6= 0.


Similarly, at least one of the coefficients {ci | r + 1 ≤ i ≤ N} is nonzero. We
would like to replace one of the ui’s in the basis by x; it is possible to replace
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ui by x as long as ci 6= 0. However, we do not wish to remove from the ba-
sis any of the eigenvectors corresponding to other eigenvalues; so we need
to choose the index i such that ui is not one of the other eigenvectors and
at the same time ci 6= 0. This choice is possible; for were it impossible, the


vector x were a linear combination of other eigenvectors of Â (all having non-


zero eigenvalues), so Âx is again a linear combination of those eigenvectors,


which contradicts the equations Âx = ṽ and Âṽ = 0 because ṽ is linearly
independent of all other eigenvectors. Therefore, we can choose a vector ui


that is not an eigenvector and such that x can be replaced by ui. Without
loss of generality, we may assume that this vector is ur+1. The new basis,
{ṽ,v2, ...,vr,x,ur+2, ...,uN} is still linearly independent because


ω̃ ≡ ṽ ∧ v2 ∧ ... ∧ vr ∧ x ∧ ur+2... ∧ uN 6= 0


due to cr+1 6= 0. Renaming now ṽ → v1, x → x1, and ω̃ → ω, we obtain a


new basis {v1, ...,vr,x1,ur+2, ...,uN} such that vi are eigenvectors (Âvi = 0)


and Âx1 = v1. The vector x1 is called a root vector of order 1 corresponding
to the given eigenvalue λ1 = 0. Eventually the Jordan basis will contain all
the root vectors as well as all the eigenvectors for each eigenvalue. So our
goal is to determine all the root vectors.


Example 1: The operator Â = e1 ⊗ e∗2 in a two-dimensional space has an
eigenvector e1 with eigenvalue 0 and a root vector e2 (of order 1) so that


Âe2 = e1 and Âe1 = 0. The matrix representation of Â in the basis {e1, e2} is


Â =


(
0 1
0 0


)


.


Step 2: Determine other root vectors. If r+ 1 = m then we are finished with


the eigenvalue λ1; there are no more operators ∧N ÂN−k that vanish, and we
cannot extract any more information. Otherwise r + 1 < m, and we will


continue by considering the operator ∧N ÂN−r−1, which vanishes as well:


0 = (∧N ÂN−r−1)ω = v1 ∧ ... ∧ vr ∧ x1 ∧ Âur+2 ∧ ... ∧ ÂuN .


(Note that v1∧Âx1 = 0, so in writing (∧N ÂN−r−1)ω we omit the terms where


Â acts on vi or on x1 and write only the term where the operators Â act on
the N − r − 1 vectors ui.) As before, it follows that there exists a vanishing
linear combination


r∑


i=1


civi + cr+1x1 +
N∑


i=r+2


ciÂui = 0. (4.13)


We introduce the auxiliary vectors


ṽ ≡
r∑


i=1


civi, x ≡ −
N∑


i=r+2


ciui,
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and rewrite Eq. (4.13) as


Âx = cr+1x1 + ṽ. (4.14)


As before, we find that x 6= 0. There are now two possibilities: either cr+1 = 0
or cr+1 6= 0. If cr+1 = 0 then x is another root vector of order 1. As before, we
show that one of the vectors vi (but not v1) may be replaced by ṽ, and one of
the vectors ui (but not one of the other eigenvectors or root vectors) may be
replaced by x. After renaming the vectors (ṽ → vi and x → x2), the result is
a new basis


{v1, ...,vr,x1,x2,ur+3, ...,uN} , (4.15)


such that Âx1 = v1 and Âx2 = v2. It is important to keep the information
that x1 and x2 are root vectors of order 1.


The other possibility is that cr+1 6= 0. Without loss of generality, we may
assume that cr+1 = 1 (otherwise we divide Eq. (4.14) by cr+1 and redefine x


and ṽ). In this case x is a root vector of order 2; according to Eq. (4.14), acting


with Â on x yields a root vector of order 1 and a linear combination of some
eigenvectors. We will modify the basis again in order to simplify the action


of Â; namely, we redefine x̃1 ≡ x1 + ṽ so that Âx = x̃1. The new vector x̃1 is


still a root vector of order 1 because it satisfies Âx̃1 = v1, and the vector x1 in
the basis may be replaced by x̃1. As before, one of the ui’s can be replaced by
x. Renaming x̃1 → x1 and x → x2, we obtain the basis


{v1, ...,vr,x1,x2,ur+3, ...,uN} ,


where now we record that x2 is a root vector of order 2.
The procedure of determining the root vectors can be continued in this


fashion until all the root vectors corresponding to the eigenvalue 0 are found.
The end result will be a basis of the form


{v1, ...,vr,x1, ...,xm−r,um+1, ...,uN} ,


where {vi} are eigenvectors, {xi} are root vectors of various orders, and {ui}
are the vectors that do not belong to this eigenvalue.


Generally, a root vector of order k for the eigenvalue λ1 = 0 is a vector x


such that (Â)kx = 0. However, we have constructed the root vectors such that
they come in “chains,” for example Âx2 = x1, Âx1 = v1, Âv1 = 0. Clearly,
this is the simplest possible arrangement of basis vectors. There are at most
r chains for a given eigenvalue because each eigenvector vi (i = 1, ..., r) may
have an associated chain of root vectors. Note that the root chains for an
eigenvalue λ 6= 0 have the form Âv1 = λv1, Âx1 = λx1 +v1, Âx2 = λx2 +x1,
etc.
Example 2: An operator given by the matrix


Â =








20 1 0
0 20 1
0 0 20
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has an eigenvector e1 with eigenvalue λ = 20 and the root vectors e2 (of order


1) and e3 (of order 2) since Âe1 = 20e1, Âe2 = 20e2 +e1, and Âe3 = 20e3 +e2.
A tensor representation of Â is


Â = e1 ⊗ (20e∗1 + e∗2) + e2 ⊗ (20e∗2 + e∗3) + 20e3 ⊗ e∗3.


Step 3: Proceed to other eigenvalues. At Step 2, we determined all the root
vectors for one eigenvalue λ1. The eigenvectors and the root vectors belong-
ing to a given eigenvalue λ1 span a subspace called the Jordan cell for that
eigenvalue. We then repeat the same analysis (Steps 1 and 2) for another
eigenvalue and determine the corresponding Jordan cell. Note that it is im-
possible that a root vector for one eigenvalue is at the same time an eigenvec-
tor or a root vector for another eigenvalue; the Jordan cells have zero inter-
section. During the construction, we guarantee that we are not replacing any
root vectors or eigenvectors found for the previous eigenvalues. Therefore,
the final result is a basis of the form


{v1, ...,vr,x1, ...,xN−r} , (4.16)


where {vi} are the various eigenvectors and {xi} are the corresponding root
vectors of various orders.
Definition: The Jordan basis of an operator Â is a basis of the form (4.16)
such that vi are eigenvectors and xi are root vectors. For each root vector x


corresponding to an eigenvalue λ we have Âx = λx + y, where y is either an
eigenvector or a root vector belonging to the same eigenvalue.


The construction in this section constitutes a proof of the following state-
ment.
Theorem 1: Any linear operator Â in a vector space over C admits a Jordan
basis.
Remark: The assumption that the vector space is over complex numbers C is
necessary in order to be sure that every polynomial has as many roots (count-
ing with the algebraic multiplicity) as its degree. If we work in a vector space
over R, the construction of the Jordan basis will be complete only for opera-
tors whose characteristic polynomial has only real roots. Otherwise we will
be able to construct Jordan cells only for real eigenvalues.
Example 3: An operator Â defined by the matrix


Â =








0 1 0
0 0 1
0 0 0








in a basis {e1, e2, e3} can be also written in the tensor notation as


Â = e1 ⊗ e∗2 + e2 ⊗ e∗3.


The characteristic polynomial of Â is QÂ(λ) = (−λ)
3, so there is only one


eigenvalue, λ1 = 0. The algebraic multiplicity of λ1 is 3. However, there is
only one eigenvector, namely e1. The vectors e2 and e3 are root vectors since


Âe3 = e2 and Âe2 = e1. Note also that the operator Â is nilpotent, Â3 = 0.
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Example 4: An operator Â defined by the matrix


Â =












6 1 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 7 0
0 0 0 0 7












has the characteristic polynomial QÂ(λ) = (6 − λ)
3
(7 − λ)


2 and two eigen-
values, λ1 = 6 and λ2 = 7. The algebraic multiplicity of λ1 is 3. However,
there are only two eigenvectors for the eigenvalue λ1, namely e1 and e3. The
vector e2 is a root vector of order 1 for the eigenvalue λ1 since


Âe2 =












6 1 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 7 0
0 0 0 0 7






















0
1
0
0
0












=












1
6
0
0
0












= 6e2 + e1.


The algebraic multiplicity of λ2 is 2, and there are two eigenvectors for λ2,
namely e4 and e5. The vectors {e1, e2, e3} span the Jordan cell for the eigen-
value λ1, and the vectors {e4, e5} span the Jordan cell for the eigenvalue λ2.
Exercise 1: Show that root vectors of order k (with k ≥ 1) belonging to eigen-


value λ are at the same time eigenvectors of the operator (Â − λ1̂)k+1 with
eigenvalue 0. (This gives another constructive procedure for determining the
root vectors.)


4.6.1 Minimal polynomial


Recalling the Cayley-Hamilton theorem, we note that the characteristic poly-


nomial for the operator Â in Example 4 in the previous subsection vanishes


on Â:
(6 − Â)3(7 − Â)2 = 0.


However, there is a polynomial of a lower degree that also vanishes on Â,


namely p(x) = (6 − x)
2
(7 − x).


Let us consider the operator Â in Example 3 in the previous subsection. Its


characteristic polynomial is (−λ)
3, and it is clear that (Â)2 6= 0 but (Â)3 = 0.


Hence there is no lower-degree polynomial p(x) that makes Â vanish; the
minimal polynomial is λ3.


Let us also consider the operator


B̂ =












2 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1












.
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The characteristic polynomial of this operator is (2 − λ)
2
(1 − λ)


3, but it is
clear that the following simpler polynomial, p(x) = (2 − x) (1 − x), also van-


ishes on B̂. If we are interested in the lowest-degree polynomial that vanishes


on B̂, we do not need to keep higher powers of the factors (2 − λ) and (1 − λ)
that appear in the characteristic polynomial.


We may ask: what is the polynomial p(x) of a smallest degree such that


p(Â) = 0? Is this polynomial unique?


Definition: The minimal polynomial for an operator Â is a monic polyno-


mial p(x) such that p(Â) = 0 and that no polynomial p̃(x) of lower degree


satisfies p̃(Â) = 0.
Exercise 1: Suppose that the characteristic polynomial of Â is given as


QÂ(λ) = (λ1 − λ)
n1 (λ2 − λ)n2 ...(λs − λ)ns .


Suppose that the Jordan canonical form of Â includes Jordan cells for eigen-
values λ1, ..., λs such that the largest-order root vector for λi has order ri
(i = 1, ..., s). Show that the polynomial of degree r1 + ...+ rs defined by


p(x) ≡ (−1)r1+...+rs (λ1 − λ)
r1 ... (λs − λ)


rs


is monic and satisfies p(Â) = 0. If p̃(x) is another polynomial of the same


degree as p(x) such that p̃(Â) = 0, show that p̃(x) is proportional to p(x).


Show that no polynomial q(x) of lower degree can satisfy q(Â) = 0. Hence,


p(x) is the minimal polynomial for Â.
Hint: It suffices to prove these statements for a single Jordan cell. �


We now formulate a criterion that shows whether a given operator Â is
diagonalizable.
Definition: A polynomial p(x) of degree n is square-free if all n roots of p(x)
have algebraic multiplicity 1, in other words,


p(x) = c (x− x1) ... (x− xn)


where all xi (i = 1, ..., n) are different. If a polynomial


q(x) = c (x− x1)
s1 ... (x− xm)


sm


is not square-free (i.e. some si 6= 1), its square-free reduction is the polyno-
mial


q̃(x) = c (x− x1) ... (x− xm) .


Remark: In order to compute the square-free reduction of a given polyno-
mial q(x), one does not need to obtain the roots xi of q(x). Instead, it suffices
to consider the derivative q′(x) and to note that q′(x) and q(x) have common
factors only if q(x) is not square-free, and moreover, the common factors are
exactly the factors that we need to remove from q(x) to make it square-free.
Therefore, one computes the greatest common divisor of q(x) and q′(x) us-
ing the Euclidean algorithm and then divides q(x) by gcd (q, q′) to obtain the
square-free reduction q̃(x).
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Theorem 2: An operator Â is diagonalizable if and only if p(Â) = 0 where
p(λ) is the square-free reduction of the characteristic polynomial QÂ(λ).


Proof: The Jordan canonical form of Â may contain several Jordan cells cor-
responding to different eigenvalues. Suppose that the set of the eigenvalues


of Â is {λi | i = 1, ..., n}, where λi are all different and have algebraic multi-


plicities si; then the characteristic polynomial of Â is


QÂ(x) = (λ1 − x)
s1 ... (λn − x)


sn ,


and its square-free reduction is the polynomial


p(x) = (λ1 − x) ... (λn − x) .


If the operator Â is diagonalizable, its eigenvectors {vj | j = 1, ..., N} are a


basis in V . Then p(Â)vj = 0 for all j = 1, ..., N . It follows that p(Â) = 0̂


as an operator. If the operator Â is not diagonalizable, there exists at least
one nontrivial Jordan cell with root vectors. Without loss of generality, let
us assume that this Jordan cell corresponds to λ1. Then there exists a root


vector x such that Âx = λ1x + v1 while Âv1 = λ1v1. Then we can compute


(λ1 − Â)x = −v1 and


p(Â)x = (λ1 − Â)...(λn − Â)x


(1)
= (λn − Â)...(λ2 − Â)(λ1 − Â)x


(2)
= − (λn − λ1) ... (λ2 − λ1)v1 6= 0,


where in
(1)
= we used the fact that operators (λi − Â) all commute with each


other, and in
(2)
= we used the property of an eigenvector, q(Â)v1 = q(λ1)v1 for


any polynomial q(x). Thus we have shown that p(Â) gives a nonzero vector


on x, which means that p(Â) is a nonzero operator. �


Exercise 2: a) It is given that the characteristic polynomial of an operator Â


(in a complex vector space) is λ3 + 1. Prove that the operator Â is invertible
and diagonalizable.


b) It is given that the operator Â satisfies the equation Â3 = Â2. Is Â in-


vertible? Is Â diagonalizable? (If not, give explicit counterexamples, e.g., in a
2-dimensional space.)


Exercise 3: A given operator Â has a Jordan cell Span {v1, ...,vk} with eigen-
value λ. Let


p(x) = p0 + p1x+ ...+ psx
s


be an arbitrary, fixed polynomial, and consider the operator B̂ ≡ p(Â). Show


that Span {v1, ...,vk} is a subspace of some Jordan cell of the operator B̂ (al-
though the eigenvalue of that cell may be different). Show that the orders of


the root vectors of B̂ are not larger than those of Â.
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Hint: Consider for simplicity λ = 0. The vectors vj belong to the eigenvalue


p0 ≡ p(0) of the operator B̂. The statement that {vj} are within a Jordan cell


for B̂ is equivalent to


v1 ∧ ... ∧ (B̂ − p01̂)vi ∧ ... ∧ vk = 0 for i = 1, ..., k.


If v1 is an eigenvector of Âwith eigenvalue λ = 0 then it is also an eigenvector


of B̂ with eigenvalue p0. If x is a root vector of order 1 such that Âx = v1 then


B̂x = p0x + p1v, which means that x could be a root vector of order 1 or an
eigenvector of B̂ depending on whether p1 = 0. Similarly, one can show that


the root chains of B̂ are sub-chains of the root chains Â (i.e. the root chains
can only get shorter).


Example 5: A nonzero nilpotent operator Â such that Â1000 = 0 may have


root vectors of orders up to 999. The operator B̂ ≡ Â500 satisfies B̂2 = 0 and
thus can have root vectors only up to order 1. More precisely, the root vectors


of Â of orders 1 through 499 are eigenvectors of B̂, while root vectors of Â of


orders 500 through 999 are root vectors of B̂ of order 1. However, the Jordan
cells of these operators are the same (the entire space V is a Jordan cell with


eigenvalue 0). Also, Â is not expressible as a polynomial in B̂. �


Exercise 3 gives a necessary condition for being able to express an operator


B̂ as a polynomial in Â: It is necessary to determine whether the Jordan cells


of Â and B̂ are “compatible” in the sense of Exercise 3. If Â’s Jordan cells


cannot be embedded as subspaces within B̂’s Jordan cells, or if B̂ has a root


chain that is not a sub-chain of some root chain of Â, then B̂ cannot be a
polynomial in Â.


Determining a sufficient condition for the existence of p(x) for arbitrary Â


and B̂ is a complicated task, and I do not consider it here. The following
exercise shows how to do this in a particularly simple case.


Exercise 4: Two operators Â and B̂ are diagonalizable in the same eigenbasis
{v1, ...,vN} with eigenvalues λ1, ..., λn and µ1, ..., µn that all have multiplicity


1. Show that B̂ = p(Â) for some polynomial p(x) of degree at most N − 1.
Hint: We need to map the eigenvalues {λj} into {µj}. Choose the polyno-


mial p(x) that maps p(λj) = µj for j = 1, ..., N . Such a polynomial surely
exists and is unique if we restrict to polynomials of degree not more than
N − 1. �


4.7 * Construction of projectors onto Jordan


cells


We now consider the problem of determining the Jordan cells. It turns out
that we can write a general expression for a projector onto a single Jordan cell
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of an operator Â. The projector is expressed as a polynomial in Âwith known


coefficients. (Note that Â may or may not be diagonalizable.)


The required projector P̂ can be viewed as an operator that has the same


Jordan cells as Â but the eigenvalues are 1 for a single chosen Jordan cell and


0 for all other Jordan cells. One way to construct the projector P̂ is to look for


a polynomial in Â such that the eigenvalues and the Jordan cells are mapped
as desired. Some examples of this were discussed at the end of the previous
subsection; however, the construction required a complete knowledge of the


Jordan canonical form of Â with all eigenvectors and root vectors. We will


consider a different method of computing the projector P̂ . With this method,


we only need to know the characteristic polynomial of Â, a single eigenvalue,
and the algebraic multiplicity of the chosen eigenvalue. We will develop this
method beginning with the simplest case.


Statement 1: If the characteristic polynomial Q (λ) of an operator Â has a
zero λ = λ0 of multiplicity 1, i.e. if Q(λ0) = 0 and Q′(λ0) 6= 0, then the


operator P̂λ0
defined by


P̂λ0
≡ − 1


Q′(λ0)


[
∧N−1(Â− λ01̂V )N−1


]∧T


is a projector onto the one-dimensional eigenspace of the eigenvalue λ0. The


prefactor can be computed also as −Q′(λ0) = ∧N (Â− λ01̂V )N−1.


Proof: We denote P̂ ≡ P̂λ0
for brevity. We will first show that for any vector


x, the vector P̂x is an eigenvector of Â with eigenvalue λ0, i.e. that the image


of P̂ is a subspace of the λ0-eigenspace. Then it will be sufficient to show that


P̂v0 = v0 for an eigenvector v0; it will follow that P̂ P̂ = P̂ and so it will be


proved that P̂ is a projector onto the eigenspace.
Without loss of generality, we may set λ0 = 0 (or else we consider the op-


erator Â − λ01̂V instead of Â). Then we have det Â = 0, while the number
∧N ÂN−1 is equal to the last-but-one coefficient in the characteristic polyno-
mial, which is the same as −Q′(λ0) and is nonzero. Thus we set


P̂ =
1


∧N ÂN−1


(
∧N−1ÂN−1


)∧T
=


1


∧N ÂN−1


˜̂
A


and note that by Lemma 1 in Sec. 4.2.1


P̂ Â =
1


∧N ÂN−1
(det Â)1̂V = 0̂V .


Since P̂ is a polynomial in Â, we have P̂ Â = ÂP̂ = 0. Therefore Â(P̂x) = 0


for all x ∈ V , so imP̂ is indeed a subspace of the eigenspace of the eigenvalue
λ0 = 0.


It remains to show that P̂v0 = v0 for an eigenvector v0 such that Âv0 = 0.
This is verified by a calculation: We use Lemma 1 in Sec. 4.2.1, which is the
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identity


(
∧N−1ÂN−n


)∧T
Â+


(
∧N−1ÂN−n+1


)∧T
= (∧N ÂN−n+1)1̂V


valid for all n = 1, ..., N , and apply both sides to the vector v0 with n = 2:


(
∧N−1ÂN−2


)∧T
Âv0 +


(
∧N−1ÂN−1


)∧T
v0 = (∧N ÂN−1)v0,


which yields the required formula,


(
∧N−1ÂN−1


)∧T
v0


∧N ÂN−1
= v0,


since Âv0 = 0. Therefore, P̂v0 = v0 as required. �


Remark: The projector P̂λ0
is a polynomial in Â with coefficients that are


known if the characteristic polynomial Q(λ) is known. The quantity Q′(λ0) is
also an algebraically constructed object that can be calculated without taking
derivatives. More precisely, the following formula holds.


Exercise 1: If Â is any operator in V , prove that


(−1)
k ∂k


∂λk
QÂ (λ) ≡ (−1)


k ∂k


∂λk
∧N (Â− λ1̂V )N


= k! ∧N (Â− λ1̂V )N−k. (4.17)


Solution: An easy calculation. For example, with k = 2 and N = 2,


∂2


∂λ2
∧2 (Â− λ1̂V )2u ∧ v =


∂2


∂λ2


[


(Â− λ1̂V )u ∧ (Â− λ1̂V )v
]


= 2u ∧ v.


The formula (4.17) shows that the derivatives of the characteristic polyno-
mial are algebraically defined quantities with a polynomial dependence on


the operator Â. �


Example 1: We illustrate this construction of the projector in a two-dimen-
sional space for simplicity. Let V be a space of polynomials in x of degree at
most 1, i.e. polynomials of the form α + βx with α, β ∈ C, and consider the


linear operator Â = x d
dx in this space. The basis in V is {1, x}, where we use


an underbar to distinguish the polynomials 1 and x from numbers such as 1.
We first determine the characteristic polynomial,


QÂ(λ) = det(Â− λ1̂) =
(Â− λ)1 ∧ (Â− λ)x


1 ∧ x
= −λ(1 − λ).


Let us determine the projector onto the eigenspace of λ = 0. We have ∧2Â1 =
−Q′(0) = 1 and


P̂0 = − 1


Q′(0)


(
∧1Â1


)∧T
= (∧2Â1)1̂ − Â = 1̂ − x


d


dx
.
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Since P̂01 = 1 while P̂0x = 0, the image of P̂ is the subspace spanned by 1.
Hence, the eigenspace of λ = 0 is Span{1}. �


What if the eigenvalue λ0 has an algebraic multiplicity larger than 1? Let
us first consider the easier case when the geometric multiplicity is equal to
the algebraic multiplicity.
Statement 2: If λ0 is an eigenvalue of both geometric and algebraic multiplic-


ity n then the operator P̂
(n)
λ0


defined by


P̂
(n)
λ0


≡
[
∧N ÂN−n


]−1[∧N−1(Â− λ01̂V )N−n
]∧T


(4.18)


is a projector onto the subspace of eigenvectors with eigenvalue λ0.


Proof: As in the proof of Statement 1, we first show that the image (im P̂
(n)
λ0


)


is a subspace of the λ0-eigenspace of Â, and then show that any eigenvector


v0 of Â with eigenvalue λ0 satisfies P̂
(n)
λ0


v0 = v0. Let us write P̂ ≡ P̂
(n)
λ0


for
brevity.


We first need to show that (Â − λ01̂)P̂ = 0. Since by assumption λ0 has
algebraic multiplicity n, the characteristic polynomial is of the form QÂ(λ) =
(λ0 − λ)


n
p(λ), where p(λ) is another polynomial such that p(λ0) 6= 0. With-


out loss of generality we set λ0 = 0. With λ0 = 0, the factor (−λn) in the


characteristic polynomial means that many of its coefficients qk ≡ ∧N ÂN−k


are equal to zero: qk = 0 for k = 0, ..., n−1 but qn 6= 0. (Thus the denominator
in Eq. (4.18) is nonzero.)


By Lemma 1 in Sec. 4.2.1, for every k = 1, ..., N we have the identity


(
∧N−1ÂN−k


)∧T
Â+


(
∧N−1ÂN−k+1


)∧T
= (∧N ÂN−k+1)1̂V .


We can rewrite this as


Â(k)Â+ Â(k−1) = qk−11̂, (4.19)


where we denoted, as before,


Â(k) ≡
(
∧N−1ÂN−k


)∧T
.


Setting k = n, we find


Â(n)Â = qnP̂
(n)Â = 0.


Since qn 6= 0, we find P̂ Â = 0. Since P̂ is a polynomial in Â, it commutes with


Â, so P̂ Â = ÂP̂ = 0. Hence the image of P̂ is a subspace of the eigenspace of


Â with λ0 = 0.
Now it remains to show that all vi’s are eigenvectors of P̂ with eigenvalue


1. We set k = n+ 1 in Eq. (4.19) and obtain


Â(n+1)Âvi + Â(n)vi = qnvi.


Since Âvi = 0, it follows that Â(n)vi = qnvi. Therefore P̂v1 = v1. �


It remains to consider the case when the geometric multiplicity of λ0 is less
than the algebraic multiplicity, i.e. if there exist some root vectors.
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Statement 3: We work with an operator Â whose characteristic polynomial
is known,


QÂ(λ) = q0 + (−λ) q1 + ...+ (−λ)
N−1


qN−1 + (−λ)
N
.


Without loss of generality, we assume that Â has an eigenvalue λ0 = 0 of
algebraic multiplicity n ≥ 1. The geometric multiplicity of λ0 may be less
than or equal to n. (For nonzero eigenvalues λ0, we consider the operator


Â− λ01̂ instead of Â.)
(1) A projector onto the Jordan cell of dimension n belonging to eigenvalue


λ0 is given by the operator


P̂λ0
≡


n∑


k=1


ckÂ(k) = 1̂ +
n∑


k=1


N−k∑


i=n


ckqi+k(−Â)i, (4.20)


where
Â(k) ≡ (∧N−1ÂN−k)∧T , 1 ≤ k ≤ N − 1,


and c1, ..., cn are the numbers that solve the system of equations














qn qn+1 qn+2 · · · q2n−1


0 qn qn+1 · · · q2n−2


... 0
. . .


. . .
...


0
...


. . . qn qn+1


0 0 · · · 0 qn

























c1
c2
...


cn−1


cn













=













0
0
...
0
1













.


For convenience, we have set qN ≡ 1 and qi ≡ 0 for i > N .
(2) No polynomial in Â can be a projector onto the subspace of eigenvec-


tors within the Jordan cell (rather than a projector onto the entire Jordan cell)
when the geometric multiplicity is strictly less than the algebraic.


Proof: (1) The Jordan cell consists of all vectors x such that Ânx = 0. We
proceed as in the proof of Statement 2, starting from Eq. (4.19). By induction
in k, starting from k = 1 until k = n, we obtain


ÂÂ(1) = q01̂ = 0,


Â2Â(2) + ÂÂ(1) = Âq11̂ = 0 ⇒ Â2Â(2) = 0,


..., ⇒ ÂnÂ(n) = 0.


So we find ÂnÂ(k) = 0 for all k (1 ≤ k ≤ n). Since P̂λ0
is by construction equal


to a linear combination of these Â(k), we have ÂnP̂λ0
= 0, i.e. the image of


P̂λ0
is contained in the Jordan cell.


It remains to prove that the Jordan cell is also contained in the image of P̂λ0
,


that is, to show that Ânx = 0 implies P̂λ0
x = x. We use the explicit formulas
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for Â(k) that can be obtained by induction from Eq. (4.19) starting with k = N :


we have Â(N) = 0, Â(N−1) = qN−11̂ − Â, and finally


Â(k) = qk1̂ − qk+1Â+ ...+ qN (−Â)
N−k


=


N−k∑


i=0


qk+i(−Â)i, k ≥ 1. (4.21)


The operator P̂λ0
is a linear combination of Â(k) with 1 ≤ k ≤ n. The Jordan


cell of dimension n consists of all x ∈ V such that Ânx = 0. Therefore, while
computing P̂λ0


x for any x such that Ânx = 0, we can restrict the summation
over i to 0 ≤ i ≤ n− 1,


P̂λ0
x =


n∑


k=1


ck


N−k∑


i=0


qk+i(−Â)ix =


n∑


k=1


n−1∑


i=0


ckqk+i(−Â)ix.


We would like to choose the coefficients ck such that the sum above contains
only the term (−Â)0x = x with coefficient 1, while all other powers of Â will
enter with zero coefficient. In other words, we require that


n∑


k=1


n−1∑


i=0


ckqk+i(−Â)i = 1̂ (4.22)


identically as polynomial in Â. This will happen if the coefficients ck satisfy


n∑


k=1


ckqk = 1,


n∑


k=1


ckqk+i = 0, i = 1, ..., n− 1.


This system of equations for the unknown coefficients ck can be rewritten in
matrix form as














qn qn+1 qn+2 · · · q2n−1


qn−1 qn qn+1 · · · q2n−2


... qn−1
. . .


. . .
...


q2
...


. . . qn qn+1


q1 q2 · · · qn−1 qn

























c1
c2
...


cn−1


cn













=













0
0
...
0
1













.


However, it is given that λ0 = 0 is a root of multiplicity n, therefore q0 = ... =
qn−1 = 0 while qn 6= 0. Therefore, the system of equations has the triangular
form as given in Statement 3. Its solution is unique since qn 6= 0. Thus, we


are able to choose ck such that P̂λ0
x = x for any x within the Jordan cell.
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The formula for P̂λ0
can be simplified by writing


P̂λ0
=


n∑


k=1


[
n−1∑


i=0


ckqk+i(−Â)i +


N−k∑


i=n


ckqk+i(−Â)i


]


.


The first sum yields 1̂ by Eq. (4.22), and so we obtain Eq. (4.20).
(2) A simple counterexample is the (non-diagonalizable) operator


Â =


(
0 1
0 0


)


= e1 ⊗ e∗2.


This operator has a Jordan cell with eigenvalue 0 spanned by the basis vectors
e1 and e2. The eigenvector with eigenvalue 0 is e1, and a possible projector


onto this eigenvector is P̂ = e1 ⊗ e∗1. However, no polynomial in Â can yield


P̂ or any other projector only onto e1. This can be seen as follows. We note


that ÂÂ = 0, and thus any polynomial in Â can be rewritten as a01̂V + a1Â.


However, if an operator of the form a01̂V + a1Â is a projector, and ÂÂ = 0,
then we can derive that a2


0 = a0 and a1 = 2a0a1, which forces a0 = 1 and
a1 = 0. Therefore the only result of a polynomial formula can be the projector
e1 ⊗ e∗1 + e2 ⊗ e∗2 onto the entire Jordan cell. �


Example 2: Consider the space of polynomials in x and y of degree at most
1, i.e. the space spanned by {1, x,y}, and the operator


Â = x
∂


∂x
+


∂


∂y
.


The characteristic polynomial of Â is found as


QÂ(λ) =
(Â− λ)1 ∧ (Â− λ)x ∧ (Â− λ)y


1 ∧ x ∧ y


= λ2 − λ3 ≡ q0 − q1λ+ q2λ
2 − q3λ


3.


Hence λ = 0 is an eigenvalue of algebraic multiplicity 2. It is easy to guess
the eigenvectors, v1 = 1 (λ = 0) and v2 = x (λ = 1), as well as the root vector
v3 = y (λ = 0). However, let us pretend that we do not know the Jordan


basis, and instead determine the projector P̂0 onto the Jordan cell belonging
to the eigenvalue λ0 = 0 using Statement 3 with n = 2 and N = 3.


We have q0 = q1 = 0, q2 = q3 = 1. The system of equations for the coeffi-
cients ck is


q2c1 + q3c2 = 0,


q2c2 = 1,


and the solution is c1 = −1 and c2 = 1. We note that in our example,


Â2 = x
∂


∂x
.
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So we can compute the projector P̂0 by using Eq. (4.20):


P̂0 = 1̂ +
2∑


k=1


3−k∑


i=2


ckqi+k(−Â)i


= 1̂ + c1q3Â
2 = 1̂ − x


∂


∂x
.


(The summation over k and i collapses to a single term k = 1, i = 2.) The


image of P̂0 is Span {1,y}, and we have P̂0P̂0 = P̂0. Hence P̂0 is indeed a
projector onto the Jordan cell Span {1,y} that belongs to the eigenvalue λ = 0.
Exercise 2: Suppose the operator Â has eigenvalue λ0 with algebraic multi-
plicity n. Show that one can choose a basis {v1, ...,vn, en+1, ..., eN} such that
vi are eigenvalues or root vectors belonging to the eigenvalue λ0, and ej are


such that the vectors (Â−λ01̂)ej (with j = n+1,...,N ) belong to the subspace
Span {en+1, ..., eN}. Deduce that the subspace Span {en+1, ..., eN} is mapped


one-to-one onto itself by the operator Â− λ01̂.


Hint: Assume that the Jordan canonical form of Â is known. Show that


∧N−n(Â− λ01̂)N−n(en+1 ∧ ... ∧ eN ) 6= 0.


(Otherwise, a linear combination of ej is an eigenvector with eigenvalue λ0.)
Remark: Operators of the form


R̂k ≡
[
∧N−1(Â− λ01̂V )N−k


]∧T
(4.23)


with k ≤ n are used in the construction of projectors onto the Jordan cell.
What if we use Eq. (4.23) with other values of k? It turns out that the resulting


operators are not projectors. If k ≥ n, the operator R̂k does not map into the


Jordan cell. If k < n, the operator R̂k does not map onto the entire Jordan


cell but rather onto a subspace of the Jordan cell; the image of R̂k contains
eigenvectors or root vectors of a certain order. An example of this property
will be shown in Exercise 3.
Exercise 3: Suppose an operator Â has an eigenvalue λ0 with algebraic multi-
plicity n and geometric multiplicity n−1. This means (according to the theory
of the Jordan canonical form) that there exist n− 1 eigenvectors and one root
vector of order 1. Let us denote that root vector by x1 and let v2, ...,vn be
the (n− 1) eigenvectors with eigenvalue λ0. Moreover, let us choose v2 such


that Âv1 = λ0x1 + v2 (i.e. the vectors x1,v2 are a root chain). Show that the
operator R̂k given by the formula (4.23), with k = n− 1, satisfies


R̂n−1x1 = const · v2; R̂n−1vj = 0, j = 2, ..., n;


R̂n−1ej = 0, j = n+ 1, ..., N.


In other words, the image of the operator R̂n−1 contains only the eigenvector
v2; that is, the image contains the eigenvector related to a root vector of order
1.


Hint: Use a basis of the form {x1,v2, ...,vn, en+1, ..., eN} as in Exercise 2.
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5 Scalar product


Until now we did not use any scalar product in our vector spaces. In this
chapter we explore the properties of spaces with a scalar product. The exte-
rior product techniques are especially powerful when used together with a
scalar product.


5.1 Vector spaces with scalar product


As you already know, the scalar product of vectors is related to the geometric
notions of angle and length. These notions are most useful in vector spaces
over real numbers, so in most of this chapter I will assume that K is a field
where it makes sense to compare numbers (i.e. the comparison x > y is de-
fined and has the usual properties) and where statements such as λ2 ≥ 0
(∀λ ∈ K) hold. (Scalar products in complex spaces are defined in a different
way and will be considered in Sec. 5.6.)


In order to understand the properties of spaces with a scalar product, it
is helpful to define the scalar product in a purely algebraic way, without any
geometric constructions. The geometric interpretation will be developed sub-
sequently.


The scalar product of two vectors is a number, i.e. the scalar product maps
a pair of vectors into a number. We will denote the scalar product by 〈u,v〉,
or sometimes by writing it in a functional form, S (u,v).


A scalar product must be compatible with the linear structure of the vector
space, so it cannot be an arbitrary map. The precise definition is the following.
Definition: A map B : V × V → K is a bilinear form in a vector space V if
for any vectors u,v,w ∈ V and for any λ ∈ K,


B (u,v + λw) = B (u,v) + λB (u,w) ,


B (v + λw,u) = B (v,u) + λB (w,u) .


A bilinear form B is symmetric if B (v,w) = B (w,v) for any v, w. A bi-
linear form is nondegenerate if for any nonzero vector v 6= 0 there exists
another vector w such that B (v,w) 6= 0. A bilinear form is positive-definite
if B (v,v) > 0 for all nonzero vectors v 6= 0.


A scalar product in V is a nondegenerate, positive-definite, symmetric bi-
linear form S : V ×V → K. The action of the scalar product on pairs of vectors
is also denoted by 〈v,w〉 ≡ S (v,w). A finite-dimensional vector space over
R with a scalar product is called a Euclidean space. The length of a vector v
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is the non-negative number
√


〈v,v〉. (This number is also called the norm of
v.) �


Verifying that a map S : V × V → K is a scalar product in V requires prov-
ing that S is a bilinear form satisfying certain properties. For instance, the
zero function B (v,w) = 0 is symmetric but is not a scalar product because it
is degenerate.
Remark: The above definition of the scalar product is an “abstract definition”
because it does not specify any particular scalar product in a given vector
space. To specify a scalar product, one usually gives an explicit formula for
computing 〈a,b〉. In the same space V , one could consider different scalar
products.
Example 1: In the space Rn, the standard scalar product is


〈(x1, ..., xN ) , (y1, ..., yN )〉 ≡
N∑


j=1


xjyj . (5.1)


Let us verify that this defines a symmetric, nondegenerate, and positive-
definite bilinear form. This is a bilinear form because it depends linearly
on each xj and on each yj . This form is symmetric because it is invariant
under the interchange of xj with yj . This form is nondegenerate because for
any x 6= 0 at least one of xj , say x1, is nonzero; then the scalar product of x


with the vector w ≡ (1, 0, 0, ..., 0) is nonzero. So for any x 6= 0 there exists
w such that 〈x,w〉 6= 0, which is the nondegeneracy property. Finally, the
scalar product is positive-definite because for any nonzero x there is at least
one nonzero xj and thus


〈x,x〉 = 〈(x1, ..., xN ) , (x1, ..., xN )〉 ≡
N∑


j=1


x2
j > 0.


Remark: The fact that a bilinear form is nondegenerate does not mean that
it must always be nonzero on any two vectors. It is perfectly possible that
〈a,b〉 = 0 while a 6= 0 and b 6= 0. In the usual Euclidean space, this would
mean that a and b are orthogonal to each other. Nondegeneracy means that
no vector is orthogonal to every other vector. It is also impossible that 〈a,a〉 = 0
while a 6= 0 (this contradicts the positive-definiteness).
Example 2: Consider the space EndV of linear operators in V . We can define


a bilinear form in the space EndV as follows: For any two operators Â, B̂ ∈
EndV we set 〈Â, B̂〉 ≡ Tr(ÂB̂). This bilinear form is not positive-definite. For


example, if there is an operator Ĵ such that Ĵ2 = −1̂V then Tr(Ĵ Ĵ) = −N < 0


while Tr(1̂1̂) = N > 0, so neither Tr(ÂB̂) nor −Tr(ÂB̂) can be positive-defin-
ite. (See Exercise 4 in Sec. 5.1.2 below for more information.)
Remark: Bilinear forms that are not positive-definite (or even degenerate)
are sometimes useful as “pseudo-scalar products.” We will not discuss these
cases here.
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Exercise 1: Prove that two vectors are equal, u = v, if and only if 〈u,x〉 =
〈v,x〉 for all vectors x ∈ V .


Hint: Consider the vector u− v and the definition of nondegeneracy of the
scalar product.
Solution: If u−v = 0 then by the linearity of the scalar product 〈u − v,x〉 =


0 = 〈u,x〉 − 〈v,x〉. Conversely, suppose that u 6= v; then u − v 6= 0, and (by
definition of nondegeneracy of the scalar product) there exists a vector x such
that 〈u − v,x〉 6= 0. �


Exercise 2: Prove that two linear operators Â and B̂ are equal as operators,


Â = B̂, if and only if 〈Âx,y〉 = 〈B̂x,y〉 for all vectors x,y ∈ V .


Hint: Consider the vector Âx − B̂x. �


5.1.1 Orthonormal bases


A scalar product defines an important property of a basis in V .


Definition: A set of vectors {e1, ..., ek} in a space V is orthonormal with
respect to the scalar product if


〈ei, ej〉 = δij , 1 ≤ i, j ≤ k.


If an orthonormal set {ej} is a basis in V , it is called an orthonormal basis.


Example 2: In the space RN of N -tuples of real numbers (x1, ..., xN ), the nat-
ural scalar product is defined by the formula (5.1). Then the standard basis in
RN , i.e. the basis consisting of vectors (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1),
is orthonormal with respect to this scalar product. �


The standard properties of orthonormal bases are summarized in the fol-
lowing theorems.


Statement: Any orthonormal set of vectors is linearly independent.
Proof: If an orthonormal set {e1, ..., ek} is linearly dependent, there exist


numbers λj , not all equal to zero, such that


k∑


j=1


λjej = 0.


By assumption, there exists an index s such that λs 6= 0; then the scalar prod-
uct of the above sum with es yields a contradiction,


0 = 〈0, es〉 =


〈
k∑


j=1


λjej , es


〉


=


k∑


j=1


δjsλj = λs 6= 0.


Hence, any orthonormal set is linearly independent (although it is not neces-
sarily a basis). �
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Theorem 1: Assume that V is a finite-dimensional vector space with a scalar
product and K is a field where one can compute square roots (i.e. for any


λ ∈ K, λ > 0 there exists another number µ ≡
√
λ ∈ K such that λ = µ2).


Then there exists an orthonormal basis in V .


Proof: We can build a basis by the standard orthogonalization procedure
(the Gram-Schmidt procedure). This procedure uses induction to determine
a sequence of orthonormal sets {e1, ..., ek} for k = 1, ..., N .


Basis of induction: Choose any nonzero vector v ∈ V and compute 〈v,v〉;
since v 6= 0, we have 〈v,v〉 > 0, so


√


〈v,v〉 exists, and we can define e1 by


e1 ≡ v
√


〈v,v〉
.


It follows that 〈e1, e1〉 = 1.


Induction step: If {e1, ..., ek} is an orthonormal set, we need to find a vector
ek+1 such that {e1, ..., ek, ek+1} is again an orthonormal set. To find a suitable
vector ek+1, we first take any vector v such that the set {e1, ..., ek,v} is lin-
early independent; such v exists if k < N , while for k = N there is nothing
left to prove. Then we define a new vector


w ≡ v −
k∑


j=1


〈ej ,v〉 ej .


This vector has the property 〈ej ,w〉 = 0 for 1 ≤ j ≤ k. We have w 6= 0
because (by construction) v is not a linear combination of e1, ..., ek; therefore
〈w,w〉 > 0. Finally, we define


ek+1 ≡ w
√


〈w,w〉
,


so that 〈ek+1, ek+1〉 = 1; then the set {e1, ..., ek, ek+1} is orthonormal. So the
required set {e1, ..., ek+1} is now constructed. �


Question: What about number fields K where the square root does not exist,
for example the field of rational numbers Q?


Answer: In that case, an orthonormal basis may or may not exist. For ex-
ample, suppose that we consider vectors in Q2 and the scalar product


〈(x1, x2), (y1, y2)〉 = x1y1 + 5x2y2.


Then we cannot normalize the vectors: there exists no vector x ≡ (x1, x2) ∈
Q2 such that 〈x,x〉 = x2


1 + 5x2
2 = 1. The proof of this is similar to the ancient


proof of the irrationality of
√


2. Thus, there exists no orthonormal basis in this
space with this scalar product.
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Theorem 2: If {ej} is an orthonormal basis then any vector v ∈ V is ex-
panded according to the formula


v =


N∑


j=1


vjej , vj ≡ 〈ej ,v〉 .


In other words, the j-th component of the vector v in the basis {e1, ..., eN} is
equal to the scalar product 〈ej ,v〉.
Proof: Compute the scalar product 〈ej ,v〉 and obtain vj ≡ 〈ej ,v〉. �


Remark: Theorem 2 shows that the components of a vector in an orthonor-
mal basis can be computed quickly. As we have seen before, the component
vj of a vector v in the basis {ej} is given by the covector e∗j from the dual


basis, vj = e∗j (v). Hence, the dual basis
{
e∗j
}


consists of linear functions


e∗j : x 7→ 〈ej ,x〉 . (5.2)


In contrast, determining the dual basis for a general (non-orthonormal) basis
requires a complicated construction, such as that given in Sec. 2.3.3.


Corollary: If {e1, ..., eN} is an arbitrary basis in V , there exists a scalar prod-
uct with respect to which {ej} is an orthonormal basis.


Proof: Let {e∗1, ..., e∗N} be the dual basis in V ∗. The required scalar product
is defined by the bilinear form


S (u,v) =
N∑


j=1


e∗j (u) e∗j (v) .


It is easy to show that the basis {ej} is orthonormal with respect to the bi-
linear form S, namely S(ei, ej) = δij (where δij is the Kronecker symbol). It
remains to prove that S is nondegenerate and positive-definite. To prove the
nondegeneracy: Suppose that u 6= 0; then we can decompose u in the basis
{ej},


u =


N∑


j=1


ujej .


There will be at least one nonzero coefficient us, thus S (es,u) = us 6= 0. To
prove that S is positive-definite, compute


S (u,u) =


N∑


j=1


u2
j > 0


as long as at least one coefficient uj is nonzero. �
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Exercise 1: Let {v1, ...,vN} be a basis in V , and let {e1, ..., eN} be an orthonor-
mal basis. Show that the linear operator


Âx ≡
N∑


i=1


〈ei,x〉vi


maps the basis {ei} into the basis {vi}.
Exercise 2: Let {v1, ...,vn} with n < N be a linearly independent set (not
necessarily orthonormal). Show that this set can be completed to a basis
{v1, ...,vn, en+1, ..., eN} in V , such that every vector ej (j = n + 1, ..., N ) is
orthogonal to every vector vi (i = 1, ..., n).


Hint: Follow the proof of Theorem 1 but begin the Gram-Schmidt proce-
dure at step n, without orthogonalizing the vectors vi.
Exercise 3: Let {e1, ..., eN} be an orthonormal basis, and let vi ≡ 〈v, ei〉.
Show that


〈v,v〉 =


N∑


i=1


|vi|2 .


Exercise 4: Consider the space of polynomials of degree at most 2 in the vari-
able x. Let us define the scalar product of two polynomials p1(x) and p2(x)
by the formula


〈p1, p2〉 =
1


2


∫ 1


−1


p1(x)p2(x)dx.


Find a linear polynomial q1(x) and a quadratic polynomial q2(x) such that
{1, q1, q2} is an orthonormal basis in this space.
Remark: Some of the properties of the scalar product are related in an essen-
tial way to the assumption that we are working with real numbers. As an
example of what could go wrong if we naively extended the same results to
complex vector spaces, let us consider a vector x = (1, i) ∈ C2 and compute
its scalar product with itself by the formula


〈x,x〉 = x2
1 + x2


2 = 12 + i2 = 0.


Hence we have a nonzero vector whose “length” is zero. To correct this prob-
lem when working with complex numbers, one usually considers a different
kind of scalar product designed for complex vector spaces. For instance, the
scalar product in Cn is defined by the formula


〈(x1, ..., xn), (y1, ..., yn)〉 =


n∑


j=1


x∗jyj ,


where x∗j is the complex conjugate of the component xj . This scalar product
is called Hermitian and has the property


〈x,y〉 = 〈y,x〉∗ ,
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that is, it is not symmetric but becomes complex-conjugated when the order
of vectors is interchanged. According to this scalar product, we have for the
vector x = (1, i) ∈ C2 a sensible result,


〈x,x〉 = x∗1x1 + x∗2x2 = |1|2 + |i|2 = 2.


More generally, for x 6= 0


〈x,x〉 =


N∑


i=1


|xi|2 > 0.


In this text, I will use this kind of scalar product only once (Sec. 5.6).


5.1.2 Correspondence between vectors and covectors


Let us temporarily consider the scalar product 〈v,x〉 as a function of x for a
fixed v. We may denote this function by f∗. So f∗ : x 7→ 〈v,x〉 is a linear map
V → K, i.e. (by definition) an element of V ∗. Thus, a covector f∗ ∈ V ∗ is
determined for every v. Therefore we have defined a map V → V ∗ whereby
a vector v is mapped to the covector f∗, which is defined by its action on
vectors x as follows,


v 7→ f∗; f∗ (x) ≡ 〈v,x〉 , ∀x ∈ V. (5.3)


This map is an isomorphism between V and V ∗ (not a canonical one, since
it depends on the choice of the scalar product), as the following statement
shows.
Statement 1: A nondegenerate bilinear form B : V ⊗ V → K defines an
isomorphism V → V ∗ by the formula v 7→ f∗, f∗(x) ≡ B(v,x).


Proof: We need to show that the map B̂ : V → V ∗ is a linear one-to-one
(bijective) map. Linearity easily follows from the bilinearity of B. Bijectivity
requires that no two different vectors are mapped into one and the same cov-
ector, and that any covector is an image of some vector. If two vectors u 6= v


are mapped into one covector f∗ then B̂ (u − v) = f∗ − f∗ = 0 ∈ V ∗, in other
words, B (u − v,x) = 0 for all x. However, from the nondegeneracy of B it
follows that there exists x ∈ V such that B (u − v,x) 6= 0, which gives a con-


tradiction. Finally, consider a basis {vj} in V . Its image {B̂v1, ..., B̂vN} must
be a linearly independent set in V ∗ because a vanishing linear combination


∑


k


λkB̂vk = 0 = B̂
(∑


k


λkvk


)


entails
∑


k λkvk = 0 (we just proved that a nonzero vector cannot be mapped


into the zero covector). Therefore {B̂v1, ..., B̂vN} is a basis in V ∗, and any
covector f∗ is a linear combination


f∗ =
∑


k


f∗k B̂vk = B̂
(∑


k


f∗kvk


)
.
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It follows that any vector f∗ is an image of some vector from V . Thus B̂ is a
one-to-one map. �


Let us show explicitly how to use the scalar product in order to map vectors
to covectors and vice versa.
Example: We use the scalar product as the bilinear form B, so B(x,y) ≡
〈x,y〉. Suppose {ej} is an orthonormal basis. What is the covector B̂e1? By
Eq. (5.3), this covector acts on an arbitrary vector x as


B̂e1(x) = 〈e1,x〉 ≡ x1,


where x1 is the first component of the vector x in the basis {ej}, i.e. x =
∑N


i=1 xiei. We find that B̂e1 is the same as the covector e∗1 from the basis
{
e∗j
}


dual to {ej}.


Suppose f∗ ∈ V ∗ is a given covector. What is its pre-image B̂−1f∗ ∈ V ? It
is a vector v such that f∗(x) = 〈v,x〉 for any x ∈ V . In order to determine v,
let us substitute the basis vectors ej instead of x; we then obtain


f∗(ej) = 〈v, ej〉 .


Since the covector f∗ is given, the numbers f∗(ej) are known, and hence


v =


n∑


i=1


ej 〈v, ej〉 =


N∑


i=1


ej f∗(ej).


�


Bilinear forms can be viewed as elements of the space V ∗ ⊗ V ∗.
Statement 2: All bilinear forms in V constitute a vector space canonically
isomorphic to V ∗⊗V ∗. A basis {ej} is orthonormal with respect to the bilinear
form


B ≡
N∑


j=1


e∗j ⊗ e∗j .


Proof: Left as exercise. �


Exercise 1: Let {v1, ...,vN} be a basis in V (not necessarily orthonormal), and
denote by {v∗


i } the dual basis to {vi}. The dual basis is a basis in V ∗. Now,
we can map {v∗


i } into a basis {ui} in V using the covector-vector correspon-
dence. Show that 〈vi,uj〉 = δij . Use this formula to show that this construc-
tion, applied to an orthonormal basis {ei}, yields again the same basis {ei}.


Hint: If vectors x and y have the same scalar products 〈vi,x〉 = 〈vi,y〉 (for
i = 1, ..., N ) then x = y.
Exercise 2: Let {v1, ...,vN} be a given (not necessarily orthonormal) basis in
V , and denote by {v∗


i } the dual basis to {vi}. Due to the vector-covector
correspondence, {v∗


i } is mapped into a basis {uj} in V , so the tensor


1̂V ≡
N∑


i=1


vi ⊗ v∗
i
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is mapped into a bilinear form B acting as


B(x,y) =
N∑


i=1


〈vi,x〉 〈ui,y〉 .


Show that this bilinear form coincides with the scalar product, i.e.


B(x,y) = 〈x,y〉 , ∀x,y ∈ V.


Hint: Since
∑N


i=1 vi ⊗ v∗
i = 1̂V , we have


∑N
i=1 vi 〈ui,y〉 = y.


Exercise 3: If a scalar product 〈·, ·〉 is given in V , a scalar product 〈·, ·〉∗ can be
constructed also in V ∗ as follows: Given any two covectors f∗,g∗ ∈ V ∗, we
map them into vectors u,v ∈ V and then define


〈f∗,g∗〉∗ ≡ 〈u,v〉 .


Show that this scalar product is bilinear and positive-definite if 〈·, ·〉 is. For an
orthonormal basis {ej}, show that the dual basis


{
e∗j
}


in V ∗ is also orthonor-
mal with respect to this scalar product.
Exercise 4:* Consider the space EndV of linear operators in a vector space V
with dimV ≥ 2. A bilinear form in the space EndV is defined as follows: for


any two operators Â, B̂ ∈ EndV we set 〈Â, B̂〉 ≡ Tr(ÂB̂). Show that 〈Â, B̂〉 is
bilinear, symmetric, and nondegenerate, but not positive-definite.


Hint: To show nondegeneracy, consider a nonzero operator Â; there exists


v ∈ V such that Âv 6= 0, and then one can choose f∗ ∈ V ∗ such that f∗(Âv) 6=
0; then define B̂ ≡ v ⊗ f∗ and verify that 〈Â, B̂〉 is nonzero. To show that


the scalar product is not positive-definite, consider Ĉ = v ⊗ f∗ + w ⊗ g∗ and


choose the vectors and the covectors appropriately so that Tr(Ĉ2) < 0.


5.1.3 * Example: bilinear forms on V ⊕ V
∗


If V is a vector space then the space V ⊕ V ∗ has two canonically defined bi-
linear forms that could be useful under certain circumstances (when positive-
definiteness is not required). This construction is used in abstract algebra, and
I mention it here as an example of a purely algebraic and basis-free definition
of a bilinear form.


If (u, f∗) and (v,g∗) are two elements of V ⊕ V ∗, a canonical bilinear form
is defined by the formula


〈(u, f∗) , (v,g∗)〉 = f∗ (v) + g∗ (u) . (5.4)


This formula does not define a positive-definite bilinear form because


〈(u, f∗) , (u, f∗)〉 = 2f∗ (u) ,


which can be positive, negative, or zero for some (u, f∗) ∈ V ⊕ V ∗.
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Statement: The bilinear form defined by Eq. (5.4) is symmetric and nonde-
generate.


Proof: The symmetry is obvious from Eq. (5.4). Then for any nonzero vec-
tor (u, f∗) we need to find a vector (v,g∗) such that 〈(u, f∗) , (v,g∗)〉 6= 0. By
assumption, either u 6= 0 or f∗ 6= 0 or both. If u 6= 0, there exists a covector
g∗ such that g∗ (u) 6= 0; then we choose v = 0. If f∗ 6= 0, there exists a vector
v such that f∗ (v) 6= 0, and then we choose g∗ = 0. Thus the nondegeneracy
is proved. �


Alternatively, there is a canonically defined antisymmetric bilinear form (or
2-form),


〈(u, f∗) , (v,g∗)〉 = f∗ (v) − g∗ (u) .


This bilinear form is also nondegenerate (the same proof goes through as for
the symmetric bilinear form above). Nevertheless, none of the two bilinear
forms can serve as a scalar product: the former lacks positive-definiteness,
the latter is antisymmetric rather than symmetric.


5.1.4 Scalar product in index notation


In the index notation, the scalar product tensor S ∈ V ∗ ⊗ V ∗ is represented
by a matrix Sij (with lower indices), and so the scalar product of two vectors
is written as


〈u,v〉 = uivjSij .


Alternatively, one uses the vector-to-covector map Ŝ : V → V ∗ and writes


〈u,v〉 = u∗ (v) = uiv
i,


where the covector u∗ is defined by


u∗ ≡ Ŝu ⇒ ui ≡ Siju
j .


Typically, in the index notation one uses the same symbol to denote a vector,
ui, and the corresponding covector, ui. This is unambiguous as long as the
scalar product is fixed.


5.2 Orthogonal subspaces


From now on, we work in a real, N -dimensional vector space V equipped
with a scalar product.


We call two subspaces V1 ⊂ V and V2 ⊂ V orthogonal if every vector from
V1 is orthogonal to every vector from V2. An important example of orthogonal
subspaces is given by the construction of the orthogonal complement.
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Definition: The set of vectors orthogonal to a given vector v is denoted by
v⊥ and is called the orthogonal complement of the vector v. Written as a
formula:


v⊥ = {x |x ∈ V, 〈x,v〉 = 0} .
Similarly, the set of vectors orthogonal to each of the vectors {v1, ...,vn} is


denoted by {v1, ...,vn}⊥.


Examples: If {e1, e2, e3, e4} is an orthonormal basis in V then the subspace
Span {e1, e3} is orthogonal to the subspace Span {e2, e4} because any linear
combination of e1 and e3 is orthogonal to any linear combination of e2 and
e4. The orthogonal complement of e1 is


e⊥1 = Span {e2, e3, e4} .


Statement 1: (1) The orthogonal complement {v1, ...,vn}⊥ is a subspace of
V .


(2) Every vector from the subspace Span {v1, ...,vn} is orthogonal to every


vector from {v1, ...,vn}⊥.


Proof: (1) If two vectors x,y belong to {v1, ...,vn}⊥, it means that 〈vi,x〉 =
0 and 〈vi,y〉 = 0 for i = 1, ..., n. Since the scalar product is linear, it follows
that


〈vi, x + λy〉 = 0, i = 1, ..., n.


Therefore, any linear combination of x and y also belongs to {v1, ...,vn}⊥.


This is the same as to say that {v1, ...,vn}⊥ is a subspace of V .


(2) Suppose x ∈ Span {v1, ...,vn} and y ∈ {v1, ...,vn}⊥; then we may ex-
press x =


∑n
i=1 λivi with some coefficients λi, while 〈vi,y〉 = 0 for i =


1, ..., n. It follows from the linearity of the scalar product that


〈x,y〉 =


n∑


i=1


〈λivi,y〉 = 0.


Hence, every such x is orthogonal to every such y. �


Definition: If U ⊂ V is a given subspace, the orthogonal complement U⊥ is
defined as the subspace of vectors that are orthogonal to every vector from
U . (It is easy to see that all these vectors form a subspace.)


Exercise 1: Given a subspace U ⊂ V , we may choose a basis {u1, ...,un}
in U and then construct the orthogonal complement {u1, ...,un}⊥ as defined


above. Show that the subspace {u1, ...,un}⊥ is the same as U⊥ independently
of the choice of the basis {uj} in U . �


The space V can be decomposed into a direct sum of orthogonal subspaces.


Statement 2: Given a subspace U ⊂ V , we can construct its orthogonal com-
plement U⊥ ⊂ V . Then V = U ⊕ U⊥; in other words, every vector x ∈ V can
be uniquely decomposed as x = u + w where u ∈ U and w ∈ U⊥.
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Proof: Choose a basis {u1, ...,un} of U . If n = N , the orthogonal comple-
ment U⊥ is the zero-dimensional subspace, so there is nothing left to prove.
If n < N , we may choose some additional vectors en+1, ..., eN such that the
set {u1, ...,un, en+1, ..., eN} is a basis in V and every vector ej is orthogonal to
every vector ui. Such a basis exists (see Exercise 2 in Sec. 5.1.1). Then every
vector x ∈ V can be decomposed as


x =


n∑


i=1


λiui +


N∑


i=n+1


µiei ≡ u + w.


This decomposition provides the required decomposition of x into two vec-
tors.


It remains to show that this decomposition is unique (in particular, inde-
pendent of the choice of bases). If there were two different such decomposi-
tions, say x = u + w = u′ + w′, we would have


0
!
= 〈u − u′ + w − w′,y〉 , ∀y ∈ V.


Let us now show that u = u′ and w = w′: Taking an arbitrary y ∈ U , we have
〈w − w′,y = 0〉 and hence find that u−u′ is orthogonal to y. It means that the
vector u−u′ ∈ U is orthogonal to every vector y ∈ U , e.g. to y ≡ u−u′; since
the scalar product of a nonzero vector with itself cannot be equal to zero, we
must have u − u′ = 0. Similarly, by taking an arbitrary z ∈ U⊥, we find that
w − w′ is orthogonal to z, hence we must have w − w′ = 0. �


An important operation is the orthogonal projection onto a subspace.
Statement 3: There are many projectors onto a given subspace U ⊂ V , but


only one projector P̂U that preserves the scalar product with vectors from


U . Namely, there exists a unique linear operator P̂U , called the orthogonal
projector onto the subspace U , such that


P̂U P̂U = P̂U ; (P̂Ux) ∈ U for∀x ∈ V — projection property;


〈P̂Ux,a〉 = 〈x,a〉 , ∀x ∈ V, a ∈ U — preserves 〈·, ·〉 .


Remark: The name “orthogonal projections” (this is quite different from
“orthogonal transformations” defined in the next section!) comes from a ge-
ometric analogy: Projecting a three-dimensional vector orthogonally onto a
plane means that the projection does not add to the vector any components
parallel to the plane. The vector is “cast down” in the direction normal to the
plane. The projection modifies a vector x by adding to it some vector orthog-
onal to the plane; this modification preserves the scalar products of x with
vectors in the plane. Perhaps a better word would be “normal projection.”
Proof: Suppose {u1, ...,un} is a basis in the subspace U , and assume that
n < N (or else U = V and there exists only one projector onto U , namely
the identity operator, which preserves the scalar product, so there is noth-
ing left to prove). We may complete the basis {u1, ...,un} of U to a basis
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{u1, ...,un, en+1, ..., eN} in the entire space V . Let
{
u∗


1, ...,u
∗
n, e


∗
n+1, ..., e


∗
N


}
be


the corresponding dual basis. Then a projector onto U can be defined by


P̂ =
n∑


i=1


ui ⊗ u∗
i ,


that is, P̂x simply omits the components of the vector x parallel to any ej


(j = n + 1, ..., N ). For example, the operator P̂ maps the linear combination
λu1 + µen+1 to λu1, omitting the component parallel to en+1. There are in-
finitely many ways of choosing {ej | j = n+ 1, ..., N}; for instance, one can
add to en+1 an arbitrary linear combination of {uj} and obtain another pos-
sible choice of en+1. Hence there are infinitely many possible projectors onto
U .


While all these projectors satisfy the projection property, not all of them
preserve the scalar product. The orthogonal projector is the one obtained
from a particular completion of the basis, namely such that every vector ej is
orthogonal to every vector ui. Such a basis exists (see Exercise 2 in Sec. 5.1.1).
Using the construction shown above, we obtain a projector that we will de-


note P̂U . We will now show that this projector is unique and satisfies the
scalar product preservation property.


The scalar product is preserved for the following reason. For any x ∈ V ,
we have a unique decomposition x = u + w, where u ∈ U and w ∈ U⊥. The


definition of P̂U guarantees that P̂Ux = u. Hence


〈x,a〉 = 〈u + w,a〉 = 〈u,a〉 = 〈P̂Ux,a〉, ∀x ∈ V, a ∈ U.


Now the uniqueness: If there were two projectors P̂U and P̂ ′
U , both satisfy-


ing the scalar product preservation property, then


〈(P̂U − P̂ ′
U )x,u〉 = 0 ∀x ∈ V, u ∈ U.


For a given x ∈ V , the vector y ≡ (P̂U − P̂ ′
U )x belongs to U and is orthogonal


to every vector in U . Therefore y = 0. It follows that (P̂U − P̂ ′
U )x = 0 for any


x ∈ V , i.e. the operator (P̂U − P̂ ′
U ) is equal to zero. �


Example: Given a nonzero vector v ∈ V , let us construct the orthogonal pro-
jector onto the subspace v⊥. It seems (judging from the proof of Statement 3)
that we need to chose a basis in v⊥. However, the projector (as we know) is in
fact independent of the choice of the basis and can be constructed as follows:


P̂v⊥x ≡ x − v
〈v,x〉
〈v,v〉 .


It is easy to check that this is indeed a projector onto v⊥, namely we can check


that 〈P̂v⊥x,v〉 = 0 for all x ∈ V , and that v⊥ is an invariant subspace under


P̂v⊥ .
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Exercise 2: Construct an orthogonal projector P̂v onto the space spanned by
the vector v.


Answer: P̂vx = v
〈v,x〉
〈v,v〉 .


5.2.1 Affine hyperplanes


Suppose n ∈ V is a given vector and α a given number. The set of vectors x


satisfying the equation
〈n,x〉 = α


is called an affine hyperplane. Note that an affine hyperplane is not neces-
sarily a subspace of V because x = 0 does not belong to the hyperplane when
α 6= 0.


The geometric interpretation of a hyperplane follows from the fact that the
difference of any two vectors x1 and x2, both belonging to the hyperplane,
satisfies


〈n,x1 − x2〉 = 0.


Hence, all vectors in the hyperplane can be represented as a sum of one such
vector, say x0, and an arbitrary vector orthogonal to n. Geometrically, this
means that the hyperplane is orthogonal to the vector n and may be shifted
from the origin.


Example: Let us consider an affine hyperplane given by the equation 〈n,x〉 =
1, and let us compute the shortest vector belonging to the hyperplane. Any
vector x ∈ V can be written as


x = λn + b,


where b is some vector such that 〈n,b〉 = 0. If x belongs to the hyperplane,
we have


1 = 〈n,x〉 = 〈n, λn + b〉 = λ 〈n,n〉 .
Hence, we must have


λ =
1


〈n,n〉 .


The squared length of x is then computed as


〈x,x〉 = λ2 〈n,n〉 + 〈b,b〉


=
1


〈n,n〉 + 〈b,b〉 ≥ 1


〈n,n〉 .


The inequality becomes an equality when b = 0, i.e. when x = λn. Therefore,


the smallest possible length of x is equal to
√
λ, which is equal to the inverse


length of n.


Exercise: Compute the shortest distance between two parallel hyperplanes
defined by equations 〈n,x〉 = α and 〈n,x〉 = β.
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Answer:
|α− β|
√


〈n,n〉
.


5.3 Orthogonal transformations


Definition: An operator Â is called an orthogonal transformation with re-
spect to the scalar product 〈, 〉 if


〈Âv, Âw〉 = 〈v,w〉 , ∀v,w ∈ V.


(We use the words “transformation” and “operator” interchangeably since
we are always working within the same vector space V .)


5.3.1 Examples and properties


Example 1: Rotation by a fixed angle is an orthogonal transformation in a
Euclidean plane. It is easy to see that such a rotation preserves scalar products
(angles and lengths are preserved by a rotation). Let us define this transfor-
mation by a formula. If {e1, e2} is a positively oriented orthonormal basis in


the Euclidean plane, then we define the rotation R̂α of the plane by angle α
in the counter-clockwise direction by


R̂αe1 ≡ e1 cosα− e2 sinα,


R̂αe2 ≡ e1 sinα+ e2 cosα.


One can quickly verify that the transformed basis {R̂αe1, R̂αe2} is also an
orthonormal basis; for example,


〈R̂αe1, R̂αe1〉 = 〈e1, e1〉 cos2 α+ 〈e2, e2〉 sin2 α = 1.


Example 2: Mirror reflections are also orthogonal transformations. A mirror
reflection with respect to the basis vector e1 maps a vector x = λ1e1 + λ2e2 +


...+λNeN into M̂e1
x = −λ1e1 +λ2e2 + ...+λNeN , i.e. only the first coefficient


changes sign. A mirror reflection with respect to an arbitrary axis n (where n


is a unit vector, i.e. 〈n,n〉 = 1) can be defined as the transformation


M̂nx ≡ x − 2 〈n,x〉n.


This transformation is interpreted geometrically as mirror reflection with re-
spect to the hyperplane n⊥. �


An interesting fact is that orthogonality entails linearity.


Statement 1: If a map Â : V → V is orthogonal then it is a linear map,


Â (u + λv) = Âu + λÂv.
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Proof: Consider an orthonormal basis {e1, ..., eN}. The set {Âe1, ..., ÂeN}
is orthonormal because


〈Âei, Âej〉 = 〈ei, ej〉 = δij .


By Theorem 1 of Sec. 5.1 the set {Âe1, ..., ÂeN} is linearly independent and is
therefore an orthonormal basis in V . Consider an arbitrary vector v ∈ V and


its image Âv after the transformation Â. By Theorem 2 of Sec. 5.1.1, we can


decompose v in the basis {ej} and Âv in the basis {Âej} as follows,


v =
N∑


j=1


〈ej ,v〉 ej ,


Âv =
N∑


j=1


〈Âej , Âv〉 Âej =
N∑


j=1


〈ej ,v〉 Âej .


Any other vector u ∈ V can be similarly decomposed, and so we obtain


Â (u + λv) =


N∑


j=1


〈ej ,u + λv〉 Âej


=


N∑


j=1


〈ej ,u〉 Âej + λ


N∑


j=1


〈ej ,v〉 Âej


= Âu + λÂv, ∀u,v ∈ V, λ ∈ K,


showing that the map Â is linear. �


An orthogonal operator always maps an orthonormal basis into another
orthonormal basis (this was shown in the proof of Statement 1). The following
exercise shows that the converse is also true.
Exercise 1: Prove that a transformation is orthogonal if and only if it maps
some orthonormal basis into another orthonormal basis. Deduce that any or-
thogonal transformation is invertible.


Exercise 2: If a linear transformation Â satisfies 〈Âx, Âx〉 = 〈x,x〉 for all x ∈
V , show that Â is an orthogonal transformation. (This shows how to check
more easily whether a given linear transformation is orthogonal.)


Hint: Substitute x = y + z.
Exercise 3: Show that for any two orthonormal bases {ej | j = 1, ..., N} and


{fj | j = 1, ..., N}, there exists an orthogonal operator R̂ that maps the basis


{ej} into the basis {fj}, i.e. R̂ej = fj for j = 1, ..., N .
Hint: A linear operator mapping {ej} into {fj} exists; show that this oper-


ator is orthogonal.


Exercise 4: Prove that M̂n (as defined in Example 2) is an orthogonal trans-


formation by showing that 〈M̂nx, M̂nx〉 = 〈x,x〉 for any x.
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Exercise 5: Consider the orthogonal transformations R̂α and M̂n and an or-
thonormal basis {e1, e2} as defined in Examples 1 and 2. Show by a direct
calculation that


(R̂αe1) ∧ (R̂αe2) = e1 ∧ e2


and that


(M̂ne1) ∧ (M̂ne2) = −e1 ∧ e2.


This is the same as to say that det R̂α = 1 and det M̂n = −1. This indicates that
rotations preserve orientation while mirror reflections reverse orientation. �


5.3.2 Transposition


Another way to characterize orthogonal transformations is by using trans-


posed operators. Recall that the canonically defined transpose to Â is ÂT :
V ∗ → V ∗ (see Sec. 1.8.4, p. 62 for a definition). In a (finite-dimensional)
space with a scalar product, the one-to-one correspondence between V and


V ∗ means that ÂT can be identified with some operator acting in V (rather


than in V ∗). Let us also denote that operator by ÂT and call it the transposed


to Â. (This transposition is not canonical but depends on the scalar product.)


We can formulate the definition of ÂT as follows.


Definition 1: In a finite-dimensional space with a scalar product, the trans-


posed operator ÂT : V → V is defined by


〈ÂT x,y〉 ≡ 〈x, Ây〉, ∀x,y ∈ V.


Exercise 1: Show that (ÂB̂)T = B̂T ÂT .


Statement 1: If Â is orthogonal then ÂT Â = 1̂V .


Proof: By definition of orthogonal transformation, 〈Âx, Ây〉 = 〈x,y〉 for all


x,y ∈ V . Then we use the definition of ÂT and obtain


〈x,y〉 = 〈Âx, Ây〉 = 〈ÂT Âx,y〉.


Since this holds for all x,y ∈ V , we conclude that ÂT Â = 1̂V (see Exercise 2
in Sec. 5.1). �


Let us now see how transposed operators appear in matrix form. Suppose


{ej} is an orthonormal basis in V ; then the operator Â can be represented


by some matrix Aij in this basis. Then the operator ÂT is represented by the
matrix Aji in the same basis (i.e. by the matrix transpose of Aij), as shown in


the following exercise. (Note that the operator ÂT is not represented by the
transposed matrix when the basis is not orthonormal.)


Exercise 2: Show that the operator ÂT is represented by the transposed ma-


trix Aji in the same (orthonormal) basis in which the operator Â has the ma-


trix Aij . Deduce that det Â = det (ÂT ).
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Solution: The matrix elementAij with respect to an orthonormal basis {ej}
is the coefficient in the tensor decomposition Â =


∑N
i,j=1Aijei ⊗ e∗j and can


be computed using the scalar product as


Aij = 〈ei, Âej〉.


The transposed operator satisfies


〈ei, Â
T ej〉 = 〈Âei, ej〉 = Aji.


Hence, the matrix elements of ÂT areAji, i.e. the matrix elements of the trans-
posed matrix. We know that det(Aji) = det(Aij). If the basis {ej} is not or-


thonormal, the propertyAij = 〈ei, Âej〉 does not hold and the argument fails.
�


We have seen in Exercise 5 (Sec. 5.3.1) that the determinants of some or-
thogonal transformations were equal to +1 or −1. This is, in fact, a general
property.
Statement 2: The determinant of an orthogonal transformation is equal to 1
or to −1.
Proof: An orthogonal transformation Â satisfies ÂT Â = 1̂V . Compute the


determinant of both sides; since the determinant of the transposed operator


is equal to that of the original operator, we have (det Â)2 = 1. �


5.4 Applications of exterior product


We will now apply the exterior product techniques to spaces with a scalar
product and obtain several important results.


5.4.1 Orthonormal bases, volume, and ∧N
V


If an orthonormal basis {ej} is chosen, we can consider a special tensor in
∧NV , namely


ω ≡ e1 ∧ ... ∧ eN .


Since ω 6= 0, the tensor ω can be considered a basis tensor in the one-dimen-
sional space ∧NV . This choice allows one to identify the space ∧NV with
scalars (the one-dimensional space of numbers, K). Namely, any tensor τ ∈
∧NV must be proportional to ω (since ∧NV is one-dimensional), so τ = tω
where t ∈ K is some number. The number t corresponds uniquely to each
τ ∈ ∧NV .


As we have seen before, tensors from ∧NV have the interpretation of ori-
ented volumes. In this interpretation, ω represents the volume of a paral-
lelepiped spanned by the unit basis vectors {ej}. Since the vectors {ej} are
orthonormal and have unit length, it is reasonable to assume that they span
a unit volume. Hence, the oriented volume represented by ω is equal to ±1
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depending on the orientation of the basis {ej}. The tensor ω is called the unit
volume tensor.


Once ω is fixed, the (oriented) volume of a parallelepiped spanned by arbi-
trary vectors {v1, ...,vN} is equal to the constant C in the equality


v1 ∧ ... ∧ vN = Cω. (5.5)


In our notation of “tensor division,” we can also write


Vol {v1, ...,vN} ≡ C =
v1 ∧ ... ∧ vN


ω
.


It might appear that ω is arbitrarily chosen and will change when we select
another orthonormal basis. However, it turns out that the basis tensor ω does
not actually depend on the choice of the orthonormal basis, up to a sign. (The
sign of ω is necessarily ambiguous because one can always interchange, say,
e1 and e2 in the orthonormal basis, and then the sign of ω will be flipped.)
We will now prove that a different orthonormal basis yields again either ω
or −ω, depending on the order of vectors. In other words, ω depends on the
choice of the scalar product but not on the choice of an orthonormal basis, up
to a sign.
Statement: Given two orthonormal bases {ej} and {fj}, let us define two
tensors ω ≡ e1 ∧ ... ∧ eN and ω′ ≡ f1 ∧ ... ∧ fN . Then ω′ = ±ω.
Proof: There exists an orthogonal transformation R̂ that maps the basis


{ej} into the basis {fj}, i.e. R̂ej = fj for j = 1, ..., N . Then det R̂ = ±1
and thus


ω′ = R̂e1 ∧ ... ∧ R̂eN = (det R̂)ω = ±ω.
�


The sign factor ±1 in the definition of the unit-volume tensor ω is an es-
sential ambiguity that cannot be avoided; instead, one simply chooses some
orthonormal basis {ej}, computes ω ≡ e1 ∧ ... ∧ eN , and declares this ω to
be “positively oriented.” Any other nonzero N -vector ψ ∈ ∧NV can then be
compared with ω as ψ = Cω, yielding a constant C 6= 0. If C > 0 then ψ
is also “positively oriented,” otherwise ψ is “negatively oriented.” Similarly,
any given basis {vj} is then deemed to be “positively oriented” if Eq. (5.5)
holds with C > 0. Choosing ω is therefore called “fixing the orientation of
space.”
Remark: right-hand rule. To fix the orientation of the basis in the 3-dimen-
sional space, frequently the “right-hand rule” is used: The thumb, the index
finger, and the middle finger of a relaxed right hand are considered the “pos-
itively oriented” basis vectors {e1, e2, e3}. However, this is not really a def-
inition in the mathematical sense because the concept of “fingers of a right
hand” is undefined and actually cannot be defined in geometric terms. In
other words, it is impossible to give a purely algebraic or geometric defini-
tion of a “positively oriented” basis in terms of any properties of the vectors
{ej} alone! (Not to mention that there is no human hand in N dimensions.)
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However, once an arbitrary basis {ej} is selected and declared to be “posi-
tively oriented,” we may look at any other basis {vj}, compute


C ≡ v1 ∧ ... ∧ vN


e1 ∧ ... ∧ eN
=


v1 ∧ ... ∧ vN


ω
,


and examine the sign of C. We will have C 6= 0 since {vj} is a basis. If
C > 0, the basis {vj} is positively oriented. If C < 0, we need to change the
ordering of vectors in {vj}; for instance, we may swap the first two vectors
and use {v2,v1,v3, ...,vN} as the positively oriented basis. In other words,
“a positive orientation of space” simply means choosing a certain ordering of
vectors in each basis. As we have seen, it suffices to choose the unit volume
tensor ω (rather than a basis) to fix the orientation of space. The choice of
sign of ω is quite arbitrary and does not influence the results of any calcula-
tions because the tensor ω always appears on both sides of equations or in a
quadratic combination. �


5.4.2 Vector product in R3 and Levi-Civita symbol ε


In the familiar three-dimensional Euclidean space, V = R3, there is a vector
product a × b and a scalar product a · b. We will now show how the vector
product can be expressed through the exterior product.


A positively oriented orthonormal basis {e1, e2, e3} defines the unit vol-
ume tensor ω ≡ e1∧e2∧e3 in ∧3V . Due to the presence of the scalar product,
V can be identified with V ∗, as we have seen.


Further, the space ∧2V can be identified with V by the following construc-
tion. A 2-vector A ∈ ∧2V generates a covector f∗ by the formula


f∗(x) ≡ x ∧A
ω


, ∀x ∈ V.


Now the identification of vectors and covectors shows that f∗ corresponds to
a certain vector c. Thus, a 2-vector A ∈ ∧2V is mapped to a vector c ∈ V .
Let us denote this map by the “star” symbol and write c = ∗A. This map is
called the Hodge star; it is a linear map ∧2V → V .
Example 1: Let us compute ∗(e2 ∧ e3). The 2-vector e2 ∧ e3 is mapped to the
covector f∗ defined by


f∗(x)e1 ∧ e2 ∧ e3 ≡ x ∧ e2 ∧ e3 = x1e1 ∧ e2 ∧ e3,


where x is an arbitrary vector and x1 ≡ e∗1(x) is the first component of x in
the basis. Therefore f∗ = e∗1. By the vector-covector correspondence, f∗ is
mapped to the vector e1 since


x1 = e∗1(x) = 〈e1,x〉 .


Therefore ∗(e2 ∧ e3) = e1.
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Similarly we compute ∗(e1 ∧ e3) = −e2 and ∗(e1 ∧ e2) = e3. �


Generalizing Example 1 to a single-term product a ∧ b, where a and b are
vectors from V , we find that the vector c = ∗(a ∧ b) is equal to the usually
defined vector product or “cross product” c = a× b. We note that the vector
product depends on the choice of the orientation of the basis; exchanging the
order of any two basis vectors will change the sign of the tensor ω and hence
will change the sign of the vector product.
Exercise 1: The vector product in R3 is usually defined through the compo-
nents of vectors in an orthogonal basis, as in Eq. (1.2). Show that the definition


a × b ≡ ∗(a ∧ b)


is equivalent to that.
Hint: Since the vector product is bilinear, it is sufficient to show that ∗(a∧b)


is linear in both a and b, and then to consider the pairwise vector products
e1 × e2, e2 × e3, e3 × e1 for an orthonormal basis {e1, e2, e3}. Some of these
calculations were performed in Example 1. �


The Hodge star is a one-to-one map because ∗(a ∧ b) = 0 if and only if
a∧b = 0. Hence, the inverse map V → ∧2V exists. It is convenient to denote
the inverse map also by the same “star” symbol, so that we have the map
∗ : V → ∧2V . For example,


∗(e1) = e2 ∧ e3, ∗(e2) = −e1 ∧ e3,


∗ ∗ (e1) = ∗(e2 ∧ e3) = e1.


We may then write symbolically ∗∗ = 1̂; here one of the stars stands for the
map V → ∧2V , and the other star is the map ∧2V → V .


The triple product is defined by the formula


(a,b, c) ≡ 〈a,b × c〉 .


The triple product is fully antisymmetric,


(a,b, c) = − (b,a, c) = − (a, c,b) = + (c,a,b) = ...


The geometric interpretation of the triple product is that of the oriented vol-
ume of the parallelepiped spanned by the vectors a, b, c. This suggests a
connection with the exterior power ∧3(R3).


Indeed, the triple product can be expressed through the exterior product.
We again use the tensor ω = e1 ∧ e2 ∧ e3. Since {ej} is an orthonormal basis,
the volume of the parallelepiped spanned by e1, e2, e3 is equal to 1. Then we
can express a ∧ b ∧ c as


a ∧ b ∧ c = 〈a, ∗(b ∧ c)〉ω = 〈a,b × c〉ω = (a,b, c)ω.


Therefore we may write


(a,b,c) =
a ∧ b ∧ c


ω
.
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In the index notation, the triple product is written as


(a,b, c) ≡ εjkla
jbkcl.


Here the symbol εjkl (the Levi-Civita symbol) is by definition ε123 = 1 and
εijk = −εjik = −εikj . This antisymmetric array of numbers, εijk, can be
also thought of as the index representation of the unit volume tensor ω =
e1 ∧ e2 ∧ e3 because


ω = e1 ∧ e2 ∧ e3 =
1


3!


3∑


i,j,k=1


εijkei ∧ ej ∧ ek.


Remark: Geometric interpretation. The Hodge star is useful in conjunction
with the interpretation of bivectors as oriented areas. If a bivector a ∧ b rep-
resents the oriented area of a parallelogram spanned by the vectors a and b,
then ∗(a ∧ b) is the vector a × b, i.e. the vector orthogonal to the plane of the
parallelogram whose length is numerically equal to the area of the parallelo-
gram. Conversely, if n is a vector then ∗(n) is a bivector that may represent
some parallelogram orthogonal to n with the appropriate area.


Another geometric example is the computation of the intersection of two
planes: If a ∧ b and c ∧ d represent two parallelograms in space then


∗
(
[∗(a ∧ b)] ∧ [∗(c ∧ d)]


)
= (a × b) × (c × d)


is a vector parallel to the line of intersection of the two planes containing
the two parallelograms. While in three dimensions the Hodge star yields the
same results as the cross product, the advantage of the Hodge star is that it is
defined in any dimensions, as the next section shows. �


5.4.3 Hodge star and Levi-Civita symbol in N dimensions


We would like to generalize our results to an N -dimensional space. We begin
by defining the unit volume tensor ω = e1∧ ...∧eN , where {ej} is a positively
oriented orthonormal basis. As we have seen, the tensor ω is independent of
the choice of the orthonormal basis {ej} and depends only on the scalar prod-
uct and on the choice of the orientation of space. (Alternatively, the choice of
ω rather than −ω as the unit volume tensor defines the fact that the basis {ej}
is positively oriented.) Below we will always assume that the orthonormal
basis {ej} is chosen to be positively oriented.


The Hodge star is now defined as a linear map V → ∧N−1V through its
action on the basis vectors,


∗(ej) ≡ (−1)j−1e1 ∧ ... ∧ ej−1 ∧ ej+1 ∧ ... ∧ eN ,


where we write the exterior product of all the basis vectors except ej . To
check the sign, we note the identity


ej ∧ ∗(ej) = ω, 1 ≤ j ≤ N.
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Remark: The Hodge star map depends on the scalar product and on the
choice of the orientation of the space V , i.e. on the choice of the sign in the
basis tensor ω ≡ e1 ∧ ... ∧ eN , but not on the choice of the vectors {ej} in
a positively oriented orthonormal basis. This is in contrast with the “com-
plement” operation defined in Sec. 2.3.3, where the scalar product was not
available: the “complement” operation depends on the choice of every vec-
tor in the basis. The “complement” operation is equivalent to the Hodge star
only if we use an orthonormal basis.


Alternatively, given some basis {vj}, we may temporarily introduce a new
scalar product such that {vj} is orthonormal. The “complement” operation is
then the same as the Hodge star defined with respect to the new scalar prod-
uct. The “complement” operation was introduced by H. Grassmann (1844)
long before the now standard definitions of vector space and scalar product
were developed. �


The Hodge star can be also defined more generally as a map of ∧kV to
∧N−kV . The construction of the Hodge star map is as follows. We require that
it be a linear map. So it suffices to define the Hodge star on single-term prod-
ucts of the form a1 ∧ ...∧ak. The vectors {ai | i = 1, ..., k} define a subspace of
V , which we temporarily denote by U ≡ Span {ai}. Through the scalar prod-
uct, we can construct the orthogonal complement subspace U⊥; this subspace
consists of all vectors that are orthogonal to every ai. Thus, U is an (N − k)-
dimensional subspace of V . We can find a basis {bi | i = k + 1, ..., N} in U⊥


such that
a1 ∧ ... ∧ ak ∧ bk+1 ∧ ... ∧ bN = ω. (5.6)


Then we define


∗(a1 ∧ ... ∧ ak) ≡ bk+1 ∧ ... ∧ bN ∈ ∧N−kV.


Examples:


∗(e1 ∧ e3) = −e2 ∧ e4 ∧ ... ∧ eN ;


∗(1) = e1 ∧ ... ∧ eN ; ∗(e1 ∧ ... ∧ eN ) = 1.


The fact that we denote different maps by the same star symbol will not cause
confusion because in each case we will write the tensor to which the Hodge
star is applied. �


Even though (by definition) ej ∧ ∗(ej) = ω for the basis vectors ej , it is not
true that x ∧ ∗(x) = ω for any x ∈ V .
Exercise 1: Show that x ∧ (∗x) = 〈x,x〉ω for any x ∈ V . Then set x = a + b


and show (using ∗ω = 1) that


〈a,b〉 = ∗(a ∧ ∗b) = ∗(b ∧ ∗a), ∀a,b ∈ V.


Statement: The Hodge star map ∗ : ∧kV → ∧N−kV , as defined above, is
independent of the choice of the basis in U⊥.
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Proof: A different choice of basis in U⊥, say {b′
i} instead of {bi}, will yield


a tensor b′
k+1 ∧ ...∧ b′


N that is proportional to bk+1 ∧ ...∧ bN . The coefficient
of proportionality is fixed by Eq. (5.6). Therefore, no ambiguity remains. �


The insertion map ιa∗ was defined in Sec. 2.3.1 for covectors a∗. Due to the
correspondence between vectors and covectors, we may now use the inser-
tion map with vectors. Namely, we define


ιxψ ≡ ιx∗ψ,


where the covector x∗ is defined by


x∗(v) ≡ 〈x,v〉 , ∀v ∈ V.


For example, we then have


ιx(a ∧ b) = 〈x,a〉b − 〈x,b〉a.


Exercise 2: Show that ∗(ei) = ιei
ω for basis vectors ei. Deduce that ∗x = ιxω


for any x ∈ V .
Exercise 3: Show that


∗x =


N∑


i=1


〈x, ei〉 ιei
ω =


N∑


i=1


(ιei
x)(ιei


ω).


Here ιab ≡ 〈a,b〉. �


In the previous section, we saw that ∗ ∗ e1 = e1 (in three dimensions).
The following exercise shows what happens in N dimensions: we may get a
minus sign.
Exercise 4: a) Given a vector x ∈ V , define ψ ∈ ∧N−1V as ψ ≡ ∗x. Then
show that


∗ψ ≡ ∗(∗x) = (−1)N−1x.


b) Show that ∗∗ = (−1)k(N−k)1̂ when applied to the space ∧kV or ∧N−kV .
Hint: Since ∗ is a linear map, it is sufficient to consider its action on a basis


vector, say e1, or a basis tensor e1 ∧ ...∧ ek ∈ ∧kV , where {ej} is an orthonor-
mal basis.
Exercise 5: Suppose that a1, ..., ak, x ∈ V are such that 〈x,ai〉 = 0 for all
i = 1, ..., k while 〈x,x〉 = 1. The k-vector ψ ∈ ∧kV is then defined as a
function of t by


ψ(t) ≡ (a1 + tx) ∧ ... ∧ (ak + tx) .


Show that t∂tψ = x ∧ ιxψ.
Exercise 6: For x ∈ V and ψ ∈ ∧kV (1 ≤ k ≤ N ), the tensor ιxψ ∈ ∧k−1V is
called the interior product of x and ψ. Show that


ιxψ = ∗(x ∧ ∗ψ).


(Note however that ψ ∧ ∗x = 0 for k ≥ 2.)
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Exercise 7: a) Suppose x ∈ V and ψ ∈ ∧kV are such that x ∧ ψ = 0 while
〈x,x〉 = 1. Show that


ψ = x ∧ ιxψ.
Hint: Use Exercise 2 in Sec. 2.3.2 with a suitable f∗.


b) For any ψ ∈ ∧kV , show that


ψ =
1


k


N∑


j=1


ej ∧ ιej
ψ,


where {ej} is an orthonormal basis.
Hint: It suffices to consider ψ = ei1 ∧ ... ∧ eik


. �


The Levi-Civita symbol εi1...iN
is defined in an N -dimensional space as the


coordinate representation of the unit volume tensor ω ≡ e1 ∧ ... ∧ eN ∈ ∧NV
(see also Sections 2.3.6 and 3.4.1). When a scalar product is fixed, the tensor
ω is unique up to a sign; if we assume that ω corresponds to a positively
oriented basis, the Levi-Civita symbol is the index representation of ω in any
positively oriented orthonormal basis. It is instructive to see how one writes
the Hodge star in the index notation using the Levi-Civita symbol. (I will
write the summations explicitly here, but keep in mind that in the physics
literature the summations are implicit.)


Given an orthonormal basis {ej}, the natural basis in ∧kV is the set of ten-
sors {ei1 ∧ ... ∧ eik


} where all indices i1, ..., ik are different (or else the exterior
product vanishes). Therefore, an arbitrary tensor ψ ∈ ∧kV can be expanded
in this basis as


ψ =
1


k!


N∑


i1,...,ik=1


Ai1...ikei1 ∧ ... ∧ eik
,


where Ai1...ik are some scalar coefficients. I have included the prefactor 1/k!
in order to cancel the combinatorial factor k! that appears due to the summa-
tion over all the indices i1, ..., ik.


Let us write the tensor ψ ≡ ∗(e1) in this way. The corresponding coeffi-
cientsAi1...iN−1 are zero unless the set of indices (i1, ..., iN−1) is a permutation
of the set (2, 3, ..., N). This statement can be written more concisely as


(∗e1)
i1...iN−1 ≡ Ai1...iN−1 = ε1i1...iN−1 .


Generalizing to an arbitrary vector x =
∑N


j=1 xjej , we find


(∗x)i1...iN−1 ≡
N∑


j=1


xj(∗ej)
i1...iN−1 =


N∑


i,j=1


xjδjiε
ii1...iN−1 .


Remark: The extra Kronecker symbol above is introduced for consistency of
the notation (summing only over a pair of opposite indices). However, this
Kronecker symbol can be interpreted as the coordinate representation of the
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scalar product in the orthonormal basis. This formula then shows how to
write the Hodge star in another basis: replace δji with the matrix representa-
tion of the scalar product. �


Similarly, we can write the Hodge star of an arbitrary k-vector in the index
notation through the ε symbol. For example, in a four-dimensional space one
maps a 2-vector


∑


i,j A
ijei ∧ ej into


∗
(∑


i,j


Aijei ∧ ej


)
=
∑


k,l


Bklek ∧ el,


where


Bkl ≡ 1


2!


∑


i,j,m,n


δkmδlnεijmnA
ij .


A vector v =
∑


i v
iei is mapped into


∗(v) = ∗
(∑


i


viei


)
=


1


3!


∑


i,j,k,l


εijklv
iej ∧ ek ∧ el.


Note the combinatorial factors 2! and 3! appearing in these formulas, accord-
ing to the number of indices in ε that are being summed over.


5.4.4 Reciprocal basis


Suppose {v1, ...,vN} is a basis in V , not necessarily orthonormal. For any x ∈
V , we can compute the components of x in the basis {vj} by first computing
the dual basis,


{
v∗


j


}
, as in Sec. 2.3.3, and then writing


x =


N∑


i=1


xivi, xi ≡ v∗
i (x).


The scalar product in V provides a vector-covector correspondence. Hence,
each v∗


i has a corresponding vector; let us denote that vector temporarily by
ui. We then obtain a set ofN vectors, {u1, ...,uN}. By definition of the vector-
covector correspondence, the vector ui is such that


〈ui,x〉 = v∗
i (x) ≡ xi, ∀x ∈ V.


We will now show that the set {u1, ...,uN} is a basis in V . It is called the
reciprocal basis for the basis {vj}. The reciprocal basis is useful, in partic-
ular, because the components of a vector x in the basis {vj} are computed
conveniently through scalar products with the vectors {uj}, as shown by the
formula above.


Statement 1: The set {u1, ...,uN} is a basis in V .
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Proof: We first note that


〈ui,vj〉 ≡ v∗
i (vj) = δij .


We need to show that the set {u1, ...,uN} is linearly independent. Suppose
a vanishing linear combination exists,


N∑


i=1


λiui = 0,


and take its scalar product with the vector v1,


0 =
〈
v1,


N∑


i=1


λiui


〉
=


N∑


i=1


λiδ1i = λ1.


In the same way we show that all λi are zero. A linearly independent set of
N vectors in an N -dimensional space is always a basis, hence {uj} is a basis.
�


Exercise 1: Show that computing the reciprocal basis to an orthonormal basis
{ej} gives again the same basis {ej}. �


The following statement shows that, in some sense, the reciprocal basis is
the “inverse” of the basis {vj}.
Statement 2: The oriented volume of the parallelepiped spanned by {uj} is
the inverse of that spanned by {vj}.
Proof: The volume of the parallelepiped spanned by {uj} is found as


Vol {uj} =
u1 ∧ ... ∧ uN


e1 ∧ ... ∧ eN
,


where {ej} is a positively oriented orthonormal basis. Let us introduce an


auxiliary transformation M̂ that maps {ej} into {vj}; such a transformation


surely exists and is invertible. Since M̂ej = vj (j = 1, ..., N ), we have


det M̂ =
M̂e1 ∧ ... ∧ M̂eN


e1 ∧ ... ∧ eN
=


v1 ∧ ... ∧ vN


e1 ∧ ... ∧ eN
= Vol {vj} .


Consider the transposed operator M̂T (the transposition is performed using


the scalar product, see Definition 1 in Sec. 5.3.1). We can now show that M̂T


maps the dual basis {uj} into {ej}. To show this, we consider the scalar
products


〈ei, M̂
T uj〉 = 〈M̂ei,uj〉 = 〈vi,uj〉 = δij .


Since the above is true for any i, j = 1, ..., N , it follows that M̂T uj = ej as
desired.


Since det M̂T = det M̂ , we have


e1 ∧ ... ∧ eN = M̂T u1 ∧ ... ∧ M̂T uN = (det M̂)u1 ∧ ... ∧ uN .
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It follows that


Vol {uj} =
u1 ∧ ... ∧ uN


e1 ∧ ... ∧ eN
=


1


det M̂
=


1


Vol {vj}
.


�


The vectors of the reciprocal basis can be also computed using the Hodge
star, as follows.
Exercise 2: Suppose that {vj} is a basis (not necessarily orthonormal) and
{uj} is its reciprocal basis. Show that


u1 = ∗(v2 ∧ ... ∧ vN )
ω


v1 ∧ ... ∧ vN
,


where ω ≡ e1 ∧ ... ∧ eN , {ej} is a positively oriented orthonormal basis, and
we use the Hodge star as a map from ∧N−1V to V .


Hint: Use the formula for the dual basis (Sec. 2.3.3),


v∗
1(x) =


x ∧ v2 ∧ ... ∧ vN


v1 ∧ v2 ∧ ... ∧ vN
,


and the property
〈x,u〉ω = x ∧ ∗u.


5.5 Scalar product in ∧kV
In this section we will apply the techniques developed until now to the prob-
lem of computing k-dimensional volumes.


If a scalar product is given in V , one can naturally define a scalar prod-
uct also in each of the spaces ∧kV (k = 2, ..., N ). We will show that this scalar
product allows one to compute the ordinary (number-valued) volumes repre-
sented by tensors from ∧kV . This is fully analogous to computing the lengths
of vectors through the scalar product in V . A vector v in a Euclidean space
represents at once the orientation and the length of a straight line segment


between two points; the length is found as
√


〈v,v〉 using the scalar product
in V . Similarly, a tensor ψ = v1 ∧ ... ∧ vk ∈ ∧kV represents at once the ori-
entation and the volume of a parallelepiped spanned by the vectors {vj}; the


unoriented volume of the parallelepiped will be found as
√


〈ψ,ψ〉 using the
scalar product in ∧kV .


We begin by considering the space ∧NV .


5.5.1 Scalar product in ∧N
V


Suppose {uj} and {vj} are two bases in V , not necessarily orthonormal, and
consider the pairwise scalar products


Gjk ≡ 〈uj ,vk〉 , j, k = 1, ..., N.
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The coefficients Gjk can be arranged into a square-shaped table, i.e. into a
matrix. The determinant of this matrix, det(Gjk), can be computed using
Eq. (3.1). Now consider two tensors ω1, ω2 ∈ ∧NV defined as


ω1 ≡ u1 ∧ ... ∧ uN , ω2 ≡ v1 ∧ ... ∧ vN .


Then det(Gjk), understood as a function of the tensors ω1 and ω2, is bilinear
and symmetric, and thus can be interpreted as the scalar product of ω1 and
ω2. After some work proving the necessary properties, we obtain a scalar
product in the space ∧NV , given a scalar product in V .


Exercise 1: We try to define the scalar product in the space ∧NV as follows:
Given a scalar product 〈·, ·〉 in V and given two tensors ω1, ω2 ∈ ∧NV , we
first represent these tensors in some way as products


ω1 ≡ u1 ∧ ... ∧ uN , ω2 ≡ v1 ∧ ... ∧ vN ,


where {ui} and {vi} are some suitable sets of vectors, then consider the ma-
trix of pairwise scalar products 〈ui,vj〉, and finally define the scalar product
〈ω1, ω2〉 as the determinant of that matrix:


〈ω1, ω2〉 ≡ det 〈ui,vj〉 .


Prove that this definition really yields a symmetric bilinear form in ∧NV ,
independently of the particular representation of ω1, ω2 through vectors.


Hint: The known properties of the determinant show that 〈ω1, ω2〉 is an
antisymmetric and multilinear function of every ui and vj . A linear trans-
formation of the vectors {ui} that leaves ω1 constant will also leave 〈ω1, ω2〉
constant. Therefore, it can be considered as a linear function of the tensors ω1


and ω2. Symmetry follows from det(Gij) = det(Gji).


Exercise 2: Given an orthonormal basis {ej | j = 1, ..., N}, let us consider the
unit volume tensor ω ≡ e1 ∧ ... ∧ eN ∈ ∧NV .


a) Show that 〈ω, ω〉 = 1, where the scalar product in ∧NV is chosen accord-
ing to the definition in Exercise 1.


b) Given a linear operator Â, show that det Â = 〈ω,∧N ÂNω〉.
Exercise 3: For any φ, ψ ∈ ∧NV , show that


〈φ, ψ〉 =
φ


ω


ψ


ω
,


where ω is the unit volume tensor. Deduce that 〈φ, ψ〉 is a positive-definite
bilinear form.


Statement: The volume of a parallelepiped spanned by vectors v1, ..., vN is
equal to


√


det(Gij), where Gij ≡ 〈vi,vj〉 is the matrix of the pairwise scalar
products.
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Proof: If v1 ∧ ... ∧ vN 6= 0, the set of vectors {vj | j = 1, ..., N} is a basis in
V . Let us also choose some orthonormal basis {ej | j = 1, ..., N}. There exists


a linear transformation Â that maps the basis {ej} into the basis {vj}. Then


we have Âej = vj and hence


Gij = 〈vi,vj〉 = 〈Âei, Âej〉 = 〈ÂT Âei, ej〉.


It follows that the matrix Gij is equal to the matrix representation of the op-


erator ÂT Â in the basis {ej}. Therefore,


det(Gij) = det(ÂT Â) = (det Â)2.


Finally, we note that the volume v of the parallelepiped spanned by {vj} is
the coefficient in the tensor equality


ve1 ∧ ... ∧ eN = v1 ∧ ... ∧ vN = (det Â)e1 ∧ ... ∧ eN .


Hence v2 = (det Â)2 = det(Gij). �


We have found that the (unoriented, i.e. number-valued) N -dimensional
volume of a parallelepiped spanned by a set ofN vectors {vj} is expressed as


v =
√


〈ψ,ψ〉, where ψ ≡ v1 ∧ ... ∧ vN is the tensor representing the oriented
volume of the parallelepiped, and 〈ψ,ψ〉 is the scalar product in the space


∧NV . The expression |ψ| ≡
√


〈ψ,ψ〉 is naturally interpreted as the “length”
of the tensor ψ. In this way, we obtain a geometric interpretation of tensors
ψ ∈ ∧NV as oriented volumes of parallelepipeds: The tensor ψ represents at
once the orientation of the parallelepiped and the magnitude of the volume.


5.5.2 Volumes of k-dimensional parallelepipeds


In a similar way we treat k-dimensional volumes.
We begin by defining a scalar product in the spaces ∧kV for 2 ≤ k ≤ N . Let


us choose an orthonormal basis {ej} in V and consider the set of
(
N
k


)
tensors


ωi1...ik
≡ ei1 ∧ ... ∧ eik


∈ ∧kV.


Since the set of these tensors (for all admissible sets of indices) is a basis in
∧kV , it is sufficient to define the scalar product of any two tensors ωi1...ik


. It
is natural to define the scalar product such that ωi1...ik


are orthonormal:


〈ωi1...ik
, ωi1...ik


〉 = 1,


〈ωi1...ik
, ωj1...jk


〉 = 0 if ωi1...ik
6= ±ωj1...jk


.


For any two tensors ψ1, ψ2 ∈ ∧kV , we then define 〈ψ1, ψ2〉 by expressing
ψ1, ψ2 through the basis tensors ωi1...ik


and requiring the bilinearity of the
scalar product.


In the following exercise, we derive an explicit formula for the scalar prod-
uct 〈ψ1, ψ2〉 through scalar products of the constituent vectors.
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Exercise 1: Use the definition above to prove that


〈u1 ∧ ... ∧ uk,v1 ∧ ... ∧ vk〉 = det 〈ui,vj〉 . (5.7)


Hints: The right side of Eq. (5.7) is a totally antisymmetric, linear function of
every ui due to the known properties of the determinant. Also, the function is
invariant under the interchange of uj with vj . The left side of Eq. (5.7) has the
same symmetry and linearity properties. Therefore, it is sufficient to verify
Eq. (5.7) when vectors ui and vj are chosen from the set of orthonormal basis
vectors {ej}. Then u1 ∧ ... ∧ uk and v1 ∧ ... ∧ vk are among the basis tensors
ωi1...ik


. Show that the matrix 〈ui,vj〉 has at least one row or one column
of zeros unless the sets {ui} and {vj} coincide as unordered sets of vectors,
i.e. unless


u1 ∧ ... ∧ uk = ±v1 ∧ ... ∧ vk.


If the above does not hold, both sides of Eq. (5.7) are zero. It remains to
verify that both sides of Eq. (5.7) are equal to 1 when we choose identical
vectors ui = vi from the orthonormal basis, for instance if uj = vj = ej for
j = 1, ..., k. �


We now come back to the problem of computing the volume of a k-dimen-
sional parallelepiped spanned by vectors {v1, ...,vk} in an n-dimensional Eu-
clidean space Rn. In Sec. 2.1.2 we considered a parallelogram (i.e. we had


k = 2), and we projected the parallelogram onto the
(
N
2


)
coordinate planes


to define a “vector-valued” area. We now generalize that construction to k-
dimensional parallelepipeds. We project the given parallelepiped onto each
of the k-dimensional coordinate hyperplanes in the space, which are the sub-


spaces Span {ei1 , ..., eik
} (with 1 ≤ i1 < ... < ik ≤ n). There will be


(
N
k


)


such coordinate hyperplanes and, accordingly, we may determine the
(
N
k


)


oriented k-dimensional volumes of these projections. It is natural to view
these numbers as the components of the oriented volume of the k-dimensional


parallelepiped in some basis in the
(
N
k


)
-dimensional “space of oriented vol-


umes.” As we have shown before, oriented volumes are antisymmetric in the
vectors vj . The space of all antisymmetric combinations of k vectors is, in our
present notation, ∧kV . Thus the oriented volume of the k-dimensional paral-
lelepiped is represented by the tensor v1 ∧ ... ∧ vk ∈ ∧kV . The unoriented
volume is computed as the “length” of the oriented volume, defined via the
scalar product in ∧kV .


Statement: The unoriented k-dimensional volume v of a parallelepiped span-


ned by k vectors {v1, ...,vk} is equal to
√


〈ψ,ψ〉, where ψ ≡ v1 ∧ ... ∧ vk and
〈ψ,ψ〉 is the scalar product defined above.


Proof: Consider the orthogonal projection of the given k-dimensional paral-
lelepiped onto some k-dimensional coordinate hyperplane, e.g. onto the hy-
perplane Span {e1, ..., ek}. Each vector vi is projected orthogonally, i.e. by
omitting the components of vi at ek+1, ..., eN . Let us denote the projected
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vectors by ṽi (i = 1, ..., k). The projection is a k-dimensional parallelepi-
ped spanned by {ṽi} in the coordinate hyperplane. Let us now restrict at-
tention to the subspace Span {e1, ..., ek}. In this subspace, the oriented k-
dimensional volume of the projected parallelepiped is represented by the ten-


sor ψ̃ ≡ ṽ1 ∧ ... ∧ ṽk. By construction, ψ̃ is proportional to the unit volume


tensor in the subspace, ψ̃ = λe1 ∧ ... ∧ ek for some λ. Therefore, the oriented
k-dimensional volume of the projected parallelepiped is equal to λ.


Let us now decompose the tensor ψ into the basis tensors in ∧kV ,


ψ =
∑


1≤i1<...<ik≤N


ci1...ik
ωi1...ik


= c1...ke1 ∧ ... ∧ ek + c13...(k+1)e1 ∧ e3 ∧ ... ∧ ek+1 + ...,


where we have only written down the first two of the
(
N
k


)
possible terms of


the expansion. The projection of {vi} onto the hyperplane Span {e1, ..., ek}
removes the components proportional to ek+1, ..., eN , hence ψ̃ is equal to the
first term c1...ke1 ∧ ... ∧ ek. Therefore, the oriented volume of the projection
onto the hyperplane Span {e1, ..., ek} is equal to c1...k.


By definition of the scalar product in ∧kV , all the basis tensors ωi1...ik
are


orthonormal. Hence, the coefficients ci1...ik
can be computed as


ci1...ik
= 〈ψ, ei1 ∧ ... ∧ eik


〉 ≡ 〈ψ, ωi1...ik
〉 .


For brevity, we may introduce the multi-index I ≡ {i1, ..., ik} and rewrite the
above as


cI = 〈ψ, ωI〉 .
Then the value 〈ψ,ψ〉 can be computed as


〈ψ,ψ〉 =
〈∑


I


cIωI ,
∑


J


cJωJ


〉
=
∑


I,J


cIcJ 〈ωI , ωJ 〉


=
∑


I,J


cIcJδIJ =
∑


I


|cI |2 .


In other words, we have shown that 〈ψ,ψ〉 is equal to the sum of all
(
N
k


)


squared projected volumes,


〈ψ,ψ〉 =
∑


1≤i1<...<ik≤N


|ci1...ik
|2 .


It remains to show that
√


〈ψ,ψ〉 is actually equal to the unoriented vol-
ume v of the parallelepiped. To this end, let us choose a new orthonormal
basis {ẽj} (j = 1, ..., N ) such that every vector vi (i = 1, ..., k) lies entirely
within the hyperplane spanned by the first k basis vectors. (This choice of
basis is certainly possible, for instance, by choosing an orthonormal basis in


244







5.5 Scalar product in ∧kV


Span {vi} and then completing it to an orthonormal basis in V .) Then we will


have ψ = λ̃ẽ1 ∧ ... ∧ ẽk, i.e. with zero coefficients for all other basis tensors.
Restricting attention to the subspace Span {ẽ1, ..., ẽk}, we can use the results


of Sec. 5.5.1 to find that the volume v is equal to |λ̃|. It remains to show that
√


〈ψ,ψ〉 = |λ̃|.
The transformation from the old basis {ej} to {ẽj} can be performed us-


ing a certain orthogonal transformation R̂ such that R̂ej = ẽj (j = 1, ..., N).
Since the scalar product in ∧kV is defined directly through scalar products of


vectors in V (Exercise 1) and since R̂ is orthogonal, we have for any {ai} and
{bi} that


〈R̂a1 ∧ ... ∧ R̂ak, R̂b1 ∧ ... ∧ R̂bk〉 = det〈R̂ai, R̂bj〉
= det 〈ai,bj〉 = 〈a1 ∧ ... ∧ ak,b1 ∧ ... ∧ bk〉 .


In other words, the operator ∧kR̂k is an orthogonal transformation in ∧kV .
Therefore,


ψ = λ̃ẽ1 ∧ ... ∧ ẽk = λ̃R̂e1 ∧ ... ∧ R̂ek = λ̃
(
∧kR̂kω1...k


)
;


〈ψ,ψ〉 = λ̃2〈∧kR̂kω1...k,∧kR̂kω1...k〉 = λ̃2 〈ω1...k, ω1...k〉 = λ̃2.


Therefore,
√


〈ψ,ψ〉 = |λ̃| = v as required. �


Remark: The scalar product in the space ∧kV is related the k-dimensional
volume of a body embedded in the space V , in the same way as the scalar
product in V is related to the length of a straight line segment embedded in
V . The tensor ψ = v1∧ ...∧vk fully represents the orientation of the k-dimen-
sional parallelepiped spanned by the vectors {v1, ...,vk}, while the “length”
√


〈ψ,ψ〉 of this tensor gives the numerical value of the volume of the parallel-
epiped. This is a multidimensional generalization of the Pythagoras theorem
that is not easy to visualize! The techniques of exterior algebra enables us to
calculate these quantities without visualizing them.
Example 1: In a Euclidean space R4 with a standard orthonormal basis {ej},
a three-dimensional parallelepiped is spanned by the given vectors


a = e1 + 2e2, b = e3 − e1, c = e2 + e3 + e4.


We would like to determine the volume of the parallelepiped. We compute
the wedge product ψ ≡ a ∧ b ∧ c using Gaussian elimination,


ψ = (e1 + 2e2) ∧ (e3 − e1) ∧ (e2 + e3 + e4)


= (e1 + 2e2) ∧ (e3 + 2e2) ∧ (e2 + e3 + e4)


= [(e1 + 2e2) ∧ e3 + 2e1 ∧ e2] ∧
(


1
2e3 + e4


)


= e1 ∧ e2 ∧ e3 + e1 ∧ e3 ∧ e4


+ 2e2 ∧ e3 ∧ e4 + 2e1 ∧ e2 ∧ e4.
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We see that the volumes of the projections onto the four coordinate hyper-
planes are 1, 1, 2, 2. Therefore the numerical value of the volume is


v =
√


〈ψ,ψ〉 =
√


1 + 1 + 4 + 4 =
√


10.


Exercise 2: Show that the scalar product of two tensors ψ1, ψ2 ∈ ∧kV can be
expressed through the Hodge star as


〈ψ1, ψ2〉 = ∗
(
ψ1 ∧ ∗ψ2


)
or as 〈ψ1, ψ2〉 = ∗


(
ψ2 ∧ ∗ψ1


)
,


depending on whether 2k ≤ N or 2k ≥ N .
Hint: Since both sides are linear in ψ1 and ψ2, it is sufficient to show that


the relationship holds for basis tensors ωi1...ik
≡ ei1 ∧ ... ∧ eik


.
Exercise 3: Intersection of hyperplanes. Suppose U1, ..., UN−1 ⊂ V are some
(N − 1)-dimensional subspaces (hyperplanes) in V . Each Ui can be repre-
sented by a tensor ψi ∈ ∧N−1V , e.g. by choosing ψi as the exterior product of
all vectors in a basis in U . Define the vector


v ≡ ∗
[
(∗ψ1) ∧ ... ∧ (∗ψN−1)


]
.


If v 6= 0, show that v belongs to the intersection of all the (N−1)-dimensional
hyperplanes.


Hint: Show that v ∧ ψi = 0 for each i = 1, ..., N − 1. Use Exercise 2.
Exercise 4: Show that 〈v,v〉 = 〈∗v, ∗v〉 for v ∈ V (noting that ∗v ∈ ∧N−1V
and using the scalar product in that space). Show more generally that


〈ψ1, ψ2〉 = 〈∗ψ1, ∗ψ2〉 ,


where ψ1, ψ2 ∈ ∧kV and thus ∗ψ1 and ∗ψ2 belong to ∧N−kV . Deduce that the
Hodge star is an orthogonal transformation in ∧N/2V (if N is even).


Hint: Use Exercise 2.


5.6 Scalar product for complex spaces


In complex spaces, one can get useful results if one defines the scalar product
in a different way. In this section we work in a complex vector space V .


A Hermitian scalar product is a complex function of two vectors a,b ∈ V
with the properties


〈a, λb〉 = λ 〈a,b〉 , 〈λa,b〉 = λ∗ 〈a,b〉 ,
〈a + b, c〉 = 〈a, c〉 + 〈b, c〉 , 〈b,a〉 = 〈a,b〉∗ ,


and nondegeneracy (∀a ∈ V , ∃b ∈ V such that 〈a,b 6= 0〉). (Note that λ∗ in
the formula above means the complex conjugate to λ.) It follows that 〈x,x〉
is real-valued. One usually also imposes the property 〈x,x〉 > 0 for x 6= 0,
which is positive-definiteness.


246







5.6 Scalar product for complex spaces


Remark: Note that the scalar product is not linear in the first argument be-
cause we have the factor λ∗ instead of λ; one says that it is antilinear. One
can also define a Hermitian scalar product that is linear in the first argument
but antilinear in the second argument, i.e. 〈a, λb〉 = λ∗ 〈a,b〉 and 〈λa,b〉 =
λ 〈a,b〉. Here we follow the definition used in the physics literature. This
definition is designed to be compatible with the Dirac notation for complex
spaces (see Example 3 below).


Example 1: In the vector space Cn, vectors are n-tuples of complex numbers,
x = (x1, ..., xn). A Hermitian scalar product is defined by the formula


〈x,y〉 =
n∑


i=1


x∗i yi.


This scalar product is nondegenerate and positive-definite.


Example 2: Suppose we have a real, N -dimensional vector space V with an
ordinary (real) scalar product 〈·, ·〉. We can construct a complex vector space
out of V by the following construction (called the complexification of V ).
First we consider the space C as a real, two-dimensional vector space over
R. Then we consider the tensor product V ⊗ C, still a vector space over R.
Elements of V ⊗ C are linear combinations of terms of the form v ⊗ λ, where
v ∈ V and λ ∈ C. However, the (2N -dimensional, real) vector space V ⊗ C
can be also viewed as a vector space over C: the multiplication of v ⊗ λ by
a complex number z yields v ⊗ (λz). Then V ⊗ C is interpreted as an N -
dimensional, complex vector space. A Hermitian scalar product in this space
is defined by


〈a ⊗ λ,b ⊗ µ〉 ≡ 〈a,b〉λ∗µ.


Here 〈a,b〉 is the ordinary (real) scalar product in V . It is easy to verify that
the properties of a Hermitian scalar product are satisfied by the above defini-
tion. �


Using the Hermitian scalar product, one defines an orthonormal basis and
other constructions analogous to those defined using the ordinary (real) scalar
product. For instance, the Hermitian scalar product allows one to identify
vectors and covectors.


Example 3: The vector-covector correspondence in complex spaces is slightly
different from that in real spaces. Consider a vector v ∈ V ; the corresponding
covector f∗ : V → C may be defined as


f∗(x) ≡ 〈v,x〉 ∈ C.


We denote the map v 7→ f∗ by a dagger symbol, called Hermitian conjuga-


tion, so that (v)
†


= f∗. Due to the antilinearity of the scalar product, we have
the property


(λv)
†


= λ∗ (v)
†
.
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In the Dirac notation, one denotes covectors by the “bra” symbols such as 〈v|.
One then may write


(|v〉)† = 〈v| ,
i.e. one uses the same label “v” inside the special brackets. We then have


(λ |v〉)† = λ∗ 〈v| .


The Hermitian scalar product of vectors |a〉 and |b〉 is equal to the action of


(|a〉)† on |b〉 and denoted 〈a|b〉. Thus, the scalar product of |a〉 and λ |b〉 is
equal to 〈a|λ |b〉 = λ 〈a|b〉, while the scalar product of λ |a〉 and |b〉 is equal to
λ∗ 〈a|b〉. �


Similarly to the transposed operator ÂT , the Hermitian conjugate operator


Â† is defined by


〈Â†x,y〉 ≡ 〈x, Ây〉, ∀x,y ∈ V.


In an orthonormal basis, the matrix describing the Hermitian conjugate oper-


ator Â† is obtained from the matrix of Â by transposing and complex conju-
gating each matrix element.
Example 4: In the space of linear operators EndV , a bilinear form can be
defined by


〈Â, B̂〉 ≡ Tr (Â†B̂).


As we will see in the next section (Exercise 2), this bilinear form is a positive-
definite scalar product in the space EndV . �


In the following sections, we consider some applications of the Hermitian
scalar product.


5.6.1 Symmetric and Hermitian operators


An operator Â is symmetric with respect to the scalar product if


〈u, Âv〉 = 〈Âu,v〉, ∀u,v ∈ V.


According to the definition of the transposed operator, the above property is


the same as ÂT = Â.
The notion of a symmetric operator is suitable for a real vector space. In a


complex vector space, one uses Hermitian conjugation instead of transposi-


tion: An operator Â is called Hermitian if Â† = Â.
Symmetric as well as Hermitian operators often occur in applications and


have useful properties.
Statement 1: a) All eigenvalues of a Hermitian operator are real (have zero
imaginary part).


b) If Â is a symmetric or Hermitian operator and v1, v2 are eigenvectors of


Â corresponding to different eigenvalues λ1 6= λ2, then v1 and v2 are orthog-
onal to each other: 〈v1,v2〉 = 0.
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Proof: a) If v is an eigenvector of a Hermitian operator Â with eigenvalue
λ, we have


〈v, Âv〉 = 〈v, λv〉 = λ 〈v,v〉
= 〈Âv,v〉 = 〈λv,v〉 = λ∗ 〈v,v〉 .


Since 〈v,v〉 6= 0, we have λ = λ∗, i.e. λ is purely real.
b) We compute


〈v1, Âv2〉 = λ2 〈v1,v2〉
!
= 〈Âv1,v2〉 = λ1 〈v1,v2〉 .


(In the case of Hermitian operators, we have used the fact that λ1 is real.)
Hence, either λ1 = λ2 or 〈v1,v2〉 = 0. �


Statement 2: If Â is either symmetric or Hermitian and has an eigenvector


v, the subspace orthogonal to v is invariant under Â.


Proof: We need to show that 〈x,v〉 = 0 entails 〈Âx,v〉 = 0. We compute


〈Âx,v〉 = 〈x, Âv〉 = λ 〈x,v〉 = 0.


Hence, Âx also belongs to the subspace orthogonal to v. �


Statement 3: A Hermitian operator is diagonalizable.
Proof: We work in an N -dimensional space V . The characteristic polyno-


mial of an operator Â has at least one (perhaps complex-valued) root λ, which


is an eigenvalue of Â, and thus there exists at least one eigenvector v corre-
sponding to λ. By Statement 2, the subspace v⊥ (the orthogonal complement


of v) is invariant under Â. The space V splits into a direct sum of Span {v}
and the subspace v⊥. We may consider the operator Â in that subspace; again
we find that there exists at least one eigenvector in v⊥. Continuing this argu-
ment, we split the entire space into a direct sum ofN orthogonal eigenspaces.


Hence, there exist N eigenvectors of Â. �


Statement 4: A symmetric operator in a real N -dimensional vector space is
diagonalizable, i.e. it has N real eigenvectors with real eigenvalues.
Proof: We cannot repeat the proof of Statement 3 literally, since we do not


know a priori that the characteristic polynomial of a symmetric operator has
all real roots; this is something we need to prove. Therefore we complexify
the space V , i.e. we consider the space V ⊗C as a vector space over C. In this
space, we introduce a Hermitian scalar product as in Example 2 in Sec. 5.6. In
the space V ⊗C there is a special notion of “real” vectors; these are vectors of
the form v ⊗ c with real c.


The operator Â is extended to the space V ⊗ C by


Â(v ⊗ c) ≡ (Âv) ⊗ c.
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It is important to observe that the operator Â transforms real vectors into real


vectors, and moreover that Â is Hermitian in V ⊗ C if Â is symmetric in V .


Therefore, Â is diagonalizable in V ⊗ C with real eigenvalues.


It remains to show that all the eigenvectors of Â can be chosen real; this will


prove that Â is also diagonalizable in the original space V . So far we only


know that Â has N eigenvectors in V ⊗ C. Any vector from V ⊗ C can be
transformed into the expression u ⊗ 1 + v ⊗ i with u,v ∈ V . Let us assume


that u ⊗ 1 + v ⊗ i is an eigenvector of Â with eigenvalue λ. If v = 0, the
eigenvector is real, and there is nothing left to prove; so we assume v 6= 0.
Since λ is real, we have


Â(u ⊗ 1 + v ⊗ i) = (Âu) ⊗ 1 + (Âv) ⊗ i


!
=λu ⊗ 1 + λv ⊗ i.


If both u 6= 0 and v 6= 0, it follows that u and v are both eigenvectors of


Â with eigenvalue λ. Hence, the operator Â in V ⊗ C can be diagonalized
by choosing the real eigenvectors as u ⊗ 1 and v ⊗ 1 instead of the complex
eigenvector u ⊗ 1 + v ⊗ i. If u = 0, we only need to replace the complex
eigenvector v ⊗ i by the equivalent real eigenvector v ⊗ 1. We have thus


shown that the eigenvectors of Â in V ⊗ C can be chosen real. �


Exercise 1: If an operator Â satisfies Â† = −Â, it is called anti-Hermitian.


Show that all eigenvalues of Â are pure imaginary or zero, that eigenvectors


of Â are orthogonal to each other, and that Â is diagonalizable.


Hint: The operator B̂ ≡ iÂ is Hermitian; use the properties of Hermitian
operators (Statements 1,2,3).


Exercise 2: Show that Tr(ÂT Â) > 0 for operators in a real space with a scalar


product, and Tr(Â†Â) > 0 for operators in a complex space with a Hermitian


scalar product. Deduce that 〈Â, B̂〉 ≡ Tr (ÂT B̂) and 〈Â, B̂〉 ≡ Tr (Â†B̂) are
positive-definite scalar products in the spaces of operators (assuming real or,
respectively, complex space V with a scalar product).


Hint: Compute Tr(ÂT Â) or Tr(Â†Â) directly through components of Â in
an orthonormal basis.


Exercise 3: Show that the set of all Hermitian operators is a subspace of
EndV , and the same for anti-Hermitian operators. Then show that these two
subspaces are orthogonal to each other with respect to the scalar product of
Exercise 2.


Exercise 4: Consider the space EndV of linear operators and two of its sub-


spaces: the subspace of traceless operators (i.e. operators Â with TrÂ = 0)
and the subspace of operators proportional to the identity (i.e. operators λ1̂V


for λ ∈ R). Show that these two subspaces are orthogonal with respect to the


scalar products 〈Â, B̂〉 ≡ Tr(ÂT B̂) or 〈Â, B̂〉 ≡ Tr (Â†B̂).
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5.6.2 Unitary transformations


In complex spaces, the notion analogous to orthogonal transformations is uni-
tary transformations.


Definition: An operator is called unitary if it preserves the Hermitian scalar
product:


〈Âx, Ây〉 = 〈x,y〉 , ∀x,y ∈ V.


It follows that a unitary operator Â satisfies Â†Â = 1̂.


Exercise 2: If Â is Hermitian, show that the operators (1 + iÂ)−1(1− iÂ) and


exp (iÂ) are unitary.


Hint: The Hermitian conjugate of f(iÂ) is f(−iÂ†) if f(z) is an analytic
function. This can be shown by considering each term in the power series for
f(z).


Exercise 3: Show that the determinant of a unitary operator is a complex
number c such that |c| = 1.


Hint: First show that det(Â†) is the complex conjugate of det Â.


5.7 Antisymmetric operators


In this and the following sections we work in a real vector space V in which
a scalar product 〈·, ·〉 is defined. The dimension of V is N ≡ dimV .


An operator Â is antisymmetric with respect to the scalar product if


〈u, Âv〉 + 〈Âu,v〉 = 0, ∀u,v ∈ V.


Exercise 1: Show that the set of all antisymmetric operators is a subspace of
V ⊗ V ∗.


Exercise 2: Show that ÂT + Â = 0 if and only if the operator Â is antisym-
metric.


Remark: Exercise 2 shows that antisymmetric operators are represented by
antisymmetric matrices — in an orthonormal basis. However, the matrix of an
operator in some other basis does not have to be antisymmetric. An operator
can be antisymmetric with respect to one scalar product and not antisymmet-
ric with respect to another.


Question: Surely an antisymmetric matrix has rather special properties. Why
is it that the corresponding operator is only antisymmetric with respect to some
scalar product? Is it not true that the corresponding operator has by itself
special properties, regardless of any scalar product?
Answer: Yes, it is true. It is a special property of an operator that there


exists a scalar product with respect to which the operator is antisymmetric. If
we know that this is true, we can derive some useful properties of the given
operator by using that scalar product. �
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Statement 1: A 2-vector a ∧ b ∈ ∧2V can be mapped to an operator in V by


a ∧ b 7→ Â; Âx ≡ a 〈b,x〉 − b 〈a,x〉 , ∀x ∈ V.


This formula defines a canonical isomorphism between the space of anti-
symmetric operators (with respect to the given scalar product) and ∧2V . In


other words, any antisymmetric operator Â can be represented by a 2-vector
A ∈ ∧2V and vice versa.
Proof: Left as exercise.


Statement 2: Any 2-vector A ∈ ∧2V can be written as a sum
∑n


j=1 ak ∧ bk


using n terms, where n is some number such that n ≤ 1
2N (here N ≡ dimV ),


and the set of vectors {a1,b1, ...,an,bn} is linearly independent.
Proof: By definition, a 2-vector A is representable as a linear combination


of the form


A =


n∑


j=1


aj ∧ bj ,


with some vectors aj ,bj ∈ V and some value of n. We will begin with this
representation and transform it in order to minimize the number of terms.


The idea is to make sure that the set of vectors {a1,b1, ...,an,bn} is linearly
independent. If this is not so, there exists a linear relation, say


a1 = β1b1 +


n∑


j=2


(αjaj + βjbj) ,


with some coefficients αj and βj . Using this relation, the term a1 ∧ b1 can be
rewritten as


a1 ∧ b1 =


n∑


j=2


(αjaj + βjbj) ∧ b1.


These terms can be absorbed by other terms aj ∧ bj (j = 2, ..., N ). For exam-
ple, by rewriting


a2 ∧ b2 + α2a2 ∧ b1 + β2b2 ∧ b1


= (a2 − β2b1) ∧ (b2 + α2b1)


≡ ã2 ∧ b̃2


we can absorb the term (αjaj + βjbj) ∧ b1 with j = 2 into a2 ∧ b2, replacing


the vectors a2 and b2 by new vectors ã2 and b̃2. In this way, we can redefine
the vectors aj ,bj (j = 2, ..., N ) so that the term a1 ∧b1 is eliminated from the
expression for A. We continue this procedure until the set of all the vectors
aj ,bj is linearly independent. We now denote again by {a1,b1, ...,an,bn}
the resulting linearly independent set of vectors such that the representation
A =


∑n
j=1 aj ∧ bj still holds. Note that the final number n may be smaller


than the initial number. Since the number of vectors (2n) in the final, linearly
independent set {a1,b1, ...,an,bn} cannot be greater than N , the dimension
of the space V , we have 2n ≤ N and so n ≤ 1


2N . �
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Exercise 3: A 2-vector A ∈ ∧2V satisfies A ∧ A = 0. Show that A can be
expressed as a single-term exterior product, A = a ∧ b.


Hint: Express A as a sum of smallest number of single-term products, A =
∑n


j=1 ak ∧bk, and show that A∧A = 0 implies n = 1: By Statement 2, the set
{ai,bi} is linearly independent. If n > 1, the expression A ∧ A will contain
terms such as a1 ∧ b1 ∧ a2 ∧ b2; a linear combination of these terms cannot
vanish, since they are all linearly independent of each other. To show that
rigorously, apply suitably chosen covectors a∗


i and b∗
i . �


Antisymmetric operators have the following properties.
Exercise 4: Show that the trace of an antisymmetric operator is equal to zero.


Hint: Use the property Tr(ÂT ) = Tr(Â).
Exercise 5: Show that the determinant of the antisymmetric operator is equal
to zero in an odd-dimensional space.
Remark: Note that the property of being antisymmetric is defined only with
respect to a chosen scalar product. (An operator may be represented by an an-
tisymmetric matrix in some basis, but not in another basis. An antisymmetric
operator is represented by an antisymmetric matrix only in an orthonormal


basis.) The properties shown in Exercises 3 and 4 will hold for any operator Â


such that some scalar product exists with respect to which Â is antisymmetric.


If Â is represented by an antisymmetric matrix in a given basis {ej}, we may
define the scalar product by requiring that {ej} be an orthonormal basis; then


Â will be antisymmetric with respect to that scalar product.
Exercise 6: Show that the canonical scalar product 〈A,B〉 in the space ∧2V


(see Sec. 5.5.2) coincides with the scalar product 〈Â, B̂〉 ≡ Tr(ÂT B̂) when the


2-vectors A and B are mapped into antisymmetric operators Â and B̂.


Hint: It is sufficient to consider the basis tensors ei ∧ ej as operators Â and


B̂.
Exercise 7:* Show that any 2-vector A can be written as A =


∑n
i=1 λiai ∧ bi,


where the set {a1,b1, ...,an,bn} is orthonormal.
Outline of solution: Consider the complexified vector space V ⊗C in which a


Hermitian scalar product is defined; extend Â into that space, and show that


Â is anti-Hermitian. Then Â is diagonalizable and has all imaginary eigenval-


ues. However, the operator Â is real; therefore, its eigenvalues come in pairs
of complex conjugate imaginary values {iλ1,−iλ1, ..., iλn,−iλn}. The corre-
sponding eigenvectors {v1, v̄1, ...,vn, v̄n} are orthogonal and can be rescaled
so that they are orthonormal. Further, we may choose these vectors such that


v̄i is the vector complex conjugate to vi. The tensor representation of Â is


Â =


n∑


i=1


iλi (vi ⊗ v∗
i − v̄i ⊗ v̄∗


i ) ,


where {v∗
i , v̄


∗
i } is the basis dual to {vi, v̄i}. We now define the vectors


ai ≡
vi + v̄i√


2
, bi ≡


vi − v̄i


i
√


2
,
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and verify that


Âai = −λibi, Âbi = λiai (i = 1, ..., n).


Furthermore, the set of vectors {a1,b1, ...,an,bn} is orthonormal, and all the
vectors ai, bi are real. Therefore, we can represent Â in the original space V
by the 2-vector


A ≡
n∑


i=1


λi (ai ∧ bi) .


The set {a1,b1, ...,an,bn} yields the solution to the problem.


5.8 * Pfaffians


The Pfaffian is a construction analogous to the determinant, except that it
applies only to antisymmetric operators in even-dimensional spaces with a
scalar product.


Definition: If Â is an antisymmetric operator in V and N ≡ dimV is even,


the Pfaffian of Â is the number Pf Â defined (up to a sign) as the constant
factor in the tensor equality


(Pf Â)e1 ∧ ... ∧ eN =
1


(N/2)!
A ∧ ... ∧A
︸ ︷︷ ︸


N/2


=
1


(N/2)!


N/2
∧


k=1


A,


where {e1, ..., eN} is an orthonormal basis in V and A ∈ ∧2V is the tensor
corresponding to the operator Â. (Note that both sides in the equation above
are tensors from ∧NV .)


Remark: The sign of the Pfaffian depends on the orientation of the orthonor-
mal basis. Other than that, the Pfaffian does not depend on the choice of the
orthonormal basis {ej}. If this ambiguity is not desired, one could consider a
tensor-valued Pfaffian, A ∧ ... ∧ A ∈ ∧NV ; this tensor does not depend on the
choice of the orientation of the orthonormal basis. This is quite similar to the
ambiguity of the definition of volume and to the possibility of defining an un-
ambiguous but tensor-valued “oriented volume.” However, it is important to
note that {ej} must be a positively oriented orthonormal basis; if we change to
an arbitrary basis, the tensor e1 ∧ ... ∧ eN will be multiplied by some number


not equal to ±1, which will make the definition of Pf Â impossible.


Question: Can we define the Pfaffian of an operator if we do not have a scalar
product in V ? Can we define the Pfaffian of an antisymmetric matrix?
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Answer: We need a scalar product in order to map an operator Â ∈ EndV
to a bivector A ∈ ∧2V ; this is central in the construction of the Pfaffian. If we
know that an operator Â is antisymmetric with respect to some scalar product
(i.e. if we know that such a scalar product exists) then we can use that scalar


product in order to define the Pfaffian of Â. In the language of matrices: If an
antisymmetric matrix is given, we can postulate that this matrix represents
an operator in some basis; then we can introduce a scalar product such that
this basis is orthonormal, so that this operator is an antisymmetric operator
with respect to this scalar product; and then the Pfaffian can be defined. �


To make the correspondence between operators and bivectors more visual,
let us represent operators by their matrices in an orthonormal basis. Anti-
symmetric operators are then represented by antisymmetric matrices.
Examples: First we consider a two-dimensional space V . Any 2 × 2 antisym-


metric matrix Â is necessarily of the form Â =


(
0 a
−a 0


)


, where a is some


number; the determinant of Â is then a2. Let us compute the Pfaffian of Â.


We find the representation of Â as an element of ∧2V as follows, Â = ae1∧e2,


and hence Pf Â = a. We note that the determinant is equal to the square of
the Pfaffian.


Let us now consider a four-dimensional space V and a 4× 4 antisymmetric
matrix; such a matrix must be of the form


B̂ =










0 a b c
−a 0 x y
−b −x 0 z
−c −y −z 0








,


where the numbers a, b, c, x, y, z are arbitrary. Let us compute the Pfaffian
and the determinant of the operator represented by this matrix. We find the


representation of B̂ as an element of ∧2V as follows,


B̂ = ae1 ∧ e2 + be1 ∧ e3 + ce1 ∧ e4


+ xe2 ∧ e3 + ye2 ∧ e4 + ze3 ∧ e4.


Therefore,
1


2!
B̂ ∧ B̂ = (az − by + cx) e1 ∧ e2 ∧ e3 ∧ e4.


(Note that the factor 1
2! cancels the combinatorial factor 2 resulting from the


antisymmetry of the exterior product.) Hence, Pf B̂ = az − by + cx.


Exercise: Compute the determinant of B̂ in the example above; show that


det B̂ = a2z2 − 2abyz + b2y2 − 2bcxy + c2x2 + 2acxz.


We see that, again, the determinant is equal to the square of the Pfaffian
(which is easier to compute).
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Remark: The factor 1/(N/2)! used in the definition of the Pfaffian is a com-
binatorial factor. This factor could be inconvenient if we were calculating in
a finite number field where one cannot divide by (N/2)!. This inconvenience
can be avoided if we define the Pfaffian of a tensorA = v1∧v2+...+vn−1∧vn


as zero if n < N and as the coefficient in the tensor equality


v1 ∧ ... ∧ vN
!
=(Pf Â)e1 ∧ ... ∧ eN


if n = N . For example, consider the tensor


A = a ∧ b + c ∧ d


in a four-dimensional space (N = 4). We compute


A ∧A = (a ∧ b + c ∧ d) ∧ (a ∧ b + c ∧ d)


= 0 + a ∧ b ∧ c ∧ d + c ∧ d ∧ a ∧ b + 0


= 2a ∧ b ∧ c ∧ d.


It is clear that the factor 2 = (N/2)! arises due to the presence of 2 possible
permutations of the two tensors a∧b and c∧d and is therefore a combinatorial
factor. We can avoid the division by 2 in the definition of the Pfaffian if we
consider the tensor a∧ b∧ c∧ d right away, instead of dividing A∧A by 2.�


5.8.1 Determinants are Pfaffians squared


In the examples in the previous section, we have seen that the determinant
turned out to be equal to the square of the Pfaffian of the same operator. We
will now prove this correspondence in the general case.


Theorem: Given a linear operator Â in an even-dimensional space V where


a scalar product is defined, and given that the operator Â is antisymmetric
with respect to that scalar product, we have


(Pf Â)2 = det Â.


Proof: We know that the tensor A ∈ ∧2V corresponding to the operator Â
can be written in the form


A = v1 ∧ v2 + ...+ vn−1 ∧ vk,


where the set of vectors {v1, ...,vk} is linearly independent (Statement 2 in
Sec. 5.7) and k ≤ N is an even number.


We begin by considering the case k < N . In this case the exterior product
A ∧ ... ∧ A (where A is taken N/2 times) will be equal to zero because there
are only k different vectors in that exterior product, while the total number


of vectors is N , so at least two vectors vi must be repeated. Also det Â = 0
in this case; this can be shown explicitly by completing {v1, ...,vk} to a basis
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{v1, ...,vk, ek+1, ..., eN} such that all ej are orthogonal to all vi. (This can be
done by first completing {v1, ...,vk} to a basis and then applying the Gram-
Schmidt orthogonalization procedure to the vectors ej , j = k+1, ..., N .) Then


we will have Âej = 0 (j = k + 1, ..., N ). Acting with ∧N ÂN on the tensor
v1 ∧ ... ∧ vk ∧ ek+1 ∧ ... ∧ eN , we find


(∧N ÂN )(v1 ∧ ... ∧ vk ∧ ek+1 ∧ ... ∧ eN ) = ... ∧ ÂeN = 0


and hence det Â = 0. Thus (Pf Â)2 = 0 = det Â, and there is nothing left to
prove in case k < N .


It remains to consider the interesting case k = N . In this case, the set


{v1, ...,vN} is a basis in V . The Pfaffian Pf Â is the coefficient in the tensor
equality


1


(N/2)!


N/2
∧


k=1


A = v1 ∧ ... ∧ vN
!
=(Pf Â)e1 ∧ ... ∧ eN ,


where {ej} is an orthonormal basis. In other words, Pf Â is the (oriented)
volume of the parallelepiped spanned by the vectors {vj | j = 1, ..., N}, if we


assume that the vectors {ej} span a unit volume. Now it is clear that Pf Â 6= 0.
Let us denote by


{
v∗


j


}
the dual basis to {vj}. Due to the one-to-one corre-


spondence between vectors and covectors, we map
{
v∗


j


}
into the reciprocal


basis {uj}. We now apply the operator Â to the reciprocal basis {uj} and find


by a direct calculation (using the property 〈vi,uj〉 = δij) that Âu1 = −v2,


Âu2 = v1, and so on. Hence


Âu1 ∧ ... ∧ ÂuN = (−v2) ∧ v1 ∧ ... ∧ (−vN ) ∧ vN−1


= v1 ∧ v2 ∧ ... ∧ vN .


It follows that det Â is the coefficient in the tensor equality


Âu1 ∧ ... ∧ ÂuN = v1 ∧ ... ∧ vN
!
=(det Â)u1 ∧ ... ∧ uN . (5.8)


In particular, det Â 6= 0.
In order to prove the desired relationship between the determinant and the


Pfaffian, it remains to compute the volume spanned by the dual basis {uj},
so that the tensor u1 ∧ ...∧uN can be related to e1 ∧ ...∧eN . By Statement 2 in
Sec. 5.4.4, the volume spanned by {uj} is the inverse of the volume spanned


by {vj}. Therefore the volume spanned by {uj} is equal to 1/Pf Â. Now we


can compute the Pfaffian of Â using


u1 ∧ ... ∧ uN = (Pf Â)−1e1 ∧ ... ∧ eN


together with Eq. (5.8):


Pf Â =
v1 ∧ ... ∧ vN


e1 ∧ ... ∧ eN
=


(det Â)(Pf Â)−1e1 ∧ ... ∧ eN


e1 ∧ ... ∧ eN


= (det Â)(Pf Â)−1.
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Hence det Â = (Pf Â)2. �


5.8.2 Further properties


Having demonstrated the techniques of working with antisymmetric opera-
tors and Pfaffians, I propose to you the following exercises that demonstrate
some other properties of Pfaffians. These exercises conclude this book.


Exercise 1: Let Â be an antisymmetric operator; let B̂ be an arbitrary opera-


tor. Prove that Pf (B̂ÂB̂T ) = det(B̂)Pf Â.
Hint: If Â corresponds to the bivector A = v1 ∧ v2 + ... + vk−1 ∧ vk, show


that B̂ÂB̂T corresponds to the bivector B̂v1 ∧ B̂v2 + ...+ B̂vk−1 ∧ B̂vk.


Exercise 2: Let Â be an antisymmetric operator such that det Â 6= 0; let
{ei | i = 1, ..., 2n} be a given orthonormal basis. Prove that there exists an


operator B̂ such that the operator B̂ÂB̂T is represented by the bivector e1 ∧
e2 + ...+ e2n−1 ∧ e2n. Deduce that det Â = (Pf Â)2.


Hint: This is a paraphrase of the proof of Theorem 5.8.1. Use the previous


exercise and represent Â by the bivector v1 ∧ v2 + ... + v2n−1 ∧ v2n, where


the set {vi} is a basis. Define B̂ as a map ei 7→ vi; then B̂−1 exists and maps


vi 7→ ei. Show that Pf Â = 1/(det B̂).


Exercise 3: Use the result of Exercise 5 in Sec. 5.7 to prove that det Â =


(Pf Â)2.
Hint: For an operator Â =


∑n
i=1 λiai ∧ bi, where {a1,b1, ...,an,bn} is a


positively oriented orthonormal basis and 2n ≡ N , show that Pf Â = λ1...λn


and det Â = λ2
1...λ


2
n.


Exercise 4:* An operator Â is antisymmetric and is represented in some or-
thonormal basis by a block matrix of the form


Â =


(
0 M̂


−M̂T 0


)


,


where M̂ is an arbitrary n-dimensional matrix. Show that


Pf Â = (−1)
1
2
n(n−1) det M̂.


Solution: We need to represent Â by a bivector from ∧2V . The given form


of the matrix Â suggests that we consider the splitting of the space V into a
direct sum of two orthogonal n-dimensional subspaces, V = U1 ⊕ U2, where
U1 and U2 are two copies of the same n-dimensional space U . A scalar prod-
uct in U is defined naturally (by restriction), given the scalar product in V .


We will denote by 〈·, ·〉 the scalar product in U . The given matrix form of Â


means that we have a given operator M̂ ∈ EndU such that Â acts on vectors
from V as


Â (v1 ⊕ v2) = (M̂v2) ⊕ (−M̂T v1), v1,v2 ∈ U. (5.9)
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We can choose an orthonormal basis {ci | i = 1, ..., n} in U and represent the


operator M̂ through some suitable vectors {mi| i = 1, ..., n} (not necessarily
orthogonal) such that


M̂u =
n∑


i=1


mi 〈ci,u〉 , u ∈ U.


Note that the vectors mi are found from M̂ci = mi. It follows that M̂T u =
∑n


i=1 ci 〈mi,u〉. Using Eq. (5.9), we can then write the tensor representation


of Â as


Â =
n∑


i=1


[(mi ⊕ 0) ⊗ (0 ⊕ ci)
∗ − (0 ⊕ ci) ⊗ (mi ⊕ 0)∗] .


Hence, Â can be represented by the 2-vector


A =
n∑


i=1


(mi ⊕ 0) ∧ (0 ⊕ ci) ∈ ∧2V.


The Pfaffian of Â is then found from


Pf Â =
(m1 ⊕ 0) ∧ (0 ⊕ c1) ∧ ... ∧ (mn ⊕ 0) ∧ (0 ⊕ cn)


e1 ∧ ... ∧ e2n
,


where {ei | i = 1, ..., 2n} is an orthonormal basis in V . We can choose this
basis as ei = ci ⊕ 0, en+i = 0 ⊕ ci (for i = 1, ..., n). By introducing the sign


factor (−1)
1
2
n(n−1), we may rearrange the exterior products so that all mi are


together. Hence


Pf Â = (−1)
1
2
n(n−1)


× (m1 ⊕ 0) ∧ ... ∧ (mn ⊕ 0) ∧ (0 ⊕ c1) ∧ ... ∧ (0 ⊕ cn)


(c1 ⊕ 0) ∧ ... ∧ (cn ⊕ 0) ∧ (0 ⊕ c1) ∧ ... ∧ (0 ⊕ cn)
.


Vectors corresponding to different subspaces can be factorized, and then the
factors containing 0 ⊕ ci can be canceled:


Pf Â = (−1)
1
2
n(n−1) m1 ∧ ... ∧ mn


c1 ∧ ... ∧ cn


c1 ∧ ... ∧ cn


c1 ∧ ... ∧ cn


= (−1)
1
2
n(n−1) m1 ∧ ... ∧ mn


c1 ∧ ... ∧ cn
.


Finally, we have


m1 ∧ ... ∧ mn


c1 ∧ ... ∧ cn
=
M̂c1 ∧ ... ∧ M̂cn


c1 ∧ ... ∧ cn
= det M̂.


This concludes the calculation. �
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A Complex numbers


This appendix is a crash course on complex numbers.


A.1 Basic definitions


A complex number is a formal expression a+ ib, where a, b are real numbers.
In other words, a complex number is simply a pair (a, b) of real numbers,
written in a more convenient notation as a + ib. One writes, for example,
2 + i3 or 2 + 3i or 3 + i or −5i − 8, etc. The imaginary unit, denoted “i”, is
not a real number; it is a symbol which has the property i2 = −1. Using this
property, we can apply the usual algebraic rules to complex numbers; this is
emphasized by the algebraic notation a + ib. For instance, we can add and
multiply complex numbers,


(1 + i) + 5i = 1 + 6i;


(1 − i) (2 + i) = 2 − 2i + i − i2


= 3 − i;


i3 = ii2 = −i.


It is straightforward to see that the result of any arithmetic operation on com-
plex numbers turns out to be again a complex number. In other words, one
can multiply, divide, add, subtract complex numbers just as directly as real
numbers.


The set of all complex numbers is denoted by C. The set of all real numbers
is R.
Exercise: Using directly the definition of the imaginary unit, compute the
following complex numbers.


1


i
=? i4 =? i5 =?


(


1


2
+


i
√


3


2


)3


=?


The complex number a− ib is called complex conjugate to a+ ib. Conjuga-
tion is denoted either with an overbar or with a star superscript,


z = a+ ib, z̄ = z∗ = a− ib,


according to convenience. Note that


zz∗ = (a+ ib) (a− ib) = a2 + b2 ∈ R.
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In order to divide by a complex number more easily, one multiplies the
numerator and the denominator by the complex conjugate number, e.g.


1


3 + i
=? =


1


3 + i
· 3 − i


3 − i
=


3 − i


9 − i2
=


3 − i


10
=


3


10
− 1


10
i.


Exercise: Compute the following complex numbers,


1 − i


1 + i
=?


1 − i


4 + i
− 1 + i


4 − i
=?


1


a+ ib
=?


where a, b ∈ R. �


Another view of complex numbers is that they are linear polynomials in the
formal variable “i.” Since we may replace i2 by −1 and i−1 by −i wherever
any power of “i” appears, we can reduce any power series in i and/or in i−1


to a linear combination of 1 and i.
If z = a + ib where a, b ∈ R then a is called the real part, Re z, and b is the


imaginary part, Im z. In other words,


Re (a+ ib) = a, Im (a+ ib) = b.


The absolute value or modulus of z = a+ib is the real number |z| ≡
√
a2 + b2.


Exercise: Compute


Re
[


(2 + i)2
]


=? |3 + 4i| =?


Prove that


Re z =
z + z̄


2
; Im z =


z − z̄


2i
; |z|2 = zz̄;


|z| = |z̄| ; |z1z2| = |z1| |z2| ; (z1z2)
∗


= z∗1z
∗
2


for any complex numbers z, z1, z2 ∈ C.


A.2 Geometric representation


Let us draw a complex number z = x+ iy as a point with coordinates (x, y) in
the Euclidean plane, or a vector with real components (x, y). You can check
that the sum z1 +z2 and the product of z with a real number λ, that is z 7→ zλ,
correspond to the familiar operations of adding two vectors and multiplying
a vector by a scalar. Also, the absolute value |z| is equal to the length of the
two-dimensional vector (x, y) as computed in the usual Euclidean space.
Exercise: Show that the multiplication of z = x + iy by a complex number
r ≡ cosφ+ i sinφ corresponds to rotating the vector (x, y) by angle φ counter-
clockwise (assuming that the x axis is horizontal and points to the right, and
the y axis points vertically upwards). Show that |rz| = |z|, which corresponds
to the fact that the length of a vector does not change after a rotation.
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A.3 Analytic functions


Analytic functions are such functions f(x) that can be represented by a power
series f(x) =


∑∞
n=0 cnx


n with some coefficients cn such that the series con-
verges at least for some real x. In that case, the series will converge also for
some complex x. In this sense, analytic functions are naturally extended from
real to complex numbers. For example, f(x) = x2 + 1 is an analytic function;
it can be computed just as well for any complex x as for real x.


An example of a non-analytic function is the Heaviside step function


θ(x) =


{


0, x < 0;


1, x ≥ 0.


This function cannot be represented by a power series and thus cannot be
naturally extended to complex numbers. In other words, there is no useful
way to define the value of, say, θ(2i). On the other hand, functions such as


cosx,
√
x, x/ lnx,


∫ x


0
e−t2dt, and so on, are analytic and can be evaluated for


complex x.
Exercise: Compute (1 + 2i) (1 + 3i) and (1 − 2i) (1 − 3i). What did you no-
tice? Prove that f(z∗) = [f(z)]


∗ for any analytic function f(z).
Remark: Although


√
x has no power series expansion at x = 0, it has a Taylor


expansion at x = 1, which is sufficient for analyticity; one can also define
√
z


for complex z through the property (
√
z)


2
= z.


Exercise: Derive an explicit formula for the square root of a complex number,√
a+ ib, where a, b ∈ R.
Hint: Write


√
a+ ib = x+ iy, square both sides, and solve for x and y.


Answer:


√
a+ ib = ±








√√
a2 + b2 + a


2
+ i sign(b)


√√
a2 + b2 − a


2





 ,


where sign(b) = 1, 0,−1 when b is positive, zero, or negative. Note that this
formula may be rewritten for quicker calculation as


√
a+ ib = ±


(


r + i
b


2r


)


, r ≡


√√
a2 + b2 + a


2
.


(In this formula, the square roots in the definition of r are purely real and
positive.)


A.4 Exponent and logarithm


The exponential function and the logarithmic function are analytic functions.
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The exponential function is defined through the power series


ez ≡ exp z ≡ 1 +
1


1!
z +


1


2!
z2 + ... =


∞∑


n=0


zn


n!
.


This series converges for all complex z.
Exercise: Verify the Euler formula,


eiφ = cosφ+ i sinφ, φ ∈ R,


by using the known Taylor series for sinx and cosx. Calculate:


e2i =? eπi =? e
1
2
πi =? e2πi =?


Exercise: Use the identity ea+b = eaeb, which holds also for complex num-
bers a, b, to show that


ea+ib = ea (cos b+ i sin b) , a, b ∈ R.


Calculate:


exp
[


ln 2 +
π


2
i
]


=? exp [1 + πi] =? cos


(
1


2
πi


)


=?


The logarithm of a complex number z is a complex number denoted ln z
such that eln z = z. It is easy to see that


exp [z + 2πi] = exp z, z ∈ C,


in other words, the logarithm is defined only up to adding 2πi. So the log-
arithm (at least in our simple-minded approach here) is not a single-valued
function. For example, we have ln (−1) = πi or 3πi or −πi, so one can write


ln (−1) = {πi + 2πni |n ∈ Z} .
Exercise: a) Calculate:


ln i =? ln (−8i) =?


b) Show that the geometric or polar representation of a complex number
z = x+ iy = ρeiφ can be computed using the logarithm:


ρ = exp (Re ln z) = |z| , φ = Im ln z = arctan
y


x
.


Determine the polar representation of the following complex numbers: z1 =
2 + 2i, z2 =


√
3 + i. Calculate also ln z1 and ln z2.


c) Powers of a complex number can be defined by zx ≡ exp [x ln z]. Here x
can be also a complex number! As a rule, zx is not uniquely defined (unless
x is a real integer). Calculate:


√
i =?


√
√
√
√


(


1


2
+


√
3


2
i


)


=? 6
√
−1 =? ii =? 32πi =?
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In this appendix I briefly review some basic properties of permutations.
We consider the ordered set (1, ..., N) of integers. A permutation of the set


(1, ..., N) is a map σ : (1, ..., N) 7→ (k1, ..., kN ) where the kj are all different
and again range from 1 to N . In other words, a permutation σ is a one-to-one
map of the set (1, ..., N) to itself. For example,


σ : (1, 2, 3, 4, 5) 7→ (4, 1, 5, 3, 2)


is a permutation of the set of five elements.
We call a permutation elementary if it exchanges only two adjacent num-


bers, for example (1, 2, 3, 4) 7→ (1, 3, 2, 4). The identity permutation, denoted
by id, does not permute anything. Two permutations σ1 and σ2 can be ex-
ecuted one after another; the result is also a permutation called the prod-
uct (composition) of the elementary permutations σ1 and σ2 and denoted
σ2σ1 (where σ1 is executed first, and then σ2). For example, the product of
(1, 2, 3) 7→ (1, 3, 2) and (1, 2, 3) 7→ (2, 1, 3) is (1, 2, 3) 7→ (3, 1, 2). The effect of
this (non-elementary) permutation is to move 3 through 1 and 2 into the first
place. Note that in this way we can move any number into any other place;
for that, we need to use as many elementary permutations as places we are
passing through.


The set of all permutations of N elements is a group with respect to the
product of permutations. This group is not commutative.


For brevity, let us write EP for “elementary permutation.” Note that σσ =
id when σ is an EP. Now we will prove that the permutation group is gener-
ated by EPs.


Statement 1: Any permutation can be represented as a product of some finite
number of EPs.
Proof: Suppose σ : (1, ..., N) 7→ (k1, ..., kN ) is a given permutation. Let us


try to reduce it to EPs. If k1 6= 1 then 1 is somewhere among the ki, say at the
place i1. We can move 1 from the i1-th place to the first place by executing a
product of i1−1 EPs (since we pass through i1−1 places). Then we repeat the
same operation with 2, moving it to the second place, and so on. The result
will be that we obtain some (perhaps a large number of) EPs σ1, ..., σn, such
that σ1...σnσ = id. Using the property σ2


i = id, we move σi’s to the right and
obtain σ = σn...σ1. �


Any given permutation σ is thus equal to a product of EPs σ1 to σn, but this
representation is in any case not unique because, say, we may insert σ1σ1 = id
in any place of the product σn...σ1 without changing the result. So the number
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of required EPs can be changed. However, it is very important (and we will
prove this now) that the number of required EPs can only be changed by 2,
never by 1.


In other words, we are going to prove the following statement: When a
given permutation σ is represented as a product of EPs, σ = σn...σ1, the
number n of these EPs is always either even or odd, depending on σ but
independent of the choice of the representation σn...σ1. Since the parity of n
(parity is whether n is even or odd) is a property of the permutation σ rather
than of the representation of σ through EPs, it will make sense to say that the
permutation σ is itself even or odd.
Statement 2: If σ is represented as a product of EPs in two different ways,
namely by a product of n1 EPs and also by a product of n2 EPs, then the
integers n1 and n2 are both even or both odd.
Proof: Let us denote by |σ| the smallest number of EPs required to represent


a given permutation σ.1 We will now show that |σ| is equal to the number of
order violations in σ, i.e. the number of instances when some larger number
is situated to the left of some smaller number. For example, in the permu-
tation (1, 2, 3, 4) 7→ (4, 1, 3, 2) there are four order violations: the pairs (4, 1),
(4, 3), (4, 2), and (3, 2). It is clear that the correct order can be restored only
when each order violation is resolved, which requires one EP for each order
violation.


The construction in the proof of Statement 1 shows that there exists a choice
of exactly |σ| EPs whose product equals σ. Therefore, |σ| (the smallest num-
ber of EPs required to represent σ) is indeed equal to the number of order
violations in σ.


Now consider multiplying σ by some EP σ0; it is clear that the number of
order violations changes by 1, that is, |σ0σ| = |σ| ± 1, depending on whether
σ0 violates the order existing in σ at the two adjacent places affected by σ0. For
example, the permutation σ = (4, 1, 3, 2) has four order violations, |σ| = 4;
when we multiply σ by σ0 = (1, 3, 2, 4), which is an EP exchanging 2 and 3,
we remove the order violation in σ in the pair (1, 3) since σ0σ = (4, 3, 1, 2);


hence |σ0σ| = 3. Since |σ| is changed by ±1, we have (−1)
|σ0σ|


= − (−1)
|σ| in


any case. Now we consider two representations of σ through n1 and through
n2 EPs. If σ = σn1


...σ1, where σj are EPs, we find by induction


(−1)
|σ|


= (−1)|σn1
...σ1| = (−1)


n1 .


Similarly for the second representation. So it follows that


(−1)
|σ|


= (−1)
n1 = (−1)


n2 .


Hence, the numbers n1 and n2 are either both even or both odd. �


1In Definition D0 we used the notation |σ| to mean 0 or 1 for even or odd permutations. How-


ever, the formula uses only (−1)|σ|, so the present definition of |σ| is still consistent with
Definition D0.
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It follows from the proof of Statement 2 that the number (−1)
|σ| is indepen-


dent of the representation of σ through EPs. This number is called the parity
of a permutation σ. For example, the permutation


σ : (1, 2, 3, 4) 7→ (1, 4, 3, 2)


has four order violations, |σ| = 4, and is therefore an even permutation with
parity +1.
Definition: For a permutation σ, the inverse permutation σ−1 is defined by
σ−1σ = σσ−1 = id.
Statement 3: The inverse permutation σ−1 exists for every permutation σ, is
unique, and the parity of σ−1 is the same as the parity of σ.
Proof: By Statement 1, we have σ = σ1...σn where σi are EPs. Since σiσi = id,
we can define explicitly the inverse permutation as


σ−1 ≡ σnσn−1...σ1.


It is obvious that σσ−1 = σ−1σ = 1, and so σ−1 exists. If there were two
different inverse permutations, say σ−1 and σ′, we would have


σ−1 = σ−1σσ′ = σ′.


Therefore, the inverse is unique. Finally, by Statement 2, the parity of σ−1


is equal to the parity of the number n, and thus equal to the parity of σ.
(Alternatively, we may show that |σ−1| = |σ|.) �
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C Matrices


This appendix is a crash course on vector and matrix algebra.


C.1 Definitions


Matrices are rectangular tables of numbers; here is an example of a 4 × 4
matrix:










1 0 0 −
√


2
2 1 0 0
3 2 1 0
4 3 2 1








.


Matrices are used whenever it is convenient to arrange some numbers in a
rectangular table.


To write matrices symbolically, one uses two indices, for example Aij is
the matrix element in the i-th row and the j-th column. In this convention,
the indices are integers ranging from 1 to each dimension of the matrix. For
example, a 3 × 2 rectangular matrix can be written as a set of coefficients
{Bij | 1 ≤ i ≤ 3, 1 ≤ j ≤ 2} and is displayed as








B11 B12


B21 B22


B31 B32





 .


A matrix with dimensions n× 1 is called a column since it has the shape









A11


...
An1






 .


A matrix with dimensions 1 × n is called a row since it has the shape


[
A11 . . . A1n


]
.


Rows and columns are sometimes distinguished from other matrices by using
square brackets.
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C.2 Matrix multiplication


Matrices can be multiplied by a number just like vectors: each matrix element
is multiplied by the number. For example,


2








u v
w x
y z





 =








2u 2v
2w 2x
2y 2z





 .


Now we will see how to multiply a matrix with another matrix.


The easiest is to define the multiplication of a row with a column:


[
a1 a2 a3


]








x1


x2


x3





 = a1x1 + a2x2 + a3x3.


So the result of a multiplication of a 1×nmatrix with an n×1 matrix is simply
a number. The general definition is


[
a1 . . . an


]









x1


...
xn






 =


n∑


i=1


aixi.


Let us try to guess how to define the multiplication of a column with a
matrix consisting of several rows. Start with just two rows:


(
a1 a2 a3


b1 b2 b3


)






x1


x2


x3





 =?


We can multiply each of the two rows with the column [xi] as before. Then
we obtain two numbers, and it is natural to put them into a column:


(
a1 a2 a3


b1 b2 b3


)






x1


x2


x3





 =


[
a1x1 + a2x2 + a3x3


b1x1 + b2x2 + b3x3


]


.


In general, we define the product of an m× n matrix with an n× 1 matrix (a
column); the result is an m× 1 matrix (again a column):









a11 ... a1n


...
...


...
am1 . . . amn
















x1


...
xn






 =









∑n
i=1 a1ixi


...
∑n


i=1 amixi






 .


270







C.2 Matrix multiplication


Exercise: Calculate the following products of matrices and columns:
(


−1 3
4 1


)[
−2
−1


]


=?


( √
5 − 1 2


2
√


5 + 1


)[ √
5 + 1√
5 − 1


]


=?








1 9 −2
3 0 3
−6 4 3














−2
0
4





 =?










1 0 0 0
2 1 0 0
0 2 1 0
0 0 2 1


















a
b
c
d










=?
















2 1 0 0 · · · 0
1 2 1 0 · · · 0


0 1 2 1
...


0 0 1 2 0
...


...
. . . 1


0 0 · · · 1 2





























1
−1
1
...


−1
1















=?


Finally, we can extend this definition to products of two matrices of sizes
m×n and n×p. We first multiply them×nmatrix by each of the n×1 columns
in the n×p matrix, yielding p columns of size m×1, and then arrange these p
columns into an m× p matrix. The resulting general definition can be written
as a formula for matrix multiplication: ifA is anm×nmatrix andB is an n×p
matrix then the product of A and B is an m × p matrix C whose coefficients
are given by


Cik =


n∑


j=1


AijBjk, 1 ≤ i ≤ m, 1 ≤ k ≤ p.


Exercise: Calculate the following matrix products:


[
2 3


]
(


−3 9
2 −6


)


=?


(
−5 6
−6 5


)(
−5 5
−6 6


)


=?


( √
1+


√
2√


3
0


0
√


1−
√


2√
3


)( √
1−


√
2√


3
0


0
√


1+
√


2√
3


)


=?


[
0 1 2


]








3 2 1
2 1 0
1 0 0














−2
0
0





 =?
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[
w x y z


]










2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


















3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3


















a
b
c
d










=?


Matrices of size n × n are called square matrices. They can be multiplied
with each other and, according to the rules of matrix multiplication, again
give square matrices of the same size.


Exercise 1: If A and B are two square matrices such that AB = BA then one
says that the matricesA andB commute with each other. Determine whether
the following pairs of matrices commute:


a) A =


(
1 1
0 2


)


and B =


(
3 0
1 −2


)


.


b) A =








2 0 0
0 2 0
0 0 2





 and B =








3 1 −1
0 −1 2
2 8 −7





.


c) A =








√
3 0 0


0
√


3 0


0 0
√


3





 and B =








97 12 −55
−8 54 26
31 53 −78





. What have you


noticed?


d) Determine all possible matrices B =


(
w x
y z


)


that commute with the


given matrix A =


(
1 1
0 2


)


. �


Note that a square matrix having the elements 1 at the diagonal and zeros
elsewhere, for example








1 0 0
0 1 0
0 0 1





 ,


has the property that it does not modify anything it multiplies. Therefore
such matrices are called the identity matrices and denoted by 1̂. One has
1̂A = A and A1̂ = A for any matrix A (for which the product is defined).


Exercise 2: We consider real-valued 2 × 2 matrices.
a) The matrix-valued function A(φ) is defined by


A(φ) =


(
cosφ − sinφ
sinφ cosφ


)


.


Show that A(φ1)A(φ2) = A(φ1 + φ2). Deduce that A(φ1) commutes with
A(φ2) for arbitrary φ1, φ2.


b) For every complex number z = x+ iy = reiφ, let us now define a matrix


C(z) =


(
r cosφ −r sinφ
r sinφ r cosφ


)


=


(
x −y
y x


)


.
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Show that C(z1) commutes with C(z2) for arbitrary complex z1, z2, and that
C(z1) + C(z2) = C(z1 + z2) and C(z1)C(z2) = C(z1z2). In this way, complex
numbers could be replaced by matrices of the form C(z). The addition and
the multiplication of matrices of this form corresponds exactly to the addition
and the multiplication of complex numbers.


Exercise 3: The Pauli matrices σ1, σ2, σ3 are defined as follows,


σ1 =


(
0 1
1 0


)


, σ2 =


(
0 −i
i 0


)


, σ3 =


(
1 0
0 −1


)


.


Verify that σ2
1 = 1̂ (the 2 × 2 identity matrix), σ1σ2 = iσ3, σ2σ3 = iσ1, and in


general


σaσb = δab1̂ + i
∑


c


εabcσc.


b) The expression AB−BA where A,B are two matrices is called the com-
mutator of A and B and is denoted by


[A,B] = AB −BA.


Using the result of part a), compute [σa, σb].


C.3 Linear equations


A system of linear algebraic equations, for example,


2x+ y = −11


3x− y = 6


can be formulated in the matrix language as follows. One introduces the
column vectors x ≡


(
x
y


)
and b ≡


(−11
6


)
and the matrix


A ≡
(


2 1
3 −1


)


.


Then the above system of equations is equivalent to the single matrix equa-
tion,


Ax = b,


where x is understood as the unknown vector.


Exercise: Rewrite the following system of equations in matrix form:


x+ y − z = 0


y − x+ 2z = 0


3y = 2
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Remark: In a system of equations, the number of unknowns may differ from
the number of equations. In that case we need to use a rectangular (non-
square) matrix to rewrite the system in a matrix form.


C.4 Inverse matrix


We consider square matrices A and B. If AB = 1 and BA = 1 then B is called
the inverse matrix to A (and vice versa). The inverse matrix to A is denoted
by A−1, so that one has AA−1 = A−1A = 1.
Remark: The inverse matrix does not always exist; for instance, the matrix


(
1 1
2 2


)


does not have an inverse. For finite-dimensional square matrices A and B, one
can derive from AB = 1 that also BA = 1. �


The inverse matrix is useful for solving linear equations. For instance, if
a matrix A has an inverse, A−1, then any equation Ax = b can be solved
immediately as x = A−1b.


Exercise 1: a) Show that the inverse to a 2 × 2 matrix A =


(
w x
y z


)


exists


when wz − xy 6= 0 and is given explicitly by the formula


A−1 =
1


wz − xy


(
z −x
−y w


)


.


b) Compute the inverse matrices A−1 and B−1 for A =


(
1 1
0 2


)


and B =
(


3 0
1 −2


)


. Then compute the solutions of the linear systems


(
1 1
0 2


)[
x
y


]


=


[
−3
5


]


;


(
3 0
1 −2


)[
x
y


]


=


[
−6
0


]


.


Exercise 2: Show that (AB)−1 = B−1A−1, assuming that the inverse matrices
to A and B exist.


Hint: Simplify the expression (AB)(B−1A−1).
Exercise 3: Show that


(1̂ +BA)−1 = A−1(1̂ +AB)−1A,


assuming that all the needed inverse matrices exist.
Hint: Use the property A(1̂ +BA) = A+ABA = (1̂ +AB)A. �


The inverse matrix to a given n × n matrix A can be computed by solving
n systems of equations,


Ax1 = e1, ..., Axn = en,
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where the vectors ei are the standard basis vectors,


e1 = (1, 0, ..., 0) , e2 = (0, 1, 0, ..., 0) ,


..., en = (0, ..., 0, 1) ,


while the vectors x1, ...,xn are unknown. When {xi} are determined, their
components xij form the inverse matrix.


C.5 Determinants


In the construction of the inverse matrix for a given matrix Aij , one finds a
formula of a peculiar type: Each element of the inverse matrix A−1 is equal
to some polynomial in Aij , divided by a certain function of Aij . For example,
Exercise 1a in Sec. C.4 gives such a formula for 2 × 2 matrices; that formula
contains the expression wz − xy in every denominator.


The expression in the denominator is the same for every element of A−1.
This expression needs to be nonzero in that formula, or else we cannot divide
by it (and then the inverse matrix does not exist). In other words, this expres-
sion (which is a function of the matrix Aij) “determines” whether the inverse
matrix exists. Essentially, this function (after fixing a numerical prefactor) is
called the determinant of the matrix Aij .


The determinant for a 2 × 2 or 3 × 3 matrix is given1 by the formulas


det


(
a b
x y


)


= ay − bx,


det








a b c
p q r
x y z





 = aqz + brx+ cpy − bpz − cqx− ary.


Determinants are also sometimes written as matrices with straight vertical
lines at both sides, e.g.


det


(
1 2
0 3


)


≡
∣
∣
∣
∣


1 2
0 3


∣
∣
∣
∣
= 3.


In this notation, a determinant resembles a matrix, so it requires that we
clearly distinguish between a matrix (a table of numbers) and a determinant
(which is a single number computed from a matrix).


To compute the determinant of an arbitrary n × n matrix A, one can use
the procedure called the Laplace expansion.2 First one defines the notion of
a minor Mij corresponding to some element Aij : By definition, Mij is the


1I do not derive this result here; a derivation is given in the main text.
2Here I will only present the Laplace expansion as a computational procedure without deriva-


tion. A derivation is given as an exercise in Sec. 3.4.
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determinant of a matrix obtained from A by deleting row i and column j. For
example, the minor corresponding to the element b of the matrix


A =








a b c
p q r
x y z








is the minor corresponding to A12, hence we delete row 1 and column 2 from
A and obtain


M12 =


∣
∣
∣
∣


p r
x z


∣
∣
∣
∣
= pz − rx.


Then, one sums over all the elements A1i (i = 1, ..., n) in the first row of A,
multiplied by the corresponding minors and the sign factor (−1)


i−1. In other
words, the Laplace expansion is the formula


det(A) =


n∑


i=1


(−1)
i−1


A1iM1i.


A similar formula holds for any other row j instead of the first row; one needs


an additional sign factor (−1)
j−1 in that case.


Example: We compute the determinant of the matrix


A =








a b c
p q r
x y z








using the Laplace expansion in the first row. The minors are


M11 =


∣
∣
∣
∣


q r
y z


∣
∣
∣
∣
= qz − ry,


M12 =


∣
∣
∣
∣


p r
x z


∣
∣
∣
∣
= pz − rx,


M13 =


∣
∣
∣
∣


p q
x y


∣
∣
∣
∣
= py − qx.


Hence


detA = aM11 − bM12 + bM13


= a(qx− ry) − b(pz − rx) + c(py − qx).


This agrees with the formula given previously.
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Exercise: Compute the following determinants.
a)


∣
∣
∣
∣


15 −12
− 1


2
2
5


∣
∣
∣
∣
=?


∣
∣
∣
∣


1 + x2 1 + x2


1 + x2 1 + x4


∣
∣
∣
∣
=?


∣
∣
∣
∣
∣
∣
∣
∣


1 −99 −99 −99
0 2 −99 −99
0 0 3 −99
0 0 0 4


∣
∣
∣
∣
∣
∣
∣
∣


=?


∣
∣
∣
∣
∣
∣


1 2 3
4 5 6
7 8 9


∣
∣
∣
∣
∣
∣


=?


b)


A2 =


∣
∣
∣
∣


2 −1
−1 2


∣
∣
∣
∣
=? A3 =


∣
∣
∣
∣
∣
∣


2 −1 0
−1 2 −1
0 −1 2


∣
∣
∣
∣
∣
∣


=?


A4 =


∣
∣
∣
∣
∣
∣
∣
∣


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


∣
∣
∣
∣
∣
∣
∣
∣


=?


Guess and then prove (using the Laplace expansion) the general formula for
determinants An of this form for arbitrary n,


An =


∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣


2 −1 0 · · · 0


−1 2 −1 · · ·
...


0 −1 2 · · · 0
...


...
...


. . . −1
0 · · · 0 −1 2


∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣


=?


Hint: Use the Laplace expansion to prove the recurrence relation An+1 =
2An −An−1.


C.6 Tensor product


A matrix with rows and columns reversed is called the transposed matrix.
For example, if


A =


(
a b c
x y z


)


is a given 2 × 3 matrix then the transposed matrix, denoted by AT , is the
following 3 × 2 matrix:


AT =








a x
b y
c z





 .
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Note that a row vector becomes a column vector when transposed, and vice
versa. In general, anm×nmatrix becomes an n×mmatrix when transposed.


The scalar product of vectors, q · r, can be represented as a matrix product
qT r. For example, if q = (a, b, c) and r = (x, y, z) then


q · r = ax+ by + cz =
[
x y z


]








a
b
c





 = qT r = rT q.


A matrix product taken in the opposite order (i.e. a column vector times a
row vector) gives a matrix as a result,


qrT =








a
b
c






[
x y z


]
=








ax ay az
bx by bz
cx cy cz





 .


This is known as the tensor product of two vectors. An alternative notation is
q⊗ rT . Note that the result of the tensor product is not a vector but a matrix,
i.e. an object of a different kind. (The space of n × n matrices is also denoted
by Rn ⊗ Rn.)
Exercise: Does the tensor product commute? In a three-dimensional space,
compute the matrix q ⊗ rT − r ⊗ qT . Compare that matrix with the vector
product q × r.
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D Distribution of this text


D.1 Motivation


A scientist receives financial support from the society and the freedom to
do research in any field. I believe it is a duty of scientists to make the re-
sults of their science freely available to the interested public in the form of
understandable, clearly written textbooks. This task has been significantly
alleviated by modern technology. Especially in theoretical sciences where
no experimentally obtained photographs or other such significant third-party
material need to be displayed, authors are able (if not always willing) to pre-
pare the entire book on a personal computer, typing the text and drawing the
diagrams using freely available software. Ubiquitous access to the Internet
makes it possible to create texts of high typographic quality in ready-to-print
form, such as a PDF file, and to distribute these texts essentially at no cost.


The distribution of texts in today’s society is inextricably connected with
the problem of intellectual property. One could simply upload PDF files to
a Web site and declare these texts to be in public domain, so that everyone
would be entitled to download them for free, print them, or distribute fur-
ther. However, malicious persons might then prepare a slightly modified
version and inhibit further distribution of the text by imposing a non-free li-
cense on the modified version and by threatening to sue anyone who wants
to distribute any version of the text, including the old public-domain version.
Merely a threat of a lawsuit suffices for an Internet service provider to take
down any web page allegedly violating copyright, even if the actual lawsuit
may be unsuccessful.


To protect the freedom of the readers, one thus needs to release the text
under a copyright rather than into public domain, and at the same time one
needs to make sure that the text, as well as any future revisions thereof, re-
mains freely distributable. I believe that a free license, such as GNU FDL (see
the next subsection), is an appropriate way of copyrighting a science text-
book.


The present book is released under GNU FDL. According to the license,
everyone is allowed to print this book or distribute it in any other way. In
particular, any commercial publisher may offer professionally printed and
bound copies of the book for sale; the permission to do so is already granted.
Since the FDL disallows granting exclusive distribution rights, I (or anybody
else) will not be able to sign a standard exclusive-rights contract with a pub-
lisher for printing this book (or any further revision of this book). I am happy
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that lulu.com offers commercial printing of the book at low cost and at the
same time adheres to the conditions of a free license (the GNU FDL). The full
text of the license follows.


D.2 GNU Free Documentation License


Version 1.2, November 2002
Copyright (c) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies of this license docu-


ment, but changing it is not allowed.


D.2.1 Preamble


The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifica-
tions made by others.


This License is a kind of “copyleft”, which means that derivative works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.


We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of sub-
ject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.


D.2.2 Applicability and definitions


This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute the
work in a way requiring permission under copyright law.


A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.


A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.)
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The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position re-
garding them.


The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is re-
leased under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.


The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.


A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic trans-
lation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transpar-
ent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.


Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LATEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.


The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.


A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.)
To “Preserve the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.


The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are considered
to be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.
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D.2.3 Verbatim copying


You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section D.2.4.


You may also lend copies, under the same conditions stated above, and you may
publicly display copies.


D.2.4 Copying in quantity


If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.


If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.


If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.


It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.


D.2.5 Modifications


You may copy and distribute a Modified Version of the Document under the condi-
tions of sections D.2.3 and D.2.4 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to


282







D.2 GNU Free Documentation License


whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:


A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.


B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.


C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.


D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other


copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public


permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.


G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.


H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item


stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.


J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.


K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.


L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the section
titles.


M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.


N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.


O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qual-


ify as Secondary Sections and contain no material copied from the Document, you
may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
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You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements
of peer review or that the text has been approved by an organization as the authorita-
tive definition of a standard.


You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Docu-
ment already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.


The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.


D.2.6 Combining documents


You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice, and that you preserve all their Warranty Disclaimers.


The combined work need only contain one copy of this License, and multiple iden-
tical Invariant Sections may be replaced with a single copy. If there are multiple In-
variant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original au-
thor or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.


In the combination, you must combine any sections Entitled “History” in the var-
ious original documents, forming one section Entitled “History”; likewise combine
any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”.
You must delete all sections Entitled “Endorsements.”


D.2.7 Collections of documents


You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.


You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.
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D.2.8 Aggregation with independent works


A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit
the legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.


If the Cover Text requirement of section D.2.4 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the Doc-
ument’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.


D.2.9 Translation


Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section D.2.5. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original ver-
sions of these Invariant Sections. You may include a translation of this License, and all
the license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.


If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section D.2.5) to Preserve its Title (section D.2.2) will typ-
ically require changing the actual title.


D.2.10 Termination


You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.


D.2.11 Future revisions of this license


The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.


Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
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the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.


D.2.12 Addendum: How to use this License for your
documents


To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:


Copyright (c) <year> <your name>. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.


If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:


with the Invariant Sections being <list their titles>, with the Front-Cover Texts being
<list>, and with the Back-Cover Texts being <list>.


If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.


If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.


D.2.13 Copyright


Copyright (c) 2000, 2001, 2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307, USA


Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.


286







Index


n-forms, 83
n-vectors, 80


adjoint, 164
affine hyperplane, 44, 226
algebra, 103
algebraic complement, 164
algebraic multiplicity, 146
analytic function, 174
anti-Hermitian operator, 250
antisymmetric operator, 251
antisymmetric tensor, 80


bivector, 80
block-diagonal matrix, 120


canonical isomorphism, 35
canonical projection, 37
Cayley-Hamilton theorem, 170


generalization, 171
characteristic equation, 146
combinatorial factor, 83, 255, 256
commutator, 273
complexification, 247
components of a vector, 14, 21
coordinate-free approach, v, 22
covector, 37


decomposition of identity, 57
determinant, 107, 115, 121, 275
diagonalizable operator, 145, 174,


187, 203
dividing by tensor, 93, 129
dual basis, 40, 93
dual space, 37
dummy index, 66


eigenbasis, 32
eigenspace, 34
eigenvector, 31
elegance, vi
elementary permutation, 265
endomorphism, 27, 31
Euclidean space, 213
Euler formula, 264
extensions of operators to ∧kV , 138
exterior algebra, 103
exterior product, 78, 80


in index notation, 99
origin of the name, 83


exterior transposition, 7, 155
in index notation, 158


formal linear combination, 17
formal power series, 175, 187
free index, 66


Gaussian elimination, 95
general solution, 131
geometric multiplicity, 146, 195
geometric relation, 22
Gröbner basis, 171
graded algebra, 104
Gram-Schmidt procedure, 216
Grassmann algebra, 103
Grassmann’s complement, 93, 235


Heaviside step function, 263
Hermitian conjugate, 247, 248
Hermitian operator, 248
Hermitian scalar product, 218, 246
Hodge star, 95, 232, 246


general definition, 235


287







Index


homomorphism, 27, 31
hyperplane, 4, 43, 118, 246


identity matrix, 272
insertion map, 88, 236
interior product, 88, 236
invariant subspace, 34
inverse matrix, 274
inverse operator, 127
inverse permutation, 267
invertible operator, 32


Jacobi formula, 189
Jordan basis, 196, 198, 200
Jordan canonical form, 32, 187
Jordan cell, 195, 200


Kramer’s rule, 129
Kronecker symbol, 29, 40, 217


Lagrange polynomial, 137
Laplace expansion, 123, 275
length of a vector, 213
Leverrier’s algorithm, 169
Levi-Civita symbol, 101, 124, 166,


234, 237
linear combination, 15
linear operator, 27
linearity, 27
linearly (in)dependent set, 20
Liouville formula, 187


minimal polynomial, 202
minor, 123, 275
mirror reflection, 118
monic polynomial, 134
multi-index, 244


nilpotent, 151
normal projection, 224
number field, 13


orientation of space, 231, 232
oriented area, 74
orthogonal complement, 223
orthogonal projection, 224


orthonormal basis, 215


parity, 266
Pauli matrices, 273
permutation, 265


order violations, 266
parity of, 267


Pfaffian, 10, 254
polynomial interpolation, 136
positively orientated basis, 232
projector, 34, 55, 99, 118, 177, 205


rank of an operator, 63
reciprocal basis, 238
right-hand rule, 231
root vector, 198
rotation, 227


scalar product in ∧kV , 242
scalar product in ∧NV , 241
single-term exterior products, 80,


85, 90, 92
square-free polynomial, 202
standard basis, 21
Sylvester’s method, 179, 181
symmetric operator, 248


tensor, 46
tensor product, 45, 278
tensor-valued area, 113
totally antisymmetric, 80, 100
trace, 62, 141
trace relations, 150, 170, 194
traceless operator, 250
transposed matrix, 277
transposed operator, 62, 229
triple product, 233


unit volume tensor, 9, 231, 234
unitary operator, 251


Vandermonde matrix, 133
vector product, 233


wedge product, 79


288







Index


Notes


289





		Preface

		0 Introduction and summary

		0.1 Notation

		0.2 Sample quiz problems

		0.3 A list of results



		1 Linear algebra without coordinates

		1.1 Vector spaces

		1.1.1 Three-dimensional Euclidean geometry

		1.1.2 From three-dimensional vectors to abstract vectors

		1.1.3 Examples of vector spaces

		1.1.4 Dimensionality and bases 

		1.1.5 All bases have equally many vectors



		1.2 Linear maps in vector spaces

		1.2.1 Abstract definition of linear maps

		1.2.2 Examples of linear maps

		1.2.3 Vector space of all linear maps 

		1.2.4 Eigenvectors and eigenvalues



		1.3 Subspaces

		1.3.1 Projectors and subspaces

		1.3.2 Eigenspaces



		1.4 Isomorphisms of vector spaces

		1.5 Direct sum of vector spaces

		1.5.1 V and W as subspaces of VW; canonical projections



		1.6 Dual (conjugate) vector space 

		1.6.1 Dual basis

		1.6.2 Hyperplanes



		1.7 Tensor product of vector spaces

		1.7.1 First examples

		1.7.2 Example: RmRn

		1.7.3 Dimension of tensor product is the product of dimensions

		1.7.4 Higher-rank tensor products

		1.7.5 * Distributivity of tensor product



		1.8 Linear maps and tensors

		1.8.1 Tensors as linear operators

		1.8.2 Linear operators as tensors

		1.8.3 Examples and exercises

		1.8.4 Linear maps between different spaces



		1.9 Index notation for tensors

		1.9.1 Definition of index notation

		1.9.2 Advantages and disadvantages of index notation



		1.10 Dirac notation for vectors and covectors

		1.10.1 Definition of Dirac notation

		1.10.2 Advantages and disadvantages of Dirac notation





		2 Exterior product 

		2.1 Motivation

		2.1.1 Two-dimensional oriented area

		2.1.2 Parallelograms in R3 and in Rn 



		2.2 Exterior product

		2.2.1 Definition of exterior product

		2.2.2 * Symmetric tensor product



		2.3 Properties of spaces kV

		2.3.1 Linear maps between spaces kV

		2.3.2 Exterior product and linear dependence

		2.3.3 Computing the dual basis

		2.3.4 Gaussian elimination

		2.3.5 Rank of a set of vectors

		2.3.6 Exterior product in index notation

		2.3.7 * Exterior algebra (Grassmann algebra)





		3 Basic applications 

		3.1 Determinants through permutations: the hard way

		3.2 The space NV and oriented volume

		3.3 Determinants of operators

		3.3.1 Examples: computing determinants



		3.4 Determinants of square tables

		3.4.1 * Index notation for NV and determinants



		3.5 Solving linear equations

		3.5.1 Existence of solutions

		3.5.2 Kramer's rule and beyond



		3.6 Vandermonde matrix

		3.6.1 Linear independence of eigenvectors

		3.6.2 Polynomial interpolation



		3.7 Multilinear actions in exterior powers

		3.7.1 * Index notation



		3.8 Trace

		3.9 Characteristic polynomial

		3.9.1 Nilpotent operators





		4 Advanced applications

		4.1 The space N-1V

		4.1.1 Exterior transposition of operators

		4.1.2 * Index notation



		4.2 Algebraic complement (adjoint) and beyond

		4.2.1 Definition of algebraic complement

		4.2.2 Algebraic complement of a matrix

		4.2.3 Further properties and generalizations



		4.3 Cayley-Hamilton theorem and beyond

		4.4 Functions of operators

		4.4.1 Definitions. Formal power series

		4.4.2 Computations: Sylvester's method

		4.4.3 * Square roots of operators



		4.5 Formulas of Jacobi and Liouville

		4.5.1 Derivative of characteristic polynomial

		4.5.2 Derivative of a simple eigenvalue

		4.5.3 General trace relations



		4.6 Jordan canonical form

		4.6.1 Minimal polynomial



		4.7 * Construction of projectors onto Jordan cells



		5 Scalar product 

		5.1 Vector spaces with scalar product

		5.1.1 Orthonormal bases

		5.1.2 Correspondence between vectors and covectors 

		5.1.3 * Example: bilinear forms on VV*

		5.1.4 Scalar product in index notation



		5.2 Orthogonal subspaces

		5.2.1 Affine hyperplanes



		5.3 Orthogonal transformations

		5.3.1 Examples and properties

		5.3.2 Transposition



		5.4 Applications of exterior product

		5.4.1 Orthonormal bases, volume, and NV 

		5.4.2 Vector product in R3 and Levi-Civita symbol 

		5.4.3 Hodge star and Levi-Civita symbol in N dimensions

		5.4.4 Reciprocal basis



		5.5 Scalar product in kV

		5.5.1 Scalar product in NV

		5.5.2 Volumes of k-dimensional parallelepipeds



		5.6 Scalar product for complex spaces

		5.6.1 Symmetric and Hermitian operators

		5.6.2 Unitary transformations



		5.7 Antisymmetric operators 

		5.8 * Pfaffians 

		5.8.1 Determinants are Pfaffians squared

		5.8.2 Further properties





		A Complex numbers

		A.1 Basic definitions

		A.2 Geometric representation 

		A.3 Analytic functions

		A.4 Exponent and logarithm



		B Permutations

		C Matrices

		C.1 Definitions

		C.2 Matrix multiplication

		C.3 Linear equations 

		C.4 Inverse matrix

		C.5 Determinants

		C.6 Tensor product



		D Distribution of this text

		D.1 Motivation

		D.2 GNU Free Documentation License 

		D.2.1 Preamble

		D.2.2 Applicability and definitions

		D.2.3 Verbatim copying

		D.2.4 Copying in quantity

		D.2.5 Modifications

		D.2.6 Combining documents

		D.2.7 Collections of documents

		D.2.8 Aggregation with independent works

		D.2.9 Translation

		D.2.10 Termination

		D.2.11 Future revisions of this license

		D.2.12 Addendum: How to use this License for your documents

		D.2.13 Copyright 





		Index




linalg.tar




linalg.lyx


#LyX 1.4.5.1 created this file. For more info see http://www.lyx.org/
\lyxformat 245
\begin_document
\begin_header
\textclass scrbook
\begin_preamble
\renewcommand\subparagraph{\@startsection{paragraph}{4}{\z@}%
{0.8ex \@plus1ex \@minus.2ex}%
{-0.5em}%
{\normalfont\normalsize\bfseries}}
\renewcommand\paragraph{\@startsection{subparagraph}{5}{\z@}%
{0ex \@plus1ex \@minus .2ex}%
{-0.5em}%
{\normalfont\normalsize\bfseries}}
\usepackage{psfrag}
\usepackage{wrapfig}
\usepackage{amsbsy}
\usepackage{amssymb}
\usepackage{amsmath}
%
% redefine paragraph environment to reduce vertical skip amount
\renewcommand\subparagraph{\@startsection{paragraph}{4}{\parindent}{0mm}{-1mm}{\bfseries\itshape} }
%
\newif\ifwantphotoblurb
\wantphotoblurbtrue
\newif\ifwanthyperlinks
\wanthyperlinkstrue
\newif\ifthisispdffile
\thisispdffiletrue
\newif\ifthisismini
\thisisminitrue
%
% note: if the following two lines are uncommented, pdflatex stops working; if they are commented, there are no hyperlinks.
% To produce a PDF file with hyperlinks, export to PS and execute ps2pdf. Drawback: formulae are badly antialiased in Acroread 5.
\ifwanthyperlinks
\usepackage[hyperindex,%
dvips,
%pdftex,%
bookmarks,bookmarksnumbered,%
plainpages=false,pdfpagelabels,%this fixes problems with roman-numbered pages (e.g. ii,iv
colorlinks,hyperindex,breaklinks]{hyperref}
\hypersetup{pdftitle    = {Linear Algebra via Exterior Products}, 
 pdfauthor   = {Sergei Winitzki},
  pdfkeywords = {linear algebra, exterior product, tensor product, wedge product, coordinate-free approach, advanced topics}, 
 pdfsubject  = {linear algebra},  pdfcreator  = {LyX + LaTeX with hyperref package + dvips + ps2pdf},  
pdfproducer = {LyX + LaTeX with hyperref package + dvips + ps2pdf},  
urlbordercolor  = 0 0 0.5,  filebordercolor = 0 0 0.5,  linkbordercolor = 0.75 0 0, 
 citebordercolor = 0 0.5 0,  pagebordercolor = 0 0.5 0.5,  
menubordercolor = 0 0.5 0}
% package for embedding JavaScript into PDF
% \usepackage[dvips]{insdljs}
%\originalTeX
% \begin{insDLJS}{myform}{My Definitions}
% function init() {
% }
% \end{insDLJS}
% \OpenAction{/S /JavaScript /JS( 
% this.getURL("http://homepages.physik.uni-muenchen.de/~winitzki/", false);  )}
\fi
%
%
\def\lyxbuildrel#1\above#2{\buildrel#1\over#2}
% added by lyx2lyx for converted index entries
\@ifundefined{textmu}
 {\usepackage{textcomp}}{}
\hyphenation{non-zero paral-lel-epi-ped eigen-space}
\end_preamble
\options pointlessnumbers,idxtotoc,cleardoubleempty
\language american
\inputencoding auto
\fontscheme palatino
\graphics default
\paperfontsize 10
\spacing single
\papersize a4paper
\use_geometry true
\use_amsmath 1
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\leftmargin 0.45cm
\topmargin 2cm
\rightmargin 0.45cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 2
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\end_header

\begin_body

\begin_layout Standard
\align center

\size large
Linear Algebra via Exterior Products
\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
vspace{1in}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
ifwantphotoblurb
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Box Frameless
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "7.6cm"
special "none"
height "1in"
height_special "totalheight"
status collapsed

\begin_layout Standard

\size small
This book is a pedagogical introduction to the coordinate-free approach
 in finite-dimen\SpecialChar \-
sion\SpecialChar \-
al linear algebra, at the undergraduate level.
 Throughout this book, extensive use is made of the exterior (
\begin_inset Quotes eld
\end_inset

wedge
\begin_inset Quotes erd
\end_inset

) product of vectors.
 In this approach, the book derives, without matrix calculations, the standard
 properties of determinants, the formulas of Jacobi and Liouville, the Cayley-Ha
milton theorem, properties of Pfaffians, the Jordan canonical form, as well
 as some generalizations of these results.
 Every concept is logically motivated and discussed; exercises with some
 hints are provided.
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Note Note
status collapsed

\begin_layout Standard

\size small
This book is a pedagogical introduction to the coordinate-free approach
 in basic finite-dimen\SpecialChar \-
sion\SpecialChar \-
al linear algebra.
 The reader should be already exposed to the elementary array-based formalism
 of vector and matrix calculations.
 Throughout this book, extensive use is made of the exterior (anti-commutative,
 
\begin_inset Quotes eld
\end_inset

wedge
\begin_inset Quotes erd
\end_inset

) product of vectors.
 The co\SpecialChar \-
or\SpecialChar \-
din\SpecialChar \-
ate-free formalism and the exterior product, while somewhat
 more abstract, provide a deeper understanding of the classical results
 in linear algebra.
 The standard properties of determinants, the Pythagoras theorem for multidimens
ional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton
 theorem, properties of Pfaffians, the Jordan canonical form, as well as
 some generalizations of these results  are derived without cumbersome matrix
 calculations.
 For the benefit of students, every result is logically motivated and discussed.
 Exercises with some hints are provided.
\end_layout

\begin_layout Standard

\size small
Sergei Winitzki received a PhD in theoretical physics at Tufts University,
 USA (1997) and has been working as researcher and part-time lecturer at
 universities in the USA, Great Britain, and Germany.
\end_layout

\begin_layout Standard

\size small
Dr.\InsetSpace ~
Winitzki has authored numerous research articles and two books on his
 main professional interest, theoretical physics.
 He is presently employed as a senior academic fellow at the Ludwig-Maximilians-
University, Munich (Germany).
\end_layout

\end_inset


\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
vspace{1mm}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Box Frameless
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "3.3cm"
special "none"
height "1in"
height_special "totalheight"
status collapsed

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
vspace{-2mm}
\end_layout

\end_inset


\begin_inset Graphics
	filename Sergei_Winitzki_blackboard_2008.eps
	width 3.2cm

\end_inset


\end_layout

\end_inset

\InsetSpace ~
 \InsetSpace ~

\begin_inset Box Frameless
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "4cm"
special "none"
height "1in"
height_special "totalheight"
status collapsed

\begin_layout Standard

\size small
Sergei Winitzki received a PhD in theoretical physics from Tufts University,
 USA (1997) and has been a researcher and part-time lecturer at universities
 in the USA, UK, and Germany.
 Dr.\InsetSpace ~
Winitzki\InsetSpace ~
 has \InsetSpace ~
authored a
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
vspace{1mm}
\end_layout

\end_inset


\begin_inset Box Frameless
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
width "7.5cm"
special "none"
height "1in"
height_special "totalheight"
status collapsed

\begin_layout Standard

\size small
 number of research articles and two books on his main professional interest,
 theoretical physics.
 He is presently employed as a senior academic fellow at the Ludwig-Maximilians-
University, Munich (Germany).
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
fi
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
thispagestyle{empty}
\end_layout

\end_inset


\begin_inset Note Note
status collapsed

\begin_layout Standard
important: if 
\begin_inset Quotes eld
\end_inset

thispagestyle
\begin_inset Quotes erd
\end_inset

 is put elsewhere, or if there is a Standard layout after title, then upper/lowe
r title backs don't work.
\end_layout

\end_inset


\end_layout

\begin_layout Title
Linear Algebra via Exterior Products
\end_layout

\begin_layout Author
Sergei Winitzki, Ph.D.
\end_layout

\begin_layout Date
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
relax
\end_layout

\end_inset


\end_layout

\begin_layout Uppertitleback
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
vskip 1in 
\end_layout

\end_inset

Linear Algebra via Exterior Products
\newline
Copyright (c) 2009-2010 by Sergei Winitzki,
 Ph.D.
\newline
ISBN 978-1-4092-9496-2, published by 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
ifwanthyperlinks 
\end_layout

\end_inset


\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
href{http://lulu.com}{
\backslash
textbf{lulu.com}}
\end_layout

\end_inset

 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
else 
\end_layout

\end_inset

 
\series bold
lulu.com
\series default
 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
fi
\end_layout

\end_inset

 
\newline
Version 1.2.
 Last change: 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
today
\end_layout

\end_inset


\newline

\newline

\size small
Permission is granted to copy, distribute and/or modify this 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
ifthisispdffile 
\end_layout

\end_inset

PDF file 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
else 
\end_layout

\end_inset

 document 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
fi 
\end_layout

\end_inset

 under the terms of the 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
ifwanthyperlinks 
\end_layout

\end_inset


\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
href{http://www.gnu.org/copyleft/fdl.html}{
\backslash
emph{GNU Free Documentation License}}
\end_layout

\end_inset

, 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
else 
\end_layout

\end_inset

 GNU Free Documentation License 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
fi
\end_layout

\end_inset

 Version 1.2 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in Appendix\InsetSpace ~

\begin_inset LatexCommand \ref{sec:GFDL}

\end_inset

.
 This license permits you to copy this entire book for free or to print
 it, and also guarantees that future revisions of the book will remain free.
 The LaTeX source for this book is bundled as attachment within the PDF
 file
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
ifthisispdffile 
\end_layout

\end_inset

.
 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
else 
\end_layout

\end_inset

, which is available on the book's Web site (
\family typewriter
\size footnotesize
http://sites.google.com/site/winitzki/
\family default
\size small
).
 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
fi 
\end_layout

\end_inset

 The text has been formatted 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
ifthisismini 
\end_layout

\end_inset

to minimize the number of pages.
 
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
else 
\end_layout

\end_inset

 to fit a typical printed softcover book.
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
fi 
\end_layout

\end_inset


\size default

\newline

\end_layout

\begin_layout Lowertitleback

\size small
This book is an undergraduate-level introduction to the coordinate-free
 approach in basic finite-dimen\SpecialChar \-
sion\SpecialChar \-
al linear algebra.
 The reader should be already exposed to the elementary array-based formalism
 of vector and matrix calculations.
 Throughout this book, extensive use is made of the exterior (anti-commutative,
 
\begin_inset Quotes eld
\end_inset

wedge
\begin_inset Quotes erd
\end_inset

) product of vectors.
 The co\SpecialChar \-
or\SpecialChar \-
din\SpecialChar \-
ate-free formalism and the exterior product, while somewhat
 more abstract, provide a deeper understanding of the classical results
 in linear algebra.
 The standard properties of determinants, the Pythagoras theorem for multidimens
ional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton
 theorem, properties of Pfaffians, the Jordan canonical form, as well as
 some generalizations of these results  are derived without cumbersome matrix
 calculations.
 For the benefit of students, every result is logically motivated and discussed.
 Exercises with some hints are provided.
\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
frontmatter
\backslash
pagenumbering{roman}
\end_layout

\end_inset


\begin_inset LatexCommand \tableofcontents{}

\end_inset


\end_layout

\begin_layout Addchap
Preface
\end_layout

\begin_layout Standard
In a first course of linear algebra, one learns the various uses of matrices,
 for instance the properties of determinants, eigenvectors and eigenvalues,
 and methods for solving linear equations.
 The required calculations are straightforward (because, conceptually, vectors
 and matrices are merely 
\begin_inset Quotes eld
\end_inset

arrays of numbers
\begin_inset Quotes erd
\end_inset

) if cumbersome.
 However, there is a more abstract and more powerful approach: Vectors are
 elements of abstract vector spaces, and matrices represent linear transformatio
ns of vectors.
 This 
\series bold
invariant
\series default
 or 
\series bold
coordinate-free
\series default

\begin_inset LatexCommand \index{coordinate-free approach}

\end_inset

 approach is important in algebra and has found many applications in science.
 
\end_layout

\begin_layout Standard
The purpose of this book is to help the reader make a transition to the
 abstract coordinate-free approach, and also to give a hands-on introduction
 to exterior products, a powerful tool of linear algebra.
 I show how the coordin\SpecialChar \-
ate-free approach together with exterior products
 can be used to clarify the basic results of matrix algebra, at the same
 time avoiding all the laborious matrix calculations.
 
\end_layout

\begin_layout Standard
Here is a simple theorem that illustrates the advantages of the exterior
 product approach.
 A triangle is oriented arbitrarily in three-dim\SpecialChar \-
en\SpecialChar \-
sion\SpecialChar \-
al space; the three
 orthogonal projections of this triangle are triangles in the three coordinate
 planes.
 Let 
\begin_inset Formula $S$
\end_inset

 be the area of the initial triangle, and let 
\begin_inset Formula $A,B,C$
\end_inset

 be the areas of the three projections.
 Then 
\begin_inset Formula \[
S^{2}=A^{2}+B^{2}+C^{2}.\]

\end_inset


\begin_inset Note Note
status collapsed

\begin_layout Standard
Proving this statement directly via elementary geometry appears daunting,
 for instance, because of the arbitrary orientation of the triangle in space.
 -- Actually not: 
\begin_inset Formula $A=S\cos\alpha$
\end_inset

 where 
\begin_inset Formula $\alpha$
\end_inset

 is the angle between the 
\begin_inset Formula $x$
\end_inset

 axis and the vector normal to 
\begin_inset Formula $S$
\end_inset

; then use the Pythagoras theorem.
 But this proof cannot be easily generalized to 
\begin_inset Formula $k$
\end_inset

-dimensional parallelepipeds in 
\begin_inset Formula $N$
\end_inset

 dimensions.
 - Thanks to Alexander Shen for this remark.
\end_layout

\end_inset

If one uses bivectors to represent the oriented areas of the triangle and
 of its three projections, the statement above is equivalent to the Pythagoras
 theorem in the space of bivectors, and the proof requires only a few straightfo
rward definitions and checks.
 A generalization of this result to volumes of 
\begin_inset Formula $k$
\end_inset

-dim\SpecialChar \-
en\SpecialChar \-
sion\SpecialChar \-
al bodies embedded in 
\begin_inset Formula $N$
\end_inset

-dim\SpecialChar \-
en\SpecialChar \-
sion\SpecialChar \-
al spaces is then obtained with no extra work.
 I hope that the readers will appreciate the beauty of an approach to linear
 algebra that allows us to obtain such results quickly and almost without
 calculations.
\end_layout

\begin_layout Standard
The exterior product is widely used in connection with 
\begin_inset Formula $n$
\end_inset

-forms, which are exterior products of 
\emph on
covectors
\emph default
.
 In this book I do not use 
\begin_inset Formula $n$
\end_inset

-forms --- instead I use vectors, 
\begin_inset Formula $n$
\end_inset

-vectors, and their exterior products.
 This approach allows a more straightforward geometric interpretation and
 also simplifies calculations and proofs.
\end_layout

\begin_layout Standard
To make the book logically self-contained, I present a proof of every basic
 result of linear algebra.
 The emphasis is not on computational techniques, although the coordinate-free
 approach 
\emph on
does
\emph default
 make many computations easier and more elegant.
\begin_inset Foot
status open

\begin_layout Standard

\series bold
Elegant
\series default

\begin_inset LatexCommand \index{elegance}

\end_inset

 means shorter and easier to remember.
 Usually, 
\series bold
elegant
\series default
 derivations are those in which some powerful basic idea is exploited to
 obtain the result quickly.
\end_layout

\end_inset

 The main topics covered are tensor products; exterior products; coordinate-free
 definitions of the determinant 
\begin_inset Formula $\det\hat{A}$
\end_inset

, the trace 
\begin_inset Formula $\textrm{Tr}\hat{A}$
\end_inset

, and the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}\left(\lambda\right)$
\end_inset

; basic properties of determinants; solution of linear equations, including
 over-determined or under-determined systems, using Kramer's rule; the Liouville
 formula 
\begin_inset Formula $\det\exp\hat{A}=\exp\textrm{Tr}\hat{A}$
\end_inset

 as an identity of formal series; the algebraic complement (cofactor) matrix;
 Jacobi's formula for the variation of the determinant; variation of the
 characteristic polynomial and of eigenvalue; the Cayley-Hamilton theorem;
 analytic functions of operators; Jordan canonical form; construction of
 projectors onto Jordan cells; Hodge star and the computation of 
\begin_inset Formula $k$
\end_inset

-dimensional volumes through 
\begin_inset Formula $k$
\end_inset

-vectors; definition and properties of the Pfaffian 
\begin_inset Formula $\textrm{Pf}\hat{A}$
\end_inset

 for antisymmetric operators 
\begin_inset Formula $\hat{A}$
\end_inset

.
 All these standard results are derived without matrix calculations; instead,
 the exterior product is used as a main computational tool.
 
\end_layout

\begin_layout Standard
This book is largely 
\series bold
pedagogical
\series default
, meaning that the 
\begin_inset Note Note
status collapsed

\begin_layout Standard
absolute majority (and perhaps all) of the 
\end_layout

\end_inset

results are long known, and the emphasis is on a clear and self-contained,
 logically motivated presentation aimed at students.
 Therefore, some exercises with hints and partial solutions are included,
 but not references to literature.
\begin_inset Foot
status open

\begin_layout Standard
The approach to determinants via exterior products has been known since
 at least 1880 but does not seem especially popular in textbooks, perhaps
 due to the somewhat abstract nature of the tensor product.
 I believe that this approach to determinants and to other results in linear
 algebra deserves to be more widely appreciated.
\end_layout

\end_inset

 I have tried to avoid being overly pedantic while keeping the exposition
 mathematically rigorous.
\end_layout

\begin_layout Standard
Sections marked with a star 
\begin_inset Formula $^{*}$
\end_inset

 are not especially difficult but contain material that may be skipped at
 first reading.
 (Exercises marked with a star 
\emph on
are
\emph default
 more difficult.)
\end_layout

\begin_layout Standard
The first chapter is an introduction to the invariant approach to vector
 spaces.
 I assume that readers are familiar with elementary linear algebra in the
 language of row/column vectors and matrices; Appendix\InsetSpace ~

\begin_inset LatexCommand \ref{sec:Matrices}

\end_inset

 contains a brief overview of that material.
 Good introductory books (which I did not read in detail but which have
 a certain overlap with the present notes) are 
\begin_inset Quotes eld
\end_inset

Finite-dimen\SpecialChar \-
sion\SpecialChar \-
al Vector Spaces
\begin_inset Quotes erd
\end_inset

 by P.
 Halmos and 
\begin_inset Quotes eld
\end_inset

Linear Algebra
\begin_inset Quotes erd
\end_inset

 by J.
 Hefferon (the latter is a free book).
\end_layout

\begin_layout Standard
I started thinking about the approach to linear algebra based on exterior
 products while still a student.
 I am especially grateful to Sergei Arkhipov, Leonid Positsel'sky, and Arkady
 Vaintrob who have stimulated my interest at that time and taught me much
 of what I could not otherwise learn about algebra.
 Thanks are also due to Prof.\InsetSpace ~
Howard Haber (UCSC) for constructive feedback
 on an earlier version of this text.
\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
mainmatter
\backslash
pagenumbering{arabic}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Note Note
status open

\begin_layout Standard
Introduction is made into Chapter 0 by hand!
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard


\backslash
setcounter{chapter}{-1}
\end_layout

\end_inset


\end_layout

\begin_layout Chapter
Introduction and summary
\end_layout

\begin_layout Standard
All the notions mentioned in this section will be explained below.
 If you already know the definition of tensor and exterior products and
 are familiar with statements such as 
\begin_inset Formula $\textrm{End }V\cong V\otimes V^{*}$
\end_inset

, you may skip to Chapter \InsetSpace ~

\begin_inset LatexCommand \ref{sec:Exterior-product}

\end_inset

.
 
\end_layout

\begin_layout Section
Notation
\end_layout

\begin_layout Standard
The following conventions are used throughout this text.
 
\end_layout

\begin_layout Standard
I use the 
\series bold
bold emphasis
\series default
 to define a new word, term, or notion, and the definition always appears
 near the boldface text (whether or not I write the word 
\begin_inset Quotes eld
\end_inset

Definition
\begin_inset Quotes erd
\end_inset

).
\end_layout

\begin_layout Standard
Ordered sets are denoted by round parentheses, e.g.\InsetSpace ~

\begin_inset Formula $\left(1,2,3\right)$
\end_inset

.
 Unordered sets are denoted using the curly parentheses, e.g.\InsetSpace ~

\begin_inset Formula $\left\{ a,b,c\right\} $
\end_inset

.
\end_layout

\begin_layout Standard
The symbol 
\begin_inset Formula $\equiv$
\end_inset

 means 
\begin_inset Quotes eld
\end_inset

is now being defined as
\begin_inset Quotes erd
\end_inset

 or 
\begin_inset Quotes eld
\end_inset

equals by a previously given definition.
\begin_inset Quotes erd
\end_inset

 
\end_layout

\begin_layout Standard
The symbol 
\begin_inset Formula ${\lyxbuildrel!\above=}$
\end_inset

 means 
\begin_inset Quotes eld
\end_inset

as we already know, equals.
\begin_inset Quotes erd
\end_inset


\end_layout

\begin_layout Standard
A set consisting of all elements 
\begin_inset Formula $x$
\end_inset

 satisfying some property 
\begin_inset Formula $P(x)$
\end_inset

 is denoted by 
\begin_inset Formula $\left\{ \, x\,|\, P(x)\,\text{is true }\right\} $
\end_inset

.
\end_layout

\begin_layout Standard
A map 
\begin_inset Formula $f$
\end_inset

 from a set 
\begin_inset Formula $V$
\end_inset

 to 
\begin_inset Formula $W$
\end_inset

 is denoted by 
\begin_inset Formula $f:V\rightarrow W$
\end_inset

.
 An element 
\begin_inset Formula $v\in V$
\end_inset

 is then mapped to an element 
\begin_inset Formula $w\in W$
\end_inset

, which is written as 
\begin_inset Formula $f:v\mapsto w$
\end_inset

 or 
\begin_inset Formula $f(v)=w$
\end_inset

.
\end_layout

\begin_layout Standard
The sets of rational numbers, real numbers, and complex numbers are denoted
 respectively by 
\begin_inset Formula $\mathbb{Q}$
\end_inset

, 
\begin_inset Formula $\mathbb{R}$
\end_inset

, and 
\begin_inset Formula $\mathbb{C}$
\end_inset

.
\end_layout

\begin_layout Standard
Statements, Lemmas, Theorems, Examples, and Exercises are numbered only
 within a single subsection, so references are always to a certain statement
 in a certain subsection.
\begin_inset Foot
status open

\begin_layout Standard
I was too lazy to implement a comprehensive system of numbering for all
 these items.
\end_layout

\end_inset

 A reference to 
\begin_inset Quotes eld
\end_inset

Theorem\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-V}

\end_inset


\begin_inset Quotes erd
\end_inset

 means the unnumbered theorem in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-V}

\end_inset

.
 
\end_layout

\begin_layout Standard
Proofs, solutions, examples, and exercises are separated from the rest by
 the symbol 
\begin_inset Formula $\blacksquare$
\end_inset

.
 More precisely, this symbol means 
\begin_inset Quotes eld
\end_inset

I have finished with this; now we look at something else.
\begin_inset Quotes erd
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $V$
\end_inset

 is a finite-dimen\SpecialChar \-
sion\SpecialChar \-
al 
\series bold
vector
\series default
 
\series bold
space
\series default
 over a 
\series bold
field
\series default
 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
 Vectors from 
\begin_inset Formula $V$
\end_inset

 are denoted by boldface lowercase letters, e.g.\InsetSpace ~

\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
 The 
\series bold
dimension
\series default
 of 
\begin_inset Formula $V$
\end_inset

 is 
\begin_inset Formula $N\equiv\dim V$
\end_inset

.
 
\end_layout

\begin_layout Standard
The standard 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space over real numbers (the space consisting of 
\begin_inset Formula $N$
\end_inset

-tuples of real numbers) is denoted by 
\begin_inset Formula $\mathbb{R}^{N}$
\end_inset

.
\end_layout

\begin_layout Standard
The 
\series bold
subspace spanned by
\series default
 a given set of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is denoted by 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

.
 
\end_layout

\begin_layout Standard
The vector space 
\series bold
dual
\series default
 to 
\begin_inset Formula $V$
\end_inset

 is 
\begin_inset Formula $V^{*}$
\end_inset

.
 Elements of 
\begin_inset Formula $V^{*}$
\end_inset

 (
\series bold
covectors
\series default
) are denoted by starred letters, e.g.\InsetSpace ~

\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

.
 A covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 acts on a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 and produces a number 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v})$
\end_inset

.
\end_layout

\begin_layout Standard
The space of linear maps (
\series bold
homomorphisms
\series default
) 
\begin_inset Formula $V\rightarrow W$
\end_inset

 is 
\begin_inset Formula $\textrm{Hom}\left(V,W\right)$
\end_inset

.
 The space of 
\series bold
linear operators
\series default
 (also called 
\series bold
endomorphisms
\series default
) of a vector space 
\begin_inset Formula $V$
\end_inset

, i.e.\InsetSpace ~
the space of all linear maps 
\begin_inset Formula $V\rightarrow V$
\end_inset

, is 
\begin_inset Formula $\textrm{End }V$
\end_inset

.
 Operators are denoted by the circumflex accent, e.g.\InsetSpace ~

\begin_inset Formula $\hat{A}$
\end_inset

.
 The 
\series bold
identity
\series default
 operator on 
\begin_inset Formula $V$
\end_inset

 is 
\begin_inset Formula $\hat{1}_{V}\in\textrm{End }V$
\end_inset

 (sometimes also denoted 
\begin_inset Formula $\hat{1}$
\end_inset

 for brevity).
\end_layout

\begin_layout Standard
The 
\series bold
direct
\series default
 
\series bold
sum
\series default
 of spaces 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 is 
\begin_inset Formula $V\oplus W$
\end_inset

.
 The 
\series bold
tensor
\series default
 
\series bold
product
\series default
 of spaces 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 is 
\begin_inset Formula $V\otimes W$
\end_inset

.
 The 
\series bold
exterior
\series default
 (
\series bold
anti-commutative
\series default
) 
\series bold
product
\series default
 of 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $V$
\end_inset

 is 
\begin_inset Formula $V\!\wedge\! V$
\end_inset

.
 The exterior product of 
\begin_inset Formula $n$
\end_inset

 copies of 
\begin_inset Formula $V$
\end_inset

 is 
\begin_inset Formula $\wedge^{n}V$
\end_inset

.
 
\series bold
Canonical
\series default
 
\series bold
isomorphisms
\series default
 of vector spaces are denoted by the symbol 
\begin_inset Formula $\cong$
\end_inset

; for example, 
\begin_inset Formula $\textrm{End }V\cong V\otimes V^{*}$
\end_inset

.
\end_layout

\begin_layout Standard
The 
\series bold
scalar product
\series default
 of vectors is denoted by 
\begin_inset Formula $\left\langle \mathbf{u},\mathbf{v}\right\rangle $
\end_inset

.
 The notation 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 is used 
\emph on
only
\emph default
 for the traditional 
\series bold
vector product
\series default
 (also called 
\series bold
cross product
\series default
) in 3-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
 Otherwise, the product symbol 
\begin_inset Formula $\times$
\end_inset

 is used to denote the continuation a long expression that is being split
 between lines.
\end_layout

\begin_layout Standard
The 
\series bold
exterior
\series default
 (
\series bold
wedge
\series default
) product of vectors is denoted by 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\in\wedge^{2}V$
\end_inset

.
 
\end_layout

\begin_layout Standard
Any two nonzero tensors 
\begin_inset Formula $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{N}$
\end_inset

 in an 
\begin_inset Formula $N$
\end_inset

-dimensional space are proportional to each other, say
\begin_inset Formula \[
\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}=\lambda\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{N}.\]

\end_inset

 It is then convenient to denote 
\begin_inset Formula $\lambda$
\end_inset

 by the 
\begin_inset Quotes eld
\end_inset

tensor ratio
\begin_inset Quotes erd
\end_inset


\begin_inset Formula \[
\lambda\equiv\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}}{\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{N}}.\]

\end_inset


\end_layout

\begin_layout Standard
The number of unordered choices of 
\begin_inset Formula $k$
\end_inset

 items from 
\begin_inset Formula $n$
\end_inset

 is denoted by 
\begin_inset Formula \[
{n \choose k}=\frac{n!}{k!(n-k)!}.\]

\end_inset


\end_layout

\begin_layout Standard
The 
\begin_inset Formula $k$
\end_inset

-linear action of a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in the space 
\begin_inset Formula $\wedge^{n}V$
\end_inset

 is denoted by 
\begin_inset Formula $\wedge^{n}\hat{A}^{k}$
\end_inset

.
 (Here 
\begin_inset Formula $0\leq k\leq n\leq N$
\end_inset

.) For example,
\begin_inset Formula \begin{align*}
(\wedge^{3}\hat{A}^{2})\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c} & \equiv\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}\\
 & +\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}.\end{align*}

\end_inset


\end_layout

\begin_layout Standard
The imaginary unit (
\begin_inset Formula $\sqrt{-1}$
\end_inset

) is denoted by a 
\emph on
roman
\emph default
 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $\text{i}$
\end_inset

,
\begin_inset Quotes erd
\end_inset

 while the base of natural logarithms is written as an 
\emph on
italic
\emph default
 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $e$
\end_inset

.
\begin_inset Quotes erd
\end_inset

 For example, I would write 
\begin_inset Formula $e^{\text{i}\pi}=-1$
\end_inset

.
 This convention is designed to avoid conflicts with the much used index
 
\begin_inset Formula $i$
\end_inset

 and with labeled vectors such as 
\begin_inset Formula $\mathbf{e}_{i}$
\end_inset

.
\end_layout

\begin_layout Standard
I write an italic 
\begin_inset Formula $d$
\end_inset

 in the derivatives, such as 
\begin_inset Formula $df/dx$
\end_inset

, and in integrals, such as 
\begin_inset Formula $\int f(x)dx$
\end_inset

, because in these cases the symbols 
\begin_inset Formula $dx$
\end_inset

 do not refer to a separate well-defined object 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $dx$
\end_inset


\begin_inset Quotes erd
\end_inset

 but are a part of the traditional symbolic notation used in calculus.
 Differential forms (or, for that matter, nonstandard calculus) 
\emph on
do
\emph default
 make 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $\text{d}x$
\end_inset


\begin_inset Quotes erd
\end_inset

 into a well-defined object; in that case I write a roman 
\begin_inset Quotes eld
\end_inset

d
\begin_inset Quotes erd
\end_inset

 in 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $\text{d}x$
\end_inset

.
\begin_inset Quotes erd
\end_inset

 Neither calculus nor differential forms are actually used in this book;
 the only exception is the occasional use of the derivative 
\begin_inset Formula $d/dx$
\end_inset

 applied to polynomials in 
\begin_inset Formula $x$
\end_inset

.
 I will not need to make a distinction between 
\begin_inset Formula $d/dx$
\end_inset

 and 
\begin_inset Formula $\partial/\partial x$
\end_inset

; the derivative of a function 
\begin_inset Formula $f$
\end_inset

 with respect to 
\begin_inset Formula $x$
\end_inset

 is denoted by 
\begin_inset Formula $\partial_{x}f$
\end_inset

.
\end_layout

\begin_layout Section
Sample quiz problems
\end_layout

\begin_layout Standard
The following problems can be solved using techniques explained in this
 book.
 (These problems are of varying difficulty.) In these problems 
\begin_inset Formula $V$
\end_inset

 is an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space (with a scalar product if indicated).
\end_layout

\begin_layout Paragraph
Exterior multiplication:
\end_layout

\begin_layout Standard
If two tensors 
\begin_inset Formula $\omega_{1},\omega_{2}\in\wedge^{k}V$
\end_inset

 (with 
\begin_inset Formula $1\leq k\leq N-1$
\end_inset

) are such that 
\begin_inset Formula $\omega_{1}\wedge\mathbf{v}=\omega_{2}\wedge\mathbf{v}$
\end_inset

 for 
\emph on
all
\emph default
 vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

, show that 
\begin_inset Formula $\omega_{1}=\omega_{2}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Insertions:
\end_layout

\begin_layout Standard
a) It is given that 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 (with 
\begin_inset Formula $1\leq k\leq N-1$
\end_inset

) and 
\begin_inset Formula $\psi\wedge\mathbf{a}=0$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}\in V$
\end_inset

 and 
\begin_inset Formula $\mathbf{a}\neq0$
\end_inset

.
 Further, a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 is given such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{a})\neq0$
\end_inset

.
 Show that 
\begin_inset Formula \[
\psi=\frac{1}{\mathbf{f}^{*}(\mathbf{a})}\mathbf{a}\wedge(\iota_{\mathbf{f}^{*}}\psi).\]

\end_inset


\end_layout

\begin_layout Standard
b) It is given that 
\begin_inset Formula $\psi\wedge\mathbf{a}=0$
\end_inset

 and 
\begin_inset Formula $\psi\wedge\mathbf{b}=0$
\end_inset

, where 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 (with 
\begin_inset Formula $2\leq k\leq N-1$
\end_inset

) and 
\begin_inset Formula $\mathbf{a},\mathbf{b}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\neq0$
\end_inset

.
 Show that there exists 
\begin_inset Formula $\chi\in\wedge^{k-2}V$
\end_inset

 such that 
\begin_inset Formula $\psi=\mathbf{a}\wedge\mathbf{b}\wedge\chi$
\end_inset

.
 
\end_layout

\begin_layout Standard
c) It is given that 
\begin_inset Formula $\psi\wedge\mathbf{a}\wedge\mathbf{b}=0$
\end_inset

, where 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 (with 
\begin_inset Formula $2\leq k\leq N-2$
\end_inset

) and 
\begin_inset Formula $\mathbf{a},\mathbf{b}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\neq0$
\end_inset

.
 Is it always true that 
\begin_inset Formula $\psi=\mathbf{a}\wedge\mathbf{b}\wedge\chi$
\end_inset

 for some 
\begin_inset Formula $\chi\in\wedge^{k-2}V$
\end_inset

?
\end_layout

\begin_layout Paragraph
Determinants:
\end_layout

\begin_layout Standard
a) Suppose 
\begin_inset Formula $\hat{A}$
\end_inset

 is a linear operator defined by 
\begin_inset Formula $\hat{A}=\sum_{i=1}^{N}\mathbf{a}_{i}\otimes\mathbf{b}_{i}^{*}$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}_{i}\in V$
\end_inset

 are given vectors and 
\begin_inset Formula $\mathbf{b}_{i}\in V^{*}$
\end_inset

 are given covectors; 
\begin_inset Formula $N=\dim V$
\end_inset

.
 Show that 
\begin_inset Formula \[
\det\hat{A}=\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}\,\frac{\mathbf{b}_{1}^{*}\wedge...\wedge\mathbf{b}_{N}^{*}}{\mathbf{e}_{1}^{*}\wedge...\wedge\mathbf{e}_{N}^{*}},\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an arbitrary basis and 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 is the corresponding dual basis.
 Show that the expression above is independent of the choice of the basis
 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
\end_layout

\begin_layout Standard
b) Suppose that a scalar product is given in 
\begin_inset Formula $V$
\end_inset

, and an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is defined by 
\begin_inset Formula \[
\hat{A}\mathbf{x}\equiv\sum_{i=1}^{N}\mathbf{a}_{i}\left\langle \mathbf{b}_{i},\mathbf{x}\right\rangle .\]

\end_inset

Further, suppose that 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis in 
\begin_inset Formula $V$
\end_inset

.
 Show that
\begin_inset Formula \[
\det\hat{A}=\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}\,\frac{\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}},\]

\end_inset

and that this expression is independent of the choice of the orthonormal
 basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and of the orientation of the basis.
\end_layout

\begin_layout Paragraph
Hyperplanes:
\end_layout

\begin_layout Standard
a) Let us suppose that the 
\begin_inset Quotes eld
\end_inset

price
\begin_inset Quotes erd
\end_inset

 of the vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 is given by the formula 
\begin_inset Formula \[
\text{Cost}\left(\mathbf{x}\right)\equiv C(\mathbf{x},\mathbf{x}),\]

\end_inset

where 
\begin_inset Formula $C(\mathbf{a},\mathbf{b})$
\end_inset

 is a known, positive-definite bilinear form.
 Determine the 
\begin_inset Quotes eld
\end_inset

cheapest
\begin_inset Quotes erd
\end_inset

 vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 belonging to the affine hyperplane 
\begin_inset Formula $\mathbf{a}^{*}(\mathbf{x})=\alpha$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}^{*}\in V^{*}$
\end_inset

 is a nonzero covector and 
\begin_inset Formula $\alpha$
\end_inset

 is a number.
\begin_inset LatexCommand \index{hyperplane}

\end_inset


\end_layout

\begin_layout Standard
b) We are now working in a vector space with a scalar product, and the 
\begin_inset Quotes eld
\end_inset

price
\begin_inset Quotes erd
\end_inset

 of a vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{x}\right\rangle $
\end_inset

.
 Two affine hyperplanes are given by equations 
\begin_inset Formula $\left\langle \mathbf{a},\mathbf{x}\right\rangle =\alpha$
\end_inset

 and 
\begin_inset Formula $\left\langle \mathbf{b},\mathbf{x}\right\rangle =\beta$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 are given vectors, 
\begin_inset Formula $\alpha$
\end_inset

 and 
\begin_inset Formula $\beta$
\end_inset

 are numbers, and 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
 (It is assured that 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 are nonzero and not parallel to each other.) Determine the 
\begin_inset Quotes eld
\end_inset

cheapest
\begin_inset Quotes erd
\end_inset

 vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 belonging to the intersection of the two hyperplanes.
\end_layout

\begin_layout Paragraph
Too few equations:
\end_layout

\begin_layout Standard
A linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is defined by 
\begin_inset Formula $\hat{A}=\sum_{i=1}^{k}\mathbf{a}_{i}\otimes\mathbf{b}_{i}^{*}$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}_{i}\in V$
\end_inset

 are given vectors and 
\begin_inset Formula $\mathbf{b}_{i}^{*}\in V^{*}$
\end_inset

 are given covectors, and 
\begin_inset Formula $k<N=\dim V$
\end_inset

.
 Show that the vector equation 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{c}$
\end_inset

 has no solutions if 
\begin_inset Formula $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k}\wedge\mathbf{c}\neq0$
\end_inset

.
 In case 
\begin_inset Formula $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k}\wedge\mathbf{c}=0$
\end_inset

, show that solutions 
\begin_inset Formula $\mathbf{x}$
\end_inset

 surely exist when 
\begin_inset Formula $\mathbf{b}_{1}^{*}\wedge...\wedge\mathbf{b}_{k}^{*}\neq0$
\end_inset

 but may not exist otherwise.
\end_layout

\begin_layout Paragraph
Operator functions:
\end_layout

\begin_layout Standard
It is known that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies the operator equation 
\begin_inset Formula $\hat{A}^{2}=-\hat{1}$
\end_inset

.
 Simplify the oper\SpecialChar \-
ator-valued functions 
\begin_inset Formula $\frac{1+\hat{A}}{3-\hat{A}}$
\end_inset

, 
\begin_inset Formula $\cos(\lambda\hat{A})$
\end_inset

, and 
\begin_inset Formula $\sqrt{\hat{A}+2}$
\end_inset

 to linear formulas involving 
\begin_inset Formula $\hat{A}$
\end_inset

.
 (Here 
\begin_inset Formula $\lambda$
\end_inset

 is a number, while the numbers 
\begin_inset Formula $1$
\end_inset

, 
\begin_inset Formula $2$
\end_inset

, 
\begin_inset Formula $3$
\end_inset

 stand for multiples of the identity operator.) Compare the results with
 the complex numbers 
\begin_inset Formula $\frac{1+\text{i}}{3-\text{i}}$
\end_inset

, 
\begin_inset Formula $\cos(\lambda\text{i})$
\end_inset

, 
\begin_inset Formula $\sqrt{\text{i}+2}$
\end_inset

 and generalize the conclusion to a theorem about computing analytic functions
 
\begin_inset Formula $f(\hat{A})$
\end_inset

.
\end_layout

\begin_layout Paragraph
Inverse operator:
\end_layout

\begin_layout Standard
It is known that 
\begin_inset Formula $\hat{A}\hat{B}=\lambda\hat{1}_{V}$
\end_inset

, where 
\begin_inset Formula $\lambda\neq0$
\end_inset

 is a number.
 Prove that also 
\begin_inset Formula $\hat{B}\hat{A}=\lambda\hat{1}_{V}$
\end_inset

.
 (Both 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 are linear operators in a fin\SpecialChar \-
ite-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

.)
\end_layout

\begin_layout Paragraph
Trace and determinant: 
\end_layout

\begin_layout Standard
Consider the space of polynomials in the variables 
\begin_inset Formula $x$
\end_inset

 and 
\begin_inset Formula $y$
\end_inset

, where we admit only polynomials of the form 
\begin_inset Formula $a_{0}+a_{1}x+a_{2}y+a_{3}xy$
\end_inset

 (with 
\begin_inset Formula $a_{j}\in\mathbb{R}$
\end_inset

).
 An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is defined by 
\begin_inset Formula \[
\hat{A}\equiv x\frac{\partial}{\partial x}-\frac{\partial}{\partial y}.\]

\end_inset

Show that 
\begin_inset Formula $\hat{A}$
\end_inset

 is a linear operator in this space.
 Compute the trace and the determinant of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 If 
\begin_inset Formula $\hat{A}$
\end_inset

 is invertible, compute 
\begin_inset Formula $\hat{A}^{-1}(x+y)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Cayley-Hamilton theorem:
\end_layout

\begin_layout Standard
Express 
\begin_inset Formula $\det\hat{A}$
\end_inset

 through 
\begin_inset Formula $\text{Tr}\hat{A}$
\end_inset

 and 
\begin_inset Formula $\text{Tr}(\hat{A}^{2})$
\end_inset

 for an arbitrary operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in a 
\emph on
two
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
\end_layout

\begin_layout Paragraph
Algebraic complement:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\hat{A}$
\end_inset

 be a linear operator and 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 its algebraic complement.
 
\end_layout

\begin_layout Standard
a) Show that 
\begin_inset Formula \[
\text{Tr}\tilde{\hat{A}}=\wedge^{N}\hat{A}^{N-1}.\]

\end_inset

Here 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-1}$
\end_inset

 is the coefficient at 
\begin_inset Formula $(-\lambda)$
\end_inset

 in the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 (that is, minus the coefficient preceding the determinant).
\end_layout

\begin_layout Standard
b) For 
\begin_inset Formula $t$
\end_inset

-independent operators 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

, show that
\begin_inset Formula \[
\frac{\partial}{\partial t}\det(\hat{A}+t\hat{B})=\text{Tr}(\tilde{\hat{A}}\hat{B}).\]

\end_inset


\end_layout

\begin_layout Paragraph
Liouville formula:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{X}(t)$
\end_inset

 is a defined as solution of the differential equation
\begin_inset Formula \[
\partial_{t}\hat{X}(t)=\hat{A}(t)\hat{X}(t)-\hat{X}(t)\hat{A}(t),\]

\end_inset

where 
\begin_inset Formula $\hat{A}(t)$
\end_inset

 is a given operator.
 (Operators that are functions of 
\begin_inset Formula $t$
\end_inset

 can be understood as oper\SpecialChar \-
ator-valued formal power series.) 
\end_layout

\begin_layout Standard
a) Show that the determinant of 
\begin_inset Formula $\hat{X}(t)$
\end_inset

 is independent of 
\begin_inset Formula $t$
\end_inset

.
 
\end_layout

\begin_layout Standard
b) Show that all the coefficients of the characteristic polynomial of 
\begin_inset Formula $\hat{X}(t)$
\end_inset

 are independent of 
\begin_inset Formula $t$
\end_inset

.
\end_layout

\begin_layout Paragraph
Hodge star:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

, not necessarily orthonormal, while 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is a positively oriented orthonormal basis.
 Show that 
\begin_inset Formula \[
*(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N})=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Volume in space:
\end_layout

\begin_layout Standard
Consider the space of polynomials of degree at most 4 in the variable 
\begin_inset Formula $x$
\end_inset

.
 The scalar product of two polynomials 
\begin_inset Formula $p_{1}(x)$
\end_inset

 and 
\begin_inset Formula $p_{2}(x)$
\end_inset

 is defined by
\begin_inset Formula \[
\left\langle p_{1},p_{2}\right\rangle \equiv\frac{1}{2}\int_{-1}^{1}p_{1}(x)p_{2}(x)dx.\]

\end_inset

Determine the three-dimensional volume of the tetrahedron with vertices
 at the 
\begin_inset Quotes eld
\end_inset

points
\begin_inset Quotes erd
\end_inset

 
\begin_inset Formula $0$
\end_inset

, 
\begin_inset Formula $1+x$
\end_inset

, 
\begin_inset Formula $x^{2}+x^{3}$
\end_inset

, 
\begin_inset Formula $x^{4}$
\end_inset

 in this five-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
\end_layout

\begin_layout Section
A list of results
\end_layout

\begin_layout Standard
Here is a list of some results explained in this book.
 If you already know all these results and their derivations, you may not
 need to read any further.
\end_layout

\begin_layout Standard
Vector spaces may be defined over an abstract number field, without specifying
 the number of dimensions or a basis.
\end_layout

\begin_layout Standard
The set 
\begin_inset Formula $\left\{ a+b\sqrt{41}\,|\, a,b\in\mathbb{Q}\right\} $
\end_inset

 is a number field.
\end_layout

\begin_layout Standard
Any vector can be represented as a linear combination of basis vectors.
 All bases have equally many vectors.
\end_layout

\begin_layout Standard
The set of all linear maps from one vector space to another is denoted 
\begin_inset Formula $\text{Hom}(V,W)$
\end_inset

 and is a vector space.
\end_layout

\begin_layout Standard
The zero vector is not an eigenvector (by definition).
\end_layout

\begin_layout Standard
An operator having in some basis the matrix representation 
\begin_inset Formula $\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)$
\end_inset

 cannot be diagonalized.
\end_layout

\begin_layout Standard
The dual vector space 
\begin_inset Formula $V^{*}$
\end_inset

 has the same dimension as 
\begin_inset Formula $V$
\end_inset

 (for finite-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces).
\end_layout

\begin_layout Standard
Given a nonzero covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

, the set of vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v})=0$
\end_inset

 is a subspace of codimension 1 (a hyperplane).
\end_layout

\begin_layout Standard
The tensor product of 
\begin_inset Formula $\mathbb{R}^{m}$
\end_inset

 and 
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset

 has dimension 
\begin_inset Formula $mn$
\end_inset

.
\end_layout

\begin_layout Standard
Any linear map 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 can be represented by a tensor of the form 
\begin_inset Formula $\sum_{i=1}^{k}\mathbf{v}_{i}^{*}\otimes\mathbf{w}_{i}\in V^{*}\otimes W$
\end_inset

.
 The rank of 
\begin_inset Formula $\hat{A}$
\end_inset

 is equal to the smallest number of simple tensor product terms 
\begin_inset Formula $\mathbf{v}_{i}^{*}\otimes\mathbf{w}_{i}$
\end_inset

 required for this representation.
\end_layout

\begin_layout Standard
The identity map 
\begin_inset Formula $\hat{1}_{V}:V\rightarrow V$
\end_inset

 is represented as the tensor 
\begin_inset Formula $\sum_{i=1}^{N}\mathbf{e}_{i}^{*}\otimes\mathbf{e}_{i}\in V^{*}\otimes V$
\end_inset

, where 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 is any basis and 
\begin_inset Formula $\left\{ \mathbf{e}_{i}^{*}\right\} $
\end_inset

 its dual basis.
 This tensor does not depend on the choice of the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

.
\end_layout

\begin_layout Standard
A set of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 is linearly independent if and only if 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\neq0$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\neq0$
\end_inset

 but 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{x}=0$
\end_inset

 then the vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 belongs to the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

.
\end_layout

\begin_layout Standard
The dimension of the space 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 is 
\begin_inset Formula ${N \choose k}$
\end_inset

, where 
\begin_inset Formula $N\equiv\dim V$
\end_inset

.
\end_layout

\begin_layout Standard
Insertion 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}\omega$
\end_inset

 of a covector 
\begin_inset Formula $\mathbf{a}^{*}\in V^{*}$
\end_inset

 into an antisymmetric tensor 
\begin_inset Formula $\omega\in\wedge^{k}V$
\end_inset

 has the property 
\begin_inset Formula \[
\mathbf{v}\wedge(\iota_{\mathbf{a}^{*}}\omega)+\iota_{\mathbf{a}^{*}}(\mathbf{v}\wedge\omega)=\mathbf{a}^{*}(\mathbf{v})\omega.\]

\end_inset


\end_layout

\begin_layout Standard
Given a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

, the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}^{*}\right\} $
\end_inset

 may be computed as
\begin_inset Formula \[
\mathbf{e}_{i}^{*}(\mathbf{x})=\frac{\mathbf{e}_{1}\wedge...\wedge\mathbf{x}\wedge...\wedge\mathbf{e}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}},\]

\end_inset

where 
\begin_inset Formula $\mathbf{x}$
\end_inset

 replaces 
\begin_inset Formula $\mathbf{e}_{i}$
\end_inset

 in the numerator.
\end_layout

\begin_layout Standard
The subspace spanned by a set of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

, not necessarily linearly independent, can be characterized by a certain
 antisymmetric tensor 
\begin_inset Formula $\omega$
\end_inset

, which is the exterior product of the largest number of 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

's such that 
\begin_inset Formula $\omega\neq0$
\end_inset

.
 The tensor 
\begin_inset Formula $\omega$
\end_inset

, computed in this way, is unique up to a constant factor.
\end_layout

\begin_layout Standard
The 
\begin_inset Formula $n$
\end_inset

-vector (antisymmetric tensor) 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}$
\end_inset

 represents geometrically the oriented 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al volume of the parallelepiped spanned by the vectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

.
\end_layout

\begin_layout Standard
The determinant of a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is the coefficient that multiplies the oriented volume of any parallelepiped
 transformed by 
\begin_inset Formula $\hat{A}$
\end_inset

.
 In our notation, the operator 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 acts in 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 as multiplication by 
\begin_inset Formula $\det\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard
If each of the given vectors 
\begin_inset Formula $\{\mathbf{v}{}_{1},...,\mathbf{v}_{N}\}$
\end_inset

 is expressed through a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 as 
\begin_inset Formula $\mathbf{v}_{j}=\sum_{i=1}^{N}v_{ij}\mathbf{e}_{i}$
\end_inset

, the determinant of the matrix 
\begin_inset Formula $v_{ij}$
\end_inset

 is found as 
\begin_inset Formula \[
\det(v_{ij})=\det(v_{ji})=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}.\]

\end_inset


\end_layout

\begin_layout Standard
A linear operator 
\begin_inset Formula $\hat{A}:V\rightarrow V$
\end_inset

 and its canonically defined transpose 
\begin_inset Formula $\hat{A}^{T}:V^{*}\rightarrow V^{*}$
\end_inset

 have the same characteristic polynomials.
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\det\hat{A}\neq0$
\end_inset

 then the inverse operator 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 exists, and a linear equation 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{b}$
\end_inset

 has the unique solution 
\begin_inset Formula $\mathbf{x}=\hat{A}^{-1}\mathbf{b}$
\end_inset

.
 Otherwise, solutions exist if 
\begin_inset Formula $\mathbf{b}$
\end_inset

 belongs to the image of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Explicit solutions may be constructed using Kramer's rule: If a vector
 
\begin_inset Formula $\mathbf{b}$
\end_inset

 belongs to the subspace spanned by vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 then 
\begin_inset Formula $\mathbf{b}=\sum_{i=1}^{n}b$
\end_inset


\begin_inset Formula $_{i}\mathbf{v}_{i}$
\end_inset

, where the coefficients 
\begin_inset Formula $\mathbf{b}_{i}$
\end_inset

 may be found (assuming 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\neq0$
\end_inset

) as
\begin_inset Formula \[
b_{i}=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{x}\wedge...\wedge\mathbf{v}_{n}}{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}}\]

\end_inset

(here 
\begin_inset Formula $\mathbf{x}$
\end_inset

 replaces 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 in the exterior product in the numerator).
\end_layout

\begin_layout Standard
Eigenvalues of a linear operator are roots of its characteristic polynomial.
 For each root 
\begin_inset Formula $\lambda_{i}$
\end_inset

, there exists at least one eigenvector corresponding to the eigenvalue
 
\begin_inset Formula $\lambda_{i}$
\end_inset

.
 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 are eigenvectors corresponding to 
\emph on
all different
\emph default
 eigenvalues 
\begin_inset Formula $\lambda_{1},...,\lambda_{k}$
\end_inset

 of some operator, then the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 is linearly independent.
\end_layout

\begin_layout Standard
The dimension of the eigenspace corresponding to 
\begin_inset Formula $\lambda_{i}$
\end_inset

 is not larger than the algebraic multiplicity of the root 
\begin_inset Formula $\lambda_{i}$
\end_inset

 in the characteristic polynomial.
\end_layout

\begin_layout Standard

\emph on
(Below in this section we always denote by 
\begin_inset Formula $N$
\end_inset

 the dimension of the space 
\begin_inset Formula $V$
\end_inset

.)
\end_layout

\begin_layout Standard
The trace of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be expressed as 
\begin_inset Formula $\wedge^{N}\hat{A}^{1}$
\end_inset

.
 
\end_layout

\begin_layout Standard
We have 
\begin_inset Formula $\text{Tr}(\hat{A}\hat{B})=\mbox{\text{Tr}}(\hat{B}\hat{A})$
\end_inset

.
 This holds even if 
\begin_inset Formula $\hat{A},\hat{B}$
\end_inset

 are maps between different spaces, i.e.\InsetSpace ~

\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 and 
\begin_inset Formula $\hat{B}:W\rightarrow V$
\end_inset

.
\end_layout

\begin_layout Standard
If an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is nilpotent, its characteristic polynomial is 
\begin_inset Formula $\left(-\lambda\right)^{N}$
\end_inset

, i.e.\InsetSpace ~
the same as the characteristic polynomial of a zero operator.
\end_layout

\begin_layout Standard
The 
\begin_inset Formula $j$
\end_inset

-th coefficient of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula $\left(-1\right)^{j}(\wedge^{N}\hat{A}^{j})$
\end_inset

.
\end_layout

\begin_layout Standard
Each coefficient of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 can be expressed as a polynomial function of 
\begin_inset Formula $N$
\end_inset

 traces of the form 
\begin_inset Formula $\text{Tr}(\hat{A}^{k})$
\end_inset

, 
\begin_inset Formula $k=1,...,N$
\end_inset

.
\end_layout

\begin_layout Standard
The space 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

 is 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al like 
\begin_inset Formula $V$
\end_inset

 itself, and there is a canonical isomorphism between 
\begin_inset Formula $\text{End}(\wedge^{N-1}V)$
\end_inset

 and 
\begin_inset Formula $\text{End}(V)$
\end_inset

.
 This isomorphism, called 
\series bold
exterior
\series default
 
\series bold
transposition
\series default

\begin_inset LatexCommand \index{exterior transposition}

\end_inset

, is denoted by 
\begin_inset Formula $(...)^{\wedge T}$
\end_inset

.
 The exterior transpose of an operator 
\begin_inset Formula $\hat{X}\in\text{End}\, V$
\end_inset

 is defined by 
\begin_inset Formula \[
(\hat{X}^{\wedge T}\omega)\wedge\mathbf{v}\equiv\omega\wedge\hat{X}\mathbf{v},\quad\forall\omega\in\wedge^{N-1}V,\:\mathbf{v}\in V.\]

\end_inset

Similarly, one defines the exterior transposition map between 
\begin_inset Formula $\text{End}(\wedge^{N-k}V)$
\end_inset

 and 
\begin_inset Formula $\text{End}(\wedge^{k}V)$
\end_inset

 for all 
\begin_inset Formula $k=1,...,N$
\end_inset

.
\end_layout

\begin_layout Standard
The algebraic complement operator (normally defined as a matrix consisting
 of minors) is canonically defined through exterior transposition as 
\begin_inset Formula $\tilde{\hat{A}}\equiv({\wedge^{N-1}\hat{A}^{N-1}})^{\wedge T}$
\end_inset

.
 It can be expressed as a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 and satisfies the identity 
\begin_inset Formula $\tilde{\hat{A}}\hat{A}=(\det\hat{A})\hat{1}_{V}$
\end_inset

.
 Also, all other operators
\begin_inset Formula \[
\hat{A}_{(k)}\equiv\big({\wedge^{N-1}\hat{A}^{N-k}}\big)^{\wedge T},\quad k=1,...,N\]

\end_inset

can be expressed as polynomials in 
\begin_inset Formula $\hat{A}$
\end_inset

 with known coefficients.
\end_layout

\begin_layout Standard
The characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 gives the zero operator if applied to the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 (the Cayley-Ham\SpecialChar \-
il\SpecialChar \-
ton theorem).
 A similar theorem holds for each of the operators 
\begin_inset Formula $\wedge^{k}\hat{A}^{1}$
\end_inset

, 
\begin_inset Formula $2\leq k\leq N-1$
\end_inset

 (with different polynomials).
\end_layout

\begin_layout Standard
A formal power series 
\begin_inset Formula $f(t)$
\end_inset

 can be applied to the operator 
\begin_inset Formula $t\hat{A}$
\end_inset

; the result is an oper\SpecialChar \-
ator-valued formal series 
\begin_inset Formula $f(t\hat{A})$
\end_inset

 that has the usual properties, e.g.
\begin_inset Formula \[
\partial_{t}f(t\hat{A})=\hat{A}f^{\prime}(t\hat{A}).\]

\end_inset


\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalized with eigenvalues 
\begin_inset Formula $\left\{ \lambda_{i}\right\} $
\end_inset

 in the eigenbasis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

, then a formal power series 
\begin_inset Formula $f(t\hat{A})$
\end_inset

 is diagonalized in the same basis with eigenvalues 
\begin_inset Formula $f(t\lambda_{i})$
\end_inset

.
\end_layout

\begin_layout Standard
If an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies a polynomial equation such as 
\begin_inset Formula $p(\hat{A})=0$
\end_inset

, where 
\begin_inset Formula $p(x)$
\end_inset

 is a known polynomial of degree 
\begin_inset Formula $k$
\end_inset

 (not necessarily, but possibly, the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

) then any formal power series 
\begin_inset Formula $f(t\hat{A})$
\end_inset

 is reduced to a polynomial in 
\begin_inset Formula $t\hat{A}$
\end_inset

 of degree not larger than 
\begin_inset Formula $k-1$
\end_inset

.
 This polynomial can be computed as the interpolating polynomial for the
 function 
\begin_inset Formula $f(tx)$
\end_inset

 at points 
\begin_inset Formula $x=x_{i}$
\end_inset

 where 
\begin_inset Formula $x_{i}$
\end_inset

 are the (all different) roots of 
\begin_inset Formula $p(x)$
\end_inset

.
 Suitable modifications are available when 
\emph on
not all
\emph default
 roots are different.
 So one can compute any analytic function 
\begin_inset Formula $f(\hat{A})$
\end_inset

 of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 as long as one knows a polynomial equation satisfied by 
\begin_inset Formula $\hat{A}$
\end_inset

.
 
\end_layout

\begin_layout Standard
A square root of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 (i.e.\InsetSpace ~
a linear operator 
\begin_inset Formula $\hat{B}$
\end_inset

 such that 
\begin_inset Formula $\hat{B}\hat{B}=\hat{A}$
\end_inset

) is not unique and does not always exist.
 In two and three dimensions, one can either obtain all square roots explicitly
 as polynomials in 
\begin_inset Formula $\hat{A}$
\end_inset

, or determine that some square roots are not expressible as polynomials
 in 
\begin_inset Formula $\hat{A}$
\end_inset

 or that square roots of 
\begin_inset Formula $\hat{A}$
\end_inset

 do not exist at all.
 
\end_layout

\begin_layout Standard
If an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 depends on a parameter 
\begin_inset Formula $t$
\end_inset

, one can express the derivative of the determinant of 
\begin_inset Formula $\hat{A}$
\end_inset

 through the algebraic complement 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 (Jacobi's formula),
\begin_inset Formula \[
\partial_{t}\det\hat{A}(t)=\text{Tr}(\tilde{\hat{A}}\partial_{t}\hat{A}).\]

\end_inset

Derivatives of other coefficients 
\begin_inset Formula $q_{k}\equiv\wedge^{N}\hat{A}^{N-k}$
\end_inset

 of the characteristic polynomial are given by similar formulas, 
\begin_inset Formula \[
\partial_{t}q_{k}=\text{Tr}\,\big[(\wedge^{N-1}\hat{A}^{N-k-1})^{\wedge T}\partial_{t}\hat{A}\big].\]

\end_inset


\end_layout

\begin_layout Standard
The Liouville formula holds: 
\begin_inset Formula $\det\exp\hat{A}=\exp\text{Tr}\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard
Any operator (not necessarily diagonalizable) can be reduced to a Jordan
 canonical form in a Jordan basis.
 The Jordan basis consists of eigenvectors and root vectors for each eigenvalue.
\end_layout

\begin_layout Standard
Given an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 whose characteristic polynomial is known (hence all roots 
\begin_inset Formula $\lambda_{i}$
\end_inset

 and their algebraic multiplicities 
\begin_inset Formula $m_{i}$
\end_inset

 are known), one can construct explicitly a projector 
\begin_inset Formula $\hat{P}_{\lambda_{i}}$
\end_inset

 onto a Jordan cell for any chosen eigenvalue 
\begin_inset Formula $\lambda_{i}$
\end_inset

.
 The projector is found as a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 with known coefficients.
\end_layout

\begin_layout Standard

\emph on
(Below in this section we assume that a scalar product is fixed in 
\begin_inset Formula $V$
\end_inset

.)
\end_layout

\begin_layout Standard
A nondegenerate scalar product provides a one-to-one correspondence between
 vectors and covectors.
 Then the canonically transposed operator 
\begin_inset Formula $\hat{A}^{T}:V^{*}\rightarrow V^{*}$
\end_inset

 can be mapped into an operator in 
\begin_inset Formula $V$
\end_inset

, denoted also by 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

.
 (This operator is represented by the transposed matrix only in an 
\emph on
orthonormal
\emph default
 basis.) We have 
\begin_inset Formula $(\hat{A}\hat{B})^{T}=\hat{B}^{T}\hat{A}^{T}$
\end_inset

 and 
\begin_inset Formula $\det(\hat{A}^{T})=\det\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard
Orthogonal transformations have determinants equal to 
\begin_inset Formula $\pm1$
\end_inset

.
 Mirror reflections are orthogonal transformations and have determinant
 equal to 
\begin_inset Formula $-1$
\end_inset

.
\end_layout

\begin_layout Standard
Given an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

, one can define the 
\series bold
unit volume tensor
\series default

\begin_inset LatexCommand \index{unit volume tensor}

\end_inset

 
\begin_inset Formula $\omega=\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

.
 The tensor 
\begin_inset Formula $\omega$
\end_inset

 is then independent of the choice of 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 up to a factor 
\begin_inset Formula $\pm1$
\end_inset

 due to the orientation of the basis (i.e.\InsetSpace ~
the ordering of the vectors of the
 basis), as long as the scalar product is kept fixed.
\end_layout

\begin_layout Standard
Given a fixed scalar product 
\begin_inset Formula $\left\langle \cdot,\cdot\right\rangle $
\end_inset

 and a fixed orientation of space, the Hodge star operation is uniquely
 defined as a linear map (isomorphism) 
\begin_inset Formula $\wedge^{k}V\rightarrow\wedge^{N-k}V$
\end_inset

 for each 
\begin_inset Formula $k=0,...,N$
\end_inset

.
 For instance, 
\begin_inset Formula \[
*\mathbf{e}_{1}=\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge...\wedge\mathbf{e}_{N};\quad*(\mathbf{e}_{1}\wedge\mathbf{e}_{2})=\mathbf{e}_{3}\wedge...\wedge\mathbf{e}_{N},\]

\end_inset

 if 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 is 
\emph on
any
\emph default
 positively oriented, orthonormal basis.
\end_layout

\begin_layout Standard
The Hodge star map satisfies
\begin_inset Formula \[
\left\langle \mathbf{a},\mathbf{b}\right\rangle =*(\mathbf{a}\wedge*\mathbf{b})=*(\mathbf{b}\wedge*\mathbf{a}),\quad\mathbf{a},\mathbf{b}\in V.\]

\end_inset


\end_layout

\begin_layout Standard
In a three-dimen\SpecialChar \-
sion\SpecialChar \-
al space, the usual vector product and triple product
 can be expressed through the Hodge star as
\begin_inset Formula \[
\mathbf{a}\times\mathbf{b}=*(\mathcal{\mathbf{a}\wedge\mathbf{b}}),\;\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})=*(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}).\]

\end_inset


\end_layout

\begin_layout Standard
The volume of an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepiped spanned by 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is equal to 
\begin_inset Formula $\sqrt{\det(G_{ij})}$
\end_inset

, where 
\begin_inset Formula $G_{ij}\equiv\left\langle \mathbf{v}_{i},\mathbf{v}_{j}\right\rangle $
\end_inset

 is the matrix of the pairwise scalar products.
\end_layout

\begin_layout Standard
Given a scalar product in 
\begin_inset Formula $V$
\end_inset

, a scalar product is canonically defined also in the spaces 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 for all 
\begin_inset Formula $k=2,...,N$
\end_inset

.
 This scalar product can be defined by 
\begin_inset Formula \[
\left\langle \omega_{1},\omega_{2}\right\rangle =*(\omega_{1}\wedge*\omega_{2})=*(\omega_{2}\wedge*\omega_{1})=\left\langle \omega_{2},\omega_{1}\right\rangle ,\]

\end_inset

where 
\begin_inset Formula $\omega_{1,2}\in\wedge^{k}V$
\end_inset

.
 Alternatively, this scalar product is defined by choosing an orthonormal
 basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and postulating that 
\begin_inset Formula $\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}$
\end_inset

 is normalized and orthogonal to any other such tensor with different indices
 
\begin_inset Formula $\left\{ i_{j}|j=1,...,k\right\} $
\end_inset

.
 The 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al volume of a parallelepiped spanned by vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 is found as 
\begin_inset Formula $\sqrt{\left\langle \psi,\psi\right\rangle }$
\end_inset

 with 
\begin_inset Formula $\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$
\end_inset

.
\end_layout

\begin_layout Standard
The insertion 
\begin_inset Formula $\iota_{\mathbf{v}}\psi$
\end_inset

 of a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 into a 
\begin_inset Formula $k$
\end_inset

-vector 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 (or the 
\begin_inset Quotes eld
\end_inset

interior product
\begin_inset Quotes erd
\end_inset

) can be expressed as
\begin_inset Formula \[
\iota_{\mathbf{v}}\psi=*(\mathbf{v}\wedge*\psi).\]

\end_inset

If 
\begin_inset Formula $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

 is the unit volume tensor, we have 
\begin_inset Formula $\iota_{\mathbf{v}}\omega=*\mathbf{v}$
\end_inset

.
\end_layout

\begin_layout Standard
Symmetric, antisymmetric, Hermitian, and anti-Hermitian operators are always
 diagonalizable (if we allow complex eigenvalues and eigenvectors).
 Eigenvectors of these operators can be chosen orthogonal to each other.
 
\end_layout

\begin_layout Standard
Antisymmetric operators are representable as elements of 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 of the form 
\begin_inset Formula $\sum_{i=1}^{n}\mathbf{a}_{i}\wedge\mathbf{b}_{i}$
\end_inset

, where one needs no more than 
\begin_inset Formula $N/2$
\end_inset

 terms, and the vectors 
\begin_inset Formula $\mathbf{a}_{i}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}_{i}$
\end_inset

 can be chosen mutually orthogonal to each other.
 (For this, we do not need complex vectors.)
\end_layout

\begin_layout Standard
The 
\series bold
Pfaffian
\series default

\begin_inset LatexCommand \index{Pfaffian}

\end_inset

 of an antisymmetric operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in even-dimen\SpecialChar \-
sion\SpecialChar \-
al space is the number 
\begin_inset Formula $\text{Pf}\,\hat{A}$
\end_inset

 defined as 
\begin_inset Formula \[
\frac{1}{(N/2)!}\underbrace{A\wedge...\wedge A}_{N/2}=(\text{Pf}\,\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\]

\end_inset

 where 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 is an orthonormal basis.
 Some basic properties of the Pfaffian are 
\begin_inset Formula \begin{align*}
(\text{Pf }\hat{A})^{2} & =\det\hat{A},\\
\text{Pf }(\hat{B}\hat{A}\hat{B}^{T}) & =(\det\hat{B})(\text{Pf }\hat{A}),\end{align*}

\end_inset

where 
\begin_inset Formula $\hat{A}$
\end_inset

 is an antisymmetric operator (
\begin_inset Formula $\hat{A}^{T}=-\hat{A}$
\end_inset

) and 
\begin_inset Formula $\hat{B}$
\end_inset

 is an arbitrary operator.
\end_layout

\begin_layout Chapter
Linear algebra without coordinates
\end_layout

\begin_layout Section
Vector spaces
\end_layout

\begin_layout Standard
Abstract vector spaces are developed as a generalization of the familiar
 vectors in Euclidean space.
\end_layout

\begin_layout Subsection
Three-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean geometry
\end_layout

\begin_layout Standard
Let us begin with something you already know.
 Three-dimen\SpecialChar \-
sion\SpecialChar \-
al vectors are specified by triples of coordinates, 
\begin_inset Formula $\mathbf{r}\equiv\left(x,y,z\right)$
\end_inset

.
 The operations of 
\series bold
vector sum
\series default
 and 
\series bold
vector product
\series default
 of such vectors are defined by 
\begin_inset Formula \begin{align}
\left(x_{1},y_{1},z_{1}\right)+\left(x_{2},y_{2},z_{2}\right) & \equiv\left(x_{1}+x_{2},y_{1}+y_{2},z_{1}+z_{2}\right);\label{eq:3d sum}\\
\left(x_{1},y_{1},z_{1}\right)\times\left(x_{2},y_{2},z_{2}\right) & \equiv(y_{1}z_{2}-z_{1}y_{2},\, z_{1}x_{2}-x_{1}z_{2},\nonumber \\
 & x_{1}y_{2}-y_{1}x_{2}).\label{eq:3d vector product}\end{align}

\end_inset

(I assume that these definitions are familiar to you.) Vectors can be 
\series bold
rescaled
\series default
 by multiplying them with real numbers, 
\begin_inset Formula \begin{equation}
c\mathbf{r}=c\left(x,y,z\right)\equiv\left(cx,cy,cz\right).\label{eq:3d scalar mult}\end{equation}

\end_inset

A rescaled vector is parallel to the original vector and points either in
 the same or in the opposite direction.
 In addition, a 
\series bold
scalar product
\series default
 of two vectors is defined,
\begin_inset Formula \begin{equation}
\left(x_{1},y_{1},z_{1}\right)\cdot\left(x_{2},y_{2},z_{2}\right)\equiv x_{1}x_{2}+y_{1}y_{2}+z_{1}z_{2}.\label{eq:3d scalar prod}\end{equation}

\end_inset

These operations encapsulate all of Euclidean geometry in a purely algebraic
 language.
 For example, the 
\series bold
length
\series default
 of a vector 
\begin_inset Formula $\mathbf{r}$
\end_inset

 is 
\begin_inset Formula \begin{equation}
\left|\mathbf{r}\right|\equiv\sqrt{\mathbf{r}\cdot\mathbf{r}}=\sqrt{x^{2}+y^{2}+z^{2}},\label{eq:r modulus}\end{equation}

\end_inset

 the 
\series bold
angle
\series default
 
\begin_inset Formula $\alpha$
\end_inset

 between vectors 
\begin_inset Formula $\mathbf{r}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{r}_{2}$
\end_inset

 is found from the relation (the cosine theorem)
\begin_inset Formula \[
\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|\cos\alpha=\mathbf{r}_{1}\cdot\mathbf{r}_{2},\]

\end_inset

while the 
\series bold
area
\series default
 of a triangle spanned by vectors 
\begin_inset Formula $\mathbf{r}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{r}_{2}$
\end_inset

 is
\begin_inset Formula \[
S=\frac{1}{2}\left|\mathbf{r}_{1}\times\mathbf{r}_{2}\right|.\]

\end_inset


\end_layout

\begin_layout Standard
Using these definitions, one can reformulate every geometric statement (such
 as, 
\begin_inset Quotes eld
\end_inset

a triangle having two equal sides has also two equal angles
\begin_inset Quotes erd
\end_inset

) in terms of relations between vectors, which are ultimately reducible
 to algebraic equations involving a set of numbers.
 The replacement of geometric constructions by algebraic relations is useful
 because it allows us to free ourselves from the confines of our three-dimension
al intuition; we are then able to solve problems in higher-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces.
 The price is a greater complication of the algebraic equations and inequalities
 that need to be solved.
 To make these equations more transparent and easier to handle, the theory
 of linear algebra is developed.
 The first step is to realize what features of vectors are essential and
 what are just accidental facts of our familiar three-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean
 space.
\end_layout

\begin_layout Subsection
From three-dimen\SpecialChar \-
sion\SpecialChar \-
al vectors to abstract vectors
\end_layout

\begin_layout Standard
Abstract vector spaces retain the essential properties of the familiar Euclidean
 geometry but generalize it in two ways: First, the dimension of space is
 not 3 but  an arbitrary integer number (or even  infinity); second, the
 coordinates are 
\begin_inset Quotes eld
\end_inset

abstract numbers
\begin_inset Quotes erd
\end_inset

 (see below) instead of real numbers.
 Let us first pass to higher-dimen\SpecialChar \-
sion\SpecialChar \-
al vectors.
 
\end_layout

\begin_layout Standard
Generalizing the notion of a three-dimen\SpecialChar \-
sion\SpecialChar \-
al vector to a higher (still
 finite) dimension is straightforward: instead of triples 
\begin_inset Formula $\left(x,y,z\right)$
\end_inset

 one considers sets of 
\begin_inset Formula $n$
\end_inset

 coordinates 
\begin_inset Formula $\left(x_{1},...,x_{n}\right)$
\end_inset

.
 The definitions of the vector sum\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:3d sum}

\end_inset

), scaling\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:3d scalar mult}

\end_inset

) and scalar product\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:3d scalar prod}

\end_inset

) are straightforwardly generalized to 
\begin_inset Formula $n$
\end_inset

-tuples of coordinates.
 In this way we can describe 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean geometry.
 All theorems of linear algebra are proved in the same way regardless of
 the number of components in vectors, so the generalization to 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces is a natural thing to do.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
The scalar product can be generalized to 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces, 
\begin_inset Formula \[
\left(x_{1},...,x_{n}\right)\cdot\left(y_{1},...,y_{n}\right)\equiv x_{1}y_{1}+...+x_{n}y_{n},\]

\end_inset

but what about the vector product? The formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:3d vector product}

\end_inset

) seems to be complicated, and it is hard to guess what should be written,
 say, in four dimensions.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
It turns out that the vector product\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:3d vector product}

\end_inset

) 
\emph on
cannot
\emph default
 be generalized to arbitrary 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces.
\begin_inset Foot
status collapsed

\begin_layout Standard
A vector product exists only in some cases, e.g.\InsetSpace ~

\begin_inset Formula $n=3$
\end_inset

 and 
\begin_inset Formula $n=7$
\end_inset

.
 This is a theorem of higher algebra which we will not prove here.
\end_layout

\end_inset

 At this point we will not require the vector spaces to have either a vector
 or a scalar product; instead we will concentrate on the basic algebraic
 properties of vectors.
 Later we will see that there is an algebraic construction (the exterior
 product) that replaces the vector product in higher dimensions.
\end_layout

\begin_layout Subsection*
Abstract numbers
\end_layout

\begin_layout Standard
The motivation to replace the real coordinates 
\begin_inset Formula $x$
\end_inset

, 
\begin_inset Formula $y$
\end_inset

, 
\begin_inset Formula $z$
\end_inset

 by complex coordinates, rational coordinates, or by some other, more abstract
 numbers comes from many branches of physics and mathematics.
 In any case, the statements of linear algebra almost never rely on the
 fact that coordinates of vectors are real numbers.
 Only 
\emph on
certain properties
\emph default
 of real numbers are actually used, namely that one can add or multiply
 or divide numbers.
 So one can easily replace real numbers by complex numbers or by some other
 kind of numbers as long as one can add, multiply and divide them as usual.
 (The use of the square root as in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:r modulus}

\end_inset

) can be avoided if one considers only 
\emph on
squared
\emph default
 lengths of vectors.)
\end_layout

\begin_layout Standard
Instead of specifying each time that one works with real numbers or with
 complex numbers, one says that one is working with some 
\begin_inset Quotes eld
\end_inset

abstract numbers
\begin_inset Quotes erd
\end_inset

 that have all the needed properties of numbers.
 The required properties of such 
\begin_inset Quotes eld
\end_inset

abstract numbers
\begin_inset Quotes erd
\end_inset

 are summarized by the axioms of a number field.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
A 
\series bold
number field
\series default
 (also called simply a 
\series bold
field
\series default
) 
\begin_inset LatexCommand \index{number field}

\end_inset

is a set 
\begin_inset Formula $\mathbb{K}$
\end_inset

 which is an abelian group with respect to addition and multiplication,
 such that the distributive law holds.
 More precisely: There exist elements 
\begin_inset Formula $0$
\end_inset

 and 
\begin_inset Formula $1$
\end_inset

, and the operations 
\begin_inset Formula $+$
\end_inset

, 
\begin_inset Formula $-$
\end_inset

, 
\begin_inset Formula $*$
\end_inset

, and 
\begin_inset Formula $/$
\end_inset

 are defined such that 
\begin_inset Formula $a+b=b+a$
\end_inset

, 
\begin_inset Formula $a*b=b*a$
\end_inset

, 
\begin_inset Formula $0+a=a$
\end_inset

, 
\begin_inset Formula $1*a=a$
\end_inset

, 
\begin_inset Formula $0*a=0$
\end_inset

, and for every 
\begin_inset Formula $a\in\mathbb{K}$
\end_inset

 the numbers 
\begin_inset Formula $-a$
\end_inset

 and 
\begin_inset Formula $1/a$
\end_inset

 (for 
\begin_inset Formula $a\neq0$
\end_inset

) exist such that 
\begin_inset Formula $a+(-a)=0$
\end_inset

, 
\begin_inset Formula $a*(1/a)=1$
\end_inset

, and also 
\begin_inset Formula $a*(b+c)=a*b+a*c$
\end_inset

.
 The operations 
\begin_inset Formula $-$
\end_inset

 and 
\begin_inset Formula $/$
\end_inset

 are defined by 
\begin_inset Formula $a-b\equiv a+(-b)$
\end_inset

 and 
\begin_inset Formula $a/b=a*(1/b)$
\end_inset

.
 
\end_layout

\begin_layout Standard
In a more visual language: A field is a set of elements on which the operations
 
\begin_inset Formula $+$
\end_inset

, 
\begin_inset Formula $-$
\end_inset

, 
\begin_inset Formula $*$
\end_inset

, and 
\begin_inset Formula $/$
\end_inset

 are defined, the elements 0 and 1 exist, and the familiar arithmetic properties
 such as 
\begin_inset Formula $a+b=b+a,$
\end_inset

 
\begin_inset Formula $a+0=0$
\end_inset

, 
\begin_inset Formula $a-a=0$
\end_inset

, 
\begin_inset Formula $a*1=1$
\end_inset

, 
\begin_inset Formula $a/b*b=a$
\end_inset

 (for 
\begin_inset Formula $b\neq0$
\end_inset

), etc.\InsetSpace ~
are satisfied.
 Elements of a field can be visualized as 
\begin_inset Quotes eld
\end_inset

abstract numbers
\begin_inset Quotes erd
\end_inset

 because they can be added, subtracted, multiplied, and divided, with the
 usual arithmetic rules.
 (For instance, division by zero is still undefined, even with abstract
 numbers!) I will call elements of a number field simply 
\series bold
numbers
\series default
 when (in my view) it does not cause confusion.
\end_layout

\begin_layout Subsection*
Examples of number fields
\end_layout

\begin_layout Standard
Real numbers 
\begin_inset Formula $\mathbb{R}$
\end_inset

 are a field, as are rational numbers 
\begin_inset Formula $\mathbb{Q}$
\end_inset

 and complex numbers 
\begin_inset Formula $\mathbb{C}$
\end_inset

, with all arithmetic operations defined as usual.
 Integer numbers 
\begin_inset Formula $\mathbb{Z}$
\end_inset

 with the usual arithmetic are 
\emph on
not
\emph default
 a field because e.g.\InsetSpace ~
the division of 
\begin_inset Formula $1$
\end_inset

 by a nonzero number 
\begin_inset Formula $2$
\end_inset

 cannot be an integer.
\end_layout

\begin_layout Standard
Another interesting example is the set of numbers of the form 
\begin_inset Formula $a+b\sqrt{3}$
\end_inset

, where 
\begin_inset Formula $a,b\in\mathbb{Q}$
\end_inset

 are 
\emph on
rational
\emph default
 numbers.
 It is easy to see that sums, products, and ratios of such numbers are again
 numbers from the same set, for example
\begin_inset Formula \begin{align*}
 & (a_{1}+b_{1}\sqrt{3})(a_{2}+b_{2}\sqrt{3})\\
 & =\left(a_{1}a_{2}+3b_{1}b_{2}\right)+\left(a_{1}b_{2}+a_{2}b_{1}\right)\sqrt{3}.\end{align*}

\end_inset

 Let's check the division property:
\begin_inset Formula \[
\frac{1}{a+b\sqrt{3}}=\frac{a-b\sqrt{3}}{a-b\sqrt{3}}\frac{1}{a+b\sqrt{3}}=\frac{a-b\sqrt{3}}{a^{2}-3b^{2}}.\]

\end_inset

Note that 
\begin_inset Formula $\sqrt{3}$
\end_inset

 is irrational, so the denominator 
\begin_inset Formula $a^{2}-3b^{2}$
\end_inset

 is never zero as long as 
\begin_inset Formula $a$
\end_inset

 and 
\begin_inset Formula $b$
\end_inset

 are rational and at least one of 
\begin_inset Formula $a,b$
\end_inset

 is nonzero.
 Therefore, we can divide numbers of the form 
\begin_inset Formula $a+b\sqrt{3}$
\end_inset

 and again get numbers of the same kind.
 It follows that the set 
\begin_inset Formula $\left\{ a+b\sqrt{3}\,|\, a,b\in\mathbb{Q}\right\} $
\end_inset

 is indeed a number field.
 This field is usually denoted by 
\begin_inset Formula $\mathbb{Q}[\sqrt{3}]$
\end_inset

 and called an extension of rational numbers by 
\begin_inset Formula $\sqrt{3}$
\end_inset

.
 Fields of this form are useful in algebraic number theory.
\end_layout

\begin_layout Standard
A field might even consist of a 
\emph on
finite
\emph default
 set of numbers (in which case it is called a 
\series bold
finite field
\series default
).
 For example, the set of three numbers 
\begin_inset Formula $\left\{ 0,1,2\right\} $
\end_inset

 can be made a field if we define the arithmetic operations as
\begin_inset Formula \[
1+2\equiv0,\,2+2\equiv1,\,2*2\equiv1,\,1/2\equiv2,\]

\end_inset

with all other operations as in usual arithmetic.
 This is the field of integers modulo 
\begin_inset Formula $3$
\end_inset

 and is denoted by 
\begin_inset Formula $\mathbb{F}_{3}$
\end_inset

.
 Fields of this form are useful, for instance, in cryptography.
\end_layout

\begin_layout Standard
Any field must contain elements that play the role of the numbers 
\begin_inset Formula $0$
\end_inset

 and 
\begin_inset Formula $1$
\end_inset

; we denote these elements simply by 
\begin_inset Formula $0$
\end_inset

 and 
\begin_inset Formula $1$
\end_inset

.
 Therefore the smallest possible field is the set 
\begin_inset Formula $\left\{ 0,1\right\} $
\end_inset

 with the usual relations 
\begin_inset Formula $0+1=1$
\end_inset

, 
\begin_inset Formula $1\cdot1=1$
\end_inset

 etc.
 This field is denoted by 
\begin_inset Formula $\mathbb{F}_{2}$
\end_inset

.
 
\end_layout

\begin_layout Standard
Most of the time we will not need to specify the number field; it is all
 right to imagine that we always use 
\begin_inset Formula $\mathbb{R}$
\end_inset

 or 
\begin_inset Formula $\mathbb{C}$
\end_inset

 as the field.
 (See Appendix\InsetSpace ~

\begin_inset LatexCommand \ref{sec:Complex-numbers}

\end_inset

 for a brief introduction to complex numbers.)
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Which of the following sets are number fields: 
\end_layout

\begin_layout Standard
a) 
\begin_inset Formula $\left\{ x+\text{i}y\sqrt{2}\,|\, x,y\in\mathbb{Q}\right\} $
\end_inset

, where 
\begin_inset Formula $\text{i}$
\end_inset

 is the imaginary unit.
\end_layout

\begin_layout Standard
b) 
\begin_inset Formula $\left\{ x+y\sqrt{2}\,|\, x,y\in\mathbb{Z}\right\} $
\end_inset

.
\end_layout

\begin_layout Subsection*
Abstract vector spaces
\end_layout

\begin_layout Standard
After a generalization of the three-dimen\SpecialChar \-
sion\SpecialChar \-
al vector geometry to 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces and real numbers 
\begin_inset Formula $\mathbb{R}$
\end_inset

 to abstract number fields, we arrive at the following definition of a vector
 space.
\end_layout

\begin_layout Paragraph
Definition V1:
\end_layout

\begin_layout Standard
An 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space over a field 
\begin_inset Formula $\mathbb{K}$
\end_inset

 is the set of all 
\begin_inset Formula $n$
\end_inset

-tuples 
\begin_inset Formula $\left(x_{1},...,x_{n}\right)$
\end_inset

, where 
\begin_inset Formula $x_{i}\in\mathbb{K}$
\end_inset

; the numbers 
\begin_inset Formula $x_{i}$
\end_inset

 are called 
\series bold
components
\series default
 of the vector
\begin_inset LatexCommand \index{components of a vector}

\end_inset

 (in older books they were called 
\series bold
coordinates
\series default
).
 The operations of vector sum and the scaling of vectors by numbers are
 given by the formulas
\begin_inset Formula \begin{align*}
\left(x_{1},...,x_{n}\right)+\left(y_{1},...,y_{n}\right) & \equiv\left(x_{1}+y_{1},...,x_{n}+y_{n}\right),\; x_{i},y_{i}\in\mathbb{K};\\
\lambda\left(x_{1},...,x_{n}\right) & \equiv\left(\lambda x_{1},...,\lambda x_{n}\right),\;\lambda\in\mathbb{K}.\end{align*}

\end_inset

This vector space is denoted by 
\begin_inset Formula $\mathbb{K}^{n}$
\end_inset

.
 
\end_layout

\begin_layout Standard
Most problems in physics involve vector spaces over the field of real numbers
 
\begin_inset Formula $\mathbb{K}=\mathbb{R}$
\end_inset

 or complex numbers 
\begin_inset Formula $\mathbb{K}=\mathbb{C}$
\end_inset

.
 However, most results of basic linear algebra hold for arbitrary number
 fields, and for now we will consider vector spaces over an arbitrary number
 field 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
\end_layout

\begin_layout Standard
Definition V1 is adequate for applications involving 
\emph on
finite
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al vector spaces.
 However, it turns out that further abstraction is necessary when one considers
 infinite-dimen\SpecialChar \-
sional spaces.
 Namely, one needs to do away with coordinates and define the vector space
 by the basic requirements on the vector sum and scaling operations.
\end_layout

\begin_layout Standard
We will adopt the following 
\begin_inset Quotes eld
\end_inset

coordinate-free
\begin_inset Quotes erd
\end_inset

 definition of a vector space.
\end_layout

\begin_layout Paragraph
Definition V2:
\end_layout

\begin_layout Standard
A set 
\begin_inset Formula $V$
\end_inset

 is a 
\series bold
vector space over a number field
\series default
 
\begin_inset Formula $\mathbb{K}$
\end_inset

 if the following conditions are met:
\end_layout

\begin_layout Enumerate
\begin_inset Formula $V$
\end_inset

 is an abelian group; the 
\series bold
sum
\series default
 of two vectors is denoted by the 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $+$
\end_inset


\begin_inset Quotes erd
\end_inset

 sign, the zero element is the vector 
\begin_inset Formula $\mathbf{0}$
\end_inset

.
 So for any 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in V$
\end_inset

 the vector 
\begin_inset Formula $\mathbf{u}+\mathbf{v}\in V$
\end_inset

 exists, 
\begin_inset Formula $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
\end_inset

, and in particular 
\begin_inset Formula $\mathbf{v}+\mathbf{0}=\mathbf{v}$
\end_inset

 for any 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
\end_layout

\begin_layout Enumerate
An operation of 
\series bold
multiplication by numbers
\series default
 is defined, such that for each 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

, 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 the vector 
\begin_inset Formula $\lambda\mathbf{v}\in V$
\end_inset

 is determined.
\end_layout

\begin_layout Enumerate
The following properties hold, for all vectors 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in V$
\end_inset

 and all numbers 
\begin_inset Formula $\lambda,\mu\in\mathbb{K}$
\end_inset

:
\begin_inset Formula \begin{align*}
\left(\lambda+\mu\right)\mathbf{v} & =\lambda\mathbf{v}+\mu\mathbf{v},\quad\lambda\left(\mathbf{v}+\mathbf{u}\right)=\lambda\mathbf{v}+\lambda\mathbf{u},\\
1\mathbf{v} & =\mathbf{v},\quad0\mathbf{v}=\mathbf{0}.\end{align*}

\end_inset

These properties guarantee that the multiplication by numbers is compatible
 with the vector sum, so that usual rules of arithmetic and algebra are
 applicable.
\end_layout

\begin_layout Standard
Below I will not be so pedantic as to write the boldface 
\begin_inset Formula $\mathbf{0}$
\end_inset

 for the zero vector 
\begin_inset Formula $\mathbf{0}\in V$
\end_inset

; denoting the zero vector simply by 
\begin_inset Formula $0$
\end_inset

 never creates confusion in practice.
\end_layout

\begin_layout Standard
Elements of a vector space are called 
\series bold
vectors
\series default
; in contrast, numbers from the field 
\begin_inset Formula $\mathbb{K}$
\end_inset

 are called 
\series bold
scalars
\series default
.
 For clarity, since this is an introductory text, I will print all vectors
 in boldface font so that 
\begin_inset Formula $\mathbf{v}$
\end_inset

, 
\begin_inset Formula $\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{x}$
\end_inset

 are vectors but 
\begin_inset Formula $v,a,x$
\end_inset

 are scalars (i.e.\InsetSpace ~
numbers).
 Sometimes, for additional clarity, one uses Greek letters such as 
\begin_inset Formula $\alpha,\lambda,\mu$
\end_inset

 to denote scalars and Latin letters to denote vectors.
 For example, one writes expressions of the form 
\begin_inset Formula $\lambda_{1}\mathbf{v}_{1}+\lambda_{2}\mathbf{v}_{2}+...+\lambda_{n}\mathbf{v}_{n}$
\end_inset

; these are called 
\series bold
linear combinations
\begin_inset LatexCommand \index{linear combination}

\end_inset


\series default
 of vectors 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

, 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{v}_{n}$
\end_inset

.
 
\end_layout

\begin_layout Standard
The definition V2 is standard in abstract algebra.
 As we will see below, the coordinate-free language is well suited to proving
 theorems about general properties of vectors.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
I do not understand how to work with abstract vectors in abstract vector
 spaces.
 According to the vector space axioms (definition V2), I should be able
 to add vectors together and multiply them by scalars.
 It is clear how to add the 
\begin_inset Formula $n$
\end_inset

-tuples 
\begin_inset Formula $\left(v_{1},...,v_{n}\right)$
\end_inset

, but how can I compute anything with an abstract vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 that does not seem to have any components? 
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Definition V2 is 
\begin_inset Quotes eld
\end_inset

abstract
\begin_inset Quotes erd
\end_inset

 in the sense that it does not explain 
\emph on
how
\emph default
 to add particular kinds of vectors, instead it merely lists the set of
 properties 
\emph on
any
\emph default
 vector space must satisfy.
 To define a 
\emph on
particular
\emph default
 vector space, we of course need to specify a particular set of vectors
 and a rule for adding its elements in an explicit fashion (see examples
 below in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Examples-of-vector}

\end_inset

).
 Definition V2 is used in the following way: Suppose someone claims that
 a certain set 
\begin_inset Formula $X$
\end_inset

 of particular mathematical objects is a vector space over some number field,
 then we only need to check that the sum of vectors and the multiplication
 of vector by a number are well-defined and conform to the properties listed
 in Definition V2.
 If every property holds, then the set 
\begin_inset Formula $X$
\end_inset

 is a vector space, and all the theorems of linear algebra will automatically
 hold for the elements of the set 
\begin_inset Formula $X$
\end_inset

.
 Viewed from this perspective, Definition V1 specifies a 
\emph on
particular
\emph default
 vector space---the space of rows of numbers 
\begin_inset Formula $(v_{1},...,v_{n})$
\end_inset

.
 In some cases the vector space at hand is exactly that of Definition V1,
 and then it is convenient to work with components 
\begin_inset Formula $v_{j}$
\end_inset

 when performing calculations with specific vectors.
 However, components are not needed for proving general theorems.
 In this book, when I say that 
\begin_inset Quotes eld
\end_inset

a vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is given,
\begin_inset Quotes erd
\end_inset

 I imagine that enough concrete information about 
\begin_inset Formula $\mathbf{v}$
\end_inset

 will be available when it is actually needed.
 
\end_layout

\begin_layout Subsection
Examples of vector spaces
\begin_inset LatexCommand \label{sub:Examples-of-vector}

\end_inset


\end_layout

\begin_layout Paragraph
Example 0.
\end_layout

\begin_layout Standard
The familiar example is the three-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean space.
 This space is denoted by 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

 and is the set of all triples 
\begin_inset Formula $\left(x_{1},x_{2},x_{3}\right)$
\end_inset

, where 
\begin_inset Formula $x_{i}$
\end_inset

 are real numbers.
 This is a vector space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Example 1.
\end_layout

\begin_layout Standard
The set of complex numbers 
\begin_inset Formula $\mathbb{C}$
\end_inset

 is a vector space over the field of real numbers 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
 Indeed, complex numbers can be added and multiplied by real numbers.
\end_layout

\begin_layout Paragraph
Example 2.
\end_layout

\begin_layout Standard
Consider the set of all three-dimen\SpecialChar \-
sion\SpecialChar \-
al vectors 
\begin_inset Formula $\mathbf{v}\in\mathbb{R}^{3}$
\end_inset

 which are orthogonal to a given vector 
\begin_inset Formula $\mathbf{a}\neq0$
\end_inset

; here we use the standard scalar product\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:3d scalar prod}

\end_inset

); vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 are called 
\series bold
orthogonal to each other
\series default
 if 
\begin_inset Formula $\mathbf{a}\cdot\mathbf{b}=0$
\end_inset

.
 This set is closed under vector sum and scalar multiplication because if
 
\begin_inset Formula $\mathbf{u}\cdot\mathbf{a}=0$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}\cdot\mathbf{a}=0$
\end_inset

, then for any 
\begin_inset Formula $\lambda\in\mathbb{R}$
\end_inset

 we have 
\begin_inset Formula $\left(\mathbf{u}+\lambda\mathbf{v}\right)\cdot\mathbf{a}=0$
\end_inset

.
 Thus we obtain a vector space (a certain subset of 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

) which is defined not in terms of components but through geometric relations
 between vectors of another (previously defined) space.
\end_layout

\begin_layout Paragraph
Example 3.
\end_layout

\begin_layout Standard
Consider the set of all real-valued continuous functions 
\begin_inset Formula $f\left(x\right)$
\end_inset

 defined for 
\begin_inset Formula $x\in\left[0,1\right]$
\end_inset

 and such that 
\begin_inset Formula $f\left(0\right)=0$
\end_inset

 and 
\begin_inset Formula $f\left(1\right)=0$
\end_inset

.
 This set is a vector space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
 Indeed, the definition of a vector space is satisfied if we define the
 sum of two functions as 
\begin_inset Formula $f\left(x\right)+f\left(y\right)$
\end_inset

 and the multiplication by scalars, 
\begin_inset Formula $\lambda f\left(x\right)$
\end_inset

, in the natural way.
 It is easy to see that the axioms of the vector space are satisfied: If
 
\begin_inset Formula $h\left(x\right)=f\left(x\right)+\lambda g\left(x\right)$
\end_inset

, where 
\begin_inset Formula $f\left(x\right)$
\end_inset

 and 
\begin_inset Formula $g\left(x\right)$
\end_inset

 are vectors from this space, then the function 
\begin_inset Formula $h\left(x\right)$
\end_inset

 is continuous on 
\begin_inset Formula $\left[0,1\right]$
\end_inset

 and satisfies 
\begin_inset Formula $h\left(0\right)=h\left(1\right)=0$
\end_inset

, i.e.\InsetSpace ~
the function 
\begin_inset Formula $h\left(x\right)$
\end_inset

 is also an element of the same space.
 
\end_layout

\begin_layout Paragraph
Example 4.
\end_layout

\begin_layout Standard
To represent the fact that there are 
\begin_inset Formula $\lambda_{1}$
\end_inset

 gallons of water and 
\begin_inset Formula $\lambda_{2}$
\end_inset

 gallons of oil, we may write the expression 
\begin_inset Formula $\lambda_{1}\mathbf{X}+\lambda_{2}\mathbf{Y}$
\end_inset

, where 
\begin_inset Formula $\mathbf{X}$
\end_inset

 and 
\begin_inset Formula $\mathbf{Y}$
\end_inset

 are formal symbols and 
\begin_inset Formula $\lambda_{1,2}$
\end_inset

 are numbers.
 The set of all such expressions is a vector space.
 This space is called the space of 
\series bold
formal linear combinations
\series default

\begin_inset LatexCommand \index{formal linear combination}

\end_inset

 of the symbols 
\begin_inset Formula $\mathbf{X}$
\end_inset

 and 
\begin_inset Formula $\mathbf{Y}$
\end_inset

.
 The operations of sum and scalar multiplication are defined in the natural
 way, so that we can perform calculations such as
\begin_inset Formula \[
\frac{1}{2}\left(2\mathbf{X}+3\mathbf{Y}\right)-\frac{1}{2}\left(2\mathbf{X}-3\mathbf{Y}\right)=3\mathbf{Y}.\]

\end_inset

For the purpose of manipulating such expressions, it is unimportant that
 
\begin_inset Formula $\mathbf{X}$
\end_inset

 and 
\begin_inset Formula $\mathbf{Y}$
\end_inset

 stand for water and oil.
 We may simply work with formal expressions such as 
\begin_inset Formula $2\mathbf{X}+3\mathbf{Y}$
\end_inset

, where 
\begin_inset Formula $\mathbf{X}$
\end_inset

 and 
\begin_inset Formula $\mathbf{Y}$
\end_inset

 and 
\begin_inset Quotes eld
\end_inset

+
\begin_inset Quotes erd
\end_inset

 are symbols that do not mean anything by themselves except that they can
 appear in such linear combinations and have familiar properties of algebraic
 objects (the operation 
\begin_inset Quotes eld
\end_inset

+
\begin_inset Quotes erd
\end_inset

 is commutative and associative, etc.).
 Such formal constructions are often encountered in mathematics.
 
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
It seems that such 
\begin_inset Quotes eld
\end_inset

formal
\begin_inset Quotes erd
\end_inset

 constructions are absurd and/or useless.
 I know how to add numbers or vectors, but how can I add 
\begin_inset Formula $\mathbf{X}+\mathbf{Y}$
\end_inset

 if 
\begin_inset Formula $\mathbf{X}$
\end_inset

 and 
\begin_inset Formula $\mathbf{Y}$
\end_inset

 are, as you say, 
\begin_inset Quotes eld
\end_inset

meaningless symbols
\begin_inset Quotes erd
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Usually when we write 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $a+b$
\end_inset


\begin_inset Quotes erd
\end_inset

 we imply that the operation 
\begin_inset Quotes eld
\end_inset

+
\begin_inset Quotes erd
\end_inset

 is already defined, so 
\begin_inset Formula $a+b$
\end_inset

 is another number if 
\begin_inset Formula $a$
\end_inset

 and 
\begin_inset Formula $b$
\end_inset

 are numbers.
 However, in the case of formal expressions described in Example\InsetSpace ~
4, the 
\begin_inset Quotes eld
\end_inset

+
\begin_inset Quotes erd
\end_inset

 sign is actually going to acquire a 
\emph on
new
\emph default
 definition.
 So 
\begin_inset Formula $\mathbf{X}+\mathbf{Y}$
\end_inset

 is not equal to a new symbol 
\begin_inset Formula $\mathbf{Z}$
\end_inset

, instead 
\begin_inset Formula $\mathbf{X}+\mathbf{Y}$
\end_inset

 is just 
\emph on
an expression
\emph default
 that we can manipulate.
 Consider the analogy with complex numbers: the number 
\begin_inset Formula $1+2\text{i}$
\end_inset

 is an expression that we manipulate, and the imaginary unit, 
\begin_inset Formula $\text{i}$
\end_inset

, is a symbol that is never 
\begin_inset Quotes eld
\end_inset

equal to something else.
\begin_inset Quotes erd
\end_inset

 According to its definition, the expression 
\begin_inset Formula $\mathbf{X}+\mathbf{Y}$
\end_inset

 cannot be simplified to anything else, just like 
\begin_inset Formula $1+2\text{i}$
\end_inset

 cannot be simplified.
 The symbols 
\begin_inset Formula $\mathbf{X}$
\end_inset

, 
\begin_inset Formula $\mathbf{Y}$
\end_inset

, 
\begin_inset Formula $\text{i}$
\end_inset

 are 
\emph on
not
\emph default
 meaningless: their meaning comes 
\emph on
from
\emph default
 
\emph on
the
\emph default
 
\emph on
rules
\emph default
 
\emph on
of
\emph default
 
\emph on
computations
\emph default
 with these symbols.
\end_layout

\begin_layout Standard
Maybe it helps to change notation.
 Let us begin by writing a pair 
\begin_inset Formula $\left(a,b\right)$
\end_inset

 instead of 
\begin_inset Formula $a\mathbf{X}+b\mathbf{Y}$
\end_inset

.
 We can define the sum of such pairs in the natural way, e.g.
\begin_inset Formula \[
\left(2,3\right)+\left(-2,1\right)=\left(0,4\right).\]

\end_inset

It is clear that these pairs build a vector space.
 Now, to remind ourselves that the numbers of the pair stand for, say, quantitie
s of water and oil, we write 
\begin_inset Formula $\left(2\mathbf{X},3\mathbf{Y}\right)$
\end_inset

 instead of 
\begin_inset Formula $\left(2,3\right)$
\end_inset

.
 The symbols 
\begin_inset Formula $\mathbf{X}$
\end_inset

 and 
\begin_inset Formula $\mathbf{Y}$
\end_inset

 are merely part of the notation.
 Now it is natural to change the notation further and to write simply 
\begin_inset Formula $2\mathbf{X}$
\end_inset

 instead of 
\begin_inset Formula $\left(2\mathbf{X},0\mathbf{Y}\right)$
\end_inset

 and 
\begin_inset Formula $a\mathbf{X}+b\mathbf{Y}$
\end_inset

 instead of 
\begin_inset Formula $\left(a\mathbf{X},b\mathbf{Y}\right)$
\end_inset

.
 It is clear that we do not introduce anything new when we write 
\begin_inset Formula $a\mathbf{X}+b\mathbf{Y}$
\end_inset

 instead of 
\begin_inset Formula $\left(a\mathbf{X},b\mathbf{Y}\right)$
\end_inset

: We merely change the notation so that computations appear easier.
 Similarly, complex numbers can be understood as pairs of real numbers,
 such as 
\begin_inset Formula $\left(3,2\right)$
\end_inset

, for which 
\begin_inset Formula $3+2\text{i}$
\end_inset

 is merely a more convenient notation that helps remember the rules of computati
on.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Example 5.
\end_layout

\begin_layout Standard
The set of all polynomials of degree at most 
\begin_inset Formula $n$
\end_inset

 in the variable 
\begin_inset Formula $x$
\end_inset

 with complex coefficients is a vector space over 
\begin_inset Formula $\mathbb{C}$
\end_inset

.
 Such polynomials are expressions of the form 
\begin_inset Formula $p\left(x\right)=p_{0}+p_{1}x+...+p_{n}x^{n}$
\end_inset

, where 
\begin_inset Formula $x$
\end_inset

 is a 
\series bold
formal
\series default
 
\series bold
variable
\series default
 (i.e.\InsetSpace ~
no value is assigned to 
\begin_inset Formula $x$
\end_inset

), 
\begin_inset Formula $n$
\end_inset

 is an integer, and 
\begin_inset Formula $p_{i}$
\end_inset

 are complex numbers.
 
\end_layout

\begin_layout Paragraph
Example 6.
\end_layout

\begin_layout Standard
Consider now the set of all polynomials in the variables 
\begin_inset Formula $x$
\end_inset

, 
\begin_inset Formula $y$
\end_inset

, and 
\begin_inset Formula $z$
\end_inset

, with complex coefficients, and such that the combined degree in 
\begin_inset Formula $x$
\end_inset

, in 
\begin_inset Formula $y$
\end_inset

, and in 
\begin_inset Formula $z$
\end_inset

 is at most 
\begin_inset Formula $2$
\end_inset

.
 For instance, the polynomial 
\begin_inset Formula $1+2\text{i}x-yz-\sqrt{3}x^{2}$
\end_inset

 is an element of that vector space (while 
\begin_inset Formula $x^{2}y$
\end_inset

 is not because its combined degree is 
\begin_inset Formula $3$
\end_inset

).
 It is clear that the degree will never increase above 
\begin_inset Formula $2$
\end_inset

 when any two such polynomials are added together, so these polynomials
 indeed form a vector space over the field 
\begin_inset Formula $\mathbb{C}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise.
\end_layout

\begin_layout Standard
Which of the following are vector spaces over 
\begin_inset Formula $\mathbb{R}$
\end_inset

? 
\end_layout

\begin_layout Enumerate
The set of all complex numbers 
\begin_inset Formula $z$
\end_inset

 whose real part is equal to 0.
 The complex numbers are added and multiplied by real constants as usual.
\end_layout

\begin_layout Enumerate
The set of all complex numbers 
\begin_inset Formula $z$
\end_inset

 whose imaginary part is equal to 3.
 The complex numbers are added and multiplied by real constants as usual.
\end_layout

\begin_layout Enumerate
The set of pairs of the form 
\begin_inset Formula $\left(\textrm{apples},\$3.1415926\right)$
\end_inset

, where the first element is always the word 
\begin_inset Quotes eld
\end_inset

apples
\begin_inset Quotes erd
\end_inset

 and the second element is a price in dollars (the price may be an arbitrary
 real number, not necessarily positive or with an integer number of cents).
 Addition and multiplication by real constants is defined as follows:
\begin_inset Formula \begin{align*}
\left(\textrm{apples},\$ x\right)+\left(\textrm{apples},\$ y\right) & \equiv\left(\textrm{apples},\$(x+y)\right)\\
\lambda\cdot\left(\textrm{apples},\$ x\right) & \equiv\left(\textrm{apples},\$(\lambda\cdot x)\right)\end{align*}

\end_inset


\end_layout

\begin_layout Enumerate
The set of pairs of the form either 
\begin_inset Formula $\left(\textrm{apples},\$ x\right)$
\end_inset

 or 
\begin_inset Formula $\left(\textrm{chocolate},\$ y\right)$
\end_inset

, where 
\begin_inset Formula $x$
\end_inset

 and 
\begin_inset Formula $y$
\end_inset

 are real numbers.
 The pairs are added as follows,
\begin_inset Formula \begin{align*}
\left(\textrm{apples},\$ x\right)+\left(\textrm{apples},\$ y\right) & \equiv\left(\textrm{apples},\$(x+y)\right)\\
\left(\textrm{chocolate},\$ x\right)+\left(\textrm{chocolate},\$ y\right) & \equiv\left(\textrm{chocolate},\$(x+y)\right)\\
\left(\textrm{chocolate},\$ x\right)+\left(\textrm{apples},\$ y\right) & \equiv\left(\textrm{chocolate},\$(x+y)\right)\end{align*}

\end_inset

(that is, chocolate 
\begin_inset Quotes eld
\end_inset

takes precedence
\begin_inset Quotes erd
\end_inset

 over apples).
 The multiplication by a number is defined as in the previous question.
\end_layout

\begin_layout Enumerate
The set of 
\begin_inset Quotes eld
\end_inset

bracketed complex numbers,
\begin_inset Quotes erd
\end_inset

 denoted 
\begin_inset Formula $\left[z\right]$
\end_inset

, where 
\begin_inset Formula $z$
\end_inset

 is a complex number such that 
\begin_inset Formula $\left|z\right|=1$
\end_inset

.
 For example: 
\begin_inset Formula $\left[\text{i}\right]$
\end_inset

, 
\begin_inset Formula $\left[\frac{1}{2}-\frac{1}{2}\text{i}\sqrt{3}\right]$
\end_inset

, 
\begin_inset Formula $\left[-1\right]$
\end_inset

.
 Addition and multiplication by real constants 
\begin_inset Formula $\lambda$
\end_inset

 are defined as follows,
\begin_inset Formula \[
\left[z_{1}\right]+\left[z_{2}\right]=\left[z_{1}z_{2}\right],\quad\lambda\cdot\left[z\right]=\left[ze^{\text{i}\lambda}\right].\]

\end_inset


\end_layout

\begin_layout Enumerate
The set of infinite arrays 
\begin_inset Formula $\left(a_{1},a_{2},...\right)$
\end_inset

 of arbitrary real numbers.
 Addition and multiplication are defined term-by-term.
\end_layout

\begin_layout Enumerate
The set of polynomials in the variable 
\begin_inset Formula $x$
\end_inset

 with real coefficients and of arbitrary (but finite) degree.
 Addition and multiplication is defined as usual in algebra.
\end_layout

\begin_layout Paragraph
Question: 
\end_layout

\begin_layout Standard
All these abstract definitions notwithstanding, would it be all right if
 I always keep in the back of my mind that a vector 
\series bold

\begin_inset Formula $\mathbf{v}$
\end_inset


\series default
 is a row of components 
\begin_inset Formula $(v_{1},...,v_{n})$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
It will be perfectly all right 
\emph on
as long as
\emph default
 you work with 
\emph on
finite
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al vector spaces.
 (This intuition often fails when working with infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces!)
 Even if all we need is finite-dimen\SpecialChar \-
sion\SpecialChar \-
al vectors, there is another argument
 in favor of the coordinate-free thinking.
 Suppose I persist in visualizing vectors as rows 
\begin_inset Formula $\left(v_{1},...,v_{n}\right)$
\end_inset

; let us see what happens.
 First, I introduce the vector notation and write 
\begin_inset Formula $\mathbf{u}+\mathbf{v}$
\end_inset

 instead of 
\begin_inset Formula $\left(u_{1}+v_{1},...,u_{n}+v_{n}\right)$
\end_inset

; this is just for convenience and to save time.
 Then I check the axioms of the vector space (see the definition V2 above);
 row vectors of course obey these axioms.
 Suppose I somehow manage to produce all proofs and calculations using only
 the vector notation and the axioms of the abstract vector space, and suppose
 I never use the coordinates 
\begin_inset Formula $v_{j}$
\end_inset

 explicitly, even though I keep them in the back of my mind.
 Then all my results will be valid not only for collections of components
 
\begin_inset Formula $(v_{1},...,v_{n})$
\end_inset

 but also for 
\emph on
any
\emph default
 mathematical objects that obey the axioms of the abstract vector space.
 In fact I would then realize that I have been working with abstract vectors
 
\emph on
all
\emph default
 
\emph on
along
\emph default
 while carrying the image of a row vector 
\begin_inset Formula $(v_{1},...,v_{n})$
\end_inset

 in the back of my mind.
\end_layout

\begin_layout Subsection
Dimen\SpecialChar \-
sion\SpecialChar \-
ality and bases 
\begin_inset LatexCommand \label{sub:Dimension-of-V}

\end_inset


\end_layout

\begin_layout Standard
Unlike the definition V1, the definition V2 does not include any information
 about the dimen\SpecialChar \-
sion\SpecialChar \-
ality of the vector space.
 So, on the one hand, this definition treats finite- and infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al
 spaces on the same footing; the definition V2 lets us establish that a
 certain set is a vector space without knowing its dimen\SpecialChar \-
sion\SpecialChar \-
ality in advance.
 On the other hand, once a particular vector space is given, we may need
 some additional work to figure out the number of dimensions in it.
 The key notion used for that purpose is 
\begin_inset Quotes eld
\end_inset

linear independence.
\begin_inset Quotes erd
\end_inset

 
\end_layout

\begin_layout Standard
We say, for example, the vector 
\begin_inset Formula $\mathbf{w}\equiv2\mathbf{u}-3\mathbf{v}$
\end_inset

 is 
\begin_inset Quotes eld
\end_inset

linearly dependent
\begin_inset Quotes erd
\end_inset

 on 
\begin_inset Formula $\mathbf{u}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 A vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is linearly independent of vectors 
\begin_inset Formula $\mathbf{u}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}$
\end_inset

 if 
\begin_inset Formula $\mathbf{x}$
\end_inset

 
\emph on
cannot
\emph default
 be expressed as a linear combination 
\begin_inset Formula $\lambda_{1}\mathbf{u}+\lambda_{2}\mathbf{v}$
\end_inset

.
\end_layout

\begin_layout Standard
A set of vectors is 
\series bold
linearly dependent
\series default
 if one of the vectors is a linear combination of others.
 This property can be formulated more elegantly:
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
The set of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is a 
\series bold
linearly dependent
\series default
 
\series bold
set
\series default
 if there exist numbers 
\begin_inset Formula $\lambda_{1}$
\end_inset

, ..., 
\begin_inset Formula $\lambda_{n}\in\mathbb{K}$
\end_inset

, not all equal to zero, such that
\begin_inset Formula \begin{equation}
\lambda_{1}\mathbf{v}_{1}+...+\lambda_{n}\mathbf{v}_{n}=0.\label{eq:linear dependence}\end{equation}

\end_inset

If no such numbers exist, i.e.\InsetSpace ~
if Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:linear dependence}

\end_inset

) holds only with all 
\begin_inset Formula $\lambda_{i}=0$
\end_inset

, the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

 constitute a 
\series bold
linearly independent
\series default
 
\series bold
set
\series default
.
\begin_inset LatexCommand \index{linearly (in)dependent set}

\end_inset


\end_layout

\begin_layout Subparagraph
Interpretation:
\end_layout

\begin_layout Standard
As a first example, consider the set 
\begin_inset Formula $\left\{ \mathbf{v}\right\} $
\end_inset

 consisting of a single nonzero vector 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

.
 The set 
\begin_inset Formula $\left\{ \mathbf{v}\right\} $
\end_inset

 is a linearly independent set because 
\begin_inset Formula $\lambda\mathbf{v}=0$
\end_inset

 only if 
\begin_inset Formula $\lambda=0$
\end_inset

.
 Now consider the set 
\begin_inset Formula $\left\{ \mathbf{u},\mathbf{v},\mathbf{w}\right\} $
\end_inset

, where 
\begin_inset Formula $\mathbf{u}=2\mathbf{v}$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}$
\end_inset

 is any vector.
 This set is linearly dependent because there exists a nontrivial linear
 combination (i.e.\InsetSpace ~
a linear combination with 
\emph on
some
\emph default
 nonzero coefficients) which is equal to zero, 
\begin_inset Formula \[
\mathbf{u}-2\mathbf{v}=1\mathbf{u}+\left(-2\right)\mathbf{v}+0\mathbf{w}=0.\]

\end_inset

More generally: If a set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is linearly dependent, then there exists at least one vector equal to a
 linear combination of other vectors.
 Indeed, by definition there must be at least one nonzero number among the
 numbers 
\begin_inset Formula $\lambda_{i}$
\end_inset

 involved in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:linear dependence}

\end_inset

); suppose 
\begin_inset Formula $\lambda_{1}\neq0$
\end_inset

, then we can divide Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:linear dependence}

\end_inset

) by 
\begin_inset Formula $\lambda_{1}$
\end_inset

 and express 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 through other vectors, 
\begin_inset Formula \[
\mathbf{v}_{1}=-\frac{1}{\lambda_{1}}\left(\lambda_{2}\mathbf{v}_{2}+...+\lambda_{n}\mathbf{v}_{n}\right).\]

\end_inset

In other words, the existence of numbers 
\begin_inset Formula $\lambda_{i}$
\end_inset

, not all equal to zero, is indeed the formal statement of the idea that
 at least some vector in the set 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

 is a linear combination of other vectors.
 By writing a linear combination 
\begin_inset Formula $\sum_{i}\lambda_{i}\mathbf{v}_{i}=0$
\end_inset

 and by saying that 
\begin_inset Quotes eld
\end_inset

not all 
\begin_inset Formula $\lambda_{i}$
\end_inset

 are zero
\begin_inset Quotes erd
\end_inset

 we avoid specifying 
\emph on
which
\emph default
 vector is equal to a linear combination of others.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Often instead of saying 
\begin_inset Quotes eld
\end_inset

a linearly independent 
\emph on
set
\emph default
 of vectors
\begin_inset Quotes erd
\end_inset

 one says 
\begin_inset Quotes eld
\end_inset

a set of linearly independent 
\emph on
vectors
\emph default
.
\begin_inset Quotes erd
\end_inset

 This is intended to mean the same thing but might be confusing because,
 taken literally, the phrase 
\begin_inset Quotes eld
\end_inset

a set of independent vectors
\begin_inset Quotes erd
\end_inset

 means a set in which each vector is 
\begin_inset Quotes eld
\end_inset

independent
\begin_inset Quotes erd
\end_inset

 by itself.
 Keep in mind that linear independence is a property of a 
\emph on
set
\emph default
 
\emph on
of vectors
\emph default
; this property depends on the relationships between all the vectors in
 the set and is not a property of each vector taken separately.
 It would be more consistent to say e.g.\InsetSpace ~

\begin_inset Quotes eld
\end_inset

a set of 
\emph on
mutually
\emph default
 independent vectors.
\begin_inset Quotes erd
\end_inset

 In this text, I will pedantically stick to the phrase 
\begin_inset Quotes eld
\end_inset

linearly independent set.
\begin_inset Quotes erd
\end_inset

 
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
Consider the vectors 
\begin_inset Formula $\mathbf{a}=\left(0,1\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{b}=\left(1,1\right)$
\end_inset

 in 
\begin_inset Formula $\mathbb{R}^{2}$
\end_inset

.
 Is the set 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{b}\right\} $
\end_inset

 linearly independent? Suppose there exists a linear combination 
\begin_inset Formula $\alpha\mathbf{a}+\beta\mathbf{b}=0$
\end_inset

 with at least one of 
\begin_inset Formula $\alpha,\beta\neq0$
\end_inset

.
 Then we would have
\begin_inset Formula \[
\alpha\mathbf{a}+\beta\mathbf{b}=\left(0,\alpha\right)+\left(\beta,\beta\right)=\left(\beta,\alpha+\beta\right){\lyxbuildrel!\above=}\,0.\]

\end_inset

This is possible only if 
\begin_inset Formula $\beta=0$
\end_inset

 and 
\begin_inset Formula $\alpha=0$
\end_inset

.
 Therefore, 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{b}\right\} $
\end_inset

 is linearly independent.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
a) A set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is linearly independent.
 Prove that any subset, say 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

, where 
\begin_inset Formula $k<n$
\end_inset

, is also a linearly independent set.
\end_layout

\begin_layout Standard
b) Decide whether the given sets 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{b}\right\} $
\end_inset

 or 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{b},\mathbf{c}\right\} $
\end_inset

 are linearly independent sets of vectors from 
\begin_inset Formula $\mathbb{R}^{2}$
\end_inset

 or other spaces as indicated.
 For linearly dependent sets, find a linear combination showing this.
 
\end_layout

\begin_layout Enumerate
\begin_inset Formula $\mathbf{a}=\left(2,\sqrt{2}\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{b}=(\frac{1}{\sqrt{2}},\frac{1}{2})$
\end_inset

 in 
\begin_inset Formula $\mathbb{R}^{2}$
\end_inset


\end_layout

\begin_layout Enumerate
\begin_inset Formula $\mathbf{a}=\left(-2,3\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{b}=(6,-9)$
\end_inset

 in 
\begin_inset Formula $\mathbb{R}^{2}$
\end_inset


\end_layout

\begin_layout Enumerate
\begin_inset Formula $\mathbf{a}=\left(1+2\text{i},10,20\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{b}=\left(1-2\text{i},10,20\right)$
\end_inset

 in 
\begin_inset Formula $\mathbb{C}^{3}$
\end_inset


\end_layout

\begin_layout Enumerate
\begin_inset Formula $\mathbf{a}=\left(0,10\text{i},20\text{i},30\text{i}\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{b}=\left(0,20\text{i},40\text{i},60\text{i}\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{c}=\left(0,30\text{i},60\text{i},90\text{i}\right)$
\end_inset

 in 
\begin_inset Formula $\mathbb{C}^{4}$
\end_inset


\end_layout

\begin_layout Enumerate
\begin_inset Formula $\mathbf{a}=\left(3,1,2\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{b}=\left(1,0,1\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{c}=\left(0,-1,2\right)$
\end_inset

 in 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

 
\end_layout

\begin_layout Standard
The 
\series bold
number of dimensions
\series default
 (or simply the 
\series bold
dimension
\series default
) of a vector space is the maximum possible number of vectors in a linearly
 independent set.
 The formal definition is the following.
 
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
A vector space is 
\begin_inset Formula $n$
\end_inset

-
\series bold
dimen\SpecialChar \-
sion\SpecialChar \-
al
\series default
 if linearly independent sets of 
\begin_inset Formula $n$
\end_inset

 vectors can be found in it, but no linearly independent sets of 
\begin_inset Formula $n+1$
\end_inset

 vectors.
 The dimension of a vector space 
\begin_inset Formula $V$
\end_inset

 is then denoted by 
\begin_inset Formula $\dim V\equiv n$
\end_inset

.
 A vector space is 
\series bold
infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al
\series default
 if linearly independent sets having 
\emph on
arbitrarily
\emph default
 
\emph on
many
\emph default
 vectors can be found in it.
 
\end_layout

\begin_layout Standard
By this definition, in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space there exists 
\emph on
at least one
\emph default
 linearly independent set of 
\begin_inset Formula $n$
\end_inset

 vectors 
\begin_inset Formula $\{\mathbf{e}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{n}\}$
\end_inset

.
 Linearly independent sets containing exactly 
\begin_inset Formula $n=\dim V$
\end_inset

 vectors have useful properties, to which we now turn.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
A 
\series bold
basis
\series default
 in the space 
\begin_inset Formula $V$
\end_inset

 is a linearly independent set of vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

 such that for any vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 there exist numbers 
\begin_inset Formula $v_{k}\in\mathbb{K}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}$
\end_inset

.
 (In other words, every other vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is a linear combination of basis vectors.) The numbers 
\begin_inset Formula $v_{k}$
\end_inset

 are called the 
\series bold
components
\series default

\begin_inset LatexCommand \index{components of a vector}

\end_inset

 (or 
\series bold
coordinates
\series default
) of the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 
\emph on
with respect to
\emph default
 
\emph on
the
\emph default
 
\emph on
basis
\emph default
 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
In the three-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean space 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

, the set of three triples 
\begin_inset Formula $\left(1,0,0\right)$
\end_inset

, 
\begin_inset Formula $\left(0,1,0\right)$
\end_inset

, and 
\begin_inset Formula $\left(0,0,1\right)$
\end_inset

 is a basis because every vector 
\begin_inset Formula $\mathbf{x}=(x,y,z)$
\end_inset

 can be expressed as 
\begin_inset Formula \[
\mathbf{x}=(x,y,z)=x\left(1,0,0\right)+y\left(0,1,0\right)+z\left(0,0,1\right).\]

\end_inset

This basis is called the 
\series bold
standard
\series default

\begin_inset LatexCommand \index{standard basis}

\end_inset

 
\series bold
basis
\series default
.
 Analogously one defines the standard basis in 
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The following statement is standard, and I write out its full proof here
 as an example of an argument based on the abstract definition of vectors.
\end_layout

\begin_layout Paragraph
Theorem:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 If a set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

 is linearly independent and 
\begin_inset Formula $n=\dim V$
\end_inset

, then the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 
\series bold
(2)
\series default
 For a given vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and a given basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

, the coefficients 
\begin_inset Formula $v_{k}$
\end_inset

 involved in the decomposition 
\begin_inset Formula $\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}$
\end_inset

 are uniquely determined.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 By definition of dimension, the set 
\begin_inset Formula $\{\mathbf{v},\mathbf{e}_{1},...,\mathbf{e}_{n}\}$
\end_inset

 must be linearly 
\emph on
dependent
\emph default
.
 By definition of linear dependence, there exist numbers 
\begin_inset Formula $\lambda_{0}$
\end_inset

, ..., 
\begin_inset Formula $\lambda_{n}$
\end_inset

, not all equal to zero, such that
\begin_inset Formula \begin{equation}
\lambda_{0}\mathbf{v}+\lambda_{1}\mathbf{e}_{1}+...+\lambda_{n}\mathbf{e}_{n}=0.\label{eq:v expr}\end{equation}

\end_inset

Now if we had 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

, it would mean that not all numbers in the smaller set 
\begin_inset Formula $\left\{ \lambda_{1},...,\lambda_{n}\right\} $
\end_inset

 are zero; however, in that case Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:v expr}

\end_inset

) would contradict the linear independence of the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

.
 Therefore 
\begin_inset Formula $\lambda_{0}\neq0$
\end_inset

 and Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:v expr}

\end_inset

) shows that the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 can be expressed through the basis, 
\begin_inset Formula $\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}$
\end_inset

 with the coefficients 
\begin_inset Formula $v_{k}\equiv-\lambda_{k}/\lambda_{0}$
\end_inset

.
 
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 To show that the set of coefficients 
\begin_inset Formula $\left\{ v_{k}\right\} $
\end_inset

 is unique, we assume that there are two such sets, 
\begin_inset Formula $\left\{ v_{k}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ v_{k}^{\prime}\right\} $
\end_inset

.
 Then 
\begin_inset Formula \[
0=\mathbf{v}-\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}-\sum_{k=1}^{n}v_{k}^{\prime}\mathbf{e}_{k}=\sum_{k=1}^{n}\left(v_{k}-v_{k}^{\prime}\right)\mathbf{e}_{k}.\]

\end_inset

Since the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

 is linearly independent, all coefficients in this linear combination must
 vanish, so 
\begin_inset Formula $v_{k}=v_{k}^{\prime}$
\end_inset

 for all 
\begin_inset Formula $k$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
If we fix a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 in a finite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space 
\begin_inset Formula $V$
\end_inset

 then all vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 are uniquely represented by 
\begin_inset Formula $n$
\end_inset

-tuples 
\begin_inset Formula $\left\{ v_{1},...,v_{n}\right\} $
\end_inset

 of their components.
 Thus we recover the original picture of a vector space as a set of 
\begin_inset Formula $n$
\end_inset

-tuples of numbers.
 (Below we will prove that 
\emph on
every
\emph default
 basis in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space has the same number of vectors, namely 
\begin_inset Formula $n$
\end_inset

.) Now, if we choose another basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}^{\prime}\right\} $
\end_inset

, the same vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 will have different components 
\begin_inset Formula $v_{k}^{\prime}$
\end_inset

:
\begin_inset Formula \[
\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}=\sum_{k=1}^{n}v_{k}^{\prime}\mathbf{e}_{k}^{\prime}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Remark: 
\end_layout

\begin_layout Standard
One sometimes reads that 
\begin_inset Quotes eld
\end_inset

the components are transformed
\begin_inset Quotes erd
\end_inset

 or that 
\begin_inset Quotes eld
\end_inset

vectors are sets of numbers that transform under a change of basis.
\begin_inset Quotes erd
\end_inset

 I do not use this language because it suggests that the components 
\begin_inset Formula $v_{k}$
\end_inset

, which are numbers such as 
\begin_inset Formula $\frac{1}{3}$
\end_inset

 or 
\begin_inset Formula $\sqrt{2}$
\end_inset

, are somehow not simply numbers but 
\begin_inset Quotes eld
\end_inset

know how to transform.
\begin_inset Quotes erd
\end_inset

 I prefer to say that the components 
\begin_inset Formula $v_{k}$
\end_inset

 of a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 in a particular basis 
\begin_inset Formula $\left\{ \mathbf{e}_{k}\right\} $
\end_inset

 express the relationship of 
\begin_inset Formula $\mathbf{v}$
\end_inset

 to that basis and are therefore functions of the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 and of 
\emph on
all
\emph default
 basis vectors 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
For many purposes it is better to think about a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 not as a set of its components 
\begin_inset Formula $\left\{ v_{1},...,v_{n}\right\} $
\end_inset

 in some basis, but as a geometric object; a 
\begin_inset Quotes eld
\end_inset

directed magnitude
\begin_inset Quotes erd
\end_inset

 is a useful heuristic idea.
 Geometric objects exist in the vector space independently of a choice of
 basis.
 In linear algebra, one is typically interested in problems involving relations
 between vectors, for example 
\begin_inset Formula $\mathbf{u}=a\mathbf{v}+b\mathbf{w}$
\end_inset

, where 
\begin_inset Formula $a,b\in\mathbb{K}$
\end_inset

 are numbers.
 No choice of basis is necessary to describe such relations between vectors;
 I will call such relations 
\series bold
coordinate-free
\series default

\begin_inset LatexCommand \index{coordinate-free approach}

\end_inset

 or 
\series bold
geometric
\series default

\begin_inset LatexCommand \index{geometric relation}

\end_inset

.
 As I will demonstrate later in this text, many statements of linear algebra
 are more transparent and easier to prove in the coordinate-free language.
 Of course, in many practical applications one absolutely needs to perform
 specific calculations with components in an appropriately chosen basis,
 and facility with such calculations is important.
 But I find it helpful to keep a coordinate-free (geometric) picture in
 the back of my mind even when I am doing calculations in coordinates.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
I am not sure how to determine the number of dimensions in a vector space.
 According to the definition, I should figure out whether there exist certain
 linearly independent sets of vectors.
 But surely it is impossible to go over all sets of 
\begin_inset Formula $n$
\end_inset

 vectors checking the linear independence of each set?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Of course it is impossible when there are infinitely many vectors.
 This is simply not the way to go.
 We can determine the dimen\SpecialChar \-
sion\SpecialChar \-
ality of a given vector space by 
\emph on
proving
\emph default
 that the space has a basis consisting of a certain number of vectors.
 A particular vector space must be specified in concrete terms (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Examples-of-vector}

\end_inset

 for examples), and in each case we should manage to find a general proof
 that covers all sets of 
\begin_inset Formula $n$
\end_inset

 vectors at once.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
For each vector space in the examples in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Examples-of-vector}

\end_inset

, find the dimension or show that the dimension is infinite.
\end_layout

\begin_layout Subparagraph
Solution for Example\InsetSpace ~
1:
\end_layout

\begin_layout Standard
The set 
\begin_inset Formula $\mathbb{C}$
\end_inset

 of complex numbers is a two-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

 because every complex number 
\begin_inset Formula $a+\text{i}b$
\end_inset

 can be represented as a linear combination of 
\emph on
two
\emph default
 basis vectors (
\begin_inset Formula $1$
\end_inset

 and 
\begin_inset Formula $\text{i}$
\end_inset

) with real coefficients 
\begin_inset Formula $a,b$
\end_inset

.
 The set 
\begin_inset Formula $\left\{ 1,\text{i}\right\} $
\end_inset

 is linearly independent because 
\begin_inset Formula $a+\text{i}b=0$
\end_inset

 only when both 
\begin_inset Formula $a=b=0$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Solution for Example\InsetSpace ~
2:
\end_layout

\begin_layout Standard
The space 
\begin_inset Formula $V$
\end_inset

 is defined as the set of triples 
\begin_inset Formula $\left(x,y,z\right)$
\end_inset

 such that 
\begin_inset Formula $ax+by+cz=0$
\end_inset

, where at least one of 
\begin_inset Formula $a,b,c$
\end_inset

 is nonzero.
 Suppose, without loss of generality, that 
\begin_inset Formula $a\neq0$
\end_inset

; then we can express 
\begin_inset Formula \[
x=-\frac{b}{a}y-\frac{c}{a}z.\]

\end_inset

Now the two parameters 
\begin_inset Formula $y$
\end_inset

 and 
\begin_inset Formula $z$
\end_inset

 are arbitrary while 
\begin_inset Formula $x$
\end_inset

 is determined.
 Hence it appears plausible that the space 
\begin_inset Formula $V$
\end_inset

 is 
\emph on
two
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al.
 Let us prove this formally.
 Choose as the possible basis vectors 
\begin_inset Formula $\mathbf{e}_{1}=(-\frac{b}{a},1,0)$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{2}=\left(-\frac{c}{a},0,1\right)$
\end_inset

.
 These vectors belong to 
\begin_inset Formula $V$
\end_inset

, and the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

 is linearly independent (straightforward checks).
 It remains to show that every vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 is expressed as a linear combination of 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

.
 Indeed, any such 
\begin_inset Formula $\mathbf{x}$
\end_inset

 must have components 
\begin_inset Formula $x,y,z$
\end_inset

 that satisfy 
\begin_inset Formula $x=-\frac{b}{a}y-\frac{c}{a}z$
\end_inset

.
 Hence, 
\begin_inset Formula $\mathbf{x}=y\mathbf{e}_{1}+z\mathbf{e}_{2}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Describe a vector space that has dimension zero.
\end_layout

\begin_layout Subparagraph
Solution: 
\end_layout

\begin_layout Standard
If there are 
\emph on
no
\emph default
 linearly independent sets in a space 
\begin_inset Formula $V$
\end_inset

, it means that all sets consisting of just one vector 
\begin_inset Formula $\left\{ \mathbf{v}\right\} $
\end_inset

 are already linearly 
\emph on
dependent
\emph default
.
 More formally, 
\begin_inset Formula $\forall\mathbf{v}\in V:\exists\lambda\neq0$
\end_inset

 such that 
\begin_inset Formula $\lambda\mathbf{v}=0$
\end_inset

.
 Thus 
\begin_inset Formula $\mathbf{v}=0$
\end_inset

, that is, all vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 are equal to the zero vector.
 Therefore a zero-dimen\SpecialChar \-
sion\SpecialChar \-
al space is a space that consists of only one
 vector: the zero vector.
\end_layout

\begin_layout Paragraph
Exercise 4
\begin_inset Formula $^{\mathbf{*}}$
\end_inset

:
\end_layout

\begin_layout Standard
Usually a vector space admits infinitely many choices of a basis.
 However, above I cautiously wrote that a vector space 
\begin_inset Quotes eld
\end_inset

has at least one basis.
\begin_inset Quotes erd
\end_inset

 Is there an example of a vector space that has 
\emph on
only one
\emph default
 basis? 
\end_layout

\begin_layout Standard

\emph on
Hints:
\emph default
 The answer is positive.
 Try to build a new basis from an existing one and see where that might
 fail.
 This has to do with finite number fields (try 
\begin_inset Formula $\mathbb{F}_{2}$
\end_inset

), and the only available example is rather dull.
\end_layout

\begin_layout Subsection
All bases have equally many vectors
\begin_inset LatexCommand \label{sub:All-bases-have}

\end_inset


\end_layout

\begin_layout Standard
We have seen that any linearly independent set of 
\begin_inset Formula $n$
\end_inset

 vectors in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space is a basis.
 The following statement shows that a basis cannot have 
\emph on
fewer
\emph default
 than 
\begin_inset Formula $n$
\end_inset

 vectors.
 The proof is somewhat long and can be skipped unless you would like to
 gain more facility with coordinate-free manipulations.
\end_layout

\begin_layout Paragraph
Theorem: 
\end_layout

\begin_layout Standard
In a finite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space, all bases have equally many vectors.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Suppose that 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{m}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n}\right\} $
\end_inset

 are two bases in a vector space 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $m\neq n$
\end_inset

.
 I will show that this assumption leads to contradiction, and then it will
 follow that any two bases must have equally many vectors.
\end_layout

\begin_layout Standard
Assume that 
\begin_inset Formula $m>n$
\end_inset

.
 The idea of the proof is to take the larger set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{m}\right\} $
\end_inset

 and to replace one of its vectors, say 
\begin_inset Formula $\mathbf{e}_{s}$
\end_inset

, by 
\begin_inset Formula $\mathbf{f}_{1}$
\end_inset

, so that the resulting set of 
\begin_inset Formula $m$
\end_inset

 vectors
\begin_inset Formula \begin{equation}
\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s-1},\mathbf{f}_{1},\mathbf{e}_{s+1},...,\mathbf{e}_{m}\right\} \label{eq:aux set 1}\end{equation}

\end_inset

is still linearly independent.
 I will prove shortly that such a replacement is possible, assuming only
 that the initial set is linearly independent.
 Then I will continue to replace other vectors 
\begin_inset Formula $\mathbf{e}_{k}$
\end_inset

 by 
\begin_inset Formula $\mathbf{f}_{2}$
\end_inset

, 
\begin_inset Formula $\mathbf{f}_{3}$
\end_inset

, etc., always keeping the resulting set linearly independent.
 Finally, I will arrive to the linearly independent set 
\begin_inset Formula \[
\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n},\mathbf{e}_{k_{1}},\mathbf{e}_{k_{2}},...,\mathbf{e}_{k_{m-n}}\right\} ,\]

\end_inset

 which contains all 
\begin_inset Formula $\mathbf{f}_{j}$
\end_inset

 as well as 
\begin_inset Formula $\left(m-n\right)$
\end_inset

 vectors 
\begin_inset Formula $\mathbf{e}_{k_{1}}$
\end_inset

, 
\begin_inset Formula $\mathbf{e}_{k_{2}}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{k_{m-n}}$
\end_inset

 left over from the original set; there must be at least one such vector
 left over because (by assumption) there are more vectors in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 than in the basis 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\right\} $
\end_inset

, in other words, because 
\begin_inset Formula $m-n\geq1$
\end_inset

.
 Since the set 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\right\} $
\end_inset

 is a basis, the vector 
\begin_inset Formula $\mathbf{e}_{k_{1}}$
\end_inset

 is a linear combination of 
\begin_inset Formula $\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n}\right\} $
\end_inset

, so the set 
\begin_inset Formula $\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n},\mathbf{e}_{k_{1}},...\right\} $
\end_inset

 cannot be linearly independent.
 This contradiction proves the theorem.
\end_layout

\begin_layout Standard
It remains to show that it is possible to find the index 
\begin_inset Formula $s$
\end_inset

 such that the set\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:aux set 1}

\end_inset

) is linearly independent.
 The required statement is the following: If 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\,|\,1\leq j\leq m\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\,|\,1\leq j\leq n\right\} $
\end_inset

 are two bases in the space 
\begin_inset Formula $V$
\end_inset

, and if the set 
\begin_inset Formula $S\equiv\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{f}_{1},...,\mathbf{f}_{l}\right\} $
\end_inset

 (where 
\begin_inset Formula $l<n$
\end_inset

) is linearly independent then there exists an index 
\begin_inset Formula $s$
\end_inset

 such that 
\begin_inset Formula $\mathbf{e}_{s}$
\end_inset

 in 
\begin_inset Formula $S$
\end_inset

 can be replaced by 
\begin_inset Formula $\mathbf{f}_{l+1}$
\end_inset

 and the new set 
\begin_inset Formula \begin{equation}
T\equiv\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s-1},\mathbf{f}_{l+1},\mathbf{e}_{s+1},...,\mathbf{e}_{k},\mathbf{f}_{1},...,\mathbf{f}_{l}\right\} \label{eq:aux set 3}\end{equation}

\end_inset

is still linearly independent.
 To find a suitable index 
\begin_inset Formula $s$
\end_inset

, we try to decompose 
\begin_inset Formula $\mathbf{f}_{l+1}$
\end_inset

 into a linear combination of vectors from 
\begin_inset Formula $S$
\end_inset

.
 In other words, we ask whether the set 
\begin_inset Formula \[
S'\equiv S\cup\left\{ \mathbf{f}_{l+1}\right\} =\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{f}_{1},...,\mathbf{f}_{l+1}\right\} \]

\end_inset

 is linearly independent.
 There are two possibilities: First, if 
\begin_inset Formula $S'$
\end_inset

 is linearly independent, we can remove any 
\begin_inset Formula $\mathbf{e}_{s}$
\end_inset

, say 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, from it, and the resulting set 
\begin_inset Formula \[
T=\left\{ \mathbf{e}_{2},...,\mathbf{e}_{k},\mathbf{f}_{1},...,\mathbf{f}_{l+1}\right\} \]

\end_inset

 will be again linearly independent.
 This set 
\begin_inset Formula $T$
\end_inset

 is obtained from 
\begin_inset Formula $S$
\end_inset

 by replacing 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 with 
\begin_inset Formula $\mathbf{f}_{l+1}$
\end_inset

, so now there is nothing left to prove.
 Now consider the second possibility: 
\begin_inset Formula $S'$
\end_inset

 is linearly dependent.
 In that case, 
\begin_inset Formula $\mathbf{f}_{l+1}$
\end_inset

 can be decomposed as
\begin_inset Formula \begin{equation}
\mathbf{f}_{l+1}=\sum_{j=1}^{k}\lambda_{j}\mathbf{e}_{j}+\sum_{j=1}^{l}\mu_{j}\mathbf{f}_{j},\label{eq:aux lc 1}\end{equation}

\end_inset

where 
\begin_inset Formula $\lambda_{j},\mu_{j}$
\end_inset

 are some constants, not all equal to zero.
 Suppose all 
\begin_inset Formula $\lambda_{j}$
\end_inset

 are zero; then 
\begin_inset Formula $\mathbf{f}_{l+1}$
\end_inset

 would be a linear combination of other 
\begin_inset Formula $\mathbf{f}_{j}$
\end_inset

; but this cannot happen for a basis 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\right\} $
\end_inset

.
 Therefore not all 
\begin_inset Formula $\lambda_{j}$
\end_inset

, 
\begin_inset Formula $1\leq j\leq k$
\end_inset

 are zero; for example, 
\begin_inset Formula $\lambda_{s}\neq0$
\end_inset

.
 This gives us the index 
\begin_inset Formula $s$
\end_inset

.
 Now we can replace 
\begin_inset Formula $\mathbf{e}_{s}$
\end_inset

 in the set 
\begin_inset Formula $S$
\end_inset

 by 
\begin_inset Formula $\mathbf{f}_{l+1}$
\end_inset

; it remains to prove that the resulting set 
\begin_inset Formula $T$
\end_inset

 defined by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:aux set 3}

\end_inset

) is linearly independent.
 
\end_layout

\begin_layout Standard
This last proof is again by contradiction: if 
\begin_inset Formula $T$
\end_inset

 is linearly 
\emph on
dependent
\emph default
, there exists a vanishing linear combination of the form
\begin_inset Formula \begin{equation}
\sum_{j=1}^{s-1}\rho_{j}\mathbf{e}_{j}+\sigma_{l+1}\mathbf{f}_{l+1}+\sum_{j=s+1}^{k}\rho_{j}\mathbf{e}_{j}+\sum_{j=1}^{l}\sigma_{j}\mathbf{f}_{j}=0,\label{eq:aux lc 2}\end{equation}

\end_inset

where 
\begin_inset Formula $\rho_{j},\sigma_{j}$
\end_inset

 are not all zero.
 In particular, 
\begin_inset Formula $\sigma_{l+1}\neq0$
\end_inset

 because otherwise the initial set 
\begin_inset Formula $S$
\end_inset

 would be linearly dependent,
\begin_inset Formula \[
\sum_{j=1}^{s-1}\rho_{j}\mathbf{e}_{j}+\sum_{j=s+1}^{k}\rho_{j}\mathbf{e}_{j}+\sum_{j=1}^{l}\sigma_{j}\mathbf{f}_{j}=0.\]

\end_inset

 If we now substitute Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:aux lc 1}

\end_inset

) into Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:aux lc 2}

\end_inset

), we will obtain a vanishing linear combination that contains only vectors
 from the initial set 
\begin_inset Formula $S$
\end_inset

 in which the coefficient at the vector 
\begin_inset Formula $\mathbf{e}_{s}$
\end_inset

 is 
\begin_inset Formula $\sigma_{l+1}\lambda_{s}\neq0$
\end_inset

.
 This contradicts the linear independence of the set 
\begin_inset Formula $S$
\end_inset

.
 Therefore the set 
\begin_inset Formula $T$
\end_inset

 is linearly independent.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1: Completing a basis.
\end_layout

\begin_layout Standard
If a set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

, 
\begin_inset Formula $\mathbf{v}_{j}\in V$
\end_inset

 is linearly independent and 
\begin_inset Formula $k<n\equiv\dim V$
\end_inset

, the theorem says that the set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is 
\emph on
not
\emph default
 a basis in 
\begin_inset Formula $V$
\end_inset

.
 Prove that there exist 
\begin_inset Formula $\left(n-k\right)$
\end_inset

 additional vectors 
\begin_inset Formula $\mathbf{v}_{k+1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{v}_{n}\in V$
\end_inset

 such that the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 
\end_layout

\begin_layout Standard

\emph on
Outline of proof:
\emph default
 If 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is not yet a basis, it means that there exists at least one vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 which cannot be represented by a linear combination of 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 Add it to the set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

; prove that the resulting set is still linearly independent.
 Repeat these steps until a basis is built; by the above Theorem, the basis
 will contain exactly 
\begin_inset Formula $n$
\end_inset

 vectors.
 
\end_layout

\begin_layout Paragraph
Exercise 2: Eliminating unnecessary vectors.
\end_layout

\begin_layout Standard
Suppose that a set of vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s}\right\} $
\end_inset

 
\series bold
spans the space
\series default
 
\begin_inset Formula $V$
\end_inset

, i.e.\InsetSpace ~
every vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 can be represented by a linear combination of 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

; and suppose that 
\begin_inset Formula $s>n\equiv\dim V$
\end_inset

.
 By definition of dimension, the set 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 must be linearly dependent, so it is not a basis in 
\begin_inset Formula $V$
\end_inset

.
 Prove that one can remove certain vectors from this set so that the remaining
 vectors are a basis in 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint:
\emph default
 The set has too many vectors.
 Consider a nontrivial linear combination of vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s}\right\} $
\end_inset

 that is equal to zero.
 Show that one can remove some vector 
\begin_inset Formula $\mathbf{e}_{k}$
\end_inset

 from the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s}\right\} $
\end_inset

 such that the remaining set still spans 
\begin_inset Formula $V$
\end_inset

.
 The procedure can be repeated until a basis in 
\begin_inset Formula $V$
\end_inset

 remains.
\end_layout

\begin_layout Paragraph
Exercise 3: Finding a basis.
\end_layout

\begin_layout Standard
Consider the vector space of polynomials of degree at most 2 in the variable
 
\begin_inset Formula $x$
\end_inset

, with real coefficients.
 Determine whether the following four sets of vectors are linearly independent,
 and which of them can serve as a basis in that space.
 The sets are 
\begin_inset Formula $\left\{ 1+x,1-x\right\} $
\end_inset

; 
\begin_inset Formula $\left\{ 1,1+x,1-x\right\} $
\end_inset

; 
\begin_inset Formula $\left\{ 1,1+x-x^{2}\right\} $
\end_inset

; 
\begin_inset Formula $\left\{ 1,1+x,1+x+x^{2}\right\} $
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 4: Not a basis.
\end_layout

\begin_layout Standard
Suppose that a set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

 is not a basis; show that this set must be linearly dependent.
\end_layout

\begin_layout Section
Linear maps in vector spaces
\end_layout

\begin_layout Standard
An important role in linear algebra is played by matrices, which usually
 represent linear transformations of vectors.
 Namely, with the definition 
\series bold
V1
\series default
 of vectors as 
\begin_inset Formula $n$
\end_inset

-tuples 
\begin_inset Formula $v_{i}$
\end_inset

, one defines matrices as square tables of numbers, 
\begin_inset Formula $A_{ij}$
\end_inset

, that describe transformations of vectors according to the formula
\begin_inset Formula \begin{equation}
u_{i}\equiv\sum_{j=1}^{n}A_{ij}v_{j}.\label{eq:matrix repr}\end{equation}

\end_inset

This transformation takes a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 into a new vector 
\begin_inset Formula $\mathbf{u}=\hat{A}\mathbf{v}$
\end_inset

 in the same vector space.
 For example, in two dimensions one writes the transformation of column
 vectors as
\begin_inset Formula \[
\left[\begin{array}{c}
u_{1}\\
u_{2}\end{array}\right]=\left(\begin{array}{cc}
A_{11} & A_{12}\\
A_{21} & A_{22}\end{array}\right)\left[\begin{array}{c}
v_{1}\\
v_{2}\end{array}\right]\equiv\left[\begin{array}{c}
A_{11}v_{1}+A_{12}v_{2}\\
A_{21}v_{1}+A_{22}v_{2}\end{array}\right].\]

\end_inset

 The 
\series bold
composition
\series default
 of two transformations 
\begin_inset Formula $A_{ij}$
\end_inset

 and 
\begin_inset Formula $B_{ij}$
\end_inset

 is a transformation described by the matrix 
\begin_inset Formula \begin{equation}
C_{ij}=\sum_{k=1}^{n}A_{ik}B_{kj}.\label{eq:matrix mult}\end{equation}

\end_inset

 This is the law of matrix multiplication.
 (I assume that all this is familiar to you.)
\end_layout

\begin_layout Standard
More generally, a map from an 
\begin_inset Formula $m$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

 to an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $W$
\end_inset

 is described by a rectangular 
\begin_inset Formula $m\times n$
\end_inset

 matrix that transforms 
\begin_inset Formula $m$
\end_inset

-tuples into 
\begin_inset Formula $n$
\end_inset

-tuples in an analogous way.
 Most of the time we will be working with transformations within one vector
 space (described by square matrices).
 
\end_layout

\begin_layout Standard
This picture of matrix transformations is straightforward but relies on
 the coordinate representation of vectors and so has two drawbacks: (i)
 The calculations with matrix components are often unnecessarily cumbersome.
 (ii) Definitions and calculations cannot be easily generalized to infinite-dime
n\SpecialChar \-
sion\SpecialChar \-
al spaces.
 Nevertheless, many of the results have nothing to do with components and
 
\emph on
do
\emph default
 apply to infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces.
 We need a different approach to characterizing linear transformations of
 vectors.
\end_layout

\begin_layout Standard
The way out is to concentrate on the 
\series bold
linearity
\series default
 of the transformations, i.e.\InsetSpace ~
on the properties
\begin_inset Formula \begin{align*}
\hat{A}\left(\lambda\mathbf{v}\right) & =\lambda\hat{A}\left(\mathbf{v}\right),\\
\hat{A}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) & =\hat{A}\left(\mathbf{v}_{1}\right)+\hat{A}\left(\mathbf{v}_{2}\right),\end{align*}

\end_inset

which are easy to check directly.
 In fact it turns out that the multiplication law and the matrix representation
 of transformations can be 
\emph on
derived
\emph default
 from the above requirements of linearity.
 Below we will see how this is done.
\end_layout

\begin_layout Subsection
Abstract definition of linear maps
\end_layout

\begin_layout Standard
First, we define an abstract 
\series bold
linear map
\series default
 as follows.
\end_layout

\begin_layout Paragraph
Definition:
\begin_inset LatexCommand \index{linearity}

\end_inset


\end_layout

\begin_layout Standard
A map 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 between two vector spaces 
\begin_inset Formula $V$
\end_inset

, 
\begin_inset Formula $W$
\end_inset

 is 
\series bold
linear
\series default
 if for any 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

 and 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in V$
\end_inset

,
\begin_inset Formula \begin{equation}
\hat{A}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\hat{A}\mathbf{u}+\lambda\hat{A}\mathbf{v}.\label{eq:linear def}\end{equation}

\end_inset

 (Note, pedantically, that the 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $+$
\end_inset


\begin_inset Quotes erd
\end_inset

 in the left side of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:linear def}

\end_inset

) is the vector sum in the space 
\begin_inset Formula $V$
\end_inset

, while in the right side it is the vector sum in the space 
\begin_inset Formula $W$
\end_inset

.)
\end_layout

\begin_layout Standard
Linear maps are also called 
\series bold
homomorphisms
\series default

\begin_inset LatexCommand \index{homomorphism}

\end_inset

 of vector spaces.
 Linear maps acting from a space 
\begin_inset Formula $V$
\end_inset

 to the same space are called 
\series bold
linear operators
\series default

\begin_inset LatexCommand \index{linear operator}

\end_inset

 or 
\series bold
endomorphisms
\series default

\begin_inset LatexCommand \index{endomorphism}

\end_inset

 of the space 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard
At first sight it might appear that the abstract definition of a linear
 transformation offers much less information than the definition in terms
 of matrices.
 This is true: the abstract definition does not 
\emph on
specify
\emph default
 any particular linear map, it only gives conditions for a map to be linear.
 If the vector space is finite-dimen\SpecialChar \-
sion\SpecialChar \-
al and a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 is selected then the familiar matrix picture is immediately recovered from
 the abstract definition.
 Let us first, for simplicity, consider a linear map 
\begin_inset Formula $\hat{A}:V\rightarrow V$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}$
\end_inset

 is a linear map 
\begin_inset Formula $V\rightarrow V$
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is a basis then there exist numbers 
\begin_inset Formula $A_{jk}$
\end_inset

 (
\begin_inset Formula $j,k=1,...,n$
\end_inset

) such that the vector 
\begin_inset Formula $\hat{A}\mathbf{v}$
\end_inset

 has components 
\begin_inset Formula $\sum_{k}A_{jk}v_{k}$
\end_inset

 if a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 has components 
\begin_inset Formula $v_{k}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
For any vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 we have a decomposition 
\begin_inset Formula $\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}$
\end_inset

 with some components 
\begin_inset Formula $v_{k}$
\end_inset

.
 By linearity, the result of application of the map 
\begin_inset Formula $\hat{A}$
\end_inset

 to the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is
\begin_inset Formula \[
\hat{A}\mathbf{v}=\hat{A}\big(\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}\big)=\sum_{k=1}^{n}v_{k}(\hat{A}\mathbf{e}_{k}).\]

\end_inset

Therefore, it is sufficient to know how the map 
\begin_inset Formula $\hat{A}$
\end_inset

 transforms the basis vectors 
\begin_inset Formula $\mathbf{e}_{k}$
\end_inset

, 
\begin_inset Formula $k=1,...,n$
\end_inset

.
 Each of the vectors 
\begin_inset Formula $\hat{A}\mathbf{e}_{k}$
\end_inset

 has (in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

) a decomposition
\begin_inset Formula \[
\hat{A}\mathbf{e}_{k}=\sum_{j=1}^{n}A_{jk}\mathbf{e}_{j},\quad k=1,...,n,\]

\end_inset

where 
\begin_inset Formula $A_{jk}$
\end_inset

 with 
\begin_inset Formula $1\leq j,k\leq n$
\end_inset

 are some coefficients; these 
\begin_inset Formula $A_{jk}$
\end_inset

 are just some numbers that we can calculate for a specific given linear
 transformation and a specific basis.
 It is convenient to arrange these numbers into a square table (matrix)
 
\begin_inset Formula $A_{jk}$
\end_inset

.
 Finally, we compute 
\begin_inset Formula $\hat{A}\mathbf{v}$
\end_inset

 as 
\begin_inset Formula \[
\hat{A}\mathbf{v}=\sum_{k=1}^{n}v_{k}\sum_{j=1}^{n}A_{jk}\mathbf{e}_{j}=\sum_{j=1}^{n}u_{j}\mathbf{e}_{j},\]

\end_inset

where the components 
\begin_inset Formula $u_{j}$
\end_inset

 of the vector 
\begin_inset Formula $\mathbf{u}\equiv\hat{A}\mathbf{v}$
\end_inset

 are
\begin_inset Formula \[
u_{j}\equiv\sum_{k=1}^{n}A_{jk}v_{k}.\]

\end_inset

This is exactly the law\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:matrix repr}

\end_inset

) of multiplication of the matrix 
\begin_inset Formula $A_{jk}$
\end_inset

 by a column vector 
\begin_inset Formula $v_{k}$
\end_inset

.
 Therefore the formula of the matrix representation\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:matrix repr}

\end_inset

) is a necessary consequence of the linearity of a transformation.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The analogous matrix representation holds for linear maps 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 between different vector spaces.
\end_layout

\begin_layout Standard
It is helpful to imagine that the linear transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 somehow exists as a geometric object (an object that 
\begin_inset Quotes eld
\end_inset

knows how to transform vectors
\begin_inset Quotes erd
\end_inset

), while the matrix representation 
\begin_inset Formula $A_{jk}$
\end_inset

 is merely a set of coefficients needed to describe that transformation
 in a particular basis.
 The matrix 
\begin_inset Formula $A_{jk}$
\end_inset

 depends on the choice of the basis, but there any many properties of the
 linear transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 that 
\emph on
do not
\emph default
 depend on the basis; these properties can be thought of as the 
\begin_inset Quotes eld
\end_inset

geometric
\begin_inset Quotes erd
\end_inset

 properties of the transformation.
\begin_inset Foot
status open

\begin_layout Standard
Example: the properties 
\begin_inset Formula $A_{11}=0$
\end_inset

, 
\begin_inset Formula $A_{11}>A_{12}$
\end_inset

, and 
\begin_inset Formula $A_{ij}=-2A_{ji}$
\end_inset

 are not geometric properties of the linear transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 because they may hold in one basis but not in another basis.
 However, the number 
\begin_inset Formula $\sum_{i=1}^{n}A_{ii}$
\end_inset

 turns out to be geometric (independent of the basis), as we will see below.
\end_layout

\end_inset

 Below we will be concerned only with geometric properties of objects.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
Two linear maps 
\begin_inset Formula $\hat{A}$
\end_inset

, 
\begin_inset Formula $\hat{B}$
\end_inset

 are 
\series bold
equal
\series default
 if 
\begin_inset Formula $\hat{A}\mathbf{v}=\hat{B}\mathbf{v}$
\end_inset

 for all 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
 The 
\series bold
composition
\series default
 of linear maps 
\begin_inset Formula $\hat{A}$
\end_inset

, 
\begin_inset Formula $\hat{B}$
\end_inset

 is the map 
\begin_inset Formula $\hat{A}\hat{B}$
\end_inset

 which acts on vectors 
\begin_inset Formula $\mathbf{v}$
\end_inset

 as 
\begin_inset Formula $(\hat{A}\hat{B})\mathbf{v}\equiv\hat{A}(\hat{B}\mathbf{v})$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
The composition of two linear transformations is again a linear transformation.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
I give two proofs to contrast the coordinate-free language with the language
 of matrices, and also to show the derivation of the matrix multiplication
 law.
\end_layout

\begin_layout Standard
(
\emph on
Coordinate-free proof
\emph default
:) We need to demonstrate the property\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:linear def}

\end_inset

).
 If 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 are linear transformations then we have, by definition,
\end_layout

\begin_layout Standard
\begin_inset Formula \[
\hat{A}\hat{B}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\hat{A}(\hat{B}\mathbf{u}+\lambda\hat{B}\mathbf{v})=\hat{A}\hat{B}\mathbf{u}+\lambda\hat{A}\hat{B}\mathbf{v}.\]

\end_inset

Therefore the composition 
\begin_inset Formula $\hat{A}\hat{B}$
\end_inset

 is a linear map.
\end_layout

\begin_layout Standard
(
\emph on
Proof using matrices
\emph default
:) We need to show that for any vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 with components 
\begin_inset Formula $v_{i}$
\end_inset

 and for any two transformation matrices 
\begin_inset Formula $A_{ij}$
\end_inset

 and 
\begin_inset Formula $B_{ij}$
\end_inset

, the result of first transforming with 
\begin_inset Formula $B_{ij}$
\end_inset

 and then with 
\begin_inset Formula $A_{ij}$
\end_inset

 is equivalent to transforming 
\begin_inset Formula $\mathbf{v}$
\end_inset

 with some other matrix.
 We calculate the components 
\begin_inset Formula $v_{i}^{\prime}$
\end_inset

 of the transformed vector, 
\begin_inset Formula \[
v_{i}^{\prime}=\sum_{j=1}^{n}A_{ij}\sum_{k=1}^{n}B_{jk}v_{k}=\sum_{k=1}^{n}\left(\sum_{j=1}^{n}A_{ij}B_{jk}\right)v_{k}\equiv\sum_{k=1}^{n}C_{ik}v_{k},\]

\end_inset

where 
\begin_inset Formula $C_{ik}$
\end_inset

 is the matrix of the new transformation.
 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Note that we need to work more in the second proof because matrices are
 
\emph on
defined
\emph default
 through their components, as 
\begin_inset Quotes eld
\end_inset

tables of numbers.
\begin_inset Quotes erd
\end_inset

 So we cannot prove linearity without also finding an 
\emph on
explicit
\emph default
 
\emph on
formula
\emph default
 for the matrix product in terms of matrix components.
 The first proof does not use such a formula.
\end_layout

\begin_layout Subsection
Examples of linear maps
\begin_inset LatexCommand \label{sub:Examples-of-linear-maps}

\end_inset


\end_layout

\begin_layout Standard
The easiest example of a linear map is the 
\series bold
identity operator
\series default
 
\begin_inset Formula $\hat{1}_{V}$
\end_inset

.
 This is a map 
\begin_inset Formula $V\rightarrow V$
\end_inset

 defined by 
\begin_inset Formula $\hat{1}_{V}\mathbf{v}=\mathbf{v}$
\end_inset

.
 It is clear that this map is linear, and that its matrix elements in any
 basis are given by the 
\series bold
Kronecker
\begin_inset LatexCommand \index{Kronecker symbol}

\end_inset

 delta
\series default
 symbol 
\begin_inset Formula \[
\delta_{ij}\equiv\left\{ \begin{array}{c}
1,\; i=j;\\
0,\; i\neq j.\end{array}\right.\]

\end_inset


\end_layout

\begin_layout Standard
We can also define a map which multiplies all vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 by a fixed number 
\begin_inset Formula $\lambda$
\end_inset

.
 This is also obviously a linear map, and we denote it by 
\begin_inset Formula $\lambda\hat{1}_{V}$
\end_inset

.
 If 
\begin_inset Formula $\lambda=0$
\end_inset

, we may write 
\begin_inset Formula $\hat{0}_{V}$
\end_inset

 to denote the map that transforms all vectors into the zero vector.
\end_layout

\begin_layout Standard
Another example of a linear transformation is the following.
 Suppose that the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

 is a basis in the space 
\begin_inset Formula $V$
\end_inset

; then any vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is uniquely expressed as a linear combination 
\begin_inset Formula $\mathbf{v}=\sum_{j=1}^{n}v_{j}\mathbf{e}_{j}$
\end_inset

.
 We denote by 
\begin_inset Formula $\mathbf{e}_{1}^{*}\left(\mathbf{v}\right)$
\end_inset

 the function that gives the component 
\begin_inset Formula $v_{1}$
\end_inset

 of a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 Then we define the map 
\begin_inset Formula $\hat{M}$
\end_inset

 by the formula
\begin_inset Formula \[
\hat{M}\mathbf{v}\equiv v_{1}\mathbf{e}_{2}=\mathbf{e}_{1}^{*}\left(\mathbf{v}\right)\mathbf{e}_{2}.\]

\end_inset

In other words, the new vector 
\begin_inset Formula $\hat{M}\mathbf{v}$
\end_inset

 is always parallel to 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 but has the coefficient 
\begin_inset Formula $v_{1}$
\end_inset

.
 It is easy to prove that this map is linear (you need to check that the
 first component of a sum of vectors is equal to the sum of their first
 components).
 The matrix corresponding to 
\begin_inset Formula $\hat{M}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is
\begin_inset Formula \[
M_{ij}=\left(\begin{array}{cccc}
0 & 0 & 0 & ...\\
1 & 0 & 0 & ...\\
0 & 0 & 0 & ...\\
... & ... & ... & ...\end{array}\right).\]

\end_inset


\end_layout

\begin_layout Standard
The map that shifts all vectors by a fixed vector, 
\begin_inset Formula $\hat{S}_{\mathbf{a}}\mathbf{v}\equiv\mathbf{v}+\mathbf{a}$
\end_inset

, is not linear because 
\begin_inset Formula \[
\hat{S}_{\mathbf{a}}\left(\mathbf{u}+\mathbf{v}\right)=\mathbf{u}+\mathbf{v}+\mathbf{a}\neq\hat{S}_{\mathbf{a}}\left(\mathbf{u}\right)+\hat{S}_{\mathbf{a}}\left(\mathbf{v}\right)=\mathbf{u}+\mathbf{v}+2\mathbf{a}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
I understand how to work with a linear transformation specified by its matrix
 
\begin_inset Formula $A_{jk}$
\end_inset

.
 But how can I work with an abstract 
\begin_inset Quotes eld
\end_inset

linear map
\begin_inset Quotes erd
\end_inset

 
\begin_inset Formula $\hat{A}$
\end_inset

 if the only thing I know about 
\begin_inset Formula $\hat{A}$
\end_inset

 is that it is linear? It seems that I cannot specify linear transformations
 or perform calculations with them unless I use matrices.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
It is true that the abstract definition of a linear map does not include
 a specification of a particular transformation, unlike the concrete definition
 in terms of a matrix.
 However, it does not mean that matrices are always needed.
 For a particular problem in linear algebra, a particular transformation
 is always specified either as a certain matrix in a given basis, or in
 a 
\emph on
geometric
\emph default
, i.e.\InsetSpace ~
basis-free manner, e.g.\InsetSpace ~

\begin_inset Quotes eld
\end_inset

the transformation 
\begin_inset Formula $\hat{B}$
\end_inset

 multiplies a vector by 
\begin_inset Formula $3/2$
\end_inset

 and then projects onto the plane orthogonal to the fixed vector 
\begin_inset Formula $\mathbf{a}$
\end_inset

.
\begin_inset Quotes erd
\end_inset

 In this book I concentrate on general properties of linear transformations,
 which are best formulated and studied in the geometric (coordinate-free)
 language rather than in the matrix language.
 Below we will see many coordinate-free calculations with linear maps.
 In Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Linear-operators-as}

\end_inset

 we will also see how to specify arbitrary linear transformations in a coordinat
e-free manner, although it will then be quite similar to the matrix notation.
 
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $V$
\end_inset

 is a one-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space over a field 
\begin_inset Formula $\mathbb{K}$
\end_inset

, prove that any linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 on 
\begin_inset Formula $V$
\end_inset

 must act simply as a multiplication by a number.
\end_layout

\begin_layout Subparagraph
Solution:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\mathbf{e}\neq0$
\end_inset

 be a basis vector; note that any nonzero vector 
\begin_inset Formula $\mathbf{e}$
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

, and that every vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is proportional to 
\begin_inset Formula $\mathbf{e}$
\end_inset

.
 Consider the action of 
\begin_inset Formula $\hat{A}$
\end_inset

 on the vector 
\begin_inset Formula $\mathbf{e}$
\end_inset

: the vector 
\begin_inset Formula $\hat{A}\mathbf{e}$
\end_inset

 must also be proportional to 
\begin_inset Formula $\mathbf{e}$
\end_inset

, say 
\begin_inset Formula $\hat{A}\mathbf{e}=a\mathbf{e}$
\end_inset

 where 
\begin_inset Formula $a\in\mathbb{K}$
\end_inset

 is some constant.
 Then by linearity of 
\begin_inset Formula $\hat{A}$
\end_inset

, for any vector 
\begin_inset Formula $\mathbf{v}=v\mathbf{e}$
\end_inset

 we get 
\begin_inset Formula $\hat{A}\mathbf{v}=\hat{A}v\mathbf{e}=av\mathbf{e}=a\mathbf{v}$
\end_inset

, so the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 multiplies all vectors by the same number 
\begin_inset Formula $a$
\end_inset

.
 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is a set of 
\begin_inset Formula $N$
\end_inset

 arbitrary vectors, does there exist a linear map 
\begin_inset Formula $\hat{A}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{e}_{j}=\mathbf{v}_{j}$
\end_inset

 for 
\begin_inset Formula $j=1,...,N$
\end_inset

? If so, is this map unique? 
\end_layout

\begin_layout Subparagraph
Solution:
\end_layout

\begin_layout Standard
For any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 there exists a unique set of 
\begin_inset Formula $N$
\end_inset

 numbers 
\begin_inset Formula $x_{1}$
\end_inset

, ..., 
\begin_inset Formula $x_{N}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{e}_{i}$
\end_inset

.
 Since 
\begin_inset Formula $\hat{A}$
\end_inset

 must be linear, the action of 
\begin_inset Formula $\hat{A}$
\end_inset

 on 
\begin_inset Formula $\mathbf{x}$
\end_inset

 
\emph on
must
\emph default
 be given by the formula 
\begin_inset Formula $\hat{A}\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{v}_{i}$
\end_inset

.
 This formula defines 
\begin_inset Formula $\hat{A}\mathbf{x}$
\end_inset

 for all 
\begin_inset Formula $\mathbf{x}$
\end_inset

.
 Hence, the map 
\begin_inset Formula $\hat{A}$
\end_inset

 exists and is unique.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Vector space of all linear maps 
\end_layout

\begin_layout Standard
Suppose that 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 are two vector spaces and consider 
\emph on
all
\emph default
 linear maps 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

.
 The set of all such maps is itself a vector space because we can add two
 linear maps and multiply linear maps by scalars, getting again a linear
 map.
 More formally, if 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 are linear maps from 
\begin_inset Formula $V$
\end_inset

 to 
\begin_inset Formula $W$
\end_inset

 and 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

 is a number (a scalar) then we define 
\begin_inset Formula $\lambda\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{A}+\hat{B}$
\end_inset

 in the natural way:
\begin_inset Formula \begin{align*}
(\lambda\hat{A})\mathbf{v} & \equiv\lambda(\hat{A}\mathbf{v}),\\
(\hat{A}+\hat{B})\mathbf{v} & \equiv\hat{A}\mathbf{v}+\hat{B}\mathbf{v},\quad\forall\mathbf{v}\in V.\end{align*}

\end_inset

In words: the map 
\begin_inset Formula $\lambda\hat{A}$
\end_inset

 acts on a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 by first acting on it with 
\begin_inset Formula $\hat{A}$
\end_inset

 and then multiplying the result by the scalar 
\begin_inset Formula $\lambda$
\end_inset

; the map 
\begin_inset Formula $\hat{A}+\hat{B}$
\end_inset

 acts on a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 by adding the vectors 
\begin_inset Formula $\hat{A}\mathbf{v}$
\end_inset

 and 
\begin_inset Formula $\hat{B}\mathbf{v}$
\end_inset

.
 It is straightforward to check that the maps 
\begin_inset Formula $\lambda\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{A}+\hat{B}$
\end_inset

 defined in this way are 
\emph on
linear
\emph default
 maps 
\begin_inset Formula $V\rightarrow W$
\end_inset

.
 Therefore, the set of all linear maps 
\begin_inset Formula $V\rightarrow W$
\end_inset

 is a vector space.
 This vector space is denoted 
\begin_inset Formula $\textrm{Hom}\left(V,W\right)$
\end_inset

, meaning the 
\begin_inset Quotes eld
\end_inset

space of 
\series bold
homomorphisms
\series default

\begin_inset LatexCommand \index{homomorphism}

\end_inset


\begin_inset Quotes erd
\end_inset

 from 
\begin_inset Formula $V$
\end_inset

 to 
\begin_inset Formula $W$
\end_inset

.
\end_layout

\begin_layout Standard
The space of linear maps from 
\begin_inset Formula $V$
\end_inset

 to itself is called the space of 
\series bold
endomorphisms
\series default

\begin_inset LatexCommand \index{endomorphism}

\end_inset

 of 
\begin_inset Formula $V$
\end_inset

 and is denoted 
\begin_inset Formula $\textrm{End}\, V$
\end_inset

.
 Endomorphisms of 
\begin_inset Formula $V$
\end_inset

 are also called 
\series bold
linear operators
\series default
 in the space 
\begin_inset Formula $V$
\end_inset

.
 (We have been talking about linear operators all along, but we did not
 call them endomorphisms until now.)
\end_layout

\begin_layout Subsection
Eigenvectors and eigenvalues
\end_layout

\begin_layout Paragraph
Definition 1:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}:V\rightarrow V$
\end_inset

 is a linear operator, and a vector 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

 is such that 
\begin_inset Formula $\hat{A}\mathbf{v}=\lambda\mathbf{v}$
\end_inset

 where 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

 is some number.
 Then 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is called the 
\series bold
eigenvector
\begin_inset LatexCommand \index{eigenvector}

\end_inset

 of
\series default
 
\begin_inset Formula $\hat{A}$
\end_inset

 
\series bold
with the
\series default
 
\series bold
eigenvalue
\series default
 
\begin_inset Formula $\lambda$
\end_inset

.
 
\end_layout

\begin_layout Standard
The geometric interpretation is that 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is a special direction for the transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}$
\end_inset

 acts simply as a scaling by a certain number 
\begin_inset Formula $\lambda$
\end_inset

 in that direction.
 
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Without the condition 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

 in the definition, it would follow that the zero vector is an eigenvector
 for any operator with any eigenvalue, which would not be very useful, so
 we exclude the trivial case 
\begin_inset Formula $\mathbf{v}=0$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}$
\end_inset

 is the transformation that rotates vectors around some fixed axis by a
 fixed angle.
 Then any vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 parallel to the axis is unchanged by the rotation, so it is an eigenvector
 of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $1$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}$
\end_inset

 is the operator of multiplication by a number 
\begin_inset Formula $\alpha$
\end_inset

, i.e.\InsetSpace ~
we define 
\begin_inset Formula $\hat{A}\mathbf{x}\equiv\alpha\mathbf{x}$
\end_inset

 for all 
\begin_inset Formula $\mathbf{x}$
\end_inset

.
 Then 
\emph on
all
\emph default
 nonzero vectors 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset

 are eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\alpha$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is an eigenvector of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

.
 Show that 
\begin_inset Formula $c\mathbf{v}$
\end_inset

 for any 
\begin_inset Formula $c\in\mathbb{K}$
\end_inset

, 
\begin_inset Formula $c\neq0$
\end_inset

, is also an eigenvector with the same eigenvalue.
 
\end_layout

\begin_layout Subparagraph
Solution: 
\end_layout

\begin_layout Standard
\begin_inset Formula $\hat{A}(c\mathbf{v})=c\hat{A}\mathbf{v}=c\lambda\mathbf{v}=\lambda(c\mathbf{v})$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 3:
\end_layout

\begin_layout Standard
Suppose that an operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 is such that it has 
\begin_inset Formula $N=\dim V$
\end_inset

 eigenvectors 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{v}_{N}$
\end_inset

 that constitute a basis in 
\begin_inset Formula $V$
\end_inset

.
 Suppose that 
\begin_inset Formula $\lambda_{1}$
\end_inset

, ..., 
\begin_inset Formula $\lambda_{N}$
\end_inset

 are the corresponding eigenvalues (not necessarily different).
 Then the matrix representation of 
\begin_inset Formula $\hat{A}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is a 
\series bold
diagonal
\series default
 matrix
\begin_inset Formula \[
A_{ij}=\textrm{diag}\left(\lambda_{1},...,\lambda_{N}\right)\equiv\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0\\
0 & \lambda_{2} & \ldots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \ldots & \lambda_{N}\end{array}\right).\]

\end_inset

Thus a basis consisting of eigenvectors (the 
\series bold
eigenbasis
\series default

\begin_inset LatexCommand \index{eigenbasis}

\end_inset

), if it exists, is a particularly convenient choice of basis for a given
 operator.
 
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The task of determining the eigenbasis (also called the 
\series bold
diagonalization of an operator
\series default
) is a standard, well-studied problem for which efficient numerical methods
 exist.
 (This book is not about these methods.) However, it is important to know
 that not all operators can be diagonalized.
 The simplest example of a non-diagonalizable operator is one with the matrix
 representation 
\begin_inset Formula $\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)$
\end_inset

 in 
\begin_inset Formula $\mathbb{R}^{2}$
\end_inset

.
 This operator has 
\emph on
only one
\emph default
 eigenvector, 
\begin_inset Formula ${1 \choose 0}$
\end_inset

, so we have no hope of finding an eigenbasis.
 The theory of the 
\begin_inset Quotes eld
\end_inset

Jordan canonical form
\begin_inset LatexCommand \index{Jordan canonical form}

\end_inset


\begin_inset Quotes erd
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-Jordan-canonical}

\end_inset

) explains how to choose the basis for a non-diagonalizable operator so
 that its matrix in that basis becomes as simple as possible.
\end_layout

\begin_layout Paragraph
Definition 2:
\end_layout

\begin_layout Standard
A map 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 is 
\series bold
invertible
\series default

\begin_inset LatexCommand \index{invertible operator}

\end_inset

 if there exists a map 
\begin_inset Formula $\hat{A}^{-1}:W\rightarrow V$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\hat{A}^{-1}=\hat{1}_{W}$
\end_inset

 and 
\begin_inset Formula $\hat{A}^{-1}\hat{A}=\hat{1}_{V}$
\end_inset

.
 The map 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 is called the 
\series bold
inverse
\series default
 of 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Suppose that an operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 has an eigenvector with eigenvalue 0.
 Show that 
\begin_inset Formula $\hat{A}$
\end_inset

 describes a non-invertible transformation.
\end_layout

\begin_layout Subparagraph
Outline of the solution:
\end_layout

\begin_layout Standard
Show that the inverse of a linear operator (if the inverse exists) is again
 a linear operator.
 A linear operator must transform the zero vector into the zero vector.
 We have 
\begin_inset Formula $\hat{A}\mathbf{v}=0$
\end_inset

 and yet we must have 
\begin_inset Formula $\hat{A}^{-1}0=0$
\end_inset

 if 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 exists.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Suppose that an operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space 
\begin_inset Formula $V$
\end_inset

 describes a non-invertible transformation.
 Show that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has 
\emph on
at least one
\emph default
 eigenvector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 with eigenvalue 0.
\end_layout

\begin_layout Subparagraph
Outline of the solution:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

 be a basis; consider the set of vectors 
\begin_inset Formula $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{n}\}$
\end_inset

 and show that it is not a basis, hence linearly 
\emph on
dependent
\emph default
 (otherwise 
\begin_inset Formula $\hat{A}$
\end_inset

 would be invertible).
 Then there exists a linear combination 
\begin_inset Formula $\sum_{j}c_{j}(\hat{A}\mathbf{e}_{j})=0$
\end_inset

 where not all 
\begin_inset Formula $c_{j}$
\end_inset

 are zero; 
\begin_inset Formula $\mathbf{v}\equiv\sum_{j}c_{j}\mathbf{e}_{j}$
\end_inset

 is then nonzero, and is the desired eigenvector.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Section
Subspaces
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
A 
\series bold
subspace
\series default
 of a vector space 
\begin_inset Formula $V$
\end_inset

 is a subset 
\begin_inset Formula $S\subset V$
\end_inset

 such that 
\begin_inset Formula $S$
\end_inset

 is itself a vector space.
\end_layout

\begin_layout Standard
A subspace is not just any subset of 
\begin_inset Formula $V$
\end_inset

.
 For example, if 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is a nonzero vector then the subset 
\begin_inset Formula $S$
\end_inset

 consisting of the single vector, 
\begin_inset Formula $S=\left\{ \mathbf{v}\right\} $
\end_inset

, is not a subspace: for instance, 
\begin_inset Formula $\mathbf{v}+\mathbf{v}=2\mathbf{v}$
\end_inset

, but 
\begin_inset Formula $2\mathbf{v}\not\in S$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 1.
\end_layout

\begin_layout Standard
The set 
\begin_inset Formula $\left\{ \lambda\mathbf{v}\,|\,\forall\lambda\in\mathbb{K}\right\} $
\end_inset

 is called the subspace 
\series bold
spanned by
\series default
 the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 This set is a subspace because we can add vectors from this set to each
 other and obtain again vectors from the same set.
 More generally, if 
\begin_inset Formula $\mathbf{v}_{1},...,\mathbf{v}_{n}\in V$
\end_inset

 are some vectors, we define the 
\series bold
subspace spanned by
\series default
 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 as the set of all linear combinations 
\begin_inset Formula \[
\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} \equiv\left\{ \lambda_{1}\mathbf{v}_{1}+...+\lambda_{n}\mathbf{v}_{n}\,|\,\forall\lambda_{i}\in\mathbb{K}\right\} .\]

\end_inset

It is obvious that 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is a subspace of 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is a basis in the space 
\begin_inset Formula $V$
\end_inset

 then the subspace spanned by the vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is equal to 
\begin_inset Formula $V$
\end_inset

 itself.
\end_layout

\begin_layout Paragraph
Exercise 1: 
\end_layout

\begin_layout Standard
Show that the intersection of two subspaces is also a subspace.
\end_layout

\begin_layout Paragraph
Example 2: Kernel of an operator.
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}\in\text{End}\, V$
\end_inset

 is a linear operator.
 The set of all vectors 
\begin_inset Formula $\mathbf{v}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}=0$
\end_inset

 is called the 
\series bold
kernel
\series default
 of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 and is denoted by 
\begin_inset Formula $\ker\hat{A}$
\end_inset

.
 In formal notation, 
\begin_inset Formula \[
\textrm{ker }\hat{A}\equiv\{\mathbf{u}\in V\,|\,\hat{A}\mathbf{u}=0\}.\]

\end_inset

This set is a subspace of 
\begin_inset Formula $V$
\end_inset

 because if 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in\ker\hat{A}$
\end_inset

 then 
\begin_inset Formula \[
\hat{A}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\hat{A}\mathbf{u}+\lambda\hat{A}\mathbf{v}=0,\]

\end_inset

 and so 
\begin_inset Formula $\mathbf{u}+\lambda\mathbf{v}\in\ker\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 3: Image of an operator.
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}:V\rightarrow V$
\end_inset

 is a linear operator.
 The 
\series bold
image
\series default
 of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

, denoted 
\begin_inset Formula $\textrm{im}\, A$
\end_inset

, is by definition the set of all vectors 
\begin_inset Formula $\mathbf{v}$
\end_inset

 obtained by acting with 
\begin_inset Formula $\hat{A}$
\end_inset

 on some other vectors 
\begin_inset Formula $\mathbf{u}\in V$
\end_inset

.
 In formal notation, 
\begin_inset Formula \[
\textrm{im }\hat{A}\equiv\{\hat{A}\mathbf{u}\,|\,\forall\mathbf{u}\in V\}.\]

\end_inset

 This set is also a subspace of 
\begin_inset Formula $V$
\end_inset

 (prove this!).
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
In a vector space 
\begin_inset Formula $V$
\end_inset

, let us choose a vector 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

.
 Consider the set 
\begin_inset Formula $S_{0}$
\end_inset

 of all linear operators 
\begin_inset Formula $\hat{A}\in\text{End}\, V$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}=0$
\end_inset

.
 Is 
\begin_inset Formula $S_{0}$
\end_inset

 a subspace? Same question for the set 
\begin_inset Formula $S_{3}$
\end_inset

 of operators 
\begin_inset Formula $\hat{A}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}=3\mathbf{v}$
\end_inset

.
 Same question for the set 
\begin_inset Formula $S^{\prime}$
\end_inset

 of all operators 
\begin_inset Formula $\hat{A}$
\end_inset

 for which there exists some 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}=\lambda\mathbf{v}$
\end_inset

, where 
\begin_inset Formula $\lambda$
\end_inset

 may be different for each 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Subsection
Projectors and subspaces
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
A linear operator 
\begin_inset Formula $\hat{P}:V\rightarrow V$
\end_inset

 is called a 
\series bold
projector
\series default

\begin_inset LatexCommand \index{projector}

\end_inset

 if 
\begin_inset Formula $\hat{P}\hat{P}=\hat{P}$
\end_inset

.
\end_layout

\begin_layout Standard
Projectors are useful for defining subspaces: The result of a projection
 remains invariant under further projections, 
\begin_inset Formula $\hat{P}(\hat{P}\mathbf{v})=\hat{P}\mathbf{v}$
\end_inset

, so a projector 
\begin_inset Formula $\hat{P}$
\end_inset

 defines a subspace 
\begin_inset Formula $\textrm{im}\,\hat{P}$
\end_inset

, which consists of all vectors invariant under 
\begin_inset Formula $\hat{P}$
\end_inset

.
\end_layout

\begin_layout Standard
As an example, consider the transformation of 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

 given by the matrix
\begin_inset Formula \[
\hat{P}=\left(\begin{array}{ccc}
1 & 0 & a\\
0 & 1 & b\\
0 & 0 & 0\end{array}\right),\]

\end_inset

where 
\begin_inset Formula $a,b$
\end_inset

 are arbitrary numbers.
 It is easy to check that 
\begin_inset Formula $\hat{P}\hat{P}=\hat{P}$
\end_inset

 for any 
\begin_inset Formula $a,b$
\end_inset

.
 This transformation is a projector onto the subspace spanned by the vectors
 
\begin_inset Formula $\left(1,0,0\right)$
\end_inset

 and 
\begin_inset Formula $\left(0,1,0\right)$
\end_inset

.
 (Note that 
\begin_inset Formula $a$
\end_inset

 and 
\begin_inset Formula $b$
\end_inset

 can be chosen at will; there are many projectors onto the same subspace.)
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
Eigenvalues of a projector can be only the numbers 
\begin_inset Formula $0$
\end_inset

 and 
\begin_inset Formula $1$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is an eigenvector of a projector 
\begin_inset Formula $\hat{P}$
\end_inset

 with the eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

 then 
\begin_inset Formula \[
\lambda\mathbf{v}=\hat{P}\mathbf{v}=\hat{P}\hat{P}\mathbf{v}=\hat{P}\lambda\mathbf{v}=\lambda^{2}\mathbf{v}\,\Rightarrow\,\lambda\left(\lambda-1\right)\mathbf{v}=0.\]

\end_inset

Since 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

, we must have either 
\begin_inset Formula $\lambda=0$
\end_inset

 or 
\begin_inset Formula $\lambda=1$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Eigenspaces
\end_layout

\begin_layout Standard
Another way to specify a subspace is through eigenvectors of some operator.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
For a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 and a fixed number 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

, the set of all vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}=\lambda\mathbf{v}$
\end_inset

 is a 
\emph on
subspace
\emph default
 of 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard
The subspace of all such vectors is called the 
\series bold
eigenspace
\series default

\begin_inset LatexCommand \index{eigenspace}

\end_inset

 of 
\begin_inset Formula $\hat{A}$
\end_inset

 with the eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

.
 Any nonzero vector from that subspace is an eigenvector of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{P}$
\end_inset

 is a projector then 
\begin_inset Formula $\textrm{im}\,\hat{P}$
\end_inset

 is the eigenspace of 
\begin_inset Formula $\hat{P}$
\end_inset

 with eigenvalue 
\begin_inset Formula $1$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Show that eigenspaces 
\begin_inset Formula $V_{\lambda}$
\end_inset

 and 
\begin_inset Formula $V_{\mu}$
\end_inset

 corresponding to different eigenvalues, 
\begin_inset Formula $\lambda\neq\mu$
\end_inset

, have only one common vector --- the zero vector.
 (
\begin_inset Formula $V_{\lambda}\cap V_{\mu}=\{0\}$
\end_inset

.)
\end_layout

\begin_layout Standard
By definition, a subspace 
\begin_inset Formula $U\subset V$
\end_inset

 is 
\series bold
invariant
\series default

\begin_inset LatexCommand \index{invariant subspace}

\end_inset

 under the action of some operator 
\begin_inset Formula $\hat{A}$
\end_inset

 if 
\begin_inset Formula $\hat{A}\mathbf{u}\in U$
\end_inset

 for all 
\begin_inset Formula $\mathbf{u}\in U$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Show that the eigenspace of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

 is invariant under 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
In a space of polynomials in the variable 
\begin_inset Formula $x$
\end_inset

 of any (finite) degree, consider the subspace 
\begin_inset Formula $U$
\end_inset

 of polynomials of degree not more than 2 and the operator 
\begin_inset Formula $\hat{A}\equiv x\frac{d}{dx}$
\end_inset

, that is, 
\begin_inset Formula \[
\hat{A}:p(x)\mapsto x\frac{dp(x)}{dx}.\]

\end_inset

 Show that 
\begin_inset Formula $U$
\end_inset

 is invariant under 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Section
Isomorphisms of vector spaces
\end_layout

\begin_layout Standard
Two vector spaces are 
\series bold
isomorphic
\series default
 if there exists a one-to-one linear map between them.
 This linear map is called the 
\series bold
isomorphism
\series default
.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is a linearly independent set of vectors (
\begin_inset Formula $\mathbf{v}_{j}\in V$
\end_inset

) and 
\begin_inset Formula $\hat{M}:V\rightarrow W$
\end_inset

 is an isomorphism then the set 
\begin_inset Formula $\{\hat{M}\mathbf{v}_{1},...,\hat{M}\mathbf{v}_{N}\}$
\end_inset

 is also linearly independent.
 In particular, 
\begin_inset Formula $\hat{M}$
\end_inset

 maps a basis in 
\begin_inset Formula $V$
\end_inset

 into a basis in 
\begin_inset Formula $W$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint:
\emph default
 First show that 
\begin_inset Formula $\hat{M}\mathbf{v}=0$
\end_inset

 if and only if 
\begin_inset Formula $\mathbf{v}=0$
\end_inset

.
 Then consider the result of 
\begin_inset Formula $\hat{M}\left(\lambda_{1}\mathbf{v}_{1}+...+\lambda_{N}\mathbf{v}_{N}\right)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
Any vector space 
\begin_inset Formula $V$
\end_inset

 of dimension 
\begin_inset Formula $n$
\end_inset

 is isomorphic to the space 
\begin_inset Formula $\mathbb{K}^{n}$
\end_inset

 of 
\begin_inset Formula $n$
\end_inset

-tuples.
 
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
To demonstrate this, it is sufficient to present 
\emph on
some
\emph default
 isomorphism.
 We can always choose a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

, so that any vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is decomposed as 
\begin_inset Formula $\mathbf{v}=\sum_{i=1}^{n}\lambda_{i}\mathbf{e}_{i}$
\end_inset

.
 Then we define the isomorphism map 
\begin_inset Formula $\hat{M}$
\end_inset

 between 
\begin_inset Formula $V$
\end_inset

 and the space 
\begin_inset Formula $\mathbb{K}^{n}$
\end_inset

 as
\begin_inset Formula \[
\hat{M}\mathbf{v}\equiv\left(\lambda_{1},...,\lambda_{n}\right).\]

\end_inset

It is easy to see that 
\begin_inset Formula $\hat{M}$
\end_inset

 is linear and one-to-one.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Vector spaces 
\begin_inset Formula $\mathbb{K}^{m}$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}^{n}$
\end_inset

 are isomorphic only if they have equal dimension, 
\begin_inset Formula $m=n$
\end_inset

.
 The reason they are not isomorphic for 
\begin_inset Formula $m\neq n$
\end_inset

 is that they have different numbers of vectors in a basis, while one-to-one
 linear maps must preserve linear independence and map a basis to a basis.
 (For 
\begin_inset Formula $m\neq n$
\end_inset

, there are plenty of linear maps from 
\begin_inset Formula $\mathbb{K}^{m}$
\end_inset

 to 
\begin_inset Formula $\mathbb{K}^{n}$
\end_inset

 but none of them is a one-to-one map.
 It also follows that a one-to-one map between 
\begin_inset Formula $\mathbb{K}^{m}$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}^{n}$
\end_inset

 cannot be linear.)
\end_layout

\begin_layout Standard
Note that the isomorphism 
\begin_inset Formula $\hat{M}$
\end_inset

 constructed in the proof of Statement\InsetSpace ~
1 will depend on the choice of the
 basis: a different basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}^{\prime}\right\} $
\end_inset

 yields a different map 
\begin_inset Formula $\hat{M}^{\prime}$
\end_inset

.
 For this reason, the isomorphism 
\begin_inset Formula $\hat{M}$
\end_inset

 is 
\emph on
not canonical
\emph default
.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
A linear map between two vector spaces 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 is 
\series bold
canonically defined
\series default
 or 
\series bold
canonical
\series default

\begin_inset LatexCommand \index{canonical isomorphism}

\end_inset

 if it is defined independently of a choice of bases in 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

.
 (We are of course allowed to choose a basis 
\emph on
while
\emph default
 constructing a canonical map, but at the end we need to prove that the
 resulting map does not depend on that choice.) Vector spaces 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 are 
\series bold
canonically isomorphic
\series default
 if there exists a canonically defined isomorphism between them; I write
 
\begin_inset Formula $V\cong W$
\end_inset

 in this case.
\end_layout

\begin_layout Paragraph
Examples of canonical isomorphisms:
\end_layout

\begin_layout Enumerate
Any vector space 
\begin_inset Formula $V$
\end_inset

 is canonically isomorphic to itself, 
\begin_inset Formula $V\cong V$
\end_inset

; the isomorphism is the identity map 
\begin_inset Formula $\mathbf{v}\rightarrow\mathbf{v}$
\end_inset

 which is defined regardless of any basis.
 (This is trivial but still, a valid example.)
\end_layout

\begin_layout Enumerate
If 
\begin_inset Formula $V$
\end_inset

 is a one-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space then 
\begin_inset Formula $\textrm{End}\, V\cong\mathbb{K}$
\end_inset

.
 You have seen the map 
\begin_inset Formula $\textrm{End }V\rightarrow\mathbb{K}$
\end_inset

 in the Exercise\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Examples-of-linear-maps}

\end_inset

, where you had to show that any linear operator in 
\begin_inset Formula $V$
\end_inset

 is a multiplication by a number; this number is the element of 
\begin_inset Formula $\mathbb{K}$
\end_inset

 corresponding to the given operator.
 Note that 
\begin_inset Formula $V\not\cong\mathbb{K}$
\end_inset

 unless there is a 
\begin_inset Quotes eld
\end_inset

preferred
\begin_inset Quotes erd
\end_inset

 vector 
\begin_inset Formula $\mathbf{e}\in V$
\end_inset

, 
\begin_inset Formula $\mathbf{e}\neq0$
\end_inset

 which would be mapped into the number 
\begin_inset Formula $1\in\mathbb{K}$
\end_inset

.
 Usually vector spaces do not have any special vectors, so there is no canonical
 isomorphism.
 (However, 
\begin_inset Formula $\text{End}\, V$
\end_inset

 does have a special element --- the identity 
\begin_inset Formula $\hat{1}_{V}$
\end_inset

.)
\end_layout

\begin_layout Standard
At this point I cannot give more interesting examples of canonical maps,
 but I will show many of them later.
 My intuitive picture is that canonically isomorphic spaces have a fundamental
 structural similarity.
 An isomorphism that depends on the choice of basis, as in the Statement\InsetSpace ~
1
 above, is unsatisfactory if we are interested in properties that can be
 formulated geometrically (independently of any basis).
 
\end_layout

\begin_layout Standard
\begin_inset Note Note
status collapsed

\begin_layout Standard

\end_layout

\begin_layout Standard
I disable this because I actually don't know whether this is rigorously
 true! Also this goes into calculus quite heavily.
\end_layout

\begin_layout Standard
Example: Non-isomorphic spaces.
\end_layout

\begin_layout Standard
Consider the set of infinite sequences 
\begin_inset Formula $\left(c_{0},c_{1},c_{2},...\right)$
\end_inset

 such that the series 
\begin_inset Formula $c_{0}+c_{1}+c_{2}+...$
\end_inset

 converges (
\begin_inset Formula $c_{j}\in\mathbb{R}$
\end_inset

).
 This subset forms an infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space because the term-by-term
 sum of two convergent series is again a convergent series.
 Consider, on the other hand, the set of infinite sequences 
\begin_inset Formula $\left(a_{0},a_{1},a_{2},...\right)$
\end_inset

 where 
\begin_inset Formula $a_{j}\in\mathbb{R}$
\end_inset

 are such that the series 
\begin_inset Formula $\sum_{j=0}^{\infty}\left|a_{j}\right|^{2}$
\end_inset

 converges.
 This set also forms an infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space.
 It might appear that the two spaces are isomorphic because they both look
 like 
\begin_inset Quotes eld
\end_inset

spaces of infinite sequences.
\begin_inset Quotes erd
\end_inset

 However, these spaces are actually 
\emph on
not
\emph default
 isomorphic.
 A precise explanation requires much preparatory work; however, it is not
 difficult to see that the components 
\begin_inset Formula $a_{j}$
\end_inset

 cannot be used in place of 
\begin_inset Formula $c_{j}$
\end_inset

 and neither can 
\begin_inset Formula $c_{j}$
\end_inset

 be used instead of 
\begin_inset Formula $a_{j}$
\end_inset

.
 This is so because the conditions for the convergence of 
\begin_inset Formula $\sum_{j=0}^{\infty}\left|a_{j}\right|^{2}$
\end_inset

 and for the convergence of 
\begin_inset Formula $\sum_{j=0}^{\infty}c_{j}$
\end_inset

 are quite different.
 For example, we can choose an element of the first space as the sequence
 
\begin_inset Formula \[
c_{j}=\frac{1}{\sqrt{j+1}}\left(-1\right)^{j};\quad\sum_{j=0}^{\infty}c_{j}<\sum_{n=1}^{\infty}\frac{\text{const}}{n^{3/2}}<\infty.\]

\end_inset

However, the series 
\begin_inset Formula $\sum_{j=0}^{\infty}\left|c_{j}\right|^{2}$
\end_inset

 diverges.
 Conversely, with 
\begin_inset Formula $a_{j}=\frac{1}{j+1}$
\end_inset

 the series 
\begin_inset Formula $\sum_{j=0}^{\infty}\left|a_{j}\right|^{2}$
\end_inset

 converges to 
\begin_inset Formula $\frac{1}{6}\pi^{2}$
\end_inset

 while 
\begin_inset Formula $\sum_{j=0}^{\infty}a_{j}$
\end_inset

 diverges.
 This is just an illustrative example; I do not wish to go deeper into the
 issues of convergence but merely show that working with infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al
 spaces requires care.
\end_layout

\end_inset


\end_layout

\begin_layout Section
Direct sum of vector spaces
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 are two given vector spaces over a field 
\begin_inset Formula $\mathbb{K}$
\end_inset

, we define a new vector space 
\begin_inset Formula $V\oplus W$
\end_inset

 as the space of pairs 
\begin_inset Formula $(\mathbf{v},\mathbf{w})$
\end_inset

, where 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}\in W$
\end_inset

.
 The operations of vector sum and scalar multiplication are defined in the
 natural way,
\begin_inset Formula \begin{align*}
\left(\mathbf{v}_{1},\mathbf{w}_{1}\right)+\left(\mathbf{v}_{2},\mathbf{w}_{2}\right) & =\left(\mathbf{v}_{1}+\mathbf{v}_{2},\mathbf{w}_{1}+\mathbf{w}_{2}\right),\\
\lambda\left(\mathbf{v}_{1},\mathbf{w}_{1}\right) & =\left(\lambda\mathbf{v}_{1},\lambda\mathbf{w}_{1}\right).\end{align*}

\end_inset

 The new vector space is called the 
\series bold
direct sum
\series default
 of the spaces 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The dimension of the direct sum is 
\begin_inset Formula $\dim\left(V\oplus W\right)=\dim V+\dim W$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
\begin_inset Note Note
status collapsed

\begin_layout Standard
I will still use the pair notation 
\begin_inset Formula $\left(\mathbf{v},\mathbf{w}\right)$
\end_inset

 for clarity.
\end_layout

\end_inset

If 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{v}_{m}$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{w}_{n}$
\end_inset

 are bases in 
\begin_inset Formula $V$
\end_inset

 and W respectively,  consider the set of 
\begin_inset Formula $m+n$
\end_inset

 vectors
\begin_inset Formula \[
\left(\mathbf{v}_{1},0\right),...,\left(\mathbf{v}_{m},0\right),\left(0,\mathbf{w}_{1}\right),...,\left(0,\mathbf{w}_{n}\right).\]

\end_inset

It is easy to prove that this set is linearly independent.
 Then it is clear that any vector 
\begin_inset Formula $\left(\mathbf{v},\mathbf{w}\right)\in V\oplus W$
\end_inset

 can be represented as a linear combination of the vectors from the above
 set, therefore that set is a basis and the dimension of 
\begin_inset Formula $V\oplus W$
\end_inset

 is 
\begin_inset Formula $m+n$
\end_inset

.
 (This proof is sketchy but the material is standard and straightforward.)
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Complete the proof.
\end_layout

\begin_layout Standard

\emph on
Hint:
\emph default
 If 
\begin_inset Formula $\left(\mathbf{v},\mathbf{w}\right)=0$
\end_inset

 then 
\begin_inset Formula $\mathbf{v}=0$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}=0$
\end_inset

 separately.
\end_layout

\begin_layout Subsection
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 as subspaces of 
\begin_inset Formula $V\oplus W$
\end_inset

; canonical projections
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 are two vector spaces then the space 
\begin_inset Formula $V\oplus W$
\end_inset

 has a certain subspace which is canonically isomorphic to 
\begin_inset Formula $V$
\end_inset

.
 This subspace is the set of all vectors from 
\begin_inset Formula $V\oplus W$
\end_inset

 of the form 
\begin_inset Formula $\left(\mathbf{v},0\right)$
\end_inset

, where 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
 It is obvious that this set forms a subspace (it is closed under linear
 operations) and is isomorphic to 
\begin_inset Formula $V$
\end_inset

.
 To demonstrate this, we present a canonical isomorphism which we denote
 
\begin_inset Formula $\hat{P}_{V}:V\oplus W\rightarrow V$
\end_inset

.
 The isomorphism 
\begin_inset Formula $\hat{P}_{V}$
\end_inset

 is the 
\series bold
canonical projection
\series default

\begin_inset LatexCommand \index{canonical projection}

\end_inset

 defined by
\begin_inset Formula \[
\hat{P}_{V}\left(\mathbf{v},\mathbf{w}\right)\equiv\mathbf{v}.\]

\end_inset

 It is easy to check that this is a linear and one-to-one map of the subspace
 
\begin_inset Formula $\left\{ \left(\mathbf{v},0\right)\,|\,\mathbf{v}\in V\right\} $
\end_inset

 to 
\begin_inset Formula $V$
\end_inset

, and that 
\begin_inset Formula $\hat{P}$
\end_inset

 is a projector.
 This projector is 
\emph on
canonical
\emph default
 because we have defined it without reference to any basis.
 The relation is so simple that it is convenient to write 
\begin_inset Formula $\mathbf{v}\in V\oplus W$
\end_inset

 instead of 
\begin_inset Formula $\left(\mathbf{v},0\right)\in V\oplus W$
\end_inset

.
\end_layout

\begin_layout Standard
Similarly, we define the subspace isomorphic to 
\begin_inset Formula $W$
\end_inset

 and the corresponding canonical projection.
 
\end_layout

\begin_layout Standard
It is usually convenient to denote vectors from 
\begin_inset Formula $V\oplus W$
\end_inset

 by formal linear combinations, e.g.\InsetSpace ~

\begin_inset Formula $\mathbf{v}+\mathbf{w}$
\end_inset

, instead of the pair notation 
\begin_inset Formula $\left(\mathbf{v},\mathbf{w}\right)$
\end_inset

.
 A pair 
\begin_inset Formula $\left(\mathbf{v},0\right)$
\end_inset

 is denoted simply by 
\begin_inset Formula $\mathbf{v}\in V\oplus W$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 1: 
\end_layout

\begin_layout Standard
Show that the space 
\begin_inset Formula $\mathbb{R}^{n}\oplus\mathbb{R}^{m}$
\end_inset

 is isomorphic to 
\begin_inset Formula $\mathbb{R}^{n+m}$
\end_inset

, but not canonically.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: The image of 
\begin_inset Formula $\mathbb{R}^{n}\subset\mathbb{R}^{n}\oplus\mathbb{R}^{m}$
\end_inset

 under the isomorphism is a subspace of 
\begin_inset Formula $\mathbb{R}^{n+m}$
\end_inset

, but there are no canonically defined subspaces in that space.
\end_layout

\begin_layout Section
Dual (conjugate) vector space 
\begin_inset LatexCommand \label{sub:Dual-vector-space}

\end_inset


\end_layout

\begin_layout Standard
Given a vector space 
\begin_inset Formula $V$
\end_inset

, we define another vector space 
\begin_inset Formula $V^{*}$
\end_inset

 called the 
\series bold
dual
\series default
 or the 
\series bold
conjugate
\series default
 to 
\begin_inset Formula $V$
\end_inset

.
 The elements of 
\begin_inset Formula $V^{*}$
\end_inset

 are 
\series bold
linear functions
\series default
 on 
\begin_inset Formula $V$
\end_inset

, that is to say, maps 
\begin_inset Formula $\mathbf{f}^{*}:V\rightarrow\mathbb{K}\,$
\end_inset

 having the property
\begin_inset Formula \[
\mathbf{f}^{*}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\mathbf{f}^{*}\left(\mathbf{u}\right)+\lambda\mathbf{f}^{*}\left(\mathbf{v}\right),\quad\forall\mathbf{u},\mathbf{v}\in V,\:\forall\lambda\in\mathbb{K}.\]

\end_inset

The elements of 
\begin_inset Formula $V^{*}$
\end_inset

 are called 
\series bold
dual vectors
\series default
, 
\series bold
covectors
\series default
 or 
\series bold
linear forms
\series default
; I will say 
\begin_inset Quotes eld
\end_inset

covectors
\begin_inset Quotes erd
\end_inset

 to save space.
 
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
A 
\series bold
covector
\series default

\begin_inset LatexCommand \index{covector}

\end_inset

 is a linear map 
\begin_inset Formula $V\rightarrow\mathbb{K}$
\end_inset

.
 The set of all covectors is the 
\series bold
dual space
\series default

\begin_inset LatexCommand \index{dual space}

\end_inset

 to the vector space 
\begin_inset Formula $V$
\end_inset

.
 The 
\series bold
zero covector
\series default
 is the linear function that maps all vectors into zero.
 Covectors 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}$
\end_inset

 are 
\series bold
equal
\series default
 if 
\begin_inset Formula \[
\mathbf{f}^{*}\left(\mathbf{v}\right)=\mathbf{g}^{*}\left(\mathbf{v}\right),\quad\forall\mathbf{v}\in V.\]

\end_inset


\end_layout

\begin_layout Standard
It is clear that the set of 
\emph on
all
\emph default
 linear functions is a vector space because e.g.\InsetSpace ~
the sum of linear functions
 is again a linear function.
 This 
\begin_inset Quotes eld
\end_inset

space of all linear functions
\begin_inset Quotes erd
\end_inset

 is the space we denote by 
\begin_inset Formula $V^{*}$
\end_inset

.
 In our earlier notation, this space is the same as 
\begin_inset Formula $\text{Hom}(V,\mathbb{K})$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
For the space 
\begin_inset Formula $\mathbb{R}^{2}$
\end_inset

 with vectors 
\begin_inset Formula $\mathbf{v}\equiv\left(x,y\right)$
\end_inset

, we may define the functions 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}\right)\equiv2x$
\end_inset

, 
\begin_inset Formula $\mathbf{g}^{*}\left(\mathbf{v}\right)\equiv y-x$
\end_inset

.
 It is straightforward to check that these functions are linear.
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $V$
\end_inset

 be the space of polynomials of degree not more than 2 in the variable 
\begin_inset Formula $x$
\end_inset

 with real coefficients.
 This space 
\begin_inset Formula $V$
\end_inset

 is three-dimen\SpecialChar \-
sion\SpecialChar \-
al and contains elements such as 
\begin_inset Formula $\mathbf{p}\equiv p(x)=a+bx+cx^{2}$
\end_inset

.
 A linear function 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 on 
\begin_inset Formula $V$
\end_inset

 could be defined in a way that might appear nontrivial, such as
\begin_inset Formula \[
\mathbf{f}^{*}(\mathbf{p})=\int_{0}^{\infty}e^{-x}p(x)dx.\]

\end_inset

Nevertheless, it is clear that this is a 
\emph on
linear
\emph default
 function mapping 
\begin_inset Formula $V$
\end_inset

 into 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
 Similarly,
\begin_inset Formula \[
\mathbf{g}^{*}(\mathbf{p})=\left.\frac{d}{dx}\right|_{x=1}p(x)\]

\end_inset

 is a linear function.
 Hence, 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}$
\end_inset

 belong to 
\begin_inset Formula $V^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Remark: 
\end_layout

\begin_layout Standard
One says that a covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 
\series bold
is applied to
\series default
 a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 and yields a number 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v)}$
\end_inset

, or alternatively that a covector 
\series bold
acts on
\series default
 a vector.
 This is similar to writing 
\begin_inset Formula $\cos(0)=1$
\end_inset

 and saying that the cosine function is applied to the number 
\begin_inset Formula $0$
\end_inset

, or 
\begin_inset Quotes eld
\end_inset

acts on the number 0,
\begin_inset Quotes erd
\end_inset

 and then yields the number 
\begin_inset Formula $1$
\end_inset

.
 Other notations for a covector acting on a vector are 
\begin_inset Formula $\left\langle \mathbf{f}^{*},\mathbf{v}\right\rangle $
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}\cdot\mathbf{v}$
\end_inset

, and also 
\begin_inset Formula $\iota_{\mathbf{v}}\mathbf{f}^{*}$
\end_inset

 or 
\begin_inset Formula $\iota_{\mathbf{f}^{*}}\mathbf{v}$
\end_inset

 (here the symbol 
\begin_inset Formula $\iota$
\end_inset

 stands for 
\begin_inset Quotes eld
\end_inset

insert
\begin_inset Quotes erd
\end_inset

).
 However, in this text I will always use the notation 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v})$
\end_inset

 for clarity.
 The notation 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{y}\right\rangle $
\end_inset

 will be used for scalar products.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
It is unclear how to visualize the dual space when it is defined in such
 abstract terms, as the set of 
\emph on
all
\emph default
 functions having some property.
 How do I know which functions are there, and how can I describe this space
 in more concrete terms? 
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
Indeed, we need some work to characterize 
\begin_inset Formula $V^{*}$
\end_inset

 more explicitly.
 We will do this in the next subsection by constructing a basis in 
\begin_inset Formula $V^{*}$
\end_inset

.
\end_layout

\begin_layout Subsection
Dual basis
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

; then any vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is uniquely expressed as a linear combination
\begin_inset Formula \[
\mathbf{v}=\sum_{j=1}^{n}v_{j}\mathbf{e}_{j}.\]

\end_inset

The coefficient 
\begin_inset Formula $v_{1}$
\end_inset

, understood 
\emph on
as a function of the vector
\emph default
 
\begin_inset Formula $\mathbf{v}$
\end_inset

, is a linear function of 
\begin_inset Formula $\mathbf{v}$
\end_inset

 because
\begin_inset Formula \[
\mathbf{u}+\lambda\mathbf{v}=\sum_{j=1}^{n}u_{j}\mathbf{e}_{j}+\lambda\sum_{j=1}^{n}v_{j}\mathbf{e}_{j}=\sum_{j=1}^{n}\left(u_{i}+\lambda v_{j}\right)\mathbf{e}_{j},\]

\end_inset

therefore the first coefficient of the vector 
\begin_inset Formula $\mathbf{u}+\lambda\mathbf{v}$
\end_inset

 is 
\begin_inset Formula $u_{1}+\lambda v_{1}$
\end_inset

.
 So the coefficients 
\begin_inset Formula $v_{k}$
\end_inset

, 
\begin_inset Formula $1\leq k\leq n$
\end_inset

, are linear functions of the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

; therefore they are 
\emph on
covectors
\emph default
, i.e.\InsetSpace ~
elements of 
\begin_inset Formula $V^{*}$
\end_inset

.
 Let us denote these covectors by 
\begin_inset Formula $\mathbf{e}_{1}^{*}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{n}^{*}$
\end_inset

.
 Please note that 
\begin_inset Formula $\mathbf{e}_{1}^{*}$
\end_inset

 depends on the 
\emph on
entire
\emph default
 basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and not only on 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, as it might appear from the notation 
\begin_inset Formula $\mathbf{e}_{1}^{*}$
\end_inset

.
 In other words, 
\begin_inset Formula $\mathbf{e}_{1}^{*}$
\end_inset

 is not a result of some 
\begin_inset Quotes eld
\end_inset

star
\begin_inset Quotes erd
\end_inset

 operation applied only to 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

.
 The covector 
\begin_inset Formula $\mathbf{e}_{1}^{*}$
\end_inset

 will change if we change 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 or any other basis vector.
 This is so because the component 
\begin_inset Formula $v_{1}$
\end_inset

 of a fixed vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 depends not only on 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 but also on every other basis vector 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Theorem:
\end_layout

\begin_layout Standard
The set of 
\begin_inset Formula $n$
\end_inset

 covectors 
\begin_inset Formula $\mathbf{e}_{1}^{*}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{n}^{*}$
\end_inset

 is a basis in 
\begin_inset Formula $V^{*}$
\end_inset

.
 Thus, the dimension of the dual space 
\begin_inset Formula $V^{*}$
\end_inset

 is equal to that of 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
First, we show by an explicit calculation that any covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is a linear combination of 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

.
 Namely, for any 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 we have
\begin_inset Formula \[
\mathbf{f}^{*}\left(\mathbf{v}\right)=\mathbf{f}^{*}\big(\sum_{j=1}^{n}v_{j}\mathbf{e}_{j}\big)=\sum_{j=1}^{n}v_{j}\mathbf{f}^{*}\left(\mathbf{e}_{j}\right)=\sum_{j=1}^{n}\mathbf{e}_{j}^{*}\left(\mathbf{v}\right)\mathbf{f}^{*}\left(\mathbf{e}_{j}\right).\]

\end_inset

Note that in the last line the quantities 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{e}_{j}\right)$
\end_inset

 are some numbers that do not depend on 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 Let us denote 
\begin_inset Formula $\phi_{j}\equiv\mathbf{f}^{*}\left(\mathbf{e}_{j}\right)$
\end_inset

 for brevity; then we obtain the following linear decomposition of 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 through the covectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

,
\begin_inset Formula \[
\mathbf{f}^{*}\left(\mathbf{v}\right)=\sum_{j=1}^{n}\phi_{j}\mathbf{e}_{j}^{*}\left(\mathbf{v}\right)\,\Rightarrow\,\mathbf{f}^{*}=\sum_{j=1}^{n}\phi_{j}\mathbf{e}_{j}^{*}.\]

\end_inset

So indeed all covectors 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 are linear combinations of 
\begin_inset Formula $\mathbf{e}_{j}^{*}$
\end_inset

.
\end_layout

\begin_layout Standard
It remains to prove that the set 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 is linearly independent.
 If this were not so, we would have 
\begin_inset Formula $\sum_{i}\lambda_{i}\mathbf{e}_{i}^{*}=0$
\end_inset

 where not all 
\begin_inset Formula $\lambda_{i}$
\end_inset

 are zero.
 Act on a vector 
\begin_inset Formula $\mathbf{e}_{k}$
\end_inset

 (
\begin_inset Formula $k=1,...,n$
\end_inset

) with this linear combination and get
\begin_inset Formula \[
0\,{\lyxbuildrel!\above=}\,(\sum_{i=1}^{n}\lambda_{i}\mathbf{e}_{i}^{*})(\mathbf{e}_{k})=\lambda_{k},\quad k=1,...,n.\]

\end_inset

Hence all 
\begin_inset Formula $\lambda_{k}$
\end_inset

 are zero.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark: 
\end_layout

\begin_layout Standard
The theorem holds only for finite-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces! For infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al
 spaces 
\begin_inset Formula $V$
\end_inset

, the dual space 
\begin_inset Formula $V^{*}$
\end_inset

 may be 
\begin_inset Quotes eld
\end_inset

larger
\begin_inset Quotes erd
\end_inset

 or 
\begin_inset Quotes eld
\end_inset

smaller
\begin_inset Quotes erd
\end_inset

 than 
\begin_inset Formula $V$
\end_inset

.
 Infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces are subtle, and one should not think that they
 are simply 
\begin_inset Quotes eld
\end_inset

spaces with infinitely many basis vectors.
\begin_inset Quotes erd
\end_inset

 More detail (
\emph on
much
\emph default
 more detail!) can be found in standard textbooks on functional analysis.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The set of covectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 is called the 
\series bold
dual basis
\series default

\begin_inset LatexCommand \index{dual basis}

\end_inset

 to the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 The covectors 
\begin_inset Formula $\mathbf{e}_{j}^{*}$
\end_inset

 of the dual basis have the useful property
\begin_inset Formula \[
\mathbf{e}_{i}^{*}\left(\mathbf{e}_{j}\right)=\delta_{ij}\]

\end_inset

(please check this!).
 Here 
\begin_inset Formula $\delta_{ij}$
\end_inset

 is the 
\series bold
Kronecker
\series default
 
\series bold
symbol
\series default

\begin_inset LatexCommand \index{Kronecker symbol}

\end_inset

: 
\begin_inset Formula $\delta_{ij}=0$
\end_inset

 if 
\begin_inset Formula $i\neq j$
\end_inset

 and 
\begin_inset Formula $\delta_{ii}=1$
\end_inset

.
 For instance, 
\begin_inset Formula $\mathbf{e}_{1}^{*}\left(\mathbf{e}_{1}\right)=1$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{1}^{*}\left(\mathbf{e}_{k}\right)=0$
\end_inset

 for 
\begin_inset Formula $k\geq2$
\end_inset

.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
I would like to see a concrete calculation.
 How do I compute 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}\right)$
\end_inset

 if a vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 are 
\begin_inset Quotes eld
\end_inset

given
\begin_inset Quotes erd
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Vectors are usually 
\begin_inset Quotes eld
\end_inset

given
\begin_inset Quotes erd
\end_inset

 by listing their components in some basis.
 Suppose 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{e}_{1}^{*},...,\mathbf{e}_{N}^{*}\right\} $
\end_inset

 is its dual basis.
 If the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 has components 
\begin_inset Formula $v_{k}$
\end_inset

 in a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{k}\right\} $
\end_inset

 and the covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 has components 
\begin_inset Formula $f_{k}^{*}$
\end_inset

 in the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{k}^{*}\right\} $
\end_inset

, then 
\begin_inset Formula \begin{equation}
\mathbf{f}^{*}\left(\mathbf{v}\right)=\sum_{k=1}^{N}f_{k}^{*}\mathbf{e}_{k}^{*}\big(\sum_{l=1}^{N}v_{l}\mathbf{e}_{l}\big)=\sum_{k=1}^{N}f_{k}^{*}v_{k}.\label{eq:f star v}\end{equation}

\end_inset


\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
The formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:f star v}

\end_inset

) looks like the scalar product\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:3d scalar prod}

\end_inset

).
 How come?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Yes, it does look like that, but Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:f star v}

\end_inset

) does not describe a scalar product because for one thing, 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}$
\end_inset

 are from 
\emph on
different
\emph default
 vector spaces.
 I would rather say that the scalar product resembles Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:f star v}

\end_inset

), and this happens only for a special choice of basis (an 
\emph on
orthonormal
\emph default
 basis) in 
\begin_inset Formula $V$
\end_inset

.
 This will be explained in more detail in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Vector-spaces-with-scalar-product}

\end_inset

.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
The dual basis still seems too abstract to me.
 Suppose 
\begin_inset Formula $V$
\end_inset

 is the three-dimen\SpecialChar \-
sion\SpecialChar \-
al space of polynomials in the variable 
\begin_inset Formula $x$
\end_inset

 with real coefficients and degree no more than 2.
 The three polynomials 
\begin_inset Formula $\left\{ 1,x,x^{2}\right\} $
\end_inset

 are a basis in 
\begin_inset Formula $V$
\end_inset

.
 How can I compute explicitly the dual basis to this basis?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
An arbitrary vector from this space is a polynomial 
\begin_inset Formula $a+bx+cx^{2}$
\end_inset

.
 The basis dual to 
\begin_inset Formula $\left\{ 1,x,x^{2}\right\} $
\end_inset

 consists of three covectors.
 Let us denote the set of these covectors by 
\begin_inset Formula $\left\{ \mathbf{e}_{1}^{*},\mathbf{e}_{2}^{*},\mathbf{e}_{3}^{*}\right\} $
\end_inset

.
 These covectors are linear functions defined like this:
\begin_inset Formula \begin{align*}
\mathbf{e}_{1}^{*}\left(a+bx+cx^{2}\right) & =a,\\
\mathbf{e}_{2}^{*}\left(a+bx+cx^{2}\right) & =b,\\
\mathbf{e}_{3}^{*}\left(a+bx+cx^{2}\right) & =c.\end{align*}

\end_inset

If you like, you can visualize them as differential operators acting on
 the polynomials 
\begin_inset Formula $p(x)$
\end_inset

 like this:
\begin_inset Formula \[
\mathbf{e}_{1}^{*}(p)=\left.p(x)\right|_{x=0};\quad\mathbf{e}_{2}^{*}(p)=\left.\frac{dp}{dx}\right|_{x=0};\quad\mathbf{e}_{3}^{*}(p)=\frac{1}{2}\left.\frac{d^{2}p}{dx^{2}}\right|_{x=0}.\]

\end_inset

However, this is a bit too complicated; the covector 
\begin_inset Formula $\mathbf{e}_{3}^{*}$
\end_inset

 just extracts the coefficient of the polynomial 
\begin_inset Formula $p(x)$
\end_inset

 at 
\begin_inset Formula $x^{2}$
\end_inset

.
 To make it clear that, say, 
\begin_inset Formula $\mathbf{e}_{2}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{3}^{*}$
\end_inset

 can be evaluated without taking derivatives or limits, we may write the
 formulas for 
\begin_inset Formula $\mathbf{e}_{j}^{*}(p)$
\end_inset

 in another equivalent way, e.g.
\begin_inset Formula \[
\mathbf{e}_{2}^{*}(p)=\frac{p(1)-p(-1)}{2},\quad\mathbf{e}_{3}^{*}(p)=\frac{p(1)-2p(0)+p(-1)}{2}.\]

\end_inset

It is straightforward to check that these formulas are indeed equivalent
 by substituting 
\begin_inset Formula $p(x)=a+bx+cx^{2}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Compute 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}$
\end_inset

 from Example\InsetSpace ~
2 in terms of the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}^{*}\right\} $
\end_inset

 defined above.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
I'm still not sure what to do in the general case.
 For example, the set 
\begin_inset Formula $\left\{ 1,1+x,1+x+\frac{1}{2}x^{2}\right\} $
\end_inset

 is also a basis in the space 
\begin_inset Formula $V$
\end_inset

 of quadratic polynomials.
 How do I explicitly compute the dual basis now? The previous trick with
 derivatives does not work.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Let's denote this basis by 
\begin_inset Formula $\left\{ \mathbf{f}_{1},\mathbf{f}_{2},\mathbf{f}_{3}\right\} $
\end_inset

; we are looking for the dual basis 
\begin_inset Formula $\left\{ \mathbf{f}_{1}^{*},\mathbf{f}_{2}^{*},\mathbf{f}_{3}^{*}\right\} $
\end_inset

.
 It will certainly be sufficiently explicit if we manage to express the
 covectors 
\begin_inset Formula $\mathbf{f}_{j}^{*}$
\end_inset

 through the covectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1}^{*},\mathbf{e}_{2}^{*},\mathbf{e}_{3}^{*}\right\} $
\end_inset

 that we just found previously.
 Since the set of covectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1}^{*},\mathbf{e}_{2}^{*},\mathbf{e}_{3}^{*}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V^{*}$
\end_inset

, we expect that 
\begin_inset Formula $\mathbf{f}_{1}^{*}$
\end_inset

 is a linear combination of 
\begin_inset Formula $\left\{ \mathbf{e}_{1}^{*},\mathbf{e}_{2}^{*},\mathbf{e}_{3}^{*}\right\} $
\end_inset

 with some constant coefficients, and similarly 
\begin_inset Formula $\mathbf{f}_{2}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}_{3}^{*}$
\end_inset

.
 Let us, for instance, determine 
\begin_inset Formula $\mathbf{f}_{1}^{*}$
\end_inset

.
 We write 
\begin_inset Formula \[
\mathbf{f}_{1}^{*}=A\mathbf{e}_{1}^{*}+B\mathbf{e}_{2}^{*}+C\mathbf{e}_{3}^{*}\]

\end_inset

with unknown coefficients 
\begin_inset Formula $A,B,C$
\end_inset

.
 By definition, 
\begin_inset Formula $\mathbf{f}_{1}^{*}$
\end_inset

 acting on an arbitrary vector 
\begin_inset Formula $\mathbf{v}=c_{1}\mathbf{f}_{1}+c_{2}\mathbf{f}_{2}+c_{3}\mathbf{f}_{3}$
\end_inset

 must yield 
\begin_inset Formula $c_{1}$
\end_inset

.
 Recall that 
\begin_inset Formula $\mathbf{e}_{i}^{*}$
\end_inset

, 
\begin_inset Formula $i=1,2,3$
\end_inset

 yield the coefficients of the polynomial at 
\begin_inset Formula $1$
\end_inset

, 
\begin_inset Formula $x$
\end_inset

, and 
\begin_inset Formula $x^{2}$
\end_inset

.
 Therefore
\begin_inset Formula \begin{align*}
c_{1} & \,{\lyxbuildrel!\above=}\,\mathbf{f}_{1}^{*}(\mathbf{v})=\mathbf{f}_{1}^{*}\left(c_{1}\mathbf{f}_{1}+c_{2}\mathbf{f}_{2}+c_{3}\mathbf{f}_{3}\right)\\
 & =\left(A\mathbf{e}_{1}^{*}+B\mathbf{e}_{2}^{*}+C\mathbf{e}_{3}^{*}\right)\left(c_{1}\mathbf{f}_{1}+c_{2}\mathbf{f}_{2}+c_{3}\mathbf{f}_{3}\right)\\
 & =\left(A\mathbf{e}_{1}^{*}+B\mathbf{e}_{2}^{*}+C\mathbf{e}_{3}^{*}\right)\left(c_{1}+c_{2}\left(1+x\right)+c_{3}\big(1+x+{\textstyle \frac{1}{2}}x^{2}\big)\right)\\
 & =Ac_{1}+Ac_{2}+Ac_{3}+Bc_{2}+Bc_{3}+{\textstyle \frac{1}{2}}Cc_{3}.\end{align*}

\end_inset

Since this must hold for every 
\begin_inset Formula $c_{1},c_{2},c_{3}$
\end_inset

, we obtain a system of equations for the unknown constants 
\begin_inset Formula $A,B,C$
\end_inset

:
\begin_inset Formula \begin{align*}
A & =1;\\
A+B & =0;\\
A+B+{\textstyle \frac{1}{2}}C & =0.\end{align*}

\end_inset

The solution is 
\begin_inset Formula $A=1$
\end_inset

, 
\begin_inset Formula $B=-1$
\end_inset

, 
\begin_inset Formula $C=0$
\end_inset

.
 Therefore 
\begin_inset Formula $\mathbf{f}_{1}^{*}=\mathbf{e}_{1}^{*}-\mathbf{e}_{2}^{*}$
\end_inset

.
 In the same way we can determine 
\begin_inset Formula $\mathbf{f}_{2}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}_{3}^{*}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Standard
Here are some useful properties of covectors.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 If 
\begin_inset Formula $\mathbf{f}^{*}\neq0$
\end_inset

 is a given covector,  there exists a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 of 
\begin_inset Formula $V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{1}\right)=1$
\end_inset

 while 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{i}\right)=0$
\end_inset

 for 
\begin_inset Formula $2\leq i\leq N$
\end_inset

.
 
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 Once such a basis is found, the set 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

 will still be a basis in 
\begin_inset Formula $V$
\end_inset

 for any vector 
\begin_inset Formula $\mathbf{a}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{a}\right)\neq0$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 By definition, the property 
\begin_inset Formula $\mathbf{f}^{*}\neq0$
\end_inset

 means that there exists at least one vector 
\begin_inset Formula $\mathbf{u}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq0$
\end_inset

.
 Given the vector 
\begin_inset Formula $\mathbf{u}$
\end_inset

, we define the vector 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 by
\begin_inset Formula \[
\mathbf{v}_{1}\equiv\frac{1}{\mathbf{f}^{*}\left(\mathbf{u}\right)}\mathbf{u}.\]

\end_inset

It follows (using the linearity of 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

) that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v}_{1})=1$
\end_inset

.
 Then by Exercise\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:All-bases-have}

\end_inset

 the vector 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 can be completed to 
\emph on
some
\emph default
 basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{w}_{2},...,\mathbf{w}_{N}\right\} $
\end_inset

.
 Thereafter we define the vectors 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{v}_{N}$
\end_inset

 by the formula
\begin_inset Formula \[
\mathbf{v}_{i}\equiv\mathbf{w}_{i}-\mathbf{f}^{*}\left(\mathbf{w}_{i}\right)\mathbf{v}_{1},\quad2\leq i\leq N,\]

\end_inset

and obtain a set of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v}_{1})=1$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v}_{i})=0$
\end_inset

 for 
\begin_inset Formula $2\leq i\leq N$
\end_inset

.
 This set is linearly independent because a linear dependence among 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

,
\begin_inset Formula \[
0=\sum_{i=1}^{N}\lambda_{i}\mathbf{v}_{i}=\big(\lambda_{1}-\sum_{i=2}^{N}\lambda_{i}\mathbf{f}^{*}(\mathbf{w}_{i})\big)\mathbf{v}_{1}+\sum_{i=2}^{N}\lambda_{i}\mathbf{w}_{i},\]

\end_inset

 together with the linear independence of the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{w}_{2},...,\mathbf{w}_{N}\right\} $
\end_inset

, forces 
\begin_inset Formula $\lambda_{i}=0$
\end_inset

 for all 
\begin_inset Formula $i\geq2$
\end_inset

 and hence also 
\begin_inset Formula $\lambda_{1}=0$
\end_inset

.
 Therefore, the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is the required basis.
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 If the set 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

 were linearly dependent,
\begin_inset Formula \[
\lambda\mathbf{a}+\sum_{j=2}^{N}\lambda_{j}\mathbf{v}_{j}=0,\]

\end_inset

with 
\begin_inset Formula $\lambda_{j},\lambda$
\end_inset

 not all zero, then we would have 
\begin_inset Formula \[
\mathbf{f}^{*}\big(\lambda\mathbf{a}+\sum_{j=2}^{N}\lambda_{j}\mathbf{v}_{j}\big)=\lambda\mathbf{f}^{*}\left(\mathbf{a}\right)=0,\]

\end_inset

which forces 
\begin_inset Formula $\lambda=0$
\end_inset

 since by assumption 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{a})\neq0$
\end_inset

.
 However, 
\begin_inset Formula $\lambda=0$
\end_inset

 entails
\begin_inset Formula \[
\sum_{j=2}^{N}\lambda_{j}\mathbf{v}_{j}=0,\]

\end_inset

with 
\begin_inset Formula $\lambda_{j}$
\end_inset

 not all zero, which contradicts the linear independence of the set 
\begin_inset Formula $\left\{ \mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Suppose that 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

, 
\begin_inset Formula $\mathbf{v}_{j}\in V$
\end_inset

 is a linearly independent set (not necessarily a basis).
 Prove that there exists at least one covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 such that 
\begin_inset Formula \[
\mathbf{f}^{*}(\mathbf{v}_{1})=1,\:\textrm{while}\:\mathbf{f}^{*}(\mathbf{v}_{2})=...=\mathbf{f}^{*}(\mathbf{v}_{k})=0.\]

\end_inset


\end_layout

\begin_layout Standard

\emph on
Outline of proof:
\emph default
 The set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 can be completed to a basis in 
\begin_inset Formula $V$
\end_inset

, see Exercise\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:All-bases-have}

\end_inset

.
 Then 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is the covector dual to 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 in that basis.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Prove that the space dual to 
\begin_inset Formula $V^{*}$
\end_inset

 is canonically isomorphic to 
\begin_inset Formula $V$
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $V^{**}\cong V$
\end_inset

 (for finite-dimen\SpecialChar \-
sion\SpecialChar \-
al 
\begin_inset Formula $V$
\end_inset

).
\end_layout

\begin_layout Standard

\emph on
Hint:
\emph default
 Vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 can be thought of as linear functions on 
\begin_inset Formula $V^{*}$
\end_inset

, defined by 
\begin_inset Formula $\mathbf{v}(\mathbf{f}^{*})\equiv\mathbf{f}^{*}(\mathbf{v})$
\end_inset

.
 This provides a map 
\begin_inset Formula $V\rightarrow V^{**}$
\end_inset

, so the space 
\begin_inset Formula $V$
\end_inset

 is a subspace of 
\begin_inset Formula $V^{**}$
\end_inset

.
 Show that this map is injective.
 The dimensions of the spaces 
\begin_inset Formula $V$
\end_inset

, 
\begin_inset Formula $V^{*}$
\end_inset

, and 
\begin_inset Formula $V^{**}$
\end_inset

 are the same; deduce that 
\begin_inset Formula $V$
\end_inset

 as a subspace of 
\begin_inset Formula $V^{**}$
\end_inset

 coincides with the whole space 
\begin_inset Formula $V^{**}$
\end_inset

.
 
\end_layout

\begin_layout Subsection
Hyperplanes
\end_layout

\begin_layout Standard
Covectors are convenient for characterizing hyperplanes.
\end_layout

\begin_layout Standard
Let us begin with a familiar example: In three dimensions, the set of points
 with coordinate 
\begin_inset Formula $x=0$
\end_inset

 is a 
\emph on
plane
\emph default
.
 The set of points whose coordinates satisfy the linear equation 
\begin_inset Formula $x+2y-z=0$
\end_inset

 is another plane.
 
\end_layout

\begin_layout Standard
Instead of writing a linear equation with coordinates, one can write a covector
 applied to the vector of coordinates.
 For example, the equation 
\begin_inset Formula $x+2y-z=0$
\end_inset

 can be rewritten as 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=0$
\end_inset

, where 
\begin_inset Formula $\mathbf{x}\equiv\{ x,y,z\}\in\mathbb{R}^{3}$
\end_inset

, while the covector 
\begin_inset Formula $\mathbf{f}^{*}\in\left(\mathbb{R}^{3}\right)^{*}$
\end_inset

 is expressed through the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 as 
\begin_inset Formula \[
\mathbf{f}^{*}\equiv\mathbf{e}_{1}^{*}+2\mathbf{e}_{2}^{*}-\mathbf{e}_{3}^{*}.\]

\end_inset


\end_layout

\begin_layout Standard
The generalization of this to 
\begin_inset Formula $N$
\end_inset

 dimensions is as follows.
\end_layout

\begin_layout Paragraph
Definition 1:
\end_layout

\begin_layout Standard
The 
\series bold
hyperplane
\series default

\begin_inset LatexCommand \index{hyperplane}

\end_inset

 (i.e.\InsetSpace ~
subspace of 
\series bold
codimension
\series default
 1) 
\series bold
annihilated by
\series default
 a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 is the set of all vectors 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=0$
\end_inset

.
 (Note that the zero vector, 
\begin_inset Formula $\mathbf{x}=0$
\end_inset

, belongs to the hyperplane.)
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The hyperplane annihilated by a nonzero covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is a subspace of 
\begin_inset Formula $V$
\end_inset

 of dimension 
\begin_inset Formula $N-1$
\end_inset

 (where 
\begin_inset Formula $N\equiv\dim V$
\end_inset

).
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
It is clear that the hyperplane is a subspace of 
\begin_inset Formula $V$
\end_inset

 because for any 
\begin_inset Formula $\mathbf{x}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{x}_{2}$
\end_inset

 in the hyperplane we have
\begin_inset Formula \[
\mathbf{f}^{*}(\mathbf{x}_{1}+\lambda\mathbf{x}_{2})=\mathbf{f}^{*}(\mathbf{x}_{1})+\lambda\mathbf{f}^{*}(\mathbf{x}_{2})=0.\]

\end_inset

Hence any linear combination of 
\begin_inset Formula $\mathbf{x}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{x}_{2}$
\end_inset

 also belongs to the hyperplane, so the hyperplane is a subspace.
\end_layout

\begin_layout Standard
To determine the dimension of this subspace, we would like to construct
 a basis for the hyperplane.
 Since 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 is a nonzero covector, there exists some vector 
\begin_inset Formula $\mathbf{u}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{u}\right)\neq0$
\end_inset

.
 (This vector does not belong to the hyperplane.) The idea is to complete
 
\begin_inset Formula $\mathbf{u}$
\end_inset

 to a basis 
\begin_inset Formula $\{\mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

, such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq0$
\end_inset

 but 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v}_{i})=0$
\end_inset

; then 
\begin_inset Formula $\{\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$
\end_inset

 will be a basis in the hyperplane.
 To find such a basis 
\begin_inset Formula $\{\mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$
\end_inset

, let us first complete 
\begin_inset Formula $\mathbf{u}$
\end_inset

 to 
\emph on
some
\emph default
 basis 
\begin_inset Formula $\{\mathbf{u},\mathbf{u}_{1},...,\mathbf{u}_{N-1}\}$
\end_inset

.
 Then we define 
\begin_inset Formula $\mathbf{v}_{i}=\mathbf{u}_{i}-c_{i}\mathbf{u}$
\end_inset

 with appropriately chosen 
\begin_inset Formula $c_{i}$
\end_inset

.
 To achieve 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v}_{i})=0$
\end_inset

, we set
\begin_inset Formula \[
c_{i}=\frac{\mathbf{f}^{*}(\mathbf{u}_{i})}{\mathbf{f}^{*}(\mathbf{u})}.\]

\end_inset

 It remains to prove that 
\begin_inset Formula $\left\{ \mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\right\} $
\end_inset

 is again a basis.
 Applying 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 to a supposedly existing vanishing linear combination,
\begin_inset Formula \[
\lambda\mathbf{u}+\sum_{i=1}^{N-1}\lambda_{i}\mathbf{v}_{i}=0,\]

\end_inset

we obtain 
\begin_inset Formula $\lambda=0$
\end_inset

.
 Expressing 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 through 
\begin_inset Formula $\mathbf{u}$
\end_inset

 and 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

, we obtain a vanishing linear combination of vectors 
\begin_inset Formula $\{\mathbf{u},\mathbf{u}_{1},...,\mathbf{u}_{N-1}\}$
\end_inset

 with coefficients 
\begin_inset Formula $\lambda_{i}$
\end_inset

 at 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

.
 Hence, all 
\begin_inset Formula $\lambda_{i}$
\end_inset

 are zero, and so the set 
\begin_inset Formula $\{\mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$
\end_inset

 is linearly independent and thus a basis in 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard
Finally, we show that 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N-1}\right\} $
\end_inset

 is a basis in the hyperplane.
 By construction, every 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 belongs to the hyperplane, and so does every linear combination of the
 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

's.
 It remains to show that every 
\begin_inset Formula $\mathbf{x}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=0$
\end_inset

 can be expressed as a linear combination of the 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 For any such 
\begin_inset Formula $\mathbf{x}$
\end_inset

 we have the decomposition in the basis
\begin_inset Formula $\left\{ \mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\right\} $
\end_inset

,
\begin_inset Formula \[
\mathbf{x}=\lambda\mathbf{u}+\sum_{i=1}^{N-1}\lambda_{i}\mathbf{v}_{i}.\]

\end_inset

Applying 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 to this, we find 
\begin_inset Formula $\lambda=0$
\end_inset

.
 Hence, 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is a linear combination only of the 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 This shows that the set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 spans the hyperplane.
 The set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is linearly independent since it is a subset of a basis in 
\begin_inset Formula $V$
\end_inset

.
 Hence, 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is a basis in the hyperplane.
 Therefore, the hyperplane has dimension 
\begin_inset Formula $N-1$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Hyperplanes considered so far always contain the zero vector.
 Another useful construction is that of an 
\emph on
affine
\emph default
 hyperplane: Geometrically speaking, this is a hyperplane that has been
 shifted away from the origin.
\end_layout

\begin_layout Paragraph
Definition 2:
\end_layout

\begin_layout Standard
An 
\series bold
affine hyperplane
\series default

\begin_inset LatexCommand \index{affine hyperplane}

\end_inset

 is the set of all vectors 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=\alpha$
\end_inset

, where 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 is nonzero, and 
\begin_inset Formula $\alpha$
\end_inset

 is a number.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
An affine hyperplane with 
\begin_inset Formula $\alpha\neq0$
\end_inset

 is 
\emph on
not
\emph default
 a subspace of 
\begin_inset Formula $V$
\end_inset

 and may be described more constructively as follows.
 We first obtain a basis 
\begin_inset Formula $\{\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$
\end_inset

 of the hyperplane 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=0$
\end_inset

, as described above.
 We then choose some vector 
\begin_inset Formula $\mathbf{u}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq0$
\end_inset

; such a vector exists since 
\begin_inset Formula $\mathbf{f}^{*}\neq0$
\end_inset

.
 We can then multiply 
\begin_inset Formula $\mathbf{u}$
\end_inset

 by a constant 
\begin_inset Formula $\lambda$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\lambda\mathbf{u})=\alpha$
\end_inset

, that is, the vector 
\begin_inset Formula $\lambda\mathbf{u}$
\end_inset

 belongs to the affine hyperplane.
 Now, every vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 of the form
\begin_inset Formula \[
\mathbf{x}=\lambda\mathbf{u}+\sum_{i=1}^{N-1}\lambda_{i}\mathbf{v}_{i},\]

\end_inset

with arbitrary 
\begin_inset Formula $\lambda_{i}$
\end_inset

, belongs to the hyperplane since 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=\alpha$
\end_inset

 by construction.
 Thus, the set 
\begin_inset Formula $\{\mathbf{x}\,|\,\mathbf{f}^{*}(\mathbf{x})=\alpha\}$
\end_inset

 is a hyperplane drawn through 
\begin_inset Formula $\lambda\mathbf{u}$
\end_inset

 parallel to the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

.
 Affine hyperplanes described by the same covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 but with different values of 
\begin_inset Formula $\alpha$
\end_inset

 will differ only in the choice of the initial vector 
\begin_inset Formula $\lambda\mathbf{u}$
\end_inset

 and thus are parallel to each other, in the geometric sense.
\end_layout

\begin_layout Paragraph
Exercise: Intersection of many hyperplanes.
\end_layout

\begin_layout Standard
a) Suppose 
\begin_inset Formula $\mathbf{f}_{1}^{*},...,\mathbf{f}_{k}^{*}\in V$
\end_inset

.
 Show that the set of all vectors 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}_{i}^{*}(\mathbf{x})=0$
\end_inset

 (
\begin_inset Formula $i=1,...k$
\end_inset

) is a subspace of 
\begin_inset Formula $V$
\end_inset

.
 
\end_layout

\begin_layout Standard
b)* Show that the dimension of that subspace is equal to 
\begin_inset Formula $N-k$
\end_inset

 (where 
\begin_inset Formula $N\equiv\text{dim}V$
\end_inset

) if the set 
\begin_inset Formula $\{\mathbf{f}_{1}^{*},...,\mathbf{f}_{k}^{*}\}$
\end_inset

 is linearly independent.
\end_layout

\begin_layout Section
Tensor product of vector spaces
\end_layout

\begin_layout Standard
The tensor product is an abstract construction which is important in many
 applications.
 The motivation is that we would like to define a product of vectors, 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}$
\end_inset

, which behaves as we expect a product to behave, e.g.
 
\begin_inset Formula \[
\left(\mathbf{a}+\lambda\mathbf{b}\right)\otimes\mathbf{c}=\mathbf{a}\otimes\mathbf{c}+\lambda\mathbf{b}\otimes\mathbf{c},\quad\forall\lambda\in\mathbb{K},\:\forall\mathbf{a},\mathbf{b},\mathbf{c}\in V,\]

\end_inset

and the same with respect to the second vector.
 This property is called 
\series bold
bilinearity
\series default
.
 A 
\begin_inset Quotes eld
\end_inset

trivial
\begin_inset Quotes erd
\end_inset

 product would be 
\begin_inset Formula $\mathbf{a}\otimes\mathbf{b}=0$
\end_inset

 for all 
\begin_inset Formula $\mathbf{a},\mathbf{b}$
\end_inset

; of course, this product has the bilinearity property but is useless.
 It turns out to be impossible to define a nontrivial product of vectors
 in a general vector space, such that the result is again a vector in the
 same space.
\begin_inset Foot
status collapsed

\begin_layout Standard
The impossibility of this is proved in abstract algebra but I do not know
 the proof.
\end_layout

\end_inset

 The solution is to define a product of vectors so that the resulting object
 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}$
\end_inset

 is not a vector from 
\begin_inset Formula $V$
\end_inset

 but an element of 
\emph on
another
\emph default
 
\emph on
space
\emph default
.
 This space is constructed in the following definition.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 are two vector spaces over a field 
\begin_inset Formula $\mathbb{K}$
\end_inset

; then one defines a new vector space, which is called the 
\series bold
tensor
\begin_inset LatexCommand \index{tensor product}

\end_inset

 product
\series default
 of 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 and denoted by 
\begin_inset Formula $V\otimes W$
\end_inset

.
 This is the space of 
\emph on
expressions
\emph default
 of the form
\begin_inset Formula \begin{equation}
\mathbf{v}_{1}\otimes\mathbf{w}_{1}+...+\mathbf{v}_{n}\otimes\mathbf{w}_{n},\label{eq:VW product repre}\end{equation}

\end_inset

where 
\begin_inset Formula $\mathbf{v}_{i}\in V$
\end_inset

, 
\begin_inset Formula $\mathbf{w}_{i}\in W$
\end_inset

.
 The plus sign behaves as usual (commutative and associative).
 The symbol 
\begin_inset Formula $\otimes$
\end_inset

 is a special separator symbol.
 Further, we postulate that the following combinations are equal,
\begin_inset Formula \begin{align}
\lambda\left(\mathbf{v}\otimes\mathbf{w}\right) & =\left(\lambda\mathbf{v}\right)\otimes\mathbf{w}=\mathbf{v}\otimes\left(\lambda\mathbf{w}\right),\label{eq:tp props 0}\\
\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\otimes\mathbf{w} & =\mathbf{v}_{1}\otimes\mathbf{w}+\mathbf{v}_{2}\otimes\mathbf{w},\label{eq:tp props 1}\\
\mathbf{v}\otimes\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right) & =\mathbf{v}\otimes\mathbf{w}_{1}+\mathbf{v}\otimes\mathbf{w}_{2},\label{eq:tp props 2}\end{align}

\end_inset

for any vectors 
\begin_inset Formula $\mathbf{v},\mathbf{w},\mathbf{v}_{1,2},\mathbf{w}_{1,2}$
\end_inset

 and for any constant 
\begin_inset Formula $\lambda$
\end_inset

.
 (One could say that the symbol 
\begin_inset Formula $\otimes$
\end_inset

 
\begin_inset Quotes eld
\end_inset

behaves as a noncommutative product sign
\begin_inset Quotes erd
\end_inset

.) The expression 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{w}$
\end_inset

, which is by definition an element of 
\begin_inset Formula $V\otimes W$
\end_inset

, is called the 
\series bold
tensor product
\series default
 of vectors 
\begin_inset Formula $\mathbf{v}$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}$
\end_inset

.
 In the space 
\begin_inset Formula $V\otimes W$
\end_inset

, the operations of addition and multiplication by scalars are defined in
 the natural way.
 Elements of the tensor product space are called 
\series bold
tensors
\series default
.
\end_layout

\begin_layout Paragraph
Question: 
\end_layout

\begin_layout Standard
The set 
\begin_inset Formula $V\otimes W$
\end_inset

 is a vector space.
 What is the zero vector in that space?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Since 
\begin_inset Formula $V\otimes W$
\end_inset

 is a vector space, the zero element 
\begin_inset Formula $0\in V\otimes W$
\end_inset

 can be obtained by multiplying any other element of 
\begin_inset Formula $V\otimes W$
\end_inset

 by the number 
\begin_inset Formula $0$
\end_inset

.
 So, according to Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

), we have 
\begin_inset Formula $0=0\left(\mathbf{v}\otimes\mathbf{w}\right)=\left(0\mathbf{v}\right)\otimes\mathbf{w}=0\otimes\mathbf{w}=0\otimes(0\mathbf{w})=0\otimes0$
\end_inset

.
 In other words, the zero element is represented by the tensor 
\begin_inset Formula $0\otimes0$
\end_inset

.
 It will not cause confusion if we simply write 
\begin_inset Formula $0$
\end_inset

 for this zero tensor.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Generally, one calls something a 
\series bold
tensor
\series default

\begin_inset LatexCommand \index{tensor}

\end_inset

 if it belongs to a space that was previously defined as a tensor product
 of some other vector spaces
\shape slanted
.
\end_layout

\begin_layout Standard
According to the above definition, we may perform calculations with the
 tensor product expressions by expanding brackets or moving scalar factors,
 as if 
\begin_inset Formula $\otimes$
\end_inset

 is a kind of multiplication.
 For example, if 
\begin_inset Formula $\mathbf{v}_{i}\in V$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}_{i}\in W$
\end_inset

 then
\begin_inset Formula \begin{align*}
\frac{1}{3}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\otimes\left(\mathbf{w}_{1}-2\mathbf{w}_{2}\right) & =\frac{1}{3}\mathbf{v}_{1}\otimes\mathbf{w}_{1}-\frac{1}{3}\mathbf{v}_{2}\otimes\mathbf{w}_{1}\\
 & -\frac{2}{3}\mathbf{v}_{1}\otimes\mathbf{w}_{2}+\frac{2}{3}\mathbf{v}_{2}\otimes\mathbf{w}_{2}.\end{align*}

\end_inset

Note that we cannot simplify this expression any further, because by definition
 
\emph on
no other combinations
\emph default
 of tensor products are equal 
\emph on
except
\emph default
 those specified in Eqs.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

).
 This calculation illustrates that 
\begin_inset Formula $\otimes$
\end_inset

 is a formal symbol, so in particular 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{w}$
\end_inset

 is not a new vector from 
\begin_inset Formula $V$
\end_inset

 or from 
\begin_inset Formula $W$
\end_inset

 but is a new entity, an element of a new vector space that we just defined.
 
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
The logic behind the operation 
\begin_inset Formula $\otimes$
\end_inset

 is still unclear.
 How could we write the properties\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

) if the operation 
\begin_inset Formula $\otimes$
\end_inset

 was not yet defined?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
We actually 
\emph on
define
\emph default
 the operation 
\begin_inset Formula $\otimes$
\end_inset

 through these properties.
 In other words, the object 
\begin_inset Formula $\mathbf{a}\otimes\mathbf{b}$
\end_inset

 is defined as an expression with which one may perform certain manipulations.
 Here is a more formal definition of the tensor product space.
 We first consider the space of 
\emph on
all
\emph default
 formal linear combinations
\begin_inset Formula \[
\lambda_{1}\mathbf{v}_{1}\otimes\mathbf{w}_{1}+...+\lambda_{n}\mathbf{v}_{n}\otimes\mathbf{w}_{n},\]

\end_inset

which is a very large vector space.
 Then we introduce equivalence relations expressed by Eqs.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

).
 The space 
\begin_inset Formula $V\otimes W$
\end_inset

 is, by definition, the set of equivalence classes of linear combinations
 with respect to these relations.
 Representatives of these equivalence classes may be written in the form\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:VW product repre}

\end_inset

) and calculations can be performed using only the axioms\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Note that 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{w}$
\end_inset

 is generally different from 
\begin_inset Formula $\mathbf{w}\otimes\mathbf{v}$
\end_inset

 because the vectors 
\begin_inset Formula $\mathbf{v}$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}$
\end_inset

 can belong to different vector spaces.
 Pedantically, one can also define the tensor product space 
\begin_inset Formula $W\otimes V$
\end_inset

 and then demonstrate a canonical isomorphism 
\begin_inset Formula $V\otimes W\cong W\otimes V$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Prove that the spaces 
\begin_inset Formula $V\otimes W$
\end_inset

 and 
\begin_inset Formula $W\otimes V$
\end_inset

 are canonically isomorphic.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
A canonical isomorphism will map the expression 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{w}\in V\otimes W$
\end_inset

 into 
\begin_inset Formula $\mathbf{w}\otimes\mathbf{v}\in W\otimes V$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The representation of a tensor 
\begin_inset Formula $A\in V\otimes W$
\end_inset

 in the form\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:VW product repre}

\end_inset

) is 
\emph on
not
\emph default
 
\emph on
unique
\emph default
, i.e.\InsetSpace ~
there may be many possible choices of the vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}_{j}$
\end_inset

 that give the same tensor 
\begin_inset Formula $A$
\end_inset

.
 For example,
\begin_inset Formula \begin{align*}
A & \equiv\mathbf{v}_{1}\otimes\mathbf{w}_{1}+\mathbf{v}_{2}\otimes\mathbf{w}_{2}=\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\otimes\mathbf{w}_{1}+\mathbf{v}_{2}\otimes\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right).\end{align*}

\end_inset

This is quite similar to the identity 
\begin_inset Formula $2+3=(2-1)+(3+1)$
\end_inset

, except that in this case we can simplify 
\begin_inset Formula $2+3=5$
\end_inset

 while in the tensor product space no such simplification is possible.
 I stress that two tensor expressions 
\begin_inset Formula $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}$
\end_inset

 and 
\begin_inset Formula $\sum_{k}\mathbf{v}_{k}^{\prime}\otimes\mathbf{w}_{k}^{\prime}$
\end_inset

 are equal 
\emph on
only if
\emph default
 they can be related by a chain of identities of the form\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

); such are the axioms of the tensor product.
\end_layout

\begin_layout Subsection
First examples
\end_layout

\begin_layout Paragraph
Example 1: polynomials.
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $V$
\end_inset

 be the space of polynomials having a degree 
\begin_inset Formula $\leq2$
\end_inset

 in the variable 
\begin_inset Formula $x$
\end_inset

, and let 
\begin_inset Formula $W$
\end_inset

 be the space of polynomials of degree 
\begin_inset Formula $\leq2$
\end_inset

 in the variable 
\begin_inset Formula $y$
\end_inset

.
 We consider the tensor product of the elements 
\begin_inset Formula $p(x)=1+x$
\end_inset

 and 
\begin_inset Formula $q(y)=y^{2}-2y$
\end_inset

.
 Expanding the tensor product according to the axioms, we find
\begin_inset Formula \[
\left(1+x\right)\otimes\left(y^{2}-2y\right)=1\otimes y^{2}-1\otimes2y+x\otimes y^{2}-x\otimes2y.\]

\end_inset

Let us compare this with the formula we would obtain by multiplying the
 polynomials in the conventional way,
\begin_inset Formula \[
\left(1+x\right)\left(y^{2}-2y\right)=y^{2}-2y+xy^{2}-2xy.\]

\end_inset

Note that 
\begin_inset Formula $1\otimes2y=2\otimes y$
\end_inset

 and 
\begin_inset Formula $x\otimes2y=2x\otimes y$
\end_inset

 according to the axioms of the tensor product.
 So we can see that the tensor product space 
\begin_inset Formula $V\otimes W$
\end_inset

 has a natural interpretation through the algebra of polynomials.
 The space 
\begin_inset Formula $V\otimes W$
\end_inset

 can be visualized as the space of polynomials in both 
\begin_inset Formula $x$
\end_inset

 and 
\begin_inset Formula $y$
\end_inset

 of degree at most 
\begin_inset Formula $2$
\end_inset

 in each variable.
 To make this interpretation precise, we can construct a canonical isomorphism
 between the space 
\begin_inset Formula $V\otimes W$
\end_inset

 and the space of polynomials in 
\begin_inset Formula $x$
\end_inset

 and 
\begin_inset Formula $y$
\end_inset

 of degree at most 
\begin_inset Formula $2$
\end_inset

 in each variable.
 The isomorphism maps the tensor 
\begin_inset Formula $p(x)\otimes q(y)$
\end_inset

 to the polynomial 
\begin_inset Formula $p(x)q(y)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 2: 
\begin_inset Formula ${\mathbb{R}^{3}\otimes\mathbb{C}}$
\end_inset

.
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $V$
\end_inset

 be the three-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

, and let 
\begin_inset Formula $W$
\end_inset

 be the set of all complex numbers 
\begin_inset Formula $\mathbb{C}$
\end_inset

 considered as a vector space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
 Then the tensor product of 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 is, by definition, the space of combinations of the form
\begin_inset Formula \[
\left(x_{1},y_{1},z_{1}\right)\otimes\left(a_{1}+b_{1}\text{i}\right)+\left(x_{2},y_{2},z_{2}\right)\otimes\left(a_{2}+b_{2}\text{i}\right)+...\]

\end_inset

Here 
\begin_inset Quotes eld
\end_inset

i
\begin_inset Quotes erd
\end_inset

 can be treated as a formal symbol; of course we know that 
\begin_inset Formula $\text{i}^{2}=-1$
\end_inset

, but our vector spaces are over 
\begin_inset Formula $\mathbb{R}$
\end_inset

 and so we will not need to 
\emph on
multiply
\emph default
 complex numbers when we perform calculations in these spaces.
 Since
\begin_inset Formula \begin{align*}
\left(x,y,z\right)\otimes\left(a+b\text{i}\right) & =\left(ax,ay,az\right)\otimes1+\left(bx,by,bz\right)\otimes\text{i},\end{align*}

\end_inset

any element of 
\begin_inset Formula ${\mathbb{R}^{3}\otimes\mathbb{C}}$
\end_inset

 can be represented by the expression 
\begin_inset Formula $\mathbf{v}_{1}\otimes1+\mathbf{v}_{2}\otimes\text{i}$
\end_inset

, where 
\begin_inset Formula $\mathbf{v}_{1,2}\in\mathbb{R}^{3}$
\end_inset

.
 For brevity one can write such expressions as 
\begin_inset Formula $\mathbf{v}_{1}+\mathbf{v}_{2}\text{i}$
\end_inset

.
 One also writes 
\begin_inset Formula ${\mathbb{R}^{3}\otimes_{\mathbb{R}}\mathbb{C}}$
\end_inset

 to emphasize the fact that it is a space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
 In other words, 
\begin_inset Formula ${\mathbb{R}^{3}\otimes_{\mathbb{R}}\mathbb{C}}$
\end_inset

 is the space of three-dimen\SpecialChar \-
sion\SpecialChar \-
al vectors 
\begin_inset Quotes eld
\end_inset

with complex coefficients.
\begin_inset Quotes erd
\end_inset

 
\begin_inset Note Note
status collapsed

\begin_layout Standard
There is also another useful view of this space, namely as a vector space
 over 
\begin_inset Formula $\mathbb{C}$
\end_inset

.
 Namely, containing vectors of the form 
\begin_inset Formula \[
\left(a_{1}+b_{1}\text{i},a_{2}+b_{2}\text{i},a_{3}+b_{3}\text{i}\right).\]

\end_inset

It is clear that 
\begin_inset Formula $\mathbb{R}^{3}\otimes_{\mathbb{C}}\mathbb{C}$
\end_inset

 is isomorphic to 
\begin_inset Formula $\mathbb{C}^{3}$
\end_inset

.
\end_layout

\end_inset

 This space is six-dimen\SpecialChar \-
sion\SpecialChar \-
al.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
We can consider 
\begin_inset Formula ${\mathbb{R}^{3}\otimes_{\mathbb{R}}\mathbb{C}}$
\end_inset

 as a vector space over 
\begin_inset Formula $\mathbb{C}$
\end_inset

 if we define the multiplication by a complex number 
\begin_inset Formula $\lambda$
\end_inset

 by 
\begin_inset Formula $\lambda(\mathbf{v}\otimes z)\equiv\mathbf{v}\otimes(\lambda z)$
\end_inset

 for 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and 
\begin_inset Formula $\lambda,z\in\mathbb{C}$
\end_inset

.
 Compute explicitly 
\begin_inset Formula \[
\lambda\left(\mathbf{v}_{1}\otimes1+\mathbf{v}_{2}\otimes\text{i}\right)=?\]

\end_inset

 Determine the dimension of the space 
\begin_inset Formula ${\mathbb{R}^{3}\otimes_{\mathbb{R}}\mathbb{C}}$
\end_inset

 when viewed as a vector space over 
\begin_inset Formula $\mathbb{C}$
\end_inset

 in this way.
\end_layout

\begin_layout Paragraph
Example 3: 
\begin_inset Formula $V\otimes\mathbb{K}$
\end_inset

 is isomorphic to 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard
Since 
\begin_inset Formula $\mathbb{K}$
\end_inset

 is a vector space over itself, we can consider the tensor product of 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
 However, nothing is gained: the space 
\begin_inset Formula $V\otimes\mathbb{K}$
\end_inset

 is canonically isomorphic to 
\begin_inset Formula $V$
\end_inset

.
 This can be easily verified: an element 
\begin_inset Formula $\mathbf{x}$
\end_inset

 of 
\begin_inset Formula $V\otimes\mathbb{K}$
\end_inset

 is by definition an expression of the form 
\begin_inset Formula $\mathbf{x}=\mathbf{v}_{1}\otimes\lambda_{1}+...+\mathbf{v}_{n}\otimes\lambda_{n}$
\end_inset

, however, it follows from the axiom\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)  that 
\begin_inset Formula $\mathbf{v}_{1}\otimes\lambda_{1}=\left(\lambda_{1}\mathbf{v}_{1}\right)\otimes1$
\end_inset

, therefore 
\begin_inset Formula $\mathbf{x}=\left(\lambda_{1}\mathbf{v}_{1}+...+\lambda_{n}\mathbf{v}_{n}\right)\otimes1$
\end_inset

.
 Thus for any 
\begin_inset Formula $\mathbf{x}\in V\otimes\mathbb{K}$
\end_inset

 there exists a unique 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{x}=\mathbf{v}\otimes1$
\end_inset

.
 In other words, there is a canonical isomorphism 
\begin_inset Formula $V\rightarrow V\otimes\mathbb{K}$
\end_inset

 which maps 
\begin_inset Formula $\mathbf{v}$
\end_inset

 into 
\begin_inset Formula $\mathbf{v}\otimes1$
\end_inset

.
 
\end_layout

\begin_layout Subsection
Example: 
\begin_inset Formula $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
\end_inset


\begin_inset LatexCommand \label{sub:Example:mn}

\end_inset


\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{m}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n}\right\} $
\end_inset

 be the standard bases in 
\begin_inset Formula $\mathbb{R}^{m}$
\end_inset

 and 
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset

 respectively.
 The vector space 
\begin_inset Formula $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
\end_inset

 consists, by definition, of expressions of the form
\begin_inset Formula \[
\mathbf{v}_{1}\otimes\mathbf{w}_{1}+...+\mathbf{v}_{k}\otimes\mathbf{w}_{k}=\sum_{i=1}^{k}\mathbf{v}_{i}\otimes\mathbf{w}_{i},\quad\mathbf{v}_{i}\in\mathbb{R}^{m},\,\mathbf{w}_{i}\in\mathbb{R}^{n}.\]

\end_inset

The vectors 
\begin_inset Formula $\mathbf{v}_{i},\mathbf{w}_{i}$
\end_inset

 can be decomposed as follows,
\begin_inset Formula \begin{equation}
\mathbf{v}_{i}=\sum_{j=1}^{m}\lambda_{ij}\mathbf{e}_{j},\quad\mathbf{w}_{i}=\sum_{l=1}^{n}\mu_{il}\mathbf{f}_{l},\label{eq:v w expr}\end{equation}

\end_inset

where 
\begin_inset Formula $\lambda_{ij}$
\end_inset

 and 
\begin_inset Formula $\mu_{ij}$
\end_inset

 are some coefficients.
 Then
\begin_inset Formula \begin{align*}
\sum_{i=1}^{k}\mathbf{v}_{i}\otimes\mathbf{w}_{i} & =\sum_{i=1}^{k}\left(\sum_{j=1}^{m}\lambda_{ij}\mathbf{e}_{j}\right)\otimes\left(\sum_{l=1}^{n}\mu_{il}\mathbf{f}_{l}\right)\\
 & =\sum_{j=1}^{m}\sum_{l=1}^{n}\left(\sum_{i=1}^{k}\lambda_{ij}\mu_{il}\right)\left(\mathbf{e}_{j}\otimes\mathbf{f}_{l}\right)\\
 & =\sum_{j=1}^{m}\sum_{l=1}^{n}C_{jl}\mathbf{e}_{j}\otimes\mathbf{f}_{l},\end{align*}

\end_inset

where 
\begin_inset Formula $C_{jl}\equiv\sum_{i=1}^{k}\lambda_{ij}\mu_{il}$
\end_inset

 is a certain set of numbers.
 In other words, an arbitrary element of 
\begin_inset Formula $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
\end_inset

 can be expressed as a linear combination of 
\begin_inset Formula $\mathbf{e}_{j}\otimes\mathbf{f}_{l}$
\end_inset

.
 In Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-tensor}

\end_inset

 (after some preparatory work) we will prove that the the set of tensors
 
\begin_inset Formula \[
\left\{ \mathbf{e}_{j}\otimes\mathbf{f}_{l}\,|\,1\leq j\leq m,1\leq l\leq n\right\} \]

\end_inset

 is linearly independent and therefore is a basis in the space 
\begin_inset Formula $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
\end_inset

.
 It follows that the space 
\begin_inset Formula $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
\end_inset

 has dimension 
\begin_inset Formula $mn$
\end_inset

 and that elements of 
\begin_inset Formula $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
\end_inset

 can be represented by 
\emph on
rectangular tables
\emph default
 of components 
\begin_inset Formula $C_{jl}$
\end_inset

, where 
\begin_inset Formula $1\leq j\leq m$
\end_inset

, 
\begin_inset Formula $1\leq l\leq n$
\end_inset

.
 In other words, the space 
\begin_inset Formula $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
\end_inset

 is isomorphic to the linear space of rectangular 
\begin_inset Formula $m\times n$
\end_inset

 matrices with coefficients from 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
 This isomorphism is 
\emph on
not
\emph default
 
\emph on
canonical
\emph default
 because the components 
\begin_inset Formula $C_{jl}$
\end_inset

 depend on the choice of the bases 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\right\} $
\end_inset

.
\end_layout

\begin_layout Subsection
Dimension of tensor product is the product of dimensions
\begin_inset LatexCommand \label{sub:Dimension-of-tensor}

\end_inset


\end_layout

\begin_layout Standard
We have seen above that the dimension of a direct sum 
\begin_inset Formula $V\oplus W$
\end_inset

 is the sum of dimensions of 
\begin_inset Formula $V$
\end_inset

 and of 
\begin_inset Formula $W$
\end_inset

.
 Now the analogous statement: The dimension of a tensor product space 
\begin_inset Formula $V\otimes W$
\end_inset

 is equal to 
\begin_inset Formula $\dim V\cdot\dim W$
\end_inset

.
 
\end_layout

\begin_layout Standard
To prove this statement, we will explicitly construct a basis in 
\begin_inset Formula $V\otimes W$
\end_inset

 out of two given bases in 
\begin_inset Formula $V$
\end_inset

 and in 
\begin_inset Formula $W$
\end_inset

.
 Throughout this section, we consider finite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector spaces 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 and vectors 
\begin_inset Formula $\mathbf{v}_{j}\in V$
\end_inset

, 
\begin_inset Formula $\mathbf{w}_{j}\in W$
\end_inset

.
\end_layout

\begin_layout Paragraph
Lemma 1:
\end_layout

\begin_layout Standard

\series bold
a)
\series default
 If 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{m}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{w}_{1},...,\mathbf{w}_{n}\right\} $
\end_inset

 are two bases in their respective spaces then any element 
\begin_inset Formula $A\in V\otimes W$
\end_inset

 can be expressed as a linear combination of the form
\begin_inset Formula \[
A=\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}\]

\end_inset

with some coefficients 
\begin_inset Formula $\lambda_{jk}$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
b)
\series default
 Any tensor 
\begin_inset Formula $A\in V\otimes W$
\end_inset

 can be written as a linear combination 
\begin_inset Formula $A=\sum_{k}\mathbf{a}_{k}\otimes\mathbf{b}_{k}$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}_{k}\in V$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}_{k}\in W$
\end_inset

, with at most 
\begin_inset Formula $\min\left(m,n\right)$
\end_inset

 terms in the sum.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
a)
\series default
 The required decomposition was given in Example\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Example:mn}

\end_inset

.
 
\end_layout

\begin_layout Standard

\series bold
b)
\series default
 We can group the 
\begin_inset Formula $n$
\end_inset

 terms 
\begin_inset Formula $\lambda_{jk}\mathbf{w}_{k}$
\end_inset

 into new vectors 
\begin_inset Formula $\mathbf{b}_{j}$
\end_inset

 and obtain the required formula with 
\begin_inset Formula $m$
\end_inset

 terms:
\begin_inset Formula \[
A=\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}=\sum_{j=1}^{m}\mathbf{v}_{j}\otimes\mathbf{b}_{j},\quad\mathbf{b}_{j}\equiv\sum_{k=1}^{n}\lambda_{jk}\mathbf{w}_{k}.\]

\end_inset

I will call this formula the 
\series bold
decomposition
\series default
 of the tensor 
\begin_inset Formula $A$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 Since a similar decomposition with 
\begin_inset Formula $n$
\end_inset

 terms exists for the basis 
\begin_inset Formula $\left\{ \mathbf{w}_{k}\right\} $
\end_inset

, it follows that 
\begin_inset Formula $A$
\end_inset

 has a decomposition with at most 
\begin_inset Formula $\min\left(m,n\right)$
\end_inset

 terms (not all terms in the decomposition need to be nonzero).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
We have proved that the set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\otimes\mathbf{w}_{k}\right\} $
\end_inset

 allows us to express any tensor 
\begin_inset Formula $A$
\end_inset

 as a linear combination; in other words, the set 
\begin_inset Formula \[
\left\{ \mathbf{v}_{j}\otimes\mathbf{w}_{k}\,|\,1\leq j\leq m,\,1\leq k\leq n\right\} \]

\end_inset

 spans the space 
\begin_inset Formula $V\otimes W$
\end_inset

.
 This set will be a basis in 
\begin_inset Formula $V\otimes W$
\end_inset

 if it is linearly independent, which we have not yet proved.
 This is a somewhat subtle point; indeed, how do we show that there exists
 no linear dependence, say, of the form 
\series bold

\begin_inset Formula \[
\lambda_{1}\mathbf{v}_{1}\otimes\mathbf{w}_{1}+\lambda_{2}\mathbf{v}_{2}\otimes\mathbf{w}_{2}=0\]

\end_inset


\series default
with some nonzero coefficients 
\begin_inset Formula $\lambda_{i}$
\end_inset

? Is it perhaps possible to juggle tensor products to obtain such a relation?
 The answer is negative, but the proof is a bit circumspect.
 We will use covectors from 
\begin_inset Formula $V^{*}$
\end_inset

 in a nontraditional way, namely not as linear maps 
\begin_inset Formula $V\rightarrow\mathbb{K}$
\end_inset

 but as maps 
\begin_inset Formula $V\otimes W\rightarrow W$
\end_inset

.
\end_layout

\begin_layout Paragraph
Lemma 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 is any covector, we define the map 
\begin_inset Formula $\mathbf{f}^{*}:V\otimes W\rightarrow W$
\end_inset

 (tensors into vectors) by the formula
\begin_inset Formula \begin{equation}
\mathbf{f}^{*}\big(\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}\big)\equiv\sum_{k}\mathbf{f}^{*}\left(\mathbf{v}_{k}\right)\mathbf{w}_{k}.\label{eq:fg rule}\end{equation}

\end_inset

Then this map is a linear map 
\begin_inset Formula $V\otimes W\rightarrow W$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:fg rule}

\end_inset

) defines the map explicitly (and canonically!).
 It is easy to see that any linear combinations of tensors are mapped into
 the corresponding linear combinations of vectors,
\begin_inset Formula \[
\mathbf{f}^{*}\left(\mathbf{v}_{k}\otimes\mathbf{w}_{k}+\lambda\mathbf{v}_{k}^{\prime}\otimes\mathbf{w}_{k}^{\prime}\right)=\mathbf{f}^{*}\left(\mathbf{v}_{k}\right)\mathbf{w}_{k}+\lambda\mathbf{f}^{*}\left(\mathbf{v}_{k}^{\prime}\right)\mathbf{w}_{k}^{\prime}.\]

\end_inset

This follows from the definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:fg rule}

\end_inset

) and the linearity of the map 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

.
 However, there is one potential problem: there exist 
\emph on
many
\emph default
 representations of an element 
\begin_inset Formula $A\in V\otimes W$
\end_inset

 as an expression of the form 
\begin_inset Formula $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}$
\end_inset

 with different choices of 
\begin_inset Formula $\mathbf{v}_{k},\mathbf{w}_{k}$
\end_inset

.
 Thus we need to show that the map 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is well-defined by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:fg rule}

\end_inset

), i.e.\InsetSpace ~
that 
\begin_inset Formula $\mathbf{f}^{*}(A)$
\end_inset

 is always the same vector regardless of the choice of the vectors 
\begin_inset Formula $\mathbf{v}_{k}$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}_{k}$
\end_inset

 used to represent 
\begin_inset Formula $A$
\end_inset

 as 
\begin_inset Formula $A=\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}$
\end_inset

.
 Recall that different expressions of the form 
\begin_inset Formula $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}$
\end_inset

 can be equal as a consequence of the axioms\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

).
\end_layout

\begin_layout Standard
In other words, we need to prove that a tensor equality
\begin_inset Formula \begin{equation}
\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}=\sum_{k}\mathbf{v}_{k}^{\prime}\otimes\mathbf{w}_{k}^{\prime}\label{eq:vw equal}\end{equation}

\end_inset

entails
\begin_inset Formula \[
\mathbf{f}^{*}\big(\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}\big)=\mathbf{f}^{*}\big(\sum_{k}\mathbf{v}_{k}^{\prime}\otimes\mathbf{w}_{k}^{\prime}\big).\]

\end_inset

 To prove this, we need to use the definition of the tensor product.
 Two expressions in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:vw equal}

\end_inset

) can be equal 
\emph on
only
\emph default
 if they are related by a chain of identities of the form\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

), therefore it is sufficient to prove that the map 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 transforms both sides of each of those identities into the same vector.
 This is verified by explicit calculations, for example we need to check
 that
\begin_inset Formula \begin{align*}
\mathbf{f}^{*}\left(\lambda\mathbf{v}\otimes\mathbf{w}\right) & =\lambda\mathbf{f}^{*}\left(\mathbf{v}\otimes\mathbf{w}\right),\\
\mathbf{f}^{*}\left[\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\otimes\mathbf{w}\right] & =\mathbf{f}^{*}\left(\mathbf{v}_{1}\otimes\mathbf{w}\right)+\mathbf{f}^{*}\left(\mathbf{v}_{2}\otimes\mathbf{w}\right),\\
\mathbf{f}^{*}\left[\mathbf{v}\otimes\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)\right] & =\mathbf{f}^{*}\left(\mathbf{v}\otimes\mathbf{w}_{1}\right)+\mathbf{f}^{*}\left(\mathbf{v}\otimes\mathbf{w}_{2}\right).\end{align*}

\end_inset

These simple calculations look tautological, so please check that you can
 do them and explain why they are necessary for this proof.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Paragraph
Lemma 3:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{m}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
\end_inset

 are two linearly independent sets in their respective spaces then the set
 
\begin_inset Formula \[
\left\{ \mathbf{v}_{j}\otimes\mathbf{w}_{k}\right\} \equiv\left\{ \mathbf{v}_{1}\otimes\mathbf{w}_{1},\mathbf{v}_{1}\otimes\mathbf{w}_{2},...,\mathbf{v}_{m}\otimes\mathbf{w}_{n-1},\mathbf{v}_{m}\otimes\mathbf{w}_{n}\right\} \]

\end_inset

is linearly independent in the space 
\begin_inset Formula $V\otimes W$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We need to prove that a vanishing linear combination 
\begin_inset Formula \begin{equation}
\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}=0\label{eq:comb1 vw}\end{equation}

\end_inset

is possible only if all 
\begin_inset Formula $\lambda_{jk}=0$
\end_inset

.
 Let us choose some fixed value 
\begin_inset Formula $j_{1}$
\end_inset

; we will now prove that 
\begin_inset Formula $\lambda_{j_{1}k}=0$
\end_inset

 for all 
\begin_inset Formula $k$
\end_inset

.
 By the result of Exercise\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dual-vector-space}

\end_inset

 there exists a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{j}\right)=\delta_{j_{1}j}$
\end_inset

 for 
\begin_inset Formula $j=1,...,n$
\end_inset

.
 Then we apply the map 
\begin_inset Formula $\mathbf{f}^{*}:V\otimes W\rightarrow W$
\end_inset

 defined in Lemma\InsetSpace ~
1 to Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:comb1 vw}

\end_inset

).
 On the one hand, it follows from Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:comb1 vw}

\end_inset

) that
\begin_inset Formula \[
\mathbf{f}^{*}\big[\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}\big]=\mathbf{f}^{*}\left(0\right)=0.\]

\end_inset

On the other hand, by definition of the map 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 we have
\begin_inset Formula \begin{align*}
\mathbf{f}^{*}\big[\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}\big] & =\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{f}^{*}\left(\mathbf{v}_{j}\right)\mathbf{w}_{k}\\
 & =\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\delta_{j_{1}j}\mathbf{w}_{k}=\sum_{k=1}^{n}\lambda_{j_{1}k}\mathbf{w}_{k}.\end{align*}

\end_inset

Therefore 
\begin_inset Formula $\sum_{k}\lambda_{j_{1}k}\mathbf{w}_{k}=0$
\end_inset

.
 Since the set 
\begin_inset Formula $\left\{ \mathbf{w}_{k}\right\} $
\end_inset

 is linearly independent, we must have 
\begin_inset Formula $\lambda_{j_{1}k}=0$
\end_inset

 for all 
\begin_inset Formula $k=1,...,n$
\end_inset

.
\hfill
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\end_inset
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\begin_layout Standard
Now we are ready to prove the main statement of this section.
\end_layout

\begin_layout Paragraph
Theorem:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 are finite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector spaces then 
\begin_inset Formula \[
\dim\left(V\otimes W\right)=\dim V\cdot\dim W.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
By definition of dimension, there exist linearly independent sets of 
\begin_inset Formula $m\equiv\dim V$
\end_inset

 vectors in 
\begin_inset Formula $V$
\end_inset

 and of 
\begin_inset Formula $n\equiv\dim W$
\end_inset

 vectors in 
\begin_inset Formula $W$
\end_inset

, and by the basis theorem these sets are bases in 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 respectively.
 By Lemma\InsetSpace ~
1 the set of 
\begin_inset Formula $mn$
\end_inset

 elements 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\otimes\mathbf{w}_{k}\right\} $
\end_inset

 spans the space 
\begin_inset Formula $V\otimes W$
\end_inset

, and by Lemma\InsetSpace ~
3 this set is linearly independent.
 Therefore this set is a basis.
 Hence, there are no linearly independent sets of 
\begin_inset Formula $mn+1$
\end_inset

 elements in 
\begin_inset Formula $V\otimes W$
\end_inset

, so 
\begin_inset Formula $\dim\left(V\otimes W\right)=mn$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Subsection
Higher-rank tensor products
\end_layout

\begin_layout Standard
The tensor product of several spaces is defined similarly, e.g.\InsetSpace ~

\begin_inset Formula $U\otimes V\otimes W$
\end_inset

 is the space of expressions of the form
\begin_inset Formula \[
\mathbf{u}_{1}\otimes\mathbf{v}_{1}\otimes\mathbf{w}_{1}+...+\mathbf{u}_{n}\otimes\mathbf{v}_{n}\otimes\mathbf{w}_{n},\quad\mathbf{u}_{i},\mathbf{v}_{i},\mathbf{w}_{i}\in V.\]

\end_inset

Alternatively (and equivalently) one can define the space 
\begin_inset Formula $U\otimes V\otimes W$
\end_inset

 as the tensor product of the spaces 
\begin_inset Formula $U\otimes V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise
\begin_inset Formula $^{*}$
\end_inset

:
\end_layout

\begin_layout Standard
Prove that 
\begin_inset Formula $(U\otimes V)\otimes W\cong U\otimes(V\otimes W)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Definition: 
\end_layout

\begin_layout Standard
If we only work with one space 
\begin_inset Formula $V$
\end_inset

 and if all other spaces are constructed out of 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $V^{*}$
\end_inset

 using the tensor product, then we only need spaces of the form 
\begin_inset Formula \[
\underbrace{V\otimes...\otimes V}_{m}\otimes\underbrace{V^{*}\otimes...\otimes V^{*}}_{n}.\]

\end_inset

Elements of such spaces are called 
\series bold
tensors of
\series default
 
\series bold
rank
\series default
 
\begin_inset Formula $(m,n)$
\end_inset

.
 For example, vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 have rank 
\begin_inset Formula $\left(1,0\right)$
\end_inset

, covectors 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 have rank 
\begin_inset Formula $\left(0,1\right)$
\end_inset

, tensors from 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

 have rank 
\begin_inset Formula $\left(1,1\right)$
\end_inset

, tensors from 
\begin_inset Formula $V\otimes V$
\end_inset

 have rank 
\begin_inset Formula $\left(2,0\right)$
\end_inset

, and so on.
 Scalars from 
\begin_inset Formula $\mathbb{K}$
\end_inset

 have rank 
\begin_inset Formula $\left(0,0\right)$
\end_inset

.
 
\end_layout

\begin_layout Standard
In many applications, the spaces 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $V^{*}$
\end_inset

 are identified (e.g.\InsetSpace ~
using a scalar product; see below).
 In that case, the rank is reduced to a single number --- the sum of 
\begin_inset Formula $m$
\end_inset

 and 
\begin_inset Formula $n$
\end_inset

.
 Thus, in this simplified counting, tensors from 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

 as well as tensors from 
\begin_inset Formula $V\otimes V$
\end_inset

 have rank 2.
\end_layout

\begin_layout Subsection
* Distributivity of tensor product
\end_layout

\begin_layout Standard
We have two operations that build new vector spaces out of old ones: the
 direct sum 
\begin_inset Formula $V\oplus W$
\end_inset

 and the tensor product 
\begin_inset Formula $V\otimes W$
\end_inset

.
 Is there something like the formula 
\begin_inset Formula $\left(U\oplus V\right)\otimes W\cong\left(U\otimes W\right)\oplus\left(V\otimes W\right)$
\end_inset

? The answer is positive.
 I will not need this construction below; this is just another example of
 how different spaces are related by a canonical isomorphism.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The spaces 
\begin_inset Formula $\left(U\oplus V\right)\otimes W$
\end_inset

 and 
\begin_inset Formula $\left(U\otimes W\right)\oplus\left(V\otimes W\right)$
\end_inset

 are canonically isomorphic.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
An element 
\begin_inset Formula $\left(\mathbf{u},\mathbf{v}\right)\otimes\mathbf{w}\in\left(U\oplus V\right)\otimes W$
\end_inset

 is mapped into the pair 
\begin_inset Formula $\left(\mathbf{u}\otimes\mathbf{w},\mathbf{v}\otimes\mathbf{w}\right)\in\left(U\otimes W\right)\oplus\left(V\otimes W\right)$
\end_inset

.
 It is easy to see that this map is a canonical isomorphism.
 I leave the details to you.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $U$
\end_inset

, 
\begin_inset Formula $V$
\end_inset

, and 
\begin_inset Formula $W$
\end_inset

 be some vector spaces.
 Demonstrate the following canonical isomorphisms:
\begin_inset Formula \begin{align*}
\left(U\oplus V\right)^{*} & \cong U^{*}\oplus V^{*},\\
\left(U\otimes V\right)^{*} & \cong U^{*}\otimes V^{*}.\end{align*}

\end_inset


\end_layout

\begin_layout Section
Linear maps and tensors
\begin_inset LatexCommand \label{sub:Linear-operators-as}

\end_inset


\end_layout

\begin_layout Standard
The tensor product construction may appear an abstract plaything at this
 point, but in fact it is a universal tool to describe linear maps.
\end_layout

\begin_layout Standard
We have seen that the set of all linear operators 
\begin_inset Formula $\hat{A}:V\rightarrow V$
\end_inset

 is a vector space because one can naturally define the sum of two operators
 and the product of a number and an operator.
 This vector space is called the space of 
\series bold
endomorphisms
\series default
 of 
\begin_inset Formula $V$
\end_inset

 and denoted by 
\begin_inset Formula $\textrm{End }V$
\end_inset

.
 
\end_layout

\begin_layout Standard
In this section I will show that linear operators can be thought of as elements
 of the space 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

.
 This gives a convenient way to represent a linear operator by a coordinate-free
 formula.
 Later we will see that the space 
\begin_inset Formula $\textrm{Hom}\left(V,W\right)$
\end_inset

 of linear maps 
\begin_inset Formula $V\rightarrow W$
\end_inset

 is canonically isomorphic to 
\begin_inset Formula $W\otimes V^{*}$
\end_inset

.
\end_layout

\begin_layout Subsection
Tensors as linear operators
\end_layout

\begin_layout Standard
First, we will show that any tensor from the space 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

 acts as a linear map 
\begin_inset Formula $V\rightarrow V$
\end_inset

.
\end_layout

\begin_layout Paragraph
Lemma:
\end_layout

\begin_layout Standard
A tensor 
\begin_inset Formula $A\in V\otimes V^{*}$
\end_inset

 expressed as
\begin_inset Formula \[
A\equiv\sum_{j=1}^{k}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}\]

\end_inset

 defines a linear operator 
\begin_inset Formula $\hat{A}:V\rightarrow V$
\end_inset

 according to the formula
\begin_inset Formula \begin{equation}
\hat{A}\mathbf{x}\equiv\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{x})\,\mathbf{v}_{j}.\label{eq:Ax action}\end{equation}

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Compare this linear map with the linear map defined in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:fg rule}

\end_inset

), Lemma\InsetSpace ~
2 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-tensor}

\end_inset

.
 We need to prove two statements: 
\end_layout

\begin_layout Standard
(1) The transformation is linear, 
\begin_inset Formula $\hat{A}(\mathbf{x}+\lambda\mathbf{y})=\hat{A}\mathbf{x}+\lambda\hat{A}\mathbf{y}$
\end_inset

.
\end_layout

\begin_layout Standard
(2) The operator 
\begin_inset Formula $\hat{A}$
\end_inset

 does not depend on the decomposition of the tensor 
\begin_inset Formula $A$
\end_inset

 using particular vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 and covectors 
\begin_inset Formula $\mathbf{f}_{j}^{*}$
\end_inset

: two decompositions of the tensor 
\begin_inset Formula $A$
\end_inset

,
\begin_inset Formula \[
A=\sum_{j=1}^{k}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}=\sum_{j=1}^{l}\mathbf{w}_{j}\otimes\mathbf{g}_{j}^{*},\]

\end_inset

yield the same operator,
\begin_inset Formula \[
\hat{A}\mathbf{x}=\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{x})\,\mathbf{v}_{j}=\sum_{j=1}^{l}\mathbf{g}_{j}^{*}(\mathbf{x})\,\mathbf{w}_{j},\quad\forall\mathbf{x}.\]

\end_inset


\end_layout

\begin_layout Standard
The first statement, 
\begin_inset Formula $\hat{A}\left(\mathbf{x}+\lambda\mathbf{y}\right)=\hat{A}\mathbf{x}+\lambda\hat{A}\mathbf{y}$
\end_inset

, follows from the linearity of 
\begin_inset Formula $\mathbf{f}_{j}^{*}$
\end_inset

 as a map 
\begin_inset Formula $V\rightarrow\mathbb{K}$
\end_inset

 and is easy to verify by explicit calculation:
\begin_inset Formula \begin{align*}
\hat{A}(\mathbf{x}+\lambda\mathbf{y}) & =\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{x}+\lambda\mathbf{y})\,\mathbf{v}_{j}\\
 & =\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{x})\,\mathbf{v}_{j}+\lambda\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{y})\,\mathbf{v}_{j}\\
 & =\hat{A}\mathbf{x}+\lambda\hat{A}\mathbf{y}.\end{align*}

\end_inset

The second statement is proved using the axioms\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

) of the tensor product.
 Two different expressions for the tensor 
\begin_inset Formula $A$
\end_inset

 can be equal only if they are related through the axioms\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tp props 0}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:tp props 2}

\end_inset

).
 So it suffices to check that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 remains unchanged when we use each of the three axioms to replace 
\begin_inset Formula $\sum_{j=1}^{k}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}$
\end_inset

 by an equivalent tensor expression.
 Let us check the first axiom: We need to compare the action of 
\begin_inset Formula $\sum_{j}\left(\mathbf{u}_{j}+\mathbf{v}_{j}\right)\otimes\mathbf{f}_{j}^{*}$
\end_inset

 on a vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 and the action of the sum of 
\begin_inset Formula $\sum_{j}\mathbf{u}_{j}\otimes\mathbf{f}_{j}^{*}$
\end_inset

 and 
\begin_inset Formula $\sum_{j}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}$
\end_inset

 on the same vector:
\begin_inset Formula \begin{align*}
\hat{A}\mathbf{x} & =\bigg[\sum_{j}\left(\mathbf{u}_{j}+\mathbf{v}_{j}\right)\otimes\mathbf{f}_{j}^{*}\bigg]\mathbf{x}\\
 & =\sum_{j}\mathbf{f}_{j}^{*}\left(\mathbf{x}\right)\left(\mathbf{u}_{j}+\mathbf{v}_{j}\right)\\
 & =\bigg[\sum_{j}\mathbf{u}_{j}\otimes\mathbf{f}_{j}^{*}\bigg]\mathbf{x}+\bigg[\sum_{j}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}\bigg]\mathbf{x}.\end{align*}

\end_inset

The action of 
\begin_inset Formula $\hat{A}$
\end_inset

 on 
\begin_inset Formula $\mathbf{x}$
\end_inset

 remains unchanged for every 
\begin_inset Formula $\mathbf{x}$
\end_inset

, which means that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 itself is unchanged.
 Similarly, we (more precisely, 
\emph on
you
\emph default
) can check directly that the other two axioms also leave 
\begin_inset Formula $\hat{A}$
\end_inset

 unchanged.
 It follows that the action of 
\begin_inset Formula $\hat{A}$
\end_inset

 on a vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

, as defined by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Ax action}

\end_inset

), is independent of the choice of representation of the tensor 
\begin_inset Formula $A$
\end_inset

 through vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 and covectors 
\begin_inset Formula $\mathbf{f}_{j}^{*}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Question: 
\end_layout

\begin_layout Standard
I am wondering what kind of operators correspond to tensor expressions.
 For example, take the single-term tensor 
\begin_inset Formula $A=\mathbf{v}\otimes\mathbf{w}^{*}$
\end_inset

.
 What is the geometric meaning of the corresponding operator 
\begin_inset Formula $\hat{A}$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Let us calculate: 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{w}^{*}\left(\mathbf{x}\right)\mathbf{v}$
\end_inset

, i.e.\InsetSpace ~
the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 acts on any vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 and produces a vector that is always proportional to the fixed vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 Hence, the image of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is the one-dimen\SpecialChar \-
sion\SpecialChar \-
al subspace spanned by 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 However, 
\begin_inset Formula $\hat{A}$
\end_inset

 is not necessarily a projector because in general 
\begin_inset Formula $\hat{A}\hat{A}\neq\hat{A}$
\end_inset

:
\begin_inset Formula \[
\hat{A}(\hat{A}\mathbf{x})=\mathbf{w}^{*}\left(\mathbf{v}\right)\mathbf{w}^{*}\left(\mathbf{x}\right)\mathbf{v}\neq\mathbf{w}^{*}\left(\mathbf{x}\right)\mathbf{v},\,\,\textrm{unless}\,\,\mathbf{w}^{*}\left(\mathbf{v}\right)=1.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is given by the formula
\begin_inset Formula \[
\hat{A}=\hat{1}_{V}+\lambda\mathbf{v}\otimes\mathbf{w}^{*},\]

\end_inset

where 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

, 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

, 
\begin_inset Formula $\mathbf{w}^{*}\in V^{*}$
\end_inset

.
 Compute 
\begin_inset Formula $\hat{A}\mathbf{x}$
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{x}+\lambda\mathbf{w}^{*}\left(\mathbf{x}\right)\mathbf{v}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\mathbf{n}\in V$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{n})=1$
\end_inset

.
 Show that the operator 
\begin_inset Formula $\hat{P}\equiv\hat{1}_{V}-\mathbf{n}\otimes\mathbf{f}^{*}$
\end_inset

 is a projector
\begin_inset LatexCommand \index{projector}

\end_inset

 onto the subspace annihilated by 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: You need to show that 
\begin_inset Formula $\hat{P}\hat{P}=\hat{P}$
\end_inset

; that any vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 annihilated by 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is invariant under 
\begin_inset Formula $\hat{P}$
\end_inset

 (i.e.\InsetSpace ~
if 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=0$
\end_inset

 then 
\begin_inset Formula $\hat{P}\mathbf{x}=\mathbf{x}$
\end_inset

); and that for any vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

, 
\begin_inset Formula $\mathbf{f}^{*}(\hat{P}\mathbf{x})=0$
\end_inset

.
 
\end_layout

\begin_layout Subsection
Linear operators as tensors
\begin_inset LatexCommand \label{sub:Linear-operators-as-tensors}

\end_inset


\end_layout

\begin_layout Standard
We have seen that any tensor 
\begin_inset Formula $A\in V\otimes V^{*}$
\end_inset

 has a corresponding linear map in 
\begin_inset Formula $\textrm{End }V$
\end_inset

.
 Now conversely, let 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 be a linear operator and let 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 be a basis in 
\begin_inset Formula $V$
\end_inset

.
 We will now find such covectors 
\begin_inset Formula $\mathbf{f}_{k}^{*}\in V^{*}$
\end_inset

 that the tensor 
\begin_inset Formula $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$
\end_inset

 corresponds to 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The required covectors 
\begin_inset Formula $\mathbf{f}_{k}^{*}\in V^{*}$
\end_inset

 can be defined by the formula
\begin_inset Formula \[
\mathbf{f}_{k}^{*}\left(\mathbf{x}\right)\equiv\mathbf{v}_{k}^{*}(\hat{A}\mathbf{x}),\quad\forall\mathbf{x}\in V,\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{v}_{k}^{*}\right\} $
\end_inset

 is the dual basis.
 With this definition, we have
\begin_inset Formula \[
\bigg[\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}\bigg]\mathbf{x}=\sum_{k=1}^{n}\mathbf{f}_{k}^{*}\left(\mathbf{x}\right)\mathbf{v}_{k}=\sum_{k=1}^{n}\mathbf{v}_{k}^{*}(\hat{A}\mathbf{x})\mathbf{v}_{k}=\hat{A}\mathbf{x}.\]

\end_inset

The last equality is based on the formula 
\begin_inset Formula \[
\sum_{k=1}^{n}\mathbf{v}_{k}^{*}\left(\mathbf{y}\right)\mathbf{v}_{k}=\mathbf{y},\]

\end_inset

 which holds because the components of a vector 
\begin_inset Formula $\mathbf{y}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

 are 
\begin_inset Formula $\mathbf{v}_{k}^{*}\left(\mathbf{y}\right)$
\end_inset

.
 Then it follows from the definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Ax action}

\end_inset

) that 
\begin_inset Formula $\big[\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}\big]\mathbf{x}=\hat{A}\mathbf{x}$
\end_inset

.
\end_layout

\begin_layout Standard
Let us look at this construction in another way: we have defined a map \InsetSpace ~

\begin_inset Formula $\hat{}\,:V\otimes V^{*}\rightarrow\textrm{End }V$
\end_inset

 whereby any tensor 
\begin_inset Formula $A\in V\otimes V^{*}$
\end_inset

 is transformed into a linear operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Theorem:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 There is a canonical isomorphism 
\begin_inset Formula $A\rightarrow\hat{A}$
\end_inset

 between the spaces 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

 and 
\begin_inset Formula $\textrm{End }V$
\end_inset

.
 In other words, linear operators are canonically (without choosing a basis)
 and uniquely mapped into tensors of the form
\begin_inset Formula \[
\mathbf{v}_{1}\otimes\mathbf{f}_{1}^{*}+...+\mathbf{v}_{n}\otimes\mathbf{f}_{n}^{*}.\]

\end_inset

Conversely, a tensor 
\begin_inset Formula $\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$
\end_inset

 is mapped into the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 defined by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Ax action}

\end_inset

).
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 It is possible to write a tensor 
\begin_inset Formula $A$
\end_inset

 as a sum of not more than 
\begin_inset Formula $N\equiv\dim V$
\end_inset

 terms, 
\begin_inset Formula \[
A=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*},\quad n\leq N.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 To prove that a map is an isomorphism of vector spaces, we need to show
 that this map is linear and 
\series bold
bijective
\series default
 (one-to-one).
 Linearity easily follows from the definition of the map \InsetSpace ~

\begin_inset Formula $\hat{}$
\end_inset

\InsetSpace ~
: if 
\begin_inset Formula $A,B\in V\otimes V^{*}$
\end_inset

 are two tensors then 
\begin_inset Formula $A+\lambda B\in V\otimes V^{*}$
\end_inset

 is mapped into 
\begin_inset Formula $\hat{A}+\lambda\hat{B}$
\end_inset

.
 To prove the bijectivity, we need to show that for any operator 
\begin_inset Formula $\hat{A}$
\end_inset

 there exists a corresponding tensor 
\begin_inset Formula $A=\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$
\end_inset

 (this we have already shown above), and that two different tensors 
\begin_inset Formula $A\neq B$
\end_inset

 cannot be mapped into the same operator 
\begin_inset Formula $\hat{A}=\hat{B}$
\end_inset

.
 If two different tensors 
\begin_inset Formula $A\neq B$
\end_inset

 were mapped into the same operator 
\begin_inset Formula $\hat{A}=\hat{B}$
\end_inset

, it would follow from the linearity of \InsetSpace ~

\begin_inset Formula $\hat{}$
\end_inset

\InsetSpace ~
 that 
\begin_inset Formula $\widehat{A-B}=\hat{A}-\hat{B}=0$
\end_inset

, in other words, that a nonzero tensor 
\begin_inset Formula $C\equiv A-B\neq0$
\end_inset

 is mapped into the zero operator, 
\begin_inset Formula $\hat{C}=0$
\end_inset

.
 We will now arrive to a contradiction.
 The tensor 
\begin_inset Formula $C$
\end_inset

 has a decomposition 
\begin_inset Formula $C=\sum_{k}\mathbf{v}_{k}\otimes\mathbf{c}_{k}^{*}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

.
 Since 
\begin_inset Formula $C\neq0$
\end_inset

, it follows that at least one covector 
\begin_inset Formula $\mathbf{c}_{k}^{*}$
\end_inset

 is nonzero.
 Suppose 
\begin_inset Formula $\mathbf{c}_{1}^{*}\neq0$
\end_inset

; then there exists at least one vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{c}_{1}^{*}\left(\mathbf{x}\right)\neq0$
\end_inset

.
 We now act on 
\begin_inset Formula $\mathbf{x}$
\end_inset

 with the operator 
\begin_inset Formula $\hat{C}$
\end_inset

: by assumption, 
\begin_inset Formula $\hat{C}=\hat{A}-\hat{B}=0$
\end_inset

, but at the same time
\begin_inset Formula \[
0=\hat{C}\mathbf{x}\equiv\sum_{k}\mathbf{v}_{k}\mathbf{c}_{k}^{*}\left(\mathbf{x}\right)=\mathbf{v}_{1}\mathbf{c}_{1}\left(\mathbf{x}\right)+...\]

\end_inset

This is a contradiction because a linear combination of vectors 
\begin_inset Formula $\mathbf{v}_{k}$
\end_inset

 with at least one nonzero coefficient cannot vanish (the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

 are a basis).
\end_layout

\begin_layout Standard
Note that we 
\emph on
did
\emph default
 use a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

 in the construction of the map 
\begin_inset Formula $\textrm{End }V\rightarrow V\otimes V^{*}$
\end_inset

, when we defined the covectors 
\begin_inset Formula $\mathbf{f}_{k}^{*}$
\end_inset

.
 However, this map is canonical because it is the same map for all choices
 of the basis.
 Indeed, if we choose another basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}^{\prime}\right\} $
\end_inset

 then of course the covectors 
\begin_inset Formula $\mathbf{f}_{k}^{\prime*}$
\end_inset

 will be different from 
\begin_inset Formula $\mathbf{f}_{k}^{*}$
\end_inset

, but the tensor 
\begin_inset Formula $A$
\end_inset

 will remain the same,
\begin_inset Formula \[
A=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}=A^{\prime}=\sum_{k=1}^{n}\mathbf{v}_{k}^{\prime}\otimes\mathbf{f}_{k}^{\prime*}\in V\otimes V^{*},\]

\end_inset

because (as we just proved) different tensors are always mapped into different
 operators.
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 This follows from Lemma\InsetSpace ~
1 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-tensor}

\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
From now on, I will not use the map 
\begin_inset Formula $\hat{\;}$
\end_inset

 explicitly.
 Rather, I will simply not distinguish between the spaces 
\begin_inset Formula $\textrm{End }V$
\end_inset

 and 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

.
 I will write things like 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{w}^{*}\in\textrm{End }V$
\end_inset

 or 
\begin_inset Formula $\hat{A}=\mathbf{x}\otimes\mathbf{y}^{*}$
\end_inset

.
 The space implied in each case will be clear from the context.
\end_layout

\begin_layout Subsection
Examples and exercises
\end_layout

\begin_layout Paragraph
Example 1: The identity operator.
\end_layout

\begin_layout Standard
How to represent the identity operator 
\begin_inset Formula $\hat{1}_{V}$
\end_inset

 by a tensor 
\begin_inset Formula $A\in V\otimes V^{*}$
\end_inset

?
\end_layout

\begin_layout Standard
Choose a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

; this choice defines the dual basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}^{*}\right\} $
\end_inset

 in 
\begin_inset Formula $V^{*}$
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dual-vector-space}

\end_inset

) such that 
\begin_inset Formula $\mathbf{v}_{j}^{*}\left(\mathbf{v}_{k}\right)=\delta_{jk}$
\end_inset

.
 Now apply the construction of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Linear-operators-as-tensors}

\end_inset

 to find 
\begin_inset Formula \[
A=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*},\quad\mathbf{f}_{k}^{*}\left(\mathbf{x}\right)=\mathbf{v}_{k}^{*}\left(\hat{1}_{V}\mathbf{x}\right)=\mathbf{v}_{k}^{*}\left(\mathbf{x}\right)\,\Rightarrow\mathbf{f}_{k}^{*}=\mathbf{v}_{k}^{*}.\]

\end_inset

Therefore
\begin_inset LatexCommand \index{decomposition of identity}

\end_inset

 
\begin_inset Formula \begin{equation}
\hat{1}_{V}=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{v}_{k}^{*}.\label{eq:identity decomposed}\end{equation}

\end_inset


\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
The identity operator 
\begin_inset Formula $\hat{1}_{V}$
\end_inset

 is defined 
\series bold
canonically
\series default
, i.e.\InsetSpace ~
independently of a basis in 
\begin_inset Formula $V$
\end_inset

; it is simply the transformation that does not change any vectors.
 However, the tensor representation\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:identity decomposed}

\end_inset

) seems to depend on the choice of a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

.
 What is going on? Is the tensor 
\begin_inset Formula $\hat{1}\in V\otimes V^{*}$
\end_inset

 defined canonically?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Yes.
 The tensor 
\begin_inset Formula $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{v}_{k}^{*}$
\end_inset

 is 
\emph on
the
\emph default
 
\emph on
same
\emph default
 
\emph on
tensor
\emph default
 regardless of which basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

 we choose; of course the correct dual basis 
\begin_inset Formula $\left\{ \mathbf{v}_{k}^{*}\right\} $
\end_inset

 must be used.
 In other words, for any two bases 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \tilde{\mathbf{v}}_{k}\right\} $
\end_inset

, and with 
\begin_inset Formula $\left\{ \mathbf{v}_{k}^{*}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \tilde{\mathbf{v}}_{k}^{*}\right\} $
\end_inset

 being the corresponding dual bases, we have the tensor equality
\begin_inset Formula \[
\sum_{k}\mathbf{v}_{k}\otimes\mathbf{v}_{k}^{*}=\sum_{k}\tilde{\mathbf{v}}_{k}\otimes\tilde{\mathbf{v}}_{k}^{*}.\]

\end_inset

 We have proved this in Theorem\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Linear-operators-as-tensors}

\end_inset

 when we established that two different tensors are always mapped into different
 operators by the map \InsetSpace ~

\begin_inset Formula $\hat{}$
\end_inset

\InsetSpace ~
.
 One can say that 
\begin_inset Formula $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{v}_{k}^{*}$
\end_inset

 is a 
\emph on
canonically defined tensor
\emph default
 in 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

 since it is the unique tensor corresponding to the canonically defined
 identity operator 
\begin_inset Formula $\hat{1}_{V}$
\end_inset

.
 Recall that a given tensor can be written as a linear combination of tensor
 products in many different ways! Here is a worked-out example:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $
\end_inset

 be a basis in a two-dimen\SpecialChar \-
sion\SpecialChar \-
al space; let 
\begin_inset Formula $\left\{ \mathbf{v}_{1}^{*},\mathbf{v}_{2}^{*}\right\} $
\end_inset

 be the corresponding dual basis.
 We can choose another basis, e.g.
\begin_inset Formula \[
\left\{ \mathbf{w}_{1},\mathbf{w}_{2}\right\} \equiv\left\{ \mathbf{v}_{1}+\mathbf{v}_{2},\mathbf{v}_{1}-\mathbf{v}_{2}\right\} .\]

\end_inset

 Its dual basis is (verify this!)
\begin_inset Formula \[
\mathbf{w}_{1}^{*}=\frac{1}{2}\left(\mathbf{v}_{1}^{*}+\mathbf{v}_{2}^{*}\right),\quad\mathbf{w}_{2}^{*}=\frac{1}{2}\left(\mathbf{v}_{1}^{*}-\mathbf{v}_{2}^{*}\right).\]

\end_inset

 Then we compute the identity tensor:
\begin_inset Formula \begin{align*}
\hat{1}=\mathbf{w}_{1}\otimes\mathbf{w}_{1}^{*}+\mathbf{w}_{2}\otimes\mathbf{w}_{2}^{*} & =\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\otimes\frac{1}{2}\left(\mathbf{v}_{1}^{*}+\mathbf{v}_{2}^{*}\right)\\
 & +\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\otimes\frac{1}{2}\left(\mathbf{v}_{1}^{*}-\mathbf{v}_{2}^{*}\right)\\
 & =\mathbf{v}_{1}\otimes\mathbf{v}_{1}^{*}+\mathbf{v}_{2}\otimes\mathbf{v}_{2}^{*}.\end{align*}

\end_inset

The tensor expressions 
\begin_inset Formula $\mathbf{w}_{1}\otimes\mathbf{w}_{1}^{*}+\mathbf{w}_{2}\otimes\mathbf{w}_{2}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{1}\otimes\mathbf{v}_{1}^{*}+\mathbf{v}_{2}\otimes\mathbf{v}_{2}^{*}$
\end_inset

 are 
\emph on
equal
\emph default
 because of distributivity and linearity of tensor product, i.e.\InsetSpace ~
due to the
 axioms of the tensor product.
\end_layout

\begin_layout Paragraph
Exercise 1: Matrices as tensors.
\end_layout

\begin_layout Standard
Now suppose we have a matrix 
\begin_inset Formula $A_{jk}$
\end_inset

 that specifies the linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{k}\right\} $
\end_inset

.
 Which tensor 
\begin_inset Formula $A\in V\otimes V^{*}$
\end_inset

 corresponds to this operator?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula $A=\sum_{j,k=1}^{n}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2: Product of linear operators.
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$
\end_inset

 and 
\begin_inset Formula $\hat{B}=\sum_{l=1}^{n}\mathbf{w}_{l}\otimes\mathbf{g}_{l}^{*}$
\end_inset

 are two operators.
 Obtain the tensor representation of the product 
\begin_inset Formula $\hat{A}\hat{B}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula $\hat{A}\hat{B}=\sum_{k=1}^{n}\sum_{l=1}^{n}\mathbf{f}_{k}^{*}\left(\mathbf{w}_{l}\right)\mathbf{v}_{k}\otimes\mathbf{g}_{l}^{*}.$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 3: 
\end_layout

\begin_layout Standard
Verify that 
\begin_inset Formula $\hat{1}_{V}\hat{1}_{V}=\hat{1}_{V}$
\end_inset

 by explicit computation using the tensor representation\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:identity decomposed}

\end_inset

).
 
\end_layout

\begin_layout Standard

\emph on
Hint:
\emph default
 Use the formula 
\begin_inset Formula $\mathbf{v}_{j}^{*}\left(\mathbf{v}_{k}\right)=\delta_{jk}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 4: Eigenvalues.
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}=\alpha\hat{1}_{V}+\mathbf{u}\otimes\mathbf{f}^{*}$
\end_inset

 and 
\begin_inset Formula $\hat{B}=\mathbf{u}\otimes\mathbf{f}^{*}+\mathbf{v}\otimes\mathbf{g}^{*}$
\end_inset

, where 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in V$
\end_inset

 are a linearly independent set, 
\begin_inset Formula $\alpha\in\mathbb{K},$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*},\mathbf{g}^{*}\in V^{*}$
\end_inset

 are nonzero but such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v})=0$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}(\mathbf{u})=0$
\end_inset

 while 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq0$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}(\mathbf{v})\neq0$
\end_inset

.
 Determine the eigenvalues and eigenvectors of the operators 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Solution:
\end_layout

\begin_layout Standard
(I give a solution because it is an instructive calculation showing how
 to handle tensors in the index-free approach.
 Note that the vectors 
\begin_inset Formula $\mathbf{u},\mathbf{v}$
\end_inset

 and the covectors 
\begin_inset Formula $\mathbf{f}^{*},\mathbf{g}^{*}$
\end_inset

 are 
\begin_inset Quotes eld
\end_inset

given,
\begin_inset Quotes erd
\end_inset

 which means that numbers such as 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})$
\end_inset

 are known constants.)
\end_layout

\begin_layout Standard
For the operator 
\begin_inset Formula $\hat{A}$
\end_inset

, the eigenvalue equation 
\begin_inset Formula $\hat{A}\mathbf{x}=\lambda\mathbf{x}$
\end_inset

 yields 
\begin_inset Formula \[
\alpha\mathbf{x}+\mathbf{u}\mathbf{f}^{*}(\mathbf{x})=\lambda\mathbf{x}.\]

\end_inset

 Either 
\begin_inset Formula $\lambda=\alpha$
\end_inset

 and then 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{x}\right)=0$
\end_inset

, or 
\begin_inset Formula $\lambda\neq\alpha$
\end_inset

 and then 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is proportional to 
\begin_inset Formula $\mathbf{u}$
\end_inset

; substituting 
\begin_inset Formula $\mathbf{x}=\mathbf{u}$
\end_inset

 into the above equation, we find 
\begin_inset Formula $\lambda=\alpha+\mathbf{f}^{*}\left(\mathbf{u}\right)$
\end_inset

.
 Therefore the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has two eigenvalues, 
\begin_inset Formula $\lambda=\alpha$
\end_inset

 and 
\begin_inset Formula $\lambda=\alpha+\mathbf{f}^{*}\left(\mathbf{u}\right)$
\end_inset

.
 The eigenspace with the eigenvalue 
\begin_inset Formula $\lambda=\alpha$
\end_inset

 is the set of all 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{x}\right)=0$
\end_inset

.
 The eigenspace with the eigenvalue 
\begin_inset Formula $\lambda=\alpha+\mathbf{f}^{*}\left(\mathbf{u}\right)$
\end_inset

 is the set of vectors proportional to 
\begin_inset Formula $\mathbf{u}$
\end_inset

.
 (It might happen that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{u}\right)=0$
\end_inset

; then there is only one eigenvalue, 
\begin_inset Formula $\lambda=\alpha$
\end_inset

, and no second eigenspace.)
\end_layout

\begin_layout Standard
For the operator 
\begin_inset Formula $\hat{B}$
\end_inset

, the calculations are longer.
 Since 
\begin_inset Formula $\left\{ \mathbf{u},\mathbf{v}\right\} $
\end_inset

 is a linearly independent set, we may add some vectors 
\begin_inset Formula $\mathbf{e}_{k}$
\end_inset

 to that set in order to complete it to a basis 
\begin_inset Formula $\left\{ \mathbf{u},\mathbf{v},\mathbf{e}_{3},...,\mathbf{e}_{N}\right\} $
\end_inset

.
 It is convenient to adapt this basis to the given covectors 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}$
\end_inset

; namely, it is possible to choose this basis such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{e}_{k})=0$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}(\mathbf{e}_{k})=0$
\end_inset

 for 
\begin_inset Formula $k=3,...,N$
\end_inset

.
 (We may replace 
\begin_inset Formula $\mathbf{e}_{k}\mapsto\mathbf{e}_{k}-a_{k}\mathbf{u}-b_{k}\mathbf{v}$
\end_inset

 with some suitable constants 
\begin_inset Formula $a_{k},b_{k}$
\end_inset

 to achieve this, using the given properties 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v})=0$
\end_inset

, 
\begin_inset Formula $\mathbf{g}^{*}(\mathbf{u})=0$
\end_inset

, 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq0$
\end_inset

, and 
\begin_inset Formula $\mathbf{g}^{*}(\mathbf{v})\neq0$
\end_inset

.) Suppose 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is an unknown eigenvector with the eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

; then 
\begin_inset Formula $\mathbf{x}$
\end_inset

 can be expressed as 
\begin_inset Formula $\mathbf{x}=\alpha\mathbf{u}+\beta\mathbf{v}+\sum_{k=3}^{N}y_{k}\mathbf{e}_{k}$
\end_inset

 in this basis, where 
\begin_inset Formula $\alpha$
\end_inset

, 
\begin_inset Formula $\beta$
\end_inset

, and 
\begin_inset Formula $y_{k}$
\end_inset

 are unknown constants.
 Our goal is therefore to determine 
\begin_inset Formula $\alpha$
\end_inset

, 
\begin_inset Formula $\beta$
\end_inset

, 
\begin_inset Formula $y_{k}$
\end_inset

, and 
\begin_inset Formula $\lambda$
\end_inset

.
 Denote 
\begin_inset Formula $\mathbf{y}\equiv\sum_{k=3}^{N}y_{k}\mathbf{e}_{k}$
\end_inset

 and transform the eigenvalue equation using the given conditions 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v})=\mathbf{g}^{*}(\mathbf{u})=0$
\end_inset

 as well as the properties 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{y})=\mathbf{g}^{*}(\mathbf{y})=0$
\end_inset

,
\begin_inset Formula \begin{align*}
\hat{B}\mathbf{x}-\lambda\mathbf{x}= & \mathbf{u}\left(\alpha\mathbf{f}^{*}\left(\mathbf{u}\right)+\beta\mathbf{f}^{*}\left(\mathbf{v}\right)+\mathbf{f}^{*}\left(\mathbf{y}\right)-\alpha\lambda\right)\\
 & +\mathbf{v}\left(\alpha\mathbf{g}^{*}\left(\mathbf{u}\right)+\beta\mathbf{g}^{*}\left(\mathbf{v}\right)+\mathbf{g}^{*}\left(\mathbf{y}\right)-\beta\lambda\right)-\lambda\mathbf{y}\\
= & \mathbf{u}\left(\alpha\mathbf{f}^{*}\left(\mathbf{u}\right)-\alpha\lambda\right)+\mathbf{v}\left(\beta\mathbf{g}^{*}\left(\mathbf{v}\right)-\beta\lambda\right)-\lambda\mathbf{y}=0.\end{align*}

\end_inset

The above equation says that a certain linear combination of the vectors
 
\begin_inset Formula $\mathbf{u}$
\end_inset

, 
\begin_inset Formula $\mathbf{v}$
\end_inset

, and 
\begin_inset Formula $\mathbf{y}$
\end_inset

 is zero.
 If 
\begin_inset Formula $\mathbf{y}\neq0$
\end_inset

, the set 
\begin_inset Formula $\left\{ \mathbf{u},\mathbf{v},\mathbf{y}\right\} $
\end_inset

 is linearly independent since 
\begin_inset Formula $\left\{ \mathbf{u},\mathbf{v},\mathbf{e}_{3},...,\mathbf{e}_{N}\right\} $
\end_inset

 is a basis (see Exercise\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-V}

\end_inset

).
 Then the linear combination of the three vectors 
\begin_inset Formula $\mathbf{u}$
\end_inset

, 
\begin_inset Formula $\mathbf{v}$
\end_inset

, and 
\begin_inset Formula $\mathbf{y}$
\end_inset

 can be zero only if all three coefficients are zero.
 On the other hand, if 
\begin_inset Formula $\mathbf{y}=0$
\end_inset

 then we are left only with two coefficients that must vanish.
 Thus, we can proceed by considering separately the two possible cases,
 
\begin_inset Formula $\mathbf{y}\neq0$
\end_inset

 and 
\begin_inset Formula $\mathbf{y}=0$
\end_inset

.
 
\end_layout

\begin_layout Standard
We begin with the case 
\begin_inset Formula $\mathbf{y}=0$
\end_inset

.
 In this case, 
\begin_inset Formula $\hat{B}\mathbf{x}-\lambda\mathbf{x}=0$
\end_inset

 is equivalent to the vanishing of the linear combination
\begin_inset Formula \[
\mathbf{u}\left(\alpha\mathbf{f}^{*}(\mathbf{u})-\alpha\lambda\right)+\mathbf{v}\left(\beta\mathbf{g}^{*}(\mathbf{v})-\beta\lambda\right)=0.\]

\end_inset

Since 
\begin_inset Formula $\left\{ \mathbf{u},\mathbf{v}\right\} $
\end_inset

 is linearly independent, this linear combination can vanish only when both
 coefficients vanish:
\begin_inset Formula \begin{align*}
\alpha\left(\mathbf{f}^{*}\left(\mathbf{u}\right)-\lambda\right) & =0,\\
\beta\left(\mathbf{g}^{*}\left(\mathbf{v}\right)-\lambda\right) & =0.\end{align*}

\end_inset

This is a system of two linear equations for the two unknowns 
\begin_inset Formula $\alpha$
\end_inset

 and 
\begin_inset Formula $\beta$
\end_inset

; when we solve it, we will determine the possible eigenvectors 
\begin_inset Formula $\mathbf{x}=\alpha\mathbf{u}+\beta\mathbf{v}$
\end_inset

 and the corresponding eigenvalues 
\begin_inset Formula $\lambda$
\end_inset

.
 Note that we are looking for 
\emph on
nonzero
\emph default
 solutions, so 
\begin_inset Formula $\alpha$
\end_inset

 and 
\begin_inset Formula $\beta$
\end_inset

 cannot be both zero.
 If 
\begin_inset Formula $\alpha\neq0$
\end_inset

, we must have 
\begin_inset Formula $\lambda=\mathbf{f}^{*}(\mathbf{u})$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq\mathbf{g}^{*}(\mathbf{v})$
\end_inset

, the second equation forces 
\begin_inset Formula $\beta=0$
\end_inset

.
 Otherwise, any 
\begin_inset Formula $\beta$
\end_inset

 is a solution.
 Likewise, if 
\begin_inset Formula $\beta\neq0$
\end_inset

 then we must have 
\begin_inset Formula $\lambda=\mathbf{g}^{*}(\mathbf{v})$
\end_inset

.
 Therefore we obtain the following possibilities:
\end_layout

\begin_layout Standard
a) 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq\mathbf{g}^{*}(\mathbf{v})$
\end_inset

, two nonzero eigenvalues 
\begin_inset Formula $\lambda_{1}=\mathbf{f}^{*}(\mathbf{u})$
\end_inset

 with eigenvector 
\begin_inset Formula $\mathbf{x}_{1}=\alpha\mathbf{u}$
\end_inset

 (with any 
\begin_inset Formula $\alpha\neq0$
\end_inset

) and 
\begin_inset Formula $\lambda_{2}=\mathbf{g}^{*}(\mathbf{v})$
\end_inset

 with eigenvector 
\begin_inset Formula $\mathbf{x}_{2}=\beta\mathbf{v}$
\end_inset

 (with any 
\begin_inset Formula $\beta\neq0$
\end_inset

).
\end_layout

\begin_layout Standard
b) 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})=\mathbf{g}^{*}(\mathbf{v})$
\end_inset

, one nonzero eigenvalue 
\begin_inset Formula $\lambda=\mathbf{f}^{*}(\mathbf{u})=\mathbf{g}^{*}(\mathbf{v})$
\end_inset

, two-dimen\SpecialChar \-
sion\SpecialChar \-
al eigenspace with eigenvectors 
\begin_inset Formula $\mathbf{x}=\alpha\mathbf{u}+\beta\mathbf{v}$
\end_inset

 where at least one of 
\begin_inset Formula $\alpha,\beta$
\end_inset

 is nonzero.
\begin_inset Note Note
status collapsed

\begin_layout Standard
Standard matrix algebra says that a homogeneous system of equations can
 have nontrivial solutions only when the determinant vanishes (below, when
 we get to determinants, I will also derive this property from a coordinate-free
 approach).
 Thus, if the following determinant is nonzero,
\begin_inset Formula \[
\left|\begin{array}{cc}
\mathbf{f}^{*}\left(\mathbf{u}\right) & \mathbf{f}^{*}\left(\mathbf{v}\right)\\
\mathbf{g}^{*}\left(\mathbf{u}\right) & \mathbf{g}^{*}\left(\mathbf{v}\right)\end{array}\right|=\mathbf{f}^{*}\left(\mathbf{u}\right)\mathbf{g}^{*}\left(\mathbf{v}\right)-\mathbf{f}^{*}\left(\mathbf{v}\right)\mathbf{g}^{*}\left(\mathbf{u}\right)\neq0,\]

\end_inset

the only solution of the first system is 
\begin_inset Formula $\lambda=0$
\end_inset

, 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{y}\right)=0$
\end_inset

, 
\begin_inset Formula $\mathbf{g}^{*}\left(\mathbf{y}\right)=0$
\end_inset

.
 Therefore, the eigenspace 
\begin_inset Formula $\lambda=0$
\end_inset

 is the intersection of the subspaces annihilated by the covectors 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}$
\end_inset

.
 If the above determinant is zero, additional 
\begin_inset Formula $\lambda=0$
\end_inset

 eigenvectors exist outside of that subspace.
 The eigenvectors and eigenvalues of the above matrix define the 
\begin_inset Formula $\lambda\neq0$
\end_inset

 solutions (find them yourself).
\end_layout

\end_inset


\end_layout

\begin_layout Standard
Now we consider the case 
\begin_inset Formula $\mathbf{y}\neq0$
\end_inset

 (recall that 
\begin_inset Formula $\mathbf{y}$
\end_inset

 is an unknown vector from the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{3},...,\mathbf{e}_{N}\right\} $
\end_inset

).
 In this case, we obtain a system of linear equations for the set of unknowns
 
\begin_inset Formula $\left(\alpha,\beta,\lambda,\mathbf{y}\right)$
\end_inset

: 
\begin_inset Formula \begin{align*}
\alpha\mathbf{f}^{*}\left(\mathbf{u}\right)-\alpha\lambda & =0,\\
\beta\mathbf{g}^{*}\left(\mathbf{v}\right)-\beta\lambda & =0,\\
-\lambda & =0.\end{align*}

\end_inset

This system is simplified, using 
\begin_inset Formula $\lambda=0$
\end_inset

, to
\begin_inset Formula \begin{align*}
\alpha\mathbf{f}^{*}\left(\mathbf{u}\right) & =0,\\
\beta\mathbf{g}^{*}\left(\mathbf{v}\right) & =0.\end{align*}

\end_inset

Since 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq0$
\end_inset

 and 
\begin_inset Formula $\mathbf{g}^{*}(\mathbf{v})\neq0$
\end_inset

, the only solution is 
\begin_inset Formula $\alpha=\beta=0$
\end_inset

.
 Hence, the eigenvector is 
\begin_inset Formula $\mathbf{x}=\mathbf{y}$
\end_inset

 for any nonzero 
\begin_inset Formula $\mathbf{y}\in\text{Span}\left\{ \mathbf{e}_{3},...,\mathbf{e}_{N}\right\} $
\end_inset

.
 In other words, there is an 
\begin_inset Formula $\left(N-2\right)$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al eigenspace corresponding to the eigenvalue 
\begin_inset Formula $\lambda=0$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The preceding exercise serves to show that calculations in the coord\SpecialChar \-
inate-free
 approach are not always short! (I even specified some additional constraints
 on 
\begin_inset Formula $\mathbf{u},\mathbf{v},\mathbf{f}^{*},\mathbf{g}^{*}$
\end_inset

 in order to make the solution shorter.
 Without these constraints, there are many more cases to be considered.)
 The coordinate-free approach does not necessarily provide a shorter way
 to find eigenvalues of matrices than the usual methods based on the evaluation
 of determinants.
 However, the coordinate-free method is efficient for the operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The end result is that we are able to determine eigenvalues and eigenspaces
 of operators such as 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

, regardless of the number of dimensions in the space, by using the special
 structure of these operators, which is specified in a purely geometric
 way.
\end_layout

\begin_layout Paragraph
Exercise 5: 
\end_layout

\begin_layout Standard
Find the inverse operator to 
\begin_inset Formula $\hat{A}=\hat{1}_{V}+\mathbf{u}\otimes\mathbf{f}^{*}$
\end_inset

, where 
\begin_inset Formula $\mathbf{u}\in V$
\end_inset

, 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

.
 Determine when 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 exists.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
The inverse operator exists only if 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})\neq-1$
\end_inset

: then 
\begin_inset Formula \[
\hat{A}^{-1}=\hat{1}_{V}-\frac{1}{1+\mathbf{f}^{*}(\mathbf{u})}\mathbf{u}\otimes\mathbf{f}^{*}.\]

\end_inset

When 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{u})=-1$
\end_inset

, the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has an eigenvector 
\begin_inset Formula $\mathbf{u}$
\end_inset

 with eigenvalue 0, so 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 cannot exist.
\end_layout

\begin_layout Subsection
Linear maps between 
\emph on
different
\emph default
 spaces
\begin_inset LatexCommand \label{sub:Linear-maps-between-different-spaces}

\end_inset


\end_layout

\begin_layout Standard
So far we have been dealing with linear operators that map a space 
\begin_inset Formula $V$
\end_inset

 into itself; what about linear maps 
\begin_inset Formula $V\rightarrow W$
\end_inset

 between 
\emph on
different
\emph default
 spaces? If we replace 
\begin_inset Formula $V^{*}$
\end_inset

 by 
\begin_inset Formula $W^{*}$
\end_inset

 in many of our definitions and proofs, we will obtain a parallel set of
 results for linear maps 
\begin_inset Formula $V\rightarrow W$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Theorem 1:
\end_layout

\begin_layout Standard
Any tensor 
\begin_inset Formula $A\equiv\sum_{j=1}^{k}\mathbf{w}_{j}\otimes\mathbf{f}_{j}^{*}\in W\otimes V^{*}$
\end_inset

 acts as a linear map 
\begin_inset Formula $V\rightarrow W$
\end_inset

 according to the formula
\begin_inset Formula \[
A\mathbf{x}\equiv\sum_{j=1}^{k}\mathbf{f}_{j}^{*}\left(\mathbf{x}\right)\mathbf{w}_{j}.\]

\end_inset

The space 
\begin_inset Formula $\textrm{Hom}\left(V,W\right)$
\end_inset

 of all linear operators 
\begin_inset Formula $V\rightarrow W$
\end_inset

 is canonically isomorphic to the space 
\begin_inset Formula $W\otimes V^{*}$
\end_inset

.
 
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Left as an exercise since it is fully analogous to previous proofs.
\end_layout

\begin_layout Paragraph
Example 1: Covectors as tensors.
\end_layout

\begin_layout Standard
We know that the number field 
\begin_inset Formula $\mathbb{K}$
\end_inset

 is a vector space over itself and 
\begin_inset Formula $V\cong V\otimes\mathbb{K}$
\end_inset

.
 Therefore linear maps 
\begin_inset Formula $V\rightarrow\mathbb{K}$
\end_inset

 are tensors from 
\begin_inset Formula $V^{*}\otimes\mathbb{K}\cong V^{*}$
\end_inset

, i.e.\InsetSpace ~
covectors, in agreement with the definition of 
\begin_inset Formula $V^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 are vector spaces, what are tensors from 
\begin_inset Formula $V^{*}\otimes W^{*}$
\end_inset

?
\end_layout

\begin_layout Standard
They can be viewed as (1) linear maps from 
\begin_inset Formula $V$
\end_inset

 into 
\begin_inset Formula $W^{*}$
\end_inset

, (2) linear maps from 
\begin_inset Formula $W$
\end_inset

 into 
\begin_inset Formula $V^{*}$
\end_inset

, (3) linear maps from 
\begin_inset Formula $V\otimes W$
\end_inset

 into 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
 These possibilities can be written as canonical isomorphisms: 
\begin_inset Formula \[
V^{*}\otimes W^{*}\cong\textrm{Hom}\left(V,W^{*}\right)\cong\textrm{Hom}\left(W,V^{*}\right)\cong\textrm{Hom}\left(V\otimes W,\mathbb{K}\right).\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
How can we interpret the space 
\begin_inset Formula $V\otimes V\otimes V^{*}$
\end_inset

? Same question for the space 
\begin_inset Formula $V^{*}\otimes V^{*}\otimes V\otimes V$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
In many different ways:
\begin_inset Formula \begin{align*}
 & V\otimes V\otimes V^{*}\cong\textrm{Hom}\left(V,V\otimes V\right)\\
 & \cong\textrm{Hom}\left(\textrm{End }V,V\right)\cong\textrm{Hom}\left(V^{*},\textrm{End }V\right)\cong...\;\text{and}\\
 & V^{*}\otimes V^{*}\otimes V\otimes V\cong\textrm{Hom}\left(V,V^{*}\otimes V\otimes V\right)\\
 & \cong\textrm{Hom}\left(V\otimes V,V\otimes V\right)\cong\textrm{Hom}\left(\textrm{End }V,\textrm{End }V\right)\cong...\end{align*}

\end_inset

 For example, 
\begin_inset Formula $V\otimes V\otimes V^{*}$
\end_inset

 can be visualized as the space of linear maps from 
\begin_inset Formula $V^{*}$
\end_inset

 to linear operators in 
\begin_inset Formula $V$
\end_inset

.
 The action of a tensor 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}\otimes\mathbf{w}^{*}\in V\otimes V\otimes V^{*}$
\end_inset

 on a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 may be defined either as 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{u}\right)\mathbf{v}\otimes\mathbf{w}^{*}\in V\otimes V^{*}$
\end_inset

 or alternatively as 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}\right)\mathbf{u}\otimes\mathbf{w}^{*}\in V\otimes V^{*}$
\end_inset

.
 Note that these two definitions are 
\emph on
not
\emph default
 equivalent, i.e.\InsetSpace ~
the same tensors are mapped to 
\emph on
different
\emph default
 operators.
 In each case, one of the copies of 
\begin_inset Formula $V$
\end_inset

 (from 
\begin_inset Formula $V\otimes V\otimes V^{*}$
\end_inset

) is 
\begin_inset Quotes eld
\end_inset

paired up
\begin_inset Quotes erd
\end_inset

 with 
\begin_inset Formula $V^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
We have seen in the proof of Lemma\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-tensor}

\end_inset

 that covectors 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 act as linear maps 
\begin_inset Formula $V\otimes W\rightarrow W$
\end_inset

.
 However, I am now sufficiently illuminated to know that linear maps 
\begin_inset Formula $V\otimes W\rightarrow W$
\end_inset

 are elements of the space 
\begin_inset Formula $W\otimes W^{*}\otimes V^{*}$
\end_inset

 and not elements of 
\begin_inset Formula $V^{*}$
\end_inset

.
 How can this be reconciled?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
There is an injection map 
\begin_inset Formula $V^{*}\rightarrow W\otimes W^{*}\otimes V^{*}$
\end_inset

 defined by the formula 
\begin_inset Formula $\mathbf{f}^{*}\rightarrow\hat{1}_{W}\otimes\mathbf{f}^{*}$
\end_inset

, where 
\begin_inset Formula $\hat{1}_{W}\in W\otimes W^{*}$
\end_inset

 is the identity operator.
 Since 
\begin_inset Formula $\hat{1}_{W}$
\end_inset

 is a canonically defined element of 
\begin_inset Formula $W\otimes W^{*}$
\end_inset

, the map is canonical (defined without choice of basis, i.e.\InsetSpace ~

\emph on
geometrically
\emph default
).
 Thus covectors 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 can be naturally considered as elements of the space 
\begin_inset Formula $\textrm{Hom}\left(V\otimes W,W\right)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
The space 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

 can be interpreted as 
\begin_inset Formula $\textrm{End }V$
\end_inset

, as 
\begin_inset Formula $\textrm{End }V^{*}$
\end_inset

, or as 
\begin_inset Formula $\textrm{Hom}\left(V\otimes V^{*},\mathbb{K}\right)$
\end_inset

.
 This means that one tensor 
\begin_inset Formula $A\in V\otimes V^{*}$
\end_inset

 represents an operator in 
\begin_inset Formula $V$
\end_inset

, an operator in 
\begin_inset Formula $V^{*}$
\end_inset

, or a map from operators into numbers.
 What is the relation between all these different interpretations of the
 tensor 
\begin_inset Formula $A$
\end_inset

? For example, what is the interpretation of the identity operator 
\begin_inset Formula $\hat{1}_{V}\in V\otimes V^{*}$
\end_inset

 as an element of 
\begin_inset Formula $\textrm{Hom}\left(V\otimes V^{*},\mathbb{K}\right)$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
The identity tensor 
\begin_inset Formula $\hat{1}_{V}$
\end_inset

 represents the identity operator in 
\begin_inset Formula $V$
\end_inset

 and in 
\begin_inset Formula $V^{*}$
\end_inset

.
 It also represents the following map 
\begin_inset Formula $V\otimes V^{*}\rightarrow\mathbb{K}$
\end_inset

,
\begin_inset Formula \[
\hat{1}_{V}:\mathbf{v}\otimes\mathbf{f}^{*}\mapsto\mathbf{f}^{*}\left(\mathbf{v}\right).\]

\end_inset

This map applied to an operator 
\begin_inset Formula $\hat{A}\in V\otimes V^{*}$
\end_inset

 yields the 
\series bold
trace
\series default
 
\begin_inset LatexCommand \index{trace}

\end_inset

of that operator (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-trace}

\end_inset

).
\end_layout

\begin_layout Standard
The definition below explains the relation between operators in 
\begin_inset Formula $V$
\end_inset

 and operators in 
\begin_inset Formula $V^{*}$
\end_inset

 represented by the same tensor.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
\begin_inset LatexCommand \label{par:Definition:transpose}

\end_inset

If 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 is a linear map then the 
\series bold
transposed operator
\series default

\begin_inset LatexCommand \index{transposed operator}

\end_inset

 
\begin_inset Formula $\hat{A}^{T}:W^{*}\rightarrow V^{*}$
\end_inset

 is the map  defined by
\begin_inset Formula \begin{equation}
(\hat{A}^{T}\mathbf{f}^{*})\left(\mathbf{v}\right)\equiv\mathbf{f}^{*}(\hat{A}\mathbf{v}),\quad\forall\mathbf{v}\in V,\:\forall\mathbf{f}^{*}\in W^{*}.\label{eq:AT def}\end{equation}

\end_inset

 In particular, this defines the transposed operator 
\begin_inset Formula $\hat{A}^{T}:V^{*}\rightarrow V^{*}$
\end_inset

 given an operator 
\begin_inset Formula $\hat{A}:V\rightarrow V$
\end_inset

.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The above definition is an example of 
\begin_inset Quotes eld
\end_inset

mathematical style
\begin_inset Quotes erd
\end_inset

: I just wrote formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:AT def}

\end_inset

) and left it for you to digest.
 In case you have trouble with this formula, let me translate: The operator
 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 is by definition such that it will transform an arbitrary covector 
\begin_inset Formula $\mathbf{f}^{*}\in W^{*}$
\end_inset

 into a new covector 
\begin_inset Formula $(\hat{A}^{T}\mathbf{f}^{*})\in V^{*}$
\end_inset

, which is a linear function defined by its action on vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
 The formula says that the value of that linear function applied to an arbitrary
 vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 should be equal to the number 
\begin_inset Formula $\mathbf{f}^{*}(\hat{A}\mathbf{v})$
\end_inset

; thus we defined the action of the covector 
\begin_inset Formula $\hat{A}^{T}\mathbf{f}^{*}$
\end_inset

 on any vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 Note how in the formula 
\begin_inset Formula $(\hat{A}^{T}\mathbf{f}^{*})\left(\mathbf{v}\right)$
\end_inset

 the parentheses are used to show that the first object is acting on the
 second.
 
\end_layout

\begin_layout Standard
Since we have defined the covector 
\begin_inset Formula $\hat{A}^{T}\mathbf{f}^{*}$
\end_inset

 for any 
\begin_inset Formula $\mathbf{f}^{*}\in W^{*}$
\end_inset

, it follows that we have thereby defined the operator 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 acting in the space 
\begin_inset Formula $W^{*}$
\end_inset

 and yielding a covector from 
\begin_inset Formula $V^{*}$
\end_inset

.
 Please read the formula again and check that you can understand it.
 The difficulty of understanding equations such as Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:AT def}

\end_inset

) is that one needs to keep in mind all the mathematical notations introduced
 previously and used here, and one also needs to guess the argument implied
 by the formula.
 In this case, the implied argument is that we will 
\emph on
define a new operator
\emph default
 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 if we show, for any 
\begin_inset Formula $\mathbf{f}^{*}\in W^{*}$
\end_inset

, how the new covector 
\begin_inset Formula $(\hat{A}^{T}\mathbf{f}^{*})\in V^{*}$
\end_inset

 works on any vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
 Only after some practice with such arguments will it become easier to read
 mathematical definitions.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Note that the transpose map 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 is defined 
\series bold
canonically
\series default
 (i.e.\InsetSpace ~
without choosing a basis) through the original map 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
How to use this definition when the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is given? Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:AT def}

\end_inset

) is not a formula that gives 
\begin_inset Formula $\hat{A}^{T}\mathbf{f}^{*}$
\end_inset

 directly; rather, it is an identity connecting some values for arbitrary
 
\begin_inset Formula $\mathbf{v}$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
In order to use this definition, we need to apply 
\begin_inset Formula $\hat{A}^{T}\mathbf{f}^{*}$
\end_inset

 to an arbitrary vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 and transform the resulting expression.
 We could also compute the coefficients of the operator 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 in some basis.
\end_layout

\begin_layout Paragraph
Exercise 2: 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $A=\sum_{k}\mathbf{w}_{k}\otimes\mathbf{f}_{k}^{*}\in W\otimes V^{*}$
\end_inset

 is a linear map 
\begin_inset Formula $V\rightarrow W$
\end_inset

, what is the tensor representation of its transpose 
\begin_inset Formula $A^{T}$
\end_inset

? What is its matrix representation in a suitable basis?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
The transpose operator 
\begin_inset Formula $A^{T}$
\end_inset

 maps 
\begin_inset Formula $W^{*}\rightarrow V^{*}$
\end_inset

, so the corresponding tensor is 
\begin_inset Formula $A^{T}=\sum_{k}\mathbf{f}_{k}^{*}\otimes\mathbf{w}_{k}\in V^{*}\otimes W$
\end_inset

.
 Its tensor representation consists of the same vectors 
\begin_inset Formula $\mathbf{w}_{k}\in W$
\end_inset

 and covectors 
\begin_inset Formula $\mathbf{f}_{k}^{*}\in V^{*}$
\end_inset

 as the tensor representation of 
\begin_inset Formula $A$
\end_inset

.
 The matrix representation of 
\begin_inset Formula $A^{T}$
\end_inset

 is the transposed matrix of 
\begin_inset Formula $A$
\end_inset

 if we use the same basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and  its dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
An important characteristic of linear operators is the rank.
 (Note that we have already used the word 
\begin_inset Quotes eld
\end_inset

rank
\begin_inset Quotes erd
\end_inset

 to denote the degree of a tensor product; the following definition presents
 a 
\emph on
different
\emph default
 meaning of the word 
\begin_inset Quotes eld
\end_inset

rank.
\begin_inset Quotes erd
\end_inset

)
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
The 
\series bold
rank
\series default

\begin_inset LatexCommand \index{rank of an operator}

\end_inset

 of a linear map 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 is the dimension of the image subspace 
\begin_inset Formula $\textrm{im }\hat{A}\subset W$
\end_inset

.
 (Recall that 
\begin_inset Formula $\textrm{im }\hat{A}$
\end_inset

 is a linear subspace of 
\begin_inset Formula $W$
\end_inset

 that contains all vectors 
\begin_inset Formula $\mathbf{w}\in W$
\end_inset

 expressed as 
\begin_inset Formula $\mathbf{w}=\hat{A}\mathbf{v}$
\end_inset

 with some 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.) The rank may be denoted by 
\begin_inset Formula $\textrm{rank }\hat{A}\equiv\dim(\textrm{im }\hat{A})$
\end_inset

.
\end_layout

\begin_layout Paragraph
Theorem 2:
\end_layout

\begin_layout Standard
The rank of 
\begin_inset Formula $\hat{A}$
\end_inset

 is the smallest number of terms necessary to write an operator 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 as a sum of single-term tensor products.
 In other words, the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be expressed as 
\begin_inset Formula \[
\hat{A}=\sum_{k=1}^{\textrm{rank }\hat{A}}\mathbf{w}_{k}\otimes\mathbf{f}_{k}^{*}\in W\otimes V^{*},\]

\end_inset

with suitably chosen 
\begin_inset Formula $\mathbf{w}_{k}\in W$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}_{k}^{*}\in V^{*}$
\end_inset

, but not as a sum of fewer terms.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We know that 
\begin_inset Formula $\hat{A}$
\end_inset

 can be written as a sum of tensor product terms,
\begin_inset Formula \begin{equation}
\hat{A}=\sum_{k=1}^{n}\mathbf{w}_{k}\otimes\mathbf{f}_{k}^{*},\label{eq:sum A wf1}\end{equation}

\end_inset

where 
\begin_inset Formula $\mathbf{w}_{k}\in W$
\end_inset

, 
\begin_inset Formula $\mathbf{f}_{k}^{*}\in V^{*}$
\end_inset

 are 
\emph on
some
\emph default
 vectors and covectors, and 
\begin_inset Formula $n$
\end_inset

 is 
\emph on
some
\emph default
 integer.
 There are many possible choices of these vectors and the covectors.
 Let us suppose that Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:sum A wf1}

\end_inset

) represents a choice such that 
\begin_inset Formula $n$
\end_inset

 is the smallest possible number of terms.
 We will first show that 
\begin_inset Formula $n$
\end_inset

 is not smaller than the rank of 
\begin_inset Formula $\hat{A}$
\end_inset

; then we will show that 
\begin_inset Formula $n$
\end_inset

 is not larger than the rank of 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $n$
\end_inset

 is the smallest number of terms, the set 
\begin_inset Formula $\left\{ \mathbf{w}_{1},...,\mathbf{w}_{n}\right\} $
\end_inset

 must be linearly independent, or else we can reduce the number of terms
 in the sum\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:sum A wf1}

\end_inset

).
 To show this, suppose that 
\begin_inset Formula $\mathbf{w}_{1}$
\end_inset

 is equal to a linear combination of other 
\begin_inset Formula $\mathbf{w}_{k}$
\end_inset

,
\begin_inset Formula \[
\mathbf{w}_{1}=\sum_{k=2}^{n}\lambda_{k}\mathbf{w}_{k},\]

\end_inset

then we can rewrite 
\begin_inset Formula $\hat{A}$
\end_inset

 as
\begin_inset Formula \[
\hat{A}=\mathbf{w}_{1}\otimes\mathbf{f}_{1}^{*}+\sum_{k=2}^{n}\mathbf{w}_{k}\otimes\mathbf{f}_{k}^{*}=\sum_{k=2}^{n}\mathbf{w}_{k}\otimes\left(\mathbf{f}_{k}^{*}+\lambda_{k}\mathbf{f}_{1}^{*}\right),\]

\end_inset

reducing the number of terms from 
\begin_inset Formula $n$
\end_inset

 to 
\begin_inset Formula $n-1$
\end_inset

.
 Since by assumption the number of terms cannot be made less than 
\begin_inset Formula $n$
\end_inset

, the set 
\begin_inset Formula $\left\{ \mathbf{w}_{k}\right\} $
\end_inset

 must be linearly independent.
 In particular, the subspace spanned by 
\begin_inset Formula $\left\{ \mathbf{w}_{k}\right\} $
\end_inset

 is 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al.
 (The same reasoning shows that the set 
\begin_inset Formula $\left\{ \mathbf{f}_{k}^{*}\right\} $
\end_inset

 must be also linearly independent, but we will not need to use this.)
\end_layout

\begin_layout Standard
The rank of 
\begin_inset Formula $\hat{A}$
\end_inset

 is the dimension of the image of 
\begin_inset Formula $\hat{A}$
\end_inset

; let us denote 
\begin_inset Formula $m\equiv\text{rank }\hat{A}$
\end_inset

.
 It follows from the definition of the map 
\begin_inset Formula $\hat{A}$
\end_inset

 that for any 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

, the image 
\begin_inset Formula $\hat{A}\mathbf{v}$
\end_inset

 is a linear combination of the vectors 
\begin_inset Formula $\mathbf{w}_{k}$
\end_inset

,
\begin_inset Formula \[
\hat{A}\mathbf{v}=\sum_{k=1}^{n}\mathbf{f}_{k}^{*}\left(\mathbf{v}\right)\mathbf{w}_{k}.\]

\end_inset

Therefore, the 
\begin_inset Formula $m$
\end_inset

-dimensional subspace 
\begin_inset Formula $\text{im}\hat{A}$
\end_inset

 is contained within the 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{w}_{1},...,\mathbf{w}_{n}\right\} $
\end_inset

, so 
\begin_inset Formula $m\leq n$
\end_inset

.
 
\end_layout

\begin_layout Standard
Now, we may choose a basis 
\begin_inset Formula $\left\{ \mathbf{b}_{1},...,\mathbf{b}_{m}\right\} $
\end_inset

 in the subspace 
\begin_inset Formula $\text{im}\hat{A}$
\end_inset

; then for every 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 we have
\begin_inset Formula \[
\hat{A}\mathbf{v}=\sum_{i=1}^{m}\beta_{i}\mathbf{b}_{i}\]

\end_inset

with some coefficients 
\begin_inset Formula $\beta_{i}$
\end_inset

 that are uniquely determined for each vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

; in other words, 
\begin_inset Formula $\beta_{i}$
\end_inset

 are 
\emph on
functions
\emph default
 of 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 It is easy to see that the coefficients 
\begin_inset Formula $\beta_{i}$
\end_inset

 are 
\emph on
linear
\emph default
 functions of the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 since
\begin_inset Formula \[
\hat{A}(\mathbf{v}+\lambda\mathbf{u})=\sum_{i=1}^{m}(\beta_{i}+\lambda\alpha_{i})\mathbf{b}_{i}\]

\end_inset

 if 
\begin_inset Formula $\hat{A}\mathbf{u}=\sum_{i=1}^{m}\alpha_{i}\mathbf{b}_{i}$
\end_inset

.
 Hence there exist some covectors 
\begin_inset Formula $\mathbf{g}_{i}^{*}$
\end_inset

 such that 
\begin_inset Formula $\beta_{i}=\mathbf{g}_{i}^{*}(\mathbf{v})$
\end_inset

.
 It follows that we are able to express 
\begin_inset Formula $\hat{A}$
\end_inset

 as the tensor 
\begin_inset Formula $\sum_{i=1}^{m}\mathbf{b}_{i}\otimes\mathbf{g}_{i}^{*}$
\end_inset

 using 
\begin_inset Formula $m$
\end_inset

 terms.
 Since the smallest possible number of terms is 
\begin_inset Formula $n$
\end_inset

, we must have 
\begin_inset Formula $m\geq n$
\end_inset

.
\end_layout

\begin_layout Standard
We have shown that 
\begin_inset Formula $m\leq n$
\end_inset

 and 
\begin_inset Formula $m\geq n$
\end_inset

, therefore 
\begin_inset Formula $n=m=\textrm{rank }\hat{A}$
\end_inset

.
 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Corollary:
\end_layout

\begin_layout Standard
The rank of a map 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 is equal to the rank of its transpose 
\begin_inset Formula $\hat{A}^{T}:W^{*}\rightarrow V^{*}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The maps 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 are represented by the same tensor from the space 
\begin_inset Formula $W\otimes V^{*}$
\end_inset

.
 Since the rank is equal to the minimum number of terms necessary to express
 that tensor, the ranks of 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 always coincide.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
We conclude that tensor product is a general construction that represents
 the space of linear maps between various previously defined spaces.
 For example, matrices are representations of linear maps from vectors to
 vectors; tensors from 
\begin_inset Formula $V^{*}\otimes V\otimes V$
\end_inset

 can be viewed as linear maps from matrices to vectors, etc.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Prove that the tensor equality 
\begin_inset Formula $\mathbf{a}\otimes\mathbf{a}+\mathbf{b}\otimes\mathbf{b}=\mathbf{v}\otimes\mathbf{w}$
\end_inset

 where 
\begin_inset Formula $\mathbf{a}\neq0$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}\neq0$
\end_inset

 can hold only when 
\begin_inset Formula $\mathbf{a}=\lambda\mathbf{b}$
\end_inset

 for some scalar 
\begin_inset Formula $\lambda$
\end_inset

.
 
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: If 
\begin_inset Formula $\mathbf{a}\neq\lambda\mathbf{b}$
\end_inset

 then there exists a covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{a})=1$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{b})=0$
\end_inset

.
 Define the map 
\begin_inset Formula $\mathbf{f}^{*}:V\otimes V$
\end_inset


\begin_inset Formula $\rightarrow V$
\end_inset

 as 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x}\otimes\mathbf{y})=\mathbf{f}^{*}(\mathbf{x})\mathbf{y}$
\end_inset

.
 Compute 
\begin_inset Formula \[
\mathbf{f}^{*}(\mathbf{a}\otimes\mathbf{a}+\mathbf{b}\otimes\mathbf{b})=\mathbf{a}=\mathbf{f}^{*}(\mathbf{v})\mathbf{w},\]

\end_inset

hence 
\begin_inset Formula $\mathbf{w}$
\end_inset

 is proportional to 
\begin_inset Formula $\mathbf{a}$
\end_inset

.
 Similarly you can show that 
\begin_inset Formula $\mathbf{w}$
\end_inset

 is proportional to 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
\end_layout

\begin_layout Section
Index notation for tensors
\begin_inset LatexCommand \label{sub:Index-notation}

\end_inset


\end_layout

\begin_layout Standard
So far we have used a purely coordinate-free formalism to define and describe
 tensors from spaces such as 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

.
 However, in many calculations a basis in 
\begin_inset Formula $V$
\end_inset

 is fixed, and one needs to compute the components of tensors in that basis.
 Also, the coordinate-free notation becomes cumbersome for computations
 in higher-rank tensor spaces such as 
\begin_inset Formula $V\otimes V\otimes V^{*}$
\end_inset

 because there is no direct means of referring to an individual component
 in the tensor product.
 The 
\series bold
index notation
\series default
 makes such calculations easier.
\end_layout

\begin_layout Standard
Suppose a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 is fixed; then the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{k}^{*}\right\} $
\end_inset

 is also fixed.
 Any vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is decomposed as 
\begin_inset Formula $\mathbf{v}=\sum_{k}v_{k}\mathbf{e}_{k}$
\end_inset

 and any covector as 
\begin_inset Formula $\mathbf{f}^{*}=\sum_{k}f_{k}\mathbf{e}_{k}^{*}$
\end_inset

.
 Any tensor from 
\begin_inset Formula $V\otimes V$
\end_inset

 is decomposed as
\begin_inset Formula \[
A=\sum_{j,k}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}\in V\otimes V\]

\end_inset

and so on.
 The action of a covector on a vector is 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}\right)=\sum_{k}f_{k}v_{k}$
\end_inset

, and the action of an operator on a vector is 
\begin_inset Formula $\sum_{j,k}A_{jk}v_{k}\mathbf{e}_{k}$
\end_inset

.
 However, it is cumbersome to keep writing these sums.
 In the index notation, one writes 
\emph on
only
\emph default
 the components 
\begin_inset Formula $v_{k}$
\end_inset

 or 
\begin_inset Formula $A_{jk}$
\end_inset

 of vectors and tensors.
\end_layout

\begin_layout Subsection
Definition of  index notation
\end_layout

\begin_layout Standard
The rules are as follows:
\end_layout

\begin_layout Itemize
Basis vectors 
\begin_inset Formula $\mathbf{e}_{k}$
\end_inset

 and basis tensors 
\begin_inset Formula $\mathbf{e}_{k}\otimes\mathbf{e}_{l}^{*}$
\end_inset

 are never written explicitly.
 (It is assumed that the basis is fixed and known.)
\end_layout

\begin_layout Itemize
Instead of a vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

, one writes its array of components 
\begin_inset Formula $v^{k}$
\end_inset

 with the 
\emph on
superscript
\emph default
 index.
 Covectors 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 are written 
\begin_inset Formula $f_{k}$
\end_inset

 with the 
\emph on
subscript
\emph default
 index.
 The index 
\begin_inset Formula $k$
\end_inset

 runs over integers from 
\begin_inset Formula $1$
\end_inset

 to 
\begin_inset Formula $N$
\end_inset

.
 Components of vectors and tensors may be thought of as numbers (e.g.\InsetSpace ~
elements
 of the number field 
\begin_inset Formula $\mathbb{K}$
\end_inset

).
\end_layout

\begin_layout Itemize
Tensors are written as multidimen\SpecialChar \-
sion\SpecialChar \-
al arrays of components with superscript
 or subscript indices as necessary, for example 
\begin_inset Formula $A_{jk}\in V^{*}\otimes V^{*}$
\end_inset

 or 
\begin_inset Formula $B_{k}^{lm}\in V\otimes V\otimes V^{*}$
\end_inset

.
 Thus e.g.\InsetSpace ~
the Kronecker delta symbol is written as 
\begin_inset Formula $\delta_{k}^{j}$
\end_inset

 when it represents the identity operator 
\begin_inset Formula $\hat{1}_{V}$
\end_inset

.
 
\end_layout

\begin_layout Itemize
The choice of indices must be consistent; each index corresponds to a particular
 copy of 
\begin_inset Formula $V$
\end_inset

 or 
\begin_inset Formula $V^{*}$
\end_inset

.
 Thus it is wrong to write 
\begin_inset Formula $v_{j}=u_{k}$
\end_inset

 or 
\begin_inset Formula $v_{i}+u^{i}=0$
\end_inset

.
 Correct equations are 
\begin_inset Formula $v_{j}=u_{j}$
\end_inset

 and 
\begin_inset Formula $v^{i}+u^{i}=0$
\end_inset

.
 This disallows meaningless expressions such as 
\begin_inset Formula $\mathbf{v}^{*}+\mathbf{u}$
\end_inset

 (one cannot add vectors from different spaces).
\end_layout

\begin_layout Itemize
Sums over indices such as 
\begin_inset Formula $\sum_{k=1}^{N}a_{k}b_{k}$
\end_inset

 are not written explicitly, the 
\begin_inset Formula $\sum$
\end_inset

 symbol is omitted, and the 
\series bold
Einstein summation convention
\series default
 is used instead: Summation over all values of an index is 
\emph on
always implied
\emph default
 when that index letter appears once as a subscript and once as a superscript.
 In this case the letter is called a 
\series bold
dummy
\series default

\begin_inset LatexCommand \index{dummy index}

\end_inset

 (or 
\series bold
mute
\series default
) 
\series bold
index
\series default
.
 Thus one writes 
\begin_inset Formula $f_{k}v^{k}$
\end_inset

 instead of 
\begin_inset Formula $\sum_{k}f_{k}v_{k}$
\end_inset

 and 
\begin_inset Formula $A_{k}^{j}v^{k}$
\end_inset

 instead of 
\begin_inset Formula $\sum_{k}A_{jk}v_{k}$
\end_inset

.
 
\end_layout

\begin_layout Itemize
Summation is allowed 
\emph on
only
\emph default
 over one subscript and one superscript but never over two subscripts or
 two superscripts and never over three or more coincident indices.
 This corresponds to requiring that we are only allowed to compute the canonical
 pairing of 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $V^{*}$
\end_inset

 [see Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:f star v}

\end_inset

)] but no other pairing.
 The expression 
\begin_inset Formula $v^{k}v^{k}$
\end_inset

 is not allowed because there is no canonical pairing of 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $V$
\end_inset

, so, for instance, the sum 
\begin_inset Formula $\sum_{k=1}^{N}v^{k}v^{k}$
\end_inset

 depends on the choice of the basis.
 For the same reason (dependence on the basis), expressions such as 
\begin_inset Formula $u^{i}v^{i}w^{i}$
\end_inset

 or 
\begin_inset Formula $A_{ii}B^{ii}$
\end_inset

 are not allowed.
 Correct expressions are 
\begin_inset Formula $u_{i}v^{i}w_{k}$
\end_inset

 and 
\begin_inset Formula $A_{ik}B^{ik}$
\end_inset

.
\end_layout

\begin_layout Itemize
One needs to pay close attention to the choice and the position of the letters
 such as 
\begin_inset Formula $j,k,l$
\end_inset

,...\InsetSpace ~
used as indices.
 Indices that are not repeated are 
\series bold
free
\series default

\begin_inset LatexCommand \index{free index}

\end_inset

 indices.
 The rank of a tensor expression is equal to the number of free subscript
 and superscript indices.
 Thus 
\begin_inset Formula $A_{k}^{j}v^{k}$
\end_inset

 is a rank 
\begin_inset Formula $1$
\end_inset

 tensor (i.e.\InsetSpace ~
a vector) because the expression 
\begin_inset Formula $A_{k}^{j}v^{k}$
\end_inset

 has a single free index, 
\begin_inset Formula $j$
\end_inset

, and a summation over 
\begin_inset Formula $k$
\end_inset

 is implied.
 
\end_layout

\begin_layout Itemize
The tensor product symbol 
\begin_inset Formula $\otimes$
\end_inset

 is never written.
 For example, if 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{f}^{*}=\sum_{jk}v_{j}f_{k}^{*}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*}$
\end_inset

, one writes 
\begin_inset Formula $v^{k}f_{j}$
\end_inset

 to represent the tensor 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{f}^{*}$
\end_inset

.
 The index letters in the expression 
\begin_inset Formula $v^{k}f_{j}$
\end_inset

 are intentionally chosen to be 
\emph on
different
\emph default
 (in this case, 
\begin_inset Formula $k$
\end_inset

 and 
\begin_inset Formula $j$
\end_inset

) so that no summation would be implied.
 In other words, a tensor product is written simply as a product of components,
 and the index letters are chosen appropriately.
 Then one can interpret 
\begin_inset Formula $v^{k}f_{j}$
\end_inset

 as simply the product of 
\emph on
numbers
\emph default
.
 In particular, it makes no difference whether one writes 
\begin_inset Formula $f_{j}v^{k}$
\end_inset

 or 
\begin_inset Formula $v^{k}f_{j}$
\end_inset

.
 The 
\emph on
position of the indices
\emph default
 (rather than the ordering of vectors) shows in every case how the tensor
 product is formed.
 Note that it is not possible to distinguish 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

 from 
\begin_inset Formula $V^{*}\otimes V$
\end_inset

 in the index notation.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
It follows from the definition of 
\begin_inset Formula $\delta_{j}^{i}$
\end_inset

 that 
\begin_inset Formula $\delta_{j}^{i}v^{j}=v^{i}$
\end_inset

.
 This is the index representation of 
\begin_inset Formula $\hat{1}\mathbf{v}=\mathbf{v}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\mathbf{w}$
\end_inset

, 
\begin_inset Formula $\mathbf{x}$
\end_inset

, 
\begin_inset Formula $\mathbf{y}$
\end_inset

, and 
\begin_inset Formula $\mathbf{z}$
\end_inset

 are vectors from 
\begin_inset Formula $V$
\end_inset

 whose components are 
\begin_inset Formula $w^{i}$
\end_inset

, 
\begin_inset Formula $x^{i}$
\end_inset

, 
\begin_inset Formula $y^{i}$
\end_inset

, 
\begin_inset Formula $z^{i}$
\end_inset

.
 What are the components of the tensor 
\begin_inset Formula $\mathbf{w}\otimes\mathbf{x}+2\mathbf{y}\otimes\mathbf{z}\in V\otimes V$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula $w^{i}x^{k}+2y^{i}z^{k}$
\end_inset

.
 (We need to choose another letter for the second free index, 
\begin_inset Formula $k$
\end_inset

, which corresponds to the second copy of 
\begin_inset Formula $V$
\end_inset

 in 
\begin_inset Formula $V\otimes V$
\end_inset

.)
\end_layout

\begin_layout Paragraph
Example 3:
\end_layout

\begin_layout Standard
The operator 
\begin_inset Formula $\hat{A}\equiv\hat{1}_{V}+\lambda\mathbf{v}\otimes\mathbf{u}^{*}\in V\otimes V^{*}$
\end_inset

 acts on a vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
 Calculate the resulting vector 
\begin_inset Formula $\mathbf{y}\equiv\hat{A}\mathbf{x}$
\end_inset

.
\end_layout

\begin_layout Standard
In the index-free notation, the calculation is
\begin_inset Formula \[
\mathbf{y}=\hat{A}\mathbf{x}=\left(\hat{1}_{V}+\lambda\mathbf{v}\otimes\mathbf{u}^{*}\right)\mathbf{x}=\mathbf{x}+\lambda\mathbf{u}^{*}\left(\mathbf{x}\right)\mathbf{v}.\]

\end_inset

In the index notation, the calculation looks like this:
\begin_inset Formula \[
y^{k}=\left(\delta_{j}^{k}+\lambda v^{k}u_{j}\right)x^{j}=x^{k}+\lambda v^{k}u_{j}x^{j}.\]

\end_inset

In this formula, 
\begin_inset Formula $j$
\end_inset

 is a dummy index and 
\begin_inset Formula $k$
\end_inset

 is a free index.
 We could have also written 
\begin_inset Formula $\lambda x^{j}v^{k}u_{j}$
\end_inset

 instead of 
\begin_inset Formula $\lambda v^{k}u_{j}x^{j}$
\end_inset

 since the ordering of components makes no difference in the index notation.
 
\end_layout

\begin_layout Paragraph
Exercise: 
\end_layout

\begin_layout Standard
In a physics book you find the following formula, 
\begin_inset Formula \[
H_{\mu\nu}^{\alpha}=\frac{1}{2}\left(h_{\beta\mu\nu}+h_{\beta\nu\mu}-h_{\mu\nu\beta}\right)g^{\alpha\beta}.\]

\end_inset

To what spaces do the tensors 
\begin_inset Formula $H$
\end_inset

, 
\begin_inset Formula $g$
\end_inset

, 
\begin_inset Formula $h$
\end_inset

 belong (assuming these quantities represent tensors)? Rewrite this formula
 in the coordinate-free notation.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula $H\in V\otimes V^{*}\otimes V^{*}$
\end_inset

, 
\begin_inset Formula $h\in V^{*}\otimes V^{*}\otimes V^{*}$
\end_inset

, 
\begin_inset Formula $g\in V\otimes V$
\end_inset

.
 Assuming the simplest case,
\begin_inset Formula \[
h=\mathbf{h}_{1}^{*}\otimes\mathbf{h}_{2}^{*}\otimes\mathbf{h}_{3}^{*},\; g=\mathbf{g}_{1}\otimes\mathbf{g}_{2},\]

\end_inset

the coordinate-free formula is
\begin_inset Formula \[
H=\frac{1}{2}\mathbf{g}_{1}\otimes\left(\mathbf{h}_{1}^{*}\left(\mathbf{g}_{2}\right)\mathbf{h}_{2}^{*}\otimes\mathbf{h}_{3}^{*}+\mathbf{h}_{1}^{*}\left(\mathbf{g}_{2}\right)\mathbf{h}_{3}^{*}\otimes\mathbf{h}_{2}^{*}-\mathbf{h}_{3}^{*}\left(\mathbf{g}_{2}\right)\mathbf{h}_{1}^{*}\otimes\mathbf{h}_{2}^{*}\right).\]

\end_inset


\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
I would like to decompose a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 using the index notation, 
\begin_inset Formula $\mathbf{v}=v^{j}\mathbf{e}_{j}$
\end_inset

.
 Is it okay to write the 
\emph on
lower
\emph default
 index 
\begin_inset Formula $j$
\end_inset

 on the basis vectors 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

? I also want to write 
\begin_inset Formula $v^{j}=\mathbf{e}_{j}^{*}(\mathbf{v})$
\end_inset

 using the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

, but then the index 
\begin_inset Formula $j$
\end_inset

 is not correctly matched at both sides.
 
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
The index notation is designed so that you never use the basis vectors 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 or 
\begin_inset Formula $\mathbf{e}_{j}^{*}$
\end_inset

 --- you only use components such as 
\begin_inset Formula $v^{j}$
\end_inset

 or 
\begin_inset Formula $f_{j}$
\end_inset

.
 The only way to keep the upper and the lower indices consistent (i.e.\InsetSpace ~
having
 the summation always over one upper and one lower index) when you want
 to use both the components 
\begin_inset Formula $v^{j}$
\end_inset

 and the basis vectors 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 is to use 
\emph on
upper
\emph default
 indices on the dual basis, i.e.\InsetSpace ~
writing 
\begin_inset Formula $\left\{ \mathbf{e}^{*j}\right\} $
\end_inset

.
 Then a covector will have components with lower indices, 
\begin_inset Formula $\mathbf{f}^{*}=f_{j}\mathbf{e}^{*j}$
\end_inset

, and the index notation remains consistent.
 A further problem occurs when you have a scalar product and you would like
 to express the component 
\begin_inset Formula $v^{j}$
\end_inset

 as 
\begin_inset Formula $v^{j}=\left\langle \mathbf{v},\mathbf{e}_{j}\right\rangle $
\end_inset

.
 In this case, the only way to keep the notation consistent is to use explicitly
 a suitable matrix, say 
\begin_inset Formula $g^{ij}$
\end_inset

, in order to represent the scalar product.
 Then one would be able to write 
\begin_inset Formula $v^{j}=g^{jk}\left\langle \mathbf{v},\mathbf{e}_{k}\right\rangle $
\end_inset

 and keep the index notation consistent.
 
\end_layout

\begin_layout Subsection
Advantages and disadvantages of index notation
\end_layout

\begin_layout Standard
Index notation is conceptually easier than the index-free notation because
 one can imagine manipulating 
\begin_inset Quotes eld
\end_inset

merely
\begin_inset Quotes erd
\end_inset

 some tables of numbers, rather than 
\begin_inset Quotes eld
\end_inset

abstract vectors.
\begin_inset Quotes erd
\end_inset

 In other words, we are working with less abstract objects.
 The price is that we obscure the geometric interpretation of what we are
 doing, and proofs of general theorems become more difficult to understand.
\end_layout

\begin_layout Standard
The main advantage of the index notation is that it makes computations with
 complicated tensors quicker.
 Consider, for example, the space 
\begin_inset Formula $V\otimes V\otimes V^{*}\otimes V^{*}$
\end_inset

 whose elements can be interpreted as operators from 
\begin_inset Formula $\textrm{Hom}\,(V\otimes V,V\otimes V)$
\end_inset

.
 The action of such an operator on a tensor 
\begin_inset Formula $a^{jk}\in V\otimes V$
\end_inset

 is expressed in the index notation as
\begin_inset Formula \[
b^{lm}=A_{jk}^{lm}a^{jk},\]

\end_inset

where 
\begin_inset Formula $a^{lm}$
\end_inset

 and 
\begin_inset Formula $b^{lm}$
\end_inset

 represent tensors from 
\begin_inset Formula $V\otimes V$
\end_inset

 and 
\begin_inset Formula $A_{jk}^{lm}$
\end_inset

 is a tensor from 
\begin_inset Formula $V\otimes V\otimes V^{*}\otimes V^{*}$
\end_inset

, while the summation over the indices 
\begin_inset Formula $j$
\end_inset

 and 
\begin_inset Formula $k$
\end_inset

 is implied.
 Each index letter refers unambiguously to one tensor product factor.
 Note that the formula 
\begin_inset Formula \[
b^{lm}=A_{kj}^{lm}a^{jk}\]

\end_inset

describes another (
\emph on
inequivalent
\emph default
) way to define the isomorphism between the spaces 
\begin_inset Formula $V\otimes V\otimes V^{*}\otimes V^{*}$
\end_inset

 and 
\begin_inset Formula $\textrm{Hom}\,(V\otimes V,V\otimes V)$
\end_inset

.
 The index notation expresses this difference in a concise way; of course,
 one needs to pay close attention to the position and the order of indices.
\end_layout

\begin_layout Standard
Note that in the coordinate-free notation it is much more cumbersome to
 describe and manipulate such tensors.
 Without the index notation, it is cumbersome to perform calculations with
 a tensor such as
\begin_inset Formula \[
B_{jl}^{ik}\equiv\delta_{j}^{i}\delta_{l}^{k}-\delta_{j}^{k}\delta_{l}^{i}\in V\otimes V\otimes V^{*}\otimes V^{*}\]

\end_inset

 which acts as an operator in 
\begin_inset Formula $V\otimes V$
\end_inset

, exchanging the two vector factors:
\begin_inset Formula \[
\left(\delta_{j}^{i}\delta_{l}^{k}-\delta_{j}^{k}\delta_{l}^{i}\right)a^{jl}=a^{ik}-a^{ki}.\]

\end_inset

The index-free definition of this operator is simple with single-term tensor
 products,
\begin_inset Formula \[
\hat{B}\left(\mathbf{u}\otimes\mathbf{v}\right)\equiv\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}.\]

\end_inset

Having defined 
\begin_inset Formula $\hat{B}$
\end_inset

 on single-term tensor products, we require linearity and so define the
 operator 
\begin_inset Formula $\hat{B}$
\end_inset

 on the entire space 
\begin_inset Formula $V\otimes V$
\end_inset

.
 However, practical calculations are cumbersome if we are applying 
\begin_inset Formula $\hat{B}$
\end_inset

 to a complicated tensor 
\begin_inset Formula $X\in V\otimes V$
\end_inset

 rather than to a single-term product 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}$
\end_inset

, because, in particular, we are obliged to decompose 
\begin_inset Formula $X$
\end_inset

 into single-term tensor products in order to perform such a calculation.
\end_layout

\begin_layout Standard
Some 
\emph on
disadvantages
\emph default
 of the index notation are as follows: (1) If the basis is changed, all
 components need to be recomputed.
 In textbooks that use the index notation, quite some time is spent studying
 the transformation laws of tensor components under a change of basis.
 If different bases are used simultaneously, confusion may result as to
 which basis is implied in a particular formula.
 (2) If we are using unrelated vector spaces 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

, we need to choose a basis in each of them and always remember which index
 belongs to which space.
 The index notation does not show this explicitly.
 To alleviate this problem, one may use e.g.\InsetSpace ~
Greek and Latin indices to distinguish
 different spaces, but this is not always convenient or sufficient.
 (3) The geometrical meaning of many calculations appears hidden behind
 a mass of indices.
 It is sometimes unclear whether a long expression with indices can be simplifie
d and how to proceed with calculations.
 (Do we need to try all possible relabellings of indices and see what happens?)
 
\end_layout

\begin_layout Standard
Despite these disadvantages, the index notation enables one to perform practical
 calculations with high-rank tensor spaces, such as those required in field
 theory and in general relativity.
 For this reason, and also for historical reasons (Einstein used the index
 notation when developing the theory of relativity), most physics textbooks
 use the index notation.
 In some cases, calculations can be performed equally quickly using index
 and index-free notations.
 In other cases, especially when deriving general properties of tensors,
 the index-free notation is superior.
\begin_inset Foot
status open

\begin_layout Standard
I have developed an advanced textbook on general relativity entirely in
 the index-free notation and displayed the infrequent cases where the index
 notation is easier to use.
\end_layout

\end_inset

 I use the index-free notation in this book because calculations in coordinates
 are not essential for this book's central topics.
 However, I will occasionally show how to do some calculations also in the
 index notation.
\end_layout

\begin_layout Section
Dirac notation for vectors and covectors
\end_layout

\begin_layout Standard
The Dirac notation was developed for quantum mechanics where one needs to
 perform many computations with operators, vectors and covectors (but 
\emph on
not
\emph default
 with higher-rank tensors!).
 The Dirac notation is index-free.
\end_layout

\begin_layout Subsection
Definition of Dirac notation
\end_layout

\begin_layout Standard
The rules are as follows:
\end_layout

\begin_layout Itemize
One writes the symbol 
\begin_inset Formula $\left|v\right\rangle $
\end_inset

 for a vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and 
\begin_inset Formula $\left\langle f\right|$
\end_inset

 for a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

.
 The labels inside the special brackets 
\begin_inset Formula $\left|\,\right\rangle $
\end_inset

 and 
\begin_inset Formula $\left\langle \,\right|$
\end_inset

 are chosen according to the problem at hand, e.g.\InsetSpace ~
one can denote specific
 vectors by 
\begin_inset Formula $\left|0\right\rangle $
\end_inset

, 
\begin_inset Formula $\left|1\right\rangle $
\end_inset

, 
\begin_inset Formula $\left|x\right\rangle $
\end_inset

, 
\begin_inset Formula $\left|v_{1}\right\rangle $
\end_inset

, or even 
\begin_inset Formula $\left\langle ^{(0)}\tilde{a}_{ij};\, l,m\right|$
\end_inset

 if that helps.
 (Note that 
\begin_inset Formula $\left|0\right\rangle $
\end_inset

 is normally 
\emph on
not
\emph default
 the zero vector; the latter is denoted simply by 0, as usual.)
\end_layout

\begin_layout Itemize
Linear combinations of vectors are written like this: 
\begin_inset Formula $2\left|v\right\rangle -3\left|u\right\rangle $
\end_inset

 instead of 
\begin_inset Formula $2\mathbf{v}-3\mathbf{u}$
\end_inset

.
\end_layout

\begin_layout Itemize
The action of a covector on a vector is written as 
\begin_inset Formula $\left\langle f|v\right\rangle $
\end_inset

; the result is a number.
 The mnemonic for this is 
\begin_inset Quotes eld
\end_inset

bra-ket
\begin_inset Quotes erd
\end_inset

, so 
\begin_inset Formula $\left\langle f\right|$
\end_inset

 is a 
\begin_inset Quotes eld
\end_inset

bra vector
\begin_inset Quotes erd
\end_inset

 and 
\begin_inset Formula $\left|v\right\rangle $
\end_inset

 is a 
\begin_inset Quotes eld
\end_inset

ket vector.
\begin_inset Quotes erd
\end_inset

 The action of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 on a vector 
\begin_inset Formula $\left|v\right\rangle $
\end_inset

 is written 
\begin_inset Formula $\hat{A}\left|v\right\rangle $
\end_inset

.
 
\end_layout

\begin_layout Itemize
The action of the transposed operator 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 on a covector 
\begin_inset Formula $\left\langle f\right|$
\end_inset

 is written 
\begin_inset Formula $\left\langle f\right|\hat{A}$
\end_inset

.
 Note that the transposition label (
\begin_inset Formula $^{T}$
\end_inset

) is 
\emph on
not
\emph default
 used.
 This is consistent within the Dirac notation: The covector 
\begin_inset Formula $\left\langle f\right|\hat{A}$
\end_inset

 acts on a vector 
\begin_inset Formula $\left|v\right\rangle $
\end_inset

 as 
\begin_inset Formula $\left\langle f\right|\hat{A}\left|v\right\rangle $
\end_inset

, which is the same (by definition of 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

) as the covector 
\begin_inset Formula $\left\langle f\right|$
\end_inset

 acting on 
\begin_inset Formula $\hat{A}\left|v\right\rangle $
\end_inset

.
\end_layout

\begin_layout Itemize
The tensor product symbol 
\begin_inset Formula $\otimes$
\end_inset

 is omitted.
 Instead of 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{f}^{*}\in V\otimes V^{*}$
\end_inset

 or 
\begin_inset Formula $\mathbf{a}\otimes\mathbf{b}\in V\otimes V$
\end_inset

, one writes 
\begin_inset Formula $\left|v\right\rangle \left\langle f\right|$
\end_inset

 and 
\begin_inset Formula $\left|a\right\rangle \left|b\right\rangle $
\end_inset

 respectively.
 The tensor space to which a tensor belongs will be clear from the notation
 or from explanations in the text.
 Note that one cannot write 
\begin_inset Formula $\mathbf{f}^{*}\otimes\mathbf{v}$
\end_inset

 as 
\begin_inset Formula $\left\langle f\right|\left|v\right\rangle $
\end_inset

 since 
\begin_inset Formula $\left\langle f\right|\left|v\right\rangle $
\end_inset

 already means 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{v})$
\end_inset

 in the Dirac notation.
 Instead, one always writes 
\begin_inset Formula $\left|v\right\rangle \left\langle f\right|$
\end_inset

 and does not distinguish between 
\begin_inset Formula $\mathbf{f}^{*}\otimes\mathbf{v}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{f}^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
The action of an operator 
\begin_inset Formula $\mathbf{a}\otimes\mathbf{b}^{*}\in V\otimes V^{*}$
\end_inset

 on a vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 has been defined by 
\begin_inset Formula $\left(\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{v}=\mathbf{b}^{*}(\mathbf{v})\,\mathbf{a}$
\end_inset

.
 In the Dirac notation, this is very easy to express: one acts with 
\begin_inset Formula $\left|a\right\rangle \left\langle b\right|$
\end_inset

 on a vector 
\begin_inset Formula $\left|v\right\rangle $
\end_inset

 by writing 
\begin_inset Formula \[
\left(\left|a\right\rangle \left\langle b\right|\right)\left|v\right\rangle =\left|a\right\rangle \left\langle b\right|\left|v\right\rangle =\left|a\right\rangle \left\langle b|v\right\rangle .\]

\end_inset

In other words, we mentally remove one vertical line and get the vector
 
\begin_inset Formula $\left|a\right\rangle $
\end_inset

 times the number 
\begin_inset Formula $\left\langle b|v\right\rangle $
\end_inset

.
 This is entirely consistent with the definition of the operator 
\begin_inset Formula $\mathbf{a}\otimes\mathbf{b}^{*}\in\text{End}\, V$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
The action of 
\begin_inset Formula $\hat{A}\equiv\hat{1}_{V}+\frac{1}{2}\mathbf{v}\otimes\mathbf{u}^{*}\in V\otimes V^{*}$
\end_inset

 on a vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 is written as follows:
\begin_inset Formula \begin{align*}
\left|y\right\rangle  & =\hat{A}\left|x\right\rangle =\left(\hat{1}+{\textstyle \frac{1}{2}}\left|v\right\rangle \left\langle u\right|\right)\left|x\right\rangle =\left|x\right\rangle +{\textstyle \frac{1}{2}}\left|v\right\rangle \left\langle u\right|\left|x\right\rangle \\
 & =\left|x\right\rangle +\frac{\left\langle u|x\right\rangle }{2}\left|v\right\rangle .\end{align*}

\end_inset

Note that we have again 
\begin_inset Quotes eld
\end_inset

simplified
\begin_inset Quotes erd
\end_inset

 
\begin_inset Formula $\left\langle u\right|\left|x\right\rangle $
\end_inset

 to 
\begin_inset Formula $\left\langle u|x\right\rangle $
\end_inset

, and the result is correct.
 Compare this notation with the same calculation written in the index-free
 notation:
\begin_inset Formula \[
\mathbf{y}=\hat{A}\mathbf{x}=\left(\hat{1}+{\textstyle \frac{1}{2}}\mathbf{v}\otimes\mathbf{u}^{*}\right)\mathbf{x}=\mathbf{x}+\frac{\mathbf{u}^{*}(\mathbf{x})}{2}\mathbf{v}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Example 3:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left|e_{1}\right\rangle $
\end_inset

, ..., 
\begin_inset Formula $\left|e_{N}\right\rangle $
\end_inset

 is a basis, we denote by 
\begin_inset Formula $\left\langle e_{k}\right|$
\end_inset

 the covectors from the dual basis, so that 
\begin_inset Formula $\left\langle e_{j}|e_{k}\right\rangle =\delta_{jk}$
\end_inset

.
 A vector 
\begin_inset Formula $\left|v\right\rangle $
\end_inset

 is expressed through the basis vectors as
\begin_inset Formula \[
\left|v\right\rangle =\sum_{k}v_{k}\left|e_{k}\right\rangle ,\]

\end_inset

where the coefficients 
\begin_inset Formula $v_{k}$
\end_inset

 can be computed as 
\begin_inset Formula $v_{k}=\left\langle e_{k}|v\right\rangle $
\end_inset

.
 An arbitrary operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is decomposed as
\begin_inset Formula \[
\hat{A}=\sum_{j,k}A_{jk}\left|e_{j}\right\rangle \left\langle e_{k}\right|.\]

\end_inset

The 
\series bold
matrix elements
\series default
 
\begin_inset Formula $A_{jk}$
\end_inset

 of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in this basis are found as
\begin_inset Formula \[
A_{jk}=\left\langle e_{j}\right|\hat{A}\left|e_{k}\right\rangle .\]

\end_inset

The identity operator is decomposed as follows,
\begin_inset Formula \[
\hat{1}=\sum_{k}\left|e_{k}\right\rangle \left\langle e_{k}\right|.\]

\end_inset

Expressions of this sort abound in quantum mechanics textbooks.
\end_layout

\begin_layout Subsection
Advantages and disadvantages of Dirac notation
\end_layout

\begin_layout Standard
The Dirac notation is convenient when many calculations with vectors and
 covectors are required.
 But calculations become cumbersome if we need many tensor powers.
 For example, suppose we would like to apply a covector 
\begin_inset Formula $\left\langle f\right|$
\end_inset

 to the 
\emph on
second
\emph default
 vector in the tensor product 
\begin_inset Formula $\left|a\right\rangle \left|b\right\rangle \left|c\right\rangle $
\end_inset

, so that the answer is 
\begin_inset Formula $\left|a\right\rangle \langle f\left|b\right\rangle \left|c\right\rangle $
\end_inset

.
 Now one cannot simply write 
\begin_inset Formula $\left\langle f\right|X$
\end_inset

 with 
\begin_inset Formula $X=\left|a\right\rangle \left|b\right\rangle \left|c\right\rangle $
\end_inset

 because 
\begin_inset Formula $\left\langle f\right|X$
\end_inset

 is ambiguous in this case.
 The desired kind of action of covectors on tensors is difficult to express
 using the Dirac notation.
 Only the index notation allows one to write and to carry out arbitrary
 operations with this kind of tensor product.
 In the example just mentioned, one writes 
\begin_inset Formula $f_{j}a^{i}b^{j}c^{k}$
\end_inset

 to indicate that the covector 
\begin_inset Formula $f_{j}$
\end_inset

 acts on the vector 
\begin_inset Formula $b^{j}$
\end_inset

 but not on the other vectors.
 Of course, the resulting expression is harder to read because one needs
 to pay close attention to every index.
\end_layout

\begin_layout Chapter
Exterior product 
\begin_inset LatexCommand \label{sec:Exterior-product}

\end_inset


\end_layout

\begin_layout Standard
In this chapter I introduce one of the most useful constructions in basic
 linear algebra --- the exterior product, denoted by 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 are vectors from a space 
\begin_inset Formula $V$
\end_inset

.
 The basic idea of the exterior product is that we would like to define
 an 
\emph on
antisymmetric
\emph default
 and bilinear product of vectors.
 In other words, we would like to have the properties 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}=-\mathbf{b}\wedge\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{a}\wedge(\mathbf{b}+\lambda\mathbf{c})=\mathbf{a}\wedge\mathbf{b}+\lambda\mathbf{a}\wedge\mathbf{c}$
\end_inset

.
 
\end_layout

\begin_layout Section
Motivation
\begin_inset LatexCommand \label{sub:Motivation-for-exterior}

\end_inset


\end_layout

\begin_layout Standard
Here I discuss, at some length, the motivation for introducing the exterior
 product.
 The motivation is geometrical and comes from considering the properties
 of areas and volumes in the framework of elementary Euclidean geometry.
 I will proceed with a formal definition of the exterior product in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Definition-of-the-exterior}

\end_inset

.
 In order to understand the definition explained there, it is not necessary
 to use this geometric motivation because the definition will be purely
 algebraic.
 Nevertheless, I feel that this motivation will be helpful for some readers.
\end_layout

\begin_layout Subsection
Two-dimen\SpecialChar \-
sion\SpecialChar \-
al oriented area
\begin_inset LatexCommand \label{sub:Two-dimensional-oriented}

\end_inset


\end_layout

\begin_layout Standard
We work in a two-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean space, such as that considered in
 elementary geometry.
 We assume that the usual geometrical definition of the area of a parallelogram
 is known.
\end_layout

\begin_layout Standard
Consider the area 
\begin_inset Formula $Ar(\mathbf{a},\mathbf{b})$
\end_inset

 of a parallelogram spanned by vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
 It is known from elementary geometry that 
\begin_inset Formula $Ar(\mathbf{a},\mathbf{b})=\left|\mathbf{a}\right|\cdot\left|\mathbf{b}\right|\cdot\sin\alpha$
\end_inset

 where 
\begin_inset Formula $\alpha$
\end_inset

 is the angle between the two vectors, which is always between 0 and 
\begin_inset Formula $\pi$
\end_inset

 (we do not take into account the orientation of this angle).
 Thus defined, the area 
\begin_inset Formula $Ar$
\end_inset

 is always non-negative.
\end_layout

\begin_layout Standard
Let us investigate 
\begin_inset Formula $Ar(\mathbf{a},\mathbf{b})$
\end_inset

 as a function of the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
 If we stretch the vector 
\begin_inset Formula $\mathbf{a}$
\end_inset

, say, by factor 2, the area is also increased by factor 2.
 However, if we multiply 
\begin_inset Formula $\mathbf{a}$
\end_inset

 by the number 
\begin_inset Formula $-2$
\end_inset

, the area will be multiplied by 
\begin_inset Formula $2$
\end_inset

 rather than by 
\begin_inset Formula $-2$
\end_inset

:
\begin_inset Formula \[
Ar(\mathbf{a},2\mathbf{b})=Ar(\mathbf{a},-2\mathbf{b})=2Ar(\mathbf{a},\mathbf{b}).\]

\end_inset

 Similarly, for some vectors 
\begin_inset Formula $\mathbf{a},\mathbf{b},\mathbf{c}$
\end_inset

 such as shown in Fig.\InsetSpace ~

\begin_inset LatexCommand \ref{fig:The-area-of2}

\end_inset

, we have 
\begin_inset Formula $Ar(\mathbf{a},\mathbf{b}+\mathbf{c})=Ar(\mathbf{a},\mathbf{b})+Ar(\mathbf{a},\mathbf{c})$
\end_inset

.
 However, if we consider 
\begin_inset Formula $\mathbf{b}=-\mathbf{c}$
\end_inset

 then we obtain 
\begin_inset Formula \begin{align*}
Ar(\mathbf{a},\mathbf{b}+\mathbf{c}) & =Ar(\mathbf{a},0)=0\\
 & \neq Ar(\mathbf{a},\mathbf{b})+Ar(\mathbf{a},-\mathbf{b})=2Ar(\mathbf{a},\mathbf{b}).\end{align*}

\end_inset


\end_layout

\begin_layout Standard
Hence, the area 
\begin_inset Formula $Ar(\mathbf{a},\mathbf{b})$
\end_inset

 is, strictly speaking, 
\emph on
not
\emph default
 a linear function of the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

: 
\begin_inset Formula \begin{align*}
Ar(\lambda\mathbf{a},\mathbf{b}) & =\left|\lambda\right|Ar(\mathbf{a},\mathbf{b})\neq\lambda\, Ar(\mathbf{a},\mathbf{b}),\\
Ar(\mathbf{a},\mathbf{b}+\mathbf{c}) & \neq Ar(\mathbf{a},\mathbf{b})+Ar(\mathbf{a},\mathbf{c}).\end{align*}

\end_inset

Nevertheless, as we have seen, the properties of linearity hold in 
\emph on
some
\emph default
 cases.
 If we look closely at those cases, we find that linearly holds precisely
 when we do not change the orientation of the vectors.
 It would be more convenient if the linearity properties held in all cases.
 
\end_layout

\begin_layout Standard
The trick is to replace the area function 
\begin_inset Formula $Ar$
\end_inset

 with the 
\series bold
oriented area
\series default

\begin_inset LatexCommand \index{oriented area}

\end_inset

 function 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})$
\end_inset

.
 Namely, we define the function 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})$
\end_inset

 by 
\begin_inset Formula \[
A(\mathbf{a},\mathbf{b})=\pm\left|\mathbf{a}\right|\cdot\left|\mathbf{b}\right|\cdot\sin\alpha,\]

\end_inset

where the sign is chosen positive when the angle 
\begin_inset Formula $\alpha$
\end_inset

 is measured from the vector 
\begin_inset Formula $\mathbf{a}$
\end_inset

 to the vector 
\begin_inset Formula $\mathbf{b}$
\end_inset

 in the counterclockwise direction, and negative otherwise.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The oriented area 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})$
\end_inset

 of a parallelogram spanned by the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 in the two-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean space is an antisymmetric and bilinear
 function of the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

:
\begin_inset Formula \begin{align*}
A(\mathbf{a},\mathbf{b}) & =-A(\mathbf{b},\mathbf{a}),\\
A(\lambda\mathbf{a},\mathbf{b}) & =\lambda\, A(\mathbf{a},\mathbf{b}),\\
A(\mathbf{a},\mathbf{b}+\mathbf{c}) & =A(\mathbf{a},\mathbf{b})+A(\mathbf{a},\mathbf{c}).\qquad\text{(the sum law)}\end{align*}

\end_inset
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\begin_inset Graphics
	filename v1v2-vol.eps
	width 3in

\end_inset


\end_layout

\begin_layout Caption
The area of the parallelogram 
\begin_inset Formula $0ACB$
\end_inset

 spanned by 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 is equal to the area of the parallelogram 
\begin_inset Formula $0ADE$
\end_inset

 spanned by 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}+\alpha\mathbf{a}$
\end_inset

 due to the equality of areas 
\begin_inset Formula $ACD$
\end_inset

 and 
\begin_inset Formula $0BE$
\end_inset

.
\begin_inset LatexCommand \label{fig:The-area-of1}

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The first property is a straightforward consequence of the sign rule in
 the definition of 
\begin_inset Formula $A$
\end_inset

.
\end_layout

\begin_layout Standard
Proving the second property requires considering the cases 
\begin_inset Formula $\lambda>0$
\end_inset

 and 
\begin_inset Formula $\lambda<0$
\end_inset

 separately.
 If 
\begin_inset Formula $\lambda>0$
\end_inset

 then the orientation of the pair 
\begin_inset Formula $\left(\mathbf{a},\mathbf{b}\right)$
\end_inset

 remains the same and then it is clear that the property holds: When we
 rescale 
\begin_inset Formula $\mathbf{a}$
\end_inset

 by 
\begin_inset Formula $\lambda$
\end_inset

, the parallelogram is stretched and its area increases by factor 
\begin_inset Formula $\lambda$
\end_inset

.
 If 
\begin_inset Formula $\lambda<0$
\end_inset

 then the orientation of the parallelogram is reversed and the oriented
 area changes sign.
\end_layout

\begin_layout Standard
To prove the sum law, we consider  two cases: either 
\begin_inset Formula $\mathbf{c}$
\end_inset

 is parallel to 
\begin_inset Formula $\mathbf{a}$
\end_inset

 or it is not.
 If 
\begin_inset Formula $\mathbf{c}$
\end_inset

 is parallel to 
\begin_inset Formula $\mathbf{a}$
\end_inset

, say 
\begin_inset Formula $\mathbf{c}=\alpha\mathbf{a}$
\end_inset

, we use Fig.\InsetSpace ~

\begin_inset LatexCommand \ref{fig:The-area-of1}

\end_inset

 to show that 
\begin_inset Formula $A(\mathbf{a},\mathbf{b}+\lambda\mathbf{a})=A(\mathbf{a},\mathbf{b})$
\end_inset

, which yields the desired statement since 
\begin_inset Formula $A(\mathbf{a},\lambda\mathbf{a})=0$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{c}$
\end_inset

 is not parallel to 
\begin_inset Formula $\mathbf{a}$
\end_inset

, we use Fig.\InsetSpace ~

\begin_inset LatexCommand \ref{fig:The-area-of2}

\end_inset

 to show that 
\begin_inset Formula $A(\mathbf{a},\mathbf{b}+\mathbf{c})=A(\mathbf{a},\mathbf{b})+A(\mathbf{a},\mathbf{c})$
\end_inset

.
 Analogous geometric constructions can be made for different possible orientatio
ns of the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}$
\end_inset

, 
\begin_inset Formula $\mathbf{c}$
\end_inset

.
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\begin_inset Graphics
	filename 2darea.eps
	width 3in

\end_inset


\end_layout

\begin_layout Caption
The area of the parallelogram spanned by 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 (equal to the area of 
\begin_inset Formula $CEFD$
\end_inset

) plus the area of the parallelogram spanned by 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{c}$
\end_inset

 (the area of 
\begin_inset Formula $ACDB$
\end_inset

) equals the area of the parallelogram spanned by 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}+\mathbf{c}$
\end_inset

 (the area of 
\begin_inset Formula $AEFB$
\end_inset

) because of the equality of the areas of 
\begin_inset Formula $ACE$
\end_inset

 and 
\begin_inset Formula $BDF$
\end_inset

.
\begin_inset LatexCommand \label{fig:The-area-of2}

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Standard
It is relatively easy to compute the oriented area because of its algebraic
 properties.
 Suppose the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 are given through their components in a standard basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

, for instance 
\begin_inset Formula \[
\mathbf{a}=\alpha_{1}\mathbf{e}_{1}+\alpha_{2}\mathbf{e}_{2},\quad\mathbf{b}=\beta_{1}\mathbf{e}_{1}+\beta_{2}\mathbf{e}_{2}.\]

\end_inset

We assume, of course, that the vectors 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 are orthogonal to each other and have unit length, as is appropriate in
 a Euclidean space.
 We also assume that the right angle is measured from 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 to 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 in the counter-clockwise direction, so that 
\begin_inset Formula $A(\mathbf{e}_{1},\mathbf{e}_{2})=+1$
\end_inset

.
 Then we use the Statement and the properties 
\begin_inset Formula $A(\mathbf{e}_{1},\mathbf{e}_{1})=0$
\end_inset

, 
\begin_inset Formula $A(\mathbf{e}_{1},\mathbf{e}_{2})=1$
\end_inset

, 
\begin_inset Formula $A(\mathbf{e}_{2},\mathbf{e}_{2})=0$
\end_inset

 to compute
\begin_inset Formula \begin{align*}
A(\mathbf{a},\mathbf{b}) & =A(\alpha_{1}\mathbf{e}_{1}+\alpha_{2}\mathbf{e}_{2},\beta_{1}\mathbf{e}_{1}+\beta_{2}\mathbf{e}_{2})\\
 & =\alpha_{1}\beta_{2}A(\mathbf{e}_{1},\mathbf{e}_{2})+\alpha_{2}\beta_{1}A(\mathbf{e}_{2},\mathbf{e}_{1})\\
 & =\alpha_{1}\beta_{2}-\alpha_{2}\beta_{1}.\end{align*}

\end_inset


\end_layout

\begin_layout Standard
The ordinary (unoriented) area is then obtained as the absolute value of
 the oriented area, 
\begin_inset Formula $Ar(\mathbf{a},\mathbf{b})=\left|A(\mathbf{a},\mathbf{b})\right|$
\end_inset

.
 It turns out that the oriented area, due to its strict linearity properties,
 is a much more convenient and powerful construction than the unoriented
 area.
\end_layout

\begin_layout Subsection
Parallelograms in 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

 and in 
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset

 
\begin_inset LatexCommand \label{sub:Area-of-two-dimensional-parallelograms}

\end_inset


\end_layout

\begin_layout Standard
Let us now work in the Euclidean space 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

 with a standard basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

.
 We can similarly try to characterize the area of a parallelogram spanned
 by two vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
 It is, however, not possible to characterize the orientation of the area
 simply by a sign.
 We also cannot use a geometric construction such as that in Fig.\InsetSpace ~

\begin_inset LatexCommand \ref{fig:The-area-of2}

\end_inset

; in fact it is 
\emph on
not true 
\emph default
in three dimensions that the area spanned by 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}+\mathbf{c}$
\end_inset

 is equal to the sum of 
\begin_inset Formula $Ar(\mathbf{a},\mathbf{b})$
\end_inset

 and 
\begin_inset Formula $Ar(\mathbf{a},\mathbf{c})$
\end_inset

.
 Can we still define some kind of 
\begin_inset Quotes eld
\end_inset

oriented area
\begin_inset Quotes erd
\end_inset

 that obeys the sum law?
\end_layout

\begin_layout Standard
Let us consider Fig.\InsetSpace ~

\begin_inset LatexCommand \ref{fig:The-area-of2}

\end_inset

 as a figure showing the 
\emph on
projection
\emph default
 of the areas of the three parallelograms onto some coordinate plane, say,
 the plane of the basis vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

.
 It is straightforward to see that the projections of the areas obey the
 sum law as oriented areas.
\end_layout
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\begin_layout Standard
Let 
\begin_inset Formula $\mathbf{a},\mathbf{b}$
\end_inset

 be two vectors in 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

, and let 
\begin_inset Formula $P(\mathbf{a},\mathbf{b})$
\end_inset

 be the parallelogram spanned by these vectors.
 Denote by 
\begin_inset Formula $P(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$
\end_inset

 the parallelogram within the coordinate plane 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

 obtained by projecting 
\begin_inset Formula $P(\mathbf{a},\mathbf{b})$
\end_inset

 onto that coordinate plane, and similarly for the other two coordinate
 planes.
 Denote by 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$
\end_inset

 the oriented area of 
\begin_inset Formula $P(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$
\end_inset

.
 Then 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$
\end_inset

 is a bilinear, antisymmetric function of 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The projection onto the coordinate plane of 
\begin_inset Formula $\mathbf{e}_{1},\mathbf{e}_{2}$
\end_inset

 is a linear transformation.
 Hence, the vector 
\begin_inset Formula $\mathbf{a}+\lambda\mathbf{b}$
\end_inset

 is projected onto the sum of the projections of 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\lambda\mathbf{b}$
\end_inset

.
 Then we apply the arguments in the proof of Statement\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Two-dimensional-oriented}

\end_inset

 to the 
\emph on
projections
\emph default
 of the vectors; in particular, Figs.\InsetSpace ~

\begin_inset LatexCommand \ref{fig:The-area-of1}

\end_inset

 and\InsetSpace ~

\begin_inset LatexCommand \ref{fig:The-area-of2}

\end_inset

 are interpreted as showing the projections of all vectors onto the coordinate
 plane 
\begin_inset Formula $\mathbf{e}_{1},\mathbf{e}_{2}$
\end_inset

.
 It is then straightforward to see that all the properties of the oriented
 area hold for the projected oriented areas.
 Details left as exercise.
\hfill
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\end_layout
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It is therefore convenient to consider the oriented areas of the three projectio
ns --- 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$
\end_inset

, 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{2},\mathbf{e}_{3}}$
\end_inset

, 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{3},\mathbf{e}_{1}}$
\end_inset

 --- as three components of a 
\emph on
vector-valued
\emph default
 area 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})$
\end_inset

 of the parallelogram spanned by 
\begin_inset Formula $\mathbf{a},\mathbf{b}$
\end_inset

.
 Indeed, it can be shown that these three projected areas coincide with
 the three Euclidean components of the vector product 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

.
 The vector product is the traditional way such areas are represented in
 geometry: the vector 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 represents at once the magnitude of the area and the orientation of the
 parallelogram.
 One computes the unoriented area of a parallelogram as the length of the
 vector 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 representing the oriented area,
\begin_inset Formula \[
Ar(\mathbf{a},\mathbf{b})=\left[A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}^{2}+A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{2},\mathbf{e}_{3}}^{2}+A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{3},\mathbf{e}_{1}}^{2}\right]^{\frac{1}{2}}.\]

\end_inset


\end_layout
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However, the vector product cannot be generalized to all higher-dimen\SpecialChar \-
sion\SpecialChar \-
al
 spaces.
 Luckily, the vector product does not play an essential role in the construction
 of the oriented area.
 
\end_layout

\begin_layout Standard
Instead of working with the vector product, we will generalize the idea
 of projecting the parallelogram onto coordinate planes.
 Consider a parallelogram spanned by vectors 
\begin_inset Formula $\mathbf{a},\mathbf{b}$
\end_inset

 in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean space 
\begin_inset Formula $V$
\end_inset

 with the standard basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

.
 While in three-dimen\SpecialChar \-
sion\SpecialChar \-
al space we had just three projections (onto the
 coordinate planes 
\begin_inset Formula $xy$
\end_inset

, 
\begin_inset Formula $xz$
\end_inset

, 
\begin_inset Formula $yz$
\end_inset

), in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space we have 
\begin_inset Formula $\frac{1}{2}n(n-1)$
\end_inset

 coordinate planes, which can be denoted by 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{i},\mathbf{e}_{j}\right\} $
\end_inset

 (with 
\begin_inset Formula $1\leq i<j\leq n$
\end_inset

).
 We may construct the 
\begin_inset Formula $\frac{1}{2}n(n-1)$
\end_inset

 projections of the parallelogram onto these coordinate planes.
 Each of these projections has an oriented area; that area is a bilinear,
 antisymmetric number-valued function of the vectors 
\begin_inset Formula $\mathbf{a},\mathbf{b}$
\end_inset

.
 (The proof of the Statement above does not use the fact that the space
 is 
\emph on
three
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al!) We may then regard these 
\begin_inset Formula $\frac{1}{2}n(n-1)$
\end_inset

 numbers as the components of a vector representing the oriented area of
 the parallelogram.
 It is clear that all these components are needed in order to describe the
 actual geometric 
\emph on
orientation
\emph default
 of the parallelogram in the 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
\end_layout

\begin_layout Standard
We arrived at the idea that the oriented area of the parallelogram spanned
 by 
\begin_inset Formula $\mathbf{a},\mathbf{b}$
\end_inset

 is an antisymmetric, bilinear function 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})$
\end_inset

 whose value is a vector with 
\begin_inset Formula $\frac{1}{2}n(n-1)$
\end_inset

 components, i.e.\InsetSpace ~
a vector 
\emph on
in a new space 
\emph default
--- the 
\begin_inset Quotes eld
\end_inset

space of oriented areas,
\begin_inset Quotes erd
\end_inset

 as it were.
 This space is 
\begin_inset Formula $\frac{1}{2}n(n-1)$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al.
 We will construct this space explicitly below; it is the space of bivectors,
 to be denoted by 
\begin_inset Formula $\wedge^{2}V$
\end_inset

.
 
\end_layout

\begin_layout Standard
We will see that the unoriented area of the parallelogram is computed as
 the 
\emph on
length
\emph default
 of the vector 
\begin_inset Formula $A(\mathbf{a},\mathbf{b})$
\end_inset

, i.e.\InsetSpace ~
as the square root of the sum of squares of the areas of the projections
 of the parallelogram onto the coordinate planes.
 This is a generalization of the Pythagoras theorem to areas in higher-dimen\SpecialChar \-
sion\SpecialChar \-

al spaces.
\end_layout

\begin_layout Standard
The analogy between ordinary vectors and vector-val\SpecialChar \-
ued areas can be understood
 visually as follows.
 A straight line segment in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space is represented by a vector whose 
\begin_inset Formula $n$
\end_inset

 components (in an orthonormal basis) are the signed lengths of the 
\begin_inset Formula $n$
\end_inset

 projections of the line segment onto the coordinate axes.
 (The components are 
\emph on
signed
\emph default
, or 
\emph on
oriented
\emph default
, i.e.\InsetSpace ~
taken with a negative sign if the orientation of the vector is opposite
 to the orientation of the axis.) The length of a straight line segment,
 i.e.\InsetSpace ~
the length of the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

, is then computed as 
\begin_inset Formula $\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$
\end_inset

.
 The scalar product 
\begin_inset Formula $\left\langle \mathbf{v},\mathbf{v}\right\rangle $
\end_inset

 is equal to the sum of squared lengths of the projections because we are
 using an orthonormal basis.
 A parallelogram in space is represented by a vector 
\begin_inset Formula $\psi$
\end_inset

 whose 
\begin_inset Formula ${n \choose 2}$
\end_inset

 components are the 
\emph on
oriented
\emph default
 areas of the 
\begin_inset Formula ${n \choose 2}$
\end_inset

 projections of the parallelogram onto the coordinate planes.
 (The vector 
\begin_inset Formula $\psi$
\end_inset

 belongs to the space of oriented areas, not to the original 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space.) The numerical value of the area of the parallelogram
 is then computed as 
\begin_inset Formula $\sqrt{\left\langle \psi,\psi\right\rangle }$
\end_inset

.
 The scalar product 
\begin_inset Formula $\left\langle \psi,\psi\right\rangle $
\end_inset

 in the space of oriented areas is equal to the sum of squared areas of
 the projections because the 
\begin_inset Formula ${n \choose 2}$
\end_inset

 unit areas in the coordinate planes are an orthonormal basis (according
 to the definition of the scalar product in the space of oriented areas).
\end_layout

\begin_layout Standard
The generalization of the Pythagoras theorem holds not only for areas but
 also for higher-dimen\SpecialChar \-
sion\SpecialChar \-
al volumes.
 A general proof of this theorem will be given in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{proof-of-pythagoras}

\end_inset

, using the exterior product and several other constructions to be developed
 below.
\end_layout

\begin_layout Section
Exterior product
\begin_inset LatexCommand \label{sub:Definition-of-the-exterior}

\end_inset


\end_layout

\begin_layout Standard
In the previous section I motivated the introduction of the antisymmetric
 product by showing its connection to areas and volumes.
 In this section I will give the definition and work out the properties
 of the exterior product in a purely algebraic manner, without using any
 geometric intuition.
 This will enable us to work with vectors in arbitrary dimensions, to obtain
 many useful results, and eventually also to appreciate more fully the geometric
 significance of the exterior product.
 
\end_layout

\begin_layout Standard
As explained in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Area-of-two-dimensional-parallelograms}

\end_inset

, it is possible to represent the oriented area of a parallelogram by a
 vector in some auxiliary space.
 The oriented area is much more convenient to work with because it is a
 
\emph on
bilinear
\emph default
 function of the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 (this is explained in detail in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Motivation-for-exterior}

\end_inset

).
 
\begin_inset Quotes eld
\end_inset

Product
\begin_inset Quotes erd
\end_inset

 is another word for 
\begin_inset Quotes eld
\end_inset

bilinear function.
\begin_inset Quotes erd
\end_inset

 We have also seen that the oriented area is an 
\emph on
antisymmetric
\emph default
 function of the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
\end_layout

\begin_layout Standard
In three dimensions, an oriented area is represented by the cross product
 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

, which is indeed an antisymmetric and bilinear product.
 So we expect that the oriented area in higher dimensions can be represented
 by some kind of new antisymmetric product of 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

; let us denote this product (to be defined below) by 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

, pronounced 
\begin_inset Quotes eld
\end_inset

a wedge b.
\begin_inset Quotes erd
\end_inset

 The value of 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 will be a vector in
\emph on
 
\emph default
a
\emph on
 new
\emph default
 vector space.
 We will also construct this new space explicitly.
\end_layout

\begin_layout Subsection
Definition of exterior product
\end_layout

\begin_layout Standard
Like the tensor product space, the space of exterior products can be defined
 solely by its algebraic properties.
 We can consider the space of 
\emph on
formal
\emph default
 
\emph on
expressions
\emph default
 like 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

, 
\begin_inset Formula $3\mathbf{a}\wedge\mathbf{b}+2\mathbf{c}\wedge\mathbf{d}$
\end_inset

, etc., and 
\emph on
require
\emph default
 the properties of an antisymmetric, bilinear product to hold.
\end_layout

\begin_layout Standard
Here is a more formal definition of the exterior product space: We will
 construct an antisymmetric product 
\begin_inset Quotes eld
\end_inset

by hand,
\begin_inset Quotes erd
\end_inset

 using the tensor product space.
\end_layout

\begin_layout Paragraph
Definition 1:
\end_layout

\begin_layout Standard
Given a vector space 
\begin_inset Formula $V$
\end_inset

, we define a new vector space 
\begin_inset Formula $V\wedge V$
\end_inset

 called the 
\series bold
exterior product
\series default

\begin_inset LatexCommand \index{exterior product}

\end_inset

 (or antisymmetric tensor product, or alternating product, or 
\series bold
wedge product
\series default

\begin_inset LatexCommand \index{wedge product}

\end_inset

) of two copies of 
\begin_inset Formula $V$
\end_inset

.
 The space 
\begin_inset Formula $V\wedge V$
\end_inset

 is the subspace in 
\begin_inset Formula $V\otimes V$
\end_inset

 consisting of all 
\series bold
antisymmetric
\series default
 tensors, i.e.\InsetSpace ~
tensors of the form
\begin_inset Formula \[
\mathbf{v}_{1}\otimes\mathbf{v}_{2}-\mathbf{v}_{2}\otimes\mathbf{v}_{1},\quad\mathbf{v}_{1,2}\in V,\]

\end_inset

and all linear combinations of such tensors.
 The exterior product of two vectors 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 is the expression shown above; it is obviously an antisymmetric and bilinear
 function of 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

.
\end_layout

\begin_layout Standard
For example, here is one particular element from 
\begin_inset Formula $V\wedge V$
\end_inset

, which we write in two different ways using the axioms of the tensor product:
\begin_inset Formula \begin{align}
\left(\mathbf{u}+\mathbf{v}\right)\otimes\left(\mathbf{v}+\mathbf{w}\right)-\left(\mathbf{v}+\mathbf{w}\right)\otimes\left(\mathbf{u}+\mathbf{v}\right)=\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}\nonumber \\
+\mathbf{u}\otimes\mathbf{w}-\mathbf{w}\otimes\mathbf{u}+\mathbf{v}\otimes\mathbf{w}-\mathbf{w}\otimes\mathbf{v}\in V\wedge V.\label{eq:uvw calc 1}\end{align}

\end_inset


\end_layout

\begin_layout Subparagraph
Remark:
\end_layout

\begin_layout Standard
A tensor 
\begin_inset Formula $\mathbf{v}_{1}\otimes\mathbf{v}_{2}\in V\otimes V$
\end_inset

 is not equal to the tensor 
\begin_inset Formula $\mathbf{v}_{2}\otimes\mathbf{v}_{1}$
\end_inset

 if 
\begin_inset Formula $\mathbf{v}_{1}\neq\mathbf{v}_{2}$
\end_inset

.
 This is so because there is no identity among the axioms of the tensor
 product that would allow us to exchange the factors 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 in the expression 
\begin_inset Formula $\mathbf{v}_{1}\otimes\mathbf{v}_{2}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Prove that the 
\begin_inset Quotes eld
\end_inset

exchange map
\begin_inset Quotes erd
\end_inset

 
\begin_inset Formula $\hat{T}\left(\mathbf{v}_{1}\otimes\mathbf{v}_{2}\right)\equiv\mathbf{v}_{2}\otimes\mathbf{v}_{1}$
\end_inset

 is a canonically defined, linear map of 
\begin_inset Formula $V\otimes V$
\end_inset

 into itself.
 Show that 
\begin_inset Formula $\hat{T}$
\end_inset

 has only two eigenvalues which are 
\begin_inset Formula $\pm1$
\end_inset

.
 Give examples of eigenvectors with eigenvalues 
\begin_inset Formula $+1$
\end_inset

 and 
\begin_inset Formula $-1$
\end_inset

.
 Show that the subspace 
\begin_inset Formula $V\wedge V\subset V\otimes V$
\end_inset

 is the eigenspace of the exchange operator 
\begin_inset Formula $\hat{T}$
\end_inset

 with eigenvalue 
\begin_inset Formula $-1$
\end_inset


\end_layout

\begin_layout Standard

\emph on
Hint:
\emph default
 
\begin_inset Formula $\hat{T}\hat{T}=\hat{1}_{V\otimes V}$
\end_inset

.
 Consider tensors of the form 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}\pm\mathbf{v}\otimes\mathbf{u}$
\end_inset

 as candidate eigenvectors of 
\begin_inset Formula $\hat{T}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
It is quite cumbersome to perform calculations in the tensor product notation
 as we did in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:uvw calc 1}

\end_inset

).
 So let us write the exterior product as 
\begin_inset Formula $\mathbf{u}\wedge\mathbf{v}$
\end_inset

 instead of 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}$
\end_inset

.
 It is then straightforward to see that the 
\begin_inset Quotes eld
\end_inset

wedge
\begin_inset Quotes erd
\end_inset

 symbol 
\begin_inset Formula $\wedge$
\end_inset

 indeed works like an anti-commutative multiplication, as we intended.
 The rules of computation are summarized in the following statement.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
One may save time and write 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}\equiv\mathbf{u}\wedge\mathbf{v}\in V\wedge V$
\end_inset

, and the result of any calculation will be correct, as long as one follows
 the rules:
\begin_inset Formula \begin{align}
\mathbf{u}\wedge\mathbf{v} & =-\mathbf{v}\wedge\mathbf{u},\label{eq:uv antisymm}\\
\left(\lambda\mathbf{u}\right)\wedge\mathbf{v} & =\lambda\left(\mathbf{u}\wedge\mathbf{v}\right),\\
\left(\mathbf{u}+\mathbf{v}\right)\wedge\mathbf{x} & =\mathbf{u}\wedge\mathbf{x}+\mathbf{v}\wedge\mathbf{x}.\label{eq:uv distrib}\end{align}

\end_inset

It follows also that 
\begin_inset Formula $\mathbf{u}\wedge\left(\lambda\mathbf{v}\right)=\lambda\left(\mathbf{u}\wedge\mathbf{v}\right)$
\end_inset

 and that 
\begin_inset Formula $\mathbf{v}\wedge\mathbf{v}=0$
\end_inset

.
 (These identities hold for any vectors 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in V$
\end_inset

 and any scalars 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

.)
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
These properties are direct consequences of the axioms of the tensor product
 when applied to antisymmetric tensors.
 For example, the calculation\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:uvw calc 1}

\end_inset

) now requires a simple expansion of brackets,
\begin_inset Formula \[
\left(\mathbf{u}+\mathbf{v}\right)\wedge\left(\mathbf{v}+\mathbf{w}\right)=\mathbf{u}\wedge\mathbf{v}+\mathbf{u}\wedge\mathbf{w}+\mathbf{v}\wedge\mathbf{w}.\]

\end_inset

Here we removed the term 
\begin_inset Formula $\mathbf{v}\wedge\mathbf{v}$
\end_inset

 which vanishes due to the antisymmetry of 
\begin_inset Formula $\wedge$
\end_inset

.
 Details left as exercise.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Elements of the space 
\begin_inset Formula $V\wedge V$
\end_inset

, such as 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}$
\end_inset

, are sometimes called 
\series bold
bivectors
\series default

\begin_inset LatexCommand \index{bivector}

\end_inset

.
\begin_inset Foot
status open

\begin_layout Standard
It is important to note that a bivector is not necessarily expressible as
 a single-term product of two vectors; see the Exercise at the end of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

.
\begin_inset LatexCommand \index{single-term exterior products}

\end_inset


\end_layout

\end_inset

 We will also want to define the exterior product of more than two vectors.
 To define the exterior product of 
\emph on
three
\emph default
 vectors, we consider the subspace of 
\begin_inset Formula $V\otimes V\otimes V$
\end_inset

 that consists of antisymmetric tensors of the form
\begin_inset Formula \begin{align}
\mathbf{a}\otimes\mathbf{b}\otimes\mathbf{c}-\mathbf{b}\otimes\mathbf{a}\otimes\mathbf{c}+\mathbf{c}\otimes\mathbf{a}\otimes\mathbf{b}-\mathbf{c}\otimes\mathbf{b}\otimes\mathbf{a}\nonumber \\
+\mathbf{b}\otimes\mathbf{c}\otimes\mathbf{a}-\mathbf{a}\otimes\mathbf{c}\otimes\mathbf{b}\label{eq:antisym 3}\end{align}

\end_inset

and linear combinations of such tensors.
 These tensors are called 
\series bold
totally antisymmetric
\begin_inset LatexCommand \index{totally antisymmetric}

\end_inset


\series default
 because they can be viewed as (tensor-valued) functions of the vectors
 
\begin_inset Formula $\mathbf{a},\mathbf{b},\mathbf{c}$
\end_inset

 that change sign under exchange of any two vectors.
 The expression in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:antisym 3}

\end_inset

) will be denoted for brevity by 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

, similarly to the exterior product of two vectors, 
\begin_inset Formula $\mathbf{a}\otimes\mathbf{b}-\mathbf{b}\otimes\mathbf{a}$
\end_inset

, which is denoted for brevity by 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

.
 Here is a general definition.
\end_layout

\begin_layout Paragraph
Definition 2:
\end_layout

\begin_layout Standard
The 
\series bold
exterior product
\begin_inset LatexCommand \index{exterior product}

\end_inset

 of 
\begin_inset Formula $k$
\end_inset

 copies
\series default
 of 
\begin_inset Formula $V$
\end_inset

 (also called the 
\series bold

\begin_inset Formula $k$
\end_inset

-th exterior power
\series default
 of 
\begin_inset Formula $V$
\end_inset

) is denoted by 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 and is defined as the subspace of totally antisymmetric tensors within
 
\begin_inset Formula $V\otimes...\otimes V$
\end_inset

.
 In the concise notation, this is the space spanned by expressions of the
 form
\begin_inset Formula \[
\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k},\quad\mathbf{v}_{j}\in V,\]

\end_inset

assuming that the properties of the wedge product (linearity and antisymmetry)
 hold as given by Statement\InsetSpace ~
1.
 For instance, 
\begin_inset Formula \begin{equation}
\mathbf{u}\wedge\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}=\left(-1\right)^{k}\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{u}\label{eq:uv pull}\end{equation}

\end_inset

(
\begin_inset Quotes eld
\end_inset

pulling a vector through 
\begin_inset Formula $k$
\end_inset

 other vectors changes sign 
\begin_inset Formula $k$
\end_inset

 times
\begin_inset Quotes erd
\end_inset

).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The previously defined space of bivectors is in this notation 
\begin_inset Formula $V\wedge V\equiv\wedge^{2}V$
\end_inset

.
 A natural extension of this notation is 
\begin_inset Formula $\wedge^{0}V=\mathbb{K}$
\end_inset

 and 
\begin_inset Formula $\wedge^{1}V=V$
\end_inset

.
 I will also use the following 
\begin_inset Quotes eld
\end_inset

wedge product
\begin_inset Quotes erd
\end_inset

 notation,
\begin_inset Formula \[
\bigwedge_{k=1}^{n}\mathbf{v}_{k}\equiv\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{n}.\]

\end_inset


\end_layout

\begin_layout Standard
Tensors from the space 
\begin_inset Formula $\wedge^{n}V$
\end_inset

 are also called 
\begin_inset Formula $n$
\end_inset

-
\series bold
vectors
\series default

\begin_inset LatexCommand \index{$n$-vectors}

\end_inset

 or 
\series bold
antisymmetric tensors
\series default

\begin_inset LatexCommand \index{antisymmetric tensor}

\end_inset

 of rank 
\begin_inset Formula $n$
\end_inset

.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
How to compute expressions containing multiple products such as 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Apply the rules shown in Statement\InsetSpace ~
1.
 For example, one can permute adjacent vectors and change sign,
\begin_inset Formula \[
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=-\mathbf{b}\wedge\mathbf{a}\wedge\mathbf{c}=\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{a},\]

\end_inset

one can expand brackets,
\begin_inset Formula \[
\mathbf{a}\wedge(\mathbf{x}+4\mathbf{y})\wedge\mathbf{b}=\mathbf{a}\wedge\mathbf{x}\wedge\mathbf{b}+4\mathbf{a}\wedge\mathbf{y}\wedge\mathbf{b},\]

\end_inset

and so on.
 If the vectors 
\begin_inset Formula $\mathbf{a},\mathbf{b},\mathbf{c}$
\end_inset

 are given as linear combinations of some basis vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, we can thus reduce 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

 to a linear combination of exterior products of basis vectors, such as
 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

, 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{4}$
\end_inset

, etc.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
The notation 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

 suggests that the exterior product is associative,
\begin_inset Formula \[
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\left(\mathbf{a}\wedge\mathbf{b}\right)\wedge\mathbf{c}=\mathbf{a}\wedge(\mathbf{b}\wedge\mathbf{c}).\]

\end_inset

How can we make sense of this?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
If we want to be pedantic, we need to define the exterior product operation
 
\begin_inset Formula $\wedge$
\end_inset

 between a single-term bivector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 and a vector 
\begin_inset Formula $\mathbf{c}$
\end_inset

, such that the result is 
\emph on
by
\emph default
 
\emph on
definition
\emph default
 the 3-vector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

.
 We then define the same operation on linear combinations of single-term
 bivectors, 
\begin_inset Formula \[
\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{x}\wedge\mathbf{y}\right)\wedge\mathbf{c}\equiv\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+\mathbf{x}\wedge\mathbf{y}\wedge\mathbf{c}.\]

\end_inset

Thus we have defined the exterior product between 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 and 
\begin_inset Formula $V$
\end_inset

, the result being a 3-vector from 
\begin_inset Formula $\wedge^{3}V$
\end_inset

.
 We then need to verify that the results do not depend on the choice of
 the vectors such as 
\begin_inset Formula $\mathbf{a},\mathbf{b},\mathbf{x},\mathbf{y}$
\end_inset

 in the representation of a bivector: A different representation can be
 achieved only by using the properties of the exterior product (i.e.\InsetSpace ~
the axioms
 of the tensor product), e.g.\InsetSpace ~
we may replace 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 by 
\begin_inset Formula $-\mathbf{b}\wedge\left(\mathbf{a}+\lambda\mathbf{b}\right)$
\end_inset

.
 It is easy to verify that any such replacements will not modify the resulting
 3-vector, e.g.
 
\begin_inset Formula \[
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=-\mathbf{b}\wedge\left(\mathbf{a}+\lambda\mathbf{b}\right)\wedge\mathbf{c},\]

\end_inset

again due to the properties of the exterior product.
 This consideration shows that calculations with exterior products are consisten
t with our algebraic intuition.
 We may indeed compute 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

 as 
\begin_inset Formula $\left(\mathbf{a}\wedge\mathbf{b}\right)\wedge\mathbf{c}$
\end_inset

 or as 
\begin_inset Formula $\mathbf{a}\wedge\left(\mathbf{b}\wedge\mathbf{c}\right)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example\InsetSpace ~
1:
\end_layout

\begin_layout Standard
Suppose we work in 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

 and have vectors 
\begin_inset Formula $\mathbf{a}=\left(0,\frac{1}{2},-\frac{1}{2}\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{b}=\left(2,-2,0\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{c}=\left(-2,5,-3\right)$
\end_inset

.
 Let us compute various exterior products.
 Calculations are easier if we introduce the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

 explicitly:
\begin_inset Formula \[
\mathbf{a}=\frac{1}{2}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right),\quad\mathbf{b}=2(\mathbf{e}_{1}-\mathbf{e}_{2}),\quad\mathbf{c}=-2\mathbf{e}_{1}+5\mathbf{e}_{2}-3\mathbf{e}_{3}.\]

\end_inset

We compute the 2-vector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 by using the properties of the exterior product, such as 
\begin_inset Formula $\mathbf{x}\wedge\mathbf{x}=0$
\end_inset

 and 
\begin_inset Formula $\mathbf{x}\wedge\mathbf{y}=-\mathbf{y}\wedge\mathbf{x}$
\end_inset

, and simply expanding the brackets as usual in algebra:
\begin_inset Formula \begin{align*}
\mathbf{a}\wedge\mathbf{b} & =\frac{1}{2}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)\wedge2\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)\\
 & =\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)\wedge\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)\\
 & =\mathbf{e}_{2}\wedge\mathbf{e}_{1}-\mathbf{e}_{3}\wedge\mathbf{e}_{1}-\mathbf{e}_{2}\wedge\mathbf{e}_{2}+\mathbf{e}_{3}\wedge\mathbf{e}_{2}\\
 & =-\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}-\mathbf{e}_{2}\wedge\mathbf{e}_{3}.\end{align*}

\end_inset

The last expression is the result; note that now there is nothing more to
 compute or to simplify.
 The expressions such as 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}$
\end_inset

 are the basic expressions out of which the space 
\begin_inset Formula $\mathbb{R}^{3}\wedge\mathbb{R}^{3}$
\end_inset

 is built.
 Below (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

) we will show formally that the set of these expressions is a basis in
 the space 
\begin_inset Formula $\mathbb{R}^{3}\wedge\mathbb{R}^{3}$
\end_inset

.
\end_layout

\begin_layout Standard
Let us also compute the 3-vector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

,
\begin_inset Formula \begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\left(\mathbf{a}\wedge\mathbf{b}\right)\wedge\mathbf{c}\\
 & =\left(-\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}-\mathbf{e}_{2}\wedge\mathbf{e}_{3}\right)\wedge(-2\mathbf{e}_{1}+5\mathbf{e}_{2}-3\mathbf{e}_{3}).\end{align*}

\end_inset

When we expand the brackets here, terms such as 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{1}$
\end_inset

 will vanish because 
\begin_inset Formula \[
\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{1}=-\mathbf{e}_{2}\wedge\mathbf{e}_{1}\wedge\mathbf{e}_{1}=0,\]

\end_inset

so only terms containing all different vectors need to be kept, and we find
\begin_inset Formula \begin{align*}
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c} & =3\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}+5\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{2}+2\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{1}\\
 & =\left(3-5+2\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}=0.\end{align*}

\end_inset

We note that all the terms are proportional to the 3-vector 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

, so only the coefficient in front of 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

 was needed; then, by coincidence, that coefficient turned out to be zero.
 So the result is the zero 3-vector.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
Our original goal was to introduce a bilinear, antisymmetric product of
 vectors in order to obtain a geometric representation of oriented areas.
 Instead, 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 was defined algebraically, through tensor products.
 It is clear that 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 is antisymmetric and bilinear, but why does it represent an oriented area?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Indeed, it may not be immediately clear why oriented areas should be elements
 of 
\begin_inset Formula $V\wedge V$
\end_inset

.
 We have seen that the oriented area 
\begin_inset Formula $A(\mathbf{x},\mathbf{y})$
\end_inset

 is an antisymmetric and bilinear function of the two vectors 
\begin_inset Formula $\mathbf{x}$
\end_inset

 and 
\begin_inset Formula $\mathbf{y}$
\end_inset

.
 Right now we have constructed the space 
\begin_inset Formula $V\wedge V$
\end_inset

 simply as the 
\emph on
space of antisymmetric products
\emph default
.
 By constructing that space merely out of the axioms of the antisymmetric
 product, we already covered 
\emph on
every
\emph default
 
\emph on
possible
\emph default
 bilinear antisymmetric product.
 This means that 
\emph on
any
\emph default
 antisymmetric and bilinear function of the two vectors 
\begin_inset Formula $\mathbf{x}$
\end_inset

 and 
\begin_inset Formula $\mathbf{y}$
\end_inset

 is proportional to 
\begin_inset Formula $\mathbf{x}\wedge\mathbf{y}$
\end_inset

 or, more generally, is a 
\emph on
linear
\emph default
 
\emph on
function
\emph default
 of 
\begin_inset Formula $\mathbf{x}\wedge\mathbf{y}$
\end_inset

 (perhaps with values in a different space).
 Therefore, the space of oriented areas (that is, the space of linear combinatio
ns of 
\begin_inset Formula $A(\mathbf{x},\mathbf{y})$
\end_inset

 for various 
\begin_inset Formula $\mathbf{x}$
\end_inset

 and 
\begin_inset Formula $\mathbf{y}$
\end_inset

) is in any case mapped to a subspace of 
\begin_inset Formula $V\wedge V$
\end_inset

.
 We have also seen that oriented areas in 
\begin_inset Formula $N$
\end_inset

 dimensions can be represented through 
\begin_inset Formula ${N \choose 2}$
\end_inset

 projections, which indicates that they are vectors in some 
\begin_inset Formula ${N \choose 2}$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
 We will see below that the space 
\begin_inset Formula $V\wedge V$
\end_inset

 has exactly this dimension (Theorem\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

).
 Therefore, we can expect that the space of oriented areas coincides with
 
\begin_inset Formula $V\wedge V$
\end_inset

.
 Below we will be working in a space 
\begin_inset Formula $V$
\end_inset

 with a scalar product, where the notions of area and volume are well defined.
 Then we will see (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Volumes-of-k-dimensional}

\end_inset

) that tensors from 
\begin_inset Formula $V\wedge V$
\end_inset

 and the higher exterior powers of 
\begin_inset Formula $V$
\end_inset

 indeed correspond in a natural way to oriented areas, or more generally
 to oriented volumes of a certain dimension.
\end_layout

\begin_layout Paragraph
Remark: Origin of the name 
\begin_inset Quotes eld
\end_inset

exterior.
\begin_inset Quotes erd
\end_inset


\end_layout

\begin_layout Standard
The construction of the exterior product
\begin_inset LatexCommand \index{exterior product!origin of the name}

\end_inset

 is a modern formulation of the ideas dating back to H.
 Grassmann (1844).
 A 2-vector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 is interpreted geometrically as the oriented area of the parallelogram
 spanned by the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
 Similarly, a 3-vector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

 represents the oriented 3-volume of a parallelepiped spanned by 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{b},\mathbf{c}\right\} $
\end_inset

.
 Due to the antisymmetry of the exterior product, we have 
\begin_inset Formula $(\mathbf{a}\wedge\mathbf{b})\wedge(\mathbf{a}\wedge\mathbf{c})=0$
\end_inset

, 
\begin_inset Formula $(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\wedge(\mathbf{b}\wedge\mathbf{d})=0$
\end_inset

, etc.
 We can interpret this geometrically by saying that the 
\begin_inset Quotes eld
\end_inset

product
\begin_inset Quotes erd
\end_inset

 of two volumes is zero if these volumes have a vector in common.
 This motivated Grassmann to call his antisymmetric product 
\begin_inset Quotes eld
\end_inset

exterior.
\begin_inset Quotes erd
\end_inset

 In his reasoning, the product of two 
\begin_inset Quotes eld
\end_inset

extensive quantities
\begin_inset Quotes erd
\end_inset

 (such as lines, areas, or volumes) is nonzero only when each of the two
 quantities is geometrically 
\begin_inset Quotes eld
\end_inset

to the exterior
\begin_inset Quotes erd
\end_inset

 (outside) of the other.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Show that in a 
\emph on
two
\emph default
-dimensional space 
\begin_inset Formula $V$
\end_inset

, any 3-vector such as 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

 can be simplified to the zero 3-vector.
 Prove the same for 
\begin_inset Formula $n$
\end_inset

-vectors in 
\begin_inset Formula $N$
\end_inset

-dimensional spaces when 
\begin_inset Formula $n>N$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
One can also consider the exterior powers of the 
\emph on
dual
\emph default
 space 
\begin_inset Formula $V^{*}$
\end_inset

.
 Tensors from 
\begin_inset Formula $\wedge^{n}V^{*}$
\end_inset

 are usually (for historical reasons) called 
\begin_inset Formula $n$
\end_inset

-
\series bold
forms
\series default

\begin_inset LatexCommand \index{$n$-forms}

\end_inset

 (rather than 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $n$
\end_inset

-covectors
\begin_inset Quotes erd
\end_inset

).
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
Where is the star here, really? Is the space 
\begin_inset Formula $\wedge^{n}\left(V^{*}\right)$
\end_inset

 different from 
\begin_inset Formula $\left(\wedge^{n}V\right)^{*}$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Good that you asked.
 These spaces are canonically isomorphic, but there is a subtle technical
 issue worth mentioning.
 Consider an example: 
\begin_inset Formula $\mathbf{a}^{*}\wedge\mathbf{b}^{*}\in\wedge^{2}(V^{*})$
\end_inset

 can act upon 
\begin_inset Formula $\mathbf{u}\wedge\mathbf{v}\in\wedge^{2}V$
\end_inset

 by the standard tensor product rule, namely 
\begin_inset Formula $\mathbf{a}^{*}\otimes\mathbf{b}^{*}$
\end_inset

 acts on 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}$
\end_inset

 as 
\begin_inset Formula \[
\left(\mathbf{a}^{*}\otimes\mathbf{b}^{*}\right)\left(\mathbf{u}\otimes\mathbf{v}\right)=\mathbf{a}^{*}(\mathbf{u})\,\mathbf{b}^{*}(\mathbf{v}),\]

\end_inset

so by using the definition of 
\begin_inset Formula $\mathbf{a}^{*}\wedge\mathbf{b}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{u}\wedge\mathbf{v}$
\end_inset

 through the tensor product, we find
\begin_inset Formula \begin{align*}
\left(\mathbf{a}^{*}\wedge\mathbf{b}^{*}\right)\left(\mathbf{u}\wedge\mathbf{v}\right) & =\left(\mathbf{a}^{*}\otimes\mathbf{b}^{*}-\mathbf{b}^{*}\otimes\mathbf{a}^{*}\right)\left(\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}\right)\\
 & =2\mathbf{a}^{*}(\mathbf{u})\,\mathbf{b}^{*}(\mathbf{v})-2\mathbf{b}^{*}(\mathbf{u})\,\mathbf{a}^{*}(\mathbf{v}).\end{align*}

\end_inset

We got a 
\series bold
combinatorial
\series default
 
\series bold
factor
\series default

\begin_inset LatexCommand \index{combinatorial factor}

\end_inset

 2, that is, a factor that arises because we have 
\emph on
two
\emph default
 permutations of the set 
\begin_inset Formula $\left(\mathbf{a},\mathbf{b}\right)$
\end_inset

.
 With 
\begin_inset Formula $\wedge^{n}\left(V^{*}\right)$
\end_inset

 and 
\begin_inset Formula $\left(\wedge^{n}V\right)^{*}$
\end_inset

 we get a factor 
\begin_inset Formula $n!$
\end_inset

.
 It is not always convenient to have this combinatorial factor.
 For example, in a finite number field the number 
\begin_inset Formula $n!$
\end_inset

 might be 
\emph on
equal to zero
\emph default
 for large enough 
\begin_inset Formula $n$
\end_inset

.
 In these cases we could 
\emph on
redefine
\emph default
 the action of 
\begin_inset Formula $\mathbf{a}^{*}\wedge\mathbf{b}^{*}$
\end_inset

 on 
\begin_inset Formula $\mathbf{u}\wedge\mathbf{v}$
\end_inset

 as 
\begin_inset Formula \[
\left(\mathbf{a}^{*}\wedge\mathbf{b}^{*}\right)\left(\mathbf{u}\wedge\mathbf{v}\right)\equiv\mathbf{a}^{*}(\mathbf{u})\,\mathbf{b}^{*}(\mathbf{v})-\mathbf{b}^{*}(\mathbf{u})\,\mathbf{a}^{*}(\mathbf{v}).\]

\end_inset

 If we are not working in a finite number field, we are able to divide by
 any integer, so we may keep combinatorial factors in the denominators of
 expressions where such factors appear.
 For example, if 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $\omega=\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

 is the corresponding basis tensor in the one-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

, the dual basis tensor in 
\begin_inset Formula $\left(\wedge^{N}V\right)^{*}$
\end_inset

 could be defined by 
\begin_inset Formula \[
\omega^{*}=\frac{1}{N!}\mathbf{e}_{1}^{*}\wedge...\wedge\mathbf{e}_{N}^{*},\quad\text{so that}\:\omega^{*}(\omega)=1.\]

\end_inset

The need for such combinatorial factors is a minor technical inconvenience
 that does not arise too often.
 We may give the following definition that avoids dividing by combinatorial
 factors (but now we use permutations; see Appendix\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-permutations}

\end_inset

).
\end_layout

\begin_layout Paragraph
Definition 3:
\end_layout

\begin_layout Standard
The action of a 
\begin_inset Formula $k$
\end_inset

-form 
\begin_inset Formula $\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{k}^{*}$
\end_inset

 on a 
\begin_inset Formula $k$
\end_inset

-vector 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 is defined by
\begin_inset Formula \[
\sum_{\sigma}(-1)^{\left|\sigma\right|}\mathbf{f}_{1}^{*}(\mathbf{v}_{\sigma(1)})...\mathbf{f}_{k}^{*}(\mathbf{v}_{\sigma(k)}),\]

\end_inset

where the summation is performed over all permutations 
\begin_inset Formula $\sigma$
\end_inset

 of the ordered set 
\begin_inset Formula $\left(1,...,k\right)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example\InsetSpace ~
2:
\end_layout

\begin_layout Standard
With 
\begin_inset Formula $k=3$
\end_inset

 we have
\begin_inset Formula \begin{align*}
 & (\mathbf{p}^{*}\wedge\mathbf{q}^{*}\wedge\mathbf{r}^{*})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\\
 & =\mathbf{p}^{*}(\mathbf{a})\mathbf{q}^{*}(\mathbf{b})\mathbf{r}^{*}(\mathbf{c})-\mathbf{p}^{*}(\mathbf{b})\mathbf{q}^{*}(\mathbf{a})\mathbf{r}^{*}(\mathbf{c})\\
 & +\mathbf{p}^{*}(\mathbf{b})\mathbf{q}^{*}(\mathbf{c})\mathbf{r}^{*}(\mathbf{a})-\mathbf{p}^{*}(\mathbf{c})\mathbf{q}^{*}(\mathbf{b})\mathbf{r}^{*}(\mathbf{a})\\
 & +\mathbf{p}^{*}(\mathbf{c})\mathbf{q}^{*}(\mathbf{a})\mathbf{r}^{*}(\mathbf{b})-\mathbf{p}^{*}(\mathbf{c})\mathbf{q}^{*}(\mathbf{b})\mathbf{r}^{*}(\mathbf{a}).\end{align*}

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
a) Show that 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\omega=\omega\wedge\mathbf{a}\wedge\mathbf{b}$
\end_inset

 where 
\begin_inset Formula $\omega$
\end_inset

 is any antisymmetric tensor (e.g.\InsetSpace ~

\begin_inset Formula $\omega=\mathbf{x}\wedge\mathbf{y}\wedge\mathbf{z}$
\end_inset

).
\end_layout

\begin_layout Standard
b) Show that
\begin_inset Formula \[
\omega_{1}\wedge\mathbf{a}\wedge\omega_{2}\wedge\mathbf{b}\wedge\omega_{3}=-\omega_{1}\wedge\mathbf{b}\wedge\omega_{2}\wedge\mathbf{a}\wedge\omega_{3},\]

\end_inset

where 
\begin_inset Formula $\omega_{1}$
\end_inset

, 
\begin_inset Formula $\omega_{2}$
\end_inset

, 
\begin_inset Formula $\omega_{3}$
\end_inset

 are arbitrary antisymmetric tensors and 
\begin_inset Formula $\mathbf{a},\mathbf{b}$
\end_inset

 are vectors.
 
\end_layout

\begin_layout Standard
c) Due to antisymmetry,  
\begin_inset Formula $\mathbf{a}\wedge\mathbf{a}=0$
\end_inset

 for any vector 
\begin_inset Formula $\mathbf{a}\in V$
\end_inset

.
 Is it also true that 
\begin_inset Formula $\omega\wedge\omega=0$
\end_inset

 for any bivector 
\begin_inset Formula $\omega\in\wedge^{2}V$
\end_inset

?
\end_layout

\begin_layout Subsection
* Symmetric tensor product
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
At this point it is still unclear why the antisymmetric definition is at
 all useful.
 Perhaps we could define something else, say the symmetric product, instead
 of the exterior product? We could try to define a product, say 
\begin_inset Formula $\mathbf{a}\odot\mathbf{b}$
\end_inset

, with some other property, such as
\begin_inset Formula \[
\mathbf{a}\odot\mathbf{b}=2\mathbf{b}\odot\mathbf{a}.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
This does not work because, for example, we would have
\begin_inset Formula \[
\mathbf{b}\odot\mathbf{a}=2\mathbf{a}\odot\mathbf{b}=4\mathbf{b}\odot\mathbf{a},\]

\end_inset

so all the 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $\odot$
\end_inset


\begin_inset Quotes erd
\end_inset

 products would have to vanish.
\end_layout

\begin_layout Standard
We can define the 
\emph on
symmetric
\emph default
 tensor product, 
\begin_inset Formula $\otimes_{S}$
\end_inset

, with the property
\begin_inset Formula \[
\mathbf{a}\otimes_{S}\mathbf{b}=\mathbf{b}\otimes_{S}\mathbf{a},\]

\end_inset

but it is impossible to define anything else in a similar fashion.
\begin_inset Foot
status open

\begin_layout Standard
This is a theorem due to Grassmann (1862).
\end_layout

\end_inset

 
\end_layout

\begin_layout Standard
The antisymmetric tensor product is the eigenspace (within 
\begin_inset Formula $V\otimes V$
\end_inset

) of the exchange operator 
\begin_inset Formula $\hat{T}$
\end_inset

 with eigenvalue 
\begin_inset Formula $-1$
\end_inset

.
 That operator has only eigenvectors with eigenvalues 
\begin_inset Formula $\pm1$
\end_inset

, so the only other possibility is to consider the eigenspace with eigenvalue
 
\begin_inset Formula $+1$
\end_inset

.
 This eigenspace is spanned by symmetric tensors of the form 
\begin_inset Formula $\mathbf{u}\otimes\mathbf{v}+\mathbf{v}\otimes\mathbf{u}$
\end_inset

, and can be considered as the space of symmetric tensor products.
 We could write
\begin_inset Formula \[
\mathbf{a}\otimes_{S}\mathbf{b}\equiv\mathbf{a}\otimes\mathbf{b}+\mathbf{b}\otimes\mathbf{a}\]

\end_inset

and develop the properties of this product.
 However, it turns out that the symmetric tensor product is much less useful
 for the purposes of linear algebra than the antisymmetric subspace.
 This book derives most of the results of linear algebra using the antisymmetric
 product as the main tool!
\end_layout

\begin_layout Section
Properties of spaces 
\begin_inset Formula $\wedge^{k}V$
\end_inset


\begin_inset LatexCommand \label{sec:Properties-of-the-wedgekV}

\end_inset


\end_layout

\begin_layout Standard
As we have seen, tensors from the space 
\begin_inset Formula $V\otimes V$
\end_inset

 are representable by linear combinations of the form 
\begin_inset Formula $\mathbf{a}\otimes\mathbf{b}+\mathbf{c}\otimes\mathbf{d}+...$
\end_inset

, but not 
\emph on
uniquely
\emph default
 representable because one can transform one such linear combination into
 another by using the axioms of the tensor product.
 Similarly, 
\begin_inset Formula $n$
\end_inset

-vectors are not uniquely representable by linear combinations of exterior
 products.
 For example,
\begin_inset Formula \[
\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\mathbf{c}+\mathbf{b}\wedge\mathbf{c}=(\mathbf{a}+\mathbf{b})\wedge(\mathbf{b}+\mathbf{c})\]

\end_inset

 since 
\begin_inset Formula $\mathbf{b}\wedge\mathbf{b}=0$
\end_inset

.
 In other words, the 2-vector 
\begin_inset Formula $\omega\equiv\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\mathbf{c}+\mathbf{b}\wedge\mathbf{c}$
\end_inset

 has an alternative representation containing only a single-term exterior
 product, 
\begin_inset Formula $\omega=\mathbf{r}\wedge\mathbf{s}$
\end_inset

 where 
\begin_inset Formula $\mathbf{r}=\mathbf{a}+\mathbf{b}$
\end_inset

 and 
\begin_inset Formula $\mathbf{s}=\mathbf{b}+\mathbf{c}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise:
\begin_inset LatexCommand \index{single-term exterior products}

\end_inset


\end_layout

\begin_layout Standard
Show that any 2-vector in a 
\emph on
three
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al space is representable by a single-term exterior product, i.e.\InsetSpace ~
to
 a 2-vector of the form 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Choose a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

 and show that 
\begin_inset Formula $\alpha\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\beta\mathbf{e}_{1}\wedge\mathbf{e}_{3}+\gamma\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

 is equal to a single-term product.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
What about higher-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces? We will show (see the Exercise at
 the end of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

) that 
\begin_inset Formula $n$
\end_inset

-vectors cannot be in general reduced to a single-term product.
 This is, however, always possible for 
\begin_inset Formula $(N-1)$
\end_inset

-vectors in an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
 (You showed this for 
\begin_inset Formula $N=3$
\end_inset

 in the exercise above.)
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
Any 
\begin_inset Formula $(N-1)$
\end_inset

-vector in an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space can be written as a single-term exterior product of the
 form 
\begin_inset Formula $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N-1}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We prove this by using induction in 
\begin_inset Formula $N$
\end_inset

.
 The basis of induction is 
\begin_inset Formula $N=2$
\end_inset

, where there is nothing to prove.
 The induction step: Suppose that the statement is proved for 
\begin_inset Formula $(N-1)$
\end_inset

-vectors in 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces, we need to prove it for 
\begin_inset Formula $N$
\end_inset

-vectors in 
\begin_inset Formula $(N+1)$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces.
 Choose a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N+1}\right\} $
\end_inset

 in the space.
 Any 
\begin_inset Formula $N$
\end_inset

-vector 
\begin_inset Formula $\omega$
\end_inset

 can be written as a linear combination of exterior product terms,
\begin_inset Formula \begin{align*}
\omega & =\alpha_{1}\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N+1}+\alpha_{2}\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge...\wedge\mathbf{e}_{N+1}+...\\
 & \quad+\alpha_{N}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\wedge\mathbf{e}_{N+1}+\alpha_{N+1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\end{align*}

\end_inset

where 
\begin_inset Formula $\left\{ \alpha_{i}\right\} $
\end_inset

 are some constants.
 
\end_layout

\begin_layout Standard
Note that any tensor 
\begin_inset Formula $\omega\in\wedge^{N-1}V$
\end_inset

 can be written in this way simply by expressing every vector through the
 basis and by expanding the exterior products.
 The result will be a linear combination of the form shown above, containing
 at most 
\begin_inset Formula $N+1$
\end_inset

 single-term exterior products of the form 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, 
\begin_inset Formula $\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N+1}$
\end_inset

, and so on.
 We do not yet know whether these single-term exterior products constitute
 a linearly independent set; this will be established in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

.
 Presently, we will not need this property.
\end_layout

\begin_layout Standard
Now we would like to transform the expression above to a single term.
 We move 
\begin_inset Formula $\mathbf{e}_{N+1}$
\end_inset

 outside brackets in the first 
\begin_inset Formula $N$
\end_inset

 terms:
\begin_inset Formula \begin{align*}
\omega & =\big(\alpha_{1}\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}+...+\alpha_{N}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\big)\wedge\mathbf{e}_{N+1}\\
 & \qquad+\alpha_{N+1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\\
 & \equiv\psi\wedge\mathbf{e}_{N+1}+\alpha_{N+1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\end{align*}

\end_inset

where in the last line we have introduced an auxiliary 
\begin_inset Formula $(N-1)$
\end_inset

-vector 
\begin_inset Formula $\psi$
\end_inset

.
 If it happens that 
\begin_inset Formula $\psi=0$
\end_inset

, there is nothing left to prove.
 Otherwise, at least one of the 
\begin_inset Formula $\alpha_{i}$
\end_inset

 must be nonzero; without loss of generality, suppose that 
\begin_inset Formula $\alpha_{N}\neq0$
\end_inset

 and rewrite 
\begin_inset Formula $\omega$
\end_inset

 as 
\begin_inset Formula \[
\omega=\psi\wedge\mathbf{e}_{N+1}+\alpha_{N+1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\psi\wedge\big(\mathbf{e}_{N+1}+\frac{\alpha_{N+1}}{\alpha_{N}}\mathbf{e}_{N}\big).\]

\end_inset

Now we note that 
\begin_inset Formula $\psi$
\end_inset

 belongs to the space of 
\begin_inset Formula $\left(N-1\right)$
\end_inset

-vectors over the 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al subspace spanned by 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

.
 By the inductive assumption, 
\begin_inset Formula $\psi$
\end_inset

 can be written as a single-term exterior product, 
\begin_inset Formula $\psi=\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N-1}$
\end_inset

, of some vectors 
\begin_inset Formula $\left\{ \mathbf{a}_{i}\right\} $
\end_inset

.
 Denoting 
\begin_inset Formula \[
\mathbf{a}_{N}\equiv\mathbf{e}_{N+1}+\frac{\alpha_{N+1}}{\alpha_{N}}\mathbf{e}_{N},\]

\end_inset

we obtain 
\begin_inset Formula \[
\omega=\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N-1}\wedge\mathbf{a}_{N},\]

\end_inset

i.e.
 
\begin_inset Formula $\omega$
\end_inset

 can be represented as a single-term exterior product.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset

 
\end_layout

\begin_layout Subsection
Linear maps between spaces 
\begin_inset Formula $\wedge^{k}V$
\end_inset


\begin_inset LatexCommand \label{sub:Linear-maps-between-spaces}

\end_inset


\end_layout

\begin_layout Standard
Since the spaces 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 are vector spaces, we may consider linear maps between them.
 
\end_layout

\begin_layout Standard
A simplest example is a map
\begin_inset Formula \[
L_{\mathbf{a}}:\omega\mapsto\mathbf{a}\wedge\omega,\]

\end_inset

mapping 
\begin_inset Formula $\wedge^{k}V\rightarrow\wedge^{k+1}V$
\end_inset

; here the vector 
\begin_inset Formula $\mathbf{a}$
\end_inset

 is 
\emph on
fixed
\emph default
.
 It is important to check that 
\begin_inset Formula $L_{\mathbf{a}}$
\end_inset

 is a 
\emph on
linear
\emph default
 map between these spaces.
 How do we check this? We need to check that 
\begin_inset Formula $L_{\mathbf{a}}$
\end_inset

 maps a linear combination of tensors into linear combinations; this is
 easy to see,
\begin_inset Formula \begin{align*}
L_{\mathbf{a}} & (\omega+\lambda\omega^{\prime})=\mathbf{a}\wedge(\omega+\lambda\omega')\\
 & =\mathbf{a}\wedge\omega+\lambda\mathbf{a}\wedge\omega'=L_{\mathbf{a}}\omega+\lambda L_{\mathbf{a}}\omega'.\end{align*}

\end_inset


\end_layout

\begin_layout Standard
Let us now fix a covector 
\begin_inset Formula $\mathbf{a}^{*}$
\end_inset

.
 A covector is a map 
\begin_inset Formula $V\rightarrow\mathbb{K}$
\end_inset

.
 In Lemma\InsetSpace ~
2 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-tensor}

\end_inset

 we have used covectors to define linear maps 
\begin_inset Formula $\mathbf{a}^{*}:V\otimes W\rightarrow W$
\end_inset

 according to Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:fg rule}

\end_inset

), mapping 
\begin_inset Formula $\mathbf{v}\otimes\mathbf{w}\mapsto\mathbf{a}^{*}\left(\mathbf{v}\right)\mathbf{w}$
\end_inset

.
 Now we will apply the analogous construction to exterior powers and construct
 a map 
\begin_inset Formula $V\wedge V\rightarrow V$
\end_inset

.
 Let us denote this map by 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

.
 
\end_layout

\begin_layout Standard
It would be incorrect to define the map 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

 by the formula 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}(\mathbf{v}\wedge\mathbf{w})=\mathbf{a}^{*}\left(\mathbf{v}\right)\mathbf{w}$
\end_inset

 because such a definition does not respect the antisymmetry of the wedge
 product and thus violates the linearity condition, 
\begin_inset Formula \[
\iota_{\mathbf{a}^{*}}\left(\mathbf{w}\wedge\mathbf{v}\right)\,{\lyxbuildrel!\above=}\,\iota_{\mathbf{a}^{*}}\left(\left(-1\right)\mathbf{v}\wedge\mathbf{w}\right)=-\iota_{\mathbf{a}^{*}}\left(\mathbf{v}\wedge\mathbf{w}\right)\neq\mathbf{a}^{*}(\mathbf{v})\mathbf{w}.\]

\end_inset

So we need to act with 
\begin_inset Formula $\mathbf{a}^{*}$
\end_inset

 on 
\emph on
each
\emph default
 of the vectors in a wedge product and make sure that the correct minus
 sign comes out.
 An acceptable formula for the map 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}:\wedge^{2}V\rightarrow V$
\end_inset

 is
\begin_inset Formula \[
\iota_{\mathbf{a}^{*}}\left(\mathbf{v}\wedge\mathbf{w}\right)\equiv\mathbf{a}^{*}\left(\mathbf{v}\right)\mathbf{w}-\mathbf{a}^{*}\left(\mathbf{w}\right)\mathbf{v}.\]

\end_inset

(Please check that the linearity condition now holds!) This is how we will
 define the map 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

 on 
\begin_inset Formula $\wedge^{2}V$
\end_inset

.
\end_layout

\begin_layout Standard
Let us now extend 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}:\wedge^{2}V\rightarrow V$
\end_inset

 to a map 
\begin_inset Formula \[
\iota_{\mathbf{a}^{*}}:\wedge^{k}V\rightarrow\wedge^{k-1}V,\]

\end_inset

defined as follows: 
\begin_inset Formula \begin{align}
\iota_{\mathbf{a}^{*}}\mathbf{v} & \equiv\mathbf{a}^{*}(\mathbf{v}),\nonumber \\
\iota_{\mathbf{a}^{*}}(\mathbf{v}\wedge\omega) & \equiv\mathbf{a}^{*}(\mathbf{v})\omega-\mathbf{v}\wedge(\iota_{\mathbf{a}^{*}}\omega).\label{eq:inductive}\end{align}

\end_inset

This definition is 
\emph on
inductive
\emph default
, i.e.\InsetSpace ~
it shows how to define 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

 on 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 if we know how to define it on 
\begin_inset Formula $\wedge^{k-1}V$
\end_inset

.
 The action of 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

 on a sum of terms is defined by requiring  linearity, 
\begin_inset Formula \[
\iota_{\mathbf{a}^{*}}\left(A+\lambda B\right)\equiv\iota_{\mathbf{a}^{*}}\left(A\right)+\lambda\iota_{\mathbf{a}^{*}}\left(B\right),\quad A,B\in\wedge^{k}V.\]

\end_inset


\end_layout

\begin_layout Standard
We can convert this inductive definition into a more explicit formula: if
 
\begin_inset Formula $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$
\end_inset

 then 
\begin_inset Formula \begin{align*}
\iota_{\mathbf{a}^{*}} & (\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k})\equiv\mathbf{a}^{*}(\mathbf{v}_{1})\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}-\mathbf{a}^{*}(\mathbf{v}_{2})\mathbf{v}_{1}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{k}\\
 & +...+\left(-1\right)^{k-1}\mathbf{a}^{*}(\mathbf{v}_{k})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k-1}.\end{align*}

\end_inset


\end_layout

\begin_layout Standard
This map is called the 
\series bold
interior product
\series default

\begin_inset LatexCommand \index{interior product}

\end_inset

 or the 
\series bold
insertion
\series default
 map
\begin_inset LatexCommand \index{insertion map}

\end_inset

.
 This is a useful operation in  linear algebra.
 The insertion map 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}\psi$
\end_inset

 
\begin_inset Quotes eld
\end_inset

inserts
\begin_inset Quotes erd
\end_inset

 the covector 
\begin_inset Formula $\mathbf{a}^{*}$
\end_inset

 into the tensor 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 by acting with 
\begin_inset Formula $\mathbf{a}^{*}$
\end_inset

 on each of the vectors in the exterior product that makes up 
\begin_inset Formula $\psi$
\end_inset

.
\end_layout

\begin_layout Standard
Let us check formally that the insertion map is linear.
 
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The map 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}:\wedge^{k}V\rightarrow\wedge^{k-1}V$
\end_inset

 for 
\begin_inset Formula $1\leq k\leq N$
\end_inset

 is a well-defined linear map, according to the inductive definition.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
First, we need to check that it maps linear combinations into linear combination
s; this is quite easy to see by induction, using the fact that 
\begin_inset Formula $\mathbf{a}^{*}:V\rightarrow\mathbb{K}$
\end_inset

 is linear.
 However, this type of linearity is not sufficient; we also need to check
 that the 
\emph on
result
\emph default
 of the map, i.e.\InsetSpace ~
the tensor 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}(\omega)$
\end_inset

, is defined 
\emph on
independently
\emph default
 
\emph on
of
\emph default
 
\emph on
the
\emph default
 
\emph on
representation
\emph default
 of 
\begin_inset Formula $\omega$
\end_inset

 through vectors such as 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

.
 The problem is, there are many such representations, for example some tensor
 
\begin_inset Formula $\omega\in\wedge^{3}V$
\end_inset

 might be written using different vectors as 
\begin_inset Formula \[
\omega=\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\mathbf{v}_{3}=\mathbf{v}_{2}\wedge(\mathbf{v}_{3}-\mathbf{v}_{1})\wedge(\mathbf{v}_{3}+\mathbf{v}_{2})\equiv\tilde{\mathbf{v}}_{1}\wedge\tilde{\mathbf{v}}_{2}\wedge\tilde{\mathbf{v}}_{3}.\]

\end_inset

 We need to verify that any such equivalent representation yields the same
 resulting tensor 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}(\omega)$
\end_inset

, despite the fact that the definition of 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

 
\emph on
appears
\emph default
 to depend on the choice of the vectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

.
 Only then will it be proved that 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

 is a linear map 
\begin_inset Formula $\wedge^{k}V\rightarrow\wedge^{k-1}V$
\end_inset

.
\end_layout

\begin_layout Standard
An equivalent representation of a tensor 
\begin_inset Formula $\omega$
\end_inset

 can be obtained only by using the properties of the exterior product, namely
 linearity and antisymmetry.
 Therefore, we need to verify that 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}(\omega)$
\end_inset

 does not change when we change the representation of 
\begin_inset Formula $\omega$
\end_inset

 in these two ways: 1) expanding a linear combination,
\begin_inset Formula \begin{equation}
(\mathbf{x}+\lambda\mathbf{y})\wedge...\mapsto\mathbf{x}\wedge...+\lambda\mathbf{y}\wedge...;\label{eq:change repr 1}\end{equation}

\end_inset

2) interchanging the order of two vectors in the exterior product and change
 the sign,
\begin_inset Formula \begin{equation}
\mathbf{x}\wedge\mathbf{y}\wedge...\mapsto-\mathbf{y}\wedge\mathbf{x}\wedge...\label{eq:change repr 2}\end{equation}

\end_inset

It is clear that 
\begin_inset Formula $\mathbf{a}^{*}(\mathbf{x}+\lambda\mathbf{y})=\mathbf{a}^{*}(\mathbf{x})+\lambda\mathbf{a}^{*}(\mathbf{y})$
\end_inset

; it follows by induction that 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}\omega$
\end_inset

 does not change under a change of representation of the type\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:change repr 1}

\end_inset

).
 Now we consider the change of representation of the type\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:change repr 2}

\end_inset

).
 We have, by definition of 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

,
\begin_inset Formula \[
\iota_{\mathbf{a}^{*}}(\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\chi)=\mathbf{a}^{*}(\mathbf{v}_{1})\mathbf{v}_{2}\wedge\chi-\mathbf{a}^{*}(\mathbf{v}_{2})\mathbf{v}_{1}\wedge\chi+\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\iota_{\mathbf{a}^{*}}(\chi),\]

\end_inset

where we have denoted by 
\begin_inset Formula $\chi$
\end_inset

 the rest of the exterior product.
 It is clear from the above expression that 
\begin_inset Formula \[
\iota_{\mathbf{a}^{*}}(\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\chi)=-\iota_{\mathbf{a}^{*}}(\mathbf{v}_{2}\wedge\mathbf{v}_{1}\wedge\chi)=\iota_{\mathbf{a}^{*}}(-\mathbf{v}_{2}\wedge\mathbf{v}_{1}\wedge\chi).\]

\end_inset

This proves that 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}(\omega)$
\end_inset

 does not change under a change of representation of 
\begin_inset Formula $\omega$
\end_inset

 of the type\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:change repr 2}

\end_inset

).
 This concludes the proof.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
It is apparent from the proof that the 
\emph on
minus sign
\emph default
 in the inductive definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:inductive}

\end_inset

) is crucial for the linearity of the map 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

.
 Indeed, if we attempt to define a map by a formula such as
\begin_inset Formula \[
\mathbf{v}_{1}\wedge\mathbf{v}_{2}\mapsto\mathbf{a}^{*}(\mathbf{v}_{1})\mathbf{v}_{2}+\mathbf{a}^{*}(\mathbf{v}_{2})\mathbf{v}_{1},\]

\end_inset

the result will 
\emph on
not
\emph default
 be a linear map 
\begin_inset Formula $\wedge^{2}V\rightarrow V$
\end_inset

 despite the appearance of linearity.
 The correct formula must take into account the fact that 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{2}=-\mathbf{v}_{2}\wedge\mathbf{v}_{1}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Show by induction in 
\begin_inset Formula $k$
\end_inset

 that
\begin_inset Formula \[
L_{\mathbf{x}}\iota_{\mathbf{a}^{*}}\omega+\iota_{\mathbf{a}^{*}}L_{\mathbf{x}}\omega=\mathbf{a}^{*}(\mathbf{x})\omega,\quad\forall\omega\in\wedge^{k}V.\]

\end_inset

In other words, the linear operator 
\begin_inset Formula $L_{\mathbf{x}}\iota_{\mathbf{a}^{*}}+\iota_{\mathbf{a}^{*}}L_{\mathbf{x}}:\wedge^{k}V\rightarrow\wedge^{k}V$
\end_inset

 is simply the multiplication by the number 
\begin_inset Formula $\mathbf{a}^{*}(\mathbf{x})$
\end_inset

.
\end_layout

\begin_layout Paragraph

\end_layout

\begin_layout Subsection
Exterior product and linear dependence
\begin_inset LatexCommand \label{sub:Properties-of-the-ext-powers}

\end_inset


\end_layout

\begin_layout Standard
The exterior product is useful in many ways.
 One powerful property of the exterior product is its close relation to
 linear independence of sets of vectors.
 For example, if 
\begin_inset Formula $\mathbf{u}=\lambda\mathbf{v}$
\end_inset

 then 
\begin_inset Formula $\mathbf{u}\wedge\mathbf{v}=0$
\end_inset

.
 More generally:
\end_layout

\begin_layout Paragraph
Theorem 1:
\end_layout

\begin_layout Standard
A set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 of vectors from 
\begin_inset Formula $V$
\end_inset

 is linearly independent if and only if 
\begin_inset Formula $(\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k})\neq0$
\end_inset

, i.e.\InsetSpace ~
it is a nonzero tensor from 
\begin_inset Formula $\wedge^{k}V$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is linearly dependent then without loss of generality we may assume that
 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 is a linear combination of other vectors, 
\begin_inset Formula $\mathbf{v}_{1}=\sum_{j=2}^{k}\lambda_{j}\mathbf{v}_{j}$
\end_inset

.
 Then 
\begin_inset Formula \begin{align*}
\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k} & =\sum_{j=2}^{k}\lambda_{j}\mathbf{v}_{j}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{k}\\
 & =\sum_{j=2}^{k}\left(-1\right)^{j-1}\mathbf{v}_{2}\wedge...\mathbf{v}_{j}\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{k}=0.\end{align*}

\end_inset

Conversely, we need to prove that the tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\neq0$
\end_inset

 if 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is linearly 
\emph on
in
\emph default
dependent.
 The proof is by induction in 
\begin_inset Formula $k$
\end_inset

.
 The basis of induction is 
\begin_inset Formula $k=1$
\end_inset

: if 
\begin_inset Formula $\left\{ \mathbf{v}_{1}\right\} $
\end_inset

 is linearly independent then clearly 
\begin_inset Formula $\mathbf{v}_{1}\neq0$
\end_inset

.
 The induction step: Assume that the statement is proved for 
\begin_inset Formula $k-1$
\end_inset

 and that 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 is a linearly independent set.
 By Exercise\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dual-vector-space}

\end_inset

 there exists a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{1}\right)=1$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{i}\right)=0$
\end_inset

 for 
\begin_inset Formula $2\leq i\leq k$
\end_inset

.
 Now we apply the interior product map 
\begin_inset Formula $\iota_{\mathbf{f}^{*}}:\wedge^{k}V\rightarrow\wedge^{k-1}V$
\end_inset

 constructed in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Linear-maps-between-spaces}

\end_inset

 to the tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 and find 
\begin_inset Formula \[
\iota_{\mathbf{f}^{*}}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right)=\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}.\]

\end_inset

By the induction step, the linear independence of 
\begin_inset Formula $k-1$
\end_inset

 vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{2},...,\mathbf{v}_{k}\right\} $
\end_inset

 entails 
\begin_inset Formula $\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}\neq0$
\end_inset

.
 The map 
\begin_inset Formula $\iota_{\mathbf{f}^{*}}$
\end_inset

 is linear and cannot map a zero tensor into a nonzero tensor, therefore
 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\neq0$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
It is also important to know that any tensor from the highest exterior power
 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 can be represented as just a 
\emph on
single-term
\emph default

\begin_inset LatexCommand \index{single-term exterior products}

\end_inset

 exterior product of 
\begin_inset Formula $N$
\end_inset

 vectors.
 (Note that the same property for 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

 was already established in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sec:Properties-of-the-wedgekV}

\end_inset

.)
\end_layout

\begin_layout Paragraph
Lemma\InsetSpace ~
1:
\end_layout

\begin_layout Standard
For any tensor 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

 there exist vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 such that 
\begin_inset Formula $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\omega=0$
\end_inset

 then there is nothing to prove, so we assume 
\begin_inset Formula $\omega\neq0$
\end_inset

.
 By definition, the tensor 
\begin_inset Formula $\omega$
\end_inset

 has a representation as a sum of 
\emph on
several
\emph default
 exterior products, say 
\begin_inset Formula \[
\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}+\mathbf{v}_{1}^{\prime}\wedge...\wedge\mathbf{v}_{N}^{\prime}+...\]

\end_inset

Let us simplify this expression to just one exterior product.
 First, let us omit any zero terms in this expression (for instance, 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{a}\wedge\mathbf{b}\wedge...=0$
\end_inset

).
 Then by Theorem\InsetSpace ~
1 the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is linearly independent (or else the term 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 would be zero).
 Hence, 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 All other vectors such as 
\begin_inset Formula $\mathbf{v}_{i}^{\prime}$
\end_inset

 can be decomposed as linear combinations of vectors in that basis.
 Let us denote 
\begin_inset Formula $\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

.
 By expanding the brackets in exterior products such as 
\begin_inset Formula $\mathbf{v}_{1}^{\prime}\wedge...\wedge\mathbf{v}_{N}^{\prime}$
\end_inset

, we will obtain every time the tensor 
\begin_inset Formula $\psi$
\end_inset

 with different coefficients.
 Therefore, the final result of simplification will be that 
\begin_inset Formula $\omega$
\end_inset

 equals  
\begin_inset Formula $\psi$
\end_inset

 multiplied with some coefficient.
 This is sufficient to prove Lemma\InsetSpace ~
1.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Now we would like to build a basis in the space 
\begin_inset Formula $\wedge^{m}V$
\end_inset

.
 For this we need to determine which sets of tensors from 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 are linearly independent within that space.
\end_layout

\begin_layout Paragraph
Lemma 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

 then any tensor 
\begin_inset Formula $A\in\wedge^{m}V$
\end_inset

 can be decomposed as a linear combination of the tensors 
\begin_inset Formula $\mathbf{e}_{k_{1}}\wedge\mathbf{e}_{k_{2}}\wedge...\wedge\mathbf{e}_{k_{m}}$
\end_inset

 with some indices 
\begin_inset Formula $k_{j}$
\end_inset

, 
\begin_inset Formula $1\leq j\leq m$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The tensor 
\begin_inset Formula $A$
\end_inset

 is a linear combination of expressions of the form 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$
\end_inset

, and each vector 
\begin_inset Formula $\mathbf{v}_{i}\in V$
\end_inset

 can be decomposed in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 Expanding the brackets around the wedges using the rules\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:uv antisymm}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:uv distrib}

\end_inset

), we obtain a decomposition of an arbitrary tensor through the basis tensors.
 For example, 
\begin_inset Formula \begin{align*}
\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{3}\right)-2\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)\wedge\left(\mathbf{e}_{1}-\mathbf{e}_{3}\right)\\
=-\mathbf{e}_{1}\wedge\mathbf{e}_{2}-\mathbf{e}_{1}\wedge\mathbf{e}_{3}+4\mathbf{e}_{2}\wedge\mathbf{e}_{3}\end{align*}

\end_inset

(please verify this yourself!).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
By Theorem\InsetSpace ~
1, all tensors 
\begin_inset Formula $\mathbf{e}_{k_{1}}\wedge\mathbf{e}_{k_{2}}\wedge...\wedge\mathbf{e}_{k_{m}}$
\end_inset

 constructed out of subsets of vectors from the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

 are nonzero, and by Lemma\InsetSpace ~
2 any tensor can be decomposed into a linear combinati
on of these tensors.
 But are these tensors a basis in the space 
\begin_inset Formula $\wedge^{m}V$
\end_inset

? Yes:
\end_layout

\begin_layout Paragraph
Lemma 3:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is a linearly independent set of vectors (not necessarily a basis in 
\begin_inset Formula $V$
\end_inset

 since 
\begin_inset Formula $n\leq N$
\end_inset

), then:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 The set of 
\begin_inset Formula ${n \choose 2}$
\end_inset

 tensors
\begin_inset Formula \[
\left\{ \mathbf{v}_{j}\wedge\mathbf{v}_{k},\:1\leq j<k\leq n\right\} \equiv\left\{ \mathbf{v}_{1}\wedge\mathbf{v}_{2},\mathbf{v}_{1}\wedge\mathbf{v}_{3},...,\mathbf{v}_{n-1}\wedge\mathbf{v}_{n}\right\} \]

\end_inset

is linearly independent in the space 
\begin_inset Formula $\wedge^{2}V$
\end_inset

.
 
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 The set of 
\begin_inset Formula ${n \choose m}$
\end_inset

 tensors
\begin_inset Formula \[
\left\{ \mathbf{v}_{k_{1}}\wedge\mathbf{v}_{k_{2}}\wedge...\wedge\mathbf{v}_{k_{m}},\:1\leq k_{1}<k_{2}<...<k_{m}\leq n\right\} \]

\end_inset

 is linearly independent in the space 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 for 
\begin_inset Formula $2\leq m\leq n$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 The proof is similar to that of Lemma\InsetSpace ~
3 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dimension-of-tensor}

\end_inset

.
 Suppose the set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is linearly independent but the set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\wedge\mathbf{v}_{k}\right\} $
\end_inset

 is linearly 
\emph on
dependent
\emph default
, so that there exists a linear combination
\begin_inset Formula \[
\sum_{1\leq j<k\leq n}\lambda_{jk}\mathbf{v}_{j}\wedge\mathbf{v}_{k}=0\]

\end_inset

with at least some 
\begin_inset Formula $\lambda_{jk}\neq0$
\end_inset

.
 Without loss of generality, 
\begin_inset Formula $\lambda_{12}\neq0$
\end_inset

 (or else we can renumber the vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

).
 There exists a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{1}\right)=1$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{i}\right)=0$
\end_inset

 for 
\begin_inset Formula $2\leq i\leq n$
\end_inset

.
 Apply the interior product with this covector to the above tensor,
\begin_inset Formula \[
0=\iota_{\mathbf{f}^{*}}\left[\sum_{1\leq j<k\leq n}\lambda_{jk}\mathbf{v}_{j}\wedge\mathbf{v}_{k}\right]=\sum_{k=2}^{n}\lambda_{1k}\mathbf{v}_{k},\]

\end_inset

therefore by linear independence of 
\begin_inset Formula $\left\{ \mathbf{v}_{k}\right\} $
\end_inset

 all 
\begin_inset Formula $\lambda_{1k}=0$
\end_inset

, contradicting the assumption 
\begin_inset Formula $\lambda_{12}\neq0$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 The proof of part (1) is straightforwardly generalized to the space 
\begin_inset Formula $\wedge^{m}V$
\end_inset

, using induction in 
\begin_inset Formula $m$
\end_inset

.
 We have just proved the basis of induction, 
\begin_inset Formula $m=2$
\end_inset

.
 Now the induction step: assume that the statement is proved for 
\begin_inset Formula $m-1$
\end_inset

 and consider a set 
\begin_inset Formula $\left\{ \mathbf{v}_{k_{1}}\wedge...\wedge\mathbf{v}_{k_{m}}\right\} $
\end_inset

, of tensors of rank 
\begin_inset Formula $m$
\end_inset

, where 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is a basis.
 Suppose that this set is linearly dependent; then there is a linear combination
 
\begin_inset Formula \[
\omega\equiv\sum_{k_{1},...,k_{m}}\lambda_{k_{1}...k_{m}}\mathbf{v}_{k_{1}}\wedge...\wedge\mathbf{v}_{k_{m}}=0\]

\end_inset

with some nonzero coefficients, e.g.\InsetSpace ~

\begin_inset Formula $\lambda_{12...m}\neq0$
\end_inset

.
 There exists a covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{1}\right)=1$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}_{i}\right)=0$
\end_inset

 for 
\begin_inset Formula $2\leq i\leq n$
\end_inset

.
 Apply this covector to the tensor 
\begin_inset Formula $\omega$
\end_inset

 and obtain 
\begin_inset Formula $\iota_{\mathbf{f}^{*}}\omega=0$
\end_inset

, which yields a vanishing linear combination of tensors 
\begin_inset Formula $\mathbf{v}_{k_{1}}\wedge...\wedge\mathbf{v}_{k_{m-1}}$
\end_inset

 of rank 
\begin_inset Formula $m-1$
\end_inset

 with 
\emph on
some
\emph default
 nonzero coefficients.
 But this contradicts the induction assumption, which says that any set
 of tensors 
\begin_inset Formula $\mathbf{v}_{k_{1}}\wedge...\wedge\mathbf{v}_{k_{m-1}}$
\end_inset

 of rank 
\begin_inset Formula $m-1$
\end_inset

 is linearly independent.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Now we are ready to compute the dimension of 
\begin_inset Formula $\wedge^{m}V$
\end_inset

.
\end_layout

\begin_layout Paragraph
Theorem 2:
\end_layout

\begin_layout Standard
The dimension of the space 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 is 
\begin_inset Formula \[
\dim\wedge^{m}V={N \choose m}=\frac{N!}{m!\left(N-m\right)!},\]

\end_inset

 where 
\begin_inset Formula $N\equiv\dim V$
\end_inset

.
 For 
\begin_inset Formula $m>N$
\end_inset

 we have 
\begin_inset Formula $\dim\wedge^{m}V=0$
\end_inset

, i.e.\InsetSpace ~
the spaces 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 for 
\begin_inset Formula $m>N$
\end_inset

 consist solely of the zero tensor.
 
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We will explicitly construct a basis in the space 
\begin_inset Formula $\wedge^{m}V$
\end_inset

.
 First choose a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

.
 By Lemma\InsetSpace ~
3, the set of 
\begin_inset Formula ${N \choose m}$
\end_inset

 tensors
\begin_inset Formula \[
\left\{ \mathbf{e}_{k_{1}}\wedge\mathbf{e}_{k_{2}}\wedge...\wedge\mathbf{e}_{k_{m}},\:1\leq k_{1}<k_{2}<...<k_{m}\leq N\right\} \]

\end_inset

 is linearly independent, and by Lemma\InsetSpace ~
2 any tensor 
\begin_inset Formula $A\in\wedge^{m}V$
\end_inset

 is a linear combination of these tensors.
 Therefore the set 
\begin_inset Formula $\left\{ \mathbf{e}_{k_{1}}\wedge\mathbf{e}_{k_{2}}\wedge...\wedge\mathbf{e}_{k_{m}}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $\wedge^{m}V$
\end_inset

.
 By Theorem\InsetSpace ~

\begin_inset LatexCommand \ref{sub:All-bases-have}

\end_inset

, the dimension of space is equal to the number of vectors in any basis,
 therefore 
\begin_inset Formula $\dim\wedge^{m}N={N \choose m}$
\end_inset

.
\end_layout

\begin_layout Standard
For 
\begin_inset Formula $m>N$
\end_inset

, the existence of a nonzero tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$
\end_inset

 contradicts Theorem\InsetSpace ~
1: The set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{m}\right\} $
\end_inset

 cannot be linearly independent since it has more vectors than the dimension
 of the space.
 Therefore all such tensors are equal to zero (more pedantically, to the
 
\emph on
zero
\emph default
 
\emph on
tensor
\emph default
), which is thus the only element of 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 for every 
\begin_inset Formula $m>N$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
It is given that the set of four vectors 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\right\} $
\end_inset

 is linearly independent.
 Show that the tensor 
\begin_inset Formula $\omega\equiv\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\in\wedge^{2}V$
\end_inset

 
\emph on
cannot
\emph default
 be equal to a single-term
\begin_inset LatexCommand \index{single-term exterior products}

\end_inset

 exterior product of the form 
\begin_inset Formula $\mathbf{x}\wedge\mathbf{y}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Outline of solution
\emph default
: 
\end_layout

\begin_layout Standard
1.
 Constructive solution.
 There exists 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{a})=1$
\end_inset

 and 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{b})=0$
\end_inset

, 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{c})=0$
\end_inset

, 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{d})=0$
\end_inset

.
 Compute 
\begin_inset Formula $\iota_{\mathbf{f}^{*}}\omega=\mathbf{b}$
\end_inset

.
 If 
\begin_inset Formula $\omega=\mathbf{x}\wedge\mathbf{y}$
\end_inset

, it will follow that a linear combination of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 and 
\begin_inset Formula $\mathbf{y}$
\end_inset

 is equal to 
\begin_inset Formula $\mathbf{b}$
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $\mathbf{b}$
\end_inset

 belongs to the two-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $\text{Span}\left\{ \mathbf{x},\mathbf{y}\right\} $
\end_inset

.
 Repeat this argument for the remaining three vectors (
\begin_inset Formula $\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{c}$
\end_inset

, 
\begin_inset Formula $\mathbf{d}$
\end_inset

) and obtain a contradiction.
\end_layout

\begin_layout Standard
2.
 Non-constructive solution.
 Compute 
\begin_inset Formula $\omega\wedge\omega=2\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}\neq0$
\end_inset

 by linear independence of 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\right\} $
\end_inset

.
 If we could express 
\begin_inset Formula $\omega=\mathbf{x}\wedge\mathbf{y}$
\end_inset

 then we would have 
\begin_inset Formula $\omega\wedge\omega=0$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
While 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 is interpreted geometrically as the oriented area of a parallelogram spanned
 by 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

, a general linear combination such as 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}+\mathbf{e}\wedge\mathbf{f}$
\end_inset

 does not have this interpretation (unless it can be reduced to a single-term
 product 
\begin_inset Formula $\mathbf{x}\wedge\mathbf{y}$
\end_inset

).
 If not reducible to a single-term product, 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}$
\end_inset

 can be interpreted only as a 
\emph on
formal
\emph default
 linear combination of two areas.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Suppose that 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 and 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 are such that 
\begin_inset Formula $\mathbf{x}\wedge\psi=0$
\end_inset

 while 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset

.
 Show that there exists 
\begin_inset Formula $\chi\in\wedge^{k-1}V$
\end_inset

 such that 
\begin_inset Formula $\psi=\mathbf{x}\wedge\chi$
\end_inset

.
 Give an example where 
\begin_inset Formula $\psi$
\end_inset

 and 
\begin_inset Formula $\chi$
\end_inset

 are 
\emph on
not
\emph default
 representable as a single-term exterior product.
\end_layout

\begin_layout Standard

\emph on
Outline of solution
\emph default
: There exists 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=1$
\end_inset

.
 Apply 
\begin_inset Formula $\iota_{\mathbf{f}^{*}}$
\end_inset

 to the given equality 
\begin_inset Formula $\mathbf{x}\wedge\psi=0$
\end_inset

:
\begin_inset Formula \[
0\,{\lyxbuildrel!\above=}\,\iota_{\mathbf{f}^{*}}(\mathbf{x}\wedge\psi)=\psi-\mathbf{x}\wedge\iota_{\mathbf{f}^{*}}\psi,\]

\end_inset

which means that 
\begin_inset Formula $\psi=\mathbf{x}\wedge\chi$
\end_inset

 with 
\begin_inset Formula $\chi\equiv\iota_{\mathbf{f}^{*}}\psi$
\end_inset

.
 An example can be found with 
\begin_inset Formula $\chi=\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}$
\end_inset

 as in Exercise 1, and 
\begin_inset Formula $\mathbf{x}$
\end_inset

 such that the set 
\begin_inset Formula $\{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},\mathbf{x}\}$
\end_inset

 is linearly independent; then 
\begin_inset Formula $\psi\equiv\mathbf{x}\wedge\psi$
\end_inset

 is also not reducible to a single-term product.
\end_layout

\begin_layout Subsection
Computing the dual basis
\begin_inset LatexCommand \label{sub:Computing-the-dual}

\end_inset


\end_layout

\begin_layout Standard
The exterior product allows us to compute explicitly the dual basis
\begin_inset LatexCommand \index{dual basis}

\end_inset

 for a given basis.
\end_layout

\begin_layout Standard
We begin with some motivation.
 Suppose 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is a given basis; we would like to compute its dual basis.
 For instance, the covector 
\begin_inset Formula $\mathbf{v}_{1}^{*}$
\end_inset

 of the dual basis is the linear function such that 
\begin_inset Formula $\mathbf{v}_{1}^{*}(\mathbf{x})$
\end_inset

 is equal to the coefficient at 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 in the decomposition of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

,
\begin_inset Formula \[
\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{v}_{i};\quad\mathbf{v}_{1}^{*}(\mathbf{x})=x_{1}.\]

\end_inset

We start from the observation that the tensor 
\begin_inset Formula $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 is nonzero since 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is a basis.
 The exterior product 
\begin_inset Formula $\mathbf{x}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 is equal to zero if 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is a linear combination only of 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{v}_{N}$
\end_inset

, with a zero coefficient 
\begin_inset Formula $x_{1}$
\end_inset

.
 This suggests that the exterior product of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 with the 
\begin_inset Formula $(N-1)$
\end_inset

-vector 
\begin_inset Formula $\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 is quite similar to the covector 
\begin_inset Formula $\mathbf{v}_{1}^{*}$
\end_inset

 we are looking for.
 Indeed, let us compute
\begin_inset Formula \[
\mathbf{x}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}=x_{1}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}=x_{1}\omega.\]

\end_inset

Therefore, exterior multiplication with 
\begin_inset Formula $\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 acts quite similarly to 
\begin_inset Formula $\mathbf{v}_{1}^{*}$
\end_inset

.
 To make the notation more concise, let us introduce a special 
\series bold
complement
\series default

\begin_inset LatexCommand \index{Grassmann's complement}

\end_inset

 operation
\begin_inset Foot
status open

\begin_layout Standard
The complement operation was introduced by H.
 Grassmann (1844).
\end_layout

\end_inset

 denoted by a star: 
\begin_inset Formula \[
*\left(\mathbf{v}_{1}\right)\equiv\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}.\]

\end_inset

Then we can write 
\begin_inset Formula $\mathbf{v}_{1}^{*}(\mathbf{x})\omega=\mathbf{x}\wedge*(\mathbf{v}_{1})$
\end_inset

.
 This equation can be used for computing 
\begin_inset Formula $\mathbf{v}_{1}^{*}$
\end_inset

: namely, for any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 the number 
\begin_inset Formula $\mathbf{v}_{1}^{*}(\mathbf{x})$
\end_inset

 is equal to the constant 
\begin_inset Formula $\lambda$
\end_inset

 in the equation 
\begin_inset Formula $\mathbf{x}\wedge*(\mathbf{v}_{1})=\lambda\omega$
\end_inset

.
 To make this kind of equation more convenient, let us write
\begin_inset Formula \[
\lambda\equiv\mathbf{v}_{1}^{*}(\mathbf{x})=\frac{\mathbf{x}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}}=\frac{\mathbf{x}\wedge*(\mathbf{v}_{1})}{\omega},\]

\end_inset

where the 
\begin_inset Quotes eld
\end_inset

division
\begin_inset Quotes erd
\end_inset

 of one tensor
\begin_inset LatexCommand \index{dividing by tensor}

\end_inset

 by another is to be understood as follows: We first compute the tensor
 
\begin_inset Formula $\mathbf{x}\wedge*(\mathbf{v}_{1})$
\end_inset

; this tensor is proportional to the tensor 
\begin_inset Formula $\omega$
\end_inset

 since both belong to the one-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

, so we can determine the number 
\begin_inset Formula $\lambda$
\end_inset

 such that 
\begin_inset Formula $\mathbf{x}\wedge*(\mathbf{v}_{1})=\lambda\omega$
\end_inset

; the proportionality coefficient 
\begin_inset Formula $\lambda$
\end_inset

 is then the result of the division of 
\begin_inset Formula $\mathbf{x}\wedge*(\mathbf{v}_{1})$
\end_inset

 by 
\begin_inset Formula $\omega$
\end_inset

.
\end_layout

\begin_layout Standard
For 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 we have
\begin_inset Formula \[
\mathbf{v}_{1}\wedge\mathbf{x}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}=x_{2}\omega=\mathbf{v}_{2}^{*}(\mathbf{x})\omega.\]

\end_inset

 If we would like to have 
\begin_inset Formula $x_{2}\omega=\mathbf{x}\wedge*(\mathbf{v}_{2})$
\end_inset

, we need to add an extra minus sign and define
\begin_inset Formula \[
*\left(\mathbf{v}_{2}\right)\equiv-\mathbf{v}_{1}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}.\]

\end_inset

Then we indeed obtain 
\begin_inset Formula $\mathbf{v}_{2}^{*}(\mathbf{x})\omega=\mathbf{x}\wedge*(\mathbf{v}_{2})$
\end_inset

.
 
\end_layout

\begin_layout Standard
It is then clear that we can define the tensors 
\begin_inset Formula $*(\mathbf{v}_{i})$
\end_inset

 for 
\begin_inset Formula $i=1,...,N$
\end_inset

 in this way.
 The tensor 
\begin_inset Formula $*(\mathbf{v}_{i})$
\end_inset

 is obtained from 
\begin_inset Formula $\omega$
\end_inset

 by removing the vector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 and by adding a sign that corresponds to shifting the vector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 to the left position in the exterior product.
 The 
\begin_inset Quotes eld
\end_inset

complement
\begin_inset Quotes erd
\end_inset

 map, 
\begin_inset Formula $*:V\rightarrow\wedge^{N-1}V$
\end_inset

, satisfies 
\begin_inset Formula $\mathbf{v}_{j}\wedge*(\mathbf{v}_{j})=\omega$
\end_inset

 for each 
\emph on
basis
\emph default
 vector 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

.
 (Once defined on the basis vectors, the complement map can be then extended
 to all vectors from 
\begin_inset Formula $V$
\end_inset

 by requiring linearity.
 However, we will apply the complement operation only to basis vectors right
 now.)
\end_layout

\begin_layout Standard
With these definitions, we may express the dual basis as
\begin_inset Formula \[
\mathbf{v}_{i}^{*}(\mathbf{x})\omega=\mathbf{x}\wedge*(\mathbf{v}_{i}),\quad\mathbf{x}\in V,\: i=1,...,N.\]

\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The notation 
\begin_inset Formula $*(\mathbf{v}_{i})$
\end_inset

 suggests that e.g.\InsetSpace ~

\begin_inset Formula $*(\mathbf{v}_{1})$
\end_inset

 is some operation applied to 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 and is a function only of the vector 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

, but this is not so: The 
\begin_inset Quotes eld
\end_inset

complement
\begin_inset Quotes erd
\end_inset

 of a vector depends on the entire basis and not merely on the single vector!
 Also, the property 
\begin_inset Formula $\mathbf{v}_{1}\wedge*(\mathbf{v}_{1})=\omega$
\end_inset

 is not sufficient to define the tensor 
\begin_inset Formula $*\mathbf{v}_{1}$
\end_inset

.
 The proper definition of 
\begin_inset Formula $*(\mathbf{v}_{i})$
\end_inset

 is the tensor obtained from 
\begin_inset Formula $\omega$
\end_inset

 by removing 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 as just explained.
\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
In the space 
\begin_inset Formula $\mathbb{R}^{2}$
\end_inset

, let us compute the dual basis to the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $
\end_inset

 where 
\begin_inset Formula $\mathbf{v}_{1}={2 \choose 1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{2}={-1 \choose 1}$
\end_inset

.
\end_layout

\begin_layout Standard
Denote by 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 the standard basis vectors 
\begin_inset Formula ${1 \choose 0}$
\end_inset

 and 
\begin_inset Formula ${0 \choose 1}$
\end_inset

.
 We first compute the 2-vector 
\begin_inset Formula \[
\omega=\mathbf{v}_{1}\wedge\mathbf{v}_{2}=\left(2\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(-\mathbf{e}_{1}+\mathbf{e}_{2}\right)=3\mathbf{e}_{1}\wedge\mathbf{e}_{2}.\]

\end_inset

 The 
\begin_inset Quotes eld
\end_inset

complement
\begin_inset Quotes erd
\end_inset

 operation for the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $
\end_inset

 gives 
\begin_inset Formula $*(\mathbf{v}_{1})=\mathbf{v}_{2}$
\end_inset

 and 
\begin_inset Formula $*(\mathbf{v}_{2})=-\mathbf{v}_{1}$
\end_inset

.
 We now define the covectors 
\begin_inset Formula $\mathbf{v}_{1,2}^{*}$
\end_inset

 by their action on arbitrary vector 
\begin_inset Formula $\mathbf{x}\equiv x_{1}\mathbf{e}_{1}+x_{2}\mathbf{e}_{2}$
\end_inset

,
\begin_inset Formula \begin{align*}
\mathbf{v}_{1}^{*}(\mathbf{x})\omega & =\mathbf{x}\wedge\mathbf{v}_{2}=\left(x_{1}\mathbf{e}_{1}+x_{2}\mathbf{e}_{2}\right)\wedge\left(-\mathbf{e}_{1}+\mathbf{e}_{2}\right)\\
 & =\left(x_{1}+x_{2}\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}=\frac{x_{1}+x_{2}}{3}\omega,\\
\mathbf{v}_{2}^{*}(\mathbf{x})\omega & =-\mathbf{x}\wedge\mathbf{v}_{1}=-\left(x_{1}\mathbf{e}_{1}+x_{2}\mathbf{e}_{2}\right)\wedge\left(2\mathbf{e}_{1}+\mathbf{e}_{2}\right)\\
 & =\left(-x_{1}+2x_{2}\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}=\frac{-x_{1}+2x_{2}}{3}\omega.\end{align*}

\end_inset

Therefore, 
\begin_inset Formula $\mathbf{v}_{1}^{*}=\frac{1}{3}\mathbf{e}_{1}^{*}+\frac{1}{3}\mathbf{e}_{2}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{2}^{*}=-\frac{1}{3}\mathbf{e}_{1}^{*}+\frac{2}{3}\mathbf{e}_{2}^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
Can we define the complement operation for all 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 by the equation 
\begin_inset Formula $\mathbf{x}\wedge*(\mathbf{x})=\omega$
\end_inset

 where 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

 is a fixed tensor? Does the complement really depend on the entire basis?
 Or perhaps a choice of 
\begin_inset Formula $\omega$
\end_inset

 is sufficient?
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
No, yes, no.
 Firstly, 
\begin_inset Formula $*(\mathbf{x})$
\end_inset

 is not uniquely specified by that equation alone, since 
\begin_inset Formula $\mathbf{x}\wedge A=\omega$
\end_inset

 defines 
\begin_inset Formula $A$
\end_inset

 only up to tensors of the form 
\begin_inset Formula $\mathbf{x}\wedge...$
\end_inset

; secondly, the equation 
\begin_inset Formula $\mathbf{x}\wedge*(\mathbf{x})=\omega$
\end_inset

 indicates that 
\begin_inset Formula $*(\lambda\mathbf{x})=\frac{1}{\lambda}\,*\negmedspace(\mathbf{x})$
\end_inset

, so the complement map would not be linear if defined like that.
 It is important to keep in mind that the complement map requires an entire
 basis for its definition and depends not only on the choice of a tensor
 
\begin_inset Formula $\omega$
\end_inset

, but also on the choice of all the basis vectors.
 For example, in two dimensions we have 
\begin_inset Formula $*(\mathbf{e}_{1})=\mathbf{e}_{2}$
\end_inset

; it is clear that 
\begin_inset Formula $*(\mathbf{e}_{1})$
\end_inset

 depends on the choice of 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

!
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The situation is different when the vector space is equipped with a scalar
 product (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-vector-product}

\end_inset

 below).
 In that case, one usually chooses an 
\emph on
orthonormal
\emph default
 basis to define the complement map; then the complement map is called the
 
\series bold
Hodge
\begin_inset LatexCommand \index{Hodge star}

\end_inset

 star
\series default
.
 It turns out that the Hodge star is independent of the choice of the basis
 as long as the basis is orthonormal with respect to the given scalar product,
 and as long as the orientation of the basis is unchanged (i.e.\InsetSpace ~
as long as
 the tensor 
\begin_inset Formula $\omega$
\end_inset

 does not change sign).
 In other words, the Hodge star operation is invariant under orthogonal
 and orientation-preserving transformations of the basis; these transformations
 preserve the tensor 
\begin_inset Formula $\omega$
\end_inset

.
 So the Hodge star operation depends not quite on the detailed choice of
 the basis, but rather on the choice of the scalar product and on the orientatio
n of the basis (the sign of 
\begin_inset Formula $\omega$
\end_inset

).
 However, right now we are working with a general space without a scalar
 product.
 In this case, the complement map depends on the entire basis.
\end_layout

\begin_layout Subsection
Gaussian elimination
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
How much computational effort is actually needed to compute the exterior
 product of 
\begin_inset Formula $n$
\end_inset

 vectors? It looks easy in two or three dimensions, but in 
\begin_inset Formula $N$
\end_inset

 dimensions the product of 
\begin_inset Formula $n$
\end_inset

 vectors 
\begin_inset Formula $\left\{ \mathbf{x}_{1},...,\mathbf{x}_{n}\right\} $
\end_inset

 gives expressions such as
\begin_inset Formula \[
\bigwedge_{i=1}^{n}\mathbf{x}_{n}=\left(x_{11}\mathbf{e}_{1}+...+x_{1N}\mathbf{e}_{N}\right)\wedge...\wedge\left(x_{n1}\mathbf{e}_{1}+...+x_{nN}\mathbf{e}_{N}\right),\]

\end_inset

which will be reduced to an exponentially large number (of order 
\begin_inset Formula $N^{n}$
\end_inset

) of elementary tensor products when we expand all brackets.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Of course, expanding all brackets is not the best way to compute long exterior
 products.
 We can instead use a procedure similar to the Gaussian elimination
\begin_inset LatexCommand \index{Gaussian elimination}

\end_inset

 for computing determinants.
 The key observation is that
\begin_inset Formula \[
\mathbf{x}_{1}\wedge\mathbf{x}_{2}\wedge...=\mathbf{x}_{1}\wedge\left(\mathbf{x}_{2}-\lambda\mathbf{x}_{1}\right)\wedge...\]

\end_inset

for any number 
\begin_inset Formula $\lambda$
\end_inset

, and that it is easy to compute an exterior product of the form
\begin_inset Formula \[
(\alpha_{1}\mathbf{e}_{1}+\alpha_{2}\mathbf{e}_{2}+\alpha_{3}\mathbf{e}_{3})\wedge(\beta_{2}\mathbf{e}_{2}+\beta_{3}\mathbf{e}_{3})\wedge\mathbf{e}_{3}=\alpha_{1}\beta_{2}\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}.\]

\end_inset

It is easy to compute this exterior product because the second vector (
\begin_inset Formula $\beta_{2}\mathbf{e}_{2}+\beta_{3}\mathbf{e}_{3}$
\end_inset

) does not contain the basis vector 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and the third vector does not contain 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 or 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

.
 So we can simplify the computation of a long exterior product if we rewrite
 
\begin_inset Formula \begin{align*}
 & \bigwedge_{i=1}^{n}\mathbf{x}_{n}=\mathbf{x}_{1}\wedge\tilde{\mathbf{x}}_{2}\wedge...\wedge\tilde{\mathbf{x}}_{n}\\
 & \equiv\mathbf{x}_{1}\wedge(\mathbf{x}_{2}-\lambda_{11}\mathbf{x}_{1})\wedge...\wedge\left(\mathbf{x}_{n}-\lambda_{n1}\mathbf{x}_{1}-...-\lambda_{n-1,n-1}\mathbf{x}_{n-1}\right),\end{align*}

\end_inset

where the coefficients 
\begin_inset Formula $\left\{ \lambda_{ij}\,|\,1\leq i\leq n-1,\;1\leq j\leq i\right\} $
\end_inset

 are chosen appropriately such that the vector 
\begin_inset Formula $\tilde{\mathbf{x}}_{2}\equiv\mathbf{x}_{2}-\lambda_{11}\mathbf{x}_{1}$
\end_inset

 does not contain the basis vector 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, and generally the vector 
\begin_inset Formula \[
\tilde{\mathbf{x}}_{k}\equiv\mathbf{x}_{k}-\lambda_{k1}\mathbf{x}_{1}-...-\lambda_{k-1,k-1}\mathbf{x}_{k-1}\]

\end_inset

 does not contain the basis vectors 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

,..., 
\begin_inset Formula $\mathbf{e}_{k-1}$
\end_inset

.
 (That is, these basis vectors have been 
\begin_inset Quotes eld
\end_inset

eliminated
\begin_inset Quotes erd
\end_inset

 from the vector 
\begin_inset Formula $\mathbf{x}_{k}$
\end_inset

, hence the name of the method.) Eliminating 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 from 
\begin_inset Formula $\mathbf{x}_{2}$
\end_inset

 can be done with 
\begin_inset Formula $\lambda_{11}=\frac{x_{21}}{x_{11}}$
\end_inset

, which is possible provided that 
\begin_inset Formula $x_{11}\neq0$
\end_inset

; if 
\begin_inset Formula $x_{11}=0$
\end_inset

, we need to renumber the vectors 
\begin_inset Formula $\left\{ \mathbf{x}_{j}\right\} $
\end_inset

.
 If none of them contains 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, we skip 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and proceed with 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 instead.
 Elimination of other basis vectors proceeds similarly.
 After performing this algorithm, we will either find that some vector 
\begin_inset Formula $\tilde{\mathbf{x}}_{k}$
\end_inset

 is itself zero, which means that the entire exterior product vanishes,
 or we will find the product of vectors of the form
\begin_inset Formula \[
\tilde{\mathbf{x}}_{1}\wedge...\wedge\tilde{\mathbf{x}}_{n},\]

\end_inset

 where the vectors 
\begin_inset Formula $\tilde{\mathbf{x}}_{i}$
\end_inset

 are linear combinations of 
\begin_inset Formula $\mathbf{e}_{i}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}{}_{N}$
\end_inset

 (not containing 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{i}$
\end_inset

).
 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $n=N$
\end_inset

, the product can be evaluated immediately since the last vector, 
\begin_inset Formula $\tilde{\mathbf{x}}_{N}$
\end_inset

, is proportional to 
\begin_inset Formula $\mathbf{e}_{N}$
\end_inset

, so
\begin_inset Formula \begin{align*}
\tilde{\mathbf{x}}_{1}\wedge...\wedge\tilde{\mathbf{x}}_{n} & =\left(c_{11}\mathbf{e}_{1}+...\right)\wedge...\wedge(c_{nn}\mathbf{e}_{N})\\
 & =c_{11}c_{22}...c_{nn}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\end{align*}

\end_inset

 The computation is somewhat longer if 
\begin_inset Formula $n<N$
\end_inset

, so that 
\begin_inset Formula \[
\tilde{\mathbf{x}}_{n}=c_{nn}\mathbf{e}_{n}+...+c_{nN}\mathbf{e}_{N}.\]

\end_inset

In that case, we may eliminate, say, 
\begin_inset Formula $\mathbf{e}_{n}$
\end_inset

 from 
\begin_inset Formula $\tilde{\mathbf{x}}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\tilde{\mathbf{x}}_{n-1}$
\end_inset

 by subtracting a multiple of 
\begin_inset Formula $\tilde{\mathbf{x}}_{n}$
\end_inset

 from them, but we cannot simplify the product any more; at that point we
 need to expand the last bracket (containing 
\begin_inset Formula $\tilde{\mathbf{x}}_{n}$
\end_inset

) and write out the terms.
\end_layout

\begin_layout Paragraph
Example 1: 
\end_layout

\begin_layout Standard
We will calculate the exterior product
\begin_inset Formula \begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\\
 & \equiv(7\mathbf{e}_{1}-8\mathbf{e}_{2}+\mathbf{e}_{3})\wedge(\mathbf{e}_{1}-2\mathbf{e}_{2}-15\mathbf{e}_{3})\wedge(2\mathbf{e}_{1}-5\mathbf{e}_{2}-\mathbf{e}_{3}).\end{align*}

\end_inset

We will eliminate 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 from 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{c}$
\end_inset

 (just to keep the coefficients simpler):
\begin_inset Formula \begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=(\mathbf{a}-7\mathbf{b})\wedge\mathbf{b}\wedge(\mathbf{c}-2\mathbf{b})\\
 & =(6\mathbf{e}_{2}+106\mathbf{e}_{3})\wedge\mathbf{b}\wedge(-\mathbf{e}_{2}+9\mathbf{e}_{3})\\
 & \equiv\mathbf{a}_{1}\wedge\mathbf{b}\wedge\mathbf{c}_{1}.\end{align*}

\end_inset

Now we eliminate 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 from 
\begin_inset Formula $\mathbf{a}_{1}$
\end_inset

, and then the product can be evaluated quickly:
\begin_inset Formula \begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\mathbf{a}_{1}\wedge\mathbf{b}\wedge\mathbf{c}_{1}=(\mathbf{a}_{1}+6\mathbf{c}_{1})\wedge\mathbf{b}\wedge\mathbf{c}_{1}\\
 & =(160\mathbf{e}_{3})\wedge(\mathbf{e}_{1}-2\mathbf{e}_{2}-5\mathbf{e}_{3})\wedge(-\mathbf{e}_{2}+9\mathbf{e}_{3})\\
 & =160\mathbf{e}_{3}\wedge\mathbf{e}_{1}\wedge(-\mathbf{e}_{2})=-160\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}.\end{align*}

\end_inset


\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Consider
\begin_inset Formula \begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\equiv(\mathbf{e}_{1}+2\mathbf{e}_{2}-\mathbf{e}_{3}+\mathbf{e}_{4})\\
 & \quad\wedge(2\mathbf{e}_{1}+\mathbf{e}_{2}-\mathbf{e}_{3}+3\mathbf{e}_{4})\wedge(-\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{4}).\end{align*}

\end_inset

We eliminate 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

:
\begin_inset Formula \begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\mathbf{a}\wedge(\mathbf{b}-2\mathbf{a})\wedge(\mathbf{c}+\mathbf{a})\\
 & =\mathbf{a}\wedge\left(-3\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right)\wedge\left(\mathbf{e}_{2}-\mathbf{e}_{3}+2\mathbf{e}_{4}\right)\\
 & \equiv\mathbf{a}\wedge\mathbf{b}_{1}\wedge\mathbf{c}_{1}=\mathbf{a}\wedge\mathbf{b}_{1}\wedge(\mathbf{c}_{1}+3\mathbf{b}_{1})\\
 & =\mathbf{a}\wedge\mathbf{b}_{1}\wedge(2\mathbf{e}_{3}+5\mathbf{e}_{4})\equiv\mathbf{a}\wedge\mathbf{b}_{1}\wedge\mathbf{c}_{2}.\end{align*}

\end_inset

We can now eliminate 
\begin_inset Formula $\mathbf{e}_{3}$
\end_inset

 from 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}_{1}$
\end_inset

:
\begin_inset Formula \begin{align*}
 & \mathbf{a}\wedge\mathbf{b}_{1}\wedge\mathbf{c}_{2}=(\mathbf{a}+\frac{1}{2}\mathbf{c}_{2})\wedge(\mathbf{b}_{1}-\frac{1}{2}\mathbf{c}_{2})\wedge\mathbf{c}_{2}\equiv\mathbf{a}_{2}\wedge\mathbf{b}_{2}\wedge\mathbf{c}_{2}\\
 & =(\mathbf{e}_{1}+2\mathbf{e}_{2}+\frac{7}{2}\mathbf{e}_{4})\wedge(-3\mathbf{e}_{2}-\frac{3}{2}\mathbf{e}_{4})\wedge(2\mathbf{e}_{3}+5\mathbf{e}_{4}).\end{align*}

\end_inset

Now we cannot eliminate any more vectors, so we expand the last bracket
 and simplify the result by omitting the products of equal vectors: 
\begin_inset Formula \begin{align*}
 & \,\mathbf{a}_{2}\wedge\mathbf{b}_{2}\wedge\mathbf{c}_{2}=\mathbf{a}_{2}\wedge\mathbf{b}_{2}\wedge2\mathbf{e}_{3}+\mathbf{a}_{2}\wedge\mathbf{b}_{2}\wedge5\mathbf{e}_{4}\\
 & =\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge(-\frac{3}{2}\mathbf{e}_{4})\wedge2\mathbf{e}_{3}+\mathbf{e}_{1}\wedge(-3\mathbf{e}_{2})\wedge2\mathbf{e}_{3}\\
 & +\mathbf{e}_{1}\wedge(-3\mathbf{e}_{2})\wedge5\mathbf{e}_{4}\\
 & =3\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}+6\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}-6\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}-15\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{4}.\end{align*}

\end_inset

 
\end_layout

\begin_layout Subsection
Rank of a set of vectors
\begin_inset LatexCommand \label{sub:Rank-of-a-set-of-vectors}

\end_inset


\end_layout

\begin_layout Standard
We have defined the rank of a map (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Linear-maps-between-different-spaces}

\end_inset

) as the dimension of the image of the map, and we have seen that the rank
 is equal to the minimum number of tensor product terms needed to represent
 the map as a tensor.
 An analogous concept can be introduced for sets of vectors.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $S=\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is a set of vectors (where 
\begin_inset Formula $n$
\end_inset

 is not necessarily smaller than the dimension 
\begin_inset Formula $N$
\end_inset

 of space), the 
\series bold
rank
\series default
 of the set 
\begin_inset Formula $S$
\end_inset

 is the dimension of the subspace spanned by the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

.
 Written as a formula,
\begin_inset Formula \[
\text{rank}\,(S)=\dim\,\text{Span}\, S.\]

\end_inset


\end_layout

\begin_layout Standard
The rank of a set 
\begin_inset Formula $S$
\end_inset

 is equal to the maximum number of vectors in any linearly independent subset
 of 
\begin_inset Formula $S$
\end_inset

.
 For example, consider the set 
\begin_inset Formula $\left\{ 0,\mathbf{v},2\mathbf{v},3\mathbf{v}\right\} $
\end_inset

 where 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

.
 The rank of this set is 1 since these four vectors span a one-dimen\SpecialChar \-
sion\SpecialChar \-
al
 subspace,
\begin_inset Formula \[
\text{Span}\left\{ 0,\mathbf{v},2\mathbf{v},3\mathbf{v}\right\} =\text{Span}\left\{ \mathbf{v}\right\} .\]

\end_inset

Any subset of 
\begin_inset Formula $S$
\end_inset

 having two or more vectors is linearly dependent.
\end_layout

\begin_layout Standard
We will now show how to use the exterior product for computing the rank
 of a given (finite) set 
\begin_inset Formula $S=\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

.
 
\end_layout

\begin_layout Standard
According to Theorem\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

, the set 
\begin_inset Formula $S$
\end_inset

 is linearly independent if and only if 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\neq0$
\end_inset

.
 So we first compute the tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}$
\end_inset

.
 If this tensor is nonzero then the set 
\begin_inset Formula $S$
\end_inset

 is linearly independent, and the rank of 
\begin_inset Formula $S$
\end_inset

 is equal to 
\begin_inset Formula $n$
\end_inset

.
 If, on the other hand, 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}=0$
\end_inset

, the rank is less than 
\begin_inset Formula $n$
\end_inset

.
 We can determine the rank of 
\begin_inset Formula $S$
\end_inset

 by the following procedure.
 First, we assume that all 
\begin_inset Formula $\mathbf{v}_{j}\neq0$
\end_inset

 (any zero vectors can be omitted without changing the rank of 
\begin_inset Formula $S$
\end_inset

).
 Then we compute 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{2}$
\end_inset

; if the result is zero, we may omit 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 since 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 is proportional to 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 and try 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{3}$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{2}\neq0$
\end_inset

, we try 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\mathbf{v}_{3}$
\end_inset

, and so on.
 The procedure can be formulated using induction in the obvious way.
 Eventually we will arrive at a subset 
\begin_inset Formula $\{\mathbf{v}_{i_{1}},...,\mathbf{v}_{i_{k}}\}\subset S$
\end_inset

 such that 
\begin_inset Formula $\mathbf{v}_{i_{1}}\wedge...\wedge...\mathbf{v}_{i_{k}}\neq0$
\end_inset

 but 
\begin_inset Formula $\mathbf{v}_{i_{1}}\wedge...\wedge...\mathbf{v}_{i_{k}}\wedge\mathbf{v}_{j}=0$
\end_inset

 for any other 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

.
 Thus, there are no linearly independent subsets of 
\begin_inset Formula $S$
\end_inset

 having 
\begin_inset Formula $k+1$
\end_inset

 or more vectors.
 Then the rank of 
\begin_inset Formula $S$
\end_inset

 is equal to 
\begin_inset Formula $k$
\end_inset

.
 
\end_layout

\begin_layout Standard
The subset 
\begin_inset Formula $\{\mathbf{v}_{i_{1}},...,\mathbf{v}_{i_{k}}\}$
\end_inset

 is built by a procedure that depends on the order in which the vectors
 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 are selected.
 However, the next statement says that the resulting subspace spanned by
 
\begin_inset Formula $\{\mathbf{v}_{i_{1}},...,\mathbf{v}_{i_{k}}\}$
\end_inset

 is the same regardless of the order of vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

.
 Hence, the subset 
\begin_inset Formula $\{\mathbf{v}_{i_{1}},...,\mathbf{v}_{i_{k}}\}$
\end_inset

 yields a basis in 
\begin_inset Formula $\text{Span}\, S$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Statement: 
\end_layout

\begin_layout Standard
Suppose a set 
\begin_inset Formula $S$
\end_inset

 of vectors has rank 
\begin_inset Formula $k$
\end_inset

 and contains 
\emph on
two
\emph default
 different linearly independent subsets, say 
\begin_inset Formula $S_{1}=\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 and 
\begin_inset Formula $S_{2}=\left\{ \mathbf{u}_{1},...,\mathbf{u}_{k}\right\} $
\end_inset

, both having 
\begin_inset Formula $k$
\end_inset

 vectors (but no linearly independent subsets having 
\begin_inset Formula $k+1$
\end_inset

 or more vectors).
 Then the tensors 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 and 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$
\end_inset

 are proportional to each other (as tensors from 
\begin_inset Formula $\wedge^{k}V$
\end_inset

).
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The tensors 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 and 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$
\end_inset

 are both nonzero by Theorem\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

.
 We will now show that it is possible to replace 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 by one of the vectors from the set 
\begin_inset Formula $S_{2}$
\end_inset

, say 
\begin_inset Formula $\mathbf{u}_{l}$
\end_inset

, such that the new tensor 
\begin_inset Formula $\mathbf{u}_{l}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 is nonzero and proportional to the original tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

.
 It will follow that this procedure can be repeated for every other vector
 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

, until we replace all 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

's by some 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

's and thus prove that the tensors 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 and 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$
\end_inset

 are proportional to each other.
\end_layout

\begin_layout Standard
It remains to prove that the vector 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 can be replaced.
 We need to find a suitable vector 
\begin_inset Formula $\mathbf{u}_{l}$
\end_inset

.
 Let 
\begin_inset Formula $\mathbf{u}_{l}$
\end_inset

 be one of the vectors from 
\begin_inset Formula $S_{2}$
\end_inset

, and let us check whether 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 could be replaced by 
\begin_inset Formula $\mathbf{u}_{l}$
\end_inset

.
 We first note that 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{u}_{l}=0$
\end_inset

 since there are no linearly independent subsets of 
\begin_inset Formula $S$
\end_inset

 having 
\begin_inset Formula $k+1$
\end_inset

 vectors.
 Hence the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k},\mathbf{u}_{l}\right\} $
\end_inset

 is linearly 
\emph on
dependent
\emph default
.
 It follows (since the set 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\,|\, i=1,...,k\right\} $
\end_inset

 was linearly independent before we added 
\begin_inset Formula $\mathbf{u}_{l}$
\end_inset

 to it) that 
\begin_inset Formula $\mathbf{u}_{l}$
\end_inset

 can be expressed as a linear combination of the 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

's with some coefficients 
\begin_inset Formula $\alpha_{i}$
\end_inset

:
\begin_inset Formula \[
\mathbf{u}_{l}=\alpha_{1}\mathbf{v}_{1}+...+\alpha_{k}\mathbf{v}_{k}.\]

\end_inset

If 
\begin_inset Formula $\alpha_{1}\neq0$
\end_inset

 then we will have
\begin_inset Formula \[
\mathbf{u}_{l}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}=\alpha_{1}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}.\]

\end_inset

The new tensor is nonzero and proportional to the old tensor, so we can
 replace 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 by 
\begin_inset Formula $\mathbf{u}_{l}$
\end_inset

.
 
\end_layout

\begin_layout Standard
However, it could also happen that 
\begin_inset Formula $\alpha_{1}=0$
\end_inset

.
 In that case we need to choose a different vector 
\begin_inset Formula $\mathbf{u}_{l'}\in S_{2}$
\end_inset

 such that the corresponding coefficient 
\begin_inset Formula $\alpha_{1}$
\end_inset

 is nonzero.
 It remains to prove that such a choice is possible.
 If this were impossible then all 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

's would have been expressible as linear combinations of 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

's with zero coefficients at the vector 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

.
 In that case, the exterior product 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$
\end_inset

 would be equal to a linear combination of exterior products of vectors
 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 with 
\begin_inset Formula $i=2,...,k$
\end_inset

.
 These exterior products contain 
\begin_inset Formula $k$
\end_inset

 vectors among which only 
\begin_inset Formula $\left(k-1\right)$
\end_inset

 vectors are different.
 Such exterior products are all equal to zero.
 However, this contradicts the assumption 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}\neq0$
\end_inset

.
 Therefore, at least one vector 
\begin_inset Formula $\mathbf{u}_{l}$
\end_inset

 exists such that 
\begin_inset Formula $\alpha_{1}\neq0$
\end_inset

, and the required replacement is always possible.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
It follows from the above Statement that the subspace spanned by 
\begin_inset Formula $S$
\end_inset

 can be uniquely characterized by a nonzero tensor such as 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 in which the constituents --- the vectors 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

,..., 
\begin_inset Formula $\mathbf{v}_{k}$
\end_inset

 --- form a basis in the subspace 
\begin_inset Formula $\text{Span}\, S$
\end_inset

.
 It does not matter which linearly independent subset we choose for this
 purpose.
 We also have a computational procedure for determining the subspace 
\begin_inset Formula $\text{Span}\, S$
\end_inset

 together with its dimension.
 Thus, we find that a 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al subspace is adequately specified by selecting a nonzero tensor
 
\begin_inset Formula $\omega\in\wedge^{k}V$
\end_inset

 of the form 
\begin_inset Formula $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

.
 For a given subspace, this tensor 
\begin_inset Formula $\omega$
\end_inset

 is unique up to a nonzero constant factor.
 Of course, the decomposition of 
\begin_inset Formula $\omega$
\end_inset

 into an exterior product of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\,|\, i=1,...,k\right\} $
\end_inset

 is not unique, but any such decomposition yields a set 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\,|\, i=1,...,k\right\} $
\end_inset

 spanning the same subspace.
 
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 be a linearly independent set of vectors, 
\begin_inset Formula $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\neq0$
\end_inset

, and 
\begin_inset Formula $\mathbf{x}$
\end_inset

 be a given vector such that 
\begin_inset Formula $\omega\wedge\mathbf{x}=0$
\end_inset

.
 Show that 
\begin_inset Formula $\mathbf{x}$
\end_inset

 belongs to the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Given a nonzero covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 and a vector 
\begin_inset Formula $\mathbf{n}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{n})\neq0$
\end_inset

, show that the operator 
\begin_inset Formula $\hat{P}$
\end_inset

 defined by
\begin_inset Formula \[
\hat{P}\mathbf{x}=\mathbf{x}-\mathbf{n}\frac{\mathbf{f}^{*}(\mathbf{x})}{\mathbf{f}^{*}(\mathbf{n})}\]

\end_inset

 is a projector
\begin_inset LatexCommand \index{projector}

\end_inset

 onto the subspace 
\begin_inset Formula $\mathbf{f}^{*\perp}$
\end_inset

, i.e.\InsetSpace ~
that 
\begin_inset Formula $\mathbf{f}^{*}(\hat{P}\mathbf{x})=0$
\end_inset

 for all 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
 Show that
\begin_inset Formula \[
(\hat{P}\mathbf{x})\wedge\mathbf{n}=\mathbf{x}\wedge\mathbf{n},\quad\forall\mathbf{x}\in V.\]

\end_inset


\end_layout

\begin_layout Subsection
Exterior product in index notation
\begin_inset LatexCommand \label{sub:Exterior-product-in-index}

\end_inset


\end_layout

\begin_layout Standard
Here I show how to perform calculations with the exterior product using
 the index notation
\begin_inset LatexCommand \index{exterior product!in index notation}

\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Index-notation}

\end_inset

), although I will not use this later because the index-free notation is
 more suitable for the purposes of this book.
 
\end_layout

\begin_layout Standard
Let us choose a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

; then the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 and the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{k_{1}}\wedge...\wedge\mathbf{e}_{k_{m}}\right\} $
\end_inset

 in 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 are fixed.
 By definition, the exterior product of two vectors 
\begin_inset Formula $\mathbf{u}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is 
\begin_inset Formula \[
A\equiv\mathbf{u}\wedge\mathbf{v}=\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u},\]

\end_inset

 therefore it is written in the index notation as 
\begin_inset Formula $A^{ij}=u^{i}v^{j}-u^{j}v^{i}$
\end_inset

.
 Note that the matrix 
\begin_inset Formula $A^{ij}$
\end_inset

 is antisymmetric: 
\begin_inset Formula $A^{ij}=-A^{ji}$
\end_inset

.
\end_layout

\begin_layout Standard
Another example: The 3-vector 
\begin_inset Formula $\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}$
\end_inset

 can be expanded in the basis as
\begin_inset Formula \[
\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}=\sum_{i,j,k=1}^{N}B^{ijk}\mathbf{e}_{i}\wedge\mathbf{e}_{j}\wedge\mathbf{e}_{k}.\]

\end_inset

What is the relation between the components 
\begin_inset Formula $u^{i}$
\end_inset

, 
\begin_inset Formula $v^{i}$
\end_inset

, 
\begin_inset Formula $w^{i}$
\end_inset

 of the vectors and the components 
\begin_inset Formula $B^{ijk}$
\end_inset

? A direct calculation yields
\begin_inset Formula \begin{equation}
B^{ijk}=u^{i}v^{j}w^{k}-u^{i}v^{k}w^{j}+u^{k}v^{i}w^{j}-u^{k}w^{j}v^{i}+u^{j}w^{k}v^{i}-u^{j}w^{i}w^{k}.\label{eq:Bijk formula}\end{equation}

\end_inset

In other words, every permutation of the set 
\begin_inset Formula $\left(i,j,k\right)$
\end_inset

 of indices enters with the sign corresponding to the parity of that permutation.
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\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Readers familiar with the standard definition of the matrix determinant
 will recognize a formula quite similar to the determinant of a 
\begin_inset Formula $3\times3$
\end_inset

 matrix.
 The connection between determinants and exterior products will be fully
 elucidated in Chapter\InsetSpace ~

\begin_inset LatexCommand \ref{sec:Determinants-and-all}

\end_inset

.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The 
\begin_inset Quotes eld
\end_inset

three-dimen\SpecialChar \-
sion\SpecialChar \-
al array
\begin_inset Quotes erd
\end_inset

 
\begin_inset Formula $B^{ijk}$
\end_inset

 is antisymmetric with respect to 
\emph on
any
\emph default
 pair of indices: 
\begin_inset Formula \[
B^{ijk}=-B^{jik}=-B^{ikj}=...\]

\end_inset

Such arrays are called 
\series bold
totally antisymmetric
\begin_inset LatexCommand \index{totally antisymmetric}

\end_inset


\series default
.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Bijk formula}

\end_inset

) for the components 
\begin_inset Formula $B^{ijk}$
\end_inset

 of 
\begin_inset Formula $\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}$
\end_inset

 is not particularly convenient and cannot be easily generalized.
 We will now rewrite Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Bijk formula}

\end_inset

) in a different form that will be more suitable for expressing exterior
 products of arbitrary tensors.
\end_layout

\begin_layout Standard
Let us first consider the exterior product of three vectors as a map 
\begin_inset Formula $\hat{E}:V\otimes V\otimes V\rightarrow\wedge^{3}V$
\end_inset

.
 This map is linear and can be represented, in the index notation, in the
 following way:
\begin_inset Formula \[
u^{i}v^{j}w^{k}\mapsto\left(\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}\right)^{ijk}=\sum_{l,m,n}E_{lmn}^{ijk}u^{l}v^{m}w^{n},\]

\end_inset

where the array 
\begin_inset Formula $E_{lmn}^{ijk}$
\end_inset

 is the component representation of the map 
\begin_inset Formula $E$
\end_inset

.
 Comparing with the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Bijk formula}

\end_inset

), we find that 
\begin_inset Formula $E_{lmn}^{ijk}$
\end_inset

 can be expressed through the Kronecker 
\begin_inset Formula $\delta$
\end_inset

-symbol as
\begin_inset Formula \[
E_{lmn}^{ijk}=\delta_{l}^{i}\delta_{m}^{j}\delta_{n}^{k}-\delta_{l}^{i}\delta_{m}^{k}\delta_{n}^{j}+\delta_{l}^{k}\delta_{m}^{i}\delta_{n}^{j}-\delta_{l}^{k}\delta_{m}^{j}\delta_{n}^{i}+\delta_{l}^{j}\delta_{m}^{k}\delta_{n}^{i}-\delta_{l}^{j}\delta_{m}^{i}\delta_{n}^{k}.\]

\end_inset

 It is now clear that the exterior product of two vectors can be also written
 as
\begin_inset Formula \[
(\mathbf{u}\wedge\mathbf{v})^{ij}=\sum_{l,m}E_{lm}^{ij}u^{l}v^{m},\]

\end_inset

where
\begin_inset Formula \[
E_{lm}^{ij}=\delta_{l}^{i}\delta_{m}^{j}-\delta_{l}^{j}\delta_{m}^{i}.\]

\end_inset

By analogy, the map 
\begin_inset Formula $\hat{E}:V\otimes...\otimes V\rightarrow\wedge^{n}V$
\end_inset

 (for 
\begin_inset Formula $2\leq n\leq N$
\end_inset

) can be represented in the index notation by the array of components 
\begin_inset Formula $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
\end_inset

.
 This array is totally antisymmetric with respect to all the indices 
\begin_inset Formula $\left\{ i_{s}\right\} $
\end_inset

 and separately with respect to all 
\begin_inset Formula $\left\{ j_{s}\right\} $
\end_inset

.
 Using this array, the exterior product of two general antisymmetric tensors,
 say 
\begin_inset Formula $\phi\in\wedge^{m}V$
\end_inset

 and 
\begin_inset Formula $\psi\in\wedge^{n}V$
\end_inset

, such that 
\begin_inset Formula $m+n\leq N$
\end_inset

, can be represented in the index notation by
\begin_inset Formula \[
(\phi\wedge\psi)^{i_{1}...i_{m+n}}=\frac{1}{m!n!}\sum_{(j_{s},k_{s})}E_{j_{1}...j_{m}k_{1}...k_{n}}^{i_{1}...i_{m+n}}\phi^{j_{1}...j_{m}}\psi^{k_{1}...k_{n}}.\]

\end_inset

The combinatorial factor 
\begin_inset Formula $m!n!$
\end_inset

 is needed to compensate for the 
\begin_inset Formula $m!$
\end_inset

 equal terms arising from the summation over 
\begin_inset Formula $\left(j_{1},...,j_{m}\right)$
\end_inset

 due to the fact that 
\begin_inset Formula $\phi^{j_{1}...j_{m}}$
\end_inset

 is totally antisymmetric, and similarly for the 
\begin_inset Formula $n!$
\end_inset

 equal terms arising from the summation over 
\begin_inset Formula $\left(k_{1},...,k_{m}\right)$
\end_inset

.
\end_layout

\begin_layout Standard
It is useful to have a general formula for the array 
\begin_inset Formula $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
\end_inset

.
 One way to define it is
\begin_inset Formula \[
E_{j_{1}...j_{n}}^{i_{1}...i_{n}}=\begin{cases}
\left(-1\right)^{\left|\sigma\right|} & \text{ if }\left(i_{1},...,i_{n}\right)\text{ is a permutation }\sigma\text{ of }\left(j_{1},...,j_{n}\right);\\
0 & \text{ otherwise}.\end{cases}\]

\end_inset

We will now show how one can express 
\begin_inset Formula $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
\end_inset

 through the Levi-Civita symbol 
\begin_inset Formula $\varepsilon$
\end_inset

.
\end_layout

\begin_layout Standard
The 
\series bold
Levi-Civita symbol
\series default

\begin_inset LatexCommand \index{Levi-Civita symbol}

\end_inset

 is defined as a totally antisymmetric array with 
\begin_inset Formula $N$
\end_inset

 indices, whose values are 
\begin_inset Formula $0$
\end_inset

 or 
\begin_inset Formula $\pm1$
\end_inset

 according to the formula 
\begin_inset Formula \[
\varepsilon^{i_{1}...i_{N}}=\begin{cases}
\left(-1\right)^{\left|\sigma\right|} & \text{ if }\left(i_{1},...,i_{N}\right)\text{ is a permutation }\sigma\text{ of }\left(1,...,N\right);\\
0 & \text{otherwise.}\end{cases}\]

\end_inset

Comparing this with the definition of 
\begin_inset Formula $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
\end_inset

, we notice that
\begin_inset Formula \[
\varepsilon^{i_{1}...i_{N}}=E_{1...N}^{i_{1}...i_{N}}.\]

\end_inset

Depending on convenience, we may write 
\begin_inset Formula $\varepsilon$
\end_inset

 with upper or lower indices since 
\begin_inset Formula $\varepsilon$
\end_inset

 is just an array of numbers in this calculation.
 
\end_layout

\begin_layout Standard
In order to express 
\begin_inset Formula $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
\end_inset

 through 
\begin_inset Formula $\varepsilon^{i_{1}...i_{N}}$
\end_inset

, we obviously need to use at least two copies of 
\begin_inset Formula $\varepsilon$
\end_inset

 --- one with upper and one with lower indices.
 Let us therefore consider the expression
\begin_inset Formula \begin{equation}
\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}}\equiv\sum_{k_{1},...,k_{N-n}}\varepsilon^{i_{1}...i_{n}k_{1}...k_{N-n}}\varepsilon_{j_{1}...j_{n}k_{1}...k_{N-n}},\label{eq:E tilda def}\end{equation}

\end_inset

where the summation is performed 
\emph on
only
\emph default
 over the 
\begin_inset Formula $N-n$
\end_inset

 indices 
\begin_inset Formula $\left\{ k_{s}\right\} $
\end_inset

.
 This expression has 
\begin_inset Formula $2n$
\end_inset

 free indices 
\begin_inset Formula $i_{1}$
\end_inset

, ..., 
\begin_inset Formula $i_{n}$
\end_inset

 and 
\begin_inset Formula $j_{1}$
\end_inset

, ..., 
\begin_inset Formula $j_{n}$
\end_inset

, and is totally antisymmetric in these free indices (since 
\begin_inset Formula $\varepsilon$
\end_inset

 is totally antisymmetric in all indices).
 
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The exterior product operator 
\begin_inset Formula $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
\end_inset

 is expressed through the Levi-Civita symbol as
\begin_inset Formula \begin{equation}
E_{j_{1}...j_{n}}^{i_{1}...i_{n}}=\frac{1}{\left(N-n\right)!}\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}},\label{eq:E def}\end{equation}

\end_inset

where 
\begin_inset Formula $\tilde{E}$
\end_inset

 is defined by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:E tilda def}

\end_inset

).
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Let us compare the values of 
\begin_inset Formula $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
\end_inset

 and 
\begin_inset Formula $\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
\end_inset

, where the indices 
\begin_inset Formula $\left\{ i_{s}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ j_{s}\right\} $
\end_inset

 have some fixed values.
 There are two cases: either the set 
\begin_inset Formula $\left(i_{1},...,i_{n}\right)$
\end_inset

 is a permutation of the set 
\begin_inset Formula $\left(j_{1},...,j_{n}\right)$
\end_inset

; in that case we may denote this permutation by 
\begin_inset Formula $\sigma$
\end_inset

; or 
\begin_inset Formula $\left(i_{1},...,i_{n}\right)$
\end_inset

 is not a permutation of 
\begin_inset Formula $\left(j_{1},...,j_{n}\right)$
\end_inset

.
 
\end_layout

\begin_layout Standard
Considering the case when a permutation 
\begin_inset Formula $\sigma$
\end_inset

 brings 
\begin_inset Formula $\left(j_{1},...,j_{n}\right)$
\end_inset

 into 
\begin_inset Formula $\left(i_{1},...,i_{n}\right)$
\end_inset

, we find that the symbols 
\begin_inset Formula $\varepsilon$
\end_inset

 in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:E tilda def}

\end_inset

) will be nonzero only if the indices 
\begin_inset Formula $\left(k_{1},...,k_{N-n}\right)$
\end_inset

 are a permutation of the complement of the set 
\begin_inset Formula $\left(i_{1},...,i_{n}\right)$
\end_inset

.
 There are 
\begin_inset Formula $\left(N-n\right)!$
\end_inset

 such permutations, each contributing the same value to the sum in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:E tilda def}

\end_inset

).
 Hence, we may write
\begin_inset Foot
status collapsed

\begin_layout Standard
In the equation below, I have put the warning 
\begin_inset Quotes eld
\end_inset

no sums
\begin_inset Quotes erd
\end_inset

 for clarity: A summation over all repeated indices is often 
\emph on
implicitly
\emph default
 assumed in the index notation.
\end_layout

\end_inset

 the sum as 
\begin_inset Formula \[
\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}}=\left(N-n\right)!\,\varepsilon^{i_{1}...i_{n}k_{1}...k_{N-n}}\varepsilon_{j_{1}...j_{n}k_{1}...k_{N-n}}\text{ (no sums!)},\]

\end_inset

where the indices 
\begin_inset Formula $\left\{ k_{s}\right\} $
\end_inset

 are chosen such that the values of 
\begin_inset Formula $\varepsilon$
\end_inset

 are nonzero.
 Since 
\begin_inset Formula \[
\sigma\left(j_{1},...,j_{n}\right)=\left(i_{1},...,i_{n}\right),\]

\end_inset

we may permute the first 
\begin_inset Formula $n$
\end_inset

 indices in 
\begin_inset Formula $\varepsilon_{j_{1}...j_{n}k_{1}...k_{N-n}}$
\end_inset


\begin_inset Formula \begin{align*}
\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}} & =\left(N-n\right)!(-1)^{\left|\sigma\right|}\varepsilon^{i_{1}...i_{n}k_{1}...k_{N-n}}\varepsilon_{i_{1}...i_{n}k_{1}...k_{N-n}}\text{ (no sums!)}\\
 & =\left(N-n\right)!(-1)^{\left|\sigma\right|}.\end{align*}

\end_inset

(In the last line, we replaced the squared 
\begin_inset Formula $\varepsilon$
\end_inset

 by 
\begin_inset Formula $1$
\end_inset

.) Thus, the required formula for 
\begin_inset Formula $\tilde{E}$
\end_inset

 is valid in the first case.
\end_layout

\begin_layout Standard
In the case when 
\begin_inset Formula $\sigma$
\end_inset

 does not exist, we note that
\begin_inset Formula \[
\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}}=0,\]

\end_inset

because in that case one of the 
\begin_inset Formula $\varepsilon$
\end_inset

's in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:E tilda def}

\end_inset

) will have at least some indices equal and thus will be zero.
 Therefore 
\begin_inset Formula $\tilde{E}$
\end_inset

 and 
\begin_inset Formula $E$
\end_inset

 are equal to zero for the same sets of indices.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Note that the formula for the top exterior power (
\begin_inset Formula $n=N$
\end_inset

) is simple and involves no summations and no combinatorial factors:
\begin_inset Formula \[
E_{j_{1}...j_{N}}^{i_{1}...i_{N}}=\varepsilon^{i_{1}...i_{N}}\varepsilon_{j_{1}...j_{N}}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
The operator 
\begin_inset Formula $\hat{E}:V\otimes V\otimes V\rightarrow\wedge^{3}V$
\end_inset

 can be considered within the subspace 
\begin_inset Formula $\wedge^{3}V\subset V\otimes V\otimes V$
\end_inset

, which yields an operator 
\begin_inset Formula $\hat{E}:\wedge^{3}V\rightarrow\wedge^{3}V$
\end_inset

.
 Show that in this subspace,
\begin_inset Formula \[
\hat{E}=3!\,\hat{1}_{\wedge^{3}V}.\]

\end_inset

Generalize to 
\begin_inset Formula $\wedge^{n}V$
\end_inset

 in the natural way.
 
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Act with 
\begin_inset Formula $\hat{E}$
\end_inset

 on 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
As a rule, a summation of the Levi-Civita symbol 
\begin_inset Formula $\varepsilon$
\end_inset

 with any antisymmetric tensor (e.g.\InsetSpace ~
another 
\begin_inset Formula $\varepsilon$
\end_inset

) gives rise to a combinatorial factor 
\begin_inset Formula $n!$
\end_inset

 when the summation goes over 
\begin_inset Formula $n$
\end_inset

 indices.
\end_layout

\begin_layout Subsection
* Exterior algebra (Grassmann algebra)
\end_layout

\begin_layout Standard
The formalism of exterior algebra is used e.g.\InsetSpace ~
in physical theories of quantum
 fermionic fields and supersymmetry.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
An 
\series bold
algebra
\series default

\begin_inset LatexCommand \index{algebra}

\end_inset

 is a vector space with a distributive multiplication.
 In other words, 
\begin_inset Formula ${\cal A}$
\end_inset

 is an algebra if it is a vector space over a field 
\begin_inset Formula $\mathbb{K}$
\end_inset

 and if for any 
\begin_inset Formula $a,b\in{\cal A}$
\end_inset

 their product 
\begin_inset Formula $ab\in{\cal A}$
\end_inset

 is defined, such that 
\begin_inset Formula $a\left(b+c\right)=ab+ac$
\end_inset

 and 
\begin_inset Formula $\left(a+b\right)c=ac+bc$
\end_inset

 and 
\begin_inset Formula $\lambda\left(ab\right)=\left(\lambda a\right)b=a\left(\lambda b\right)$
\end_inset

 for 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

.
 An algebra is called 
\series bold
commutative
\series default
 if 
\begin_inset Formula $ab=ba$
\end_inset

 for all 
\begin_inset Formula $a,b$
\end_inset

.
 
\end_layout

\begin_layout Standard
The properties of the multiplication in an algebra can be summarized by
 saying that for any fixed element 
\begin_inset Formula $a\in{\cal A}$
\end_inset

, the transformations 
\begin_inset Formula $x\mapsto ax$
\end_inset

 and 
\begin_inset Formula $x\mapsto xa$
\end_inset

 are linear maps of the algebra into itself.
\end_layout

\begin_layout Paragraph
Examples of algebras:
\end_layout

\begin_layout Enumerate
All 
\begin_inset Formula $N\times N$
\end_inset

 matrices with coefficients from 
\begin_inset Formula $\mathbb{K}$
\end_inset

 are a 
\begin_inset Formula $N^{2}$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al algebra.
 The multiplication is defined by the usual matrix multiplication formula.
 This algebra is not commutative because not all matrices commute.
 
\end_layout

\begin_layout Enumerate
The field 
\begin_inset Formula $\mathbb{K}$
\end_inset

 is a one-dimen\SpecialChar \-
sion\SpecialChar \-
al algebra over itself.
 (Not a very exciting example.) This algebra is commutative.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\omega\in\wedge^{m}V$
\end_inset

 then we can define the map 
\begin_inset Formula $L_{\omega}:\wedge^{k}V\rightarrow\wedge^{k+m}V$
\end_inset

 by the formula
\begin_inset Formula \[
L_{\omega}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right)\equiv\omega\wedge\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}.\]

\end_inset

For elements of 
\begin_inset Formula $\wedge^{0}V\equiv\mathbb{K}$
\end_inset

, we define 
\begin_inset Formula $L_{\lambda}\omega\equiv\lambda\omega$
\end_inset

 and also 
\begin_inset Formula $L_{\omega}\lambda\equiv\lambda\omega$
\end_inset

 for any 
\begin_inset Formula $\omega\in\wedge^{k}V$
\end_inset

, 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

.
 Then the map 
\begin_inset Formula $L_{\omega}$
\end_inset

 is linear for any 
\begin_inset Formula $\omega\in\wedge^{m}V$
\end_inset

, 
\begin_inset Formula $0\leq m\leq N$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
Left as exercise.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Definition: 
\end_layout

\begin_layout Standard
The 
\series bold
exterior algebra
\series default

\begin_inset LatexCommand \index{exterior algebra}

\end_inset

 (also called the 
\series bold
Grassmann algebra
\series default

\begin_inset LatexCommand \index{Grassmann algebra}

\end_inset

) based on a vector space 
\begin_inset Formula $V$
\end_inset

 is the space 
\begin_inset Formula $\wedge V$
\end_inset

 defined as the direct sum, 
\begin_inset Formula \[
\wedge V\equiv\mathbb{K}\oplus V\oplus\wedge^{2}V\oplus...\oplus\wedge^{N}V,\]

\end_inset

with the multiplication defined by the map 
\begin_inset Formula $L$
\end_inset

, which is extended to the whole of 
\begin_inset Formula $\wedge V$
\end_inset

 by linearity.
\end_layout

\begin_layout Standard
For example, if 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in V$
\end_inset

 then 
\begin_inset Formula $1+\mathbf{u}\in\wedge V$
\end_inset

,
\begin_inset Formula \[
A\equiv3-\mathbf{v}+\mathbf{u}-2\mathbf{v}\wedge\mathbf{u}\in\wedge V,\]

\end_inset

and
\begin_inset Formula \[
L_{1+\mathbf{u}}A=\left(1+\mathbf{u}\right)\wedge\left(3-\mathbf{v}+\mathbf{u}-2\mathbf{v}\wedge\mathbf{u}\right)=3-\mathbf{v}+4\mathbf{u}-\mathbf{v}\wedge\mathbf{u}.\]

\end_inset

Note that we still write the symbol 
\begin_inset Formula $\wedge$
\end_inset

 to denote multiplication in 
\begin_inset Formula $\wedge V$
\end_inset

 although now it is not necessarily anticommutative; for instance, 
\begin_inset Formula $1\wedge x=x\wedge1=x$
\end_inset

 for any 
\begin_inset Formula $x$
\end_inset

 in this algebra.
\end_layout

\begin_layout Paragraph
Remark: 
\end_layout

\begin_layout Standard
The summation in expressions such as 
\begin_inset Formula $1+\mathbf{u}$
\end_inset

 above is 
\emph on
formal
\emph default
 in the usual sense: 
\begin_inset Formula $1+\mathbf{u}$
\end_inset

 is not a new vector or a new tensor, but an element of a 
\emph on
new
\emph default
 
\emph on
space
\emph default
.
 The exterior algebra is thus the space of formal linear combinations of
 numbers, vectors, 2-vectors, etc., all the way to 
\begin_inset Formula $N$
\end_inset

-vectors.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Since 
\begin_inset Formula $\wedge V$
\end_inset

 is a direct sum of 
\begin_inset Formula $\wedge^{0}V$
\end_inset

, 
\begin_inset Formula $\wedge^{1}V$
\end_inset

, etc., the elements of 
\begin_inset Formula $\wedge V$
\end_inset

 are sums of scalars, vectors, bivectors, etc., i.e.\InsetSpace ~
of objects having a definite
 
\begin_inset Quotes eld
\end_inset

grade
\begin_inset Quotes erd
\end_inset

 --- scalars being 
\begin_inset Quotes eld
\end_inset

of grade
\begin_inset Quotes erd
\end_inset

 0, vectors of grade 1, and generally 
\begin_inset Formula $k$
\end_inset

-vectors being of grade 
\begin_inset Formula $k$
\end_inset

.
 It is easy to see that 
\begin_inset Formula $k$
\end_inset

-vectors and 
\begin_inset Formula $l$
\end_inset

-vectors either commute or anticommute, for instance
\begin_inset Formula \begin{align*}
\left(\mathbf{a}\wedge\mathbf{b}\right)\wedge\mathbf{c} & =\mathbf{c}\wedge\left(\mathbf{a}\wedge\mathbf{b}\right),\\
\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right)\wedge1 & =1\wedge\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right),\\
\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right)\wedge\mathbf{d} & =-\mathbf{d}\wedge\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right).\end{align*}

\end_inset

The general law of commutation and anticommutation can be written as 
\begin_inset Formula \[
\omega_{k}\wedge\omega_{l}=\left(-1\right)^{kl}\omega_{l}\wedge\omega_{k},\]

\end_inset

where 
\begin_inset Formula $\omega_{k}\in\wedge^{k}V$
\end_inset


\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
 and
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
 
\begin_inset Formula $\omega_{l}\in\wedge^{l}V$
\end_inset

.
 However, it is important to note that sums of elements having different
 grades, such as 
\begin_inset Formula $1+\mathbf{a}$
\end_inset

, are elements of 
\begin_inset Formula $\wedge V$
\end_inset

 that do 
\emph on
not
\emph default
 have a definite grade, because they do not belong to any single subspace
 
\begin_inset Formula $\wedge^{k}V\subset\wedge V$
\end_inset

.
 Elements that do not have a definite grade can of course still be multiplied
 within 
\begin_inset Formula $\wedge V$
\end_inset

, but they 
\emph on
neither
\emph default
 commute 
\emph on
nor
\emph default
 anticommute, for example:
\begin_inset Formula \begin{align*}
\left(1+\mathbf{a}\right)\wedge\left(1+\mathbf{b}\right) & =1+\mathbf{a}+\mathbf{b}+\mathbf{a}\wedge\mathbf{b},\\
\left(1+\mathbf{b}\right)\wedge\left(1+\mathbf{a}\right) & =1+\mathbf{a}+\mathbf{b}-\mathbf{a}\wedge\mathbf{b}.\end{align*}

\end_inset

So 
\begin_inset Formula $\wedge V$
\end_inset

 is a 
\emph on
noncommutative
\emph default
 (but associative) algebra.
 Nevertheless, the fact that elements of 
\begin_inset Formula $\wedge V$
\end_inset

 having a pure grade either commute or anticommute is important, so this
 kind of algebra is called a 
\series bold
graded algebra
\series default

\begin_inset LatexCommand \index{graded algebra}

\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Compute the dimension of the algebra 
\begin_inset Formula $\wedge V$
\end_inset

 as a vector space, if 
\begin_inset Formula $\dim V=N$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
\begin_inset Formula $\dim\left(\wedge V\right)=\sum_{i=0}^{N}{N \choose i}=2^{N}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Suppose that an element 
\begin_inset Formula $x\in\wedge V$
\end_inset

 is a sum of elements of 
\emph on
pure even
\emph default
 grade, e.g.\InsetSpace ~

\begin_inset Formula $x=1+\mathbf{a}\wedge\mathbf{b}$
\end_inset

.
 Show that 
\begin_inset Formula $x$
\end_inset

 commutes with any other element of 
\begin_inset Formula $\wedge V$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Compute 
\begin_inset Formula $\exp\left(\mathbf{a}\right)$
\end_inset

 and 
\begin_inset Formula $\exp\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)$
\end_inset

 by writing the Taylor series using the multiplication within the algebra
 
\begin_inset Formula $\wedge V$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Simplify the expression 
\begin_inset Formula $\exp(x)=1+x+\frac{1}{2}x\wedge x+...$
\end_inset

 for the particular 
\begin_inset Formula $x$
\end_inset

 as given.
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
\begin_inset Formula $\exp\left(\mathbf{a}\right)=1+\mathbf{a}$
\end_inset

; 
\begin_inset Formula \[
\exp\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)=1+\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}+\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}.\]

\end_inset


\end_layout

\begin_layout Chapter
Basic applications 
\begin_inset LatexCommand \label{sec:Determinants-and-all}

\end_inset


\end_layout

\begin_layout Standard
In this section we will consider finite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector spaces 
\begin_inset Formula $V$
\end_inset

 without a scalar product.
 We will denote by 
\begin_inset Formula $N$
\end_inset

 the dimen\SpecialChar \-
sion\SpecialChar \-
ality of 
\begin_inset Formula $V$
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $N=\dim V$
\end_inset

.
\end_layout

\begin_layout Section
Determinants through permutations: the hard way
\end_layout

\begin_layout Standard
In textbooks on linear algebra, the following definition is found.
\end_layout

\begin_layout Paragraph
Definition D0:
\end_layout

\begin_layout Standard
The 
\series bold
determinant
\series default

\begin_inset LatexCommand \index{determinant}

\end_inset

 of a square 
\begin_inset Formula $N\times N$
\end_inset

 matrix 
\begin_inset Formula $A_{ij}$
\end_inset

 is the number
\begin_inset Formula \begin{equation}
\det(A_{ij})\equiv\sum_{\sigma}\left(-1\right)^{\left|\sigma\right|}A_{\sigma(1)1}...A_{\sigma(N)N},\label{eq:detA bad}\end{equation}

\end_inset

where the summation goes over all permutations 
\begin_inset Formula $\sigma:\left(1,...,N\right)\mapsto\left(k_{1},...,k_{N}\right)$
\end_inset

 of the ordered set 
\begin_inset Formula $\left(1,...,N\right)$
\end_inset

, and the parity function 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 is equal to 
\begin_inset Formula $0$
\end_inset

 if the permutation 
\begin_inset Formula $\sigma$
\end_inset

 is even and to 
\begin_inset Formula $1$
\end_inset

 if it is odd.
 (An 
\series bold
even
\series default
 permutation is reducible to an even number of elementary exchanges of adjacent
 numbers; for instance, the permutation 
\begin_inset Formula $\left(1,3,2\right)$
\end_inset

 is odd while 
\begin_inset Formula $\left(3,1,2\right)$
\end_inset

 is even.
 See Appendix\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-permutations}

\end_inset

 if you need to refresh your knowledge of permutations.)
\end_layout

\begin_layout Standard
Let us illustrate Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

) with 
\begin_inset Formula $2\times2$
\end_inset

 and 
\begin_inset Formula $3\times3$
\end_inset

 matrices.
 Since there are only two permutations of the set 
\begin_inset Formula $\left(1,2\right)$
\end_inset

, namely
\begin_inset Formula \[
\left(1,2\right)\mapsto\left(1,2\right)\;\text{and}\;\left(1,2\right)\mapsto\left(2,1\right),\]

\end_inset

 and six permutations of the set 
\begin_inset Formula $\left(1,2,3\right)$
\end_inset

, namely
\begin_inset Formula \[
\left(1,2,3\right),\left(1,3,2\right),\left(2,1,3\right),\left(2,3,1\right),\left(3,1,2\right),\left(3,2,1\right),\]

\end_inset

we can write explicit formulas for these determinants: 
\begin_inset Formula \begin{align*}
\det\left(\begin{array}{cc}
a_{11} & a_{12}\\
a_{21} & a_{22}\end{array}\right) & =a_{11}a_{22}-a_{21}a_{12};\\
\det\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\end{array}\right) & =a_{11}a_{22}a_{33}-a_{11}a_{32}a_{23}-a_{21}a_{12}a_{33}\\
 & +a_{21}a_{32}a_{13}+a_{31}a_{12}a_{23}-a_{31}a_{22}a_{13}.\end{align*}

\end_inset

We note that the determinant of an 
\begin_inset Formula $N\times N$
\end_inset

 matrix has 
\begin_inset Formula $N!$
\end_inset

 terms in this type of formula, because there are 
\begin_inset Formula $N!$
\end_inset

 different permutations of the set 
\begin_inset Formula $\left(1,...,N\right)$
\end_inset

.
 A numerical evaluation of the determinant of a large matrix using this
 formula is prohibitively long.
\end_layout

\begin_layout Standard
Using the definition D0 and the properties of permutations, one can directly
 prove various properties of determinants, for instance their antisymmetry
 with respect to exchanges of matrix rows or columns, and finally the relevance
 of 
\begin_inset Formula $\det(A_{ij})$
\end_inset

 to linear equations 
\begin_inset Formula $\sum_{j}A_{ij}x_{j}=a_{i}$
\end_inset

, as well as the important property 
\begin_inset Formula \[
\det\left(AB\right)=\left(\det A\right)\left(\det B\right).\]

\end_inset

Deriving these properties in this way will require long calculations.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
To me, definition D0 seems unmotivated and strange.
 It is not clear why this complicated combination of matrix elements has
 any useful properties at all.
 Even if so then maybe there exists another complicated combination of matrix
 elements that is even more useful? 
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
Yes, indeed: There exist other complicated combinations that are also useful.
 All this is best understood if we do not begin by studying the definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

).
 Instead, we will proceed in a coordinate-free manner and build upon geometric
 intuition.
 
\end_layout

\begin_layout Standard
We will interpret the matrix 
\begin_inset Formula $A_{jk}$
\end_inset

 not as a 
\begin_inset Quotes eld
\end_inset

table of numbers
\begin_inset Quotes erd
\end_inset

 but as a coordinate representation of a linear transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 in some vector space 
\begin_inset Formula $V$
\end_inset

 with respect to some given basis.
 We will define an action of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 on the exterior product space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 in a certain way.
 That action will allow us to understand the properties and the uses of
 determinants without long calculations.
 
\end_layout

\begin_layout Standard
Another useful interpretation of the matrix 
\begin_inset Formula $A_{jk}$
\end_inset

 is to regard it as a table of components of a 
\emph on
set
\emph default
 of 
\begin_inset Formula $N$
\end_inset

 vectors 
\begin_inset Formula $\mathbf{v}_{1},...,\mathbf{v}_{N}$
\end_inset

 in a given basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, that is,
\begin_inset Formula \[
\mathbf{v}_{j}=\sum_{k=1}^{N}A_{jk}\mathbf{e}_{k},\quad j=1,...,N.\]

\end_inset

The determinant of the matrix 
\begin_inset Formula $A_{jk}$
\end_inset

 is then naturally related to the exterior product 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

.
 This construction is especially useful for solving linear equations.
\end_layout

\begin_layout Standard
These constructions and related results occupy the present chapter.
 Most of the derivations are straightforward and short but require some
 facility with calculations involving the exterior product.
 I recommend that you repeat all the calculations yourself.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 are 
\begin_inset Formula $N$
\end_inset

 vectors and 
\begin_inset Formula $\sigma$
\end_inset

 is a permutation of the ordered set 
\begin_inset Formula $(1,...,N)$
\end_inset

, show that
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\left(-1\right)^{\left|\sigma\right|}\mathbf{v}_{\sigma(1)}\wedge...\wedge\mathbf{v}_{\sigma(N)}.\]

\end_inset


\end_layout

\begin_layout Section
The space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 and oriented volume
\begin_inset LatexCommand \label{sub:The-highest-exterior}

\end_inset


\end_layout

\begin_layout Standard
Of all the exterior power spaces 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 (
\begin_inset Formula $k=1,2,...$
\end_inset

), the last nontrivial space is 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 where 
\begin_inset Formula $N\equiv\dim V$
\end_inset

, for it is impossible to have a nonzero exterior product of 
\begin_inset Formula $\left(N+1\right)$
\end_inset

 or more vectors.
 In other words, the spaces 
\begin_inset Formula $\wedge^{N+1}V$
\end_inset

, 
\begin_inset Formula $\wedge^{N+2}V$
\end_inset

 etc.\InsetSpace ~
are all zero-dimen\SpecialChar \-
sion\SpecialChar \-
al and thus do not contain any nonzero tensors.
\end_layout

\begin_layout Standard
By Theorem\InsetSpace ~
2 from Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

, the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is one-dimen\SpecialChar \-
sion\SpecialChar \-
al.
 Therefore, all nonzero tensors from 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 are proportional to each other.
 Hence, any nonzero tensor 
\begin_inset Formula $\omega_{1}\in\wedge^{N}V$
\end_inset

 can serve as a basis tensor in 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.
 
\end_layout

\begin_layout Standard
The space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is extremely useful because it is so simple and yet is directly related
 to determinants and volumes; this idea will be developed now.
 We begin by considering an example.
 
\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
In a two-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

, let us choose a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

 and consider two arbitrary vectors 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

.
 These vectors can be decomposed in the basis as
\begin_inset Formula \[
\mathbf{v}_{1}=a_{11}\mathbf{e}_{1}+a_{12}\mathbf{e}_{2},\;\mathbf{v}_{2}=a_{21}\mathbf{e}_{1}+a_{22}\mathbf{e}_{2},\]

\end_inset

where 
\begin_inset Formula $\left\{ a_{ij}\right\} $
\end_inset

 are some coefficients.
 Let us now compute the 2-vector 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{2}\in\wedge^{2}V$
\end_inset

:
\begin_inset Formula \begin{align*}
\mathbf{v}_{1}\wedge\mathbf{v}_{2} & =\left(a_{11}\mathbf{e}_{1}+a_{12}\mathbf{e}_{2}\right)\wedge\left(a_{21}\mathbf{e}_{1}+a_{22}\mathbf{e}_{2}\right)\\
 & =a_{11}a_{22}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+a_{12}a_{21}\mathbf{e}_{2}\wedge\mathbf{e}_{1}\\
 & =\left(a_{11}a_{22}-a_{12}a_{21}\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}.\end{align*}

\end_inset

We may observe that firstly, the 2-vector 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{2}$
\end_inset

 is proportional to 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}$
\end_inset

, and secondly, the proportionality coefficient is equal to the determinant
 of the matrix 
\begin_inset Formula $a_{ij}$
\end_inset

.
\end_layout

\begin_layout Standard
If we compute the exterior product 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\mathbf{v}_{3}$
\end_inset

 of three vectors in a 3-dimen\SpecialChar \-
sion\SpecialChar \-
al space, we will similarly notice that
 the result is proportional to 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

, and the proportionality coefficient is again equal to the determinant
 of the matrix 
\begin_inset Formula $a_{ij}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Let us return to considering a general, 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

.
 The examples just given motivate us to study 
\begin_inset Formula $N$
\end_inset

-vectors (i.e.\InsetSpace ~
tensors from the top exterior power space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

) and their relationships of the form 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\lambda\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

.
\end_layout

\begin_layout Standard
By Lemma\InsetSpace ~
1 from Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

, every nonzero element of 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 must be of the form 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

, where the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is linearly independent and thus a basis in 
\begin_inset Formula $V$
\end_inset

.
 Conversely, each basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 yields a nonzero tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V$
\end_inset

.
 This tensor has a useful geometric interpretation because, in some sense,
 it represents the 
\emph on
volume
\emph default
 of the 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepiped spanned by the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 I will now explain this idea.
\end_layout

\begin_layout Standard
A rigorous definition of 
\begin_inset Quotes eld
\end_inset

volume
\begin_inset Quotes erd
\end_inset

 in 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space requires much background work in geometry and measure
 theory; I am not prepared to explain all this here.
 However, we can motivate the interpretation of the tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 as the volume by appealing to the visual notion of the volume of a parallelepip
ed.
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In this text, we do not actually need a mathematically rigorous notion of
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 --- it is used purely to develop geometrical intuition.
 All formulations and proofs in this text are completely algebraic.
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Consider an 
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 where the (
\begin_inset Formula $N$
\end_inset
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sion\SpecialChar \-
al) volume of solid bodies can be computed through some reasonable
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Here by 
\begin_inset Quotes eld
\end_inset

reasonable
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\end_inset

 I mean that the volume has the usual properties: for instance, the volume
 of a body consisting of two parts equals the sum of the volumes of the
 parts.
 An example of such procedure would be the 
\begin_inset Formula $N$
\end_inset

-fold integral 
\begin_inset Formula $\int dx_{1}...\int dx_{N}$
\end_inset

, where 
\begin_inset Formula $x_{j}$
\end_inset

 are coordinates of points in an orthonormal basis.
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 Two parallelepipeds spanned by the sets of vectors 
\begin_inset Formula $\left\{ \mathbf{u}_{1},\mathbf{u}_{2},...,\mathbf{u}_{N}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

 have equal volumes if and only if the corresponding tensors from 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 are equal up to a sign,
\begin_inset Formula \begin{equation}
\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}=\pm\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\label{eq:v1 eq v2}\end{equation}

\end_inset

Here 
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\end_inset

two bodies have equal volumes
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 means (in the style of ancient Greek geometry) that the bodies can be cut
 into suitable pieces, such that the volumes are found to be identical by
 inspection after a rearrangement of the pieces.
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 If 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}=\lambda\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

, where 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

 is a number, 
\begin_inset Formula $\lambda\neq0$
\end_inset

, then the volumes of the two parallelepipeds differ by a factor of 
\begin_inset Formula $\left|\lambda\right|$
\end_inset

.
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To prove these statements, we will use the following lemma.
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 The volume of a parallelepiped spanned by 
\begin_inset Formula $\left\{ \lambda\mathbf{v}_{1},\mathbf{v}_{2}...,\mathbf{v}_{N}\right\} $
\end_inset

 is 
\begin_inset Formula $\lambda$
\end_inset

 times greater than that of 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

.
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 Two parallelepipeds spanned by the sets of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{v}_{1}+\lambda\mathbf{v}_{2},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

 have equal volume.
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 This is clear from geometric considerations: When a parallelepiped is stretched
 
\begin_inset Formula $\lambda$
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 times in one direction, its volume must increase by the factor 
\begin_inset Formula $\lambda$
\end_inset

.
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 First, we ignore the vectors 
\begin_inset Formula $\mathbf{v}_{3}$
\end_inset

,...,
\begin_inset Formula $\mathbf{v}_{N}$
\end_inset

 and consider the two-dimen\SpecialChar \-
sion\SpecialChar \-
al plane containing 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

.
 In Fig.\InsetSpace ~

\begin_inset LatexCommand \ref{cap:v1v2-vol}

\end_inset

 one can see that the parallelograms spanned by 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $
\end_inset

 and by 
\begin_inset Formula $\left\{ \mathbf{v}_{1}+\lambda\mathbf{v}_{2},\mathbf{v}_{2}\right\} $
\end_inset

 can be cut into appropriate pieces to demonstrate the equality of their
 area.
 Now, we consider the 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al volume (a three-dimen\SpecialChar \-
sion\SpecialChar \-
al example is shown in Fig.\InsetSpace ~
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).
 Similarly to the two-dimen\SpecialChar \-
sion\SpecialChar \-
al case, we find that the 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepipeds spanned by 
\begin_inset Formula $\{\mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\}$
\end_inset

 and by 
\begin_inset Formula $\{\mathbf{v}_{1}+\lambda\mathbf{v}_{2},\mathbf{v}_{2},...,\mathbf{v}_{N}\}$
\end_inset

 have equal 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al volume.
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 is equal to the area of the parallelogram 
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Parallelepipeds spanned by 
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 and by 
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 To prove that the volumes are equal when the tensors are equal, we will
 transform the first basis 
\begin_inset Formula $\left\{ \mathbf{u}_{1},\mathbf{u}_{2},...,\mathbf{u}_{N}\right\} $
\end_inset

 into the second basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

 by a sequence of transformations of two types: either we will multiply
 one of the vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 by a number 
\begin_inset Formula $\lambda$
\end_inset

, or add 
\begin_inset Formula $\lambda\mathbf{v}_{j}$
\end_inset

 to another vector 
\begin_inset Formula $\mathbf{v}_{k}$
\end_inset

.
 We first need to demonstrate that any basis can be transformed into any
 other basis by this procedure.
 To demonstrate this, recall the proof of Theorem\InsetSpace ~

\begin_inset LatexCommand \ref{sub:All-bases-have}

\end_inset

 in which vectors from the first basis were systematically replaced by vectors
 of the second one.
 Each replacement can be implemented by a certain sequence of replacements
 of the kind 
\begin_inset Formula $\mathbf{u}_{j}\rightarrow\lambda\mathbf{u}_{j}$
\end_inset

 or 
\begin_inset Formula $\mathbf{u}_{j}\rightarrow\mathbf{u}_{j}+\lambda\mathbf{u}_{i}$
\end_inset

.
 Note that the tensor 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
\end_inset

 changes in the same way as the volume under these replacements: The tensor
 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
\end_inset

 gets multiplied by 
\begin_inset Formula $\lambda$
\end_inset

 after 
\begin_inset Formula $\mathbf{u}_{j}\rightarrow\lambda\mathbf{u}_{j}$
\end_inset

 and remains unchanged after 
\begin_inset Formula $\mathbf{u}_{j}\rightarrow\mathbf{u}_{j}+\lambda\mathbf{u}_{i}$
\end_inset

.
 At the end of the replacement procedure, the basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 becomes the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 (up to the ordering of vectors), while the volume is multiplied by the
 same factor as the tensor 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
\end_inset

.
 The ordering of the vectors in the set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 can be changed with possibly a sign change in the tensor 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
\end_inset

.
 Therefore the statement\InsetSpace ~
(
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\end_inset

) is equivalent to the assumption that the volumes of 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 are equal.
 
\series bold
(2)
\series default
 A transformation 
\begin_inset Formula $\mathbf{v}_{1}\rightarrow\lambda\mathbf{v}_{1}$
\end_inset

 increases the volume by a factor of 
\begin_inset Formula $\left|\lambda\right|$
\end_inset

 and makes the two tensors equal, therefore the volumes differ by a factor
 of 
\begin_inset Formula $\left|\lambda\right|$
\end_inset

.
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Let us now consider the interpretation of the above Statement.
 Suppose we somehow know that the parallelepiped spanned by the vectors
 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{N}\right\} $
\end_inset

 has unit volume.
 Given this knowledge, the volume of any other parallelepiped spanned by
 some other vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is easy to compute.
 Indeed, we can compute the tensors 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

.
 Since the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is one-dimen\SpecialChar \-
sion\SpecialChar \-
al, these two tensors must be proportional to each other.
 By expanding the vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

, it is straightforward to compute the coefficient 
\begin_inset Formula $\lambda$
\end_inset

 in the relationship
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\lambda\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}.\]

\end_inset

The Statement now says that the volume of a parallelepiped spanned by the
 vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is equal to 
\begin_inset Formula $\left|\lambda\right|$
\end_inset

.
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The volume of a parallelepiped spanned by vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}$
\end_inset

, 
\begin_inset Formula $\mathbf{c}$
\end_inset

 is equal to 19.
 Compute the volume of a parallelepiped spanned by the vectors 
\begin_inset Formula $2\mathbf{a}-\mathbf{b}$
\end_inset

, 
\begin_inset Formula $\mathbf{c}+3\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
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Since 
\begin_inset Formula $\left(2\mathbf{a}-\mathbf{b}\right)\wedge\left(\mathbf{c}+3\mathbf{a}\right)\wedge\mathbf{b}=2\mathbf{a}\wedge\mathbf{c}\wedge\mathbf{b}=-2\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

, the volume is 38 (twice 19; we ignored the minus sign since we are interested
 only in the absolute value of the volume).
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It is also clear that the tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 allows us only to 
\emph on
compare
\emph default
 the volumes of two parallelepipeds; we cannot determine the volume of one
 parallelepiped taken by itself.
 A tensor such as 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 can be used to determine the numerical value of the volume only if we can
 compare it with another given tensor, 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
\end_inset

, which (
\emph on
by
\emph default
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assumption
\emph default
) corresponds to a parallelepiped of unit volume.
 A choice of a 
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\end_inset

reference
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 tensor 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
\end_inset

 can be made, for instance, if we are given a basis in 
\begin_inset Formula $V$
\end_inset

; without this choice, there is no natural map from 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 to numbers (
\begin_inset Formula $\mathbb{K}$
\end_inset

).
 In other words, the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is 
\emph on
not canonically isomorphic
\emph default
 to the space 
\begin_inset Formula $\mathbb{K}$
\end_inset

 (even though both 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}$
\end_inset

 are one-dimen\SpecialChar \-
sion\SpecialChar \-
al vector spaces).
 Indeed, a canonical isomorphism between 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}$
\end_inset

 would imply that the element 
\begin_inset Formula $1\in\mathbb{K}$
\end_inset

 has a corresponding canonically defined tensor 
\begin_inset Formula $\omega_{1}\in\wedge^{N}V$
\end_inset

.
 In that case there would be some basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\omega_{1}$
\end_inset

, which indicates that the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is in some sense 
\begin_inset Quotes eld
\end_inset

preferred
\begin_inset Quotes erd
\end_inset

 or 
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natural.
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 However, there is no 
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natural
\begin_inset Quotes erd
\end_inset

 or 
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preferred
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 choice of basis in a vector space 
\begin_inset Formula $V$
\end_inset

, unless some additional structure is given (such as a scalar product).
 Hence, no canonical choice of 
\begin_inset Formula $\omega_{1}\in\wedge^{N}V$
\end_inset

 is possible.
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When a scalar product is defined in 
\begin_inset Formula $V$
\end_inset

, there is a preferred choice of basis, namely an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 such that 
\begin_inset Formula $\left\langle \mathbf{e}_{i},\mathbf{e}_{j}\right\rangle =\delta_{ij}$
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Vector-spaces-with-scalar-product}

\end_inset

).
 Since the length of each of the basis vectors is 1, and the basis vectors
 are orthogonal to each other, the volume of the parallelepiped spanned
 by 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is equal to 
\begin_inset Formula $1$
\end_inset

.
 (This is the usual Euclidean definition of volume.) Then the tensor 
\begin_inset Formula $\omega_{1}\equiv\bigwedge_{j=1}^{N}\mathbf{e}_{j}$
\end_inset

 can be computed using this basis and used as a unit volume tensor.
 We will see below (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{proof-of-pythagoras}

\end_inset

) that this tensor does not depend on the choice of the orthonormal basis,
 up to the orientation.
 The isomorphism between 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}$
\end_inset

 is then fixed (up to the sign), thanks to the scalar product.
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In the absence of a scalar product, one can say that the 
\emph on
value of the volume
\emph default
 in an abstract vector space is not a number but a tensor from the space
 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.
 It is sufficient to regard the element 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V$
\end_inset

 as the 
\emph on
definition
\emph default
 of the 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $\wedge^{N}V$
\end_inset

-valued volume
\begin_inset Quotes erd
\end_inset

 of the parallelepiped spanned by 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 The space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is one-dimen\SpecialChar \-
sion\SpecialChar \-
al, so the 
\begin_inset Quotes eld
\end_inset

tensor-valued volume
\begin_inset Quotes erd
\end_inset

 has the familiar properties we expect (it is 
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almost a number
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).
 One thing is unusual about this 
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\end_inset

volume
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\end_inset

: It is 
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oriented
\series default
, that is, it changes sign if we exchange the order of two vectors from
 the set 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
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Suppose 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 Let 
\begin_inset Formula $\mathbf{x}$
\end_inset

 be some vector whose components in the basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 are given, 
\begin_inset Formula $\mathbf{x}=\sum_{j}\alpha_{j}\mathbf{u}_{j}$
\end_inset

.
 Compute the (tensor-valued) volume of the parallelepiped spanned by 
\begin_inset Formula $\left\{ \mathbf{u}_{1}+\mathbf{x},...,\mathbf{u}_{N}+\mathbf{x}\right\} $
\end_inset

.
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\newline
Hints:
\emph default
 Use the linearity property, 
\begin_inset Formula $\left(\mathbf{a}+\mathbf{x}\right)\wedge...=\mathbf{a}\wedge...+\mathbf{x}\wedge...$
\end_inset

, and notice the simplification 
\begin_inset Formula \[
\mathbf{x}\wedge(\mathbf{a}+\mathbf{x})\wedge(\mathbf{b}+\mathbf{x})\wedge...\wedge(\mathbf{c}+\mathbf{x})=\mathbf{x}\wedge\mathbf{a}\wedge\mathbf{b}\wedge...\wedge\mathbf{c}.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
The volume tensor is 
\begin_inset Formula \[
\left(\mathbf{u}_{1}+\mathbf{x}\right)\wedge...\wedge\left(\mathbf{u}_{N}+\mathbf{x}\right)=\left(1+\alpha_{1}+...+\alpha_{N}\right)\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}.\]

\end_inset
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.
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The idea that the volume is 
\begin_inset Quotes eld
\end_inset

oriented
\begin_inset Quotes erd
\end_inset

 can be understood perhaps more intuitively by considering the area of the
 parallelogram spanned by two vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}$
\end_inset

 in the familiar 3-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
 It is customary to draw the vector product 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 as the representation of this area, since the length 
\begin_inset Formula $\left|\mathbf{a}\times\mathbf{b}\right|$
\end_inset

 is equal to the area, and the direction of 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 is normal to the area.
 Thus, the vector 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 can be understood as the 
\begin_inset Quotes eld
\end_inset

oriented area
\begin_inset Quotes erd
\end_inset

 of the parallelogram.
 However, note that the direction of the vector 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 depends not only on the angular orientation of the parallelogram in space,
 but also on the order of the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
 The 2-vector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 is the natural analogue of the vector product 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 in higher-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces.
 Hence, it is algebraically natural to regard the tensor 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\in\wedge^{2}V$
\end_inset

 as the 
\begin_inset Quotes eld
\end_inset

tensor-valued
\begin_inset Quotes erd
\end_inset

 representation of the area of the parallelogram spanned by 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{b}\right\} $
\end_inset

.
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Consider now a parallelogram spanned by 
\begin_inset Formula $\mathbf{a},\mathbf{b}$
\end_inset

 in a 
\emph on
two
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al plane.
 We can still represent the oriented area of this parallelogram by the vector
 product 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

, where we imagine that the plane is embedded in a three-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
 The area of the parallelogram does not have a nontrivial angular orientation
 any more since the vector product 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 is always orthogonal to the plane; the only feature left from the orientation
 is the positive or negative sign of 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 relative to an arbitrarily chosen vector 
\begin_inset Formula $\mathbf{n}$
\end_inset

 normal to the plane.
 Hence, we may say that the sign of the oriented volume of a parallelepiped
 is the only remnant of the angular orientation of the parallelepiped in
 space when the dimension of the parallelepiped is equal to the dimension
 of space.
 (See Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Motivation-for-exterior}

\end_inset

 for more explanations about the geometrical interpretation of volume in
 terms of exterior product.)
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard

\end_layout

\begin_layout Section
Determinants of operators
\begin_inset LatexCommand \label{sub:The-determinant-def}

\end_inset


\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 be a linear operator.
 Consider its action on tensors from the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 defined in the following way, 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge...\mathbf{v}_{N}\mapsto\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}$
\end_inset

.
 I denote this operation by 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

, so 
\begin_inset Formula \[
\wedge^{N}\hat{A}^{N}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\right)\equiv(\hat{A}\mathbf{v}_{1})\wedge...\wedge(\hat{A}\mathbf{v}_{N}).\]

\end_inset

The notation 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 underscores the fact that there are 
\begin_inset Formula $N$
\end_inset

 copies of 
\begin_inset Formula $\hat{A}$
\end_inset

 acting simultaneously.
\end_layout

\begin_layout Standard
We have just defined 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 on single-term products 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

; the action of 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 on linear combinations of such products is obtained by requiring linearity.
 
\end_layout

\begin_layout Standard
Let us verify that 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 is a linear map; it is sufficient to check that it is compatible with the
 exterior product axioms:
\begin_inset Formula \begin{align*}
\hat{A}(\mathbf{v}+\lambda\mathbf{u})\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N} & =\hat{A}\mathbf{v}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N}\\
 & +\lambda\hat{A}\mathbf{u}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N}\;;\\
\hat{A}\mathbf{v}_{1}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N} & =-\hat{A}\mathbf{v}_{2}\wedge\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}\:.\end{align*}

\end_inset

Therefore, 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 is now defined as a linear operator 
\begin_inset Formula $\wedge^{N}V\rightarrow\wedge^{N}V$
\end_inset

.
\end_layout

\begin_layout Standard
By Theorem\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

, the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is one-dimen\SpecialChar \-
sion\SpecialChar \-
al.
 So 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

, being a linear operator in a one-dimen\SpecialChar \-
sion\SpecialChar \-
al space, must act simply as
 multiplication by a number.
 (
\emph on
Every
\emph default
 linear operator in a one-dimen\SpecialChar \-
sion\SpecialChar \-
al space must act as multiplication by
 a number!) Thus we can write
\begin_inset Formula \[
\wedge^{N}\hat{A}^{N}=\alpha\hat{1}_{\wedge^{N}V},\]

\end_inset

where 
\begin_inset Formula $\alpha\in\mathbb{K}$
\end_inset

 is a number which is somehow associated with the operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
 What is the significance of this number 
\begin_inset Formula $\alpha$
\end_inset

? This number is actually equal to the 
\emph on
determinant
\emph default
 of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 as given by Definition\InsetSpace ~
D0.
 But let us pretend that we do not know anything about determinants; it
 is very convenient to use this construction to 
\emph on
define
\emph default
 the determinant and to derive its properties.
\end_layout

\begin_layout Paragraph
Definition D1:
\end_layout

\begin_layout Standard
The 
\series bold
determinant
\series default

\begin_inset LatexCommand \index{determinant}

\end_inset

 
\begin_inset Formula $\det\hat{A}$
\end_inset

 of an operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 is the number by which any nonzero tensor 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

 is multiplied when 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 acts on it:
\begin_inset Formula \begin{equation}
(\wedge^{N}\hat{A}^{N})\omega=(\det\hat{A})\omega.\label{eq:det def}\end{equation}

\end_inset

In other words, 
\begin_inset Formula $\wedge^{N}A^{N}=(\det\hat{A})\hat{1}_{\wedge^{N}V}$
\end_inset

.
\end_layout

\begin_layout Standard
We can immediately put this definition to use; here are the first results.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
The determinant of a product is the product of determinants: 
\begin_inset Formula $\det(\hat{A}\hat{B})=(\det\hat{A})(\det\hat{B})$
\end_inset

.
 
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Act with 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 and then with 
\begin_inset Formula $\wedge^{N}\hat{B}^{N}$
\end_inset

 on a nonzero tensor 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

.
 Since these operators act as multiplication by a number, the result is
 the multiplication by the product of these numbers.
 We thus have
\begin_inset Formula \[
(\wedge^{N}\hat{A}^{N})(\wedge^{N}\hat{B}^{N})\omega=(\wedge^{N}\hat{A}^{N})(\det\hat{B})\omega=(\det\hat{A})(\det\hat{B})\omega.\]

\end_inset

On the other hand, for 
\begin_inset Formula $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 we have
\begin_inset Formula \begin{align*}
(\wedge^{N}\hat{A}^{N})(\wedge^{N}\hat{B}^{N})\omega & =(\wedge^{N}\hat{A}^{N})\hat{B}\mathbf{v}_{1}\wedge...\wedge\hat{B}\mathbf{v}_{N}\\
 & =\hat{A}\hat{B}\mathbf{v}_{1}\wedge...\wedge\hat{A}\hat{B}\mathbf{v}_{N}=\wedge^{N}(\hat{A}\hat{B})^{N}\omega\\
 & =(\det(\hat{A}\hat{B}))\omega.\end{align*}

\end_inset

Therefore, 
\begin_inset Formula $\det(\hat{A}\hat{B})=(\det\hat{A})(\det\hat{B})$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Prove that 
\begin_inset Formula $\det(\lambda\hat{A})=\lambda^{N}\det\hat{A}$
\end_inset

 for any 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

 and 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

.
\end_layout

\begin_layout Standard
Now let us clarify the relation between the determinant and the volume.
 We will prove that the determinant of a transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 is the coefficient by which the volume of parallelepipeds will grow when
 we act with 
\begin_inset Formula $\hat{A}$
\end_inset

 on the vector space.
 After proving this, I will 
\emph on
derive
\emph default
 the relation\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

) for the determinant through the matrix coefficients of 
\begin_inset Formula $\hat{A}$
\end_inset

 in some basis; it will follow that the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

) gives the same results in any basis.
 
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
When a parallelepiped spanned by the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is transformed by a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

, so that 
\begin_inset Formula $\mathbf{v}_{j}\mapsto\hat{A}\mathbf{v}_{j}$
\end_inset

, the volume of the parallelepiped grows by the factor 
\begin_inset Formula $|\det\hat{A}\,|$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
Suppose the volume of the parallelepiped spanned by the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is 
\begin_inset Formula $v$
\end_inset

.
 The transformed parallelepiped is spanned by vectors 
\begin_inset Formula $\{\hat{A}\mathbf{v}_{1},...,\hat{A}\mathbf{v}_{N}\}$
\end_inset

.
 According to the definition of the determinant, 
\begin_inset Formula $\det\hat{A}$
\end_inset

 is a number such that
\begin_inset Formula \[
\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}=(\det\hat{A})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]

\end_inset

By Statement\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-highest-exterior}

\end_inset

, the volume of the transformed parallelepiped is 
\begin_inset Formula $|\det\hat{A}\,|$
\end_inset

 times the volume of the original parallelepiped.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
If we consider the oriented (i.e.\InsetSpace ~
tensor-valued) volume, we find that it grows
 by the factor 
\begin_inset Formula $\det\hat{A}$
\end_inset

 (without the absolute value).
 Therefore we could define the determinant also in the following way:
\end_layout

\begin_layout Paragraph
Definition D2:
\end_layout

\begin_layout Standard
The determinant 
\begin_inset Formula $\det\hat{A}$
\end_inset

 of a linear transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 is the number by which the 
\emph on
oriented
\emph default
 volume of any parallelepiped grows after the transformation.
 (One is then obliged to prove that this number does not depend on the choice
 of the initial parallelepiped! We just proved this in Statement\InsetSpace ~
1 using
 an algebraic definition D1 of the determinant.) 
\end_layout

\begin_layout Standard
With this definition of the determinant, the property 
\begin_inset Formula \[
\det(\hat{A}\hat{B})=(\det\hat{A})(\det\hat{B})\]

\end_inset

 is easy to understand: The composition of the transformations 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 multiplies the volume by the product of the individual volume growth factors
 
\begin_inset Formula $\det\hat{A}$
\end_inset

 and 
\begin_inset Formula $\det\hat{B}$
\end_inset

.
\end_layout

\begin_layout Standard
Finally, here is a derivation of the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

) from Definition\InsetSpace ~
D1.
\end_layout

\begin_layout Paragraph
Statement 3:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is any basis in 
\begin_inset Formula $V$
\end_inset

, 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 is the dual basis, and a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is represented by a tensor, 
\begin_inset Formula \begin{equation}
\hat{A}=\sum_{j,k=1}^{N}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*},\label{eq:A op as tensor}\end{equation}

\end_inset

 then the determinant of 
\begin_inset Formula $\hat{A}$
\end_inset

 is given by the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

).
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
The operator 
\begin_inset Formula $\hat{A}$
\end_inset

 defined by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:A op as tensor}

\end_inset

) acts on the basis vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 as follows,
\begin_inset Formula \[
\hat{A}\mathbf{e}_{k}=\sum_{j=1}^{N}A_{jk}\mathbf{e}_{j}.\]

\end_inset

 A straightforward calculation is all that is needed to obtain the formula
 for the determinant.
 I first consider the case 
\begin_inset Formula $N=2$
\end_inset

 as an illustration:
\begin_inset Formula \begin{align*}
\wedge^{2}\hat{A}^{2}\left(\mathbf{e}_{1}\wedge\mathbf{e}_{2}\right) & =\hat{A}\mathbf{e}_{1}\wedge\hat{A}\mathbf{e}_{2}\\
 & =\left(A_{11}\mathbf{e}_{1}+A_{21}\mathbf{e}_{2}\right)\wedge\left(A_{12}\mathbf{e}_{1}+A_{22}\mathbf{e}_{2}\right)\\
 & =A_{11}A_{22}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+A_{21}A_{12}\mathbf{e}_{2}\wedge\mathbf{e}_{1}\\
 & =\left(A_{11}A_{22}-A_{12}A_{21}\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}.\end{align*}

\end_inset

Hence 
\begin_inset Formula $\det\hat{A}=A_{11}A_{22}-A_{12}A_{21}$
\end_inset

, in agreement with the usual formula.
\end_layout

\begin_layout Standard
Now I consider the general case.
 The action of 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 on the basis element 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\in\wedge^{N}V$
\end_inset

 is
\begin_inset Formula \begin{align}
\wedge^{N}\hat{A}^{N}\left(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\right) & =\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{N}\nonumber \\
=\left(\sum_{j_{1}=1}^{N}A_{j_{1}1}\mathbf{e}_{j_{1}}\right) & \wedge...\wedge\left(\sum_{j_{N}=1}^{N}A_{j_{N}N}\mathbf{e}_{j_{N}}\right)\nonumber \\
=\sum_{j_{1}=1}^{N}...\sum_{j_{N}=1}^{N} & A_{j_{1}1}\mathbf{e}_{j_{1}}\wedge...\wedge A_{j_{N}N}\mathbf{e}_{j_{N}}\nonumber \\
=\sum_{j_{1}=1}^{N}...\sum_{j_{N}=1}^{N} & (A_{j_{1}1}...A_{j_{N}N})\mathbf{e}_{j_{1}}\wedge...\wedge\mathbf{e}_{j_{N}}.\label{eq:last permutation}\end{align}

\end_inset

In the last sum, the only nonzero terms are those in which the indices 
\begin_inset Formula $j_{1}$
\end_inset

, ..., 
\begin_inset Formula $j_{N}$
\end_inset

 do not repeat; in other words, 
\begin_inset Formula $\left(j_{1},...,j_{N}\right)$
\end_inset

 is a 
\emph on
permutation
\emph default
 of the set (1, ..., 
\begin_inset Formula $N$
\end_inset

).
 Let us therefore denote this permutation by 
\begin_inset Formula $\sigma$
\end_inset

 and write 
\begin_inset Formula $\sigma(1)\equiv j_{1}$
\end_inset

, ..., 
\begin_inset Formula $\sigma(N)\equiv j_{N}$
\end_inset

.
 Using the antisymmetry of the exterior product and the definition of the
 parity 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 of the permutation 
\begin_inset Formula $\sigma$
\end_inset

, we can express
\begin_inset Formula \[
\mathbf{e}_{j_{1}}\wedge...\wedge\mathbf{e}_{j_{N}}=\mathbf{e}_{\sigma(1)}\wedge...\wedge\mathbf{e}_{\sigma(N)}=\left(-1\right)^{\left|\sigma\right|}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset

Now we can rewrite the last line in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:last permutation}

\end_inset

) in terms of sums over all permutations 
\begin_inset Formula $\sigma$
\end_inset

 instead of sums over all 
\begin_inset Formula $\left\{ j_{1},...,j_{N}\right\} $
\end_inset

: 
\begin_inset Formula \begin{align*}
\wedge^{N}\hat{A}^{N}\left(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\right)= & \sum_{\sigma}A_{\sigma(1)1}...A_{\sigma(N)N}\mathbf{e}_{\sigma(1)}\wedge...\wedge\mathbf{e}_{\sigma(N)}\\
=\sum_{\sigma}A_{\sigma(1)1}...A_{\sigma(N)N} & \left(-1\right)^{\left|\sigma\right|}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\end{align*}

\end_inset

Thus we have reproduced the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
We have seen three equivalent definitions of the determinant, each with
 its own advantages: first, a direct but complicated definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

) in terms of matrix coefficients; second, an elegant but abstract definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:det def}

\end_inset

) that depends on the construction of the exterior product; third, an intuitive
 and visual definition in terms of the volume which, however, is based on
 the geometric notion of 
\begin_inset Quotes eld
\end_inset

volume of an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al domain
\begin_inset Quotes erd
\end_inset

 rather than on purely algebraic constructions.
 All three definitions are equivalent when applied to linear operators in
 finite-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces.
\end_layout

\begin_layout Subsection
Examples: computing  determinants
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
We have been working with operators more or less in the same way as with
 matrices, like in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:A op as tensor}

\end_inset

).
 What is the advantage of the coord\SpecialChar \-
in\SpecialChar \-
ate-free approach if we are again computing
 with the elements of matrices?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
In some cases, there is no other way except to represent an operator in
 some basis through a matrix such as 
\begin_inset Formula $A_{ij}$
\end_inset

.
 However, in many cases an interesting operator can be represented 
\emph on
geometrically
\emph default
, i.e.\InsetSpace ~
without choosing a basis.
 It is often useful to express an operator in a basis-free manner because
 this yields some nontrivial information that would otherwise be obscured
 by an unnecessary (or wrong) choice of basis.
 It is useful to be able to employ both the basis-free and the component-based
 techniques.
 Here are some examples where we compute determinants of operators defined
 without a basis.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
Operators of the form 
\begin_inset Formula $\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}$
\end_inset

 are useful in geometry because they can represent reflections or projections
 with respect to an axis or a plane if 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}^{*}$
\end_inset

 are chosen appropriately.
 For instance, if 
\begin_inset Formula $\mathbf{b}^{*}\neq0$
\end_inset

, we can define a 
\series bold
hyperplane
\series default

\begin_inset LatexCommand \index{hyperplane}

\end_inset

 
\begin_inset Formula $H_{\mathbf{b}^{*}}\subset V$
\end_inset

 as the subspace annihilated by the covector 
\begin_inset Formula $\mathbf{b}^{*}$
\end_inset

, i.e.\InsetSpace ~
the subspace consisting of vectors 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{b}^{*}\left(\mathbf{v}\right)=0$
\end_inset

.
 If a vector 
\begin_inset Formula $\mathbf{a}\in V$
\end_inset

 is such that 
\begin_inset Formula $\mathbf{b}^{*}\left(\mathbf{a}\right)\neq0$
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $\mathbf{a}\not\in H_{\mathbf{b}^{*}}$
\end_inset

, then 
\begin_inset Formula \[
\hat{P}\equiv\hat{1}_{V}-\frac{1}{\mathbf{b}^{*}\left(\mathbf{a}\right)}\mathbf{a}\otimes\mathbf{b}^{*}\]

\end_inset

is a projector
\begin_inset LatexCommand \index{projector}

\end_inset

 onto 
\begin_inset Formula $H_{\mathbf{b}^{*}}$
\end_inset

, while the operator
\begin_inset Formula \[
\hat{R}\equiv\hat{1}_{V}-\frac{2}{\mathbf{b}^{*}\left(\mathbf{a}\right)}\mathbf{a}\otimes\mathbf{b}^{*}\]

\end_inset

describes a 
\series bold
mirror
\series default
 
\series bold
reflection
\series default

\begin_inset LatexCommand \index{mirror reflection}

\end_inset

 with respect to the hyperplane 
\begin_inset Formula $H_{\mathbf{b}^{*}}$
\end_inset

, in the sense that 
\begin_inset Formula $\mathbf{v}+\hat{R}\mathbf{v}\in H_{\mathbf{b}^{*}}$
\end_inset

 for any 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The following statement shows how to calculate determinants of such operators.
 For instance, with the above definitions we would find 
\begin_inset Formula $\det\hat{P}=0$
\end_inset

 and 
\begin_inset Formula $\det\hat{R}=-1$
\end_inset

 by a direct application of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:det lambda ab}

\end_inset

).
\end_layout

\begin_layout Paragraph
Statement: 
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\mathbf{a}\in V$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}^{*}\in V^{*}$
\end_inset

.
 Then
\begin_inset Formula \begin{equation}
\det\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)=1+\mathbf{b}^{*}\left(\mathbf{a}\right).\label{eq:det lambda ab}\end{equation}

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\mathbf{b}^{*}=0$
\end_inset

, the formula is trivial, so we assume that 
\begin_inset Formula $\mathbf{b}^{*}\neq0$
\end_inset

.
 Then we need to consider two cases: 
\begin_inset Formula $\mathbf{b}^{*}(\mathbf{a})\neq0$
\end_inset

 or 
\begin_inset Formula $\mathbf{b}^{*}(\mathbf{a})=0$
\end_inset

; however, the final formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:det lambda ab}

\end_inset

) is the same in both cases.
 
\end_layout

\begin_layout Standard
Case 1.
 By Statement\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Dual-vector-space}

\end_inset

, if 
\begin_inset Formula $\mathbf{b}^{*}\left(\mathbf{a}\right)\neq0$
\end_inset

 there exists a basis 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

 such that 
\begin_inset Formula $\mathbf{b}^{*}\left(\mathbf{v}_{i}\right)=0$
\end_inset

 for 
\begin_inset Formula $2\leq i\leq N$
\end_inset

, where 
\begin_inset Formula $N=\dim V$
\end_inset

.
 Then we compute the determinant by applying the operator 
\begin_inset Formula $\wedge^{N}\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)^{N}$
\end_inset

 to the tensor 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

: since
\begin_inset Formula \begin{align*}
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{a} & =\left(1+\mathbf{b}^{*}\left(\mathbf{a}\right)\right)\mathbf{a},\\
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{v}_{i} & =\mathbf{v}_{i},\quad i=2,...,N,\end{align*}

\end_inset

we get
\begin_inset Formula \begin{align*}
\wedge^{N}\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)^{N}\mathbf{a}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}\\
=\left(1+\mathbf{b}^{*}\left(\mathbf{a}\right)\right)\mathbf{a}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}.\end{align*}

\end_inset

Therefore 
\begin_inset Formula $\det\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)=1+\mathbf{b}^{*}\left(\mathbf{a}\right)$
\end_inset

, as required.
\end_layout

\begin_layout Standard
Case 2.
 If 
\begin_inset Formula $\mathbf{b}^{*}\left(\mathbf{a}\right)=0$
\end_inset

, we will show that 
\begin_inset Formula $\det\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)=1$
\end_inset

.
 We cannot choose the basis 
\begin_inset Formula $\left\{ \mathbf{a},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
\end_inset

 as in case 1, so we need to choose another basis.
 There exists some vector 
\begin_inset Formula $\mathbf{w}\in V$
\end_inset

 such that 
\begin_inset Formula $\mathbf{b}^{*}\left(\mathbf{w}\right)\neq0$
\end_inset

 because by assumption 
\begin_inset Formula $\mathbf{b}^{*}\neq0$
\end_inset

.
 It is clear that 
\begin_inset Formula $\left\{ \mathbf{w},\mathbf{a}\right\} $
\end_inset

 is a linearly independent set: otherwise we would have 
\begin_inset Formula $\mathbf{b}^{*}(\mathbf{w})=0$
\end_inset

.
 Therefore, we can complete this set to a basis 
\begin_inset Formula $\left\{ \mathbf{w},\mathbf{a},\mathbf{v}_{3},...,\mathbf{v}_{N}\right\} $
\end_inset

.
 Further, the vectors 
\begin_inset Formula $\mathbf{v}_{3},...,\mathbf{v}_{N}$
\end_inset

 can be chosen such that 
\begin_inset Formula $\mathbf{b}^{*}\left(\mathbf{v}_{i}\right)=0$
\end_inset

 for 
\begin_inset Formula $3\leq i\leq N$
\end_inset

.
 Now we compute the determinant by acting with the operator 
\begin_inset Formula $\wedge^{N}\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)^{N}$
\end_inset

 on the tensor 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{w}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

: since
\begin_inset Formula \begin{align*}
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{a} & =\mathbf{a},\\
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{w} & =\mathbf{w}+\mathbf{b}^{*}\left(\mathbf{w}\right)\mathbf{a},\\
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{v}_{i} & =\mathbf{v}_{i},\quad i=3,...,N,\end{align*}

\end_inset

we get
\begin_inset Formula \begin{align*}
\wedge^{N}\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)^{N}\mathbf{a}\wedge\mathbf{w}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}\\
=\mathbf{a}\wedge\left(\mathbf{w}+\mathbf{b}^{*}\left(\mathbf{w}\right)\mathbf{a}\right)\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}\\
=\mathbf{a}\wedge\mathbf{w}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}.\end{align*}

\end_inset

Therefore 
\begin_inset Formula $\det\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)=1$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1: 
\end_layout

\begin_layout Standard
In a similar way, prove the following statement: If 
\begin_inset Formula $\mathbf{a}_{i}\in V$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}_{i}^{*}\in V^{*}$
\end_inset

 for 
\begin_inset Formula $1\leq i\leq n<N$
\end_inset

 are such that 
\begin_inset Formula $\mathbf{b}_{i}^{*}\left(\mathbf{a}_{j}\right)=0$
\end_inset

 for all 
\begin_inset Formula $i>j$
\end_inset

, then
\begin_inset Formula \[
\det\,\bigg(\hat{1}_{V}+\sum_{i=1}^{n}\mathbf{a}_{i}\otimes\mathbf{b}_{i}^{*}\bigg)\,=\prod_{i=1}^{n}\left(1+\mathbf{b}_{i}^{*}\left(\mathbf{a}_{i}\right)\right).\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2: 
\end_layout

\begin_layout Standard
Consider the three-dimen\SpecialChar \-
sion\SpecialChar \-
al space of polynomials 
\begin_inset Formula $p(x)$
\end_inset

 in the variable 
\begin_inset Formula $x$
\end_inset

 of degree at most 2 with real coefficients.
 The operators 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 are defined by 
\begin_inset Formula \begin{align*}
(\hat{A}p)(x) & \equiv p(x)+x\frac{dp(x)}{dx},\\
(\hat{B}p)(x) & \equiv x^{2}p(1)+2p(x).\end{align*}

\end_inset

Check that these operators are linear.
 Compute the determinants of 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Solution: 
\end_layout

\begin_layout Standard
The operators are linear because they are expressed as formulas containing
 
\begin_inset Formula $p(x)$
\end_inset

 linearly.
 Let us use the underbar to distinguish the polynomials 
\begin_inset Formula $\underbar{1}$
\end_inset

, 
\begin_inset Formula $\underbar{x}$
\end_inset

 from numbers such as 1.
 A convenient basis tensor of the 3rd exterior power is 
\begin_inset Formula $\underbar{1}\wedge\underbar{x}\wedge\underbar{x}^{2}$
\end_inset

, so we perform the calculation, 
\begin_inset Formula \begin{align*}
(\det\hat{A})(\underbar{1}\wedge\underbar{x}\wedge\underbar{x}^{2}) & =(\hat{A}\underbar{1})\wedge(\hat{A}\underbar{x})\wedge(\hat{A}\underbar{x}^{2})\\
=\underbar{1}\wedge(2\underbar{x})\wedge(3\underbar{x}^{2}) & =6(\underbar{1}\wedge\underbar{x}\wedge\underbar{x}^{2}),\end{align*}

\end_inset

and find that 
\begin_inset Formula $\det\hat{A}=6$
\end_inset

.
 Similarly we find 
\begin_inset Formula $\det\hat{B}=12$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Suppose the space 
\begin_inset Formula $V$
\end_inset

 is decomposed into a direct sum of 
\begin_inset Formula $U$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

, and an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is such that 
\begin_inset Formula $U$
\end_inset

 and 
\begin_inset Formula $W$
\end_inset

 are invariant subspaces (
\begin_inset Formula $\hat{A}\mathbf{x}\in U$
\end_inset

 for all 
\begin_inset Formula $\mathbf{x}\in U$
\end_inset

, and the same for 
\begin_inset Formula $W$
\end_inset

).
 Denote by 
\begin_inset Formula $\hat{A}_{U}$
\end_inset

 the restriction of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 to the subspace 
\begin_inset Formula $U$
\end_inset

.
 Show that
\begin_inset Formula \[
\det\hat{A}=(\det\hat{A}_{U})(\det\hat{A}_{W}).\]

\end_inset


\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Choose a basis in 
\begin_inset Formula $V$
\end_inset

 as the union of a basis in 
\begin_inset Formula $U$
\end_inset

 and a basis in 
\begin_inset Formula $W$
\end_inset

.
 In this basis, the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is represented by a 
\series bold
block-diagonal
\begin_inset LatexCommand \index{block-diagonal matrix}

\end_inset


\series default
 matrix.
\end_layout

\begin_layout Section
Determinants of square tables
\begin_inset LatexCommand \label{sub:Determinants-of-square}

\end_inset


\end_layout

\begin_layout Standard
Note that the determinant formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

) applies to 
\emph on
any
\emph default
 square matrix, without referring to any transformations in any vector spaces.
 Sometimes it is useful to compute the determinants of matrices that do
 not represent linear transformations.
 Such matrices are really just 
\emph on
tables of numbers
\emph default
.
 The properties of determinants of course remain the same whether or not
 the matrix represents a linear transformation in the context of the problem
 we are solving.
 The geometric construction of the determinant through the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is useful because it helps us understand heuristically where the properties
 of the determinant come from.
 
\end_layout

\begin_layout Standard
Given just a square table of numbers, it is often useful to 
\emph on
introduce
\emph default
 a linear transformation corresponding to the matrix in some (conveniently
 chosen) basis; this often helps solve problems.
 An example frequently used in linear algebra is a matrix consisting of
 the components of some vectors in a basis.
 Suppose 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\,|\, j=1,...,N\right\} $
\end_inset

 is a basis and 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\,|\, j=1,...,N\right\} $
\end_inset

 are some vectors.
 Since each of the 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 can be decomposed through the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, say 
\begin_inset Formula \[
\mathbf{v}_{i}=\sum_{j=1}^{N}v_{ij}\mathbf{e}_{j},\quad i=1,...,N,\]

\end_inset

we may consider the coefficients 
\begin_inset Formula $v_{ij}$
\end_inset

 as a square matrix.
 This matrix, at first glance, does not represent a linear transformation;
 it's just a square-shaped table of the coefficients 
\begin_inset Formula $v_{ij}$
\end_inset

.
 However, let us 
\emph on
define
\emph default
 a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 by the condition that 
\begin_inset Formula $\hat{A}\mathbf{e}_{i}=\mathbf{v}_{i}$
\end_inset

 for all 
\begin_inset Formula $i=1,...,N$
\end_inset

.
 This condition defines 
\begin_inset Formula $\hat{A}\mathbf{x}$
\end_inset

 for any vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 if we assume the linearity of 
\begin_inset Formula $\hat{A}$
\end_inset

 (see Exercise\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Examples-of-linear-maps}

\end_inset

).
 The operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has the following matrix representation with respect to the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 and the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}^{*}\right\} $
\end_inset

:
\begin_inset Formula \[
\hat{A}=\sum_{i=1}^{N}\mathbf{v}_{i}\otimes\mathbf{e}_{i}^{*}=\sum_{i=1}^{N}\sum_{j=1}^{N}v_{ij}\mathbf{e}_{j}\otimes\mathbf{e}_{i}^{*}.\]

\end_inset

So the matrix 
\begin_inset Formula $v_{ji}$
\end_inset

 (the transpose of 
\begin_inset Formula $v_{ij}$
\end_inset

) is the matrix representing the transformation 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Let us consider the determinant of this transformation:
\begin_inset Formula \[
(\det\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{N}=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]

\end_inset

The determinant of the matrix 
\begin_inset Formula $v_{ji}$
\end_inset

 is thus equal to the determinant of the transformation 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Hence, the computation of the determinant of the matrix 
\begin_inset Formula $v_{ji}$
\end_inset

 is equivalent to the computation of the tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V$
\end_inset

 and its comparison with the basis tensor 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

.
 We have thus proved the following statement.
\end_layout

\begin_layout Paragraph
Statement 1: 
\end_layout

\begin_layout Standard
The determinant
\begin_inset LatexCommand \index{determinant}

\end_inset

 of the matrix 
\begin_inset Formula $v_{ji}$
\end_inset

 made up by the components of the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 in a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 (
\begin_inset Formula $j=1,...,N$
\end_inset

) is the number 
\begin_inset Formula $C$
\end_inset

 defined as the coefficient in the tensor equality
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=C\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Corollary:
\end_layout

\begin_layout Standard
The determinant of a matrix does not change when a multiple of one row is
 added to another row.
 The determinant is linear as a function of each row.
 The determinant changes sign when two rows are exchanged.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We consider the matrix 
\begin_inset Formula $v_{ij}$
\end_inset

 as the table of coefficients of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 in a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, as explained above.
 Since
\begin_inset Formula \[
(\det v_{ji})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N},\]

\end_inset

we need only to examine the properties of the tensor 
\begin_inset Formula $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 under various replacements.
 When a multiple of row 
\begin_inset Formula $k$
\end_inset

 is added to another row 
\begin_inset Formula $j$
\end_inset

, we replace 
\begin_inset Formula $\mathbf{v}_{j}\mapsto\mathbf{v}_{j}+\lambda\mathbf{v}_{k}$
\end_inset

 for fixed 
\begin_inset Formula $j,k$
\end_inset

; then the tensor 
\begin_inset Formula $\omega$
\end_inset

 does not change,
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}=\mathbf{v}_{1}\wedge...\wedge\left(\mathbf{v}_{j}+\lambda\mathbf{v}_{k}\right)\wedge...\wedge\mathbf{v}_{N},\]

\end_inset

 hence the determinant of 
\begin_inset Formula $v_{ij}$
\end_inset

 does not change.
 To show that the determinant is linear as a function of each row, we consider
 the replacement 
\begin_inset Formula $\mathbf{v}_{j}\mapsto\mathbf{u}+\lambda\mathbf{v}$
\end_inset

 for fixed 
\begin_inset Formula $j$
\end_inset

; the tensor 
\begin_inset Formula $\omega$
\end_inset

 is then equal to the sum of the tensors 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{u}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 and 
\begin_inset Formula $\lambda\mathbf{v}_{1}\wedge...\wedge\mathbf{v}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

.
 Finally, exchanging the rows 
\begin_inset Formula $k$
\end_inset

 and 
\begin_inset Formula $l$
\end_inset

 in the matrix 
\begin_inset Formula $v_{ij}$
\end_inset

 corresponds to exchanging the vectors 
\begin_inset Formula $\mathbf{v}_{k}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{l}$
\end_inset

, and then the tensor 
\begin_inset Formula $\omega$
\end_inset

 changes sign.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
It is an important property that matrix transposition leaves the determinant
 unchanged.
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
The determinant of the transposed operator is unchanged: 
\begin_inset Formula \[
\det\hat{A}^{T}=\det\hat{A}.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
I give two proofs, one based on Definition\InsetSpace ~
D0 and the properties of permutations,
 another entirely coordinate-free --- based on Definition\InsetSpace ~
D1 of the determinant
 and definition\InsetSpace ~

\begin_inset LatexCommand \ref{par:Definition:transpose}

\end_inset

 of the transposed operator.
\end_layout

\begin_layout Standard

\emph on
First proof
\emph default
: According to Definition\InsetSpace ~
D0, the determinant of the transposed matrix 
\begin_inset Formula $A_{ji}$
\end_inset

 is given by the formula 
\begin_inset Formula \begin{equation}
\det(A_{ji})\equiv\sum_{\sigma}\left(-1\right)^{\left|\sigma\right|}A_{1,\sigma(1)}...A_{N,\sigma(N)},\label{eq:det transpose 0}\end{equation}

\end_inset

so the only difference between 
\begin_inset Formula $\det(A_{ij})$
\end_inset

 and 
\begin_inset Formula $\det(A_{ji})$
\end_inset

 is the order of indices in the products of matrix elements, namely 
\begin_inset Formula $A_{\sigma(i),i}$
\end_inset

 instead of 
\begin_inset Formula $A_{i,\sigma(i)}$
\end_inset

.
 We can show that the sum in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:det transpose 0}

\end_inset

) consists of exactly the same terms as the sum in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

), only the terms occur in a different order.
 This is sufficient to prove that 
\begin_inset Formula $\det(A_{ij})=\det(A_{ji})$
\end_inset

.
\end_layout

\begin_layout Standard
The sum in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:det transpose 0}

\end_inset

) consists of terms of the form 
\begin_inset Formula $A_{1,\sigma(1)}...A_{N,\sigma(N)}$
\end_inset

, where 
\begin_inset Formula $\sigma$
\end_inset

 is some permutation.
 We may reorder factors in this term,
\begin_inset Formula \[
A_{1,\sigma(1)}...A_{N,\sigma(N)}=A_{\sigma^{\prime}(1),1}...A_{\sigma^{\prime}(N),N},\]

\end_inset

where 
\begin_inset Formula $\sigma'$
\end_inset

 is another permutation such that 
\begin_inset Formula $A_{i,\sigma(i)}=A_{\sigma^{\prime}(i),i}$
\end_inset

 for 
\begin_inset Formula $i=1,...,N$
\end_inset

.
 This is achieved when 
\begin_inset Formula $\sigma'$
\end_inset

 is the permutation inverse to 
\begin_inset Formula $\sigma$
\end_inset

, i.e.\InsetSpace ~
we need to use 
\begin_inset Formula $\sigma^{\prime}\equiv\sigma^{-1}$
\end_inset

.
 Since there exists precisely one inverse permutation 
\begin_inset Formula $\sigma^{-1}$
\end_inset

 for each permutation 
\begin_inset Formula $\sigma$
\end_inset

, we may transform the sum in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:det transpose 0}

\end_inset

) into a sum over all inverse permutations 
\begin_inset Formula $\sigma'$
\end_inset

; each permutation will still enter exactly once into the new sum.
 Since the parity of the inverse permutation 
\begin_inset Formula $\sigma^{-1}$
\end_inset

 is the same as the parity of 
\begin_inset Formula $\sigma$
\end_inset

 (see Statement\InsetSpace ~
3 in Appendix\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-permutations}

\end_inset

), the factor 
\begin_inset Formula $\left(-1\right)^{|\sigma|}$
\end_inset

 will remain unchanged.
 Therefore, the sum will remain the same.
\end_layout

\begin_layout Standard

\emph on
Second proof
\emph default
: The transposed operator is defined as
\begin_inset Formula \[
(\hat{A}^{T}\mathbf{f}^{*})(\mathbf{x})=\mathbf{f}^{*}(\hat{A}\mathbf{x}),\quad\forall\mathbf{f}^{*}\in V^{*},\;\mathbf{x}\in V.\]

\end_inset

In order to compare the determinants 
\begin_inset Formula $\det\hat{A}$
\end_inset

 and 
\begin_inset Formula $\det(\hat{A}^{T})$
\end_inset

 according to Definition\InsetSpace ~
D1, we need to compare the numbers 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 and 
\begin_inset Formula $\wedge^{N}(\hat{A}^{T})^{N}$
\end_inset

.
 
\end_layout

\begin_layout Standard
Let us choose nonzero tensors 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

 and 
\begin_inset Formula $\omega^{*}\in\wedge^{N}V^{*}$
\end_inset

.
 By Lemma\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

, these tensors have representations of the form 
\begin_inset Formula $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 and 
\begin_inset Formula $\omega^{*}=\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{N}^{*}$
\end_inset

.
 We have 
\begin_inset Formula \[
(\det\hat{A})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}.\]

\end_inset

Now we would like to relate this expression with the analogous expression
 for 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

.
 In order to use the definition of 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

, we need to act on the vectors 
\begin_inset Formula $\hat{A}\mathbf{v}_{i}$
\end_inset

 by the covectors 
\begin_inset Formula $\mathbf{f}_{j}^{*}$
\end_inset

.
 Therefore, we act with the 
\begin_inset Formula $N$
\end_inset

-form 
\begin_inset Formula $\omega^{*}\in\wedge^{N}V^{*}\cong(\wedge^{N}V)^{*}$
\end_inset

 on the 
\begin_inset Formula $N$
\end_inset

-vector 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}\omega\in\wedge^{N}V$
\end_inset

 (this canonical action was defined by Definition\InsetSpace ~
3 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Definition-of-the-exterior}

\end_inset

).
 Since this action is linear, we find
\begin_inset Formula \[
\omega^{*}(\wedge^{N}\hat{A}^{N}\omega)=(\det\hat{A})\omega^{*}(\omega).\]

\end_inset

(Note that 
\begin_inset Formula $\omega^{*}(\omega)\neq0$
\end_inset

 since by assumption the tensors 
\begin_inset Formula $\omega$
\end_inset

 and 
\begin_inset Formula $\omega^{*}$
\end_inset

 are nonzero.) On the other hand, 
\begin_inset Formula \begin{align*}
\omega^{*}\big({\wedge^{N}\hat{A}^{N}}\omega\big) & =\sum_{\sigma}(-1)^{\left|\sigma\right|}\mathbf{f}_{1}^{*}(\hat{A}\mathbf{v}_{\sigma(1)})...\mathbf{f}_{N}^{*}(\hat{A}\mathbf{v}_{\sigma(N)})\\
 & =\sum_{\sigma}(-1)^{\left|\sigma\right|}(\hat{A}^{T}\mathbf{f}_{1}^{*})(\mathbf{v}_{\sigma(1)})...(\hat{A}^{T}\mathbf{f}_{N}^{*})(\mathbf{v}_{\sigma(N)})\\
 & =\big({\wedge^{N}(\hat{A}^{T})^{N}}\omega^{*}\big)(\omega)=(\det\hat{A}^{T})\omega^{*}(\omega).\end{align*}

\end_inset

Hence 
\begin_inset Formula $\det\hat{A}^{T}=\det\hat{A}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise* (Laplace expansion
\begin_inset LatexCommand \index{Laplace expansion}

\end_inset

):
\end_layout

\begin_layout Standard
As shown in the Corollary above, the determinant of the matrix 
\begin_inset Formula $v_{ij}$
\end_inset

 is a linear function of each of the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

.
 Consider 
\begin_inset Formula $\det(v_{ij})$
\end_inset

 as a linear function of the first vector, 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

; this function is a 
\emph on
covector
\emph default
 that we may temporarily denote by 
\begin_inset Formula $\mathbf{f}_{1}^{*}$
\end_inset

.
 Show that 
\begin_inset Formula $\mathbf{f}_{1}^{*}$
\end_inset

 can be represented in the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 as
\begin_inset Formula \[
\mathbf{f}_{1}^{*}=\sum_{i=1}^{N}\left(-1\right)^{i-1}B_{1i}\mathbf{e}_{i}^{*},\]

\end_inset

where the coefficients 
\begin_inset Formula $B_{1i}$
\end_inset

 are 
\series bold
minors
\series default

\begin_inset LatexCommand \index{minor}

\end_inset

 of the matrix 
\begin_inset Formula $v_{ij}$
\end_inset

, that is, determinants of the matrix 
\begin_inset Formula $v_{ij}$
\end_inset

 from which row 1 and column 
\begin_inset Formula $i$
\end_inset

 have been deleted.
\end_layout

\begin_layout Subparagraph
Solution:
\end_layout

\begin_layout Standard
Consider one of the coefficients, for example 
\begin_inset Formula $B_{11}\equiv\mathbf{f}_{1}^{*}(\mathbf{e}_{1})$
\end_inset

.
 This coefficient can be determined from the tensor equality
\begin_inset Formula \begin{equation}
\mathbf{e}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}=B_{11}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\label{eq:laplace}\end{equation}

\end_inset

We could reduce 
\begin_inset Formula $B_{11}$
\end_inset

 to a determinant of an 
\begin_inset Formula $(N-1)\times(N-1)$
\end_inset

 matrix if we could cancel 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 on both sides of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:laplace}

\end_inset

).
 We would be able to cancel 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 if we had a tensor equality of the form 
\begin_inset Formula \[
\mathbf{e}_{1}\wedge\psi=B_{11}\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N},\]

\end_inset

 where the (
\begin_inset Formula $N-1$
\end_inset

)-vector 
\begin_inset Formula $\psi$
\end_inset

 were proportional to 
\begin_inset Formula $\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

.
 However, 
\begin_inset Formula $\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:laplace}

\end_inset

) is not necessarily proportional to 
\begin_inset Formula $\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

; so we need to transform Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:laplace}

\end_inset

) to a suitable form.
 In order to do this, we transform the vectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 into vectors that belong to the subspace spanned by 
\begin_inset Formula $\left\{ \mathbf{e}_{2},...,\mathbf{e}_{N}\right\} $
\end_inset

.
 We subtract from each 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 (
\begin_inset Formula $i=2,...,N$
\end_inset

) a suitable multiple of 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and define the vectors 
\begin_inset Formula $\tilde{\mathbf{v}}_{i}$
\end_inset

 (
\begin_inset Formula $i=2,...,N$
\end_inset

) such that 
\begin_inset Formula $\mathbf{e}_{1}^{*}(\tilde{\mathbf{v}}_{i})=0$
\end_inset

:
\begin_inset Formula \[
\tilde{\mathbf{v}}_{i}\equiv\mathbf{v}_{i}-\mathbf{e}_{1}^{*}(\mathbf{v}_{i})\mathbf{e}_{1},\quad i=2,...,N.\]

\end_inset

Then 
\begin_inset Formula $\tilde{\mathbf{v}}_{i}\in\text{Span}\left\{ \mathbf{e}_{2},...,\mathbf{e}_{N}\right\} $
\end_inset

 and also 
\begin_inset Formula \[
\mathbf{e}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}=\mathbf{e}_{1}\wedge\tilde{\mathbf{v}}_{2}\wedge...\wedge\tilde{\mathbf{v}}_{N}.\]

\end_inset

 Now Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:laplace}

\end_inset

) is rewritten as
\begin_inset Formula \[
\mathbf{e}_{1}\wedge\tilde{\mathbf{v}}_{2}\wedge...\wedge\tilde{\mathbf{v}}_{N}=B_{11}\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset

Since 
\begin_inset Formula $\tilde{\mathbf{v}}_{i}\in\text{Span}\left\{ \mathbf{e}_{2},...,\mathbf{e}_{N}\right\} $
\end_inset

, the tensors 
\begin_inset Formula $\tilde{\mathbf{v}}_{2}\wedge...\wedge\tilde{\mathbf{v}}_{N}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

 are proportional to each other.
 Now we are allowed to cancel 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and obtain 
\begin_inset Formula \[
\tilde{\mathbf{v}}_{2}\wedge...\wedge\tilde{\mathbf{v}}_{N}=B_{11}\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset

Note that the vectors 
\begin_inset Formula $\tilde{\mathbf{v}}_{i}$
\end_inset

 have the first components equal to zero.
 In other words, 
\begin_inset Formula $B_{11}$
\end_inset

 is equal to the determinant of the matrix 
\begin_inset Formula $v_{ij}$
\end_inset

 from which row 1 (i.e.\InsetSpace ~
the vector 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

) and column 1 (the coefficients at 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

) have been deleted.
 The coefficients 
\begin_inset Formula $B_{1j}$
\end_inset

 for 
\begin_inset Formula $j=2,...,N$
\end_inset

 are calculated similarly.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
* Index notation for 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 and determinants
\begin_inset LatexCommand \label{sub:Index-notation-for-determinants}

\end_inset


\end_layout

\begin_layout Standard
Let us see how determinants are written in the index notation.
\end_layout

\begin_layout Standard
In order to use the index notation, we need to fix a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and represent each vector and each tensor by their components in that basis.
 Determinants are related to the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.
 Let us consider a set of vectors 
\begin_inset Formula $\{\mathbf{v}_{1},...,\mathbf{v}_{N}\}$
\end_inset

 and the tensor 
\begin_inset Formula \[
\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V.\]

\end_inset

Since the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is one-dimen\SpecialChar \-
sion\SpecialChar \-
al and its basis consists of the single tensor 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, the index representation of 
\begin_inset Formula $\psi$
\end_inset

 consists, in principle, of the single number 
\begin_inset Formula $C$
\end_inset

 in a formula such as
\begin_inset Formula \[
\psi=C\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset

 However, it is more convenient to use a totally antisymmetric array of
 numbers having 
\begin_inset Formula $N$
\end_inset

 indices, 
\begin_inset Formula $\psi^{i_{1}...i_{N}}$
\end_inset

, so that
\begin_inset Formula \[
\psi=\frac{1}{N!}\sum_{i_{1},...,i_{N}=1}^{N}\psi^{i_{1}...i_{N}}\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{N}}.\]

\end_inset

Then the coefficient 
\begin_inset Formula $C$
\end_inset

 is 
\begin_inset Formula $C\equiv\psi^{12...N}$
\end_inset

.
 In the formula above, the combinatorial factor 
\begin_inset Formula $N!$
\end_inset

 compensates the fact that we are summing an antisymmetric product of vectors
 with a totally antisymmetric array of coefficients.
 
\end_layout

\begin_layout Standard
To write such arrays more conveniently, one can use Levi-Civita symbol 
\begin_inset Formula $\varepsilon^{i_{1}...i_{N}}$
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Exterior-product-in-index}

\end_inset

).
\begin_inset LatexCommand \index{Levi-Civita symbol}

\end_inset

 It is clear that any other totally antisymmetric array of numbers with
 
\begin_inset Formula $N$
\end_inset

 indices, such as 
\begin_inset Formula $\psi^{i_{1}...i_{N}}$
\end_inset

, is proportional to 
\begin_inset Formula $\varepsilon^{i_{1}...i_{N}}$
\end_inset

: For indices 
\begin_inset Formula $\left\{ i_{1},...,i_{N}\right\} $
\end_inset

 that correspond to a permutation 
\begin_inset Formula $\sigma$
\end_inset

 we have 
\begin_inset Formula \[
\psi^{i_{1}...i_{N}}=\psi^{12...N}(-1)^{\left|\sigma\right|},\]

\end_inset

and hence
\begin_inset Formula \[
\psi^{i_{1}...i_{N}}=(\psi^{12...N})\varepsilon^{i_{1}...i_{N}}.\]

\end_inset


\begin_inset Note Note
status collapsed

\begin_layout Standard
So the tensor 
\begin_inset Formula $\psi$
\end_inset

 has indeed only one 
\begin_inset Quotes eld
\end_inset

component,
\begin_inset Quotes erd
\end_inset

 chosen here as 
\begin_inset Formula $\psi^{12...N}$
\end_inset

.
 
\end_layout

\end_inset


\end_layout

\begin_layout Standard
How to compute the index representation of 
\begin_inset Formula $\psi$
\end_inset

 given the array 
\begin_inset Formula $v_{j}^{k}$
\end_inset

 of the components of the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

? We need to represent the tensor 
\begin_inset Formula \[
\psi\equiv\sum_{\sigma}\left(-1\right)^{\left|\sigma\right|}\mathbf{v}_{\sigma(1)}\otimes\mathbf{v}_{\sigma(2)}\otimes...\otimes\mathbf{v}_{\sigma(N)}.\]

\end_inset

Hence, we can use the Levi-Civita symbol and write
\begin_inset Formula \begin{align*}
\psi^{12...N} & =\sum_{\sigma}\left(-1\right)^{\left|\sigma\right|}v_{\sigma(1)}^{1}\otimes v_{\sigma(2)}^{2}\otimes...\otimes v_{\sigma(N)}^{N}\\
 & =\sum_{i_{1},...,i_{N}=1}^{N}\varepsilon^{i_{1}...i_{N}}v_{i_{1}}^{1}...v_{i_{N}}^{N}.\end{align*}

\end_inset

The component 
\begin_inset Formula $\psi^{12...N}$
\end_inset

 is the only number we need to represent 
\begin_inset Formula $\psi$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
\end_layout

\begin_layout Standard
The Levi-Civita symbol itself can be seen as the index representation of
 the tensor 
\begin_inset Formula \[
\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\]

\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 (The components of 
\begin_inset Formula $\omega$
\end_inset

 in a different basis will, of course, differ from 
\begin_inset Formula $\varepsilon^{i_{1}...i_{N}}$
\end_inset

 by a constant factor.)
\end_layout

\begin_layout Standard
Now let us construct the index representation of the determinant of an operator
 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The operator is given by its matrix 
\begin_inset Formula $A_{j}^{i}$
\end_inset

 and acts on a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 with components 
\begin_inset Formula $v^{i}$
\end_inset

 yielding a vector 
\begin_inset Formula $\mathbf{u}\equiv\hat{A}\mathbf{v}$
\end_inset

 with components
\begin_inset Formula \[
u^{k}=\sum_{i=1}^{N}A_{i}^{k}v^{i}.\]

\end_inset

Hence, the operator 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 acting on 
\begin_inset Formula $\psi$
\end_inset

 yields an antisymmetric tensor whose component with the indices 
\begin_inset Formula $k_{1}...k_{N}$
\end_inset

 is
\begin_inset Formula \begin{align*}
\left[(\wedge^{N}\hat{A}^{N})\psi\right]^{k_{1}...k_{N}} & =\left[\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}\right]^{k_{1}...k_{N}}\\
 & =\sum_{i_{s},j_{s}}\varepsilon^{i_{1}...i_{N}}A_{j_{1}}^{k_{1}}v_{i_{1}}^{j_{1}}...A_{j_{N}}^{k_{N}}v_{i_{N}}^{j_{N}}.\end{align*}

\end_inset

Since the tensor 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}\psi$
\end_inset

 is proportional to 
\begin_inset Formula $\psi$
\end_inset

 with the coefficient 
\begin_inset Formula $\det\hat{A}$
\end_inset

, the same proportionality holds for the components of these tensors:
\begin_inset Formula \begin{align*}
\sum_{i_{s},j_{s}}\varepsilon^{i_{1}...i_{N}}A_{j_{1}}^{k_{1}}v_{i_{1}}^{j_{1}}...A_{j_{N}}^{k_{N}}v_{i_{N}}^{j_{N}} & =(\det\hat{A})\psi^{k_{1}...k_{N}}\\
 & =(\det\hat{A})\sum_{i_{s}}\varepsilon^{i_{1}...i_{N}}v_{i_{1}}^{k_{1}}...v_{i_{N}}^{k_{N}}.\end{align*}

\end_inset

The relation above must hold for arbitrary vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 This is sufficient to derive a formula for 
\begin_inset Formula $\det\hat{A}$
\end_inset

.
 Since 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 are arbitrary, we may select 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 as the basis vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, so that 
\begin_inset Formula $v_{i}^{k}=\delta_{i}^{k}$
\end_inset

.
 Substituting this into the equation above, we find
\begin_inset Formula \[
\sum_{i_{s},j_{s}}\varepsilon^{i_{1}...i_{N}}A_{i_{1}}^{k_{1}}...A_{i_{N}}^{k_{N}}=(\det\hat{A})\varepsilon^{k_{1}...k_{N}}.\]

\end_inset

We can now solve for 
\begin_inset Formula $\det\hat{A}$
\end_inset

 by
\begin_inset Note Note
status collapsed

\begin_layout Standard
This component be proportional to 
\begin_inset Formula $\psi^{12...N}$
\end_inset

 with the constant factor 
\begin_inset Formula $C\equiv\det\hat{A}$
\end_inset

 if 
\begin_inset Formula $C$
\end_inset

 satisfies the relation
\begin_inset Formula \[
\sum_{i_{1},...,i_{N}}\varepsilon^{i_{1}...i_{N}}A_{i_{1}}^{k_{1}}...A_{i_{N}}^{k_{N}}=C\varepsilon^{k_{1}...k_{N}}.\]

\end_inset

The left side of the relation above is obviously antisymmetric in the free
 indices 
\begin_inset Formula $k_{i}$
\end_inset

, which justifies writing it as 
\begin_inset Formula $C$
\end_inset

 times the Levi-Civita symbol.
 This relation is the same as
\begin_inset Formula \[
\wedge^{N}\hat{A}^{N}\omega=C\omega,\]

\end_inset

but written in the index notation.
\end_layout

\end_inset

 multiplying with another Levi-Civita symbol 
\begin_inset Formula $\varepsilon_{k_{1}...k_{N}}$
\end_inset

, written this time with lower indices to comply with the summation convention,
 and summing over all 
\begin_inset Formula $k_{s}$
\end_inset

.
 By elementary combinatorics (there are 
\begin_inset Formula $N!$
\end_inset

 possibilities to choose the indices 
\begin_inset Formula $k_{1}$
\end_inset

, ..., 
\begin_inset Formula $k_{N}$
\end_inset

 such that they are all different), we have
\begin_inset Formula \[
\sum_{k_{1},...,k_{N}}\varepsilon_{k_{1}...k_{N}}\varepsilon^{k_{1}...k_{N}}=N!,\]

\end_inset

and therefore
\begin_inset Formula \[
\det(\hat{A})=\frac{1}{N!}\sum_{i_{s},k_{s}}\varepsilon_{k_{1}...k_{N}}\varepsilon^{i_{1}...i_{N}}A_{i_{1}}^{k_{1}}...A_{i_{N}}^{k_{N}}.\]

\end_inset

This formula can be seen as the index representation of 
\begin_inset Formula \[
\det\hat{A}=\omega^{*}(\wedge^{N}\hat{A}^{N}\omega),\]

\end_inset

where 
\begin_inset Formula $\omega^{*}\in(\wedge^{N}V)^{*}$
\end_inset

 is the tensor dual to 
\begin_inset Formula $\omega$
\end_inset

 and such that 
\begin_inset Formula $\omega^{*}(\omega)=1$
\end_inset

.
 The components of 
\begin_inset Formula $\omega^{*}$
\end_inset

 are
\begin_inset Formula \[
\frac{1}{N!}\varepsilon_{k_{1}...k_{N}}.\]

\end_inset


\end_layout

\begin_layout Standard
We have shown how the index notation can express calculations with determinants
 and tensors in the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.
 Such calculations in the index notation are almost always more cumbersome
 than in the index-free notation.
\end_layout

\begin_layout Section
Solving linear equations
\begin_inset LatexCommand \label{sub:Condition-for-solvability}

\end_inset


\end_layout

\begin_layout Standard
Determinants allow us to 
\begin_inset Quotes eld
\end_inset

determine
\begin_inset Quotes erd
\end_inset

 whether a system of linear equations has solutions.
 I will now explain this using exterior products.
 I will also show how to use exterior products for actually finding the
 solutions of linear equations when they exist.
\end_layout

\begin_layout Standard
A system of 
\begin_inset Formula $N$
\end_inset

 linear equations for 
\begin_inset Formula $N$
\end_inset

 unknowns 
\begin_inset Formula $x_{1}$
\end_inset

, ..., 
\begin_inset Formula $x_{N}$
\end_inset

 can be written in the matrix form,
\begin_inset Formula \begin{equation}
\sum_{j=1}^{N}A_{ij}x_{j}=b_{i},\quad i=1,...,N.\label{eq:linear system}\end{equation}

\end_inset

Here 
\begin_inset Formula $A_{ij}$
\end_inset

 is a given matrix of coefficients, and the 
\begin_inset Formula $N$
\end_inset

 numbers 
\begin_inset Formula $b_{i}$
\end_inset

 are also given.
\end_layout

\begin_layout Standard
The first step in studying Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:linear system}

\end_inset

) is to interpret it in a geometric way, so that 
\begin_inset Formula $A_{ij}$
\end_inset

 is not merely a 
\begin_inset Quotes eld
\end_inset

table of numbers
\begin_inset Quotes erd
\end_inset

 but a geometric object.
 We introduce an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space 
\begin_inset Formula $V=\mathbb{R}^{N}$
\end_inset

, in which a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 is fixed.
 There are two options (both will turn out to be useful).
 The first option is to interpret 
\begin_inset Formula $A_{ij}$
\end_inset

, 
\begin_inset Formula $b_{j}$
\end_inset

, and 
\begin_inset Formula $x_{j}$
\end_inset

 as the coefficients representing some linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 and some vectors 
\begin_inset Formula $\mathbf{b},\mathbf{x}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

:
\begin_inset Formula \[
\hat{A}\equiv\sum_{i,j=1}^{N}A_{ij}\mathbf{e}_{i}\otimes\mathbf{e}_{j}^{*},\quad\mathbf{b}\equiv\sum_{j=1}^{N}b_{j}\mathbf{e}_{j},\quad\mathbf{x}\equiv\sum_{j=1}^{N}x_{j}\mathbf{e}_{j}.\]

\end_inset

Then we reformulate Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:linear system}

\end_inset

) as the vector equation
\begin_inset Formula \begin{equation}
\hat{A}\mathbf{x}=\mathbf{b},\label{eq:Ax equals a}\end{equation}

\end_inset

from which we would like to find the unknown vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

.
 
\end_layout

\begin_layout Standard
The second option is to interpret 
\begin_inset Formula $A_{ij}$
\end_inset

 as the components of a 
\emph on
set
\emph default
 of 
\begin_inset Formula $N$
\end_inset

 vectors 
\begin_inset Formula $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
\end_inset

 with respect to the basis, 
\begin_inset Formula \[
\mathbf{a}_{j}\equiv\sum_{i=1}^{N}A_{ij}\mathbf{e}_{i},\quad j=1,...,N,\]

\end_inset

to define 
\begin_inset Formula $\mathbf{b}$
\end_inset

 as before,
\begin_inset Formula \[
\mathbf{b}\equiv\sum_{j=1}^{N}b_{j}\mathbf{e}_{j},\]

\end_inset

and to rewrite Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:linear system}

\end_inset

) as an equation expressing 
\begin_inset Formula $\mathbf{b}$
\end_inset

 as a linear combination of 
\begin_inset Formula $\left\{ \mathbf{a}_{j}\right\} $
\end_inset

 with unknown coefficients 
\begin_inset Formula $\left\{ x_{j}\right\} $
\end_inset

, 
\begin_inset Formula \begin{equation}
\sum_{j=1}^{N}x_{j}\mathbf{a}_{j}=\mathbf{b}.\label{eq:x a equals b}\end{equation}

\end_inset

In this interpretation, 
\begin_inset Formula $\left\{ x_{j}\right\} $
\end_inset

 is just a set of 
\begin_inset Formula $N$
\end_inset

 unknown numbers.
 These numbers could be interpreted the set of components of the vector
 
\begin_inset Formula $\mathbf{b}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{a}_{j}\right\} $
\end_inset

 if 
\begin_inset Formula $\left\{ \mathbf{a}_{j}\right\} $
\end_inset

 were actually a basis, which is not necessarily the case.
\end_layout

\begin_layout Subsection
Existence of solutions
\begin_inset LatexCommand \label{sub:Existence-of-solutions}

\end_inset


\end_layout

\begin_layout Standard
Let us begin with the first interpretation, Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Ax equals a}

\end_inset

).
 When does Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Ax equals a}

\end_inset

) have solutions? The solution certainly exists when the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\series bold
invertible
\series default
, i.e.\InsetSpace ~
the 
\series bold
inverse
\series default
 
\series bold
operator
\series default

\begin_inset LatexCommand \index{inverse operator}

\end_inset

 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 exists such that 
\begin_inset Formula $\hat{A}\hat{A}^{-1}=\hat{A}^{-1}\hat{A}=\hat{1}_{V}$
\end_inset

; then the solution is found as 
\begin_inset Formula $\mathbf{x}=\hat{A}^{-1}\mathbf{b}$
\end_inset

.
 The condition for the existence of 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 is that the determinant of 
\begin_inset Formula $\hat{A}$
\end_inset

 is nonzero.
 When the determinant of 
\begin_inset Formula $\hat{A}$
\end_inset

 is zero, the solution may or may not exist, and the solution is more complicate
d.
 I will give a proof of these statements based on the new definition D1
 of the determinant.
 
\end_layout

\begin_layout Paragraph
Theorem 1: 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\det\hat{A}\neq0$
\end_inset

, the equation 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{b}$
\end_inset

 has a unique solution 
\begin_inset Formula $\mathbf{x}$
\end_inset

 for any 
\begin_inset Formula $\mathbf{b}\in V$
\end_inset

.
 There exists a linear operator 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 such that the solution 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is expressed as 
\begin_inset Formula $\mathbf{x}=\hat{A}^{-1}\mathbf{b}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\,|\, i=1,...,N\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 It follows from 
\begin_inset Formula $\det\hat{A}\neq0$
\end_inset

 that 
\begin_inset Formula \[
\wedge^{N}\hat{A}^{N}\left(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\right)=(\hat{A}\mathbf{e}_{1})\wedge...\wedge(\hat{A}\mathbf{e}_{N})\neq0.\]

\end_inset

By Theorem\InsetSpace ~
1 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

, the set of vectors 
\begin_inset Formula $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{N}\}$
\end_inset

 is linearly independent and therefore is a basis in 
\begin_inset Formula $V$
\end_inset

.
 Thus there exists a unique set of coefficients 
\begin_inset Formula $\left\{ c_{i}\right\} $
\end_inset

 such that 
\begin_inset Formula \[
\mathbf{b}=\sum_{i=1}^{N}c_{i}(\hat{A}\mathbf{e}_{i}).\]

\end_inset

Then due to linearity of 
\begin_inset Formula $\hat{A}$
\end_inset

 we have 
\begin_inset Formula \[
\mathbf{b}=\hat{A}\sum_{i=1}^{N}c_{i}\mathbf{e}_{i};\]

\end_inset

in other words, the solution of the equation 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{b}$
\end_inset

 is 
\begin_inset Formula $\mathbf{x}\equiv\sum_{i=1}^{N}c_{i}\mathbf{e}_{i}$
\end_inset

.
 Since the coefficients 
\begin_inset Formula $\left\{ c_{i}\right\} $
\end_inset

 are determined uniquely, the solution 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is unique.
\end_layout

\begin_layout Standard
The solution 
\begin_inset Formula $\mathbf{x}$
\end_inset

 can be expressed as a function of 
\begin_inset Formula $\mathbf{b}$
\end_inset

 as follows.
 Since 
\begin_inset Formula $\{\hat{A}\mathbf{e}_{i}\}$
\end_inset

 is a basis, there exists the corresponding dual basis, which we may denote
 by 
\begin_inset Formula $\left\{ \mathbf{v}_{j}^{*}\right\} $
\end_inset

.
 Then the coefficients 
\begin_inset Formula $c_{i}$
\end_inset

 can be expressed as 
\begin_inset Formula $c_{i}=\mathbf{v}_{i}^{*}(\mathbf{b})$
\end_inset

, and the vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 as
\begin_inset Formula \[
\mathbf{x}=\sum_{i=1}^{N}c_{i}\mathbf{e}_{i}=\sum_{i=1}^{N}\mathbf{e}_{i}\mathbf{v}_{i}^{*}(\mathbf{b})=\big(\sum_{i=1}^{N}\mathbf{e}_{i}\otimes\mathbf{v}_{i}^{*}\big)\mathbf{b}\equiv\hat{A}^{-1}\mathbf{b}.\]

\end_inset

This shows explicitly that the operator 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 exists and is linear.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Corollary:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\det\hat{A}\neq0$
\end_inset

, the equation 
\begin_inset Formula $\hat{A}\mathbf{v}=0$
\end_inset

 has only the (trivial) solution 
\begin_inset Formula $\mathbf{v}=0$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
The zero vector 
\begin_inset Formula $\mathbf{v}=0$
\end_inset

 is a solution of 
\begin_inset Formula $\hat{A}\mathbf{v}=0$
\end_inset

.
 By the above theorem the solution of that equation is unique, thus there
 are no other solutions.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Theorem 2 (existence of eigenvectors): 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

, there exists at least one eigenvector with eigenvalue 0, that is, at least
 one nonzero vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}=0$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Choose a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and consider the set 
\begin_inset Formula $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{N}\}$
\end_inset

.
 This set must be linearly dependent since 
\begin_inset Formula \[
\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{N}=(\det\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=0.\]

\end_inset

 Hence, there must exist at least one linear combination 
\begin_inset Formula $\sum_{i=1}^{N}\lambda_{i}\hat{A}\mathbf{e}_{i}=0$
\end_inset

 with 
\begin_inset Formula $\lambda_{i}$
\end_inset

 not all zero.
 Then the vector 
\begin_inset Formula $\mathbf{v}\equiv\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}$
\end_inset

 is nonzero and satisfies 
\begin_inset Formula $\hat{A}\mathbf{v}=0$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

, there 
\emph on
may
\emph default
 exist more than one eigenvector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}=0$
\end_inset

; more detailed analysis is needed to fully determine the eigenspace of
 zero eigenvalue, but we found that at least one eigenvector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 exists.
 If 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

 then the equation 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{b}$
\end_inset

 with 
\begin_inset Formula $\mathbf{b}\neq0$
\end_inset

 may still have solutions, although not for every 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
 Moreover, when a solution 
\begin_inset Formula $\mathbf{x}$
\end_inset

 exists it will 
\emph on
not
\emph default
 be unique because  
\begin_inset Formula $\mathbf{x}+\lambda\mathbf{v}$
\end_inset

 is another solution if 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is one.
 The full analysis of solvability of the equation 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{b}$
\end_inset

 when 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

 is more complicated (see the end of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Kramers-rule}

\end_inset

).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Once the inverse operator 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 is determined, it is easy to compute solutions of any number of equations
 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{b}_{1}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{b}_{2}$
\end_inset

, etc., for any number of vectors 
\begin_inset Formula $\mathbf{b}_{1}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}_{2}$
\end_inset

, etc.
 However, if we only need to solve 
\emph on
one
\emph default
 such equation, 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{b}$
\end_inset

, then computing the full inverse operator is too much work: We have to
 determine the entire dual basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}^{*}\right\} $
\end_inset

 and construct the operator 
\begin_inset Formula $\hat{A}^{-1}=\sum_{i=1}^{N}\mathbf{e}_{i}\otimes\mathbf{v}_{i}^{*}$
\end_inset

.
  An easier method is then provided by Kramer's rule.
\end_layout

\begin_layout Subsection
Kramer's rule and beyond
\begin_inset LatexCommand \label{sub:Kramers-rule}

\end_inset


\end_layout

\begin_layout Standard
We will now use the second interpretation, Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:x a equals b}

\end_inset

), of a linear system.
 This equation claims that 
\begin_inset Formula $\mathbf{b}$
\end_inset

 is a linear combination of the 
\begin_inset Formula $N$
\end_inset

 vectors of the set 
\begin_inset Formula $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
\end_inset

.
 Clearly, this is true for any 
\begin_inset Formula $\mathbf{b}$
\end_inset

 if 
\begin_inset Formula $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

; in that case, the solution 
\begin_inset Formula $\left\{ x_{j}\right\} $
\end_inset

 exists and is unique because the dual basis, 
\begin_inset Formula $\left\{ \mathbf{a}_{j}^{*}\right\} $
\end_inset

, exists and allows us to write the solution as
\begin_inset Formula \[
x_{j}=\mathbf{a}_{j}^{*}(\mathbf{b}).\]

\end_inset

 On the other hand, when 
\begin_inset Formula $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
\end_inset

 is not a basis in 
\begin_inset Formula $V$
\end_inset

 it is not certain that some given vector 
\begin_inset Formula $\mathbf{b}$
\end_inset

 is a linear combination of 
\begin_inset Formula $\mathbf{a}_{j}$
\end_inset

.
 In that case, the solution 
\begin_inset Formula $\left\{ x_{j}\right\} $
\end_inset

 may or may not exist, and when it exists it will not be unique.
\end_layout

\begin_layout Standard
We first consider the case where 
\begin_inset Formula $\left\{ \mathbf{a}_{j}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 In this case, the solution 
\begin_inset Formula $\left\{ x_{j}\right\} $
\end_inset

 exists, and we would like to determine it more explicitly.
 We recall that an explicit computation of the dual basis was shown in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Computing-the-dual}

\end_inset

.
 Motivated by the constructions given in that section, we consider the tensor
\begin_inset Formula \[
\omega\equiv\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}\in\wedge^{N}V\]

\end_inset

and additionally the 
\begin_inset Formula $N$
\end_inset

 tensors 
\begin_inset Formula $\left\{ \omega_{j}\,|\, j=1,...,N\right\} $
\end_inset

, defined by
\begin_inset Formula \begin{equation}
\omega_{j}\equiv\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{j-1}\wedge\mathbf{b}\wedge\mathbf{a}_{j+1}\wedge...\wedge\mathbf{a}_{N}\in\wedge^{N}V.\label{eq:omega j def}\end{equation}

\end_inset

The tensor 
\begin_inset Formula $\omega_{j}$
\end_inset

 is the exterior product of all the vectors 
\begin_inset Formula $\mathbf{a}_{1}$
\end_inset

 to 
\begin_inset Formula $\mathbf{a}_{N}$
\end_inset

 except that 
\begin_inset Formula $\mathbf{a}_{j}$
\end_inset

 is replaced by 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
 Since we know that the solution 
\begin_inset Formula $x_{j}$
\end_inset

 exists, we can substitute 
\begin_inset Formula $\mathbf{b}=\sum_{i=1}^{N}x_{i}\mathbf{a}_{i}$
\end_inset

 into Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:omega j def}

\end_inset

) and find
\begin_inset Formula \[
\omega_{j}=\mathbf{a}_{1}\wedge...\wedge x_{j}\mathbf{a}_{j}\wedge...\wedge\mathbf{a}_{N}=x_{j}\omega.\]

\end_inset

Since 
\begin_inset Formula $\left\{ \mathbf{a}_{j}\right\} $
\end_inset

 is a basis, the tensor 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

 is nonzero (Theorem\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

).
 Hence 
\begin_inset Formula $x_{j}$
\end_inset

 (
\begin_inset Formula $j=1,...,N$
\end_inset

) can be computed as the coefficient of proportionality between 
\begin_inset Formula $\omega_{j}$
\end_inset

 and 
\begin_inset Formula $\omega$
\end_inset

: 
\begin_inset Formula \[
x_{j}=\frac{\omega_{j}}{\omega}=\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{j-1}\wedge\mathbf{b}\wedge\mathbf{a}_{j+1}\wedge...\wedge\mathbf{a}_{N}}{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}}.\]

\end_inset

As before, the 
\begin_inset Quotes eld
\end_inset

division
\begin_inset Quotes erd
\end_inset

 of tensors
\begin_inset LatexCommand \index{dividing by tensor}

\end_inset

 means that the nonzero tensor 
\begin_inset Formula $\omega$
\end_inset

 is to be factored out of the numerator and canceled with the denominator,
 leaving a number.
 
\end_layout

\begin_layout Standard
This formula represents 
\series bold
Kramer's rule
\begin_inset LatexCommand \index{Kramer's rule}

\end_inset


\series default
, which yields explicitly the coefficients 
\begin_inset Formula $x_{j}$
\end_inset

 necessary to represent a vector 
\begin_inset Formula $\mathbf{b}$
\end_inset

 through vectors 
\begin_inset Formula $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
\end_inset

.
 In its matrix formulation, Kramer's rule says that 
\begin_inset Formula $x_{j}$
\end_inset

 is equal to the determinant of the modified matrix 
\begin_inset Formula $A_{ij}$
\end_inset

 where the 
\begin_inset Formula $j$
\end_inset

-th column has been replaced by the column 
\begin_inset Formula $(b_{1},...,b_{N})$
\end_inset

, divided by the determinant of the unmodified 
\begin_inset Formula $A_{ij}$
\end_inset

.
 
\begin_inset Note Note
status collapsed

\begin_layout Standard
This is in perfect agreement with Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Determinants-of-square}

\end_inset

 where we showed that the tensor 
\begin_inset Formula $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}\in\wedge^{N}V$
\end_inset

 is equal to the determinant of a square matrix made of components of 
\begin_inset Formula $N$
\end_inset

 vectors 
\begin_inset Formula $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
\end_inset

, times the basis tensor.
 
\end_layout

\end_inset


\end_layout

\begin_layout Standard
It remains to consider the case where 
\begin_inset Formula $\left\{ \mathbf{a}_{j}\right\} $
\end_inset

 is 
\emph on
not
\emph default
 a basis in 
\begin_inset Formula $V$
\end_inset

.
 We have seen in Statement\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Rank-of-a-set-of-vectors}

\end_inset

 that there exists a maximal nonzero exterior product of some linearly independe
nt subset of 
\begin_inset Formula $\left\{ \mathbf{a}_{j}\right\} $
\end_inset

; this subset can be found by trying various exterior products of the 
\begin_inset Formula $\mathbf{a}_{j}$
\end_inset

's.
 Let us now denote by 
\begin_inset Formula $\omega$
\end_inset

 this maximal exterior product.
 Without loss of generality, we may renumber the 
\begin_inset Formula $\mathbf{a}_{j}$
\end_inset

's so that 
\begin_inset Formula $\omega=\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{r}$
\end_inset

, where 
\begin_inset Formula $r$
\end_inset

 is the rank of the set 
\begin_inset Formula $\left\{ \mathbf{a}_{j}\right\} $
\end_inset

.
 If the equation 
\begin_inset Formula $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$
\end_inset

 has a solution then 
\begin_inset Formula $\mathbf{b}$
\end_inset

 is expressible as a linear combination of the 
\begin_inset Formula $\mathbf{a}_{j}$
\end_inset

's; thus we must have 
\begin_inset Formula $\omega\wedge\mathbf{b}=0$
\end_inset

.
 We can check whether 
\begin_inset Formula $\omega\wedge\mathbf{b}=0$
\end_inset

 since we have already computed 
\begin_inset Formula $\omega$
\end_inset

.
 If we find that 
\begin_inset Formula $\omega\wedge\mathbf{b}\neq0$
\end_inset

 we know that the equation 
\begin_inset Formula $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$
\end_inset

 has 
\emph on
no
\emph default
 
\emph on
solutions
\emph default
.
 
\end_layout

\begin_layout Standard
If we find that 
\begin_inset Formula $\omega\wedge\mathbf{b}=0$
\end_inset

 then we can conclude that the vector 
\begin_inset Formula $\mathbf{b}$
\end_inset

 belongs to the subspace 
\begin_inset Formula $\text{Span}\,\{\mathbf{a}_{1},...,\mathbf{a}_{r}\}$
\end_inset

, and so the equation 
\begin_inset Formula $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$
\end_inset

 
\emph on
has
\emph default
 solutions, --- in fact infinitely many of them.
 To determine all solutions, we will note that the set 
\begin_inset Formula $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{r}\right\} $
\end_inset

 is linearly independent, so 
\begin_inset Formula $\mathbf{b}$
\end_inset

 is uniquely represented as a linear combination of the vectors 
\begin_inset Formula $\mathbf{a}_{1},...,\mathbf{a}_{r}$
\end_inset

.
 In other words, there is a unique solution of the form
\begin_inset Formula \[
x_{i}^{(1)}=(x_{1}^{(1)},...,x_{r}^{(1)},0,...,0)\]

\end_inset

that may have nonzero coefficients 
\begin_inset Formula $x_{1}^{(1)},...,x_{r}^{(1)}$
\end_inset

 only up to the component number 
\begin_inset Formula $r$
\end_inset

, after which 
\begin_inset Formula $x_{i}^{(1)}=0$
\end_inset

 (
\begin_inset Formula $r+1\leq i\leq n$
\end_inset

).
 To obtain the coefficients 
\begin_inset Formula $x_{i}^{(1)}$
\end_inset

, we use Kramer's rule for the subspace 
\begin_inset Formula $\text{Span}\,\{\mathbf{a}_{1},...,\mathbf{a}_{r}\}$
\end_inset

:
\begin_inset Formula \[
x_{i}^{(1)}=\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{j-1}\wedge\mathbf{b}\wedge\mathbf{a}_{j+1}\wedge...\wedge\mathbf{a}_{r}}{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{r}}.\]

\end_inset

We can now obtain the general solution of the equation 
\begin_inset Formula $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$
\end_inset

 by adding to the solution 
\begin_inset Formula $x_{i}^{(1)}$
\end_inset

 an arbitrary solution 
\begin_inset Formula $x_{i}^{(0)}$
\end_inset

 of the homogeneous equation, 
\begin_inset Formula $\sum_{j=1}^{n}x_{j}^{(0)}\mathbf{a}_{j}=0$
\end_inset

.
 The solutions of the homogeneous equation build a subspace that can be
 determined as an eigenspace of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 as considered in the previous subsection.
 We can also determine the homogeneous solutions using the method of this
 section, as follows.
\end_layout

\begin_layout Standard
We decompose the vectors 
\begin_inset Formula $\mathbf{a}_{r+1},...,\mathbf{a}_{n}$
\end_inset

 into linear combinations of 
\begin_inset Formula $\mathbf{a}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{a}_{r}$
\end_inset

 again by using Kramer's rule:
\begin_inset Formula \begin{align*}
\mathbf{a}_{k} & =\sum_{j=1}^{r}\alpha_{kj}\mathbf{a}_{j},\quad k=r+1,...,n,\\
\alpha_{kj} & \equiv\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{j-1}\wedge\mathbf{a}_{k}\wedge\mathbf{a}_{j+1}\wedge...\wedge\mathbf{a}_{r}}{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{r}}.\end{align*}

\end_inset

Having computed the coefficients 
\begin_inset Formula $\alpha_{kj}$
\end_inset

, we determine the 
\begin_inset Formula $\left(n-r\right)$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space of homogeneous solutions.
 This space is spanned by the 
\begin_inset Formula $\left(n-r\right)$
\end_inset

 solutions that can be chosen, for example, as follows:
\begin_inset Formula \begin{align*}
x_{i}^{(0)(r+1)} & =(\alpha_{(r+1)1},...,\alpha_{(r+1)r},-1,0,...,0),\\
x_{i}^{(0)(r+2)} & =(\alpha_{(r+2)1},...,\alpha_{(r+2)r},0,-1,...,0),\\
 & ...\\
x_{i}^{(0)(n)} & =(\alpha_{n1},...,\alpha_{nr},0,0,...,-1).\end{align*}

\end_inset

Finally, the solution of the equation 
\begin_inset Formula $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$
\end_inset

 can be written as
\begin_inset Formula \[
x_{i}=x_{i}^{(1)}+\sum_{k=r+1}^{n}\beta_{k}x_{i}^{(0)(k)},\quad i=1,...,n,\]

\end_inset

where 
\begin_inset Formula $\left\{ \beta_{k}\,|\, k=r+1,...n\right\} $
\end_inset

 are 
\emph on
arbitrary
\emph default
 coefficients.
 The formula above explicitly contains 
\begin_inset Formula $\left(n-r\right)$
\end_inset

 arbitrary constants and is called the general solution of 
\begin_inset Formula $\sum_{i=1}^{n}x_{i}\mathbf{a}_{i}=\mathbf{b}$
\end_inset

.
 (The 
\series bold
general solution
\series default

\begin_inset LatexCommand \index{general solution}

\end_inset

 of something is a formula with arbitrary constants that describes all solutions.
) 
\end_layout

\begin_layout Paragraph
Example: 
\end_layout

\begin_layout Standard
Consider the linear system
\begin_inset Formula \begin{align*}
2x+y & =1\\
2x+2y+z & =4\\
y+z & =3\end{align*}

\end_inset

Let us apply the procedure above to this system.
 We interpret this system as the vector equation 
\begin_inset Formula $x\mathbf{a}+y\mathbf{b}+z\mathbf{c}=\mathbf{p}$
\end_inset

 where 
\begin_inset Formula $\mathbf{a}=\left(2,2,0\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{b}=\left(1,2,1\right)$
\end_inset

, 
\begin_inset Formula $\mathbf{c}=\left(0,1,1\right)$
\end_inset

, and 
\begin_inset Formula $\mathbf{p}=\left(1,4,3\right)$
\end_inset

 are given vectors.
 Introducing an explicit basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

, we compute (using elimination) 
\begin_inset Formula \begin{align*}
\mathbf{a}\wedge\mathbf{b} & =\left(2\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{1}+2\mathbf{e}_{2}+\mathbf{e}_{3}\right)\\
 & =2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{1}+2\mathbf{e}_{2}+\mathbf{e}_{3}\right)\\
 & =2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)=\mathbf{a}\wedge\mathbf{c}.\end{align*}

\end_inset

Therefore 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=0$
\end_inset

, and the maximal nonzero exterior product can be chosen as 
\begin_inset Formula $\omega\equiv\mathbf{a}\wedge\mathbf{b}$
\end_inset

.
 Now we check whether the vector 
\begin_inset Formula $\mathbf{p}$
\end_inset

 belongs to the subspace 
\begin_inset Formula $\text{Span}\,\left\{ \mathbf{a},\mathbf{b}\right\} $
\end_inset

:
\begin_inset Formula \begin{align*}
\omega\wedge\mathbf{p} & =2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)\wedge\left(\mathbf{e}_{1}+4\mathbf{e}_{2}+3\mathbf{e}_{3}\right)\\
 & =2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)\wedge3(\mathbf{e}_{2}+\mathbf{e}_{3})=0.\end{align*}

\end_inset

Therefore, 
\begin_inset Formula $\mathbf{p}$
\end_inset

 can be represented as a linear combination of 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

.
 To determine the coefficients, we use Kramer's rule: 
\begin_inset Formula $\mathbf{p}=\alpha\mathbf{a}+\beta\mathbf{b}$
\end_inset

 where
\begin_inset Formula \begin{align*}
\alpha & =\frac{\mathbf{p}\wedge\mathbf{b}}{\mathbf{a}\wedge\mathbf{b}}=\frac{\left(\mathbf{e}_{1}+4\mathbf{e}_{2}+3\mathbf{e}_{3}\right)\wedge\left(\mathbf{e}_{1}+2\mathbf{e}_{2}+\mathbf{e}_{3}\right)}{2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)}\\
 & =\frac{-2\mathbf{e}_{1}\wedge\mathbf{e}_{2}-2\mathbf{e}_{1}\wedge\mathbf{e}_{3}-2\mathbf{e}_{2}\wedge\mathbf{e}_{3}}{2\left(\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}+\mathbf{e}_{2}\wedge\mathbf{e}_{3}\right)}=-1;\\
\beta & =\frac{\mathbf{a}\wedge\mathbf{p}}{\mathbf{a}\wedge\mathbf{b}}=\frac{2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{1}+4\mathbf{e}_{2}+3\mathbf{e}_{3}\right)}{2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)}\\
 & =\frac{3\mathbf{e}_{1}\wedge\mathbf{e}_{2}+3\mathbf{e}_{1}\wedge\mathbf{e}_{3}+3\mathbf{e}_{2}\wedge\mathbf{e}_{3}}{\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}+\mathbf{e}_{2}\wedge\mathbf{e}_{3}}=3.\end{align*}

\end_inset

Therefore, 
\begin_inset Formula $\mathbf{p}=-\mathbf{a}+3\mathbf{b}$
\end_inset

; thus the inhomogeneous solution is 
\begin_inset Formula $\mathbf{x}^{(1)}=\left(-1,3,0\right)$
\end_inset

.
 
\end_layout

\begin_layout Standard
To determine the space of homogeneous solutions, we decompose 
\begin_inset Formula $\mathbf{c}$
\end_inset

 into a linear combination of 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 by the same method; the result is 
\begin_inset Formula $\mathbf{c}=-\frac{1}{2}\mathbf{a}+\mathbf{b}$
\end_inset

.
 So the space of homogeneous solutions is spanned by the single solution
 
\begin_inset Formula \[
x_{i}^{(0)(1)}=\left(-{\textstyle \frac{1}{2}},1,-1\right).\]

\end_inset

Finally, we write the general solution as
\begin_inset Formula \[
x_{i}=x_{i}^{(1)}+\beta x_{i}^{(0)(1)}=\left(-1-{\textstyle \frac{1}{2}}\beta,3+\beta,-\beta\right),\]

\end_inset

where 
\begin_inset Formula $\beta$
\end_inset

 is an arbitrary constant.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
In the calculations of the coefficients according to Kramer's rule the numerator
s and the denominators always contain the same tensor, such as 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}+\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

, multiplied by a constant factor.
 We have seen this in the above examples.
 This is guaranteed to happen in every case; it is impossible that a numerator
 should contain 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}+2\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

 or some other tensor not proportional to 
\begin_inset Formula $\omega$
\end_inset

.
 Therefore, in practical calculations it is sufficient to compute just one
 coefficient, say at 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}$
\end_inset

, in both the numerator and the denominator.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Techniques based on Kramer's rule can be applied also to non-square systems.
 Consider the system
\begin_inset Formula \begin{align*}
x+y & =1\\
y+z & =1\end{align*}

\end_inset

This system has infinitely many solutions.
 Determine the general solution.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
For example, the general solution can be written as 
\begin_inset Formula \[
x_{i}=\left(1,0,1\right)+\alpha\left(1,-1,1\right),\]

\end_inset

 where 
\begin_inset Formula $\alpha$
\end_inset

 is an arbitrary number.
\end_layout

\begin_layout Section
Vandermonde matrix
\begin_inset LatexCommand \label{sub:The-Vandermonde-matrix}

\end_inset


\end_layout

\begin_layout Standard
The 
\series bold
Vandermonde
\series default
 
\series bold
matrix
\series default

\begin_inset LatexCommand \index{Vandermonde matrix}

\end_inset

 is defined by
\begin_inset Formula \[
\text{Vand}\,(x_{1},...,x_{N})\equiv\left(\begin{array}{cccc}
1 & 1 & \cdots & 1\\
x_{1} & x_{2} &  & x_{N}\\
x_{1}^{2} & x_{2}^{2} &  & x_{N}^{2}\\
\vdots & \vdots & \ddots\\
x_{1}^{N-1} & x_{2}^{N-1} & \cdots & x_{N}^{N-1}\end{array}\right).\]

\end_inset

It is a curious matrix that is useful in several ways.
 A classic result is an explicit formula for the determinant of this matrix.
 Let us first compute the determinant for a Vandermonde matrix of small
 size.
\end_layout

\begin_layout Paragraph
Exercise 1: 
\end_layout

\begin_layout Standard
Verify that the Vandermonde determinants for 
\begin_inset Formula $N=2$
\end_inset

 and 
\begin_inset Formula $N=3$
\end_inset

 are as follows,
\begin_inset Formula \[
\left|\begin{array}{cc}
1 & 1\\
x & y\end{array}\right|=y-x;\quad\left|\begin{array}{ccc}
1 & 1 & 1\\
x & y & z\\
x^{2} & y^{2} & z^{2}\end{array}\right|=\left(y-x\right)\left(z-x\right)\left(z-y\right).\]

\end_inset


\end_layout

\begin_layout Standard
It now appears plausible from these examples that the determinant that we
 denote by 
\begin_inset Formula $\det\,(\text{Vand}(x_{1},...,x_{N}))$
\end_inset

 is equal to the product of the pairwise differences between all the 
\begin_inset Formula $x_{i}$
\end_inset

's.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
The determinant of the Vandermonde matrix is given by 
\begin_inset Formula \begin{align}
 & \det\,(\text{Vand}\,(x_{1},...,x_{N}))\nonumber \\
 & =\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)...\left(x_{N}-x_{N-1}\right)\nonumber \\
 & =\prod_{1\leq i<j\leq N}(x_{j}-x_{i}).\label{eq:Vandermonde formula 1}\end{align}

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Let us represent the Vandermonde matrix as a table of the components of
 a set of 
\begin_inset Formula $N$
\end_inset

 vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 with respect to some basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 Looking at the Vandermonde matrix, we find that the components of the vector
 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 are 
\begin_inset Formula $\left(1,1,...,1\right)$
\end_inset

, so
\begin_inset Formula \[
\mathbf{v}_{1}=\mathbf{e}_{1}+...+\mathbf{e}_{N}.\]

\end_inset

The components of the vector 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 are 
\begin_inset Formula $\left(x_{1},x_{2},...,x_{N}\right)$
\end_inset

; the components of the vector 
\begin_inset Formula $\mathbf{v}_{3}$
\end_inset

 are 
\begin_inset Formula $\left(x_{1}^{2},x_{2}^{2},...,x_{N}^{2}\right)$
\end_inset

.
 Generally, the vector 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 (
\begin_inset Formula $j=1,...,N$
\end_inset

) has components 
\begin_inset Formula $(x_{1}^{j-1},...,x_{N}^{j-1})$
\end_inset

.
 It is convenient to introduce a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{e}_{1}=x_{1}\mathbf{e}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\hat{A}\mathbf{e}_{N}=x_{N}\mathbf{e}_{N}$
\end_inset

; in other words, the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonal in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, and 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 is an eigenvector of 
\begin_inset Formula $\hat{A}$
\end_inset

 with the eigenvalue 
\begin_inset Formula $x_{j}$
\end_inset

.
 A tensor representation of 
\begin_inset Formula $\hat{A}$
\end_inset

 is
\begin_inset Formula \[
\hat{A}=\sum_{j=1}^{N}x_{j}\mathbf{e}_{j}\otimes\mathbf{e}_{j}^{*}.\]

\end_inset

Then we have a short formula for 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

:
\begin_inset Formula \[
\mathbf{v}_{j}=\hat{A}^{j-1}\mathbf{u},\quad j=1,...,N;\quad\mathbf{u}\equiv\mathbf{v}_{1}=\mathbf{e}_{1}+...+\mathbf{e}_{N}.\]

\end_inset

According to Statement 1 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Determinants-of-square}

\end_inset

, the determinant of the Vandermonde matrix is equal to the coefficient
 
\begin_inset Formula $C$
\end_inset

 in the equation
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=C\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset

So our purpose now is to determine 
\begin_inset Formula $C$
\end_inset

.
 Let us use the formula for 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 to rewrite
\begin_inset Formula \begin{equation}
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\mathbf{u}\wedge\hat{A}\mathbf{u}\wedge\hat{A}^{2}\mathbf{u}\wedge...\wedge\hat{A}^{N-1}\mathbf{u}.\label{eq:product 3}\end{equation}

\end_inset

Now we use the following trick: since 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}=\mathbf{a}\wedge\left(\mathbf{b}+\lambda\mathbf{a}\right)$
\end_inset

 for any 
\begin_inset Formula $\lambda$
\end_inset

, we may replace 
\begin_inset Formula \[
\mathbf{u}\wedge\hat{A}\mathbf{u}=\mathbf{u}\wedge(\hat{A}\mathbf{u}+\lambda\mathbf{u})=\mathbf{u}\wedge(\hat{A}+\lambda\hat{1})\mathbf{u}.\]

\end_inset

Similarly, we may replace the factor 
\begin_inset Formula $\hat{A}^{2}\mathbf{u}$
\end_inset

 by 
\begin_inset Formula $(\hat{A}^{2}+\lambda_{1}\hat{A}+\lambda_{2})\mathbf{u}$
\end_inset

, with arbitrary coefficients 
\begin_inset Formula $\lambda_{1}$
\end_inset

 and 
\begin_inset Formula $\lambda_{2}$
\end_inset

.
 We may pull this trick in every factor in the tensor product\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:product 3}

\end_inset

) starting from the second factor.
 In effect, we may replace 
\begin_inset Formula $\hat{A}^{k}$
\end_inset

 by an arbitrary polynomial 
\begin_inset Formula $p_{k}(\hat{A})$
\end_inset

 of degree 
\begin_inset Formula $k$
\end_inset

 as long as the coefficient at 
\begin_inset Formula $\hat{A}^{k}$
\end_inset

 remains 1.
 (Such polynomials are called 
\series bold
monic
\series default
 
\series bold
polynomials
\series default
.)
\begin_inset LatexCommand \index{monic polynomial}

\end_inset

 So we obtain
\begin_inset Formula \begin{align*}
 & \mathbf{u}\wedge\hat{A}\mathbf{u}\wedge\hat{A}^{2}\mathbf{u}\wedge...\wedge\hat{A}^{N-1}\mathbf{u}\\
 & =\mathbf{u}\wedge p_{1}(\hat{A})\mathbf{u}\wedge p_{2}(\hat{A})\hat{A}\mathbf{u}\wedge...\wedge p_{N-1}(\hat{A})\mathbf{u}.\end{align*}

\end_inset

Since we may choose the monic polynomials 
\begin_inset Formula $p_{j}(\hat{A})$
\end_inset

 arbitrarily, we would like to choose them such that the formula is simplified
 as much as possible.
\end_layout

\begin_layout Standard
Let us first choose the polynomial 
\begin_inset Formula $p_{N-1}$
\end_inset

 because that polynomial has the highest degree (
\begin_inset Formula $N-1$
\end_inset

) and so affords us the most freedom.
 Here comes another trick: If we choose 
\begin_inset Formula \[
p_{N-1}(x)\equiv\left(x-x_{1}\right)\left(x-x_{2}\right)...\left(x-x_{N-1}\right),\]

\end_inset

then the operator 
\begin_inset Formula $p_{N-1}(\hat{A})$
\end_inset

 will be much simplified: 
\begin_inset Formula \[
p_{N-1}(\hat{A})\mathbf{e}_{N}=p_{N-1}(x_{N})\mathbf{e}_{N};\; p_{N-1}(\hat{A})\mathbf{e}_{j}=0,\quad j=1,...,N-1.\]

\end_inset

Therefore 
\begin_inset Formula $p_{N-1}(\hat{A})\mathbf{u}=p_{N-1}(x_{N})\mathbf{e}_{N}$
\end_inset

.
 Now we repeat this trick for the polynomial 
\begin_inset Formula $p_{N-2}$
\end_inset

, choosing
\begin_inset Formula \[
p_{N-2}(x)\equiv\left(x-x_{1}\right)...\left(x-x_{N-2}\right)\]

\end_inset

and finding 
\begin_inset Formula \[
p_{N-2}(\hat{A})\mathbf{u}=p_{N-2}(x_{N-1})\mathbf{e}_{N-1}+p_{N-2}(x_{N})\mathbf{e}_{N}.\]

\end_inset

We need to compute the exterior product, which simplifies: 
\begin_inset Formula \begin{align*}
 & p_{N-2}(\hat{A})\mathbf{u}\wedge p_{N-1}(\hat{A})\mathbf{u}\\
 & =\left(p_{N-2}(x_{N-1})\mathbf{e}_{N-1}+p_{N-2}(x_{N})\mathbf{e}_{N}\right)\wedge p_{N-1}(x_{N})\mathbf{e}_{N}\\
 & =p_{N-2}(x_{N-1})\mathbf{e}_{N-1}\wedge p_{N-1}(x_{N})\mathbf{e}_{N}.\end{align*}

\end_inset

Proceeding inductively in this fashion, we find
\begin_inset Formula \begin{align*}
 & \mathbf{u}\wedge p_{1}(\hat{A})\mathbf{u}\wedge...\wedge p_{N-1}(\hat{A})\mathbf{u}\\
 & =\mathbf{u}\wedge p_{1}(x_{2})\mathbf{e}_{2}\wedge...\wedge p_{N-1}(x_{N})\mathbf{e}_{N}\\
 & =p_{1}(x_{2})...p_{N-1}(x_{N})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\end{align*}

\end_inset

where we defined each monic polynomial 
\begin_inset Formula $p_{j}(x)$
\end_inset

 as
\begin_inset Formula \[
p_{j}(x)\equiv(x-x_{1})...(x-x_{j}),\quad j=1,...,N-1.\]

\end_inset

For instance, 
\begin_inset Formula $p_{1}(x)=x-x_{1}$
\end_inset

.
 The product of the polynomials, 
\begin_inset Formula \begin{align*}
 & p_{1}(x_{2})p_{2}(x_{3})...p_{N-1}(x_{N})\\
 & =\left(x_{2}-x_{1}\right)(x_{3}-x_{1})(x_{3}-x_{2})...(x_{N}-x_{N-1})\\
 & =\prod_{1\leq i<j\leq N}\left(x_{j}-x_{i}\right).\end{align*}

\end_inset

yields the required formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Vandermonde formula 1}

\end_inset

).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
This somewhat long argument explains the procedure of subtracting various
 rows of the Vandermonde matrix from each other in order to simplify the
 determinant.
 (The calculation appears long because I have motivated every step, rather
 than just go through the equations.) One can observe that the determinant
 of the Vandermonde matrix is nonzero if and only if all the values 
\begin_inset Formula $x_{j}$
\end_inset

 are different.
 This property allows one to prove the Vandermonde formula in a much more
 elegant way.
\begin_inset Foot
status open

\begin_layout Standard
I picked this up from a paper by C.
 Krattenthaler (see online 
\family typewriter
\size small
arxiv.org/abs/math.co/9902004
\family default
\size default
) where many other special determinants are evaluated using similar techniques.
\end_layout

\end_inset

 Namely, one can notice that the expression 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 is a polynomial in 
\begin_inset Formula $x_{j}$
\end_inset

 of degree not more than 
\begin_inset Formula $\frac{1}{2}N(N-1)$
\end_inset

; that this polynomial is equal to zero unless every 
\begin_inset Formula $x_{j}$
\end_inset

 is different; therefore this polynomial must be equal to Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Vandermonde formula 1}

\end_inset

) times a constant.
 To find that constant, one computes explicitly the coefficient at the term
 
\begin_inset Formula $x_{2}x_{3}^{2}...x_{N}^{N-1}$
\end_inset

, which is equal to 1, hence the constant is 1.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
In the next two subsections we will look at two interesting applications
 of the Vandermonde matrix.
\end_layout

\begin_layout Subsection
Linear independence of eigenvectors
\begin_inset LatexCommand \label{sub:Linear-independence-of-eigenvectors}

\end_inset


\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
Suppose that the vectors 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{n}$
\end_inset

 are nonzero and are eigenvectors of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 with 
\emph on
all
\emph default
 
\emph on
different
\emph default
 eigenvalues 
\begin_inset Formula $\lambda_{1}$
\end_inset

, ..., 
\begin_inset Formula $\lambda_{n}$
\end_inset

.
 Then the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
\end_inset

 is linearly independent.
 (The number 
\begin_inset Formula $n$
\end_inset

 may be less than the dimension 
\begin_inset Formula $N$
\end_inset

 of the vector space 
\begin_inset Formula $V$
\end_inset

; the statement holds also for infinite-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces).
\end_layout

\begin_layout Subparagraph
Proof.
 
\end_layout

\begin_layout Standard
Let us show that the set 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\,|\, j=1,...,n\right\} $
\end_inset

 is linearly independent.
 By definition of linear independence, we need to show that 
\begin_inset Formula $\sum_{j=1}^{n}c_{j}\mathbf{e}_{j}=0$
\end_inset

 is possible only if all the coefficients 
\begin_inset Formula $c_{j}$
\end_inset

 are equal to zero.
 Let us denote 
\begin_inset Formula $\mathbf{u}=\sum_{j=1}^{n}c_{j}\mathbf{e}_{j}$
\end_inset

 and assume that 
\begin_inset Formula $\mathbf{u}=0$
\end_inset

.
 Consider the vectors 
\begin_inset Formula $\mathbf{u}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{u}$
\end_inset

, ..., 
\begin_inset Formula $\hat{A}^{n-1}\mathbf{u}$
\end_inset

; by assumption all these vectors are equal to zero.
 The condition that these vectors are equal to zero is a system of vector
 equations that looks like this,
\begin_inset Formula \begin{align*}
c_{1}\mathbf{e}_{1}+...+c_{n}\mathbf{e}_{n} & =0,\\
c_{1}\lambda_{1}\mathbf{e}_{1}+...+c_{n}\lambda_{n}\mathbf{e}_{n} & =0,\\
...\\
c_{1}\lambda_{1}^{n-1}\mathbf{e}_{1}+...+c_{n}\lambda_{n}^{n-1}\mathbf{e}_{n} & =0.\end{align*}

\end_inset

This system of equations can be written in a matrix form with the Vandermonde
 matrix,
\begin_inset Formula \[
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1\\
\lambda_{1} & \lambda_{2} &  & \lambda_{n}\\
\vdots & \vdots & \ddots\\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}\end{array}\right)\left[\begin{array}{c}
c_{1}\mathbf{e}_{1}\\
c_{2}\mathbf{e}_{2}\\
\vdots\\
c_{n}\mathbf{e}_{n}\end{array}\right]=\left[\begin{array}{c}
0\\
0\\
\vdots\\
0\end{array}\right].\]

\end_inset

Since the eigenvalues 
\begin_inset Formula $\lambda_{j}$
\end_inset

 are (by assumption) all different, the determinant of the Vandermonde matrix
 is nonzero.
 Therefore, this system of equations has only the trivial solution, 
\begin_inset Formula $c_{j}\mathbf{e}_{j}=0$
\end_inset

 for all 
\begin_inset Formula $j$
\end_inset

.
 Since 
\begin_inset Formula $\mathbf{e}_{j}\neq0$
\end_inset

, it is necessary that all 
\begin_inset Formula $c_{j}=0$
\end_inset

, 
\begin_inset Formula $j=1,...n$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Show that we are justified in using the matrix method for solving a system
 of equations with 
\emph on
vector-valued
\emph default
 unknowns 
\begin_inset Formula $c_{i}\mathbf{e}_{i}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Act with an arbitrary covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 on all the equations.
\end_layout

\begin_layout Subsection
Polynomial interpolation
\end_layout

\begin_layout Standard
The task of 
\series bold
polynomial interpolation
\series default

\begin_inset LatexCommand \index{polynomial interpolation}

\end_inset

 consists of finding a polynomial  that passes through specified points.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
If the numbers 
\begin_inset Formula $x_{1}$
\end_inset

, ..., 
\begin_inset Formula $x_{N}$
\end_inset

 are all different and numbers 
\begin_inset Formula $y_{1}$
\end_inset

, ..., 
\begin_inset Formula $y_{N}$
\end_inset

 are arbitrary then there exists a unique polynomial 
\begin_inset Formula $p(x)$
\end_inset

 of degree at most 
\begin_inset Formula $N-1$
\end_inset

 that has values 
\begin_inset Formula $y_{j}$
\end_inset

 at the points 
\begin_inset Formula $x_{j}$
\end_inset

 (
\begin_inset Formula $j=1,...,N$
\end_inset

).
\end_layout

\begin_layout Subparagraph
Proof.
 
\end_layout

\begin_layout Standard
Let us try to determine the coefficients of the polynomial 
\begin_inset Formula $p(x)$
\end_inset

.
 We write a polynomial with unknown coefficients, 
\begin_inset Formula \[
p(x)=p_{0}+p_{1}x+...+p_{N-1}x^{N-1},\]

\end_inset

and obtain a system of 
\begin_inset Formula $N$
\end_inset

 linear equations, 
\begin_inset Formula $p(x_{j})=y_{j}$
\end_inset

 (
\begin_inset Formula $j=1,...,N$
\end_inset

), for the 
\begin_inset Formula $N$
\end_inset

 unknowns 
\begin_inset Formula $p_{j}$
\end_inset

.
 The crucial observation is that this system of equations has the Vandermonde
 matrix.
 For example, with 
\begin_inset Formula $N=3$
\end_inset

 we have three equations,
\begin_inset Formula \begin{align*}
p(x_{1})=p_{0}+p_{1}x_{1}+p_{2}x_{1}^{2} & =y_{1},\\
p(x_{2})=p_{0}+p_{1}x_{2}+p_{2}x_{2}^{2} & =y_{2},\\
p(x_{3})=p_{0}+p_{1}x_{3}+p_{2}x_{3}^{2} & =y_{3},\end{align*}

\end_inset

which can be rewritten in the matrix form as
\begin_inset Formula \[
\left(\begin{array}{ccc}
1 & x_{1} & x_{1}^{2}\\
1 & x_{2} & x_{2}^{2}\\
1 & x_{3} & x_{3}^{2}\end{array}\right)\left[\begin{array}{c}
p_{0}\\
p_{1}\\
p_{2}\end{array}\right]=\left[\begin{array}{c}
y_{1}\\
y_{2}\\
y_{3}\end{array}\right].\]

\end_inset

Since the determinant of the Vandermonde matrix is nonzero as long as all
 
\begin_inset Formula $x_{j}$
\end_inset

 are different, these equations always have a unique solution 
\begin_inset Formula $\left\{ p_{j}\right\} $
\end_inset

.
 Therefore the required polynomial always exists and is unique.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
The polynomial 
\begin_inset Formula $p(x)$
\end_inset

 
\emph on
exists
\emph default
, but how can I write it explicitly? 
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
One possibility is the 
\series bold
Lagrange interpolating polynomial
\series default

\begin_inset LatexCommand \index{Lagrange polynomial}

\end_inset

; let us illustrate the idea on an example with three points:
\begin_inset Formula \begin{align*}
p(x) & =y_{1}\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}+y_{2}\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}\\
 & \quad+y_{3}\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}.\end{align*}

\end_inset

It is easy to check directly that this polynomial indeed has values 
\begin_inset Formula $p(x_{i})=y_{i}$
\end_inset

 for 
\begin_inset Formula $i=1,2,3$
\end_inset

.
 However, other (equivalent, but computationally more efficient) formulas
 are used in numerical calculations.
 
\end_layout

\begin_layout Section
Multilinear actions in exterior powers
\begin_inset LatexCommand \label{sub:Extensions-of-an}

\end_inset


\end_layout

\begin_layout Standard
As we have seen, the action of 
\begin_inset Formula $\hat{A}$
\end_inset

 on the exterior power 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 by 
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\mapsto\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}\]

\end_inset

has been very useful.
 However, this is not the only way 
\begin_inset Formula $\hat{A}$
\end_inset

 can act on an 
\begin_inset Formula $N$
\end_inset

-vector.
 Let us explore other possibilities; we will later see that they have their
 uses as well.
 
\end_layout

\begin_layout Standard
A straightforward generalization is to promote an operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 to a linear operator in the space 
\begin_inset Formula $\wedge^{k}V$
\end_inset

, 
\begin_inset Formula $k<N$
\end_inset

 (rather than in the top exterior power 
\begin_inset Formula $\wedge^{N}V$
\end_inset

).
 We denote this by 
\begin_inset Formula $\wedge^{k}\hat{A}^{k}$
\end_inset

:
\begin_inset Formula \[
(\wedge^{k}\hat{A}^{k})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}=\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{k}.\]

\end_inset

This is, of course, a linear map of 
\begin_inset Formula $\wedge^{k}\hat{A}^{k}$
\end_inset

 to itself (but not any more a mere multiplication by a scalar!).
 For instance, in 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 we have
\begin_inset Formula \[
(\wedge^{2}\hat{A}^{2})\mathbf{u}\wedge\mathbf{v}=\hat{A}\mathbf{u}\wedge\hat{A}\mathbf{v}.\]

\end_inset

However, this is not the only possibility.
 We could, for instance, define another map of 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 to itself like this, 
\begin_inset Formula \[
\mathbf{u}\wedge\mathbf{v}\mapsto(\hat{A}\mathbf{u})\wedge\mathbf{v}+\mathbf{u}\wedge(\hat{A}\mathbf{v}).\]

\end_inset

This map is 
\emph on
linear
\emph default
 
\emph on
in
\emph default
 
\begin_inset Formula $\hat{A}$
\end_inset

 (as well as being a linear map of 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 to itself), so I denote this map by 
\begin_inset Formula $\wedge^{2}\hat{A}^{1}$
\end_inset

 to emphasize that it contains 
\begin_inset Formula $\hat{A}$
\end_inset

 only linearly.
 I call such maps 
\series bold
extensions
\begin_inset LatexCommand \index{extensions of operators to $\wedge^k V$}

\end_inset

 of
\series default
 
\begin_inset Formula $\hat{A}$
\end_inset

 to the exterior power space 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 (this is not a standard terminology).
 
\end_layout

\begin_layout Standard
It turns out that operators of this kind play an important role in many
 results related to determinants.
 Let us now generalize the examples given above.
 We denote by 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 a linear map 
\begin_inset Formula $\wedge^{m}V\rightarrow\wedge^{m}V$
\end_inset

 that acts on 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$
\end_inset

 by producing a sum of terms with 
\begin_inset Formula $k$
\end_inset

 copies of 
\begin_inset Formula $\hat{A}$
\end_inset

 in each term.
 For instance,
\begin_inset Formula \begin{align*}
\wedge^{2}\hat{A}^{1}\left(\mathbf{a}\wedge\mathbf{b}\right) & \equiv\hat{A}\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\hat{A}\mathbf{b};\\
\wedge^{3}\hat{A}^{3}\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right) & \equiv\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c};\\
\wedge^{3}\hat{A}^{2}\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right) & \equiv\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}\\
 & \quad+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}.\end{align*}

\end_inset

More generally, we can write
\begin_inset Formula \begin{align*}
\wedge^{k}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right) & =\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{k};\\
\wedge^{k}\hat{A}^{1}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right) & =\sum_{j=1}^{k}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{k};\\
\wedge^{k}\hat{A}^{m}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right) & =\sum_{\begin{array}{c}
s_{1},...,s_{k}=0,1\\
\sum_{j}s_{j}=m\end{array}}\hat{A}^{s_{1}}\mathbf{v}_{1}\wedge...\wedge\hat{A}^{s_{k}}\mathbf{v}_{k}.\end{align*}

\end_inset

In the last line, the sum is over all integers 
\begin_inset Formula $s_{j}$
\end_inset

, each being either 0 or 1, so that 
\begin_inset Formula $\hat{A}^{s_{j}}$
\end_inset

 is either 
\begin_inset Formula $\hat{1}$
\end_inset

 or 
\begin_inset Formula $\hat{A}$
\end_inset

, and the total power of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula $m$
\end_inset

.
\end_layout

\begin_layout Standard
So far we defined the action of 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 only on tensors of the form 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\in\wedge^{m}V$
\end_inset

.
 Since an arbitrary element of 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 is a linear combination of such 
\begin_inset Quotes eld
\end_inset

elementary
\begin_inset Quotes erd
\end_inset

 tensors, and since we intend 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 to be a linear map, we define the action of 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 on every element of 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 using linearity.
 For example,
\begin_inset Formula \[
\wedge^{2}\hat{A}^{2}\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)\equiv\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}+\hat{A}\mathbf{c}\wedge\hat{A}\mathbf{d}.\]

\end_inset

By now it should be clear that the extension 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 is indeed a linear map 
\begin_inset Formula $\wedge^{m}V\rightarrow\wedge^{m}V$
\end_inset

.
 Here is a formal definition.
 
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
For a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

, the 
\series bold

\begin_inset Formula $k$
\end_inset

-linear extension
\begin_inset LatexCommand \index{extensions of operators to $\wedge^k V$}

\end_inset


\series default
 of 
\begin_inset Formula $\hat{A}$
\end_inset

 
\series bold
to the space
\series default
 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 is a linear transformation 
\begin_inset Formula $\wedge^{m}V\rightarrow\wedge^{m}V$
\end_inset

 denoted by 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 and defined by the formula
\begin_inset Formula \begin{equation}
\wedge^{m}\hat{A}^{k}\bigl(\bigwedge_{j=1}^{m}\mathbf{v}_{j}\bigr)=\negmedspace\sum_{\left(s_{1},...,s_{m}\right)}\negmedspace\bigwedge_{j=1}^{m}\hat{A}^{s_{j}}\mathbf{v}_{j},\; s_{j}=0\,\textrm{ or }1,\,\,\sum_{j=1}^{m}s_{j}=k.\label{eq:lambda m a k def}\end{equation}

\end_inset

In words: To describe the action of 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 on a term 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\in\wedge^{m}V$
\end_inset

, we sum over all possible ways to act with 
\begin_inset Formula $\hat{A}$
\end_inset

 on the various vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 from the term 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$
\end_inset

, where 
\begin_inset Formula $\hat{A}$
\end_inset

 appears exactly 
\begin_inset Formula $k$
\end_inset

 times.
 The action of 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 on a linear combination of terms is by definition the linear combination
 of the actions on each term.
 Also by definition we set 
\begin_inset Formula $\wedge^{m}\hat{A}^{0}\equiv\hat{1}_{\wedge^{m}V}$
\end_inset

 and 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}\equiv\hat{0}_{\wedge^{m}V}$
\end_inset

 for 
\begin_inset Formula $k<0$
\end_inset

 or 
\begin_inset Formula $k>m$
\end_inset

 or 
\begin_inset Formula $m>N$
\end_inset

.
 The meaningful values of 
\begin_inset Formula $m$
\end_inset

 and 
\begin_inset Formula $k$
\end_inset

 for 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 are thus 
\begin_inset Formula $0\leq k\leq m\leq N$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
Let the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 and the vectors 
\begin_inset Formula $\mathbf{a},\mathbf{b},\mathbf{c}$
\end_inset

 be such that 
\begin_inset Formula $\hat{A}\mathbf{a}=0$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{b}=2\mathbf{b}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{c}=\mathbf{b}+\mathbf{c}$
\end_inset

.
 We can then apply the various extensions of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 to various tensors.
 For instance,
\begin_inset Formula \begin{align*}
\wedge^{2}\hat{A}^{1}(\mathbf{a}\wedge\mathbf{b}) & =\hat{A}\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\hat{A}\mathbf{b}=2\mathbf{a}\wedge\mathbf{b},\\
\wedge^{2}\hat{A}^{2}(\mathbf{a}\wedge\mathbf{b}) & =\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}=0,\\
\wedge^{3}\hat{A}^{2}(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}) & =\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}=\mathbf{a}\wedge2\mathbf{b}\wedge\mathbf{c}=2(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\end{align*}

\end_inset

(in the last line, we dropped terms containing 
\begin_inset Formula $\hat{A}\mathbf{a}$
\end_inset

).
\end_layout

\begin_layout Standard
Before we move on to see why the operators 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 are useful, let us obtain some basic properties of these operators.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
The 
\begin_inset Formula $k$
\end_inset

-linear extension of 
\begin_inset Formula $\hat{A}$
\end_inset

 is a linear operator in the space 
\begin_inset Formula $\wedge^{m}V$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
To prove the linearity of the map, we need to demonstrate not only that
 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 maps linear combinations into linear combinations (this is obvious), but
 also that the result of the action of 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 on a tensor 
\begin_inset Formula $\omega\in\wedge^{m}V$
\end_inset

 does not depend on the particular representation of 
\begin_inset Formula $\omega$
\end_inset

 through terms of the form 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$
\end_inset

.
 Thus we need to check that 
\begin_inset Formula \[
\wedge^{m}\hat{A}^{k}\left(\omega\wedge\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\omega'\right)=-{\wedge^{m}\hat{A}^{k}}\left(\omega\wedge\mathbf{v}_{2}\wedge\mathbf{v}_{1}\wedge\omega'\right),\]

\end_inset

where 
\begin_inset Formula $\omega$
\end_inset

 and 
\begin_inset Formula $\omega'$
\end_inset

 are arbitrary tensors such that 
\begin_inset Formula $\omega\wedge\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\omega'\in\wedge^{m}V$
\end_inset

.
 But this property is a simple consequence of the definition of 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 which can be verified by explicit computation.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
For any two operators 
\begin_inset Formula $\hat{A},\hat{B}\in\textrm{End }V$
\end_inset

, we have 
\begin_inset Formula \[
\wedge^{m}{(\hat{A}\hat{B})}^{m}=\bigl(\wedge^{m}\hat{A}^{m}\bigr)\bigl(\wedge^{m}\hat{B}^{m}\bigr).\]

\end_inset

 For example, 
\begin_inset Formula \begin{align*}
 & \wedge^{2}{(\hat{A}\hat{B})}^{2}\left(\mathbf{u}\wedge\mathbf{v}\right)=\hat{A}\hat{B}\mathbf{u}\wedge\hat{A}\hat{B}\mathbf{v}\\
 & \quad=\wedge^{2}\hat{A}^{2}(\hat{B}\mathbf{u}\wedge\hat{B}\mathbf{v})=\wedge^{2}\hat{A}^{2}\bigl(\wedge^{2}\hat{B}^{2}\bigr)\left(\mathbf{u}\wedge\mathbf{v}\right).\end{align*}

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
This property is a direct consequence of the definition of the operator
 
\begin_inset Formula $\wedge^{k}\hat{A}^{k}$
\end_inset

:
\begin_inset Formula \[
\wedge^{k}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right)=\hat{A}\mathbf{v}_{1}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{k}=\bigwedge_{j=1}^{k}\hat{A}\mathbf{v}_{j},\]

\end_inset

 therefore 
\begin_inset Formula \begin{align*}
\wedge^{m}{(\hat{A}\hat{B})}^{m}\bigl(\bigwedge_{j=1}^{k}\mathbf{v}_{j}\bigr) & =\bigwedge_{j=1}^{k}\hat{A}\hat{B}\mathbf{v}_{j},\\
\wedge^{m}\hat{A}^{m}\wedge^{m}\hat{B}^{m}\bigl(\bigwedge_{j=1}^{k}\mathbf{v}_{j}\bigr) & =\wedge^{m}\hat{A}^{m}\bigl(\bigwedge_{j=1}^{k}\hat{B}\mathbf{v}_{j}\bigr)=\bigwedge_{j=1}^{k}\hat{A}\hat{B}\mathbf{v}_{j}.\end{align*}

\end_inset


\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Statement 3:
\end_layout

\begin_layout Standard
The operator 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 is 
\begin_inset Formula $k$
\end_inset

-linear in 
\begin_inset Formula $\hat{A}$
\end_inset

, 
\begin_inset Formula \[
\wedge^{m}(\lambda\hat{A})^{k}=\lambda^{k}(\wedge^{m}\hat{A}^{k}).\]

\end_inset

For this reason, 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 is called a 
\begin_inset Formula $k$
\end_inset

-linear extension.
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
This follows directly from the definition of the operator 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Finally, a formula that will be useful later (you can skip to Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-trace}

\end_inset

 if you would rather see how 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 is used).
\end_layout

\begin_layout Paragraph
Statement 4:
\end_layout

\begin_layout Standard
The following identity holds for any 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 and for any vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\,|\,1\leq j\leq m\right\} $
\end_inset

 and 
\begin_inset Formula $\mathbf{u}$
\end_inset

,
\begin_inset Formula \begin{align*}
\bigl[\wedge^{m}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\right)\bigr]\wedge\mathbf{u}+\bigl[\wedge^{m}\hat{A}^{k-1}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\right)\bigr]\wedge(\hat{A}\mathbf{u})\\
=\wedge^{m+1}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\wedge\mathbf{u}\right).\end{align*}

\end_inset

For example,
\begin_inset Formula \begin{equation}
\wedge^{2}\hat{A}^{2}\left(\mathbf{u}\wedge\mathbf{v}\right)\wedge\mathbf{w}+\wedge^{2}\hat{A}^{1}\left(\mathbf{u}\wedge\mathbf{v}\right)\wedge\hat{A}\mathbf{w}=\wedge^{3}\hat{A}^{2}\left(\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}\right).\label{eq:example 223}\end{equation}

\end_inset


\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
By definition, 
\begin_inset Formula $\wedge^{m+1}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\wedge\mathbf{u}\right)$
\end_inset

 is a sum of terms where 
\begin_inset Formula $\hat{A}$
\end_inset

 acts 
\begin_inset Formula $k$
\end_inset

 times on the vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 and 
\begin_inset Formula $\mathbf{u}$
\end_inset

.
 We can gather all terms containing 
\begin_inset Formula $\hat{A}\mathbf{u}$
\end_inset

 and separately all terms containing 
\begin_inset Formula $\mathbf{u}$
\end_inset

, and we will get the required expressions.
 Here is an explicit calculation for the given example:
\begin_inset Formula \begin{align*}
\wedge^{2}\hat{A}^{2}\left(\mathbf{u}\wedge\mathbf{v}\right)\wedge\mathbf{w} & =\hat{A}\mathbf{u}\wedge\hat{A}\mathbf{v}\wedge\mathbf{w};\\
\wedge^{2}\hat{A}^{1}\left(\mathbf{u}\wedge\mathbf{v}\right)\wedge\hat{A}\mathbf{w} & =\bigl(\hat{A}\mathbf{u}\wedge\mathbf{v}+\mathbf{u}\wedge\hat{A}\mathbf{v}\bigr)\wedge\hat{A}\mathbf{w}.\end{align*}

\end_inset

The formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:example 223}

\end_inset

) follows.
 
\end_layout

\begin_layout Standard
It should now be clear how the proof proceeds in the general case.
 A formal proof using Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:lambda m a k def}

\end_inset

) is as follows.
 Applying Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:lambda m a k def}

\end_inset

), we need to sum over 
\begin_inset Formula $s_{1}$
\end_inset

, ..., 
\begin_inset Formula $s_{m+1}$
\end_inset

.
 We can consider terms where 
\begin_inset Formula $s_{m+1}=0$
\end_inset

 separately from terms where 
\begin_inset Formula $s_{m+1}=1$
\end_inset

:
\begin_inset Formula \begin{align*}
\wedge^{m+1}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\wedge\mathbf{u}\right) & =\sum_{\left(s_{1},...,s_{m}\right);\sum s_{j}=k}\bigl(\bigwedge_{j=1}^{m}\hat{A}^{s_{j}}\mathbf{v}_{j}\bigr)\wedge\mathbf{u}\\
+\sum_{\left(s_{1},...,s_{m}\right);\sum s_{j}=k-1} & \bigl(\bigwedge_{j=1}^{m}\hat{A}^{s_{j}}\mathbf{v}_{j}\bigr)\wedge\hat{A}\mathbf{u}\\
=\bigl[\wedge^{m}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\right)\bigr]\wedge\mathbf{u} & +\bigl[\wedge^{m}\hat{A}^{k-1}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\right)\bigr]\wedge\hat{A}\mathbf{u}.\end{align*}

\end_inset

 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
* Index notation
\end_layout

\begin_layout Standard
Let us briefly note how the multilinear action such as 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 can be expressed in the index notation.
\end_layout

\begin_layout Standard
Suppose that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has the index representation 
\begin_inset Formula $A_{i}^{j}$
\end_inset

 in a fixed basis.
 The operator 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 acts in the space 
\begin_inset Formula $\wedge^{m}V$
\end_inset

; tensors 
\begin_inset Formula $\psi$
\end_inset

 in that space are represented in the index notation by totally antisymmetric
 arrays with 
\begin_inset Formula $m$
\end_inset

 indices, such as 
\begin_inset Formula $\psi^{i_{1}...i_{m}}$
\end_inset

.
 An operator 
\begin_inset Formula $\hat{B}\in\text{End}\left(\wedge^{m}V\right)$
\end_inset

 must be therefore represented by an array with 
\begin_inset Formula $2m$
\end_inset

 indices, 
\begin_inset Formula $B_{i_{1}...i_{m}}^{j_{1}...j_{m}}$
\end_inset

, which is totally antisymmetric with respect to the indices 
\begin_inset Formula $\left\{ i_{s}\right\} $
\end_inset

 and separately with respect to 
\begin_inset Formula $\left\{ j_{s}\right\} $
\end_inset

.
 
\end_layout

\begin_layout Standard
Let us begin with 
\begin_inset Formula $\wedge^{m}\hat{A}^{m}$
\end_inset

 as the simplest case.
 The action of 
\begin_inset Formula $\wedge^{m}\hat{A}^{m}$
\end_inset

 on 
\begin_inset Formula $\psi$
\end_inset

 is written in the index notation as 
\begin_inset Formula \[
[\wedge^{m}\hat{A}^{m}\psi]^{i_{1}...i_{m}}=\sum_{j_{1},...,j_{m}=1}^{N}A_{j_{1}}^{i_{1}}...A_{j_{m}}^{i_{m}}\psi^{j_{1}...j_{m}}.\]

\end_inset

This array is totally antisymmetric in 
\begin_inset Formula $i_{1}$
\end_inset

, ..., 
\begin_inset Formula $i_{m}$
\end_inset

 as usual.
\end_layout

\begin_layout Standard
Another example is the action of 
\begin_inset Formula $\wedge^{m}\hat{A}^{1}$
\end_inset

 on 
\begin_inset Formula $\psi$
\end_inset

:
\begin_inset Formula \[
[\wedge^{m}\hat{A}^{1}\psi]^{i_{1}...i_{m}}=\sum_{s=1}^{m}\sum_{j=1}^{N}A_{j}^{i_{s}}\psi^{i_{1}...i_{s-1}ji_{s+1}...i_{m}}.\]

\end_inset

In other words, 
\begin_inset Formula $\hat{A}$
\end_inset

 acts only on the 
\begin_inset Formula $s^{\text{th}}$
\end_inset

 index of 
\begin_inset Formula $\psi$
\end_inset

, and we sum over all 
\begin_inset Formula $s$
\end_inset

.
\end_layout

\begin_layout Standard
In this way, every 
\begin_inset Formula $\wedge^{m}\hat{A}^{k}$
\end_inset

 can be written in the index notation, although the expressions become cumbersom
e.
\end_layout

\begin_layout Section
Trace
\begin_inset LatexCommand \label{sub:The-trace}

\end_inset


\end_layout

\begin_layout Standard
The 
\series bold
trace
\series default
 
\begin_inset LatexCommand \index{trace}

\end_inset

of a square matrix 
\begin_inset Formula $A_{jk}$
\end_inset

 is defined as the sum of its diagonal elements, 
\begin_inset Formula $\textrm{Tr}A\equiv\sum_{j=1}^{n}A_{jj}$
\end_inset

.
 This definition is quite simple at first sight.
 However, if this definition is taken as fundamental then one is left with
 many questions.
 Suppose 
\begin_inset Formula $A_{jk}$
\end_inset

 is the representation of a linear transformation in a basis; is the number
 
\begin_inset Formula $\textrm{Tr}A$
\end_inset

 independent of the basis? Why is this particular combination of the matrix
 elements useful? (Why not compute the sum of the elements of 
\begin_inset Formula $A_{jk}$
\end_inset

 along the other diagonal of the square, 
\begin_inset Formula $\sum_{j=1}^{n}A_{(n+1-j)j}$
\end_inset

?)
\end_layout

\begin_layout Standard
To clarify the significance of the trace, I will give two other definitions
 of the trace: one through the canonical linear map 
\begin_inset Formula $V\otimes V^{*}\rightarrow\mathbb{K}$
\end_inset

, and another using the exterior powers construction, quite similar to the
 definition of the determinant in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-determinant-def}

\end_inset

.
\end_layout

\begin_layout Paragraph
Definition Tr1:
\end_layout

\begin_layout Standard
The trace 
\begin_inset Formula $\textrm{Tr}A$
\end_inset

 of a tensor 
\begin_inset Formula $A\equiv\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}\in V\otimes V^{*}$
\end_inset

 is the number canonically defined by the formula
\begin_inset Formula \begin{equation}
\textrm{Tr}A=\sum_{k}\mathbf{f}_{k}^{*}\left(\mathbf{v}_{k}\right).\label{eq:tr def 0}\end{equation}

\end_inset

If we represent the tensor 
\begin_inset Formula $A$
\end_inset

 through the basis tensors 
\begin_inset Formula $\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*}$
\end_inset

, where 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is some basis and 
\begin_inset Formula $\left\{ \mathbf{e}_{k}^{*}\right\} $
\end_inset

 is its dual basis,
\begin_inset Formula \[
A=\sum_{j=1}^{N}\sum_{k=1}^{N}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*},\]

\end_inset

then 
\begin_inset Formula $\mathbf{e}_{k}^{*}(\mathbf{e}_{j})=\delta_{ij}$
\end_inset

, and it follows that 
\begin_inset Formula \[
\textrm{Tr}A=\sum_{j,k=1}^{N}A_{jk}\mathbf{e}_{k}^{*}(\mathbf{e}_{j})=\sum_{j,k=1}^{N}A_{jk}\delta_{kj}=\sum_{j=1}^{N}A_{jj},\]

\end_inset

 in agreement with the traditional definition.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Show that the trace (according to Definition Tr1) does not depend on the
 choice of the tensor decomposition 
\begin_inset Formula $A=\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Here is another definition of the trace.
\end_layout

\begin_layout Paragraph
Definition Tr2:
\end_layout

\begin_layout Standard
The 
\series bold
trace
\series default
 
\begin_inset Formula $\textrm{Tr}\hat{A}$
\end_inset

 of an operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 is the number by which any nonzero tensor 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

 is multiplied when 
\begin_inset Formula $\wedge^{N}\hat{A}^{1}$
\end_inset

 acts on it:
\begin_inset Formula \begin{equation}
(\wedge^{N}\hat{A}^{1})\omega=(\textrm{Tr}\hat{A})\omega,\quad\forall\omega\in\wedge^{N}V.\label{eq:tr def}\end{equation}

\end_inset

Alternatively written, 
\begin_inset Formula \[
\wedge^{N}\hat{A}^{1}=(\textrm{Tr}\hat{A})\hat{1}_{\wedge^{N}V}.\]

\end_inset


\end_layout

\begin_layout Standard
First we will show that the definition Tr2 is equivalent to the traditional
 definition of the trace.
 Recall that, according to the definition of 
\begin_inset Formula $\wedge^{N}\hat{A}^{1}$
\end_inset

,
\begin_inset Formula \begin{align*}
\wedge^{N}\hat{A}^{1}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\right) & =\hat{A}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}+...\\
 & +\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N-1}\wedge\hat{A}\mathbf{v}_{N}.\end{align*}

\end_inset


\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is any basis in 
\begin_inset Formula $V$
\end_inset

, 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 is the dual basis, and a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is represented by a tensor 
\begin_inset Formula $\hat{A}=\sum_{j,k=1}^{N}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*}$
\end_inset

, then the trace of 
\begin_inset Formula $\hat{A}$
\end_inset

 computed according to Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tr def}

\end_inset

) will agree with the formula 
\begin_inset Formula $\textrm{Tr}\hat{A}=\sum_{j=1}^{N}A_{jj}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The operator 
\begin_inset Formula $\hat{A}$
\end_inset

 acts on the basis vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 as follows,
\begin_inset Formula \[
\hat{A}\mathbf{e}_{k}=\sum_{j=1}^{N}A_{jk}\mathbf{e}_{j}.\]

\end_inset

Therefore 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}=A_{jj}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, and definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tr def}

\end_inset

) gives 
\begin_inset Formula \begin{align*}
(\textrm{Tr}\hat{A})\,\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N} & =\sum_{j=1}^{N}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}\\
 & =\big(\sum_{j=1}^{N}A_{jj}\big)\,\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\end{align*}

\end_inset

Thus 
\begin_inset Formula $\textrm{Tr}\hat{A}=\sum_{j=1}^{N}A_{jj}$
\end_inset

.
 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Now we prove some standard properties of the trace.
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\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
For any operators 
\begin_inset Formula $\hat{A},\hat{B}\in\textrm{End }V$
\end_inset

:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 
\begin_inset Formula $\textrm{Tr}(\hat{A}+\hat{B})=\textrm{Tr}\hat{A}+\textrm{Tr}\hat{B}$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 
\begin_inset Formula $\textrm{Tr}(\hat{A}\hat{B})=\textrm{Tr}(\hat{B}\hat{A})$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
The formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tr def 0}

\end_inset

) allows one to derive these properties more easily, but I will give proofs
 using the definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:tr def}

\end_inset

).
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 Since 
\begin_inset Formula \begin{align*}
\mathbf{e}_{1}\wedge...\wedge(\hat{A}+\hat{B})\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N} & =\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}\\
 & \quad+\mathbf{e}_{1}\wedge...\wedge\hat{B}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N},\end{align*}

\end_inset

 from the definition of 
\begin_inset Formula $\wedge^{N}\hat{A}^{1}$
\end_inset

 we easily obtain 
\begin_inset Formula $\wedge^{N}(\hat{A}+\hat{B})^{1}=\wedge^{N}\hat{A}^{1}+\wedge^{N}\hat{B}^{1}$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 Since 
\begin_inset Formula $\wedge^{N}\hat{A}^{1}$
\end_inset

 and 
\begin_inset Formula $\wedge^{N}\hat{B}^{1}$
\end_inset

 are operators in one-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

, they commute, that is 
\begin_inset Formula \[
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})=(\wedge^{N}\hat{B}^{1})(\wedge^{N}\hat{A}^{1})=(\textrm{Tr}\hat{A})(\textrm{Tr}\hat{B})\hat{1}_{\wedge^{N}V}.\]

\end_inset

 Now we explicitly compute the composition 
\begin_inset Formula $(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})$
\end_inset

 acting on 
\begin_inset Formula $\mathbf{e}_{1}\wedge....\wedge\mathbf{e}_{N}$
\end_inset

.
 First, an example with 
\begin_inset Formula $N=2$
\end_inset

,
\begin_inset Formula \begin{align*}
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})\left(\mathbf{e}_{1}\wedge\mathbf{e}_{2}\right) & =\wedge^{N}\hat{A}^{1}(\hat{B}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\hat{B}\mathbf{e}_{2})\\
 & =\hat{A}\hat{B}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\hat{B}\mathbf{e}_{1}\wedge\hat{A}\mathbf{e}_{2}\\
 & +\hat{A}\mathbf{e}_{1}\wedge\hat{B}\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\hat{A}\hat{B}\mathbf{e}_{2}\\
=\wedge^{N}(\hat{A}\hat{B})^{1}\mathbf{e}_{1}\wedge\mathbf{e}_{2} & +\hat{A}\mathbf{e}_{1}\wedge\hat{B}\mathbf{e}_{2}+\hat{B}\mathbf{e}_{1}\wedge\hat{A}\mathbf{e}_{2}.\end{align*}

\end_inset

 Now the general calculation:
\begin_inset Formula \begin{align*}
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})\mathbf{e}_{1}\wedge....\wedge\mathbf{e}_{N} & =\sum_{j=1}^{N}\mathbf{e}_{1}\wedge...\wedge\hat{A}\hat{B}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}\\
+\sum_{j=1}^{N}\sum_{\begin{array}{c}
k=1\\
(k\neq j)\end{array}}^{N} & \mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{j}\wedge...\wedge\hat{B}\mathbf{e}_{k}\wedge...\wedge\mathbf{e}_{N}.\end{align*}

\end_inset

The second sum is symmetric in 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

, therefore the identity
\begin_inset Formula \[
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})\mathbf{e}_{1}\wedge....\wedge\mathbf{e}_{N}=(\wedge^{N}\hat{B}^{1})(\wedge^{N}\hat{A}^{1})\mathbf{e}_{1}\wedge....\wedge\mathbf{e}_{N}\]

\end_inset

entails
\begin_inset Formula \[
\sum_{j=1}^{N}\mathbf{e}_{1}\wedge...\wedge\hat{A}\hat{B}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}=\sum_{j=1}^{N}\mathbf{e}_{1}\wedge...\wedge\hat{B}\hat{A}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N},\]

\end_inset

that is 
\begin_inset Formula $\textrm{Tr}(\hat{A}\hat{B})=\textrm{Tr}(\hat{B}\hat{A})$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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Exercise 2:
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\begin_layout Standard
The operator 
\begin_inset Formula $\hat{L}_{\mathbf{b}}$
\end_inset

 acts on the entire exterior algebra 
\begin_inset Formula $\wedge V$
\end_inset

 and is defined by 
\begin_inset Formula $\hat{L}_{\mathbf{b}}:\omega\mapsto\mathbf{b}\wedge\omega$
\end_inset

, where 
\begin_inset Formula $\omega\in\wedge V$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}\in V$
\end_inset

.
 Compute the trace of this operator.
 
\emph on
Hint:
\emph default
 Use Definition Tr1 of the trace.
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
\begin_inset Formula $\textrm{Tr}\hat{L}_{\mathbf{b}}=0$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}\hat{A}=0$
\end_inset

; show that 
\begin_inset Formula $\textrm{Tr}\hat{A}=0$
\end_inset

 and 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Solution: 
\end_layout

\begin_layout Standard
We see that 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

 because 
\begin_inset Formula $0=\det(\hat{A}\hat{A})=(\det\hat{A})^{2}$
\end_inset

.
 Now we apply the operator 
\begin_inset Formula $\wedge^{N}\hat{A}^{1}$
\end_inset

 to a nonzero tensor 
\begin_inset Formula $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V$
\end_inset

 twice in a row:
\begin_inset Formula \begin{align*}
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{A}^{1})\omega & =(\textrm{Tr}\hat{A})^{2}\omega\\
=(\wedge^{N}\hat{A}^{1}) & \sum_{j=1}^{N}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\\
=\sum_{i=1}^{N}\sum_{j=1}^{N} & \mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{i}\wedge...\wedge\hat{A}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\\
 & =2(\wedge^{N}\hat{A}^{2})\omega.\end{align*}

\end_inset

(In this calculation, we omitted the terms containing 
\begin_inset Formula $\hat{A}\hat{A}\mathbf{v}_{i}$
\end_inset

 since 
\begin_inset Formula $\hat{A}\hat{A}=0$
\end_inset

.) Using this trick, we can prove by induction that for 
\begin_inset Formula $1\leq k\leq N$
\end_inset


\begin_inset Formula \[
{(\textrm{Tr}\hat{A})}^{k}\omega=(\wedge^{N}\hat{A}^{1})^{k}\omega=k!(\wedge^{N}\hat{A}^{k})\omega.\]

\end_inset

Note that 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 multiplies by the determinant of 
\begin_inset Formula $\hat{A}$
\end_inset

, which is zero.
 Therefore 
\begin_inset Formula $(\textrm{Tr}\hat{A})^{N}=N!(\det\hat{A})=0$
\end_inset

 and so 
\begin_inset Formula $\textrm{Tr}\hat{A}=0$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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Characteristic polynomial
\begin_inset LatexCommand \label{sub:The-characteristic-polynomial}

\end_inset
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\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
The 
\series bold
characteristic polynomial
\series default
 
\begin_inset Formula $Q_{\hat{A}}\left(x\right)$
\end_inset

 of an operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 is defined as
\begin_inset Formula \[
Q_{\hat{A}}\left(x\right)\equiv\det\bigl(\hat{A}-x\hat{1}_{V}\bigr).\]

\end_inset

This is a polynomial of degree 
\begin_inset Formula $N$
\end_inset

 in the variable 
\begin_inset Formula $x$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
The characteristic polynomial of the operator 
\begin_inset Formula $a\hat{1}_{V}$
\end_inset

, where 
\begin_inset Formula $a\in\mathbb{K}$
\end_inset

, is
\begin_inset Formula \[
Q_{a\hat{1}_{V}}\left(x\right)=\left(a-x\right)^{N}.\]

\end_inset

Setting 
\begin_inset Formula $a=0$
\end_inset

, we find that the characteristic polynomial of the zero operator 
\begin_inset Formula $\hat{0}_{V}$
\end_inset

 is simply 
\begin_inset Formula $\left(-x\right)^{N}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Consider a 
\series bold
diagonalizable
\series default

\begin_inset LatexCommand \index{diagonalizable operator}

\end_inset

 operator 
\begin_inset Formula $\hat{A}$
\end_inset

, i.e.\InsetSpace ~
an operator having a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 of eigenvectors with eigenvalues 
\begin_inset Formula $\lambda_{1},...,\lambda_{N}$
\end_inset

 (the eigenvalues are not necessarily all different).
 This operator can be then written in a tensor form as
\begin_inset Formula \[
\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*},\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{v}_{i}^{*}\right\} $
\end_inset

 is the basis dual to 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

.
 The characteristic polynomial of this operator is found from
\begin_inset Formula \begin{align*}
\det(\hat{A}-x\hat{1})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N} & =(\hat{A}\mathbf{v}_{1}-x\mathbf{v}_{1})\wedge...\wedge(\hat{A}\mathbf{v}_{N}-x\mathbf{v}_{N})\\
 & =\left(\lambda_{1}-x\right)\mathbf{v}_{1}\wedge...\wedge\left(\lambda_{N}-x\right)\mathbf{v}_{N}.\end{align*}

\end_inset

Hence
\begin_inset Formula \[
Q_{\hat{A}}(x)=\left(\lambda_{1}-x\right)...\left(\lambda_{N}-x\right).\]

\end_inset

Note also that the trace of a diagonalizable operator is equal to the sum
 of the eigenvalues, 
\begin_inset Formula $\text{Tr}\,\hat{A}=\lambda_{1}+...+\lambda_{N}$
\end_inset

, and the determinant is equal to the product of the eigenvalues, 
\begin_inset Formula $\det\hat{A}=\lambda_{1}\lambda_{2}...\lambda_{N}$
\end_inset

.
 This can be easily verified by direct calculations in the eigenbasis of
 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
If an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}\left(x\right)$
\end_inset

 then what is the characteristic polynomial of the operator 
\begin_inset Formula $a\hat{A}$
\end_inset

, where 
\begin_inset Formula $a\in\mathbb{K}$
\end_inset

 is a scalar?
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
\begin_inset Formula \[
Q_{a\hat{A}}\left(x\right)=a^{N}Q_{\hat{A}}\left(a^{-1}x\right).\]

\end_inset

Note that the right side of the above formula does 
\emph on
not
\emph default
 actually contain 
\begin_inset Formula $a$
\end_inset

 in the denominator because of the prefactor 
\begin_inset Formula $a^{N}$
\end_inset

.
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\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Standard
The principal use of the characteristic polynomial is to determine the eigenvalu
es of linear operators.
 We remind the reader that a polynomial 
\begin_inset Formula $p(x)$
\end_inset

 of degree 
\begin_inset Formula $N$
\end_inset

 has 
\begin_inset Formula $N$
\end_inset

 roots if we count each root with its algebraic multiplicity; the number
 of different roots may be smaller than 
\begin_inset Formula $N$
\end_inset

.
 A root 
\begin_inset Formula $\lambda$
\end_inset

 has 
\series bold
algebraic
\series default
 
\series bold
multiplicity
\begin_inset LatexCommand \index{algebraic multiplicity}

\end_inset


\series default
 
\begin_inset Formula $k$
\end_inset

 if 
\begin_inset Formula $p(x)$
\end_inset

 contains a factor 
\begin_inset Formula $\left(x-\lambda\right)^{k}$
\end_inset

 but not a factor 
\begin_inset Formula $\left(x-\lambda\right)^{k+1}$
\end_inset

.
 For example, the polynomial 
\begin_inset Formula \[
p(x)=(x-3)^{2}(x-1)=x^{3}-7x^{2}+15x-9\]

\end_inset

has two distinct roots, 
\begin_inset Formula $x=1$
\end_inset

 and 
\begin_inset Formula $x=3$
\end_inset

, and the root 
\begin_inset Formula $x=3$
\end_inset

 has
\series bold
 
\series default
multiplicity 2.
 If we count each root with its multiplicity, we will find that the polynomial
 
\begin_inset Formula $p(x)$
\end_inset

 has 3 roots (
\begin_inset Quotes eld
\end_inset

not all of them different
\begin_inset Quotes erd
\end_inset

 as we would say in this case).
 
\end_layout

\begin_layout Paragraph
Theorem 1:
\end_layout

\begin_layout Standard

\series bold
a
\series default
) The set of all the roots of the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}(x)$
\end_inset

 is the same as the set of all the eigenvalues of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
b
\series default
) The 
\series bold
geometric multiplicity
\series default

\begin_inset LatexCommand \index{geometric multiplicity}

\end_inset

 of an eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

 (i.e.\InsetSpace ~
the dimension of the space of all eigenvectors with the given eigenvalue
 
\begin_inset Formula $\lambda$
\end_inset

) is at least 1 but not larger than the algebraic multiplicity of a root
 
\begin_inset Formula $\lambda$
\end_inset

 in the characteristic polynomial.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
a
\series default
) By definition, an eigenvalue of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is such a number 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

 that there exists at least one vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

, 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

, such that 
\begin_inset Formula $\hat{A}\mathbf{v}=\lambda\mathbf{v}$
\end_inset

.
 This equation is equivalent to 
\begin_inset Formula $(\hat{A}-\lambda\hat{1}_{V})\mathbf{v}=0$
\end_inset

.
 By Corollary\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Condition-for-solvability}

\end_inset

, there would be no solutions 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

 unless 
\begin_inset Formula $\det(\hat{A}-\lambda\hat{1}_{V})=0$
\end_inset

.
 It follows that all eigenvalues 
\begin_inset Formula $\lambda$
\end_inset

 must be roots of the characteristic polynomial.
 Conversely, if 
\begin_inset Formula $\lambda$
\end_inset

 is a root then 
\begin_inset Formula $\det(\hat{A}-\lambda\hat{1}_{V})=0$
\end_inset

 and hence the vector equation 
\begin_inset Formula $(\hat{A}-\lambda\hat{1}_{V})\mathbf{v}=0$
\end_inset

 will have at least one nonzero solution 
\begin_inset Formula $\mathbf{v}$
\end_inset

 (see Theorem\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Condition-for-solvability}

\end_inset

).
\end_layout

\begin_layout Standard

\series bold
b
\series default
) Suppose 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 is a basis in the eigenspace of eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

.
 We need to show that 
\begin_inset Formula $\lambda_{0}$
\end_inset

 is a root of 
\begin_inset Formula $Q_{\hat{A}}(x)$
\end_inset

 with multiplicity at least 
\begin_inset Formula $k$
\end_inset

.
 We may obtain a basis in the space 
\begin_inset Formula $V$
\end_inset

 as 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k},\mathbf{e}_{k+1},...,\mathbf{e}_{N}\right\} $
\end_inset

 by adding suitable new vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, 
\begin_inset Formula $j=k+1$
\end_inset

, ..., 
\begin_inset Formula $N$
\end_inset

.
 Now compute the characteristic polynomial:
\begin_inset Formula \begin{align*}
 & Q_{\hat{A}}(x)(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N})\\
 & =(\hat{A}-x\hat{1})\mathbf{v}_{1}\wedge...\wedge(\hat{A}-x\hat{1})\mathbf{v}_{k}\\
 & \qquad\wedge(\hat{A}-x\hat{1})\mathbf{e}_{k+1}\wedge...\wedge(\hat{A}-x\hat{1})\mathbf{e}_{N}\\
 & =\left(\lambda_{0}-x\right)^{k}\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge(\hat{A}-x\hat{1})\mathbf{e}_{k+1}\wedge...\wedge(\hat{A}-x\hat{1})\mathbf{e}_{N}.\end{align*}

\end_inset

It follows that 
\begin_inset Formula $Q_{\hat{A}}(x)$
\end_inset

 contains the factor 
\begin_inset Formula $\left(\lambda_{0}-x\right)^{k}$
\end_inset

, which means that 
\begin_inset Formula $\lambda_{0}$
\end_inset

 is a root of 
\begin_inset Formula $Q_{\hat{A}}(x)$
\end_inset

 of multiplicity at least 
\begin_inset Formula $k$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
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\begin_layout Standard
If an operator's characteristic polynomial has a root 
\begin_inset Formula $\lambda_{0}$
\end_inset

 of algebraic multiplicity 
\begin_inset Formula $k$
\end_inset

, it may or may not have a 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al eigenspace for the eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

.
 We only know that 
\begin_inset Formula $\lambda_{0}$
\end_inset

 is an eigenvalue, i.e.\InsetSpace ~
that the eigenspace is at least one-dimen\SpecialChar \-
sion\SpecialChar \-
al.
 
\hfill
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Theorem\InsetSpace ~
1 shows that all the eigenvalues 
\begin_inset Formula $\lambda$
\end_inset

 of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be computed as roots of the equation 
\begin_inset Formula $Q_{\hat{A}}(\lambda)=0$
\end_inset

, which is called the 
\series bold
characteristic equation
\series default

\begin_inset LatexCommand \index{characteristic equation}

\end_inset

 for the operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
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\begin_layout Standard
Now we will demonstrate that the coefficients of the characteristic polynomial
 
\begin_inset Formula $Q_{\hat{A}}(x)$
\end_inset

 are related in a simple way to the operators 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

.
 First we need an auxiliary calculation to derive an explicit formula for
 determinants of operators of the form 
\begin_inset Formula $\hat{A}-\lambda\hat{1}_{V}$
\end_inset

.
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\begin_layout Standard
For any 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

, we have
\begin_inset Formula \[
\wedge^{N}(\hat{A}+\hat{1}_{V})^{N}=\sum_{r=0}^{N}(\wedge^{N}\hat{A}^{r}).\]

\end_inset

 More generally, for 
\begin_inset Formula $0\leq q\leq p\leq N$
\end_inset

, we have
\begin_inset Formula \begin{equation}
\wedge^{p}(\hat{A}+\hat{1}_{V})^{q}=\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r}).\label{eq:a+1 formula}\end{equation}

\end_inset
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\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
I first give some examples, then prove the most useful case 
\begin_inset Formula $p=q$
\end_inset

, and then show a proof of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:a+1 formula}

\end_inset

) for arbitrary 
\begin_inset Formula $p$
\end_inset

 and 
\begin_inset Formula $q$
\end_inset

.
 
\end_layout

\begin_layout Standard
For 
\begin_inset Formula $p=q=2$
\end_inset

, we compute
\begin_inset Formula \begin{align*}
\wedge^{2}(\hat{A}+\hat{1}_{V})^{2}\mathbf{a}\wedge\mathbf{b} & =(\hat{A}+\hat{1}_{V})\mathbf{a}\wedge(\hat{A}+\hat{1}_{V})\mathbf{b}\\
 & =\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}+\hat{A}\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\hat{A}\mathbf{b}+\mathbf{a}\wedge\mathbf{b}\\
 & =[\wedge^{2}\hat{A}^{2}+\wedge^{2}\hat{A}^{1}+\wedge^{2}\hat{A}^{0}]\left(\mathbf{a}\wedge\mathbf{b}\right).\end{align*}

\end_inset

This can be easily generalized to arbitrary 
\begin_inset Formula $p=q$
\end_inset

: The action of the operator 
\begin_inset Formula $\wedge^{p}(\hat{A}+\hat{1}_{V})^{p}$
\end_inset

 on 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{p}$
\end_inset

 is
\begin_inset Formula \[
\wedge^{p}(\hat{A}+\hat{1}_{V})^{p}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{p}=(\hat{A}+\hat{1}_{V})\mathbf{e}_{1}\wedge...\wedge(\hat{A}+\hat{1}_{V})\mathbf{e}_{p},\]

\end_inset

and we can expand the brackets to find first 
\emph on
one
\emph default
 term with 
\begin_inset Formula $p$
\end_inset

 operators 
\begin_inset Formula $\hat{A}$
\end_inset

, then 
\begin_inset Formula $p$
\end_inset

 terms with 
\begin_inset Formula $\left(p-1\right)$
\end_inset

 operators 
\begin_inset Formula $\hat{A}$
\end_inset

, etc., and finally one term with no operators 
\begin_inset Formula $\hat{A}$
\end_inset

 acting on the vectors 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

.
 All terms which contain 
\begin_inset Formula $r$
\end_inset

 operators 
\begin_inset Formula $\hat{A}$
\end_inset

 (with 
\begin_inset Formula $0\leq r\leq p$
\end_inset

) are those appearing in the definition of the operator 
\begin_inset Formula $\wedge^{p}\hat{A}^{r}$
\end_inset

.
 Therefore 
\begin_inset Formula \[
\wedge^{p}(\hat{A}+\hat{1}_{V})^{p}=\sum_{r=0}^{p}(\wedge^{p}\hat{A}^{r}).\]

\end_inset

This is precisely the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:a+1 formula}

\end_inset

) because in the particular case 
\begin_inset Formula $p=q$
\end_inset

 the combinatorial coefficient is trivial,
\begin_inset Formula \[
{p-r \choose p-q}={p-r \choose 0}=1.\]

\end_inset


\end_layout

\begin_layout Standard
Now we consider the general case 
\begin_inset Formula $0\leq q\leq p$
\end_inset

.
 First an example: for 
\begin_inset Formula $p=2$
\end_inset

 and 
\begin_inset Formula $q=1$
\end_inset

, we compute
\begin_inset Formula \begin{align*}
\wedge^{2}(\hat{A}+\hat{1}_{V})^{1}\mathbf{a}\wedge\mathbf{b} & =(\hat{A}+\hat{1}_{V})\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge(\hat{A}+\hat{1}_{V})\mathbf{b}\\
 & =2\mathbf{a}\wedge\mathbf{b}+\hat{A}\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\hat{A}\mathbf{b}\\
 & =\left[{\textstyle {2 \choose 1}}(\wedge^{2}\hat{A}^{0})+{\textstyle {2 \choose 0}}(\wedge^{2}\hat{A}^{1})\right]\mathbf{a}\wedge\mathbf{b},\end{align*}

\end_inset

since 
\begin_inset Formula ${2 \choose 1}=2$
\end_inset

 and 
\begin_inset Formula ${2 \choose 0}=1$
\end_inset

.
\end_layout

\begin_layout Standard
To prove the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:a+1 formula}

\end_inset

) in the general case, we use induction.
 The basis of induction consists of the trivial case (
\begin_inset Formula $p\geq0$
\end_inset

, 
\begin_inset Formula $q=0$
\end_inset

) where all operators 
\begin_inset Formula $\wedge^{0}\hat{A}^{p}$
\end_inset

 with 
\begin_inset Formula $p\geq1$
\end_inset

 are zero operators, and of the case 
\begin_inset Formula $p=q$
\end_inset

, which was already proved.
 Now we will prove the induction step 
\begin_inset Formula $\left(p,q\right)\&\left(p,q+1\right)\Rightarrow\left(p+1,q+1\right)$
\end_inset

.
 Figure\InsetSpace ~

\begin_inset LatexCommand \ref{fig:Deriving-Lemma-1}

\end_inset

 indicates why this induction step is sufficient to prove the statement
 for all 
\begin_inset Formula $0\leq q\leq p\leq N$
\end_inset

.
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 be an arbitrary vector and 
\begin_inset Formula $\omega\in\wedge^{p}V$
\end_inset

 be an arbitrary tensor.
 The induction step is proved by the following chain of equations,
\begin_inset Formula \begin{align*}
 & \wedge^{p+1}(\hat{A}+\hat{1}_{V})^{q+1}\left(\mathbf{v}\wedge\omega\right)\\
 & ^{(1)}=(\hat{A}+\hat{1}_{V})\mathbf{v}\wedge\left[\wedge^{p}(\hat{A}+\hat{1}_{V})^{q}\omega\right]+\mathbf{v}\wedge\left[\wedge^{p}(\hat{A}+\hat{1}_{V})^{q+1}\omega\right]\\
 & ^{(2)}=\hat{A}\mathbf{v}\wedge\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r})\omega+\mathbf{v}\wedge\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r})\omega\\
 & \qquad+\mathbf{v}\wedge\sum_{r=0}^{q+1}{p-r \choose p-q-1}(\wedge^{p}\hat{A}^{r})\omega\\
 & ^{(3)}=\hat{A}\mathbf{v}\wedge\sum_{k=1}^{q+1}{p-k+1 \choose p-q}(\wedge^{p}\hat{A}^{k-1})\omega\\
 & \qquad+\mathbf{v}\wedge\sum_{r=0}^{q+1}\left[{p-r \choose p-q-1}+{p-r \choose p-q}\right](\wedge^{p}\hat{A}^{r})\omega\\
 & ^{(4)}=\sum_{k=0}^{q+1}{p-k+1 \choose p-q}\left\{ \hat{A}\mathbf{v}\wedge\left[\wedge^{p}\hat{A}^{k-1}\omega\right]+\mathbf{v}\wedge\left[\wedge^{p}\hat{A}^{k}\omega\right]\right\} \\
 & ^{(1)}=\sum_{k=0}^{q+1}{p-k+1 \choose p-q}(\wedge^{p+1}\hat{A}^{k})\left(\mathbf{v}\wedge\omega\right),\end{align*}

\end_inset


\begin_inset Note Note
status collapsed

\begin_layout Standard
\begin_inset Formula \begin{align*}
 & \wedge^{p+1}(\hat{A}+\hat{1}_{V})^{q+1}\left(\mathbf{v}\wedge\omega\right)\\
^{(1)} & =(\hat{A}+\hat{1}_{V})\mathbf{v}\wedge\left[\wedge^{p}(\hat{A}+\hat{1}_{V})^{q}\omega\right]+\mathbf{v}\wedge\left[\wedge^{p}(\hat{A}+\hat{1}_{V})^{q+1}\omega\right]\\
^{(2)} & =\hat{A}\mathbf{v}\wedge\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r})\omega+\mathbf{v}\wedge\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r})\omega\\
 & \qquad+\mathbf{v}\wedge\sum_{r=0}^{q+1}{p-r \choose p-q-1}(\wedge^{p}\hat{A}^{r})\omega\end{align*}

\end_inset


\begin_inset Formula \begin{align*}
^{(3)} & =\hat{A}\mathbf{v}\wedge\sum_{k=1}^{q+1}{p-k+1 \choose p-q}(\wedge^{p}\hat{A}^{k-1})\omega\\
 & \qquad+\mathbf{v}\wedge\sum_{r=0}^{q+1}\left[{p-r \choose p-q-1}+{p-r \choose p-q}\right](\wedge^{p}\hat{A}^{r})\omega\\
^{(4)} & =\sum_{k=0}^{q+1}{p-k+1 \choose p-q}\left\{ \hat{A}\mathbf{v}\wedge\left[\wedge^{p}\hat{A}^{k-1}\omega\right]+\mathbf{v}\wedge\left[\wedge^{p}\hat{A}^{k}\omega\right]\right\} \\
^{(1)} & =\sum_{k=0}^{q+1}{p-k+1 \choose p-q}(\wedge^{p+1}\hat{A}^{k})\left(\mathbf{v}\wedge\omega\right),\end{align*}

\end_inset


\end_layout

\end_inset

where 
\begin_inset Formula $^{(1)}$
\end_inset

 is Statement\InsetSpace ~
4 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Extensions-of-an}

\end_inset

, 
\begin_inset Formula $^{(2)}$
\end_inset

 uses the induction step assumptions for 
\begin_inset Formula $\left(p,q\right)$
\end_inset

 and 
\begin_inset Formula $\left(p,q+1\right)$
\end_inset

, 
\begin_inset Formula $^{(3)}$
\end_inset

 is the relabeling 
\begin_inset Formula $r=k-1$
\end_inset

 and rearranging terms (note that the summation over 
\begin_inset Formula $0\leq r\leq q$
\end_inset

 was formally extended to 
\begin_inset Formula $0\leq r\leq q+1$
\end_inset

 because the term with 
\begin_inset Formula $r=q+1$
\end_inset

 vanishes), and 
\begin_inset Formula $^{(4)}$
\end_inset

 is by the binomial identity
\begin_inset Formula \[
{n \choose m-1}+{n \choose m}={n+1 \choose m}\]

\end_inset

and a further relabeling 
\begin_inset Formula $r\rightarrow k$
\end_inset

 in the preceding summation.
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\begin_layout Paragraph
Corollary:
\end_layout

\begin_layout Standard
For any 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 and 
\begin_inset Formula $\alpha\in\mathbb{K}$
\end_inset

,
\begin_inset Formula \[
\wedge^{p}(\hat{A}+\alpha\hat{1}_{V})^{q}=\sum_{r=0}^{q}\alpha^{q-r}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r}).\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
By Statement\InsetSpace ~
3 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Extensions-of-an}

\end_inset

, 
\begin_inset Formula $\wedge^{p}(\alpha\hat{A})^{q}=\alpha^{q}(\wedge^{p}\hat{A}^{q})$
\end_inset

.
 Set 
\begin_inset Formula $\hat{A}=\alpha\hat{B}$
\end_inset

, where 
\begin_inset Formula $\hat{B}$
\end_inset

 is an auxiliary operator, and compute
\begin_inset Formula \begin{align*}
\wedge^{p}(\alpha\hat{B}+\alpha\hat{1}_{V})^{q} & =\alpha^{q}\wedge^{p}(\hat{B}+\hat{1}_{V})^{q}=\alpha^{q}\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{B}^{r})\\
 & =\sum_{r=0}^{q}\alpha^{q-r}{p-r \choose p-q}(\wedge^{p}(\alpha\hat{B})^{r})\\
 & =\sum_{r=0}^{q}\alpha^{q-r}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r}).\end{align*}

\end_inset
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Theorem 2:
\end_layout

\begin_layout Standard
The coefficients 
\begin_inset Formula $q_{m}(\hat{A})$
\end_inset

, 
\begin_inset Formula $1\leq m\leq N$
\end_inset

 of the characteristic polynomial, defined by 
\begin_inset Formula \[
Q_{\hat{A}}\left(\lambda\right)=\left(-\lambda\right)^{N}+\sum_{k=0}^{N-1}\left(-1\right)^{k}q_{N-k}(\hat{A})\lambda^{k},\]

\end_inset

are the numbers corresponding to the operators 
\begin_inset Formula $\wedge^{N}\hat{A}^{m}\in\textrm{End}(\wedge^{N}V)$
\end_inset

:
\begin_inset Formula \[
q_{m}(\hat{A})\hat{1}_{\wedge^{N}V}=\wedge^{N}\hat{A}^{m}.\]

\end_inset

In particular, 
\begin_inset Formula $q_{N}(\hat{A})=\det\hat{A}$
\end_inset

 and 
\begin_inset Formula $q_{1}(\hat{A})=\textrm{Tr}\hat{A}$
\end_inset

.
 More compactly, the statement can be written as
\begin_inset Formula \[
Q_{\hat{A}}\left(\lambda\right)\hat{1}_{\wedge^{N}V}=\sum_{k=0}^{N}\left(-\lambda\right)^{N-k}(\wedge^{N}\hat{A}^{k}).\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
This is now a consequence of Lemma\InsetSpace ~
1 and its Corollary, where we set 
\begin_inset Formula $p=q=N$
\end_inset

 and obtain
\begin_inset Formula \[
\wedge^{N}(\hat{A}-\lambda\hat{1}_{V})^{N}=\sum_{r=0}^{N}\left(-\lambda\right)^{N-r}(\wedge^{N}\hat{A}^{r}).\]

\end_inset
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\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
\begin_inset LatexCommand \label{par:Trace relation1}

\end_inset

Show that the characteristic polynomial of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in a 
\emph on
three-dimen\SpecialChar \-
sion\SpecialChar \-
al
\emph default
 space 
\begin_inset Formula $V$
\end_inset

 can be written as
\begin_inset Formula \[
Q_{\hat{A}}(\lambda)=\det\hat{A}-{\textstyle \frac{1}{2}}\big[(\text{Tr}\hat{A})^{2}-\text{Tr}(\hat{A}^{2})\big]\lambda+(\text{Tr}\hat{A})\lambda^{2}-\lambda^{3}.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Solution:
\end_layout

\begin_layout Standard
The first and the third coefficients of 
\begin_inset Formula $Q_{\hat{A}}(\lambda)$
\end_inset

 are, as usual, the determinant and the trace of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The second coefficient is equal to 
\begin_inset Formula $-{\wedge^{3}\hat{A}^{2}}$
\end_inset

, so we need to show that
\begin_inset Formula \[
\wedge^{3}\hat{A}^{2}=\frac{1}{2}\big[(\text{Tr}\hat{A})^{2}-\text{Tr}(\hat{A}^{2})\big].\]

\end_inset

We apply the operator 
\begin_inset Formula $\wedge^{3}\hat{A}^{1}$
\end_inset

 twice to a tensor 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

 and calculate:
\begin_inset Formula \begin{align*}
 & (\text{Tr}\hat{A})^{2}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=(\wedge^{3}\hat{A}^{1})(\wedge^{3}\hat{A}^{1})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\\
 & =(\wedge^{3}\hat{A}^{1})(\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c})\\
 & =\hat{A}^{2}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+2\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}^{2}\mathbf{b}\wedge\mathbf{c}\\
 & +2\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}+2\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}+\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}^{2}\mathbf{c}\\
 & =\big[\text{Tr}(\hat{A}^{2})+2\wedge^{3}\hat{A}^{2}\big]\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}.\end{align*}

\end_inset

Then the desired formula follows.
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\begin_layout Paragraph
Exercise 2 (general trace relations):
\end_layout

\begin_layout Standard
\begin_inset LatexCommand \index{trace relations}

\end_inset

Generalize the result of Exercise\InsetSpace ~
1 to 
\begin_inset Formula $N$
\end_inset

 dimensions:
\end_layout

\begin_layout Standard
a) Show that 
\begin_inset Formula \[
\wedge^{N}\hat{A}^{2}={\textstyle \frac{1}{2}}\big[(\text{Tr}\hat{A})^{2}-\text{Tr}(\hat{A}^{2})\big].\]

\end_inset


\end_layout

\begin_layout Standard
b)* Show that all coefficients 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

 (
\begin_inset Formula $k=1,...,N$
\end_inset

) can be expressed as polynomials in 
\begin_inset Formula $\text{Tr}\hat{A}$
\end_inset

, 
\begin_inset Formula $\text{Tr}(\hat{A}^{2})$
\end_inset

, ..., 
\begin_inset Formula $\text{Tr}(\hat{A}^{N})$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Define a 
\begin_inset Quotes eld
\end_inset

mixed
\begin_inset Quotes erd
\end_inset

 operator 
\begin_inset Formula $\wedge^{N}(\hat{A}^{n})^{j}\hat{A}^{k}$
\end_inset

 as a sum of exterior products containing 
\begin_inset Formula $j$
\end_inset

 times 
\begin_inset Formula $\hat{A}^{n}$
\end_inset

 and 
\begin_inset Formula $k$
\end_inset

 times 
\begin_inset Formula $\hat{A}$
\end_inset

; for example,
\begin_inset Formula \begin{align*}
 & \big[{\wedge^{3}(\hat{A}^{2})^{1}\hat{A}^{1}}\big]\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\equiv\hat{A}^{2}\mathbf{a}\wedge(\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{b}\wedge\hat{A}\mathbf{c})\\
 & +\hat{A}\mathbf{a}\wedge(\hat{A}^{2}\mathbf{b}\wedge\mathbf{c}+\mathbf{b}\wedge\hat{A}^{2}\mathbf{c})+\mathbf{a}\wedge(\hat{A}^{2}\mathbf{b}\wedge\hat{A}\mathbf{c}+\hat{A}\mathbf{b}\wedge\hat{A}^{2}\mathbf{c}).\end{align*}

\end_inset

By applying several operators 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

 and 
\begin_inset Formula $\text{Tr}(\hat{A}^{k})$
\end_inset

 to an exterior product, derive identities connecting these operators and
 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

: 
\begin_inset Formula \begin{align*}
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{A}^{k}) & =(k+1)\wedge^{N}\hat{A}^{k+1}+\wedge^{N}(\hat{A}^{2})^{1}\hat{A}^{k-1},\\
\text{Tr}(\hat{A}^{k})\text{Tr}(\hat{A}) & =\text{Tr}(\hat{A}^{k+1})+\wedge^{N}(\hat{A}^{k})^{1}\hat{A}^{1},\end{align*}

\end_inset

for 
\begin_inset Formula $k=2,...,N-1$
\end_inset

.
 Using these identities, show by induction that operators of the form 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

 (
\begin_inset Formula $k=1,...,N$
\end_inset

) can be all expressed through 
\begin_inset Formula $\text{Tr}\hat{A}$
\end_inset

, 
\begin_inset Formula $\text{Tr}(\hat{A}^{2})$
\end_inset

, ..., 
\begin_inset Formula $\text{Tr}(\hat{A}^{N-1})$
\end_inset

 as polynomials.
 
\end_layout

\begin_layout Standard
As an example, here is the trace relation for 
\begin_inset Formula $\wedge^{N}\hat{A}^{3}$
\end_inset

:
\begin_inset Formula \[
\wedge^{N}\hat{A}^{3}={\textstyle \frac{1}{6}}(\text{Tr}\hat{A})^{3}-{\textstyle \frac{1}{2}}(\text{Tr}\hat{A})\text{Tr}(\hat{A}^{2})+{\textstyle \frac{1}{3}}\text{Tr}(\hat{A}^{3}).\]

\end_inset

Note that in three dimensions this formula directly yields the determinant
 of 
\begin_inset Formula $\hat{A}$
\end_inset

 expressed through traces of powers of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Below (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:General-trace-relations}

\end_inset

) we will derive a formula for the general trace relation.
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\begin_layout Standard
Since operators in 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 act as multiplication by a number, it is convenient to omit 
\begin_inset Formula $\hat{1}_{\wedge^{N}V}$
\end_inset

 and regard expressions such as 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

 as simply numbers.
 More formally, there is a canonical isomorphism between 
\begin_inset Formula $\textrm{End}\left(\wedge^{N}V\right)$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}$
\end_inset

 (even though there is no canonical isomorphism between 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}$
\end_inset

).
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Give an explicit formula for the canonical isomorphism: a) between 
\begin_inset Formula $\left(\wedge^{k}V\right)^{*}$
\end_inset

 and 
\begin_inset Formula $\wedge^{k}(V^{*})$
\end_inset

; b) between 
\begin_inset Formula $\textrm{End}\left(\wedge^{N}V\right)$
\end_inset

 and 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
 
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
a) A tensor 
\begin_inset Formula $\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{k}^{*}\in\wedge^{k}(V^{*})$
\end_inset

 acts as a linear function on a tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$
\end_inset

 by the formula
\begin_inset Formula \[
\left(\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{k}^{*}\right)\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right)\equiv\det(A_{jk}),\]

\end_inset

where 
\begin_inset Formula $A_{jk}$
\end_inset

 is the square matrix defined by 
\begin_inset Formula $A_{jk}\equiv\mathbf{f}_{j}^{*}(\mathbf{v}_{k})$
\end_inset

.
\end_layout

\begin_layout Standard
b) Since 
\begin_inset Formula $(\wedge^{N}V)^{*}$
\end_inset

 is canonically isomorphic to 
\begin_inset Formula $\wedge^{N}(V^{*})$
\end_inset

, an operator 
\begin_inset Formula $\hat{N}\in\textrm{End}\left(\wedge^{N}V\right)$
\end_inset

 can be represented by a tensor 
\begin_inset Formula \[
\hat{N}=\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\right)\otimes\left(\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{N}^{*}\right)\in\left(\wedge^{N}V\right)\otimes\left(\wedge^{N}V^{*}\right).\]

\end_inset

The isomorphism maps 
\begin_inset Formula $\hat{N}$
\end_inset

 into the number 
\begin_inset Formula $\det(A_{jk})$
\end_inset

, where 
\begin_inset Formula $A_{jk}$
\end_inset

 is the square matrix defined by 
\begin_inset Formula $A_{jk}\equiv\mathbf{f}_{j}^{*}(\mathbf{v}_{k})$
\end_inset

.
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Exercise 4:
\end_layout

\begin_layout Standard
Show that an operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 and its canonical transpose operator 
\begin_inset Formula $\hat{A}^{T}\in\textrm{End }V^{*}$
\end_inset

 have the same characteristic polynomials.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Consider the operator 
\begin_inset Formula $(\hat{A}-x\hat{1}_{V})^{T}$
\end_inset

.
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\begin_layout Paragraph
Exercise 5:
\end_layout

\begin_layout Standard
Given an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 of rank 
\begin_inset Formula $r<N$
\end_inset

, show that 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}=0$
\end_inset

 for 
\begin_inset Formula $k\geq r+1$
\end_inset

 but 
\begin_inset Formula $\wedge^{N}\hat{A}^{r}\neq0$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: If 
\begin_inset Formula $\hat{A}$
\end_inset

 has rank 
\begin_inset Formula $r<N$
\end_inset

 then 
\begin_inset Formula $\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{r+1}=0$
\end_inset

 for any set of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r+1}\right\} $
\end_inset

.
 
\end_layout

\begin_layout Subsection
Nilpotent operators
\end_layout

\begin_layout Standard
There are many operators with the same characteristic polynomial.
 In particular, there are many operators which have the simplest possible
 characteristic polynomial, 
\begin_inset Formula $Q_{0}(x)=\left(-x\right)^{N}$
\end_inset

.
 Note that the zero operator has this characteristic polynomial.
 We will now see how to describe all such operators 
\begin_inset Formula $\hat{A}$
\end_inset

 that 
\begin_inset Formula $Q_{\hat{A}}(x)=\left(-x\right)^{N}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 is 
\series bold
nilpotent
\series default

\begin_inset LatexCommand \index{nilpotent}

\end_inset

 if there exists an integer 
\begin_inset Formula $p\geq1$
\end_inset

 such that 
\begin_inset Formula $(\hat{A})^{p}=\hat{0}$
\end_inset

, where 
\begin_inset Formula $\hat{0}$
\end_inset

 is the zero operator and 
\begin_inset Formula $(\hat{A})^{p}$
\end_inset

 is the 
\begin_inset Formula $p$
\end_inset

-th power of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Examples:
\end_layout

\begin_layout Standard
a) The operator defined by the matrix 
\begin_inset Formula $\left(\begin{array}{cc}
0 & \alpha\\
0 & 0\end{array}\right)$
\end_inset

 in some basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

 is nilpotent for any number 
\begin_inset Formula $\alpha$
\end_inset

.
 This operator can be expressed in tensor form as 
\begin_inset Formula $\alpha\mathbf{e}_{1}\otimes\mathbf{e}_{2}^{*}$
\end_inset

.
\end_layout

\begin_layout Standard
b) In the space of polynomials of degree at most 
\begin_inset Formula $n$
\end_inset

 in the variable 
\begin_inset Formula $x$
\end_inset

, the linear operator 
\begin_inset Formula $\frac{d}{dx}$
\end_inset

 is nilpotent because the 
\begin_inset Formula $(n+1)$
\end_inset

-th power of this operator will evaluate the 
\begin_inset Formula $\left(n+1\right)$
\end_inset

-th derivative, which is zero on any polynomial of degree at most 
\begin_inset Formula $n$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}$
\end_inset

 is a nilpotent operator then 
\begin_inset Formula $\hat{Q}_{\hat{A}}\left(x\right)=\left(-x\right)^{N}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
First an example: suppose that 
\begin_inset Formula $N=2$
\end_inset

 and that 
\begin_inset Formula $\hat{A}^{3}=0$
\end_inset

.
 By Theorem\InsetSpace ~
2, the coefficients of the characteristic polynomial of the operator
 
\begin_inset Formula $\hat{A}$
\end_inset

 correspond to the operators 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

.
 We need to show that all these operators are equal to zero.
\end_layout

\begin_layout Standard
Consider, for instance, 
\begin_inset Formula $\wedge^{2}\hat{A}^{2}=q_{2}\hat{1}_{\wedge^{2}V}$
\end_inset

.
 This operator raised to the power 
\begin_inset Formula $3$
\end_inset

 acts on a tensor 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\in\wedge^{2}V$
\end_inset

 as
\begin_inset Formula \[
{\big({\wedge^{2}\hat{A}^{2}}\big)}^{3}\mathbf{a}\wedge\mathbf{b}=\hat{A}^{3}\mathbf{a}\wedge\hat{A}^{3}\mathbf{b}=0\]

\end_inset

since 
\begin_inset Formula $\hat{A}^{3}=0$
\end_inset

.
 On the other hand, 
\begin_inset Formula \[
{\big({\wedge^{2}\hat{A}^{2}}\big)}^{3}\mathbf{a}\wedge\mathbf{b}=\left(q_{2}\right)^{3}\mathbf{a}\wedge\mathbf{b}.\]

\end_inset

 Therefore 
\begin_inset Formula $q_{2}=0$
\end_inset

.
 Now consider 
\begin_inset Formula $\wedge^{2}\hat{A}^{1}$
\end_inset

 to the power 
\begin_inset Formula $3$
\end_inset

,
\begin_inset Formula \[
{\big({\wedge^{2}\hat{A}^{1}}\big)}^{3}\mathbf{a}\wedge\mathbf{b}=\hat{A}^{2}\mathbf{a}\wedge\hat{A}\mathbf{b}+\hat{A}\mathbf{a}\wedge\hat{A}^{2}\mathbf{b}\]

\end_inset

(all other terms vanish because 
\begin_inset Formula $\hat{A}^{3}=0$
\end_inset

).
 It is clear that the operator 
\begin_inset Formula $\wedge^{2}\hat{A}^{1}$
\end_inset

 to the power 
\begin_inset Formula $6$
\end_inset

 vanishes because there will be at least a third power of 
\begin_inset Formula $\hat{A}$
\end_inset

 acting on each vector.
 Therefore 
\begin_inset Formula $q_{1}=0$
\end_inset

 as well.
\end_layout

\begin_layout Standard
Now a general argument.
 Let 
\begin_inset Formula $p$
\end_inset

 be a positive integer such that 
\begin_inset Formula $\hat{A}^{p}=0$
\end_inset

, and consider the 
\begin_inset Formula $(pN)$
\end_inset

-th power of the operator 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

 for some 
\begin_inset Formula $k\geq1$
\end_inset

.
 We will prove that 
\begin_inset Formula $(\wedge^{N}\hat{A}^{k})^{pN}=\hat{0}$
\end_inset

.
 Since 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

 is a multiplication by a number, from 
\begin_inset Formula $(\wedge^{N}\hat{A}^{k})^{pN}=0$
\end_inset

 it will follow that 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

 is a zero operator in 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 for all 
\begin_inset Formula $k\geq1$
\end_inset

.
 If all the coefficients 
\begin_inset Formula $q_{k}$
\end_inset

 of the characteristic polynomial vanish, we will have 
\begin_inset Formula $Q_{\hat{A}}\left(x\right)=\left(-x\right)^{N}$
\end_inset

.
\end_layout

\begin_layout Standard
To prove that 
\begin_inset Formula $(\wedge^{N}\hat{A}^{k})^{pN}=\hat{0}$
\end_inset

, consider the action of the operator 
\begin_inset Formula $(\wedge^{N}\hat{A}^{k})^{pN}$
\end_inset

 on a tensor 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\in\wedge^{N}V$
\end_inset

.
 By definition of 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

, this operator is a sum of terms of the form
\begin_inset Formula \[
\hat{A}^{s_{1}}\mathbf{e}_{1}\wedge...\wedge\hat{A}^{s_{N}}\mathbf{e}_{N},\]

\end_inset

where 
\begin_inset Formula $s_{j}=0$
\end_inset

 or 
\begin_inset Formula $s_{j}=1$
\end_inset

 are chosen such that 
\begin_inset Formula $\sum_{j=1}^{N}s_{j}=k$
\end_inset

.
 Therefore, the same operator raised to the power 
\begin_inset Formula $pN$
\end_inset

 is expressed as
\begin_inset Formula \begin{equation}
(\wedge^{N}\hat{A}^{k})^{pN}=\sum_{(s_{1},...,s_{n})}\hat{A}^{s_{1}}\mathbf{e}_{1}\wedge...\wedge\hat{A}^{s_{N}}\mathbf{e}_{N},\label{eq:sum pN}\end{equation}

\end_inset

where now 
\begin_inset Formula $s_{j}$
\end_inset

 are non-negative integers, 
\begin_inset Formula $0\leq s_{j}\leq pN$
\end_inset

, such that 
\begin_inset Formula $\sum_{j=1}^{N}s_{j}=kpN$
\end_inset

.
 It is impossible that all 
\begin_inset Formula $s_{j}$
\end_inset

 in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:sum pN}

\end_inset

) are less than 
\begin_inset Formula $p$
\end_inset

, because then we would have 
\begin_inset Formula $\sum_{j=1}^{N}s_{j}<Np$
\end_inset

, which would contradict the condition 
\begin_inset Formula $\sum_{j=1}^{N}s_{j}=kpN$
\end_inset

 (since 
\begin_inset Formula $k\geq1$
\end_inset

 by construction).
 So each term of the sum in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:sum pN}

\end_inset

) contains at least a 
\begin_inset Formula $p$
\end_inset

-th power of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Since 
\begin_inset Formula $(\hat{A})^{p}=0$
\end_inset

, each term in the sum in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:sum pN}

\end_inset

) vanishes.
 Hence 
\begin_inset Formula $(\wedge^{N}\hat{A}^{k})^{pN}=0$
\end_inset

 as required.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The converse statement is also true: If the characteristic polynomial of
 an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula $Q_{\hat{A}}(x)=\left(-x\right)^{N}$
\end_inset

 then 
\begin_inset Formula $\hat{A}$
\end_inset

 is nilpotent.
 This follows easily from the Cayley-Hamilton theorem (see below), which
 states that 
\begin_inset Formula $Q_{\hat{A}}(\hat{A})=0$
\end_inset

, so we obtain immediately 
\begin_inset Formula $(\hat{A})^{N}=0$
\end_inset

, i.e.\InsetSpace ~
the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is nilpotent.
 We find that one cannot distinguish a nilpotent operator from the zero
 operator by looking only at the characteristic polynomial.
\end_layout

\begin_layout Chapter
Advanced applications
\end_layout

\begin_layout Standard
In this chapter we work in an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space over a number field 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
 
\end_layout

\begin_layout Section
The space 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset


\end_layout

\begin_layout Standard
So far we have been using only the top exterior power, 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.
 The next-to-top exterior power space, 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

, has the same dimension as 
\begin_inset Formula $V$
\end_inset

 and is therefore quite useful since it is a space, in some special sense,
 associated with 
\begin_inset Formula $V$
\end_inset

.
 We will now find several important uses of this space.
\begin_inset Note Note
status collapsed

\begin_layout Standard
Before exploring the space 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

, we need some preparatory statements.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The spaces 
\begin_inset Formula $\left(\wedge^{k}V\right)^{*}$
\end_inset

 and 
\begin_inset Formula $\wedge^{k}\left(V^{*}\right)$
\end_inset

 are canonically isomorphic.
\end_layout

\end_inset

 
\end_layout

\begin_layout Subsection
Exterior transposition of operators
\begin_inset LatexCommand \label{sub:The-next-to-top-exterior}

\end_inset


\end_layout

\begin_layout Standard
We have seen that a linear operator in the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is equivalent to multiplication by a number.
 We can reformulate this statement by saying that the space of linear operators
 in 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is canonically isomorphic to 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
 Similarly, the space of linear operators in 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

 is canonically isomorphic to 
\begin_inset Formula $\text{End}\, V$
\end_inset

, the space of linear operators in 
\begin_inset Formula $V$
\end_inset

.
 The isomorphism map will be denoted by the superscript 
\begin_inset Formula $^{\wedge T}$
\end_inset

.
 We will begin by defining this map explicitly.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
What is a nontrivial example of a linear operator in 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Any operator of the form 
\begin_inset Formula $\wedge^{N-1}\hat{A}^{p}$
\end_inset

 with 
\begin_inset Formula $1\leq p\leq N-1$
\end_inset

 and 
\begin_inset Formula $\hat{A}\in\text{End}\, V$
\end_inset

.
 In this book, operators constructed in this way will be the only instance
 of operators in 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{X}\in\textrm{End}\, V$
\end_inset

 is a given linear operator then the 
\series bold
exterior
\series default
 
\series bold
transpose
\series default

\begin_inset LatexCommand \index{exterior transposition}

\end_inset

 operator
\begin_inset Formula \[
\hat{X}^{\wedge T}\in\textrm{End}\left(\wedge^{N-1}V\right)\]

\end_inset

 is canonically defined by the formula 
\begin_inset Formula \[
\big(\hat{X}^{\wedge T}\omega\big)\wedge\mathbf{v}\equiv\omega\wedge\hat{X}\mathbf{v},\]

\end_inset

which must hold for all 
\begin_inset Formula $\omega\in\wedge^{N-1}V$
\end_inset

 and all 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
 If 
\begin_inset Formula $\hat{Y}\in\text{End}(\wedge^{N-1}V)$
\end_inset

 is a linear operator then its exterior transpose 
\begin_inset Formula $\hat{Y}^{\wedge T}\in\text{End}\, V$
\end_inset

 is defined by the formula
\begin_inset Formula \[
\omega\wedge\big(\hat{Y}^{\wedge T}\mathbf{v}\big)\equiv(\hat{Y}\omega)\wedge\mathbf{v},\quad\forall\omega\in\wedge^{N-1}V,\;\mathbf{v}\in V.\]

\end_inset


\end_layout

\begin_layout Standard
We need to check that the definition makes sense, i.e.\InsetSpace ~
that the operators defined
 by these formulas exist and are uniquely defined.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
The exterior transpose operators are well-defined, i.e.\InsetSpace ~
they exist, are unique,
 and are linear operators in the respective spaces.
 The exterior transposition has the linearity property
\begin_inset Formula \[
(\hat{A}+\lambda\hat{B})^{\wedge T}=\hat{A}^{\wedge T}+\lambda\hat{B}^{\wedge T}.\]

\end_inset

If 
\begin_inset Formula $\hat{X}\in\textrm{End}\, V$
\end_inset

 is an exterior transpose of 
\begin_inset Formula $\hat{Y}\in\text{End}\left(\wedge^{N-1}V\right)$
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $\hat{X}=\hat{Y}^{\wedge T}$
\end_inset

, then also conversely 
\begin_inset Formula $\hat{Y}=\hat{X}^{\wedge T}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We need to show that the formula 
\begin_inset Formula \[
\big(\hat{X}^{\wedge T}\omega\big)\wedge\mathbf{v}\equiv\omega\wedge\hat{X}\mathbf{v}\]

\end_inset

actually defines an operator 
\begin_inset Formula $\hat{X}^{\wedge T}$
\end_inset

 uniquely when 
\begin_inset Formula $\hat{X}\in\textrm{End}\, V$
\end_inset

 is a given operator.
 Let us fix a tensor 
\begin_inset Formula $\omega\in\wedge^{N-1}V$
\end_inset

; to find 
\begin_inset Formula $\hat{X}^{\wedge T}\omega$
\end_inset

 we need to determine a tensor 
\begin_inset Formula $\psi\in\wedge^{N-1}V$
\end_inset

 such that 
\begin_inset Formula $\psi\wedge\mathbf{v}=\omega\wedge\hat{X}\mathbf{v}$
\end_inset

 for all 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

.
 When we find such a 
\begin_inset Formula $\psi$
\end_inset

, we will also show that it is unique; then we will have shown that 
\begin_inset Formula $\hat{X}^{\wedge T}\omega\equiv\psi$
\end_inset

 is well-defined.
\end_layout

\begin_layout Standard
An explicit computation of the tensor 
\begin_inset Formula $\psi$
\end_inset

 can be performed in terms of a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

.
 A basis in the space 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

 is formed by the set of 
\begin_inset Formula $N$
\end_inset

 tensors of the form 
\begin_inset Formula $\boldsymbol{\omega}_{i}\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{i-1}\wedge\mathbf{e}_{i+1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, that is, 
\begin_inset Formula $\boldsymbol{\omega}_{i}$
\end_inset

 is the exterior product of the basis vectors without the vector 
\begin_inset Formula $\mathbf{e}_{i}$
\end_inset

 (
\begin_inset Formula $1\leq i\leq N$
\end_inset

).
 In the notation of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Computing-the-dual}

\end_inset

, we have 
\begin_inset Formula $\boldsymbol{\omega}_{i}=*(\mathbf{e}_{i})(-1)^{i-1}$
\end_inset

.
 It is sufficient to determine the components of 
\begin_inset Formula $\psi$
\end_inset

 in this basis,
\begin_inset Formula \[
\psi=\sum_{i=1}^{N}c_{i}\boldsymbol{\omega}_{i}.\]

\end_inset

 Taking the exterior product of 
\begin_inset Formula $\psi$
\end_inset

 with 
\begin_inset Formula $\mathbf{e}_{i}$
\end_inset

, we find that only the term with 
\begin_inset Formula $c_{i}$
\end_inset

 survives,
\begin_inset Formula \[
\psi\wedge\mathbf{e}_{i}=(-1)^{N-i}c_{i}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset

Therefore, the coefficient 
\begin_inset Formula $c_{i}$
\end_inset

 is uniquely determined from the condition 
\begin_inset Formula \[
c_{i}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=(-1)^{N-i}\psi\wedge\mathbf{e}_{i}{\lyxbuildrel!\above=}(-1)^{N-i}\omega\wedge\hat{X}\mathbf{e}_{i}.\]

\end_inset

Since the operator 
\begin_inset Formula $\hat{X}$
\end_inset

 is given, we know all 
\begin_inset Formula $\hat{X}\mathbf{e}_{i}$
\end_inset

 and can compute 
\begin_inset Formula $\omega\wedge\hat{X}\mathbf{e}_{i}\in\wedge^{N}V$
\end_inset

.
 So we find that every coefficient 
\begin_inset Formula $c_{i}$
\end_inset

 is uniquely determined.
\end_layout

\begin_layout Standard
It is seen from the above formula that each coefficient 
\begin_inset Formula $c_{i}$
\end_inset

 depends linearly on the operator 
\begin_inset Formula $\hat{X}$
\end_inset

.
 Therefore the linearity property holds,
\begin_inset Formula \[
(\hat{A}+\lambda\hat{B})^{\wedge T}=\hat{A}^{\wedge T}+\lambda\hat{B}^{\wedge T}.\]

\end_inset


\end_layout

\begin_layout Standard
The linearity of the operator 
\begin_inset Formula $\hat{X}^{\wedge T}$
\end_inset

 follows straightforwardly from the identity
\begin_inset Formula \begin{align*}
\big(\hat{X}^{\wedge T}(\omega+\lambda\omega^{\prime})\big)\wedge\mathbf{v} & {\lyxbuildrel!\above=}\left(\omega+\lambda\omega^{\prime}\right)\wedge\hat{X}\mathbf{v}\\
 & =\omega\wedge\hat{X}\mathbf{v}+\lambda\omega^{\prime}\wedge\hat{X}\mathbf{v}\\
 & {\lyxbuildrel!\above=}(\hat{X}^{\wedge T}\omega)\wedge\mathbf{v}+\lambda(\hat{X}^{\wedge T}\omega^{\prime})\wedge\mathbf{v}.\end{align*}

\end_inset

In the same way we prove the existence, the uniqueness, and the linearity
 of the exterior transpose of an operator from 
\begin_inset Formula $\text{End}(\wedge^{N-1}V)$
\end_inset

.
 It is then clear that the transpose of the transpose is again the original
 operator.
 Details left as exercise.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Note that the space 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

 is has the same dimension as 
\begin_inset Formula $V$
\end_inset

 but is 
\emph on
not
\emph default
 canonically isomorphic to 
\begin_inset Formula $V$
\end_inset

.
 Rather, an element 
\begin_inset Formula $\psi\in\wedge^{N-1}V$
\end_inset

 naturally acts by exterior multiplication on a vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and yields a tensor from 
\begin_inset Formula $\wedge^{N}V$
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $\psi$
\end_inset

 is a linear map 
\begin_inset Formula $V\rightarrow\wedge^{N}V$
\end_inset

, and we may express this as 
\begin_inset Formula $\wedge^{N-1}V\cong V^{*}\otimes\wedge^{N}V$
\end_inset

.
 Nevertheless, as we will now show, the exterior transpose map allows us
 to establish that the space of linear operators in 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

 is canonically isomorphic to the space of linear operators in 
\begin_inset Formula $V$
\end_inset

.
 We will use this isomorphism extensively in the following sections.
 A formal statement follows.
\end_layout

\begin_layout Paragraph
Statement\InsetSpace ~
2:
\end_layout

\begin_layout Standard
The spaces 
\begin_inset Formula $\textrm{End}(\wedge^{N-1}V)$
\end_inset

 and 
\begin_inset Formula $\textrm{End}\, V$
\end_inset

 are canonically isomorphic.
 
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The map 
\begin_inset Formula $^{\wedge T}$
\end_inset

 between these spaces is one-to-one since no two different operators are
 mapped to the same operator.
 If two different operators 
\begin_inset Formula $\hat{A},\hat{B}$
\end_inset

 had the same exterior transpose, we would have 
\begin_inset Formula $(\hat{A}-\hat{B})^{\wedge T}=0$
\end_inset

 and yet 
\begin_inset Formula $\hat{A}-\hat{B}\neq0$
\end_inset

.
 There exists at least one 
\begin_inset Formula $\omega\in\wedge^{N-1}V$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 such that 
\begin_inset Formula $\omega\wedge(\hat{A}-\hat{B})\mathbf{v}\neq0$
\end_inset

, and then 
\begin_inset Formula \[
0=\big((\hat{A}-\hat{B})^{\wedge T}\omega\big)\wedge\mathbf{v}=\omega\wedge(\hat{A}-\hat{B})\mathbf{v}\neq0,\]

\end_inset

which is a contradiction.
 The map 
\begin_inset Formula $^{\wedge T}$
\end_inset

 is linear (Statement\InsetSpace ~
1).
 Therefore, it is an isomorphism between the vector spaces 
\begin_inset Formula $\textrm{End}\left(\wedge^{N-1}V\right)$
\end_inset

 and 
\begin_inset Formula $\textrm{End}\, V$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
A generalization of Statement\InsetSpace ~
1 is the following.
\end_layout

\begin_layout Paragraph
Exercise 1: 
\end_layout

\begin_layout Standard
Show that the spaces 
\begin_inset Formula $\textrm{End}(\wedge^{k}V)$
\end_inset

 and 
\begin_inset Formula $\textrm{End}(\wedge^{N-k}V)$
\end_inset

 are canonically isomorphic (
\begin_inset Formula $1\leq k<N$
\end_inset

).
 Specifically, if 
\begin_inset Formula $\hat{X}\in\textrm{End}(\wedge^{k}V)$
\end_inset

 then the linear operator 
\begin_inset Formula $\hat{X}^{\wedge T}\in\textrm{End}(\wedge^{N-k}V)$
\end_inset

 is uniquely defined by the formula 
\begin_inset Formula \[
\big(\hat{X}^{\wedge T}\omega_{N-k}\big)\wedge\omega_{k}\equiv\omega_{N-k}\wedge\hat{X}\omega_{k},\]

\end_inset

which must hold for arbitrary tensors 
\begin_inset Formula $\omega_{k}\in\wedge^{k}V$
\end_inset

, 
\begin_inset Formula $\omega_{N-k}\in\wedge^{N-k}V$
\end_inset

.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
It follows that the exterior transpose of 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}\in\text{End}\left(\wedge^{N}V\right)$
\end_inset

 is mapped by the canonical isomorphism to an element of 
\begin_inset Formula $\text{End}\,\mathbb{K}$
\end_inset

, that is, a multiplication by a number.
 This is precisely the map we have been using in the previous section to
 define the determinant.
 In this notation, we have
\begin_inset Formula \[
\det\hat{A}\equiv\big({\wedge^{N}\hat{A}^{N}}{\big)}^{\wedge T}.\]

\end_inset

Here we identify 
\begin_inset Formula $\text{End}\,\mathbb{K}$
\end_inset

 with 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
For any operators 
\begin_inset Formula $\hat{A},\hat{B}\in\text{End}\left(\wedge^{k}V\right)$
\end_inset

, show that
\begin_inset Formula \[
(\hat{A}\hat{B})^{\wedge T}=\hat{B}^{\wedge T}\hat{A}^{\wedge T}.\]

\end_inset


\end_layout

\begin_layout Subsection
* Index notation
\begin_inset LatexCommand \label{sub:-Index-notation for exterior transposition}

\end_inset


\end_layout

\begin_layout Standard
Let us see how the exterior transposition
\begin_inset LatexCommand \index{exterior transposition!in index notation}

\end_inset

 is expressed in the index notation.
 (Below we will not use the resulting formulas.)
\end_layout

\begin_layout Standard
If an operator 
\begin_inset Formula $\hat{A}\in\text{End}\, V$
\end_inset

 is given in the index notation by a matrix 
\begin_inset Formula $A_{i}^{j}$
\end_inset

, the exterior transpose 
\begin_inset Formula $\hat{A}^{\wedge T}\in\text{End}\left(\wedge^{N-1}V\right)$
\end_inset

 is represented by an array 
\begin_inset Formula $B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}$
\end_inset

, which is totally antisymmetric with respect to its 
\begin_inset Formula $N-1$
\end_inset

 lower and upper indices separately.
 The action of the operator 
\begin_inset Formula $\hat{B}\equiv\hat{A}^{\wedge T}$
\end_inset

 on a tensor 
\begin_inset Formula $\psi\in\wedge^{N-1}V$
\end_inset

 is written in the index notation as
\begin_inset Formula \[
\sum_{i_{s}}B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}\psi^{i_{1}...i_{N-1}}.\]

\end_inset

(Here we did not introduce any combinatorial factors; the factor 
\begin_inset Formula $\left(N-1\right)!$
\end_inset

 will therefore appear at the end of the calculation.)
\end_layout

\begin_layout Standard
By definition of the exterior transpose, for any vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and for any 
\begin_inset Formula $\psi\in\wedge^{N-1}V$
\end_inset

 we must have
\begin_inset Formula \[
(\hat{B}\psi)\wedge\mathbf{v}=\psi\wedge(\hat{A}\mathbf{v}).\]

\end_inset

Using the index representation of the exterior product through the projection
 operators 
\begin_inset Formula $\hat{E}$
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Exterior-product-in-index}

\end_inset

), we represent the equation above in the the index notation as 
\begin_inset Formula \begin{align*}
 & \sum_{i,i_{s},j_{s}}E_{j_{1}...j_{N-1}i}^{k_{1}...k_{N}}(B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}\psi^{i_{1}...i_{N-1}})v^{i}\\
 & \;=\sum_{j_{s},i,j}E_{j_{1}...j_{N-1}j}^{k_{1}...k_{N}}\psi^{j_{1}...j_{N-1}}(A_{i}^{j}v^{i}).\end{align*}

\end_inset

We may simplify this to 
\begin_inset Formula \begin{align*}
 & \sum_{i,i_{s},j_{s}}\varepsilon_{j_{1}...j_{N-1}i}(B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}\psi^{i_{1}...i_{N-1}})v^{i}\\
 & \;=\sum_{i_{s},i,j}\varepsilon_{i_{1}...i_{N-1}j}\psi^{i_{1}...i_{N-1}}(A_{i}^{j}v^{i}),\end{align*}

\end_inset

because 
\begin_inset Formula $E_{j_{1}...j_{N}}^{k_{1}...k_{N}}=\varepsilon_{j_{1}...j_{N}}\varepsilon^{k_{1}...k_{N}}$
\end_inset

, and we may cancel the common factor 
\begin_inset Formula $\varepsilon^{k_{1}...k_{N}}$
\end_inset

 whose indices are not being summed over.
 
\end_layout

\begin_layout Standard
Since the equation above should hold for arbitrary 
\begin_inset Formula $\psi^{i_{1}...i_{N-1}}$
\end_inset

 and 
\begin_inset Formula $v^{i}$
\end_inset

, the equation with the corresponding 
\emph on
free
\emph default
 indices 
\begin_inset Formula $i_{s}$
\end_inset

 and 
\begin_inset Formula $i$
\end_inset

 should hold: 
\begin_inset Formula \begin{equation}
\sum_{j_{s}}\varepsilon_{j_{1}...j_{N-1}i}B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}=\sum_{j}\varepsilon_{i_{1}...i_{N-1}j}A_{i}^{j}.\label{eq:B A connection}\end{equation}

\end_inset

This equation can be solved for 
\begin_inset Formula $B$
\end_inset

 as follows.
 We note that the 
\begin_inset Formula $\varepsilon$
\end_inset

 symbol in the left-hand side of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B A connection}

\end_inset

) has one free index, 
\begin_inset Formula $i$
\end_inset

.
 Let us therefore multiply with an additional 
\begin_inset Formula $\varepsilon$
\end_inset

 and sum over that index; this will yield the projection operator 
\begin_inset Formula $\hat{E}$
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Exterior-product-in-index}

\end_inset

).
 Namely, we multiply both sides of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B A connection}

\end_inset

) with 
\begin_inset Formula $\varepsilon^{k_{1}...k_{N-1}i}$
\end_inset

 and sum over 
\begin_inset Formula $i$
\end_inset

:
\begin_inset Formula \begin{align*}
\sum_{j,i}\varepsilon^{k_{1}...k_{N-1}i}\varepsilon_{i_{1}...i_{N-1}j}A_{i}^{j} & =\sum_{j_{s},i}\varepsilon^{k_{1}...k_{N-1}i}\varepsilon_{j_{1}...j_{N-1}i}B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}\\
 & =\sum_{j_{s}}E_{j_{1}...j_{N-1}}^{k_{1}...k_{N-1}}B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}},\end{align*}

\end_inset

where in the last line we used the definition\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:E tilda def}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:E def}

\end_inset

) of the operator 
\begin_inset Formula $\hat{E}$
\end_inset

.
 Now we note that the right-hand side is the index representation of the
 product of the operators 
\begin_inset Formula $\hat{E}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 (both operators act in 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

).
 The left-hand side is also an operator in 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

; denoting this operator for brevity by 
\begin_inset Formula $\hat{X}$
\end_inset

, we rewrite the equation as
\begin_inset Formula \[
\hat{E}\hat{B}=\hat{X}\in\text{End}\left(\wedge^{N-1}V\right).\]

\end_inset

Using the property 
\begin_inset Formula \[
\hat{E}=(N-1)!\hat{1}_{\wedge^{N-1}V}\]

\end_inset

(see Exercise in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Exterior-product-in-index}

\end_inset

), we may solve the equation 
\begin_inset Formula $\hat{E}\hat{B}=\hat{X}$
\end_inset

 for 
\begin_inset Formula $\hat{B}$
\end_inset

 as 
\begin_inset Formula \[
\hat{B}=\frac{1}{(N-1)!}\hat{X}.\]

\end_inset

Hence, the components of 
\begin_inset Formula $\hat{B}\equiv\hat{A}^{\wedge T}$
\end_inset

 are expressed as
\begin_inset Formula \[
B_{i_{1}...i_{N-1}}^{k_{1}...k_{N-1}}=\frac{1}{(N-1)!}\sum_{j,i}\varepsilon^{k_{1}...k_{N-1}i}\varepsilon_{i_{1}...i_{N-1}j}A_{i}^{j}.\]

\end_inset


\end_layout

\begin_layout Standard
An analogous formula holds for the exterior transpose of an operator in
 
\begin_inset Formula $\wedge^{n}V$
\end_inset

, for any 
\begin_inset Formula $n=2,...,N$
\end_inset

.
 I give the formula without proof and illustrate it by an example.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}\in\text{End}\left(\wedge^{n}V\right)$
\end_inset

 is given by its components 
\begin_inset Formula $A_{i_{1}...i_{n}}^{j_{1}...j_{n}}$
\end_inset

 then the components of 
\begin_inset Formula $\hat{A}^{\wedge T}$
\end_inset

 are
\begin_inset Formula \begin{align*}
 & \big(\hat{A}^{\wedge T}\big)_{l_{1}...l_{N-n}}^{k_{1}...k_{N-n}}\\
 & \;=\frac{1}{n!(N-n)!}\sum_{j_{s},i_{s}}\varepsilon^{k_{1}...k_{N-n}i_{1}...i_{n}}\varepsilon_{l_{1}...l_{N-n}j_{1}...j_{n}}A_{i_{1}...i_{n}}^{j_{1}...j_{n}}.\end{align*}

\end_inset


\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
Consider the exterior transposition 
\begin_inset Formula $\hat{A}^{\wedge T}$
\end_inset

 of the identity operator 
\begin_inset Formula $\hat{A}\equiv\hat{1}_{\wedge^{2}V}$
\end_inset

.
 The components of the identity operator are given by
\begin_inset Formula \[
A_{i_{1}i_{2}}^{j_{1}j_{2}}=\delta_{i_{1}}^{j_{1}}\delta_{i_{2}}^{j_{2}},\]

\end_inset

so the components of 
\begin_inset Formula $\hat{A}^{\wedge T}$
\end_inset

 are
\begin_inset Formula \begin{align*}
\big(\hat{A}^{\wedge T}\big)_{l_{1}...l_{N-2}}^{k_{1}...k_{N-2}} & =\frac{1}{2!(N-2)!}\sum_{j_{s},i_{s}}\varepsilon^{k_{1}...k_{N-2}i_{1}i_{2}}\varepsilon_{l_{1}...l_{N-2}j_{1}j_{2}}A_{i_{1}i_{2}}^{j_{1}j_{2}}\\
 & =\frac{1}{2!(N-2)!}\sum_{i_{1},i_{2}}\varepsilon^{k_{1}...k_{N-2}i_{1}i_{2}}\varepsilon_{l_{1}...l_{N-2}i_{1}i_{2}}.\end{align*}

\end_inset

Let us check that this array of components is the same as that representing
 the operator 
\begin_inset Formula $\hat{1}_{\wedge^{N-2}V}$
\end_inset

.
 We note that the expression above is the same as
\begin_inset Formula \[
\frac{1}{\left(N-2\right)!}E_{l_{1}...l_{N-2}}^{k_{1}...k_{N-2}},\]

\end_inset

where the numbers 
\begin_inset Formula $E_{l_{1}...l_{n}}^{k_{1}...k_{n}}$
\end_inset

 are defined by Eqs.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:E tilda def}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:E def}

\end_inset

).
 Since the operator 
\begin_inset Formula $\hat{E}$
\end_inset

 in 
\begin_inset Formula $\wedge^{N-2}V$
\end_inset

 is equal to 
\begin_inset Formula $\left(N-2\right)!\hat{1}_{\wedge^{N-2}V}$
\end_inset

, we obtain that
\begin_inset Formula \[
\hat{A}^{\wedge T}=\hat{1}_{\wedge^{N-2}V}\]

\end_inset

as required.
\end_layout

\begin_layout Section
Algebraic complement (adjoint) and beyond
\end_layout

\begin_layout Standard
In Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-determinant-def}

\end_inset

 we defined the determinant and derived various useful properties by considering
, essentially, the exterior transpose of 
\begin_inset Formula ${\wedge^{N}\hat{A}^{p}}$
\end_inset

 with 
\begin_inset Formula $1\leq p\leq N$
\end_inset

 (although we did not introduce this terminology back then).
 We have just seen that the exterior transposition can be defined more generally
 --- as a map from 
\begin_inset Formula $\text{End}(\wedge^{k}V)$
\end_inset

 to 
\begin_inset Formula $\text{End}(\wedge^{N-k}V)$
\end_inset

.
 We will see in this section that the exterior transposition of the operators
 
\begin_inset Formula ${\wedge^{N-1}\hat{A}^{p}}$
\end_inset

 with 
\begin_inset Formula $1\leq p\leq N-1$
\end_inset

 yields operators acting in 
\begin_inset Formula $V$
\end_inset

 that are quite useful as well.
\end_layout

\begin_layout Subsection
Definition of algebraic complement
\begin_inset LatexCommand \label{sub:The-algebraic-complement}

\end_inset


\end_layout

\begin_layout Standard
While we proved that operators like 
\begin_inset Formula $(\wedge^{N-1}\hat{A}^{p})^{\wedge T}$
\end_inset

 are well-defined, we still have not obtained any explicit formulas for
 these operators.
 We will now compute these operators explicitly because they play an important
 role in the further development of the theory.
 It will turn out that every operator of the form 
\begin_inset Formula $(\wedge^{N-1}\hat{A}^{p})^{\wedge T}$
\end_inset

 is a 
\emph on
polynomial
\emph default
 in 
\begin_inset Formula $\hat{A}$
\end_inset

 with coefficients that are known if we know the characteristic polynomial
 of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
Let us compute 
\begin_inset Formula $(\wedge^{N-1}\hat{A}^{1})^{\wedge T}$
\end_inset

.
 We consider, as a first example, a three-dimen\SpecialChar \-
sion\SpecialChar \-
al (
\begin_inset Formula $N=3$
\end_inset

) vector space 
\begin_inset Formula $V$
\end_inset

 and a linear operator 
\begin_inset Formula $\hat{A}\in\text{End}\, V$
\end_inset

.
 We are interested in the operator 
\begin_inset Formula $(\wedge^{2}\hat{A}^{1})^{\wedge T}$
\end_inset

.
 By definition of the exterior transpose, 
\begin_inset Formula \begin{align*}
\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{1})^{\wedge T}\mathbf{c} & =\big((\wedge^{2}\hat{A}^{1})(\mathbf{a}\wedge\mathbf{b})\big)\wedge\mathbf{c}\\
 & =\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}.\end{align*}

\end_inset

We recognize a fragment of the operator 
\begin_inset Formula $\wedge^{3}\hat{A}^{1}$
\end_inset

 and write 
\begin_inset Formula \begin{align*}
(\wedge^{3}\hat{A}^{1})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}) & =\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}\\
 & =(\text{Tr}\,\hat{A})\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c},\end{align*}

\end_inset

since this operator acts as multiplication by the trace of 
\begin_inset Formula $\hat{A}$
\end_inset

 (Section\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-trace}

\end_inset

).
 It follows that
\begin_inset Formula \begin{align*}
\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{1})^{\wedge T}\mathbf{c} & =(\text{Tr}\,\hat{A})\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}-\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}\\
 & =\mathbf{a}\wedge\mathbf{b}\wedge\big((\text{Tr}\,\hat{A})\mathbf{c}-\hat{A}\mathbf{c}\big).\end{align*}

\end_inset

Since this must hold for arbitrary 
\begin_inset Formula $\mathbf{a},\mathbf{b},\mathbf{c}\in V$
\end_inset

, it follows that
\begin_inset Formula \[
(\wedge^{2}\hat{A}^{1})^{\wedge T}=(\text{Tr}\,\hat{A})\hat{1}_{V}-\hat{A}.\]

\end_inset

Thus we have computed the operator 
\begin_inset Formula $(\wedge^{2}\hat{A}^{1})^{\wedge T}$
\end_inset

 in terms of 
\begin_inset Formula $\hat{A}$
\end_inset

 and the trace of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Let us now consider the operator 
\begin_inset Formula $(\wedge^{2}\hat{A}^{2})^{\wedge T}$
\end_inset

.
 We have
\begin_inset Formula \[
\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{2})^{\wedge T}\mathbf{c}=\big((\wedge^{2}\hat{A}^{2})(\mathbf{a}\wedge\mathbf{b})\big)\wedge\mathbf{c}=\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}.\]

\end_inset

We recognize a fragment of the operator 
\begin_inset Formula $\wedge^{3}\hat{A}^{2}$
\end_inset

 and write 
\begin_inset Formula \[
(\wedge^{3}\hat{A}^{2})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})=\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}+\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}.\]

\end_inset

Therefore,
\begin_inset Formula \begin{align*}
\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{2})^{\wedge T}\mathbf{c} & =(\wedge^{3}\hat{A}^{2})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\\
 & -(\mathbf{a}\wedge\hat{A}\mathbf{b}+\hat{A}\mathbf{a}\wedge\mathbf{b})\wedge\hat{A}\mathbf{c}\\
^{(1)}=(\wedge^{3}\hat{A}^{2})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}) & -\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{1})^{\wedge T}\hat{A}\mathbf{c}\\
=\mathbf{a}\wedge\mathbf{b}\wedge & \big({\wedge^{3}\hat{A}^{2}}-(\wedge^{2}\hat{A}^{1})^{\wedge T}\hat{A}\big)\mathbf{c},\end{align*}

\end_inset

where 
\begin_inset Formula $^{(1)}$
\end_inset

 used the definition of the operator 
\begin_inset Formula $(\wedge^{2}\hat{A}^{1})^{\wedge T}$
\end_inset

.
 It follows that 
\begin_inset Formula \begin{align*}
(\wedge^{2}\hat{A}^{2})^{\wedge T} & =(\wedge^{3}\hat{A}^{2})\hat{1}_{V}-(\wedge^{2}\hat{A}^{1})^{\wedge T}\hat{A}\\
 & =(\wedge^{3}\hat{A}^{2})\hat{1}_{V}-(\text{Tr}\,\hat{A})\hat{A}+\hat{A}\hat{A}.\end{align*}

\end_inset

Thus we have expressed the operator 
\begin_inset Formula $(\wedge^{2}\hat{A}^{2})^{\wedge T}$
\end_inset

 as a 
\emph on
polynomial
\emph default
 
\emph on
in
\emph default
 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Note that 
\begin_inset Formula $\wedge^{3}\hat{A}^{2}$
\end_inset

 is the second coefficient of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise\InsetSpace ~
1:
\end_layout

\begin_layout Standard
Consider a three-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

, a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

, and show that
\begin_inset Formula \[
(\wedge^{2}\hat{A}^{2})^{\wedge T}\hat{A}\mathbf{v}=(\det\hat{A})\mathbf{v},\quad\forall\mathbf{v}\in V.\]

\end_inset


\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Consider 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{2})^{\wedge T}\hat{A}\mathbf{c}=\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
These examples are straightforwardly generalized.
 We will now express every operator of the form 
\begin_inset Formula $(\wedge^{N-1}\hat{A}^{p})^{\wedge T}$
\end_inset

 as a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

.
 For brevity, we introduce the notation
\begin_inset Formula \[
\hat{A}_{(k)}\equiv(\wedge^{N-1}\hat{A}^{N-k})^{\wedge T},\quad1\leq k\leq N-1.\]

\end_inset


\end_layout

\begin_layout Paragraph
Lemma\InsetSpace ~
1:
\end_layout

\begin_layout Standard
For any operator 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 and for an integer 
\begin_inset Formula $p$
\end_inset

, 
\begin_inset Formula $1\leq p\leq N$
\end_inset

, the following formula holds as an identity of operators in 
\begin_inset Formula $V$
\end_inset

:
\begin_inset Formula \[
{\big({\wedge^{N-1}\hat{A}^{p-1}}\big)}^{\wedge T}\hat{A}+{\big({\wedge^{N-1}\hat{A}^{p}}\big)}^{\wedge T}=(\wedge^{N}\hat{A}^{p})\hat{1}_{V}.\]

\end_inset

Here, in order to provide a meaning for this formula in cases 
\begin_inset Formula $p=1$
\end_inset

 and 
\begin_inset Formula $p=N$
\end_inset

, we define 
\begin_inset Formula $\wedge^{N-1}\hat{A}^{N}\equiv\hat{0}$
\end_inset

 and 
\begin_inset Formula $\wedge^{N-1}\hat{A}^{0}\equiv\hat{1}$
\end_inset

.
 In the shorter notation, this is
\begin_inset Formula \[
\hat{A}_{(k)}\hat{A}+\hat{A}_{(k-1)}=(\wedge^{N}\hat{A}^{N-k+1})\hat{1}_{V}.\]

\end_inset

Note that 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-k+1}\equiv q_{k-1}$
\end_inset

, where 
\begin_inset Formula $q_{j}$
\end_inset

 are the coefficients of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-characteristic-polynomial}

\end_inset

).
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We use Statement\InsetSpace ~
4 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Extensions-of-an}

\end_inset

 with 
\begin_inset Formula $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N-1}$
\end_inset

, 
\begin_inset Formula $m\equiv N-1$
\end_inset

 and 
\begin_inset Formula $k\equiv p$
\end_inset

:
\begin_inset Formula \[
\bigl(\wedge^{N-1}\hat{A}^{p}\omega\bigr)\wedge\mathbf{u}+\bigl(\wedge^{N-1}\hat{A}^{p-1}\omega\bigr)\wedge(\hat{A}\mathbf{u})=\wedge^{N}\hat{A}^{p}\left(\omega\wedge\mathbf{u}\right).\]

\end_inset

This holds for 
\begin_inset Formula $1\leq p\leq N-1$
\end_inset

.
 Applying the definition of the exterior transpose, we find
\begin_inset Formula \[
\omega\wedge\bigl(\wedge^{N-1}\hat{A}^{p}{\bigr)}^{\wedge T}\mathbf{u}+\omega\wedge\bigl(\wedge^{N-1}\hat{A}^{p-1}{\bigr)}^{\wedge T}\hat{A}\mathbf{u}=(\wedge^{N}\hat{A}^{p})\omega\wedge\mathbf{u}.\]

\end_inset

Since this holds for all 
\begin_inset Formula $\omega\in\wedge^{N-1}V$
\end_inset

 and 
\begin_inset Formula $\mathbf{u}\in V$
\end_inset

, we obtain the required formula,
\begin_inset Formula \[
\bigl(\wedge^{N-1}\hat{A}^{p}\bigr)^{\wedge T}+\omega\wedge\bigl(\wedge^{N-1}\hat{A}^{p-1}\bigr)^{\wedge T}\hat{A}=(\wedge^{N}\hat{A}^{p})\hat{1}_{V}.\]

\end_inset

It remains to verify the case 
\begin_inset Formula $p=N$
\end_inset

.
 In that case we compute directly,
\begin_inset Formula \begin{align*}
\bigl(\wedge^{N-1}\hat{A}^{N-1}\omega\bigr)\wedge(\hat{A}\mathbf{u}) & =\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-1}\wedge\hat{A}\mathbf{u}\\
 & =\wedge^{N}\hat{A}^{N}\left(\omega\wedge\mathbf{u}\right).\end{align*}

\end_inset

Hence, 
\begin_inset Formula \[
\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\hat{A}=(\wedge^{N}\hat{A}^{N})\hat{1}_{V}\equiv(\det\hat{A})\hat{1}_{V}.\]

\end_inset


\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
In these formulas we interpret the operators 
\begin_inset Formula $\wedge^{N}\hat{A}^{p}\in\text{End}\left(\wedge^{N}V\right)$
\end_inset

 as simply numbers multiplying some operators.
 This is justified since 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is one-dimen\SpecialChar \-
sion\SpecialChar \-
al, and linear operators in it act as multiplication by
 numbers.
 In other words, we implicitly use the canonical isomorphism 
\begin_inset Formula $\text{End}\left(\wedge^{N}V\right)\cong\mathbb{K}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Use induction in 
\begin_inset Formula $p$
\end_inset

 (for 
\begin_inset Formula $1\leq p\leq N-1$
\end_inset

) and Lemma\InsetSpace ~
1 to express 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

 explicitly as polynomials in 
\begin_inset Formula $\hat{A}$
\end_inset

: 
\begin_inset Formula \[
\hat{A}_{(N-p)}\equiv{\big({\wedge^{N-1}\hat{A}^{p}}\big)}^{\wedge T}=\sum_{k=0}^{p}\left(-1\right)^{k}(\wedge^{N}\hat{A}^{p-k}){(\hat{A})}^{k}.\]

\end_inset


\emph on
Hint
\emph default
: Start applying Lemma\InsetSpace ~
1 with 
\begin_inset Formula $p=1$
\end_inset

 and 
\begin_inset Formula $\hat{A}_{(N)}\equiv\hat{1}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Using the coefficients 
\begin_inset Formula $q_{k}\equiv\wedge^{N}\hat{A}^{N-k}$
\end_inset

 of the characteristic polynomial, the result of Exercise\InsetSpace ~
2 can be rewritten
 as
\begin_inset Formula \begin{align*}
{\big({\wedge^{N-1}\hat{A}^{1}}\big)}^{\wedge T}\equiv\hat{A}_{(N-1)} & =q_{N-1}\hat{1}_{V}-\hat{A},\\
{\big({\wedge^{N-1}\hat{A}^{2}}\big)}^{\wedge T}\equiv\hat{A}_{(N-2)} & =q_{N-2}\hat{1}_{V}-q_{N-1}\hat{A}+(\hat{A})^{2},\\
... & ...,\\
{\big({\wedge^{N-1}\hat{A}^{N-1}}\big)}^{\wedge T}\equiv\hat{A}_{(1)} & =q_{1}\hat{1}_{V}+q_{2}(-\hat{A})+...\\
 & +q_{N-1}(-\hat{A})^{N-2}+(-\hat{A})^{N-1}.\end{align*}

\end_inset

Note that the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula \[
Q_{\hat{A}}(\lambda)=q_{0}+q_{1}(-\lambda)+...+q_{N-1}{(-\lambda)}^{N-1}+(-\lambda)^{N}.\]

\end_inset

Thus the operators denoted by 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

 are computed as suitable 
\begin_inset Quotes eld
\end_inset

fragments
\begin_inset Quotes erd
\end_inset

' of the characteristic polynomial into which 
\begin_inset Formula $\hat{A}$
\end_inset

 is substituted instead of 
\begin_inset Formula $\lambda$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:*
\end_layout

\begin_layout Standard
Using the definition of exterior transpose for general exterior powers (Exercise\InsetSpace ~

1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-next-to-top-exterior}

\end_inset

), show that for 
\begin_inset Formula $1\leq k\leq N-1$
\end_inset

 and 
\begin_inset Formula $1\leq p\leq k$
\end_inset

 the following identity holds, 
\begin_inset Formula \[
\sum_{q=0}^{p}{\big({\wedge^{N-k}\hat{A}^{p-q}}\big)}^{\wedge T}(\wedge^{k}\hat{A}^{q})=(\wedge^{N}\hat{A}^{p})\hat{1}_{\wedge^{k}V}.\]

\end_inset

Deduce that the operators 
\begin_inset Formula ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
\end_inset

 can be expressed as polynomials in the (mutually commuting) operators 
\begin_inset Formula $\wedge^{k}\hat{A}^{j}$
\end_inset

 (
\begin_inset Formula $1\leq j\leq k$
\end_inset

).
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
s: Follow the proof of Statement\InsetSpace ~
4 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Extensions-of-an}

\end_inset

.
 The idea is to apply both sides to 
\begin_inset Formula $\omega_{k}\wedge\omega_{N-k}$
\end_inset

, where 
\begin_inset Formula $\omega_{k}\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 and 
\begin_inset Formula $\omega_{N-k}=\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

.
 Since 
\begin_inset Formula $\wedge^{N}\hat{A}^{p}$
\end_inset

 acts on 
\begin_inset Formula $\omega_{k}\wedge\omega_{N-k}$
\end_inset

 by distributing 
\begin_inset Formula $p$
\end_inset

 copies of 
\begin_inset Formula $\hat{A}$
\end_inset

 among the 
\begin_inset Formula $N$
\end_inset

 vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

, one needs to show that the same terms will occur when one first distributes
 
\begin_inset Formula $q$
\end_inset

 copies of 
\begin_inset Formula $\hat{A}$
\end_inset

 among the first 
\begin_inset Formula $k$
\end_inset

 vectors and 
\begin_inset Formula $p-q$
\end_inset

 copies of 
\begin_inset Formula $\hat{A}$
\end_inset

 among the last 
\begin_inset Formula $N-k$
\end_inset

 vectors, and then sums over all 
\begin_inset Formula $q$
\end_inset

 from 
\begin_inset Formula $0$
\end_inset

 to 
\begin_inset Formula $p$
\end_inset

.
 Once the identity is proved, one can use induction to express the operators
 
\begin_inset Formula ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
\end_inset

.
 For instance, the identity with 
\begin_inset Formula $k=2$
\end_inset

 and 
\begin_inset Formula $p=1$
\end_inset

 yields
\begin_inset Formula \[
{\big({\wedge^{N-2}\hat{A}^{0}}\big)}^{\wedge T}(\wedge^{2}\hat{A}^{1})+{\big({\wedge^{N-2}\hat{A}^{1}}\big)}^{\wedge T}(\wedge^{2}\hat{A}^{0})=(\wedge^{N}\hat{A}^{1})\hat{1}_{\wedge^{k}V}.\]

\end_inset

Therefore
\begin_inset Formula \[
{\big({\wedge^{N-2}\hat{A}^{1}}\big)}^{\wedge T}=(\text{Tr}\hat{A})\hat{1}_{\wedge^{k}V}-\wedge^{2}\hat{A}^{1}.\]

\end_inset

Similarly, with 
\begin_inset Formula $k=2$
\end_inset

 and 
\begin_inset Formula $p=2$
\end_inset

 we find
\begin_inset Formula \begin{align*}
{\big({\wedge^{N-2}\hat{A}^{2}}\big)}^{\wedge T}\negmedspace & =(\wedge^{N}\hat{A}^{2})\hat{1}_{\wedge^{k}V}-{\big({\wedge^{N-2}\hat{A}^{1}}\big)}^{\wedge T}(\wedge^{2}\hat{A}^{1})-\wedge^{2}\hat{A}^{2}\\
 & =(\wedge^{N}\hat{A}^{2})\hat{1}_{\wedge^{k}V}-(\text{Tr}\hat{A})(\wedge^{2}\hat{A}^{1})+(\wedge^{2}\hat{A}^{1})^{2}-\wedge^{2}\hat{A}^{2}.\end{align*}

\end_inset

It follows by induction that all the operators 
\begin_inset Formula ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
\end_inset

 are expressed as polynomials in 
\begin_inset Formula $\wedge^{k}\hat{A}^{j}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
At the end of the proof of Lemma\InsetSpace ~
1 we have obtained a curious relation,
\begin_inset Formula \[
\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\hat{A}=(\det\hat{A})\hat{1}_{V}.\]

\end_inset

If 
\begin_inset Formula $\det\hat{A}\neq0$
\end_inset

, we may divide by it and immediately find the following result.
\end_layout

\begin_layout Paragraph
Lemma\InsetSpace ~
2: 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\det\hat{A}\neq0$
\end_inset

, the inverse operator satisfies 
\begin_inset Formula \[
\hat{A}^{-1}=\frac{1}{\det\hat{A}}\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}.\]

\end_inset


\end_layout

\begin_layout Standard
Thus we are able to express the inverse operator 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 as a 
\emph on
polynomial
\emph default
 in 
\begin_inset Formula $\hat{A}$
\end_inset

.
 If 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

 then the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has no inverse, but the operator 
\begin_inset Formula $\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}$
\end_inset

 is still well-defined and sufficiently useful to deserve a special name.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
The 
\series bold
algebraic complement
\begin_inset LatexCommand \index{algebraic complement}

\end_inset


\series default
 (also called the 
\series bold
adjoint
\series default

\begin_inset LatexCommand \index{adjoint}

\end_inset

) of 
\begin_inset Formula $\hat{A}$
\end_inset

 is the operator
\begin_inset Formula \[
\tilde{\hat{A}}\equiv{\big({\wedge^{N-1}\hat{A}^{N-1}}\big)}^{\wedge T}\in\text{End}\, V.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
Compute the algebraic complement of the operator 
\begin_inset Formula $\hat{A}=\mathbf{a}\otimes\mathbf{b}^{*}$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}\in V$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}\in V^{*}$
\end_inset

, and 
\begin_inset Formula $V$
\end_inset

 is an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space (
\begin_inset Formula $N\geq2$
\end_inset

).
 
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
Zero if 
\begin_inset Formula $N\geq3$
\end_inset

.
 For 
\begin_inset Formula $N=2$
\end_inset

 we use Example\InsetSpace ~
1 to compute 
\begin_inset Formula \[
(\wedge^{1}\hat{A}^{1})^{\wedge T}=(\text{Tr}\,\hat{A})\hat{1}-\hat{A}=\mathbf{b}^{*}(\mathbf{a})\hat{1}-\mathbf{a}\otimes\mathbf{b}^{*}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 5:
\end_layout

\begin_layout Standard
For the operator 
\begin_inset Formula $\hat{A}=\mathbf{a}\otimes\mathbf{b}^{*}$
\end_inset

 in 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space, as in Exercise\InsetSpace ~
4, show that 
\begin_inset Formula $\big({\wedge^{N-1}\hat{A}^{p}}\big)^{\wedge T}=0$
\end_inset

 for 
\begin_inset Formula $p\geq2$
\end_inset

.
\end_layout

\begin_layout Subsection
Algebraic complement of a matrix
\end_layout

\begin_layout Standard
The algebraic complement is usually introduced in terms of matrix determinants.
 Namely, one takes a matrix 
\begin_inset Formula $A_{ij}$
\end_inset

 and deletes the column number 
\begin_inset Formula $k$
\end_inset

 and the row number 
\begin_inset Formula $l$
\end_inset

.
 Then one computes the determinant of the resulting matrix and multiplies
 by 
\begin_inset Formula $(-1)^{k+l}$
\end_inset

.
 The result is the element 
\begin_inset Formula $B_{kl}$
\end_inset

 of the matrix that is the algebraic complement of 
\begin_inset Formula $A_{ij}$
\end_inset

.
 I will now show that our definition is equivalent to this one, if we interpret
 matrices as coefficients of linear operators in a basis.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\hat{A}\in\text{End}\, V$
\end_inset

 and let 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 be a basis in 
\begin_inset Formula $V$
\end_inset

.
 Let 
\begin_inset Formula $A_{ij}$
\end_inset

 be the matrix of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in this basis.
 Let 
\begin_inset Formula $\hat{B}=\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}$
\end_inset

 and let 
\begin_inset Formula $B_{kl}$
\end_inset

 be the matrix of 
\begin_inset Formula $\hat{B}$
\end_inset

 in the same basis.
 Then 
\begin_inset Formula $B_{kl}$
\end_inset

 is equal to 
\begin_inset Formula $\left(-1\right)^{k+l}$
\end_inset

 times the determinant of the matrix obtained from 
\begin_inset Formula $A_{ij}$
\end_inset

 by deleting the column number 
\begin_inset Formula $k$
\end_inset

 and the row number 
\begin_inset Formula $l$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Given an operator 
\begin_inset Formula $\hat{B}$
\end_inset

, the matrix element 
\begin_inset Formula $B_{kl}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 can be computed as the coefficient in the following relation (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Computing-the-dual}

\end_inset

),
\begin_inset Formula \[
B_{kl}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k-1}\wedge(\hat{B}\mathbf{e}_{l})\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset


\begin_inset Note Note
status collapsed

\begin_layout Standard
As in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Computing-the-dual}

\end_inset

, we denote by 
\begin_inset Formula $*\mathbf{e}_{k}$
\end_inset

 the tensor
\begin_inset Formula \[
\left(-1\right)^{k}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k-1}\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N}\]

\end_inset

that contains all the basis vectors except 
\begin_inset Formula $\mathbf{e}_{k}$
\end_inset

.
\end_layout

\end_inset

 Since 
\begin_inset Formula $\hat{B}=\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}$
\end_inset

, we have
\begin_inset Formula \[
B_{kl}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{k-1}\wedge\mathbf{e}_{l}\wedge\hat{A}\mathbf{e}_{k+1}\wedge...\wedge\hat{A}\mathbf{e}_{N}.\]

\end_inset

Now the right side can be expressed as the determinant of another operator,
 call it 
\begin_inset Formula $\hat{X}$
\end_inset

,
\begin_inset Formula \begin{align*}
B_{kl}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N} & =(\det\hat{X})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\\
=\hat{X}\mathbf{e}_{1}\wedge & ...\wedge\hat{X}\mathbf{e}_{k-1}\wedge\hat{X}\mathbf{e}_{k}\wedge\hat{X}\mathbf{e}_{k+1}\wedge...\wedge\hat{X}\mathbf{e}_{N},\end{align*}

\end_inset

if we define 
\begin_inset Formula $\hat{X}$
\end_inset

 as an operator such that 
\begin_inset Formula $\hat{X}\mathbf{e}_{k}\equiv\mathbf{e}_{l}$
\end_inset

 while on other basis vectors 
\begin_inset Formula $\hat{X}\mathbf{e}_{j}\equiv\hat{A}\mathbf{e}_{j}$
\end_inset

 (
\begin_inset Formula $j\neq k$
\end_inset

).
 Having defined 
\begin_inset Formula $\hat{X}$
\end_inset

 in this way, we have 
\begin_inset Formula $B_{kl}=\det\hat{X}$
\end_inset

.
 
\end_layout

\begin_layout Standard
We can now determine the matrix 
\begin_inset Formula $X_{ij}$
\end_inset

 representing 
\begin_inset Formula $\hat{X}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 By the definition of the matrix representation of operators,
\begin_inset Formula \[
\hat{A}\mathbf{e}_{j}=\sum_{i=1}^{N}A_{ij}\mathbf{e}_{i},\quad\hat{X}\mathbf{e}_{j}=\sum_{i=1}^{N}X_{ij}\mathbf{e}_{i},\quad1\leq j\leq N.\]

\end_inset

It follows that 
\begin_inset Formula $X_{ij}=A_{ij}$
\end_inset

 for 
\begin_inset Formula $j\neq k$
\end_inset

 while 
\begin_inset Formula $X_{ik}=\delta_{il}$
\end_inset

 (
\begin_inset Formula $1\leq i\leq N$
\end_inset

), which means that the entire 
\begin_inset Formula $k$
\end_inset

-th column in the matrix 
\begin_inset Formula $A_{ij}$
\end_inset

 has been replaced by a column containing zeros except for a single nonzero
 element 
\begin_inset Formula $X_{lk}=1$
\end_inset

.
 
\end_layout

\begin_layout Standard
It remains to show that the determinant of the matrix 
\begin_inset Formula $X_{ij}$
\end_inset

 is equal to 
\begin_inset Formula $\left(-1\right)^{k+l}$
\end_inset

 times the determinant of the matrix obtained from 
\begin_inset Formula $A_{ij}$
\end_inset

 by deleting column 
\begin_inset Formula $k$
\end_inset

 and row 
\begin_inset Formula $l$
\end_inset

.
 We may move in the matrix 
\begin_inset Formula $X_{ij}$
\end_inset

 the 
\begin_inset Formula $k$
\end_inset

-th column to the first column and the 
\begin_inset Formula $l$
\end_inset

-th row to the first row, without changing the order of any other rows and
 columns.
 This produces the sign factor 
\begin_inset Formula $\left(-1\right)^{k+l}$
\end_inset

 but otherwise does not change the determinant.
 The result is
\begin_inset Formula \begin{align*}
B_{kl} & =\det\hat{X}=\left(-1\right)^{k+l}\det\left|\begin{array}{cccc}
1 & X_{12} & ... & X_{1N}\\
0 & * & * & *\\
\vdots & * & * & *\\
0 & * & * & *\end{array}\right|\\
 & =\left(-1\right)^{k+l}\det\left|\begin{array}{ccc}
* & * & *\\
* & * & *\\
* & * & *\end{array}\right|,\end{align*}

\end_inset

where the stars represent the matrix obtained from 
\begin_inset Formula $A_{ij}$
\end_inset

 by deleting column 
\begin_inset Formula $k$
\end_inset

 and row 
\begin_inset Formula $l$
\end_inset

, and the numbers 
\begin_inset Formula $X_{12}$
\end_inset

, ..., 
\begin_inset Formula $X_{1N}$
\end_inset

 do not enter the determinant.
 This is the result we needed.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 5:*
\end_layout

\begin_layout Standard
Show that the matrix representation of the algebraic complement can be written
 through the Levi-Civita symbol
\begin_inset LatexCommand \index{Levi-Civita symbol}

\end_inset

 
\begin_inset Formula $\varepsilon$
\end_inset

 as 
\begin_inset Formula \[
\tilde{A}_{k}^{i}=\frac{1}{(N-1)!}\sum_{i_{2},...,i_{N}}\sum_{k_{2},...,k_{N}}\varepsilon_{kk_{2}...k_{N}}\varepsilon^{ii_{2}...i_{N}}A_{i_{2}}^{k_{2}}...A_{i_{N}}^{k_{N}}.\]

\end_inset


\emph on
Hint
\emph default
: See Sections\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Index-notation-for-determinants}

\end_inset

 and 
\begin_inset LatexCommand \ref{sub:-Index-notation for exterior transposition}

\end_inset

.
\end_layout

\begin_layout Subsection
Further properties and generalizations
\begin_inset LatexCommand \label{sub:Properties-of-the-algebraic-complement}

\end_inset


\end_layout

\begin_layout Standard
In our approach, the algebraic complement 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 comes from considering the set of 
\begin_inset Formula $N-1$
\end_inset

 operators
\begin_inset Formula \[
\hat{A}_{(k)}\equiv\big({\wedge^{N-1}\hat{A}^{N-k}}\big)^{\wedge T},\quad1\leq k\leq N-1.\]

\end_inset

(For convenience we might define 
\begin_inset Formula $\hat{A}_{(N)}\equiv\hat{1}_{V}$
\end_inset

.) 
\end_layout

\begin_layout Standard
The operators  
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

 can be expressed as polynomials in 
\begin_inset Formula $\hat{A}$
\end_inset

 through the identity (Lemma\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

)
\begin_inset Formula \[
\hat{A}_{(k)}\hat{A}+\hat{A}_{(k-1)}=q_{k-1}\hat{1},\quad q_{j}\equiv\wedge^{N}\hat{A}^{N-j}.\]

\end_inset

The numbers 
\begin_inset Formula $q_{j}$
\end_inset

 introduced here are the coefficients of the characteristic polynomial of
 
\begin_inset Formula $\hat{A}$
\end_inset

; for instance, 
\begin_inset Formula $\det\hat{A}\equiv q_{0}$
\end_inset

 and 
\begin_inset Formula $\text{Tr}\hat{A}\equiv q_{N-1}$
\end_inset

.
 It follows by induction (Exercise\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

) that
\begin_inset Formula \begin{align*}
\hat{A}_{(N-k)} & =q_{N-k}\hat{1}-q_{N-k+1}\hat{A}+...\\
 & \quad+q_{N-1}(-\hat{A})^{k-1}+(-\hat{A})^{k}.\end{align*}

\end_inset

The algebraic complement is 
\begin_inset Formula $\tilde{\hat{A}}\equiv\hat{A}_{1}$
\end_inset

, but it appears natural to study the properties of all the operators 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

.
 (The operators 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

 do not seem to have an established name for 
\begin_inset Formula $k\geq2$
\end_inset

.)
\end_layout

\begin_layout Paragraph
Statement\InsetSpace ~
1:
\end_layout

\begin_layout Standard
The coefficients of the characteristic polynomial of the algebraic complement,
 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

, are
\begin_inset Formula \[
\wedge^{N}\tilde{\hat{A}}^{k}=(\det\hat{A})^{k-1}(\wedge^{N}\hat{A}^{N-k})\equiv q_{0}^{k-1}q_{k}.\]

\end_inset

For instance, 
\begin_inset Formula \begin{align*}
\text{Tr}\,\tilde{\hat{A}} & =\wedge^{N}\tilde{\hat{A}}^{1}=q_{1}=\wedge^{N}\hat{A}^{N-1},\\
\det\tilde{\hat{A}} & =\wedge^{N}\tilde{\hat{A}}^{N}=q_{0}^{N-1}q_{N}=(\det\hat{A})^{N-1}.\end{align*}

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Let us first assume that 
\begin_inset Formula $\det\hat{A}\equiv q_{0}\neq0$
\end_inset

.
 We use the property 
\begin_inset Formula $\hat{A}\tilde{\hat{A}}=q_{0}\hat{1}$
\end_inset

 (Lemma\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

) and the multiplicativity of determinants to find
\begin_inset Formula \begin{align*}
\det(\tilde{\hat{A}}-\lambda\hat{1})q_{0} & =\det(q_{0}\hat{1}-\lambda\hat{A})=(-\lambda)^{N}\det(\hat{A}-\frac{q_{0}}{\lambda}\hat{1})\\
 & =(-\lambda^{N})Q_{\hat{A}}(\frac{q_{0}}{\lambda}),\end{align*}

\end_inset

hence the characteristic polynomial of 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 is 
\begin_inset Formula \begin{align*}
Q_{\tilde{\hat{A}}}(\lambda) & \equiv\det(\tilde{\hat{A}}-\lambda\hat{1})=\frac{(-\lambda^{N})}{q_{0}}Q_{\hat{A}}(\frac{q_{0}}{\lambda})\\
 & =\frac{(-\lambda)^{N}}{q_{0}}\left[\left(-\frac{q_{0}}{\lambda}\right)^{N}+q_{N-1}\left(-\frac{q_{0}}{\lambda}\right)^{N-1}+...+q_{0}\right]\\
 & =(-\lambda)^{N}+q_{1}(-\lambda)^{N-1}+q_{2}q_{0}\left(-\lambda\right)^{N-2}+...+q_{0}^{N-1}.\end{align*}

\end_inset

This agrees with the required formula.
 
\end_layout

\begin_layout Standard
It remains to prove the case 
\begin_inset Formula $q_{0}\equiv\det\hat{A}=0$
\end_inset

.
 Although this result could be achieved as a limit of nonzero 
\begin_inset Formula $q_{0}$
\end_inset

 with 
\begin_inset Formula $q_{0}\rightarrow0$
\end_inset

, it is instructive to see a direct proof without using the assumption 
\begin_inset Formula $q_{0}\neq0$
\end_inset

 or taking limits.
\end_layout

\begin_layout Standard
Consider a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 and the expression
\begin_inset Formula \[
(\wedge^{N}\tilde{\hat{A}}^{k})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]

\end_inset

This expression contains 
\begin_inset Formula ${N \choose k}$
\end_inset

 terms of the form
\begin_inset Formula \[
\tilde{\hat{A}}\mathbf{v}_{1}\wedge...\wedge\tilde{\hat{A}}\mathbf{v}_{k}\wedge\mathbf{v}_{k+1}\wedge...\wedge\mathbf{v}_{N},\]

\end_inset

where 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 is applied only to 
\begin_inset Formula $k$
\end_inset

 vectors.
 Using the definition of 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

, we can rewrite such a term as follows.
 First, we use the definition of 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 to write
\begin_inset Formula \[
\tilde{\hat{A}}\mathbf{v}_{1}\wedge\psi=\mathbf{v}_{1}\wedge\big({\wedge^{N-1}\hat{A}^{N-1}}\big)\psi,\]

\end_inset

for any 
\begin_inset Formula $\psi\in\wedge^{N-1}V$
\end_inset

.
 In our case, we use
\begin_inset Formula \[
\psi\equiv\tilde{\hat{A}}\mathbf{v}_{2}\wedge...\wedge\tilde{\hat{A}}\mathbf{v}_{k}\wedge\mathbf{v}_{k+1}\wedge...\wedge\mathbf{v}_{N}\]

\end_inset

and find
\begin_inset Formula \[
\tilde{\hat{A}}\mathbf{v}_{1}\wedge\psi=\mathbf{v}_{1}\wedge\hat{A}\tilde{\hat{A}}\mathbf{v}_{2}\wedge...\wedge\hat{A}\tilde{\hat{A}}\mathbf{v}_{k}\wedge\hat{A}\mathbf{v}_{k+1}\wedge...\wedge\hat{A}\mathbf{v}_{N}.\]

\end_inset

By assumption 
\begin_inset Formula $q_{0}=0$
\end_inset

, hence 
\begin_inset Formula $\hat{A}\tilde{\hat{A}}=0=\tilde{\hat{A}}\hat{A}$
\end_inset

 (since 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

, being a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

, commutes with 
\begin_inset Formula $\hat{A}$
\end_inset

) and thus 
\begin_inset Formula \[
(\wedge^{N}\tilde{\hat{A}}^{k})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=0,\quad k\geq2.\]

\end_inset

For 
\begin_inset Formula $k=1$
\end_inset

 we find
\begin_inset Formula \[
\tilde{\hat{A}}\mathbf{v}_{1}\wedge\psi=\mathbf{v}_{1}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N}.\]

\end_inset

Summing 
\begin_inset Formula $N$
\end_inset

 such terms, we obtain the same expression as that in the definition of
 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-1}$
\end_inset

, hence
\begin_inset Formula \[
(\wedge^{N}\tilde{\hat{A}}^{1})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\wedge^{N}\hat{A}^{N-1}\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]

\end_inset

This concludes the proof for the case 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise:*
\end_layout

\begin_layout Standard
Suppose that 
\begin_inset Formula $\hat{A}$
\end_inset

 has the 
\series bold
simple
\series default
 eigenvalue 
\begin_inset Formula $\lambda=0$
\end_inset

 (i.e.\InsetSpace ~
this eigenvalue has multiplicity 1).
 Show that the algebraic complement, 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

, has rank 1, and that the image of 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 is the one-dimen\SpecialChar \-
sion\SpecialChar \-
al subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}\right\} $
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: An operator has rank 1 if its image is one-dimen\SpecialChar \-
sion\SpecialChar \-
al.
 The eigenvalue 
\begin_inset Formula $\lambda=0$
\end_inset

 has multiplicity 1 if 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-1}\neq0$
\end_inset

.
 Choose a basis consisting of the eigenvector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 and 
\begin_inset Formula $N-1$
\end_inset

 other vectors 
\begin_inset Formula $\mathbf{u}_{2}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{u}_{N}$
\end_inset

.
 Show that
\begin_inset Formula \[
\tilde{\hat{A}}\mathbf{v}\wedge\mathbf{u}_{2}\wedge...\wedge\mathbf{u}_{N}=\wedge^{N}\hat{A}^{N-1}(\mathbf{v}\wedge\mathbf{u}_{2}\wedge...\wedge\mathbf{u}_{N})\neq0,\]

\end_inset

while 
\begin_inset Formula \[
\mathbf{v}\wedge\mathbf{u}_{2}\wedge...\wedge\tilde{\hat{A}}\mathbf{u}_{j}\wedge...\wedge\mathbf{u}_{N}=0,\quad2\leq j\leq N.\]

\end_inset

Consider other expressions, such as
\begin_inset Formula \[
\tilde{\hat{A}}\mathbf{v}\wedge\mathbf{v}\wedge\mathbf{u}_{3}\wedge...\wedge\mathbf{u}_{N}\;\text{or}\;\tilde{\hat{A}}\mathbf{u}_{j}\wedge\mathbf{v}\wedge\mathbf{u}_{3}\wedge...\wedge\mathbf{u}_{N},\]

\end_inset

and finally deduce that the image of 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 is precisely the one-dimen\SpecialChar \-
sion\SpecialChar \-
al subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}\right\} $
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Standard
Now we will demonstrate a useful property of the operators 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
The trace of 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

 satisfies 
\begin_inset Formula \[
\frac{\text{Tr}\hat{A}_{(k)}}{k}=\wedge^{N}\hat{A}^{N-k}\equiv q_{k}.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
\begin_inset Note Note
status collapsed

\begin_layout Standard
For brevity, let us denote temporarily 
\begin_inset Formula $\hat{B}\equiv\hat{A}_{(k)}$
\end_inset


\end_layout

\end_inset

Consider the action of 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-k}$
\end_inset

 on a basis tensor 
\begin_inset Formula $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

; the result is a sum of 
\begin_inset Formula ${N \choose N-k}$
\end_inset

 terms,
\begin_inset Formula \begin{align*}
\wedge^{N}\hat{A}^{N-k}\omega & =\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{N}\\
 & \quad+(\text{permutations}).\end{align*}

\end_inset

 Consider now the action of 
\begin_inset Formula $\text{Tr}\hat{A}_{(k)}$
\end_inset

 on 
\begin_inset Formula $\omega$
\end_inset

, 
\begin_inset Formula \begin{align*}
\text{Tr}\hat{A}_{(k)}\omega & =\wedge^{N}[\hat{A}_{(k)}]^{1}\omega\\
 & =\sum_{j=1}^{N}\mathbf{v}_{1}\wedge...\wedge\hat{A}_{(k)}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}.\end{align*}

\end_inset

Using the definition of 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

, we rewrite 
\begin_inset Formula \begin{align*}
 & \mathbf{v}_{1}\wedge...\wedge\hat{A}_{(k)}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\\
 & =\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\\
 & \quad+(\text{permutations not including }\hat{A}\mathbf{v}_{j}).\end{align*}

\end_inset

After summing over 
\begin_inset Formula $j$
\end_inset

, we will obtain all the same terms as were present in the expression for
 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-k}\omega$
\end_inset

, but each term will occur several times.
 We can show that each term will occur exactly 
\begin_inset Formula $k$
\end_inset

 times.
 For instance, the term
\begin_inset Formula \[
\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\]

\end_inset

 will occur 
\begin_inset Formula $k$
\end_inset

 times in the expression for 
\begin_inset Formula $\text{Tr}\hat{A}_{(k)}\omega$
\end_inset

 because it will be generated once by each of the terms
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge\hat{A}_{(k)}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\]

\end_inset

 with 
\begin_inset Formula $N-k+1\leq j\leq N$
\end_inset

.
 The same argument holds for every other term.
 Therefore
\begin_inset Formula \[
\text{Tr}\hat{A}_{(k)}\omega=k\,(\wedge^{N}\hat{A}^{N-k})\omega=kq_{k}\omega.\]

\end_inset

Since this holds for any 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

, we obtain the required statement.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
We have thus computed the trace of every operator 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

, as well as the characteristic polynomial of 
\begin_inset Formula $\hat{A}_{(1)}\equiv\tilde{\hat{A}}$
\end_inset

.
 Computing the entire characteristic polynomial of each 
\begin_inset Formula $\hat{A}_{k}$
\end_inset

 is certainly possible but will perhaps lead to cumbersome expressions.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
An interesting application of Statement\InsetSpace ~
2 is the following algorithm for
 computing the characteristic polynomial of an operator.
\begin_inset Foot
status open

\begin_layout Standard
I found this algorithm in an online note by W.
 Kahan, 
\begin_inset Quotes eld
\end_inset


\emph on
Jordan's normal form
\emph default

\begin_inset Quotes erd
\end_inset

 (downloaded from 
\family typewriter
\size footnotesize
http://www.cs.berkeley.edu/~wkahan/MathH110/jordan.pdf
\family default
\size default
 on October 6, 2009).
 Kahan attributes this algorithm to Leverrier, Souriau, Frame, and Faddeev.
\end_layout

\end_inset

 This algorithm is more economical compared with the computation of 
\begin_inset Formula $\det(\hat{A}-\lambda\hat{1})$
\end_inset

 via permutations, and requires only operator (or matrix) multiplications
 and the computation of a trace.
\end_layout

\begin_layout Paragraph
Statement 3: (Leverrier's algorithm)
\end_layout

\begin_layout Standard
\begin_inset LatexCommand \index{Leverrier's algorithm}

\end_inset

The coefficients 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}\equiv q_{N-k}$
\end_inset

 (
\begin_inset Formula $1\leq k\leq N$
\end_inset

) of the characteristic polynomial of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be computed together with the operators 
\begin_inset Formula $\hat{A}_{(j)}$
\end_inset

 by starting with 
\begin_inset Formula $\hat{A}_{(N)}\equiv\hat{1}_{V}$
\end_inset

 and using the descending recurrence relation for 
\begin_inset Formula $j=N-1$
\end_inset

, ..., 
\begin_inset Formula $0$
\end_inset

: 
\begin_inset Formula \begin{align}
q_{j} & =\frac{1}{N-j}\text{Tr}\,[\hat{A}\hat{A}_{(j+1)}],\nonumber \\
\hat{A}_{(j)} & =q_{j}\hat{1}-\hat{A}\hat{A}_{(j+1)}.\label{eq:Aq Leverrier}\end{align}

\end_inset

At the end of the calculation, we will have
\begin_inset Formula \[
q_{0}=\det\hat{A},\quad\hat{A}_{(1)}=\tilde{\hat{A}},\quad\hat{A}_{(0)}=0.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
At the beginning of the recurrence, we have
\begin_inset Formula \[
j=N-1,\quad q_{N-1}=\frac{1}{N-j}\text{Tr}\,[\hat{A}\hat{A}_{(j+1)}]=\text{Tr}\hat{A},\]

\end_inset

which is correct.
 The recurrence relation\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Aq Leverrier}

\end_inset

) for 
\begin_inset Formula $\hat{A}_{(j)}$
\end_inset

 coincides with the result of Lemma\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

 and thus yields at each step 
\begin_inset Formula $j$
\end_inset

 the correct operator 
\begin_inset Formula $\hat{A}_{(j)}$
\end_inset

 --- as long as 
\begin_inset Formula $q_{j}$
\end_inset

 was computed correctly at that step.
 So it remains to verify that 
\begin_inset Formula $q_{j}$
\end_inset

 is computed correctly.
 Taking the trace of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Aq Leverrier}

\end_inset

) and using 
\begin_inset Formula $\text{Tr}\,\hat{1}=N$
\end_inset

, we get
\begin_inset Formula \[
\text{Tr}\,[A\hat{A}_{(j+1)}]=Nq_{j}-\text{Tr}\hat{A}_{(j)}.\]

\end_inset

We now substitute for 
\begin_inset Formula $\text{Tr}\hat{A}_{(j)}$
\end_inset

 the result of Statement\InsetSpace ~
2 and find
\begin_inset Formula \[
\text{Tr}\,[A\hat{A}_{(j+1)}]=Nq_{j}-jq_{j}=\left(N-j\right)q_{j}.\]

\end_inset

Thus 
\begin_inset Formula $q_{j}$
\end_inset

 is also computed correctly from the previously known 
\begin_inset Formula $\hat{A}_{(j+1)}$
\end_inset

 at each step 
\begin_inset Formula $j$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
This algorithm provides another illustration for the 
\begin_inset Quotes eld
\end_inset

trace relations
\begin_inset LatexCommand \index{trace relations}

\end_inset


\begin_inset Quotes erd
\end_inset

 (see Exercises 1 and 2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-characteristic-polynomial}

\end_inset

), i.e.\InsetSpace ~
for the fact that the coefficients 
\begin_inset Formula $q_{j}$
\end_inset

 of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 can be expressed as polynomials in the traces of 
\begin_inset Formula $\hat{A}$
\end_inset

 and its powers.
 These expressions will be obtained in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:General-trace-relations}

\end_inset

.
\end_layout

\begin_layout Section
Cayley-Hamilton theorem and beyond
\end_layout

\begin_layout Standard
The characteristic polynomial of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has roots 
\begin_inset Formula $\lambda$
\end_inset

 that are eigenvalues of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 It turns out that we can substitute 
\begin_inset Formula $\hat{A}$
\end_inset

 as an operator into the characteristic polynomial, and the result is the
 zero operator, as if 
\begin_inset Formula $\hat{A}$
\end_inset

 were one of its eigenvalues.
 In other words, 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies (as an operator) its own characteristic equation.
\end_layout

\begin_layout Paragraph
Theorem 1 (Cayley-Hamilton)
\begin_inset LatexCommand \index{Cayley-Hamilton theorem}

\end_inset

:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $Q_{\hat{A}}\left(\lambda\right)\equiv\det(\hat{A}-\lambda\hat{1}_{V})$
\end_inset

 is the characteristic polynomial of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 then 
\begin_inset Formula $Q_{\hat{A}}(\hat{A})=\hat{0}_{V}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The coefficients of the characteristic polynomial are 
\begin_inset Formula $\wedge^{N}\hat{A}^{m}$
\end_inset

.
 When we substitute the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 into 
\begin_inset Formula $Q_{\hat{A}}(\lambda)$
\end_inset

, we obtain the operator
\begin_inset Formula \[
Q_{\hat{A}}(\hat{A})=(\det\hat{A})\hat{1}_{V}+(\wedge^{N}\hat{A}^{N-1})(-\hat{A})+...+(-\hat{A})^{N}.\]

\end_inset

We note that this expression is similar to that for the algebraic complement
 of 
\begin_inset Formula $\hat{A}$
\end_inset

 (see Exercise\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

), so 
\begin_inset Formula \begin{align*}
Q_{\hat{A}}(\hat{A}) & =(\det\hat{A})\hat{1}_{V}+\big({\wedge^{N}\hat{A}^{N-1}}+...+(-\hat{A})^{N-1}\big)(-\hat{A})\\
 & =(\det\hat{A})\hat{1}_{V}-(\wedge^{N-1}\hat{A}^{N-1})^{\wedge T}\hat{A}=\hat{0}_{V}\end{align*}

\end_inset

by Lemma\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

.
 Hence 
\begin_inset Formula $Q_{\hat{A}}(\hat{A})=\hat{0}_{V}$
\end_inset

 for any operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
While it is true that the characteristic polynomial vanishes on 
\begin_inset Formula $\hat{A}$
\end_inset

, it is not necessarily the simplest such polynomial.
 A polynomial of a lower degree may vanish on 
\begin_inset Formula $\hat{A}$
\end_inset

.
 A trivial example of this is given by an operator 
\begin_inset Formula $\hat{A}=\alpha\hat{1}$
\end_inset

, that is, the identity operator times a constant 
\begin_inset Formula $\alpha$
\end_inset

.
 The characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula $Q_{\hat{A}}(\lambda)=\left(\alpha-\lambda\right)^{N}$
\end_inset

.
 In agreement with the Cayley-Hamilton theorem, 
\begin_inset Formula $(\alpha\hat{1}-\hat{A})^{N}=\hat{0}$
\end_inset

.
 However, the simpler polynomial 
\begin_inset Formula $p(\lambda)=\lambda-\alpha$
\end_inset

 also has the property 
\begin_inset Formula $p(\hat{A})=\hat{0}$
\end_inset

.
 We will look into this at the end of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-Jordan-canonical}

\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
We have derived the Cayley-Hamilton theorem by considering the exterior
 transpose of 
\begin_inset Formula $\wedge^{N-1}\hat{A}^{N-1}$
\end_inset

.
 A generalization is found if we similarly use the operators of the form
 
\begin_inset Formula ${\big({\wedge^{a}\hat{A}^{b}}\big)}^{\wedge T}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Theorem 2 (Cayley-Hamilton in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

):
\end_layout

\begin_layout Standard
\begin_inset LatexCommand \index{Cayley-Hamilton theorem!generalization}

\end_inset

  For any operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 and for 
\begin_inset Formula $1\leq k\leq N$
\end_inset

, 
\begin_inset Formula $1\leq p\leq N$
\end_inset

, the following identity holds,
\begin_inset Formula \begin{equation}
\sum_{q=0}^{p}{\big({\wedge^{N-k}\hat{A}^{p-q}}\big)}^{\wedge T}(\wedge^{k}\hat{A}^{q})=(\wedge^{N}\hat{A}^{p})\hat{1}_{\wedge^{k}V}.\label{eq:identity p q}\end{equation}

\end_inset

In this identity, we set 
\begin_inset Formula $\wedge^{k}\hat{A}^{0}\equiv\hat{1}_{\wedge^{k}V}$
\end_inset

 and 
\begin_inset Formula $\wedge^{k}\hat{A}^{r}\equiv0$
\end_inset

 for 
\begin_inset Formula $r>k$
\end_inset

.
 Explicit expressions can be derived for all operators 
\begin_inset Formula ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
\end_inset

 as polynomials in the (mutually commuting) operators 
\begin_inset Formula $\wedge^{k}\hat{A}^{j}$
\end_inset

, 
\begin_inset Formula $1\leq j\leq k$
\end_inset

.
 (See Exercise\InsetSpace ~
3 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

.) Hence, there exist 
\begin_inset Formula $k$
\end_inset

 identically vanishing oper\SpecialChar \-
ator-val\SpecialChar \-
ued polynomials involving 
\begin_inset Formula $\wedge^{k}\hat{A}^{j}$
\end_inset

.
 (In the ordinary Cay\SpecialChar \-
ley-Ham\SpecialChar \-
il\SpecialChar \-
ton theorem, we have 
\begin_inset Formula $k=1$
\end_inset

 and a single polynomial 
\begin_inset Formula $Q_{\hat{A}}(\hat{A})$
\end_inset

 that identically vanishes as an operator in 
\begin_inset Formula $V\equiv\wedge^{1}V$
\end_inset

.) The coefficients of those polynomials will be known functions of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 One can also obtain an identically vanishing polynomial in 
\begin_inset Formula $\wedge^{k}\hat{A}^{1}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Let us fix 
\begin_inset Formula $k$
\end_inset

 and first write Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:identity p q}

\end_inset

) for 
\begin_inset Formula $1\leq p\leq N-k$
\end_inset

.
 These 
\begin_inset Formula $N-k$
\end_inset

 equations are all of the form
\begin_inset Formula \[
{\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}+\left[...\right]=(\wedge^{N}\hat{A}^{p})\hat{1}_{\wedge^{k}V},\quad1\leq p\leq N-k.\]

\end_inset

In the 
\begin_inset Formula $p$
\end_inset

-th equation, the omitted terms in square brackets contain only the operators
 
\begin_inset Formula ${\big({\wedge^{N-k}\hat{A}^{r}}\big)}^{\wedge T}$
\end_inset

 with 
\begin_inset Formula $r<p$
\end_inset

 and 
\begin_inset Formula $\wedge^{k}\hat{A}^{q}$
\end_inset

 with 
\begin_inset Formula $1\leq q\leq k$
\end_inset

.
 Therefore, these equations can be used to express 
\begin_inset Formula ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
\end_inset

 for 
\begin_inset Formula $1\leq p\leq N-k$
\end_inset

 through the operators 
\begin_inset Formula $\wedge^{k}\hat{A}^{q}$
\end_inset

 explicitly as polynomials.
 Substituting these expressions into Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:identity p q}

\end_inset

), we obtain 
\begin_inset Formula $k$
\end_inset

 identically vanishing polynomials in the 
\begin_inset Formula $k$
\end_inset

 operators 
\begin_inset Formula $\wedge^{k}\hat{A}^{q}$
\end_inset

 (with 
\begin_inset Formula $1\leq q\leq k$
\end_inset

).
 These polynomials can be considered as a system of polynomial equations
 in the variables 
\begin_inset Formula $\hat{\alpha}_{q}\equiv\wedge^{k}\hat{A}^{q}$
\end_inset

.
 (As an exercise, you may verify that all the operators 
\begin_inset Formula $\hat{\alpha}_{q}$
\end_inset

 commute.) A system of polynomial equations may be reduced to a single polynomial
 equation in one of the variables, say 
\begin_inset Formula $\hat{\alpha}_{1}$
\end_inset

.
 (The technique for doing this in practice, called the 
\begin_inset Quotes eld
\end_inset

Gröbner basis
\begin_inset LatexCommand \index{Gr\"obner basis}

\end_inset

,
\begin_inset Quotes erd
\end_inset

 is complicated and beyond the scope of this book.)
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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The following two examples illustrate Theorem\InsetSpace ~
2 in three and four dimensions.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $V$
\end_inset

 is a three-dimen\SpecialChar \-
sion\SpecialChar \-
al space (
\begin_inset Formula $N=3$
\end_inset

) and an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is given.
 The ordinary Cayley-Hamilton theorem is obtained from Theorem\InsetSpace ~
2 with 
\begin_inset Formula $k=1$
\end_inset

, 
\begin_inset Formula \[
q_{0}-q_{1}\hat{A}+q_{2}\hat{A}^{2}-\hat{A}^{3}=0,\]

\end_inset

where 
\begin_inset Formula $q_{j}\equiv\wedge^{N}\hat{A}^{N-j}$
\end_inset

 are the coefficients of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The generalization of the Cayley-Hamilton theorem is obtained with 
\begin_inset Formula $k=2$
\end_inset

 (the only remaining case 
\begin_inset Formula $k=3$
\end_inset

 will not yield interesting results).
 
\end_layout

\begin_layout Standard
We write the identity\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:identity p q}

\end_inset

) for 
\begin_inset Formula $k=2$
\end_inset

 and 
\begin_inset Formula $p=1$
\end_inset

, 2, 3.
 Using the properties 
\begin_inset Formula $\wedge^{k}\hat{A}^{k+j}=0$
\end_inset

 (with 
\begin_inset Formula $j>0$
\end_inset

) and 
\begin_inset Formula $\wedge^{k}\hat{A}^{0}=\hat{1}$
\end_inset

, we get the following three identities of operators in 
\begin_inset Formula $\wedge^{2}V$
\end_inset

:
\begin_inset Formula \begin{align*}
\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T} & +{\wedge^{2}\hat{A}^{1}}=q_{2}\hat{1}_{\wedge^{2}V},\\
\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T}(\wedge^{2}\hat{A}^{1}) & +{\wedge^{2}\hat{A}^{2}}=q_{1}\hat{1}_{\wedge^{2}V},\\
\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T}(\wedge^{2}\hat{A}^{2}) & =q_{0}\hat{1}_{\wedge^{2}V}.\end{align*}

\end_inset

Let us denote for brevity 
\begin_inset Formula $\hat{\alpha}_{1}\equiv\wedge^{2}\hat{A}^{1}$
\end_inset

 and 
\begin_inset Formula $\hat{\alpha}_{2}\equiv\wedge^{2}\hat{A}^{2}$
\end_inset

.
 Expressing 
\begin_inset Formula $\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T}$
\end_inset

 through 
\begin_inset Formula $\hat{\alpha}_{1}$
\end_inset

 from the first line above and substituting into the last two lines, we
 find
\begin_inset Formula \begin{align*}
\hat{\alpha}_{2} & =q_{1}\hat{1}-q_{2}\hat{\alpha}_{1}+\hat{\alpha}_{1}^{2},\\
(q_{2}\hat{1}-\hat{\alpha}_{1})\hat{\alpha}_{2} & =q_{0}\hat{1}.\end{align*}

\end_inset

We can now express 
\begin_inset Formula $\hat{\alpha}_{2}$
\end_inset

 through 
\begin_inset Formula $\hat{\alpha}_{1}$
\end_inset

 and substitute into the last equation to find
\begin_inset Formula \[
\hat{\alpha}_{1}^{3}-2q_{2}\hat{\alpha}_{1}^{2}+(q_{1}+q_{2}^{2})\hat{\alpha}_{1}-(q_{1}q_{2}-q_{0})\hat{1}=0.\]

\end_inset

Thus, the generalization of the Cayley-Hamilton theorem in 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 yields an identically vanishing polynomial in 
\begin_inset Formula $\wedge^{2}\hat{A}^{1}\equiv\hat{\alpha}_{1}$
\end_inset

 with coefficients that are expressed through 
\begin_inset Formula $q_{j}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Question: 
\end_layout

\begin_layout Standard
Is this the characteristic polynomial of 
\begin_inset Formula $\hat{\alpha}_{1}$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
I do not know! It could be since it has the correct degree.
 However, not every polynomial 
\begin_inset Formula $p(x)$
\end_inset

 such that 
\begin_inset Formula $p(\hat{\alpha})=0$
\end_inset

 for some operator 
\begin_inset Formula $\hat{\alpha}$
\end_inset

 is the characteristic polynomial of 
\begin_inset Formula $\hat{\alpha}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Let us now consider the case 
\begin_inset Formula $N=4$
\end_inset

 and 
\begin_inset Formula $k=2$
\end_inset

.
 We use Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:identity p q}

\end_inset

) with 
\begin_inset Formula $p=1,2,3,4$
\end_inset

 and obtain the following four equations,
\begin_inset Formula \begin{align*}
(\wedge^{2}\hat{A}^{1})^{\wedge T}+{\wedge^{2}\hat{A}^{1}} & =(\wedge^{4}\hat{A}^{1})\hat{1}_{\wedge^{2}V},\\
(\wedge^{2}\hat{A}^{2})^{\wedge T}+(\wedge^{2}\hat{A}^{1})^{\wedge T}({\wedge^{2}\hat{A}^{1}})+{\wedge^{2}\hat{A}^{2}} & =(\wedge^{4}\hat{A}^{2})\hat{1}_{\wedge^{2}V},\\
(\wedge^{2}\hat{A}^{2})^{\wedge T}({\wedge^{2}\hat{A}^{1}})+(\wedge^{2}\hat{A}^{1})^{\wedge T}({\wedge^{2}\hat{A}^{2}}) & =(\wedge^{4}\hat{A}^{3})\hat{1}_{\wedge^{2}V},\\
(\wedge^{2}\hat{A}^{2})^{\wedge T}({\wedge^{2}\hat{A}^{2}}) & =(\wedge^{4}\hat{A}^{4})\hat{1}_{\wedge^{2}V}.\end{align*}

\end_inset

Let us denote, as before, 
\begin_inset Formula $q_{j}={\wedge^{4}\hat{A}^{4-j}}$
\end_inset

 (with 
\begin_inset Formula $0\leq j\leq3$
\end_inset

) and 
\begin_inset Formula $\hat{\alpha}_{r}\equiv{\wedge^{2}\hat{A}^{r}}$
\end_inset

 (with 
\begin_inset Formula $r=1,2$
\end_inset

).
 Using the first two equations above, we can then express 
\begin_inset Formula $({\wedge^{2}\hat{A}^{r}})^{\wedge T}$
\end_inset

 through 
\begin_inset Formula $\hat{\alpha}_{r}$
\end_inset

 and substitute into the last two equations.
 We obtain
\begin_inset Formula \begin{align*}
(\wedge^{2}\hat{A}^{1})^{\wedge T} & =q_{3}\hat{1}-\hat{\alpha}_{1},\\
(\wedge^{2}\hat{A}^{2})^{\wedge T} & =q_{2}\hat{1}+\hat{\alpha}_{1}^{2}-q_{3}\hat{\alpha}_{1}-\hat{\alpha}_{2},\end{align*}

\end_inset

and finally
\begin_inset Formula \begin{align*}
(q_{2}\hat{1}+\hat{\alpha}_{1}^{2}-q_{3}\hat{\alpha}_{1}-\hat{\alpha}_{2})\hat{\alpha}_{1}+(q_{3}\hat{1}-\hat{\alpha}_{1})\hat{\alpha}_{2} & =q_{1}\hat{1},\\
(q_{2}\hat{1}+\hat{\alpha}_{1}^{2}-q_{3}\hat{\alpha}_{1}-\hat{\alpha}_{2})\hat{\alpha}_{2} & =q_{0}\hat{1}.\end{align*}

\end_inset

One cannot express 
\begin_inset Formula $\hat{\alpha}_{2}$
\end_inset

 directly through 
\begin_inset Formula $\hat{\alpha}_{1}$
\end_inset

 using these last equations.
 However, one can show (for instance, using a computer algebra program
\begin_inset Foot
status open

\begin_layout Standard
This can be surely done by hand, but I have not yet learned the Gröbner
 basis technique necessary to do this, so I cannot show the calculation
 here.
\end_layout

\end_inset

) that there exists an identically vanishing polynomial of degree 6 in 
\begin_inset Formula $\hat{\alpha}_{1}$
\end_inset

, namely 
\begin_inset Formula $p(\hat{\alpha}_{1})=0$
\end_inset

 with
\begin_inset Formula \begin{align*}
p(x) & \equiv x^{6}-3q_{3}x^{5}+\left(2q_{2}+3q_{3}^{2}\right)x^{4}-\left(4q_{2}q_{3}+q_{3}^{3}\right)x^{3}\\
 & \;+\left(q_{2}^{2}-4q_{0}+q_{1}q_{3}+2q_{2}q_{3}^{2}\right)x^{2}-\left(q_{1}q_{3}^{2}+q_{2}^{2}q_{3}-4q_{0}q_{3}\right)x\\
 & \;+q_{1}q_{2}q_{3}-q_{0}q_{3}^{2}-q_{1}^{2}.\end{align*}

\end_inset

The coefficients of 
\begin_inset Formula $p(x)$
\end_inset

 are known functions of the coefficients 
\begin_inset Formula $q_{j}$
\end_inset

 of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Note that the space 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 has dimension 6 in this example; the polynomial 
\begin_inset Formula $p(x)$
\end_inset

 has the same degree.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
In both examples we found an identically vanishing polynomial in 
\begin_inset Formula $\wedge^{k}\hat{A}^{1}$
\end_inset

.
 Is there a general formula for the coefficients of this polynomial?
\end_layout

\begin_layout Subparagraph
Answer: 
\end_layout

\begin_layout Standard
I do not know!
\end_layout

\begin_layout Section
Functions of operators
\begin_inset LatexCommand \label{sub:Functions-of-operators}

\end_inset


\end_layout

\begin_layout Standard
We will now consider some calculations with operators.
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\hat{A}\in\text{End}\, V$
\end_inset

.
 Since linear operators can be multiplied, it is straightforward to evaluate
 
\begin_inset Formula $\hat{A}\hat{A}\equiv\hat{A}^{2}$
\end_inset

 and other powers of 
\begin_inset Formula $\hat{A}$
\end_inset

, as well as arbitrary polynomials in 
\begin_inset Formula $\hat{A}$
\end_inset

.
 For example, the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be substituted instead of 
\begin_inset Formula $x$
\end_inset

 into the polynomial 
\begin_inset Formula $p(x)=2+3x+4x^{2}$
\end_inset

; the result is the operator 
\begin_inset Formula $\hat{2}+3\hat{A}+4\hat{A}^{2}\equiv p(\hat{A})$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
For a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 and an arbitrary polynomial 
\begin_inset Formula $p(x)$
\end_inset

, show that 
\begin_inset Formula $p(\hat{A})$
\end_inset

 has the same eigenvectors as 
\begin_inset Formula $\hat{A}$
\end_inset

 (although perhaps with different eigenvalues).
 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Another familiar function of 
\begin_inset Formula $\hat{A}$
\end_inset

 is the inverse operator, 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

.
 Clearly, we can evaluate a polynomial in 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 as well (if 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 exists).
 It is interesting to ask whether we can evaluate an arbitrary function
 of 
\begin_inset Formula $\hat{A}$
\end_inset

; for instance, whether we can raise 
\begin_inset Formula $\hat{A}$
\end_inset

 to a non-integer power, or compute 
\begin_inset Formula $\exp(\hat{A})$
\end_inset

, 
\begin_inset Formula $\ln(\hat{A})$
\end_inset

, 
\begin_inset Formula $\cos(\hat{A})$
\end_inset

.
 Generally, can we substitute 
\begin_inset Formula $\hat{A}$
\end_inset

 instead of 
\begin_inset Formula $x$
\end_inset

 in an arbitrary function 
\begin_inset Formula $f(x)$
\end_inset

 and evaluate an oper\SpecialChar \-
ator-valued function 
\begin_inset Formula $f(\hat{A})$
\end_inset

? If so, how to do this in practice?
\end_layout

\begin_layout Subsection
Definitions.
 Formal power series
\end_layout

\begin_layout Standard
The answer is that 
\emph on
sometimes
\emph default
 we can.
 There are two situations when 
\begin_inset Formula $f(\hat{A})$
\end_inset

 makes sense, i.e.\InsetSpace ~
can be defined and has reasonable properties.
 
\end_layout

\begin_layout Standard
The first situation is when 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\series bold
diagonalizable
\series default

\begin_inset LatexCommand \index{diagonalizable operator}

\end_inset

, i.e.\InsetSpace ~
there exists a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 such that every basis vector is an eigenvector of 
\begin_inset Formula $\hat{A}$
\end_inset

,
\begin_inset Formula \[
\hat{A}\mathbf{e}_{i}=\lambda_{i}\mathbf{e}_{i}.\]

\end_inset

In this case, we simply define 
\begin_inset Formula $f(\hat{A})$
\end_inset

 as the linear operator that acts on the basis vectors as follows,
\begin_inset Formula \[
f(\hat{A})\mathbf{e}_{i}\equiv f(\lambda_{i})\mathbf{e}_{i}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Definition 1:
\end_layout

\begin_layout Standard
Given a function 
\begin_inset Formula $f(x)$
\end_inset

 and a diagonalizable linear operator
\begin_inset Formula \[
\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*},\]

\end_inset

the function 
\begin_inset Formula $f(\hat{A})$
\end_inset

 is the linear operator defined by 
\begin_inset Formula \[
f(\hat{A})\equiv\sum_{i=1}^{N}f(\lambda_{i})\,\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*},\]

\end_inset

provided that 
\begin_inset Formula $f(x)$
\end_inset

 is well-defined at the points 
\begin_inset Formula $x=\lambda_{i}$
\end_inset

, 
\begin_inset Formula $i=1,...,N$
\end_inset

.
\end_layout

\begin_layout Standard
This definition might appear to be 
\begin_inset Quotes eld
\end_inset

cheating
\begin_inset Quotes erd
\end_inset

 since we simply substituted the eigenvalues into 
\begin_inset Formula $f(x)$
\end_inset

, rather than evaluate the operator 
\begin_inset Formula $f(\hat{A})$
\end_inset

 in some 
\begin_inset Quotes eld
\end_inset

natural
\begin_inset Quotes erd
\end_inset

 way.
 However, the result is reasonable since we, in effect, define 
\begin_inset Formula $f(\hat{A})$
\end_inset

 separately in each eigenspace 
\begin_inset Formula $\text{Span}\,\{\mathbf{e}_{i}\}$
\end_inset

 where 
\begin_inset Formula $\hat{A}$
\end_inset

 acts as multiplication by 
\begin_inset Formula $\lambda_{i}$
\end_inset

.
 It is natural to define 
\begin_inset Formula $f(\hat{A})$
\end_inset

 in each eigenspace as multiplication by 
\begin_inset Formula $f(\lambda_{i})$
\end_inset

.
 
\end_layout

\begin_layout Standard
The second situation is when 
\begin_inset Formula $f(x)$
\end_inset

 is an 
\series bold
analytic
\series default
 
\series bold
function
\series default

\begin_inset LatexCommand \index{analytic function}

\end_inset

, that is, a function represented by a power series 
\begin_inset Formula \[
f(x)=\sum_{n=0}^{\infty}c_{n}x^{n},\]

\end_inset

such that the series converges to the value 
\begin_inset Formula $f(x)$
\end_inset

 for some 
\begin_inset Formula $x$
\end_inset

.
 Further, we need this series to converge for a sufficiently wide range
 of values of 
\begin_inset Formula $x$
\end_inset

 such that all eigenvalues of 
\begin_inset Formula $\hat{A}$
\end_inset

 are within that range.
 Then one can show that the oper\SpecialChar \-
ator-valued series
\begin_inset Formula \[
f(\hat{A})=\sum_{n=0}^{\infty}c_{n}(\hat{A})^{n}\]

\end_inset

converges.
 The technical details of this proof are beyond the scope of this book;
 one needs to define the limit of a sequence of operators and other notions
 studied in functional analysis.
 Here is a simple argument that gives a condition for convergence.
 Suppose that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable and has eigenvalues 
\begin_inset Formula $\lambda_{i}$
\end_inset

 and the corresponding eigenvectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,N$
\end_inset

) such that 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

 is a basis and 
\begin_inset Formula $\hat{A}$
\end_inset

 has a tensor representation
\begin_inset Formula \[
\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}.\]

\end_inset

Note that
\begin_inset Formula \[
\hat{A}^{n}=\left[\sum_{i=1}^{N}\lambda_{i}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}\right]^{n}=\sum_{i=1}^{N}\lambda_{i}^{n}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}\]

\end_inset

 due to the property of the dual basis, 
\begin_inset Formula $\mathbf{v}_{i}^{*}(\mathbf{v}_{j})=\delta_{ij}$
\end_inset

.
 So if the series 
\begin_inset Formula $\sum_{n=0}^{\infty}c_{n}x^{n}$
\end_inset

 converges for every eigenvalue 
\begin_inset Formula $x=\lambda_{i}$
\end_inset

 of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 then the tensor-valued series also converges and yields a new tensor
\begin_inset Formula \begin{align*}
\sum_{n=0}^{\infty}c_{n}(\hat{A})^{n} & =\sum_{n=0}^{\infty}c_{n}\sum_{i=1}^{N}\lambda_{i}^{n}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}\\
 & =\sum_{i=1}^{N}\left[\sum_{n=0}^{\infty}c_{n}\lambda^{n}\right]\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}.\end{align*}

\end_inset

This argument indicates at least one case where the oper\SpecialChar \-
ator-valued power
 series surely converges.
\end_layout

\begin_layout Standard
Instead of performing an in-depth study of oper\SpecialChar \-
ator-valued power series,
 I will restrict myself to considering 
\begin_inset Quotes eld
\end_inset

formal power series
\begin_inset Quotes erd
\end_inset

 containing a parameter 
\begin_inset Formula $t$
\end_inset

, that is, infinite power series in 
\begin_inset Formula $t$
\end_inset

 considered without regard for convergence.
 Let us discuss this idea in more detail.
\end_layout

\begin_layout Standard
By definition, a 
\series bold
formal power series
\series default

\begin_inset LatexCommand \index{formal power series}

\end_inset

 (FPS) is an infinite sequence of numbers 
\begin_inset Formula $\left(c_{0},c_{1},c_{2},...\right)$
\end_inset

.
 This sequence, however, is written as if it were a power series in a parameter
 
\begin_inset Formula $t$
\end_inset

, 
\begin_inset Formula \[
c_{0}+c_{1}t+c_{2}t^{2}+...=\sum_{n=0}^{\infty}c_{n}t^{n}.\]

\end_inset

It appears that we need to calculate the sum of the above series.
 However, while we manipulate an FPS, we 
\emph on
do not
\emph default
 assign any value to 
\begin_inset Formula $t$
\end_inset

 and thus do not have to consider the issue of convergence of the resulting
 infinite series.
 Hence, we work with an FPS as with an algebraic expression containing a
 variable 
\begin_inset Formula $t$
\end_inset

, an expression that we do not evaluate (although we may simplify it).
 These expressions can be manipulated term by term, so that, for example,
 the sum and the product of two FPS are always defined; the result is another
 FPS.
 Thus, the notation for FPS should be understood as a convenient shorthand
 that simplifies working with FPS, rather than an actual sum of an infinite
 series.
 At the same time, the notation for FPS makes it easy to evaluate the actual
 infinite series when the need arises.
 Therefore, any results obtained using FPS will hold whenever the series
 converges.
\end_layout

\begin_layout Standard
Now I will use the formal power series to define 
\begin_inset Formula $f(t\hat{A})$
\end_inset

.
\end_layout

\begin_layout Paragraph
Definition 2:
\end_layout

\begin_layout Standard
Given an analytic function 
\begin_inset Formula $f(x)$
\end_inset

 shown above and a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

, the function 
\begin_inset Formula $f(t\hat{A})$
\end_inset

 denotes the oper\SpecialChar \-
ator-valued formal power series
\begin_inset Formula \[
f(t\hat{A})\equiv\sum_{n=0}^{\infty}c_{n}(\hat{A})^{n}t^{n}.\]

\end_inset

(According to the definition of formal power series, the variable 
\begin_inset Formula $t$
\end_inset

 is a parameter that does not have a value and serves only to label the
 terms of the series.)
\end_layout

\begin_layout Standard
One can define the derivative of a formal power series, 
\emph on
without
\emph default
 using the notion of a limit (and without discussing convergence).
\end_layout

\begin_layout Paragraph
Definition 3:
\end_layout

\begin_layout Standard
The 
\series bold
derivative
\series default
 
\begin_inset Formula $\partial_{t}$
\end_inset

 of a formal power series 
\begin_inset Formula $\sum_{k}a_{k}t^{k}$
\end_inset

 is another formal power series defined by
\begin_inset Formula \[
\partial_{t}\big(\sum_{k=0}^{\infty}a_{k}t^{k}\big)\equiv\sum_{k=0}^{\infty}\left(k+1\right)a_{k+1}t^{k}.\]

\end_inset


\end_layout

\begin_layout Standard
This definition gives us the usual properties of the derivative.
 For instance, it is obvious that 
\begin_inset Formula $\partial_{t}$
\end_inset

 is a linear operator in the space of formal power series.
 Further, we have the important distributive property:
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
The Leibniz rule,
\begin_inset Formula \[
\partial_{t}\left[f(t)g(t)\right]=\left[\partial_{t}f(t)\right]g(t)+f(t)\left[\partial_{t}g(t)\right],\]

\end_inset

holds for formal power series.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Since 
\begin_inset Formula $\partial_{t}$
\end_inset

 is a linear operation, it is sufficient to check that the Leibniz rule
 holds for single terms, 
\begin_inset Formula $f(t)=t^{a}$
\end_inset

 and 
\begin_inset Formula $g(t)=t^{b}$
\end_inset

.
 Details left as exercise.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
This definition of 
\begin_inset Formula $f(t\hat{A})$
\end_inset

 has reasonable and expected properties, such as:
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
For an analytic function 
\begin_inset Formula $f(x)$
\end_inset

, show that 
\begin_inset Formula \[
f(\hat{A})\hat{A}=\hat{A}f(\hat{A})\]

\end_inset

 and that
\begin_inset Formula \[
\frac{d}{dt}f(t\hat{A})=\hat{A}f^{\prime}(\hat{A})\]

\end_inset

for an analytic function 
\begin_inset Formula $f(x)$
\end_inset

.
 Here both sides are interpreted as formal power series.
 Deduce that 
\begin_inset Formula $f(\hat{A})g(\hat{A})=g(\hat{A})f(\hat{A})$
\end_inset

 for any two analytic functions 
\begin_inset Formula $f(x)$
\end_inset

 and 
\begin_inset Formula $g(x)$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Linear operations with formal power series must be performed term by term
 (by definition).
 So it is sufficient to consider a single term in 
\begin_inset Formula $f(x)$
\end_inset

, such as 
\begin_inset Formula $f(x)=x^{a}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Now we can show that the two definitions of the oper\SpecialChar \-
ator-valued function
 
\begin_inset Formula $f(\hat{A})$
\end_inset

 agree when both are applicable.
 
\end_layout

\begin_layout Paragraph
Statement 2: 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $f(x)$
\end_inset

 is an analytic function and 
\begin_inset Formula $\hat{A}$
\end_inset

 is a diagonalizable operator then the two definitions agree, i.e.\InsetSpace ~
for 
\begin_inset Formula $f(x)=\sum_{n=0}^{\infty}c_{n}x^{n}$
\end_inset

 and 
\begin_inset Formula $\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}$
\end_inset

 we have the equality of formal power series, 
\begin_inset Formula \begin{equation}
\sum_{n=0}^{\infty}c_{n}(t\hat{A})^{n}=\sum_{i=1}^{N}f(t\lambda_{i})\,\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}.\label{eq:term identity}\end{equation}

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
It is sufficient to prove that the terms multiplying 
\begin_inset Formula $t^{n}$
\end_inset

 coincide for each 
\begin_inset Formula $n$
\end_inset

.
 We note that the square of 
\begin_inset Formula $\hat{A}$
\end_inset

 is
\begin_inset Formula \begin{align*}
\left(\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}\right)^{2} & =\left(\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}\right)\left(\sum_{j=1}^{N}\lambda_{j}\mathbf{e}_{j}\otimes\mathbf{e}_{j}^{*}\right)\\
 & =\sum_{i=1}^{N}\lambda_{i}^{2}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}\end{align*}

\end_inset

because 
\begin_inset Formula $\mathbf{e}_{i}^{*}(\mathbf{e}_{j})=\delta_{ij}$
\end_inset

.
 In this way we can compute any power of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Therefore, the term in the left side of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:term identity}

\end_inset

) is 
\begin_inset Formula \[
c_{n}t^{n}(\hat{A})^{n}=c_{n}t^{n}\left(\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}\right)^{n}=c_{n}t^{n}\sum_{i=1}^{N}\lambda_{i}^{n}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*},\]

\end_inset

which coincides with the term at 
\begin_inset Formula $t^{n}$
\end_inset

 in the right side.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Computations: Sylvester's method
\end_layout

\begin_layout Standard
Now that we know when an oper\SpecialChar \-
ator-valued function 
\begin_inset Formula $f(\hat{A})$
\end_inset

 is defined, how can we actually compute the operator 
\begin_inset Formula $f(\hat{A})$
\end_inset

? The first definition requires us to diagonalize 
\begin_inset Formula $\hat{A}$
\end_inset

 (this is already a lot of work since we need to determine every eigenvector).
 Moreover, Definition\InsetSpace ~
1 does not apply when 
\begin_inset Formula $\hat{A}$
\end_inset

 is non-diagonalizable.
 On the other hand, Definition\InsetSpace ~
2 requires us to evaluate infinitely many
 terms of a  power series.
 Is there a simpler way?
\end_layout

\begin_layout Standard
There is a situation when 
\begin_inset Formula $f(\hat{A})$
\end_inset

 can be computed without such effort.
 Let us first consider a simple example where the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 happens to be a projector
\begin_inset LatexCommand \index{projector}

\end_inset

, 
\begin_inset Formula $(\hat{A})^{2}=\hat{A}$
\end_inset

.
 In this case, any power of 
\begin_inset Formula $\hat{A}$
\end_inset

 is again equal to 
\begin_inset Formula $\hat{A}$
\end_inset

.
 It is then easy to compute a power series in 
\begin_inset Formula $\hat{A}$
\end_inset

:
\begin_inset Formula \[
\sum_{n=0}^{\infty}c_{n}(\hat{A})^{n}=c_{0}\hat{1}+\bigl(\sum_{n=1}^{\infty}c_{n}\bigr)\hat{A}.\]

\end_inset

In this way we can compute any analytic function of 
\begin_inset Formula $\hat{A}$
\end_inset

 (as long as the series 
\begin_inset Formula $\sum_{n=1}^{\infty}c_{n}$
\end_inset

 converges).
 For example,
\begin_inset Formula \begin{align*}
\cos\hat{A} & =\hat{1}-\frac{1}{2!}(\hat{A})^{2}+\frac{1}{4!}(\hat{A})^{4}-...=\hat{1}-\frac{1}{2!}\hat{A}+\frac{1}{4!}\hat{A}-...\\
 & =(1-\frac{1}{2!}+\frac{1}{4!}-...)\hat{A}+\hat{1}-\hat{A}\\
 & =\left[(\cos1)-1\right]\hat{A}+\hat{1}.\end{align*}

\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
In the above computation, we obtained a formula that 
\emph on
expresses
\emph default
 
\emph on
the
\emph default
 
\emph on
end result
\emph default
 
\emph on
through
\emph default
 
\begin_inset Formula $\hat{A}$
\end_inset

.
 We have that formula even though we do not know an explicit form of the
 operator 
\begin_inset Formula $\hat{A}$
\end_inset

 --- not even the dimension of the space where 
\begin_inset Formula $\hat{A}$
\end_inset

 acts or whether 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable.
 We do not need to know any eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 We only use the given fact that 
\begin_inset Formula $\hat{A}^{2}=\hat{A}$
\end_inset

, and we are still able to find a useful result.
 If such an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is given explicitly, we can substitute it into the formula 
\begin_inset Formula \[
\cos\hat{A}=\left[(\cos1)-1\right]\hat{A}+\hat{1}\]

\end_inset

to obtain an explicit expression for 
\begin_inset Formula $\cos\hat{A}$
\end_inset

.
 Note also that the result is a formula 
\emph on
linear
\emph default
 in 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
a) Given that 
\begin_inset Formula $(\hat{P})^{2}=\hat{P}$
\end_inset

, express (
\begin_inset Formula $\lambda\hat{1}-\hat{P})^{-1}$
\end_inset

 and 
\begin_inset Formula $\exp\hat{P}$
\end_inset

 through 
\begin_inset Formula $\hat{P}$
\end_inset

.
 Assume that 
\begin_inset Formula $\left|\lambda\right|>1$
\end_inset

 so that the Taylor series for 
\begin_inset Formula $f(x)=(\lambda-x)^{-1}$
\end_inset

 converges for 
\begin_inset Formula $x=1$
\end_inset

.
 
\end_layout

\begin_layout Standard
b) It is known only that 
\begin_inset Formula $(\hat{A})^{2}=\hat{A}+2$
\end_inset

.
 Determine the possible eigenvalues of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Show that any analytic function of 
\begin_inset Formula $\hat{A}$
\end_inset

 can be reduced to the form 
\begin_inset Formula $\alpha\hat{1}+\beta\hat{A}$
\end_inset

 with some suitable coefficients 
\begin_inset Formula $\alpha$
\end_inset

 and 
\begin_inset Formula $\beta$
\end_inset

.
 Express 
\begin_inset Formula $(\hat{A})^{3}$
\end_inset

, 
\begin_inset Formula $(\hat{A})^{4}$
\end_inset

, and 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 as linear functions of 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Write 
\begin_inset Formula $\hat{A}^{-1}=\alpha\hat{1}+\beta\hat{A}$
\end_inset

 with unknown 
\begin_inset Formula $\alpha,\beta$
\end_inset

.
 Write 
\begin_inset Formula $\hat{A}\hat{A}^{-1}=\hat{1}$
\end_inset

 and simplify to determine 
\begin_inset Formula $\alpha$
\end_inset

 and 
\begin_inset Formula $\beta$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
The operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is such that 
\begin_inset Formula $\hat{A}^{3}+\hat{A}=0$
\end_inset

.
 Compute 
\begin_inset Formula $\exp(\lambda\hat{A})$
\end_inset

 as a quadratic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 (here 
\begin_inset Formula $\lambda$
\end_inset

 is a fixed number).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Let us now consider a more general situation.
 Suppose we know the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}(\lambda)$
\end_inset

 of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The characteristic polynomial has the form
\begin_inset Formula \[
Q_{\hat{A}}(\lambda)=\left(-\lambda\right)^{N}+\sum_{k=0}^{N-1}\left(-1\right)^{k}q_{N-k}\lambda^{k},\]

\end_inset

where 
\begin_inset Formula $q_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,N$
\end_inset

) are known coefficients.
 The Cayley-Hamilton theorem indicates that 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies the polynomial identity,
\begin_inset Formula \[
(\hat{A})^{N}=-\sum_{k=0}^{N-1}q_{N-k}\left(-1\right)^{N-k}(\hat{A})^{k}.\]

\end_inset

It follows that any power of 
\begin_inset Formula $\hat{A}$
\end_inset

 larger than 
\begin_inset Formula $N-1$
\end_inset

 can be expressed as a linear combination of smaller powers of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Therefore, a power series in 
\begin_inset Formula $\hat{A}$
\end_inset

 can be reduced to a polynomial 
\begin_inset Formula $p(\hat{A})$
\end_inset

 of degree not larger than 
\begin_inset Formula $N-1$
\end_inset

.
 The task of computing an arbitrary function 
\begin_inset Formula $f(\hat{A})$
\end_inset

 is then reduced to the task of determining the 
\begin_inset Formula $N$
\end_inset

 coefficients of 
\begin_inset Formula $p(x)\equiv p_{0}+...+p_{N-1}x^{n-1}$
\end_inset

.
 Once the coefficients of that polynomial are found, the function can be
 evaluated as 
\begin_inset Formula $f(\hat{A})=p(\hat{A})$
\end_inset

 for any operator 
\begin_inset Formula $\hat{A}$
\end_inset

 that has the given characteristic polynomial.
\end_layout

\begin_layout Standard
Determining the coefficients of the polynomial 
\begin_inset Formula $p(\hat{A})$
\end_inset

 might appear to be difficult because one can get rather complicated formulas
 when one converts an arbitrary power of 
\begin_inset Formula $\hat{A}$
\end_inset

 to smaller powers.
 This work can be avoided if the eigenvalues of 
\begin_inset Formula $\hat{A}$
\end_inset

 are known, by using the 
\series bold
method of Sylvester
\series default

\begin_inset LatexCommand \index{Sylvester's method}

\end_inset

, which I will now explain.
\end_layout

\begin_layout Standard
The present task is to calculate 
\begin_inset Formula $f(\hat{A})$
\end_inset

 --- equivalently, the polynomial 
\begin_inset Formula $p(\hat{A})$
\end_inset

 --- when the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}(\lambda)$
\end_inset

 is known.
 The characteristic polynomial has order 
\begin_inset Formula $N$
\end_inset

 and hence has 
\begin_inset Formula $N$
\end_inset

 (complex) roots, counting each root with its multiplicity.
 The eigenvalues 
\begin_inset Formula $\lambda_{i}$
\end_inset

 of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 are roots of its characteristic polynomial, and there exists 
\emph on
at least one
\emph default
 eigenvector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 for each 
\begin_inset Formula $\lambda_{i}$
\end_inset

 (Theorem\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-characteristic-polynomial}

\end_inset

).
 Knowing the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}(\lambda)$
\end_inset

, we may determine its roots 
\begin_inset Formula $\lambda_{i}$
\end_inset

.
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\begin_layout Standard
Let us first assume that the roots 
\begin_inset Formula $\lambda_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,N$
\end_inset

) are 
\emph on
all
\emph default
 
\emph on
different
\series bold
\emph default
.

\series default
 Then we have 
\begin_inset Formula $N$
\end_inset

 different eigenvectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

.
 The set 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\,|\, i=1,...,N\right\} $
\end_inset

 is linearly independent (Statement\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Linear-independence-of-eigenvectors}

\end_inset

) and hence is a basis in 
\begin_inset Formula $V$
\end_inset

; that is, 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable.
 We will not actually need to determine the eigenvectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

; it will be sufficient that they exist.
 Let us now apply the function 
\begin_inset Formula $f(\hat{A})$
\end_inset

 to each of these 
\begin_inset Formula $N$
\end_inset

 eigenvectors: we must have
\begin_inset Formula \[
f(\hat{A})\mathbf{v}_{i}=f(\lambda_{i})\mathbf{v}_{i}.\]

\end_inset

On the other hand, we may express 
\begin_inset Formula \[
f(\hat{A})\mathbf{v}_{i}=p(\hat{A})\mathbf{v}_{i}=p(\lambda_{i})\mathbf{v}_{i}.\]

\end_inset

Since the set 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

 is linearly independent, the vanishing linear combination 
\begin_inset Formula \[
\sum_{i=1}^{N}\left[f(\lambda_{i})-p(\lambda_{i})\right]\mathbf{v}_{i}=0\]

\end_inset

must have all vanishing coefficients; hence we obtain a system of 
\begin_inset Formula $N$
\end_inset

 equations for 
\begin_inset Formula $N$
\end_inset

 unknowns 
\begin_inset Formula $\{ p_{0},...,p_{N-1}\}$
\end_inset

:
\begin_inset Formula \[
p_{0}+p_{1}\lambda_{i}+...+p_{N-1}\lambda_{i}^{N-1}=f(\lambda_{i}),\quad i=1,...,N.\]

\end_inset

Note that this system of equations has the Vandermonde matrix (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-Vandermonde-matrix}

\end_inset

).
 Since by assumption all 
\begin_inset Formula $\lambda_{i}$
\end_inset

's are different, the determinant of this matrix is nonzero, therefore the
 solution 
\begin_inset Formula $\{ p_{0},...,p_{N-1}\}$
\end_inset

 exists and is unique.
 The polynomial 
\begin_inset Formula $p(x)$
\end_inset

 is the interpolating polynomial for 
\begin_inset Formula $f(x)$
\end_inset

 at the points 
\begin_inset Formula $x=\lambda_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,N$
\end_inset

).
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\begin_layout Standard
We have proved the following theorem:
\end_layout

\begin_layout Paragraph
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\begin_layout Standard
If the roots 
\begin_inset Formula $\{\lambda_{1},...,\lambda_{N}\}$
\end_inset

 of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 are all different, a function of 
\begin_inset Formula $\hat{A}$
\end_inset

 can be computed as 
\begin_inset Formula $f(\hat{A})=p(\hat{A})$
\end_inset

, where 
\begin_inset Formula $p(x)$
\end_inset

 is the interpolating polynomial for 
\begin_inset Formula $f(x)$
\end_inset

 at the 
\begin_inset Formula $N$
\end_inset

 points 
\begin_inset Formula $\left\{ \lambda_{1},...,\lambda_{N}\right\} $
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
It is given that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}(\lambda)=\lambda^{2}-\lambda+6$
\end_inset

.
 Determine the eigenvalues of 
\begin_inset Formula $\hat{A}$
\end_inset

 and calculate 
\begin_inset Formula $\exp(\hat{A})$
\end_inset

 as a linear expression in 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard
If we know that an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies a certain operator equation, say 
\begin_inset Formula $(\hat{A})^{2}-\hat{A}+6=0$
\end_inset

, then it is not necessary to know the characteristic polynomial in order
 to compute functions 
\begin_inset Formula $f(\hat{A})$
\end_inset

.
 It can be that the characteristic polynomial has a high order due to many
 repeated eigenvalues; however, as far as analytic functions are concerned,
 all that matters is the possibility to reduce high powers of 
\begin_inset Formula $\hat{A}$
\end_inset

 to low powers.
 This possibility can be provided by a polynomial of a lower degree than
 the characteristic polynomial.
 
\end_layout

\begin_layout Standard
In the following theorem, we will determine 
\begin_inset Formula $f(\hat{A})$
\end_inset

 knowing only 
\emph on
some
\emph default
 polynomial 
\begin_inset Formula $Q(x)$
\end_inset

 for which 
\begin_inset Formula $p(\hat{A})=0$
\end_inset

.
\end_layout

\begin_layout Paragraph
Theorem 2:
\end_layout

\begin_layout Standard
Suppose that a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 and a polynomial 
\begin_inset Formula $Q(x)$
\end_inset

 are such that 
\begin_inset Formula $Q(\hat{A})=0$
\end_inset

, and assume that the equation 
\begin_inset Formula $Q(\lambda)=0$
\end_inset

 has all distinct roots 
\begin_inset Formula $\lambda_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,n$
\end_inset

), where 
\begin_inset Formula $n$
\end_inset

 is not necessarily equal to the dimension 
\begin_inset Formula $N$
\end_inset

 of the vector space.
 Then an analytic function 
\begin_inset Formula $f(\hat{A})$
\end_inset

 can be computed as
\begin_inset Formula \[
f(\hat{A})=p(\hat{A}),\]

\end_inset

where 
\begin_inset Formula $p(x)$
\end_inset

 is the interpolating polynomial for the function 
\begin_inset Formula $f(x)$
\end_inset

 at the points 
\begin_inset Formula $x=\lambda_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,n$
\end_inset

).
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The polynomial 
\begin_inset Formula $p(x)$
\end_inset

 is defined uniquely by substituting 
\begin_inset Formula $x^{k}$
\end_inset

 with 
\begin_inset Formula $k\geq n$
\end_inset

 through lower powers of 
\begin_inset Formula $x$
\end_inset

 in the series for 
\begin_inset Formula $f(x)$
\end_inset

, using the equation 
\begin_inset Formula $p(x)=0$
\end_inset

.
 Consider the operator 
\begin_inset Formula $\hat{A}_{1}$
\end_inset

 that acts as multiplication by 
\begin_inset Formula $\lambda_{1}$
\end_inset

.
 This operator satisfies 
\begin_inset Formula $p(\hat{A}_{1})=0$
\end_inset

, and so 
\begin_inset Formula $f(\hat{A}_{1})$
\end_inset

 is simplified to the same polynomial 
\begin_inset Formula $p(\hat{A}_{1})$
\end_inset

.
 Hence we must have 
\begin_inset Formula $f(\hat{A}_{1})=p(\hat{A}_{1})$
\end_inset

.
 However, 
\begin_inset Formula $f(\hat{A}_{1})$
\end_inset

 is simply the operator of multiplication by 
\begin_inset Formula $f(\lambda_{1})$
\end_inset

.
 Hence, 
\begin_inset Formula $p(x)$
\end_inset

 must be equal to 
\begin_inset Formula $f(x)$
\end_inset

 when evaluated at 
\begin_inset Formula $x=\lambda_{1}$
\end_inset

.
 Similarly, we find that 
\begin_inset Formula $p(\lambda_{i})=f(\lambda_{i})$
\end_inset

 for 
\begin_inset Formula $i=1,...,n$
\end_inset

.
 The interpolating polynomial for 
\begin_inset Formula $f(x)$
\end_inset

 at the points 
\begin_inset Formula $x=\lambda_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,n$
\end_inset

) is unique and has degree 
\begin_inset Formula $n-1$
\end_inset

.
 Therefore, this polynomial must be equal to 
\begin_inset Formula $p(x)$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
It remains to develop a procedure for the case when 
\emph on
not
\emph default
 
\emph on
all
\emph default
 roots 
\begin_inset Formula $\lambda_{i}$
\end_inset

 of the polynomial 
\begin_inset Formula $Q(\lambda)$
\end_inset

 are different.
 To be specific, let us assume that 
\begin_inset Formula $\lambda_{1}=\lambda_{2}$
\end_inset

 and that all other eigenvalues are different.
 In this case we will first solve an auxiliary problem where 
\begin_inset Formula $\lambda_{2}=\lambda_{1}+\varepsilon$
\end_inset

 and then take the limit 
\begin_inset Formula $\varepsilon\rightarrow0$
\end_inset

.
 The equations determining the coefficients of the polynomial 
\begin_inset Formula $p(x)$
\end_inset

 are
\begin_inset Formula \[
p(\lambda_{1})=f(\lambda_{1}),\quad p(\lambda_{1}+\varepsilon)=f(\lambda_{1}+\varepsilon),\; p(\lambda_{3})=f(\lambda_{3}),\;...\]

\end_inset

Subtracting the first equation from the second and dividing by 
\begin_inset Formula $\varepsilon$
\end_inset

, we find
\begin_inset Formula \[
\frac{p(\lambda_{1}+\varepsilon)-p(\lambda_{1})}{\varepsilon}=\frac{f(\lambda_{1}+\varepsilon)-f(\lambda_{1})}{\varepsilon}.\]

\end_inset

In the limit 
\begin_inset Formula $\varepsilon\rightarrow0$
\end_inset

 this becomes
\begin_inset Formula \[
p^{\prime}(\lambda_{1})=f^{\prime}(\lambda_{1}).\]

\end_inset

 Therefore, the polynomial 
\begin_inset Formula $p(x)$
\end_inset

 is determined by the requirements that 
\emph on

\begin_inset Formula \[
p(\lambda_{1})=f(\lambda_{1}),\; p^{\prime}(\lambda_{1})=f^{\prime}(\lambda_{1}),\; p(\lambda_{3})=f(\lambda_{3}),\;...\]

\end_inset


\emph default
If 
\emph on
three
\emph default
 roots coincide, say 
\begin_inset Formula $\lambda_{1}=\lambda_{2}=\lambda_{3}$
\end_inset

, we introduce two auxiliary parameters 
\begin_inset Formula $\varepsilon_{2}$
\end_inset

 and 
\begin_inset Formula $\varepsilon_{3}$
\end_inset

 and first obtain the three equations
\begin_inset Formula \begin{align*}
p(\lambda_{1}) & =f(\lambda_{1}),\; p(\lambda_{1}+\varepsilon_{2})=f(\lambda_{1}+\varepsilon_{2}),\\
 & p(\lambda_{1}+\varepsilon_{2}+\varepsilon_{3})=f(\lambda_{1}+\varepsilon_{2}+\varepsilon_{3}).\end{align*}

\end_inset

Subtracting the equations and taking the limit 
\begin_inset Formula $\varepsilon_{2}\rightarrow0$
\end_inset

 as before, we find
\begin_inset Formula \[
p(\lambda_{1})=f(\lambda_{1}),\; p^{\prime}(\lambda_{1})=f^{\prime}(\lambda_{1}),\; p^{\prime}(\lambda_{1}+\varepsilon_{3})=f^{\prime}(\lambda_{1}+\varepsilon_{3}).\]

\end_inset

Subtracting now the second equation from the third and taking the limit
 
\begin_inset Formula $\varepsilon_{3}\rightarrow0$
\end_inset

, we find 
\begin_inset Formula $p^{\prime\prime}(\lambda_{1})=f^{\prime\prime}(\lambda_{1})$
\end_inset

.
 Thus we have proved the following.
\end_layout

\begin_layout Paragraph
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\begin_layout Standard
If a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies a polynomial operator equation 
\begin_inset Formula $Q(\hat{A})=0$
\end_inset

, such that the equation 
\begin_inset Formula $Q(\lambda)=0$
\end_inset

 has roots 
\begin_inset Formula $\lambda_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,n$
\end_inset

) with multiplicities 
\begin_inset Formula $m_{i}$
\end_inset

,
\begin_inset Formula \[
Q(\lambda)=\text{const}\cdot\left(\lambda-\lambda_{1}\right)^{m_{1}}...\left(\lambda-\lambda_{n}\right)^{m_{n}},\]

\end_inset

 an analytic function 
\begin_inset Formula $f(\hat{A})$
\end_inset

 can be computed as
\begin_inset Formula \[
f(\hat{A})=p(\hat{A}),\]

\end_inset

where 
\begin_inset Formula $p(x)$
\end_inset

 is the polynomial determined by the conditions 
\begin_inset Formula \begin{align*}
p(\lambda_{i}) & =f(\lambda_{i}),\; p^{\prime}(\lambda_{i})=f^{\prime}(\lambda_{i}),\;...,\\
 & \left.\frac{d^{m_{i}-1}p(x)}{dx^{m_{i}-1}}\right|_{x=\lambda_{i}}=\left.\frac{d^{m_{i}-1}f(x)}{dx^{m_{i}-1}}\right|_{x=\lambda_{i}},\quad i=1,...,n.\end{align*}

\end_inset


\end_layout

\begin_layout Standard
Theorems 1 to 3, which comprise Sylvester's method
\begin_inset LatexCommand \index{Sylvester's method}

\end_inset

, allow us to compute functions of an operator when only the eigenvalues
 are known, without determining any eigenvectors and without assuming that
 the operator is diagonalizable.
\end_layout

\begin_layout Subsection
* Square roots of operators
\end_layout

\begin_layout Standard
In the previous section we have seen that functions of operators can be
 sometimes computed explicitly.
 However, our methods work either for diagonalizable operators 
\begin_inset Formula $\hat{A}$
\end_inset

 or for functions 
\begin_inset Formula $f(x)$
\end_inset

 given by a power series that converges for every eigenvalue of the operator
 
\begin_inset Formula $\hat{A}$
\end_inset

.
 If these conditions are not met, functions of operators may not exist or
 may not be uniquely defined.
 As an example where these problems arise, we will briefly consider the
 task of computing the square root of a given operator.
\end_layout

\begin_layout Standard
Given an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 we would like to define its square root as an operator 
\begin_inset Formula $\hat{B}$
\end_inset

 such that 
\begin_inset Formula $\hat{B}^{2}=\hat{A}$
\end_inset

.
 For a diagonalizable operator 
\begin_inset Formula $\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}$
\end_inset

 (where 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 is an eigenbasis and 
\begin_inset Formula $\left\{ \mathbf{e}_{i}^{*}\right\} $
\end_inset

 is the dual basis) we can easily find a suitable 
\begin_inset Formula $\hat{B}$
\end_inset

 by writing
\begin_inset Formula \[
\hat{B}\equiv\sum_{i=1}^{N}\sqrt{\lambda_{i}}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}.\]

\end_inset

 Note that the numeric square root 
\begin_inset Formula $\sqrt{\lambda_{i}}$
\end_inset

 has an ambiguous sign; so with each possible choice of sign for each 
\begin_inset Formula $\sqrt{\lambda_{i}}$
\end_inset

, we obtain a possible choice of 
\begin_inset Formula $\hat{B}$
\end_inset

.
 (Depending on the problem at hand, there might be a natural way of fixing
 the signs; for instance, if all 
\begin_inset Formula $\lambda_{i}$
\end_inset

 are positive then it might be useful to choose also all 
\begin_inset Formula $\sqrt{\lambda_{i}}$
\end_inset

 as positive.) The ambiguity of signs is expected; what is unexpected is
 that there could be many other operators 
\begin_inset Formula $\hat{B}$
\end_inset

 satisfying 
\begin_inset Formula $\hat{B}^{2}=\hat{A}$
\end_inset

, as the following example shows.
 
\end_layout

\begin_layout Paragraph
Example\InsetSpace ~
1:
\end_layout

\begin_layout Standard
Let us compute the square root of the identity operator in a two-dimen\SpecialChar \-
sion\SpecialChar \-
al
 space.
 We look for 
\begin_inset Formula $\hat{B}$
\end_inset

 such that 
\begin_inset Formula $\hat{B}^{2}=\hat{1}$
\end_inset

.
 Straightforward solutions are 
\begin_inset Formula $\hat{B}=\pm\hat{1}$
\end_inset

.
 However, consider the following operator,
\begin_inset Formula \[
\hat{B}\equiv\left(\begin{array}{cc}
a & b\\
c & -a\end{array}\right),\quad\hat{B}^{2}=\left(\begin{array}{cc}
a^{2}+bc & 0\\
0 & a^{2}+bc\end{array}\right)=\left(a^{2}+bc\right)\hat{1}.\]

\end_inset

 This 
\begin_inset Formula $\hat{B}$
\end_inset

 satisfies 
\begin_inset Formula $\hat{B}^{2}=\hat{1}$
\end_inset

 for any 
\begin_inset Formula $a,b,c\in\mathbb{C}$
\end_inset

 as long as 
\begin_inset Formula $a^{2}+bc=1$
\end_inset

.
 The square root is quite ambiguous for the identity operator!
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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We will now perform a simple analysis of square roots of operators in two-
 and three-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces using the Cayley-Hamilton theorem.
\end_layout

\begin_layout Standard
Let us assume that 
\begin_inset Formula $\hat{B}^{2}=\hat{A}$
\end_inset

, where 
\begin_inset Formula $\hat{A}$
\end_inset

 is a given operator, and denote for brevity 
\begin_inset Formula $a\equiv\text{Tr}\hat{A}$
\end_inset

 and 
\begin_inset Formula $b\equiv\text{Tr}\hat{B}$
\end_inset

 (where 
\begin_inset Formula $a$
\end_inset

 is given but 
\begin_inset Formula $b$
\end_inset

 is still unknown).
 In two dimensions, any operator 
\begin_inset Formula $\hat{B}$
\end_inset

 satisfies the characteristic equation
\begin_inset Formula \[
\hat{B}^{2}-(\text{Tr}\hat{B})\hat{B}+(\det\hat{B})\hat{1}=0.\]

\end_inset

Taking the trace of this equation, we can express the determinant as
\begin_inset Formula \[
\det\hat{B}=\frac{1}{2}(\text{Tr}\hat{B})^{2}-\frac{1}{2}\text{Tr}(\hat{B}^{2})\]

\end_inset

and hence 
\begin_inset Formula \begin{equation}
b\hat{B}=\hat{A}+\frac{b^{2}-a}{2}\hat{1}.\label{eq:B ans 2D}\end{equation}

\end_inset

This equation will yield an explicit formula for 
\begin_inset Formula $\hat{B}$
\end_inset

 through 
\begin_inset Formula $\hat{A}$
\end_inset

 if we only determine the value of the constant 
\begin_inset Formula $b$
\end_inset

 such that 
\begin_inset Formula $b\neq0$
\end_inset

.
 Squaring the above equation and taking the trace, we find
\begin_inset Formula \[
b^{4}-2b^{2}a+c=0,\quad c\equiv2\text{Tr}(\hat{A}^{2})-a^{2}=a^{2}-4\det\hat{A}.\]

\end_inset

Hence, we obtain up to 
\emph on
four
\emph default
 possible solutions for 
\begin_inset Formula $b$
\end_inset

,
\begin_inset Formula \begin{equation}
b=\pm\sqrt{a\pm\sqrt{a^{2}-c}}=\pm\sqrt{\text{Tr}\hat{A}\pm2\sqrt{\det\hat{A}}}.\label{eq:b equ}\end{equation}

\end_inset

Each value of 
\begin_inset Formula $b$
\end_inset

 such that 
\begin_inset Formula $b\neq0$
\end_inset

 yield possible operators 
\begin_inset Formula $\hat{B}$
\end_inset

 through Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B ans 2D}

\end_inset

).
 Denoting by 
\begin_inset Formula $s_{1}=\pm1$
\end_inset

 and 
\begin_inset Formula $s_{2}=\pm1$
\end_inset

 the two free choices of signs in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:b equ}

\end_inset

), we may write the general solution (assuming 
\begin_inset Formula $b\neq0$
\end_inset

) as
\begin_inset Formula \begin{equation}
\hat{B}=s_{1}\frac{\hat{A}+s_{2}\sqrt{\det\hat{A}}\hat{1}}{\sqrt{\text{Tr}\hat{A}+2s_{2}\sqrt{\det\hat{A}}}}.\label{eq:B ans 2D new}\end{equation}

\end_inset

 It is straightforward to verify (using the Cayley-Hamilton theorem for
 
\begin_inset Formula $\hat{A}$
\end_inset

) that every such 
\begin_inset Formula $\hat{B}$
\end_inset

 indeed satisfies 
\begin_inset Formula $\hat{B}^{2}=\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard
Note also that 
\begin_inset Formula $\hat{B}$
\end_inset

 is expressed as a 
\emph on
linear
\emph default
 polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

.
 Due to the Cayley-Hamilton theorem, any analytic function of 
\begin_inset Formula $\hat{A}$
\end_inset

 reduces to a linear polynomial in the two-dimen\SpecialChar \-
sion\SpecialChar \-
al case.
 Hence, we can view Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B ans 2D new}

\end_inset

) as a formula yielding the 
\emph on
analytic
\emph default
 solutions of the equation 
\begin_inset Formula $\hat{B}^{2}=\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $b=0$
\end_inset

 is a solution of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:b equ}

\end_inset

) then we must consider the possibility that solutions 
\begin_inset Formula $\hat{B}$
\end_inset

 with 
\begin_inset Formula $b\equiv\text{Tr}\,\hat{B}=0$
\end_inset

 may exist.
 In that case, Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B ans 2D}

\end_inset

) indicates that 
\begin_inset Formula $\hat{A}$
\end_inset

 plus a multiple of 
\begin_inset Formula $\hat{1}$
\end_inset

 must be equal to the zero operator.
 Note that Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B ans 2D}

\end_inset

) is a 
\emph on
necessary
\emph default
 consequence of 
\begin_inset Formula $\hat{B}^{2}=\hat{A}$
\end_inset

, obtained only by assuming that 
\begin_inset Formula $\hat{B}$
\end_inset

 exists.
 Hence, when 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\emph on
not
\emph default
 proportional to the identity operator, no solutions 
\begin_inset Formula $\hat{B}$
\end_inset

 with 
\begin_inset Formula $\text{Tr}\,\hat{B}=0$
\end_inset

 can exist.
 On the other hand, if 
\begin_inset Formula $\hat{A}$
\end_inset

 
\emph on
is
\emph default
 proportional to 
\begin_inset Formula $\hat{1}$
\end_inset

, solutions with 
\begin_inset Formula $\text{Tr}\,\hat{B}=0$
\end_inset

 exist but the present method does not yield these solutions.
 (Note that this method can only yield solutions 
\begin_inset Formula $\hat{B}$
\end_inset

 that are linear combinations of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 and the identity operator!) It is easy to see that the operators from Example\InsetSpace ~
1
 fall into this category, with 
\begin_inset Formula $\text{Tr}\hat{B}=0$
\end_inset

.
 There are no other solutions except those shown in Example\InsetSpace ~
1 because in
 that example we have obtained all possible traceless solutions.
\end_layout

\begin_layout Standard
Another interesting example is found when 
\begin_inset Formula $\hat{A}$
\end_inset

 is a nilpotent (but nonzero).
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Consider a nilpotent operator 
\begin_inset Formula $\hat{A}_{1}=\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)$
\end_inset

.
 In that case, both the trace and the determinant of 
\begin_inset Formula $\hat{A}_{1}$
\end_inset

 are equal to zero; it follows that 
\begin_inset Formula $b=0$
\end_inset

 is the only solution of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:b equ}

\end_inset

).
 However, 
\begin_inset Formula $\hat{A}_{1}$
\end_inset

 is not proportional to the identity operator.
 Hence, a square root of 
\begin_inset Formula $\hat{A}_{1}$
\end_inset

 
\emph on
does
\emph default
 
\emph on
not
\emph default
 
\emph on
exist
\emph default
.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
This problem with the nonexistence of the square root is not the same as
 the nonexistence of 
\begin_inset Formula $\sqrt{-1}$
\end_inset

 within real numbers; the square root of 
\begin_inset Formula $\hat{A}_{1}$
\end_inset

 does not exist even if we allow complex numbers! The reason is that the
 existence of 
\begin_inset Formula $\sqrt{\hat{A}_{1}}$
\end_inset

 would be 
\emph on
algebraically
\emph default
 
\emph on
inconsistent
\emph default
 (because it would contradict the Cayley-Hamilton theorem).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Let us summarize our results so far.
 In two dimensions, the general calculation of a square root of a given
 operator 
\begin_inset Formula $\hat{A}$
\end_inset

 proceeds as follows: If 
\begin_inset Formula $\hat{A}$
\end_inset

 is proportional to the identity operator, we have various solutions of
 the form shown in Example\InsetSpace ~
1.
 (Not every one of these solutions may be relevant for the problem at hand,
 but they exist.) If 
\begin_inset Formula $\hat{A}$
\end_inset

 is not proportional to the identity operator, we solve Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:b equ}

\end_inset

) and obtain up to four possible values of 
\begin_inset Formula $b$
\end_inset

.
 If the only solution is 
\begin_inset Formula $b=0$
\end_inset

, the square root of 
\begin_inset Formula $\hat{A}$
\end_inset

 does not exist.
 Otherwise, every 
\emph on
nonzero
\emph default
 value of 
\begin_inset Formula $b$
\end_inset

 yields a solution 
\begin_inset Formula $\hat{B}$
\end_inset

 according to Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B ans 2D}

\end_inset

), and there are no other solutions.
\end_layout

\begin_layout Paragraph
Example\InsetSpace ~
3: 
\end_layout

\begin_layout Standard
We would like to determine a square root of the operator 
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{cc}
1 & 3\\
0 & 4\end{array}\right).\]

\end_inset

We compute 
\begin_inset Formula $\det\hat{A}=4$
\end_inset

 and 
\begin_inset Formula $a=\text{Tr}\hat{A}=5$
\end_inset

.
 Hence Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:b equ}

\end_inset

) gives four nonzero values, 
\begin_inset Formula \[
b=\pm\sqrt{5\pm4}=\left\{ \pm1,\pm3\right\} .\]

\end_inset

Substituting these values of 
\begin_inset Formula $b$
\end_inset

 into Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B ans 2D}

\end_inset

) and solving for 
\begin_inset Formula $\hat{B}$
\end_inset

, we compute the four possible square roots
\begin_inset Formula \[
\hat{B}=\pm\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right),\quad\hat{B}=\pm\left(\begin{array}{cc}
-1 & 3\\
0 & 2\end{array}\right).\]

\end_inset

Since 
\begin_inset Formula $b=0$
\end_inset

 is not a solution, while 
\begin_inset Formula $\hat{A}\neq\lambda\hat{1}$
\end_inset

, there are no other square roots.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Consider a diagonalizable operator represented in a certain basis by the
 matrix
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{cc}
\lambda^{2} & 0\\
0 & \mu^{2}\end{array}\right),\]

\end_inset

where 
\begin_inset Formula $\lambda$
\end_inset

 and 
\begin_inset Formula $\mu$
\end_inset

 are any complex numbers, possibly zero, such that 
\begin_inset Formula $\lambda^{2}\neq\mu^{2}$
\end_inset

.
 Use Eqs.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:B ans 2D}

\end_inset

)--(
\begin_inset LatexCommand \ref{eq:b equ}

\end_inset

) to show that the possible square roots are 
\begin_inset Formula \[
\hat{B}=\left(\begin{array}{cc}
\pm\lambda & 0\\
0 & \pm\mu\end{array}\right).\]

\end_inset

and that there are no other square roots.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Obtain all possible square roots of the zero operator in two dimensions.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Let us now consider a given operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in a 
\emph on
three
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al space and assume that there exists 
\begin_inset Formula $\hat{B}$
\end_inset

 such that 
\begin_inset Formula $\hat{B}^{2}=\hat{A}$
\end_inset

.
 We will be looking for a formula expressing 
\begin_inset Formula $\hat{B}$
\end_inset

 as a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

.
 As we have seen, this will certainly not give 
\emph on
every
\emph default
 possible solution 
\begin_inset Formula $\hat{B}$
\end_inset

, but we do expect to get the interesting solutions that can be expressed
 as 
\emph on
analytic
\emph default
 functions of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 
\end_layout

\begin_layout Standard
As before, we denote 
\begin_inset Formula $a\equiv\text{Tr}\hat{A}$
\end_inset

 and 
\begin_inset Formula $b\equiv\text{Tr}\hat{B}$
\end_inset

.
 The Cayley-Hamilton theorem for 
\begin_inset Formula $\hat{B}$
\end_inset

 together with Exercise\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{par:Trace relation1}

\end_inset

 (page\InsetSpace ~

\begin_inset LatexCommand \pageref{par:Trace relation1}

\end_inset

) yields a simplified equation,
\begin_inset Formula \begin{align}
0 & =\hat{B}^{3}-b\hat{B}^{2}+s\hat{B}-(\det\hat{B})\hat{1}\nonumber \\
 & =(\hat{A}+s\hat{1})\hat{B}-b\hat{A}-(\det\hat{B})\hat{1},\label{eq:ABsb}\\
s & \equiv\frac{b^{2}-a}{2}.\nonumber \end{align}

\end_inset

Note that 
\begin_inset Formula $\det\hat{B}=\pm\sqrt{\det\hat{A}}$
\end_inset

 and hence can be considered known.
 Moving 
\begin_inset Formula $\hat{B}$
\end_inset

 to another side in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:ABsb}

\end_inset

) and squaring the resulting equation, we find 
\begin_inset Formula \[
(\hat{A}^{2}+2s\hat{A}+s^{2}\hat{1})\hat{A}=(b\hat{A}+(\det\hat{B})\hat{1})^{2}.\]

\end_inset

Expanding the brackets and using the Cayley-Hamilton theorem for 
\begin_inset Formula $\hat{A}$
\end_inset

 in the form
\begin_inset Formula \[
\hat{A}^{3}-a\hat{A}^{2}+p\hat{A}-(\det\hat{A})\hat{1}=0,\]

\end_inset

where the coefficient 
\begin_inset Formula $p$
\end_inset

 can be expressed as
\begin_inset Formula \[
p=\frac{1}{2}(a^{2}-\text{Tr}(\hat{A}^{2})),\]

\end_inset

we obtain after simplifications
\begin_inset Formula \[
(s^{2}-p-2b\det\hat{B})\hat{A}=0.\]

\end_inset

This yields a fourth-order polynomial equation for 
\begin_inset Formula $b$
\end_inset

,
\begin_inset Formula \[
\left(\frac{b^{2}-a}{2}\right)^{2}-p-2b\det\hat{B}=0.\]

\end_inset

This equation can be solved, in principle.
 Since 
\begin_inset Formula $\det\hat{B}$
\end_inset

 has up to 
\emph on
two
\emph default
 possible values, 
\begin_inset Formula $\det\hat{B}=\pm\sqrt{\det\hat{A}}$
\end_inset

, we can then determine 
\emph on
up to eight
\emph default
 possible values of 
\begin_inset Formula $b$
\end_inset

 (and the corresponding values of 
\begin_inset Formula $s$
\end_inset

).
\end_layout

\begin_layout Standard
Now we use a trick to express 
\begin_inset Formula $\hat{B}$
\end_inset

 as a function of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 We rewrite Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:ABsb}

\end_inset

) as
\begin_inset Formula \[
\hat{A}\hat{B}=-s\hat{B}+b\hat{A}+(\det\hat{B})\hat{1}\]

\end_inset

and multiply both sides by 
\begin_inset Formula $\hat{B}$
\end_inset

, substituting 
\begin_inset Formula $\hat{A}\hat{B}$
\end_inset

 back into the equation,
\begin_inset Formula \begin{align*}
\hat{A}^{2}+s\hat{A} & =b\hat{A}\hat{B}+(\det\hat{B})\hat{B}\\
 & =b[-s\hat{B}+b\hat{A}+(\det\hat{B})\hat{1}]+(\det\hat{B})\hat{B}.\end{align*}

\end_inset

The last line yields 
\begin_inset Formula \[
\hat{B}=\frac{1}{(\det\hat{B})-sb}[\hat{A}^{2}+(s-b^{2})\hat{A}-b(\det\hat{B})\hat{1}].\]

\end_inset

This is the final result, provided that the denominator 
\begin_inset Formula $(\det\hat{B}-sb)$
\end_inset

 does not vanish.
 In case this denominator vanishes, the present method cannot yield a formula
 for 
\begin_inset Formula $\hat{B}$
\end_inset

 in terms of 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:*
\end_layout

\begin_layout Standard
Verify that the square root of a diagonalizable operator, 
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{ccc}
p^{2} & 0 & 0\\
0 & q^{2} & 0\\
0 & 0 & r^{2}\end{array}\right),\]

\end_inset

where 
\begin_inset Formula $p^{2},q^{2},r^{2}\in\mathbb{C}$
\end_inset

 are all different, can be determined using this approach, which yields
 the eight possibilities 
\begin_inset Formula \[
\hat{B}=\left(\begin{array}{ccc}
\pm p & 0 & 0\\
0 & \pm q & 0\\
0 & 0 & \pm r\end{array}\right).\]

\end_inset


\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Rather than trying to solve the fourth-order equation for 
\begin_inset Formula $b$
\end_inset

 directly (a cumbersome task), one can just verify, by substituting into
 the equation, that the eight values 
\begin_inset Formula $b=\pm p\pm q\pm r$
\end_inset

 (with all the possible choices of signs) are roots of that equation.
\end_layout

\begin_layout Paragraph
Exercise 4:*
\begin_inset Foot
status open

\begin_layout Standard
This is motivated by the article by R.
 Capovilla, J.
 Dell, and T.
 Jacobson, 
\emph on
Classical and Quantum Gravity
\emph default
 
\series bold
8
\series default
 (1991), pp.\InsetSpace ~
59--73; see p.
 63 in that article.
\end_layout

\end_inset


\end_layout

\begin_layout Standard
It is given that a three-dimen\SpecialChar \-
sion\SpecialChar \-
al operator 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies
\begin_inset Formula \[
\text{Tr}\,(\hat{A}^{2})=\frac{1}{2}(\text{Tr}\,\hat{A})^{2},\quad\det\hat{A}\neq0.\]

\end_inset

Show that there exists 
\begin_inset Formula $\hat{B}$
\end_inset

, unique up to a sign, such that 
\begin_inset Formula $\text{Tr}\,\hat{B}=0$
\end_inset

 and 
\begin_inset Formula $\hat{B}^{2}=\hat{A}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula \[
\hat{B}=\pm\frac{1}{\sqrt{\det\hat{A}}}\big[\hat{A}^{2}-\frac{1}{2}(\text{Tr}\,\hat{A})\hat{A}\big].\]

\end_inset


\end_layout

\begin_layout Section
Formulas of Jacobi and Liouville
\begin_inset LatexCommand \label{sec:Formulas-of-Jacobi-and-Liouville}

\end_inset


\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
The 
\series bold
Liouville formula
\series default

\begin_inset LatexCommand \index{Liouville formula}

\end_inset

 is the identity
\begin_inset Formula \begin{equation}
\det(\exp\hat{A})=\exp(\textrm{Tr}\hat{A}),\label{eq:Liouville}\end{equation}

\end_inset

where 
\begin_inset Formula $\hat{A}$
\end_inset

 is a linear operator and 
\begin_inset Formula $\exp\hat{A}$
\end_inset

 is defined by the power series,
\begin_inset Formula \[
\exp\hat{A}\equiv\sum_{n=0}^{\infty}\frac{1}{n!}(\hat{A})^{n}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
Consider a 
\series bold
diagonalizable
\series default

\begin_inset LatexCommand \index{diagonalizable operator}

\end_inset

 operator 
\begin_inset Formula $\hat{A}$
\end_inset

 (an operator such that there exists an eigenbasis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\,|\, i=1,...,N\right\} $
\end_inset

) and denote by 
\begin_inset Formula $\lambda_{i}$
\end_inset

 the eigenvalues, so that 
\begin_inset Formula $\hat{A}\mathbf{e}_{i}=\lambda_{i}\mathbf{e}_{i}$
\end_inset

.
 (The eigenvalues 
\begin_inset Formula $\lambda_{i}$
\end_inset

 are not necessarily all different.) Then we have 
\begin_inset Formula $(\hat{A})^{n}\mathbf{e}_{i}=\lambda_{i}^{n}\mathbf{e}_{i}$
\end_inset

 and therefore
\begin_inset Formula \[
(\exp\hat{A})\mathbf{e}_{i}=\sum_{n=0}^{\infty}\frac{1}{n!}(\hat{A})^{n}\mathbf{e}_{i}=\sum_{n=0}^{\infty}\frac{1}{n!}\lambda_{i}^{n}\mathbf{e}_{i}=e^{\lambda_{i}}\mathbf{e}_{i}.\]

\end_inset

The trace of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula $\text{Tr}\hat{A}=\sum_{i=1}^{N}\lambda_{i}$
\end_inset

 and the determinant is 
\begin_inset Formula $\det\hat{A}=\prod_{i=1}^{N}\lambda_{i}$
\end_inset

.
 Hence we can easily verify the Liouville formula,
\begin_inset Formula \[
\det(\exp\hat{A})=e^{\lambda_{1}}...e^{\lambda_{N}}=\exp(\lambda_{1}+...+\lambda_{n})=\exp(\text{Tr}\hat{A}).\]

\end_inset

However, the Liouville formula is valid also for non-diagonalizable operators.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Liouville}

\end_inset

) is useful in several areas of mathematics and physics.
 A proof of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Liouville}

\end_inset

) for matrices can be given through the use of the Jordan canonical form
\begin_inset LatexCommand \index{Jordan canonical form}

\end_inset

 of the matrix, which is a powerful but complicated construction that actually
 is not needed to derive the Liouville formula.
 We will derive it using oper\SpecialChar \-
ator-valued differential equations for power
 series.
 A useful by-product is a formula for the derivative of the determinant.
\end_layout

\begin_layout Paragraph
Theorem 1 (Liouville's formula
\begin_inset LatexCommand \index{Liouville formula}

\end_inset

):
\end_layout

\begin_layout Standard
For an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in a finite-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

, 
\begin_inset Formula \begin{equation}
\det\exp(t\hat{A})=\exp(t\textrm{Tr}\hat{A}).\label{eq:Liouville t}\end{equation}

\end_inset

Here both sides are understood as 
\series bold
formal power series
\series default

\begin_inset LatexCommand \index{formal power series}

\end_inset

 in the variable 
\begin_inset Formula $t$
\end_inset

, e.g.
\begin_inset Formula \[
\exp(t\hat{A})\equiv\sum_{n=0}^{\infty}\frac{t^{n}}{n!}(\hat{A})^{n},\]

\end_inset

i.e.\InsetSpace ~
an infinite series considered without regard for convergence (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Functions-of-operators}

\end_inset

).
 
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Although we establish Theorem\InsetSpace ~
1 only in the sense of equality of formal power
 series, the result is useful because both sides of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Liouville t}

\end_inset

) will be equal whenever both series converge.
 Since the series for 
\begin_inset Formula $\exp(x)$
\end_inset

 converges for all 
\begin_inset Formula $x$
\end_inset

, one expects that Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Liouville t}

\end_inset

) has a wide range of applicability.
 In particular, it holds for any operator in finite dimensions.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The idea of the proof will be to represent both sides of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Liouville t}

\end_inset

) as power series in 
\begin_inset Formula $t$
\end_inset

 satisfying some differential equation.
 First we figure out how to solve differential equations for formal power
 series.
 Then we will guess a suitable differential equation that will enable us
 to prove the theorem.
\end_layout

\begin_layout Paragraph
Lemma 1:
\end_layout

\begin_layout Standard
The operator-valued function 
\begin_inset Formula $\hat{F}(t)\equiv\exp(t\hat{A})$
\end_inset

 is the unique solution of the differential equation
\begin_inset Formula \[
\partial_{t}\hat{F}(t)=\hat{F}(t)\,\hat{A},\quad\hat{F}\left(t=0\right)=\hat{1}_{V},\]

\end_inset

where both sides of the equation are understood as formal power series.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The initial condition means that 
\begin_inset Formula \[
\hat{F}(t)=\hat{1}+\hat{F}_{1}t+\hat{F}_{2}t^{2}+...,\]

\end_inset

where 
\begin_inset Formula $\hat{F}_{1}$
\end_inset

, 
\begin_inset Formula $\hat{F}_{2}$
\end_inset

, ..., are some operators.
 Then we equate terms with equal powers of 
\begin_inset Formula $t$
\end_inset

 in the differential equation, which yields 
\begin_inset Formula $\hat{F}_{j+1}=\frac{1}{j}\hat{F}_{j}\hat{A}$
\end_inset

, 
\begin_inset Formula $j=1,2,...$
\end_inset

, and so we obtain the desired exponential series.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Lemma 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\phi(t)$
\end_inset

 and 
\begin_inset Formula $\psi(t)$
\end_inset

 are power series in 
\begin_inset Formula $t$
\end_inset

 with coefficients from 
\begin_inset Formula $\wedge^{m}V$
\end_inset

 and 
\begin_inset Formula $\wedge^{n}V$
\end_inset

 respectively, then the Leibniz rule holds,
\begin_inset Formula \[
\partial_{t}\left(\phi\wedge\psi\right)=\left(\partial_{t}\phi\right)\wedge\psi+\phi\wedge\left(\partial_{t}\psi\right).\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Since the derivative of formal power series, as defined above, is a linear
 operation, it is sufficient to verify the statement in the case when 
\begin_inset Formula $\phi=t^{a}\omega_{1}$
\end_inset

 and 
\begin_inset Formula $\psi=t^{b}\omega_{2}$
\end_inset

.
 Then we find
\begin_inset Formula \begin{align*}
\partial_{t}\left(\phi\wedge\psi\right) & =\left(a+b\right)t^{a+b-1}\omega_{1}\wedge\omega_{2},\\
\left(\partial_{t}\phi\right)\wedge\psi+\phi\wedge\left(\partial_{t}\psi\right) & =at^{a-1}\omega_{1}\wedge t^{b}\omega_{2}+t^{a}\omega_{1}\wedge bt^{b-1}\omega_{2}.\end{align*}

\end_inset


\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Lemma 3:
\end_layout

\begin_layout Standard
The inverse to a formal power series 
\begin_inset Formula $\phi(t)$
\end_inset

 exists (as a formal power series) if and only if 
\begin_inset Formula $\phi(0)\neq0$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The condition 
\begin_inset Formula $\phi(0)\neq0$
\end_inset

 means that we can express 
\begin_inset Formula $\phi(t)=\phi(0)+t\psi(t)$
\end_inset

 where 
\begin_inset Formula $\psi(t)$
\end_inset

 is another power series.
 Then we can use the identity of formal power series,
\begin_inset Formula \[
1=\left(1+x\right)\left[\sum_{n=0}^{\infty}\left(-1\right)^{n}x^{n}\right],\]

\end_inset

to express 
\begin_inset Formula $1/\phi(t)$
\end_inset

 as a formal power series, 
\begin_inset Formula \[
\frac{1}{\phi(t)}=\frac{1}{\phi(0)+t\psi(t)}=\sum_{n=0}^{\infty}\left(-1\right)^{n}\left[\phi(0)\right]^{-n-1}\left[t\psi(t)\right]^{n}.\]

\end_inset

Since each term 
\begin_inset Formula $\left[t\psi(t)\right]^{n}$
\end_inset

 is expanded into a series that starts with 
\begin_inset Formula $t^{n}$
\end_inset

, we can compute each term of 
\begin_inset Formula $1/\phi(t)$
\end_inset

 by adding finitely many other terms, i.e.\InsetSpace ~
the above equation does specify
 a well-defined formal power series.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Corollary:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}(t)$
\end_inset

 is an operator-valued formal power series, the inverse to 
\begin_inset Formula $\hat{A}(t)$
\end_inset

 exists (as a formal power series) if and only if 
\begin_inset Formula $\det\hat{A}(0)\neq0$
\end_inset

.
\end_layout

\begin_layout Standard
The next step towards guessing the differential equation is to compute the
 derivative of a determinant.
\end_layout

\begin_layout Paragraph
Lemma 4 (Jacobi's formula
\begin_inset LatexCommand \index{Jacobi formula}

\end_inset

):
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}(t)$
\end_inset

 is an oper\SpecialChar \-
ator-valued formal power series such that the inverse 
\begin_inset Formula $\hat{A}^{-1}(t)$
\end_inset

 exists, we have 
\begin_inset Formula \begin{equation}
\partial_{t}\det\hat{A}(t)=(\det\hat{A})\textrm{Tr}\,[\hat{A}^{-1}\partial_{t}\hat{A}]=\textrm{Tr}\,[(\det\hat{A})\hat{A}^{-1}\partial_{t}\hat{A}].\label{eq:pre Liouville 1}\end{equation}

\end_inset

If the inverse does not exist, we need to replace 
\begin_inset Formula $\det\hat{A}\cdot\hat{A}^{-1}$
\end_inset

 in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:pre Liouville 1}

\end_inset

) by the algebraic complement, 
\begin_inset Formula \[
\tilde{\hat{A}}\equiv\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\]

\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

), so that we obtain the formula of Jacobi,
\begin_inset Formula \[
\partial_{t}\det\hat{A}=\text{Tr}\,[\tilde{\hat{A}}\,\partial_{t}\hat{A}].\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof of Lemma\InsetSpace ~
4:
\end_layout

\begin_layout Standard
A straightforward calculation using Lemma\InsetSpace ~
2 gives
\begin_inset Formula \begin{align*}
\big(\partial_{t}\det\hat{A}(t)\big)\mathbf{v}_{1}\wedge... & \wedge\mathbf{v}_{N}=\partial_{t}[\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}]\\
 & =\sum_{k=1}^{N}\hat{A}\mathbf{v}_{1}\wedge...\wedge(\partial_{t}\hat{A})\mathbf{v}_{k}\wedge...\wedge\hat{A}\mathbf{v}_{N}.\end{align*}

\end_inset

Now we use the definition of the algebraic complement operator to rewrite
\begin_inset Formula \[
\hat{A}\mathbf{v}_{1}\wedge...\wedge(\partial_{t}\hat{A})\mathbf{v}_{k}\wedge...\wedge\hat{A}\mathbf{v}_{N}=\mathbf{v}_{1}\wedge...\wedge(\tilde{\hat{A}}\,\partial_{t}\hat{A}\mathbf{v}_{k})\wedge...\wedge\mathbf{v}_{N}.\]

\end_inset

Hence
\begin_inset Formula \begin{align*}
(\partial_{t}\det\hat{A})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N} & =\sum_{k=1}^{N}\mathbf{v}_{1}\wedge...\wedge(\tilde{\hat{A}}\,\partial_{t}\hat{A}\mathbf{v}_{k})\wedge...\wedge\mathbf{v}_{N}\\
 & =\wedge^{N}(\tilde{\hat{A}}\,\partial_{t}\hat{A})^{1}\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\\
 & =\text{Tr}\,[\tilde{\hat{A}}\,\partial_{t}\hat{A}]\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\end{align*}

\end_inset

Therefore 
\begin_inset Formula $\partial_{t}\det\hat{A}=\text{Tr}\,[\tilde{\hat{A}}\,\partial_{t}\hat{A}]$
\end_inset

.
 When 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 exists, we may express 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 through the inverse matrix, 
\begin_inset Formula $\tilde{\hat{A}}=(\det\hat{A})\hat{A}^{-1}$
\end_inset

, and obtain Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:pre Liouville 1}

\end_inset

).
 
\end_layout

\begin_layout Subparagraph
Proof of Theorem 1:
\end_layout

\begin_layout Standard
It follows from Lemma\InsetSpace ~
3 that 
\begin_inset Formula $\hat{F}^{-1}(t)$
\end_inset

 exists since 
\begin_inset Formula $\hat{F}(0)=\hat{1}$
\end_inset

, and it follows from Lemma\InsetSpace ~
4 that the oper\SpecialChar \-
ator-valued function 
\begin_inset Formula $\hat{F}(t)=\exp(t\hat{A})$
\end_inset

 satisfies the differential equation
\begin_inset Formula \[
\partial_{t}\det\hat{F}(t)=\det\hat{F}(t)\cdot\textrm{Tr}[\hat{F}^{-1}\partial_{t}\hat{F}].\]

\end_inset

From Lemma\InsetSpace ~
1, we have 
\begin_inset Formula $\hat{F}^{-1}\partial_{t}\hat{F}=\hat{F}^{-1}\hat{F}\hat{A}=\hat{A}$
\end_inset

, therefore
\begin_inset Formula \[
\partial_{t}\det\hat{F}(t)=\det\hat{F}(t)\cdot\textrm{Tr}\hat{A}.\]

\end_inset

This is a differential equation for the number-valued formal power series
 
\begin_inset Formula $f(t)\equiv\det\hat{F}(t)$
\end_inset

, with the initial condition 
\begin_inset Formula $f(0)=1$
\end_inset

.
 The solution (which we may still regard as a formal power series) is
\begin_inset Formula \[
f(t)=\exp(t\textrm{Tr}\hat{A}).\]

\end_inset

Therefore
\begin_inset Formula \[
\det\hat{F}(t)\equiv\det\exp(t\hat{A})=\exp(t\textrm{Tr}\hat{A}).\]

\end_inset


\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1: (generalized Liouville's formula)
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}\in\textrm{End }V$
\end_inset

 and 
\begin_inset Formula $p\leq N\equiv\dim V$
\end_inset

, show that
\begin_inset Formula \[
\wedge^{p}(\exp t\hat{A})^{p}=\exp\big(t(\wedge^{p}\hat{A}^{1})\big),\]

\end_inset

where both sides are understood as formal power series of operators in 
\begin_inset Formula $\wedge^{p}V$
\end_inset

.
 (The Liouville formula is a special case with 
\begin_inset Formula $p=N$
\end_inset

.)
\end_layout

\begin_layout Paragraph
Exercise 2:* (Sylvester's theorem)
\end_layout

\begin_layout Standard
For any two linear maps 
\begin_inset Formula $\hat{A}:V\rightarrow W$
\end_inset

 and 
\begin_inset Formula $\hat{B}:W\rightarrow V$
\end_inset

, we have well-defined composition maps 
\begin_inset Formula $\hat{A}\hat{B}\in\text{End }W$
\end_inset

 and 
\begin_inset Formula $\hat{B}\hat{A}\in\text{End }V$
\end_inset

.
 Then
\begin_inset Formula \[
\det(\hat{1}_{V}+\hat{B}\hat{A})=\det(\hat{1}_{W}+\hat{A}\hat{B}).\]

\end_inset

Note that the operators at both sides act in different spaces.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Introduce a real parameter 
\begin_inset Formula $t$
\end_inset

 and consider the functions 
\begin_inset Formula $f(t)\equiv\det(1+t\hat{A}\hat{B})$
\end_inset

, 
\begin_inset Formula $g(t)\equiv\det(1+t\hat{B}\hat{A})$
\end_inset

.
 These functions are polynomials of finite degree in 
\begin_inset Formula $t$
\end_inset

.
 Consider the differential equation for these functions; show that 
\begin_inset Formula $f(t)$
\end_inset

 satisfies
\begin_inset Formula \[
\frac{df}{dt}=f(t)\text{Tr}\,[\hat{A}\hat{B}(1+t\hat{A}\hat{B})^{-1}],\]

\end_inset

and similarly for 
\begin_inset Formula $g$
\end_inset

.
 Expand in series in 
\begin_inset Formula $t$
\end_inset

 and use the identities 
\begin_inset Formula $\text{Tr}\,(\hat{A}\hat{B})=\text{Tr}\,(\hat{B}\hat{A})$
\end_inset

, 
\begin_inset Formula $\text{Tr}\,(\hat{A}\hat{B}\hat{A}\hat{B})=\text{Tr}\,(\hat{B}\hat{A}\hat{B}\hat{A})$
\end_inset

, etc.
 Then show that 
\begin_inset Formula $f$
\end_inset

 and 
\begin_inset Formula $g$
\end_inset

 are solutions of the same differential equation, with the same conditions
 at 
\begin_inset Formula $t=0$
\end_inset

.
 Therefore, show that these functions are identical as formal power series.
 Since 
\begin_inset Formula $f$
\end_inset

 and 
\begin_inset Formula $g$
\end_inset

 are actually polynomials in 
\begin_inset Formula $t$
\end_inset

, they must be equal.
\end_layout

\begin_layout Subsection
Derivative of characteristic polynomial
\end_layout

\begin_layout Standard
Jacobi's formula expresses the derivative of the determinant, 
\begin_inset Formula $\partial_{t}\det\hat{A}$
\end_inset

, in terms of the derivative 
\begin_inset Formula $\partial_{t}\hat{A}$
\end_inset

 of the operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The determinant is the last coefficient 
\begin_inset Formula $q_{0}$
\end_inset

 of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 It is possible to obtain similar formulas for the derivatives of all other
 coefficients of the characteristic polynomial.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The derivative of the coefficient
\begin_inset Formula \[
q_{k}\equiv\wedge^{N}\hat{A}^{N-k}\]

\end_inset

 of the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 is expressed (for 
\begin_inset Formula $0\leq k\leq N-1$
\end_inset

) as 
\begin_inset Formula \[
\partial_{t}q_{k}=\text{Tr}\,\big[(\wedge^{N-1}\hat{A}^{N-k-1})^{\wedge T}\partial_{t}\hat{A}\big].\]

\end_inset

Note that the first operator in the brackets is the one we denoted by 
\begin_inset Formula $\hat{A}_{(k+1)}$
\end_inset

 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-algebraic-complement}

\end_inset

, so we can write
\begin_inset Formula \[
\partial_{t}q_{k}=\text{Tr}\,[\hat{A}_{(k+1)}\partial_{t}\hat{A}].\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We apply the operator 
\begin_inset Formula $\partial_{t}(\wedge^{N}\hat{A}^{N-k})$
\end_inset

 to the tensor 
\begin_inset Formula $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

, where 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is a basis.
 We assume that the vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 do not depend on 
\begin_inset Formula $t$
\end_inset

, so we can compute 
\begin_inset Formula \[
\big[\partial_{t}(\wedge^{N}\hat{A}^{N-k})\big]\omega=\partial_{t}\big[{\wedge^{N}\hat{A}^{N-k}}\omega\big].\]

\end_inset

 The result is a sum of terms such as
\begin_inset Formula \[
\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-k-1}\wedge\partial_{t}\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{N}\]

\end_inset

and other terms obtained by permuting the vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 (without introducing any minus signs!).
 The total number of these terms is equal to 
\begin_inset Formula $N{N-1 \choose N-k-1}$
\end_inset

, since we need to choose a single vector to which 
\begin_inset Formula $\partial_{t}\hat{A}$
\end_inset

 will apply, and then 
\begin_inset Formula $\left(N-k-1\right)$
\end_inset

 vectors to which 
\begin_inset Formula $\hat{A}$
\end_inset

 will apply, among the 
\begin_inset Formula $(N-1)$
\end_inset

 remaining vectors.
 Now consider the expression
\begin_inset Formula \[
\text{Tr}\,\big[(\wedge^{N-1}\hat{A}^{N-k-1})^{\wedge T}\partial_{t}\hat{A}\big]\omega.\]

\end_inset

This expression is the sum of terms such as
\begin_inset Formula \[
\hat{A}_{(k+1)}\partial_{t}\hat{A}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}\]

\end_inset

and other terms with permuted vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

.
 There will be 
\begin_inset Formula $N$
\end_inset

 such terms, since we choose one vector out of 
\begin_inset Formula $N$
\end_inset

 to apply the operator 
\begin_inset Formula $\hat{A}_{(k+1)}\partial_{t}\hat{A}$
\end_inset

.
 Using the definition of 
\begin_inset Formula $\hat{A}_{(k+1)}$
\end_inset

, we write
\begin_inset Formula \begin{align*}
 & \hat{A}_{(k+1)}\partial_{t}\hat{A}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}\\
 & \;=\partial_{t}\hat{A}\mathbf{v}_{1}\wedge\big[{\wedge^{N-1}\hat{A}^{N-k-1}}\big](\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N})\\
 & \;=\partial_{t}\hat{A}\mathbf{v}_{1}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{N}+...,\end{align*}

\end_inset

where in the last line we omitted all other permutations of the vectors.
 (There will be 
\begin_inset Formula ${N-1 \choose N-k-1}$
\end_inset

 such permutations.) It follows that the tensor expressions 
\begin_inset Formula \[
\partial_{t}q_{k}\omega\equiv\partial_{t}(\wedge^{N}\hat{A}^{N-k})\omega\]

\end_inset

 and 
\begin_inset Formula $\text{Tr}\,[\hat{A}_{(k+1)}\partial_{t}\hat{A}]\omega$
\end_inset

 consist of the same terms; thus they are equal,
\begin_inset Formula \[
\partial_{t}q_{k}\omega=\text{Tr}\,[\hat{A}_{(k+1)}\partial_{t}\hat{A}]\omega.\]

\end_inset

Since this holds for any 
\begin_inset Formula $\omega\in\wedge^{N}V$
\end_inset

, we obtain the required statement.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Assuming that 
\begin_inset Formula $\hat{A}(t)$
\end_inset

 is invertible, derive a formula for the derivative of the algebraic complement,
 
\begin_inset Formula $\partial_{t}\tilde{\hat{A}}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Compute 
\begin_inset Formula $\partial_{t}$
\end_inset

 of both sides of the identity 
\begin_inset Formula $\tilde{\hat{A}}\hat{A}=(\det\hat{A})\hat{1}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula \[
\partial_{t}\tilde{\hat{A}}=\frac{\text{Tr}\,[\tilde{\hat{A}}\partial_{t}\hat{A}]\tilde{\hat{A}}-\tilde{\hat{A}}(\partial_{t}\hat{A})\tilde{\hat{A}}}{\det\hat{A}}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Since 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 is a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

, 
\begin_inset Formula \[
\tilde{\hat{A}}=q_{1}-q_{2}\hat{A}+...+q_{N-1}(-\hat{A})^{N-2}+(-\hat{A})^{N-1},\]

\end_inset

all derivatives of 
\begin_inset Formula $\tilde{\hat{A}}$
\end_inset

 may be expressed directly as polynomials in 
\begin_inset Formula $\hat{A}$
\end_inset

 and derivatives of 
\begin_inset Formula $\hat{A}$
\end_inset

, even when 
\begin_inset Formula $\hat{A}$
\end_inset

 is not invertible.
 Explicit expressions not involving 
\begin_inset Formula $\hat{A}^{-1}$
\end_inset

 are cumbersome --- for instance, the derivative of a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 will contain expressions like 
\begin_inset Formula \[
\partial_{t}(\hat{A}^{3})=(\partial_{t}\hat{A})\hat{A}^{2}+\hat{A}(\partial_{t}\hat{A})\hat{A}+\hat{A}^{2}\partial_{t}\hat{A}.\]

\end_inset

Nevertheless, these expressions can be derived using the known formulas
 for 
\begin_inset Formula $\partial_{t}q_{k}$
\end_inset

 and 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Derivative of a simple eigenvalue
\end_layout

\begin_layout Standard
Suppose an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is a function of a parameter 
\begin_inset Formula $t$
\end_inset

; we will consider 
\begin_inset Formula $\hat{A}(t)$
\end_inset

 as a formal power series (FPS).
 Then the eigenvectors and the eigenvalues of 
\begin_inset Formula $\hat{A}$
\end_inset

 are also functions of 
\begin_inset Formula $t$
\end_inset

.
 We can obtain a simple formula for the derivative of an eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

 if it is an eigenvalue of multiplicity 1.
 It will be sufficient to know the eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

 and the algebraic complement of 
\begin_inset Formula $\hat{A}-\lambda\hat{1}$
\end_inset

; we do not need to know any eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 explicitly, nor the other eigenvalues.
 
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\hat{A}(t)$
\end_inset

 is an operator-valued formal power series and 
\begin_inset Formula $\lambda(0)$
\end_inset

 is a simple eigenvalue, i.e.\InsetSpace ~
an eigenvalue of 
\begin_inset Formula $\hat{A}(0)$
\end_inset

 having multiplicity 1.
 We also assume that there exists an FPS 
\begin_inset Formula $\lambda(t)$
\end_inset

 and a vector-val\SpecialChar \-
ued FPS 
\begin_inset Formula $\mathbf{v}(t)$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}=\lambda\mathbf{v}$
\end_inset

 in the sense of formal power series.
 Then the following identity of FPS holds,
\begin_inset Formula \begin{align*}
\partial_{t}\lambda & =\frac{\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})}{\wedge^{N}\hat{B}^{N-1}}=\frac{\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})}{\text{Tr}\,\tilde{\hat{B}}},\\
\hat{B}(t) & \equiv\hat{A}(t)-\lambda(t)\hat{1}_{V}.\end{align*}

\end_inset

The number 
\begin_inset Formula \[
\text{Tr}\tilde{\hat{B}}(0)\equiv\left.\wedge^{N}\hat{B}^{N-1}\right|_{t=0}\neq0\]

\end_inset

 if and only if 
\begin_inset Formula $\lambda(0)$
\end_inset

 is a simple eigenvalue.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We consider the derivative 
\begin_inset Formula $\partial_{t}$
\end_inset

 of the identity 
\begin_inset Formula $\det\hat{B}=0$
\end_inset

:
\begin_inset Formula \begin{align*}
0 & =\partial_{t}\det\hat{B}=\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{B})=\text{Tr}\,[\tilde{\hat{B}}(\partial_{t}\hat{A}-\hat{1}\partial_{t}\lambda)]\\
 & =\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})-(\text{Tr}\,\tilde{\hat{B}})\partial_{t}\lambda.\end{align*}

\end_inset

We have from Statement\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-algebraic-complement}

\end_inset

 the relation 
\begin_inset Formula \[
\text{Tr}\,\tilde{\hat{B}}=\wedge^{N}\hat{B}^{N-1}\]

\end_inset

for any operator 
\begin_inset Formula $\hat{B}$
\end_inset

.
 Since (by assumption) 
\begin_inset Formula $\text{Tr}\tilde{\hat{B}}(t)\neq0$
\end_inset

 at 
\begin_inset Formula $t=0$
\end_inset

, we may divide by 
\begin_inset Formula $\text{Tr}\tilde{\hat{B}}(t)$
\end_inset

 because 
\begin_inset Formula $1/\text{Tr}\tilde{\hat{B}}(t)$
\end_inset

 is a well-defined FPS (Lemma\InsetSpace ~
3 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sec:Formulas-of-Jacobi-and-Liouville}

\end_inset

).
 Hence, we have 
\begin_inset Formula \[
\partial_{t}\lambda=\frac{\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})}{\text{Tr}\,\tilde{\hat{B}}}=\frac{\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})}{\wedge^{N}\hat{B}^{N-1}}.\]

\end_inset

The condition 
\begin_inset Formula $\wedge^{N}\hat{B}^{N-1}\neq0$
\end_inset

 is equivalent to
\begin_inset Formula \[
\frac{\partial}{\partial\mu}Q_{\hat{B}}(\mu)\neq0\quad\text{at}\,\mu=0,\]

\end_inset

which is the same as the condition that 
\begin_inset Formula $\mu=0$
\end_inset

 is a simple zero of the characteristic polynomial of 
\begin_inset Formula $\hat{B}\equiv\hat{A}-\lambda\hat{1}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark: 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}(t)$
\end_inset

, say, at 
\begin_inset Formula $t=0$
\end_inset

 has an eigenvalue 
\begin_inset Formula $\lambda(0)$
\end_inset

 of multiplicity higher than 1, the formula derived in Statement\InsetSpace ~
1 does not
 apply, and the analysis requires knowledge of the eigenvectors.
 For example, the eigenvalue 
\begin_inset Formula $\lambda(0)$
\end_inset

 could have multiplicity 2 because there are two eigenvalues 
\begin_inset Formula $\lambda_{1}(t)$
\end_inset

 and 
\begin_inset Formula $\lambda_{2}(t)$
\end_inset

, corresponding to different eigenvectors, which are accidentally equal
 at 
\begin_inset Formula $t=0$
\end_inset

.
 One cannot compute 
\begin_inset Formula $\partial_{t}\lambda$
\end_inset

 without specifying which of the two eigenvalues, 
\begin_inset Formula $\lambda_{1}(t)$
\end_inset

 or 
\begin_inset Formula $\lambda_{2}(t)$
\end_inset

, needs to be considered, i.e.\InsetSpace ~
without specifying the corresponding eigenvectors
 
\begin_inset Formula $\mathbf{v}_{1}(t)$
\end_inset

 or 
\begin_inset Formula $\mathbf{v}_{2}(t)$
\end_inset

.
 Here I do not consider these more complicated situations but restrict attention
 to the case of a simple eigenvalue.
\end_layout

\begin_layout Subsection
General trace relations
\begin_inset LatexCommand \index{trace relations}

\end_inset


\begin_inset LatexCommand \label{sub:General-trace-relations}

\end_inset


\end_layout

\begin_layout Standard
We have seen in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-characteristic-polynomial}

\end_inset

 (Exercises 1 and 2) that the coefficients of the characteristic polynomial
 of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be expressed by algebraic formulas through the 
\begin_inset Formula $N$
\end_inset

 traces 
\begin_inset Formula $\text{Tr}\hat{A}$
\end_inset

, ..., 
\begin_inset Formula $\text{Tr}(\hat{A}^{N})$
\end_inset

, and we called these formulas 
\begin_inset Quotes eld
\end_inset

trace relations.
\begin_inset Quotes erd
\end_inset

 We will now compute the coefficients in the trace relations in the general
 case.
\end_layout

\begin_layout Standard
We are working with a given operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in an 
\begin_inset Formula $N$
\end_inset

-dimensional space.
\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
We denote for brevity 
\begin_inset Formula $q_{k}\equiv\wedge^{N}\hat{A}^{k}$
\end_inset

 and 
\begin_inset Formula $t_{k}\equiv\text{Tr}(\hat{A}^{k})$
\end_inset

, where 
\begin_inset Formula $k=1,2,...$
\end_inset

, and set 
\begin_inset Formula $q_{k}\equiv0$
\end_inset

 for 
\begin_inset Formula $k>N$
\end_inset

.
 Then all 
\begin_inset Formula $q_{k}$
\end_inset

 can be expressed as polynomials in 
\begin_inset Formula $t_{k}$
\end_inset

, and these polynomials are equal to the coefficients at 
\begin_inset Formula $x^{k}$
\end_inset

 of the formal power series
\begin_inset Formula \[
G(x)=\exp\left[t_{1}x-t_{2}\frac{x^{2}}{2}+...+\left(-1\right)^{n-1}t_{n}\frac{x^{n}}{n}+...\right]\equiv\sum_{k=1}^{\infty}x^{k}q_{k}\]

\end_inset

by collecting the powers of the formal variable 
\begin_inset Formula $x$
\end_inset

 up to the desired order.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Consider the expression 
\begin_inset Formula $\det(\hat{1}+x\hat{A})$
\end_inset

 as a formal power series in 
\begin_inset Formula $x$
\end_inset

.
 By the Liouville formula, we have the following identity of formal power
 series,
\begin_inset Formula \begin{align*}
\ln\det(\hat{1}+x\hat{A}) & =\text{Tr}\left[\ln(\hat{1}+x\hat{A})\right]\\
 & =\text{Tr}\left[x\hat{A}-\frac{x^{2}}{2}\hat{A}^{2}+...+\left(-1\right)^{n-1}\frac{x^{n}}{n}\hat{A}^{n}+...\right]\\
 & =xt_{1}-\frac{x^{2}}{2}t_{2}+...+\left(-1\right)^{n-1}t_{n}\frac{x^{n}}{n}+...,\end{align*}

\end_inset

where we substituted the power series for the logarithm function and used
 the notation 
\begin_inset Formula $t_{k}\equiv\text{Tr}(\hat{A}^{k})$
\end_inset

.
 Therefore, we have 
\begin_inset Formula \[
\det(\hat{1}+x\hat{A})=\exp G(x)\]

\end_inset

as the identity of  formal power series.
 On the other hand, 
\begin_inset Formula $\det(\hat{1}+x\hat{A})$
\end_inset

 is actually a 
\emph on
polynomial
\emph default
 of degree 
\begin_inset Formula $N$
\end_inset

 in 
\begin_inset Formula $x$
\end_inset

, i.e.\InsetSpace ~
a formal power series that has all zero coefficients from 
\begin_inset Formula $x^{N+1}$
\end_inset

 onwards.
 The coefficients of this polynomial are found by using 
\begin_inset Formula $x\hat{A}$
\end_inset

 instead of 
\begin_inset Formula $\hat{A}$
\end_inset

 in Lemma\InsetSpace ~
1 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-characteristic-polynomial}

\end_inset

:
\begin_inset Formula \[
\det(\hat{1}+x\hat{A})=1+q_{1}x+...+q_{N}x^{N}.\]

\end_inset

Therefore, the coefficient at 
\begin_inset Formula $x^{k}$
\end_inset

 in the formal power series 
\begin_inset Formula $\exp G(x)$
\end_inset

 is indeed equal to 
\begin_inset Formula $q_{k}$
\end_inset

 for 
\begin_inset Formula $k=1,...,N$
\end_inset

.
 (The coefficients at 
\begin_inset Formula $x^{k}$
\end_inset

 for 
\begin_inset Formula $k>N$
\end_inset

 are all zero!)
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
Expanding the given series up to terms of order 
\begin_inset Formula $x^{4}$
\end_inset

, we find after some straightforward calculations
\begin_inset Formula \begin{align*}
G(x) & =t_{1}x+\frac{t_{1}^{2}-t_{2}}{2}x^{2}+\left[\frac{t_{1}^{3}}{6}-\frac{t_{1}t_{2}}{2}+\frac{t_{3}}{3}\right]x^{3}\\
 & +\left[\frac{t_{1}^{4}}{24}-\frac{t_{1}^{2}t_{2}}{4}+\frac{t_{2}^{2}}{8}+\frac{t_{1}t_{3}}{3}-\frac{t_{4}}{4}\right]x^{4}+O(x^{5}).\end{align*}

\end_inset

Replacing 
\begin_inset Formula $t_{j}$
\end_inset

 with 
\begin_inset Formula $\text{Tr}(\hat{A}^{j})$
\end_inset

 and collecting the terms at the 
\begin_inset Formula $k$
\end_inset

-th power of 
\begin_inset Formula $x$
\end_inset

, we obtain the 
\begin_inset Formula $k$
\end_inset

-th trace relation.
 For example, the trace relation for 
\begin_inset Formula $k=4$
\end_inset

 is
\begin_inset Formula \begin{align*}
\wedge^{N}\hat{A}^{4} & =\frac{1}{24}(\text{Tr}\hat{A})^{4}-\frac{1}{4}\text{Tr}(\hat{A}^{2})(\text{Tr}\hat{A})^{2}+\frac{1}{8}\left[\text{Tr}(\hat{A}^{2})\right]^{2}\\
 & +\frac{1}{3}\text{Tr}(\hat{A}^{3})\text{Tr}\hat{A}-\frac{1}{4}\text{Tr}(\hat{A}^{4}).\end{align*}

\end_inset

Note that this formula is valid for all 
\begin_inset Formula $N$
\end_inset

, even for 
\begin_inset Formula $N<4$
\end_inset

; in the latter case, 
\begin_inset Formula $\wedge^{N}\hat{A}^{4}=0$
\end_inset

.
\end_layout

\begin_layout Section
Jordan canonical form
\begin_inset LatexCommand \label{sub:The-Jordan-canonical}

\end_inset


\end_layout

\begin_layout Standard
We have seen in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-characteristic-polynomial}

\end_inset

 that the eigenvalues of a linear operator are the roots of the characteristic
 polynomial, and that there exists 
\emph on
at least one
\emph default
 eigenvector corresponding to each eigenvalue.
 In this section we will assume that the total number of roots of the characteri
stic polynomial, counting the algebraic multiplicity, is equal to 
\begin_inset Formula $N$
\end_inset

 (the dimension of the space).
 This is the case, for instance, when the field 
\begin_inset Formula $\mathbb{K}$
\end_inset

 is that of the complex numbers (
\begin_inset Formula $\mathbb{C}$
\end_inset

); otherwise not all polynomials will have roots belonging to 
\begin_inset Formula $\mathbb{K}$
\end_inset

.
 
\end_layout

\begin_layout Standard
The dimension of the eigenspace corresponding to an eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

 (the 
\series bold
geometric multiplicity
\series default

\begin_inset LatexCommand \index{geometric multiplicity}

\end_inset

) is not larger than the algebraic multiplicity of the root 
\begin_inset Formula $\lambda$
\end_inset

 in the characteristic polynomial (Theorem\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-characteristic-polynomial}

\end_inset

).
 The geometric multiplicity is in any case not less than 1 because at least
 one eigenvector exists (Theorem\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Existence-of-solutions}

\end_inset

).
 However, it may happen that the algebraic multiplicity of an eigenvalue
 
\begin_inset Formula $\lambda$
\end_inset

 is larger than 1 but the geometric multiplicity is strictly smaller than
 the algebraic multiplicity.
 For example, an operator given in some basis by the matrix 
\begin_inset Formula \[
\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)\]

\end_inset

has only one eigenvector corresponding to the eigenvalue 
\begin_inset Formula $\lambda=0$
\end_inset

 of algebraic multiplicity 2.
 Note that this has nothing to do with missing real roots of algebraic equations
; this operator has only one eigenvector even if we allow complex eigenvectors.
 In this case, the operator is not diagonalizable because there are insufficient
ly many eigenvectors to build a basis.
 The theory of the Jordan canonical form explains the structure of the operator
 in this case and finds a suitable basis that contains all the eigenvectors
 and also some additional vectors (called the 
\series bold
root
\series default
 
\series bold
vectors
\series default
), such that the given operator has a particularly simple form when expressed
 through that basis.
 This form is block-diag\SpecialChar \-
onal and consists of 
\series bold
Jordan
\series default
 
\series bold
cells
\series default

\begin_inset LatexCommand \index{Jordan cell}

\end_inset

, which are square matrices such as
\begin_inset Formula \[
\left(\begin{array}{ccc}
\lambda & 1 & 0\\
0 & \lambda & 1\\
0 & 0 & \lambda\end{array}\right),\]

\end_inset

and similarly built matrices of higher dimension.
\end_layout

\begin_layout Standard
To perform the required analysis, it is convenient to consider each eigenvalue
 of a given operator separately and build the required basis gradually.
 Since the procedure is somewhat long, we will organize it by steps.
 The result of the procedure will be a construction of a basis (the 
\series bold
Jordan basis
\series default

\begin_inset LatexCommand \index{Jordan basis}

\end_inset

) in which the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has the Jordan canonical form.
\end_layout

\begin_layout Paragraph
Step 0: Set up the initial basis.
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\hat{A}\in\text{End}\, V$
\end_inset

 be a linear operator having the eigenvalues 
\begin_inset Formula $\lambda_{1}$
\end_inset

,...,
\begin_inset Formula $\lambda_{n}$
\end_inset

, and let us consider the first eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

; suppose 
\begin_inset Formula $\lambda_{1}$
\end_inset

 has algebraic multiplicity 
\begin_inset Formula $m$
\end_inset

.
 If the geometric multiplicity of 
\begin_inset Formula $\lambda_{1}$
\end_inset

 is also equal to 
\begin_inset Formula $m$
\end_inset

, we can choose a linearly independent set of 
\begin_inset Formula $m$
\end_inset

 basis eigenvectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{m}\right\} $
\end_inset

 and continue to work with the next eigenvalue 
\begin_inset Formula $\lambda_{2}$
\end_inset

.
 If the geometric multiplicity of 
\begin_inset Formula $\lambda_{1}$
\end_inset

 is less than 
\begin_inset Formula $m$
\end_inset

, we can only choose a set of 
\begin_inset Formula $r<m$
\end_inset

 basis eigenvectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r}\right\} $
\end_inset

.
\end_layout

\begin_layout Standard
In either case, we have found a set of eigenvectors with eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

 that spans the entire eigenspace.
 We can repeat Step\InsetSpace ~
0 for every eigenvalue 
\begin_inset Formula $\lambda_{i}$
\end_inset

 and obtain the spanning sets of eigenvectors.
 The resulting set of eigenvectors can be completed to a basis in 
\begin_inset Formula $V$
\end_inset

.
 At the end of Step\InsetSpace ~
0, we have a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k},\mathbf{u}_{k+1},...,\mathbf{u}_{N}\right\} $
\end_inset

, where the vectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 are eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 and the vectors 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 are chosen arbitrarily --- as long as the result is a basis in 
\begin_inset Formula $V$
\end_inset

.
 By construction, any eigenvector of 
\begin_inset Formula $\hat{A}$
\end_inset

 is a linear combination of the 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

's.
 If the eigenvectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 are sufficiently numerous as to make a basis in 
\begin_inset Formula $V$
\end_inset

 without any 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

's, the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable and its Jordan basis is the eigenbasis; the procedure
 is finished.
 We need to proceed with the next steps only in the case when the eigenvectors
 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 do not yet span the entire space 
\begin_inset Formula $V$
\end_inset

, so the Jordan basis is not yet determined.
\end_layout

\begin_layout Paragraph
Step 1: Determine a root vector.
\end_layout

\begin_layout Standard
We will now concentrate on an eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

 for which the geometric multiplicity 
\begin_inset Formula $r$
\end_inset

 is less than the algebraic multiplicity 
\begin_inset Formula $m$
\end_inset

.
 At the previous step, we have found a basis containing all the eigenvectors
 needed to span every eigenspace.
 The basis presently has the form 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{u}_{r+1},...,\mathbf{u}_{N}\right\} $
\end_inset

, where 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\,|\,1\leq i\leq r\right\} $
\end_inset

 span the eigenspace of the eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

, and 
\begin_inset Formula $\left\{ \mathbf{u}_{i}\,|\, r+1\leq i\leq N\right\} $
\end_inset

 are either eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 corresponding to other eigenvalues, or other basis vectors.
 Without loss of generality, we may assume that 
\begin_inset Formula $\lambda_{1}=0$
\end_inset

 (otherwise we need to consider temporarily the operator 
\begin_inset Formula $\hat{A}-\lambda_{1}\hat{1}_{V}$
\end_inset

, which has all the same eigenvectors as 
\begin_inset Formula $\hat{A}$
\end_inset

).
 Since the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has eigenvalue 0 with algebraic multiplicity 
\begin_inset Formula $m$
\end_inset

, the characteristic polynomial has the form 
\begin_inset Formula $Q_{\hat{A}}(\lambda)=\lambda^{m}\tilde{q}(\lambda)$
\end_inset

, where 
\begin_inset Formula $\tilde{q}(\lambda)$
\end_inset

 is some other polynomial.
 Since the coefficients of the characteristic polynomial are proportional
 to the operators 
\begin_inset Formula $\wedge^{N}\hat{A}^{k}$
\end_inset

 for 
\begin_inset Formula $1\leq k\leq N$
\end_inset

, we find that 
\begin_inset Formula \[
\wedge^{N}\hat{A}^{N-m}\neq0,\;\text{while}\;\wedge^{N}\hat{A}^{N-k}=0,\quad0\leq k<m.\]

\end_inset

In other words, we have found that several operators of the form 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-k}$
\end_inset

 vanish.
 Let us now try to obtain some information about the vectors 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 by considering the action of these operators on the 
\begin_inset Formula $N$
\end_inset

-vector 
\begin_inset Formula \[
\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{r}\wedge\mathbf{u}_{r+1}\wedge...\wedge\mathbf{u}_{N}.\]

\end_inset

The result must be zero; for instance, we have 
\begin_inset Formula \[
(\wedge^{N}\hat{A}^{N})\omega=\hat{A}\mathbf{v}_{1}\wedge...=0\]

\end_inset

 since 
\begin_inset Formula $\hat{A}\mathbf{v}_{1}=0$
\end_inset

.
 We do not obtain any new information by considering the operator 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 because the application of 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 on 
\begin_inset Formula $\omega$
\end_inset

 acts with 
\begin_inset Formula $\hat{A}$
\end_inset

 on 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

, which immediately yields zero.
 A nontrivial result can be obtained only if we do not act with 
\begin_inset Formula $\hat{A}$
\end_inset

 on 
\emph on
any
\emph default
 of the 
\begin_inset Formula $r$
\end_inset

 eigenvectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

.
 Thus, we turn to considering the operators 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-k}$
\end_inset

 with 
\begin_inset Formula $k\geq r$
\end_inset

; these operators involve sufficiently few powers of 
\begin_inset Formula $\hat{A}$
\end_inset

 so that 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-k}\omega$
\end_inset

 may avoid containing any terms 
\begin_inset Formula $\hat{A}\mathbf{v}_{i}$
\end_inset

.
\end_layout

\begin_layout Standard
The first such operator is
\begin_inset Formula \[
0{\lyxbuildrel!\above=}(\wedge^{N}\hat{A}^{N-r})\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{r}\wedge\hat{A}\mathbf{u}_{r+1}\wedge...\wedge\hat{A}\mathbf{u}_{N}.\]

\end_inset

It follows that the set 
\begin_inset Formula $\{\mathbf{v}_{1},...,\mathbf{v}_{r},\hat{A}\mathbf{u}_{r+1},...,\hat{A}\mathbf{u}_{N}\}$
\end_inset

 is linearly dependent, so there exists a vanishing linear combination
\begin_inset Formula \begin{equation}
\sum_{i=1}^{r}c_{i}\mathbf{v}_{i}+\sum_{i=r+1}^{N}c_{i}\hat{A}\mathbf{u}_{i}=0\label{eq:vanishing linear combination}\end{equation}

\end_inset

with at least some 
\begin_inset Formula $c_{i}\neq0$
\end_inset

.
 Let us define the vectors 
\begin_inset Formula \[
\tilde{\mathbf{v}}\equiv\sum_{i=1}^{r}c_{i}\mathbf{v}_{i},\quad\mathbf{x}\equiv-\sum_{i=r+1}^{N}c_{i}\mathbf{u}_{i},\]

\end_inset

so that Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:vanishing linear combination}

\end_inset

) is rewritten as 
\begin_inset Formula $\hat{A}\mathbf{x}=\tilde{\mathbf{v}}$
\end_inset

.
 Note that 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset

, for otherwise we would have 
\begin_inset Formula $\sum_{i=1}^{r}c_{i}\mathbf{v}_{i}=0$
\end_inset

, which contradicts the linear independence of the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r}\right\} $
\end_inset

.
 Further, the vector 
\begin_inset Formula $\tilde{\mathbf{v}}$
\end_inset

 cannot be equal to zero, for otherwise we would have 
\begin_inset Formula $\hat{A}\mathbf{x}=0$
\end_inset

, so there would exist an additional eigenvector 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset

 that is not a linear combination of 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

, which is impossible since (by assumption) the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r}\right\} $
\end_inset

 spans the entire subspace of all eigenvectors with eigenvalue 0.
 Therefore, 
\begin_inset Formula $\tilde{\mathbf{v}}\neq0$
\end_inset

, so at least one of the coefficients 
\begin_inset Formula $\left\{ c_{i}\,|\,1\leq i\leq r\right\} $
\end_inset

 is nonzero.
 Without loss of generality, we assume that 
\begin_inset Formula $c_{1}\neq0$
\end_inset

.
 Then we can replace 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 by 
\begin_inset Formula $\tilde{\mathbf{v}}$
\end_inset

 in the basis; the set 
\begin_inset Formula $\left\{ \tilde{\mathbf{v}},\mathbf{v}_{2},...,\mathbf{v}_{r},\mathbf{u}_{r+1},...,\mathbf{u}_{N}\right\} $
\end_inset

 is still a basis because
\begin_inset Formula \begin{align*}
\tilde{\mathbf{v}}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{r} & =(c_{1}\mathbf{v}_{1}+...)\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{r}\\
 & =c_{1}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{r}\neq0.\end{align*}

\end_inset

 Similarly, at least one of the coefficients 
\begin_inset Formula $\left\{ c_{i}\,|\, r+1\leq i\leq N\right\} $
\end_inset

 is nonzero.
 We would like to replace one of the 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

's in the basis by 
\begin_inset Formula $\mathbf{x}$
\end_inset

; it is possible to replace 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 by 
\begin_inset Formula $\mathbf{x}$
\end_inset

 as long as 
\begin_inset Formula $c_{i}\neq0$
\end_inset

.
 However, we do not wish to remove from the basis any of the eigenvectors
 corresponding to other eigenvalues; so we need to choose the index 
\begin_inset Formula $i$
\end_inset

 such that 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 is not one of the other eigenvectors and at the same time 
\begin_inset Formula $c_{i}\neq0$
\end_inset

.
 This choice is possible; for were it impossible, the vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 were a linear combination of other eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 (all having nonzero eigenvalues), so 
\begin_inset Formula $\hat{A}\mathbf{x}$
\end_inset

 is again a linear combination of those eigenvectors, which contradicts
 the equations 
\begin_inset Formula $\hat{A}\mathbf{x}=\tilde{\mathbf{v}}$
\end_inset

 and 
\begin_inset Formula $\hat{A}\tilde{\mathbf{v}}=0$
\end_inset

 because 
\begin_inset Formula $\tilde{\mathbf{v}}$
\end_inset

 is linearly independent of all other eigenvectors.
 Therefore, we can choose a vector 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 that is not an eigenvector and such that 
\begin_inset Formula $\mathbf{x}$
\end_inset

 can be replaced by 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

.
 Without loss of generality, we may assume that this vector is 
\begin_inset Formula $\mathbf{u}_{r+1}$
\end_inset

.
 The new basis, 
\begin_inset Formula $\left\{ \tilde{\mathbf{v}},\mathbf{v}_{2},...,\mathbf{v}_{r},\mathbf{x},\mathbf{u}_{r+2},...,\mathbf{u}_{N}\right\} $
\end_inset

 is still linearly independent because
\begin_inset Formula \[
\tilde{\omega}\equiv\tilde{\mathbf{v}}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{r}\wedge\mathbf{x}\wedge\mathbf{u}_{r+2}...\wedge\mathbf{u}_{N}\neq0\]

\end_inset

due to 
\begin_inset Formula $c_{r+1}\neq0$
\end_inset

.
 Renaming now 
\begin_inset Formula $\tilde{\mathbf{v}}\rightarrow\mathbf{v}_{1}$
\end_inset

, 
\begin_inset Formula $\mathbf{x}\rightarrow\mathbf{x}_{1}$
\end_inset

, and 
\begin_inset Formula $\tilde{\omega}\rightarrow\omega$
\end_inset

, we obtain a new basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},\mathbf{u}_{r+2},...,\mathbf{u}_{N}\right\} $
\end_inset

 such that 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 are eigenvectors (
\begin_inset Formula $\hat{A}\mathbf{v}_{i}=0$
\end_inset

) and 
\begin_inset Formula $\hat{A}\mathbf{x}_{1}=\mathbf{v}_{1}$
\end_inset

.
 The vector 
\begin_inset Formula $\mathbf{x}_{1}$
\end_inset

 is called a 
\series bold
root vector
\begin_inset LatexCommand \index{root vector}

\end_inset


\series default
 of order 1 corresponding to the given eigenvalue 
\begin_inset Formula $\lambda_{1}=0$
\end_inset

.
 Eventually the Jordan basis
\begin_inset LatexCommand \index{Jordan basis}

\end_inset

 will contain all the root vectors as well as all the eigenvectors for each
 eigenvalue.
 So our goal is to determine all the root vectors.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
The operator 
\begin_inset Formula $\hat{A}=\mathbf{e}_{1}\otimes\mathbf{e}_{2}^{*}$
\end_inset

 in a two-dimen\SpecialChar \-
sion\SpecialChar \-
al space has an eigenvector 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 with eigenvalue 0 and a root vector 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 (of order 1) so that 
\begin_inset Formula $\hat{A}\mathbf{e}_{2}=\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\hat{A}\mathbf{e}_{1}=0$
\end_inset

.
 The matrix representation of 
\begin_inset Formula $\hat{A}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

 is 
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right).\]

\end_inset


\end_layout

\begin_layout Paragraph
Step 2: Determine other root vectors.
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $r+1=m$
\end_inset

 then we are finished with the eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

; there are no more operators 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-k}$
\end_inset

 that vanish, and we cannot extract any more information.
 Otherwise 
\begin_inset Formula $r+1<m$
\end_inset

, and we will continue by considering the operator 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-r-1}$
\end_inset

, which vanishes as well:
\begin_inset Formula \[
0=(\wedge^{N}\hat{A}^{N-r-1})\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{r}\wedge\mathbf{x}_{1}\wedge\hat{A}\mathbf{u}_{r+2}\wedge...\wedge\hat{A}\mathbf{u}_{N}.\]

\end_inset

(Note that 
\begin_inset Formula $\mathbf{v}_{1}\wedge\hat{A}\mathbf{x}_{1}=0$
\end_inset

, so in writing 
\begin_inset Formula $(\wedge^{N}\hat{A}^{N-r-1})\omega$
\end_inset

 we omit the terms where 
\begin_inset Formula $\hat{A}$
\end_inset

 acts on 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 or on 
\begin_inset Formula $\mathbf{x}_{1}$
\end_inset

 and write only the term where the operators 
\begin_inset Formula $\hat{A}$
\end_inset

 act on the 
\begin_inset Formula $N-r-1$
\end_inset

 vectors 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

.) As before, it follows that there exists a vanishing linear combination
\begin_inset Formula \begin{equation}
\sum_{i=1}^{r}c_{i}\mathbf{v}_{i}+c_{r+1}\mathbf{x}_{1}+\sum_{i=r+2}^{N}c_{i}\hat{A}\mathbf{u}_{i}=0.\label{eq:combination 2}\end{equation}

\end_inset

We introduce the auxiliary vectors 
\begin_inset Formula \[
\tilde{\mathbf{v}}\equiv\sum_{i=1}^{r}c_{i}\mathbf{v}_{i},\quad\mathbf{x}\equiv-\sum_{i=r+2}^{N}c_{i}\mathbf{u}_{i},\]

\end_inset

and rewrite Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:combination 2}

\end_inset

) as 
\begin_inset Formula \begin{equation}
\hat{A}\mathbf{x}=c_{r+1}\mathbf{x}_{1}+\tilde{\mathbf{v}}.\label{eq:A tilde x v}\end{equation}

\end_inset

 As before, we find that 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset

.
 There are now two possibilities: either 
\begin_inset Formula $c_{r+1}=0$
\end_inset

 or 
\begin_inset Formula $c_{r+1}\neq0$
\end_inset

.
 If 
\begin_inset Formula $c_{r+1}=0$
\end_inset

 then 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is another root vector of order 1.
 As before, we show that one of the vectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 (but not 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

) may be replaced by 
\begin_inset Formula $\tilde{\mathbf{v}}$
\end_inset

, and one of the vectors 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 (but not one of the other eigenvectors or root vectors) may be replaced
 by 
\begin_inset Formula $\mathbf{x}$
\end_inset

.
 After renaming the vectors (
\begin_inset Formula $\tilde{\mathbf{v}}\rightarrow\mathbf{v}_{i}$
\end_inset

 and 
\begin_inset Formula $\mathbf{x}\rightarrow\mathbf{x}_{2}$
\end_inset

), the result is a new basis
\begin_inset Formula \begin{equation}
\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{u}_{r+3},...,\mathbf{u}_{N}\right\} ,\label{eq:Jordan basis 0}\end{equation}

\end_inset

such that 
\begin_inset Formula $\hat{A}\mathbf{x}_{1}=\mathbf{v}_{1}$
\end_inset

 and 
\begin_inset Formula $\hat{A}\mathbf{x}_{2}=\mathbf{v}_{2}$
\end_inset

.
 It is important to keep the information that 
\begin_inset Formula $\mathbf{x}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{x}_{2}$
\end_inset

 are root vectors of order 1.
\end_layout

\begin_layout Standard
The other possibility is that 
\begin_inset Formula $c_{r+1}\neq0$
\end_inset

.
 Without loss of generality, we may assume that 
\begin_inset Formula $c_{r+1}=1$
\end_inset

 (otherwise we divide Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:A tilde x v}

\end_inset

) by 
\begin_inset Formula $c_{r+1}$
\end_inset

 and redefine 
\begin_inset Formula $\mathbf{x}$
\end_inset

 and 
\begin_inset Formula $\tilde{\mathbf{v}}$
\end_inset

).
 In this case 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is a root vector of order 2; according to Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:A tilde x v}

\end_inset

), acting with 
\begin_inset Formula $\hat{A}$
\end_inset

 on 
\begin_inset Formula $\mathbf{x}$
\end_inset

 yields a root vector of order 
\begin_inset Formula $1$
\end_inset

 and a linear combination of some eigenvectors.
 We will modify the basis again in order to simplify the action of 
\begin_inset Formula $\hat{A}$
\end_inset

; namely, we redefine 
\begin_inset Formula $\tilde{\mathbf{x}}_{1}\equiv\mathbf{x}_{1}+\tilde{\mathbf{v}}$
\end_inset

 so that 
\begin_inset Formula $\hat{A}\mathbf{x}=\tilde{\mathbf{x}}_{1}$
\end_inset

.
 The new vector 
\begin_inset Formula $\tilde{\mathbf{x}}_{1}$
\end_inset

 is still a root vector of order 1 because it satisfies 
\begin_inset Formula $\hat{A}\tilde{\mathbf{x}}_{1}=\mathbf{v}_{1}$
\end_inset

, and the vector 
\begin_inset Formula $\mathbf{x}_{1}$
\end_inset

 in the basis may be replaced by 
\begin_inset Formula $\tilde{\mathbf{x}}_{1}$
\end_inset

.
 As before, one of the 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

's can be replaced by 
\begin_inset Formula $\mathbf{x}$
\end_inset

.
 Renaming 
\begin_inset Formula $\tilde{\mathbf{x}}_{1}\rightarrow\mathbf{x}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{x}\rightarrow\mathbf{x}_{2}$
\end_inset

, we obtain the basis
\begin_inset Formula \[
\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{u}_{r+3},...,\mathbf{u}_{N}\right\} ,\]

\end_inset

 where now we record that 
\begin_inset Formula $\mathbf{x}_{2}$
\end_inset

 is a root vector of order 2.
\end_layout

\begin_layout Standard
The procedure of determining the root vectors can be continued in this fashion
 until all the root vectors corresponding to the eigenvalue 0 are found.
 The end result will be a basis of the form
\begin_inset Formula \[
\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},...,\mathbf{x}_{m-r},\mathbf{u}_{m+1},...,\mathbf{u}_{N}\right\} ,\]

\end_inset

 where 
\begin_inset Formula $\{\mathbf{v}_{i}\}$
\end_inset

 are eigenvectors, 
\begin_inset Formula $\{\mathbf{x}_{i}\}$
\end_inset

 are root vectors of various orders, and 
\begin_inset Formula $\{\mathbf{u}_{i}\}$
\end_inset

 are the vectors that do not belong to this eigenvalue.
\end_layout

\begin_layout Standard
Generally, a root vector of order 
\begin_inset Formula $k$
\end_inset

 for the eigenvalue 
\begin_inset Formula $\lambda_{1}=0$
\end_inset

 is a vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 such that 
\begin_inset Formula $(\hat{A})^{k}\mathbf{x}=0$
\end_inset

.
 However, we have constructed the root vectors such that they come in 
\begin_inset Quotes eld
\end_inset

chains,
\begin_inset Quotes erd
\end_inset

 for example 
\begin_inset Formula $\hat{A}\mathbf{x}_{2}=\mathbf{x}_{1}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{x}_{1}=\mathbf{v}_{1}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{v}_{1}=0$
\end_inset

.
 Clearly, this is the simplest possible arrangement of basis vectors.
 There are at most 
\begin_inset Formula $r$
\end_inset

 chains for a given eigenvalue because each eigenvector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,r$
\end_inset

) may have an associated chain of root vectors.
 Note that the root chains for an eigenvalue 
\begin_inset Formula $\lambda\neq0$
\end_inset

 have the form 
\begin_inset Formula $\hat{A}\mathbf{v}_{1}=\lambda\mathbf{v}_{1}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{x}_{1}=\lambda\mathbf{x}_{1}+\mathbf{v}_{1}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{x}_{2}=\lambda\mathbf{x}_{2}+\mathbf{x}_{1}$
\end_inset

, etc.
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
An operator given by the matrix
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{ccc}
20 & 1 & 0\\
0 & 20 & 1\\
0 & 0 & 20\end{array}\right)\]

\end_inset

has an eigenvector 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda=20$
\end_inset

 and the root vectors 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 (of order 1) and 
\begin_inset Formula $\mathbf{e}_{3}$
\end_inset

 (of order 2) since 
\begin_inset Formula $\hat{A}\mathbf{e}_{1}=20\mathbf{e}_{1}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{e}_{2}=20\mathbf{e}_{2}+\mathbf{e}_{1}$
\end_inset

, and 
\begin_inset Formula $\hat{A}\mathbf{e}_{3}=20\mathbf{e}_{3}+\mathbf{e}_{2}$
\end_inset

.
 A tensor representation of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula \[
\hat{A}=\mathbf{e}_{1}\otimes\left(20\mathbf{e}_{1}^{*}+\mathbf{e}_{2}^{*}\right)+\mathbf{e}_{2}\otimes\left(20\mathbf{e}_{2}^{*}+\mathbf{e}_{3}^{*}\right)+20\mathbf{e}_{3}\otimes\mathbf{e}_{3}^{*}.\]

\end_inset


\begin_inset Note Note
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\begin_layout Standard
The vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

 span the Jordan cell for the eigenvalue 20.
\end_layout

\begin_layout Paragraph

\end_layout

\end_inset


\end_layout

\begin_layout Paragraph
Step 3: Proceed to other eigenvalues.
\end_layout

\begin_layout Standard
At Step 2, we determined all the root vectors for one eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

.
 The eigenvectors and the root vectors belonging to a given eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

 span a subspace called the 
\series bold
Jordan cell
\series default

\begin_inset LatexCommand \index{Jordan cell}

\end_inset

 for that eigenvalue.
 We then repeat the same analysis (Steps\InsetSpace ~
1 and 2) for another eigenvalue
 and determine the corresponding Jordan cell.
 Note that it is impossible that a root vector for one eigenvalue is at
 the same time an eigenvector or a root vector for another eigenvalue; the
 Jordan cells have zero intersection.
 During the construction, we guarantee that we are not replacing any root
 vectors or eigenvectors found for the previous eigenvalues.
 Therefore, the final result is a basis of the form 
\begin_inset Formula \begin{equation}
\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},...,\mathbf{x}_{N-r}\right\} ,\label{eq:Jordan basis}\end{equation}

\end_inset

where 
\begin_inset Formula $\{\mathbf{v}_{i}\}$
\end_inset

 are the various eigenvectors and 
\begin_inset Formula $\{\mathbf{x}_{i}\}$
\end_inset

 are the corresponding root vectors of various orders.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
The 
\series bold
Jordan basis
\series default

\begin_inset LatexCommand \index{Jordan basis}

\end_inset

 of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is a basis of the form\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Jordan basis}

\end_inset

) such that 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 are eigenvectors and 
\begin_inset Formula $\mathbf{x}_{i}$
\end_inset

 are root vectors.
 For each root vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 corresponding to an eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

 we have 
\begin_inset Formula $\hat{A}\mathbf{x}=\lambda\mathbf{x}+\mathbf{y}$
\end_inset

, where 
\begin_inset Formula $\mathbf{y}$
\end_inset

 is either an eigenvector or a root vector belonging to the same eigenvalue.
\end_layout

\begin_layout Standard
The construction in this section constitutes a proof of the following statement.
\end_layout

\begin_layout Paragraph
Theorem 1:
\end_layout

\begin_layout Standard
Any linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in a vector space over 
\begin_inset Formula $\mathbb{C}$
\end_inset

 admits a Jordan basis.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The assumption that the vector space is over 
\emph on
complex
\emph default
 numbers 
\begin_inset Formula $\mathbb{C}$
\end_inset

 is necessary in order to be sure that every polynomial has as many roots
 (counting with the algebraic multiplicity) as its degree.
 If we work in a vector space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

, the construction of the Jordan basis will be complete only for operators
 whose characteristic polynomial has only real roots.
 Otherwise we will be able to construct Jordan cells only for real eigenvalues.
\end_layout

\begin_layout Paragraph
Example 3:
\end_layout

\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 defined by the matrix
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{ccc}
0 & 1 & 0\\
0 & 0 & 1\\
0 & 0 & 0\end{array}\right)\]

\end_inset

in a basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

 can be also written in the tensor notation as
\begin_inset Formula \[
\hat{A}=\mathbf{e}_{1}\otimes\mathbf{e}_{2}^{*}+\mathbf{e}_{2}\otimes\mathbf{e}_{3}^{*}.\]

\end_inset

The characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula $Q_{\hat{A}}(\lambda)=\left(-\lambda\right)^{3}$
\end_inset

, so there is only one eigenvalue, 
\begin_inset Formula $\lambda_{1}=0$
\end_inset

.
 The algebraic multiplicity of 
\begin_inset Formula $\lambda_{1}$
\end_inset

 is 3.
 However, there is only one eigenvector, namely 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

.
 The vectors 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{3}$
\end_inset

 are root vectors since 
\begin_inset Formula $\hat{A}\mathbf{e}_{3}=\mathbf{e}_{2}$
\end_inset

 and 
\begin_inset Formula $\hat{A}\mathbf{e}_{2}=\mathbf{e}_{1}$
\end_inset

.
 Note also that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is nilpotent, 
\begin_inset Formula $\hat{A}^{3}=0$
\end_inset

.
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\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 defined by the matrix
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{ccccc}
6 & 1 & 0 & 0 & 0\\
0 & 6 & 0 & 0 & 0\\
0 & 0 & 6 & 0 & 0\\
0 & 0 & 0 & 7 & 0\\
0 & 0 & 0 & 0 & 7\end{array}\right)\]

\end_inset

 has the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}(\lambda)=\left(6-\lambda\right)^{3}\left(7-\lambda\right)^{2}$
\end_inset

 and two eigenvalues, 
\begin_inset Formula $\lambda_{1}=6$
\end_inset

 and 
\begin_inset Formula $\lambda_{2}=7$
\end_inset

.
 The algebraic multiplicity of 
\begin_inset Formula $\lambda_{1}$
\end_inset

 is 3.
 However, there are only 
\emph on
two
\emph default
 eigenvectors for the eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

, namely 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{3}$
\end_inset

.
 The vector 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 is a root vector of order 1 for the eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

 since 
\begin_inset Formula \[
\hat{A}\mathbf{e}_{2}=\left(\begin{array}{ccccc}
6 & 1 & 0 & 0 & 0\\
0 & 6 & 0 & 0 & 0\\
0 & 0 & 6 & 0 & 0\\
0 & 0 & 0 & 7 & 0\\
0 & 0 & 0 & 0 & 7\end{array}\right)\left[\begin{array}{c}
0\\
1\\
0\\
0\\
0\end{array}\right]=\left[\begin{array}{c}
1\\
6\\
0\\
0\\
0\end{array}\right]=6\mathbf{e}_{2}+\mathbf{e}_{1}.\]

\end_inset

The algebraic multiplicity of 
\begin_inset Formula $\lambda_{2}$
\end_inset

 is 2, and there are two eigenvectors for 
\begin_inset Formula $\lambda_{2}$
\end_inset

, namely 
\begin_inset Formula $\mathbf{e}_{4}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{5}$
\end_inset

.
 The vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

 span the Jordan cell for the eigenvalue 
\begin_inset Formula $\lambda_{1}$
\end_inset

, and the vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{4},\mathbf{e}_{5}\right\} $
\end_inset

 span the Jordan cell for the eigenvalue 
\begin_inset Formula $\lambda_{2}$
\end_inset

.
\begin_inset Note Note
status open

\begin_layout Standard
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\end_inset
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\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Show that root vectors of order 
\begin_inset Formula $k$
\end_inset

 (with 
\begin_inset Formula $k\geq1$
\end_inset

) belonging to eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

 are at the same time eigenvectors of the operator (
\begin_inset Formula $\hat{A}-\lambda\hat{1})^{k+1}$
\end_inset

 with eigenvalue 0.
 (This gives another constructive procedure for determining the root vectors.)
\end_layout
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Minimal polynomial
\end_layout

\begin_layout Standard
Recalling the Cayley-Hamilton theorem, we note that the characteristic polynomia
l for the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in Example\InsetSpace ~
4 in the previous subsection vanishes on 
\begin_inset Formula $\hat{A}$
\end_inset

:
\begin_inset Formula \[
(6-\hat{A})^{3}(7-\hat{A})^{2}=0.\]

\end_inset

However, there is a polynomial of a lower degree that also vanishes on 
\begin_inset Formula $\hat{A}$
\end_inset

, namely 
\begin_inset Formula $p(x)=\left(6-x\right)^{2}(7-x)$
\end_inset

.
 
\end_layout

\begin_layout Standard
Let us consider the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in Example\InsetSpace ~
3 in the previous subsection.
 Its characteristic polynomial is 
\begin_inset Formula $\left(-\lambda\right)^{3}$
\end_inset

, and it is clear that 
\begin_inset Formula $(\hat{A})^{2}\neq0$
\end_inset

 but (
\begin_inset Formula $\hat{A})^{3}=0$
\end_inset

.
 Hence there is no lower-degree polynomial 
\begin_inset Formula $p(x)$
\end_inset

 that makes 
\begin_inset Formula $\hat{A}$
\end_inset

 vanish; the minimal polynomial is 
\begin_inset Formula $\lambda^{3}$
\end_inset

.
 
\end_layout

\begin_layout Standard
Let us also consider the operator
\begin_inset Formula \[
\hat{B}=\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0\\
0 & 2 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 0\\
0 & 0 & 0 & 0 & 1\end{array}\right).\]

\end_inset

The characteristic polynomial of this operator is 
\begin_inset Formula $\left(2-\lambda\right)^{2}\left(1-\lambda\right)^{3}$
\end_inset

, but it is clear that the following simpler polynomial, 
\begin_inset Formula $p(x)=\left(2-x\right)\left(1-x\right)$
\end_inset

, also vanishes on 
\begin_inset Formula $\hat{B}$
\end_inset

.
 If we are interested in the lowest-degree polynomial that vanishes on 
\begin_inset Formula $\hat{B}$
\end_inset

, we do not need to keep higher powers of the factors 
\begin_inset Formula $\left(2-\lambda\right)$
\end_inset

 and 
\begin_inset Formula $\left(1-\lambda\right)$
\end_inset

 that appear in the characteristic polynomial.
 
\end_layout

\begin_layout Standard
We may ask: what is the polynomial 
\begin_inset Formula $p(x)$
\end_inset

 of a smallest degree such that 
\begin_inset Formula $p(\hat{A})=0$
\end_inset

? Is this polynomial unique?
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
The 
\series bold
minimal polynomial
\begin_inset LatexCommand \index{minimal polynomial}

\end_inset


\series default
 for an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is a monic polynomial 
\begin_inset Formula $p(x)$
\end_inset

 such that 
\begin_inset Formula $p(\hat{A})=0$
\end_inset

 and that no polynomial 
\begin_inset Formula $\tilde{p}(x)$
\end_inset

 of lower degree satisfies 
\begin_inset Formula $\tilde{p}(\hat{A})=0$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Suppose that the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 is given as 
\begin_inset Formula \[
Q_{\hat{A}}(\lambda)=\left(\lambda_{1}-\lambda\right)^{n_{1}}(\lambda_{2}-\lambda)^{n_{2}}...(\lambda_{s}-\lambda)^{n_{s}}.\]

\end_inset

Suppose that the Jordan canonical form of 
\begin_inset Formula $\hat{A}$
\end_inset

 includes Jordan cells for eigenvalues 
\begin_inset Formula $\lambda_{1},...,\lambda_{s}$
\end_inset

 such that the largest-order root vector for 
\begin_inset Formula $\lambda_{i}$
\end_inset

 has order 
\begin_inset Formula $r_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,s$
\end_inset

).
 Show that the polynomial of degree 
\begin_inset Formula $r_{1}+...+r_{s}$
\end_inset

 defined by
\begin_inset Formula \[
p(x)\equiv(-1)^{r_{1}+...+r_{s}}\left(\lambda_{1}-\lambda\right)^{r_{1}}...\left(\lambda_{s}-\lambda\right)^{r_{s}}\]

\end_inset

is monic and satisfies 
\begin_inset Formula $p(\hat{A})=0$
\end_inset

.
 If 
\begin_inset Formula $\tilde{p}(x)$
\end_inset

 is another polynomial of the same degree as 
\begin_inset Formula $p(x)$
\end_inset

 such that 
\begin_inset Formula $\tilde{p}(\hat{A})=0$
\end_inset

, show that 
\begin_inset Formula $\tilde{p}(x)$
\end_inset

 is proportional to 
\begin_inset Formula $p(x)$
\end_inset

.
 Show that no polynomial 
\begin_inset Formula $q(x)$
\end_inset

 of lower degree can satisfy 
\begin_inset Formula $q(\hat{A})=0$
\end_inset

.
 Hence, 
\begin_inset Formula $p(x)$
\end_inset

 is the minimal polynomial for 
\begin_inset Formula $\hat{A}$
\end_inset

.
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Hint
\emph default
: It suffices to prove these statements for a single Jordan cell.
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\begin_inset Formula $\blacksquare$
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We now formulate a criterion that shows whether a given operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable.
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\begin_layout Standard
A polynomial 
\begin_inset Formula $p(x)$
\end_inset

 of degree 
\begin_inset Formula $n$
\end_inset

 is 
\series bold
square-free
\series default

\begin_inset LatexCommand \index{square-free polynomial}

\end_inset

 if all 
\begin_inset Formula $n$
\end_inset

 roots of 
\begin_inset Formula $p(x)$
\end_inset

 have algebraic multiplicity 1, in other words, 
\begin_inset Formula \[
p(x)=c\left(x-x_{1}\right)...\left(x-x_{n}\right)\]

\end_inset

 where all 
\begin_inset Formula $x_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,n$
\end_inset

) are different.
 If a polynomial 
\begin_inset Formula \[
q(x)=c\left(x-x_{1}\right)^{s_{1}}...\left(x-x_{m}\right)^{s_{m}}\]

\end_inset

 is not square-free (i.e.\InsetSpace ~
some 
\begin_inset Formula $s_{i}\neq1$
\end_inset

), its 
\series bold
square-free reduction
\series default
 is the polynomial
\begin_inset Formula \[
\tilde{q}(x)=c\left(x-x_{1}\right)...\left(x-x_{m}\right).\]

\end_inset


\end_layout

\begin_layout Paragraph
Remark: 
\end_layout

\begin_layout Standard
In order to compute the square-free reduction of a given polynomial 
\begin_inset Formula $q(x)$
\end_inset

, one does 
\emph on
not
\emph default
 need to obtain the roots 
\begin_inset Formula $x_{i}$
\end_inset

 of 
\begin_inset Formula $q(x)$
\end_inset

.
 Instead, it suffices to consider the derivative 
\begin_inset Formula $q^{\prime}(x)$
\end_inset

 and to note that 
\begin_inset Formula $q^{\prime}(x)$
\end_inset

 and 
\begin_inset Formula $q(x)$
\end_inset

 have common factors only if 
\begin_inset Formula $q(x)$
\end_inset

 is not square-free, and moreover, the common factors are exactly the factors
 that we need to remove from 
\begin_inset Formula $q(x)$
\end_inset

 to make it square-free.
 Therefore, one computes the greatest common divisor of 
\begin_inset Formula $q(x)$
\end_inset

 and 
\begin_inset Formula $q^{\prime}(x)$
\end_inset

 using the Euclidean algorithm and then divides 
\begin_inset Formula $q(x)$
\end_inset

 by 
\begin_inset Formula $\text{gcd}\left(q,q^{\prime}\right)$
\end_inset

 to obtain the square-free reduction 
\begin_inset Formula $\tilde{q}(x)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Theorem\InsetSpace ~
2:
\end_layout

\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable
\begin_inset LatexCommand \index{diagonalizable operator}

\end_inset

 if and only if 
\begin_inset Formula $p(\hat{A})=0$
\end_inset

 where 
\begin_inset Formula $p(\lambda)$
\end_inset

 is the square-free reduction of the characteristic polynomial 
\begin_inset Formula $Q_{\hat{A}}(\lambda)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Proof:
\end_layout

\begin_layout Standard
The Jordan canonical form of 
\begin_inset Formula $\hat{A}$
\end_inset

 may contain several Jordan cells corresponding to different eigenvalues.
 Suppose that the set of the eigenvalues of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula $\left\{ \lambda_{i}\,|\, i=1,...,n\right\} $
\end_inset

, where 
\begin_inset Formula $\lambda_{i}$
\end_inset

 are all different and have algebraic multiplicities 
\begin_inset Formula $s_{i}$
\end_inset

; then the characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 is
\begin_inset Formula \[
Q_{\hat{A}}(x)=\left(\lambda_{1}-x\right)^{s_{1}}...\left(\lambda_{n}-x\right)^{s_{n}},\]

\end_inset

and its square-free reduction is the polynomial
\begin_inset Formula \[
p(x)=\left(\lambda_{1}-x\right)...\left(\lambda_{n}-x\right).\]

\end_inset

If the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable, its eigenvectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\,|\, j=1,...,N\right\} $
\end_inset

 are a basis in 
\begin_inset Formula $V$
\end_inset

.
 Then 
\begin_inset Formula $p(\hat{A})\mathbf{v}_{j}=0$
\end_inset

 for all 
\begin_inset Formula $j=1,...,N$
\end_inset

.
 It follows that 
\begin_inset Formula $p(\hat{A})=\hat{0}$
\end_inset

 as an operator.
 If the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is not diagonalizable, there exists at least one nontrivial Jordan cell
 with root vectors.
 Without loss of generality, let us assume that this Jordan cell corresponds
 to 
\begin_inset Formula $\lambda_{1}$
\end_inset

.
 Then there exists a root vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{x}=\lambda_{1}\mathbf{x}+\mathbf{v}_{1}$
\end_inset

 while 
\begin_inset Formula $\hat{A}\mathbf{v}_{1}=\lambda_{1}\mathbf{v}_{1}$
\end_inset

.
 Then we can compute 
\begin_inset Formula $(\lambda_{1}-\hat{A})\mathbf{x}=-\mathbf{v}_{1}$
\end_inset

 and 
\begin_inset Formula \begin{align*}
p(\hat{A})\mathbf{x} & =(\lambda_{1}-\hat{A})...(\lambda_{n}-\hat{A})\mathbf{x}\\
 & \,{\lyxbuildrel(1)\above=}\,(\lambda_{n}-\hat{A})...(\lambda_{2}-\hat{A})(\lambda_{1}-\hat{A})\mathbf{x}\\
 & \,{\lyxbuildrel(2)\above=}\,-\left(\lambda_{n}-\lambda_{1}\right)...\left(\lambda_{2}-\lambda_{1}\right)\mathbf{v}_{1}\neq0,\end{align*}

\end_inset

where in 
\begin_inset Formula ${\lyxbuildrel(1)\above=}$
\end_inset

 we used the fact that operators 
\begin_inset Formula $(\lambda_{i}-\hat{A})$
\end_inset

 all commute with each other, and in 
\begin_inset Formula ${\lyxbuildrel(2)\above=}$
\end_inset

 we used the property of an eigenvector, 
\begin_inset Formula $q(\hat{A})\mathbf{v}_{1}=q(\lambda_{1})\mathbf{v}_{1}$
\end_inset

 for any polynomial 
\begin_inset Formula $q(x)$
\end_inset

.
 Thus we have shown that 
\begin_inset Formula $p(\hat{A})$
\end_inset

 gives a nonzero vector on 
\begin_inset Formula $\mathbf{x}$
\end_inset

, which means that 
\begin_inset Formula $p(\hat{A})$
\end_inset

 is a nonzero operator.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
a) It is given that the characteristic polynomial of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 (in a complex vector space) is 
\begin_inset Formula $\lambda^{3}+1$
\end_inset

.
 Prove that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is invertible and diagonalizable.
 
\end_layout

\begin_layout Standard
b) It is given that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies the equation 
\begin_inset Formula $\hat{A}^{3}=\hat{A}^{2}$
\end_inset

.
 Is 
\begin_inset Formula $\hat{A}$
\end_inset

 invertible? Is 
\begin_inset Formula $\hat{A}$
\end_inset

 diagonalizable? (If not, give explicit counterexamples, e.g., in a 2-dimen\SpecialChar \-
sion\SpecialChar \-
al
 space.) 
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
A given operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has a Jordan cell 
\begin_inset Formula $\text{Span}\,\{\mathbf{v}_{1},...,\mathbf{v}_{k}\}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

.
 Let 
\begin_inset Formula \[
p(x)=p_{0}+p_{1}x+...+p_{s}x^{s}\]

\end_inset

 be an arbitrary, fixed polynomial, and consider the operator 
\begin_inset Formula $\hat{B}\equiv p(\hat{A})$
\end_inset

.
 Show that 
\begin_inset Formula $\text{Span}\,\{\mathbf{v}_{1},...,\mathbf{v}_{k}\}$
\end_inset

 is a subspace of 
\emph on
some
\emph default
 Jordan cell of the operator 
\begin_inset Formula $\hat{B}$
\end_inset

 (although the eigenvalue of that cell may be different).
 Show that the orders of the root vectors of 
\begin_inset Formula $\hat{B}$
\end_inset

 are not larger than those of 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Consider for simplicity 
\begin_inset Formula $\lambda=0$
\end_inset

.
 The vectors 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 belong to the eigenvalue 
\begin_inset Formula $p_{0}\equiv p(0)$
\end_inset

 of the operator 
\begin_inset Formula $\hat{B}$
\end_inset

.
 The statement that 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 are within a Jordan cell for 
\begin_inset Formula $\hat{B}$
\end_inset

 is equivalent to 
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge(\hat{B}-p_{0}\hat{1})\mathbf{v}_{i}\wedge...\wedge\mathbf{v}_{k}=0\quad\text{for}\: i=1,...,k.\]

\end_inset

If 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 is an eigenvector of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda=0$
\end_inset

 then it is also an eigenvector of 
\begin_inset Formula $\hat{B}$
\end_inset

 with eigenvalue 
\begin_inset Formula $p_{0}$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is a root vector of order 1 such that 
\begin_inset Formula $\hat{A}\mathbf{x}=\mathbf{v}_{1}$
\end_inset

 then 
\begin_inset Formula $\hat{B}\mathbf{x}=p_{0}\mathbf{x}+p_{1}\mathbf{v}$
\end_inset

, which means that 
\begin_inset Formula $\mathbf{x}$
\end_inset

 could be a root vector of order 1 or an eigenvector of 
\begin_inset Formula $\hat{B}$
\end_inset

 depending on whether 
\begin_inset Formula $p_{1}=0$
\end_inset

.
 Similarly, one can show that the root chains of 
\begin_inset Formula $\hat{B}$
\end_inset

 are sub-chains of the root chains 
\begin_inset Formula $\hat{A}$
\end_inset

 (i.e.\InsetSpace ~
the root chains can only get shorter).
\end_layout

\begin_layout Paragraph
Example 5:
\end_layout

\begin_layout Standard
A nonzero nilpotent operator 
\begin_inset Formula $\hat{A}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}^{1000}=0$
\end_inset

 may have root vectors of orders up to 999.
 The operator 
\begin_inset Formula $\hat{B}\equiv\hat{A}^{500}$
\end_inset

 satisfies 
\begin_inset Formula $\hat{B}^{2}=0$
\end_inset

 and thus can have root vectors only up to order 1.
 More precisely, the root vectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 of orders 1 through 499 are eigenvectors of 
\begin_inset Formula $\hat{B}$
\end_inset

, while root vectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 of orders 500 through 999 are root vectors of 
\begin_inset Formula $\hat{B}$
\end_inset

 of order 1.
 However, the Jordan cells of these operators are the same (the entire space
 
\begin_inset Formula $V$
\end_inset

 is a Jordan cell with eigenvalue 0).
 Also, 
\begin_inset Formula $\hat{A}$
\end_inset

 is not expressible as a polynomial in 
\begin_inset Formula $\hat{B}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Exercise\InsetSpace ~
3 gives a 
\emph on
necessary
\emph default
 condition for being able to express an operator 
\begin_inset Formula $\hat{B}$
\end_inset

 as a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

: It is necessary to determine whether the Jordan cells of 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 are 
\begin_inset Quotes eld
\end_inset

compatible
\begin_inset Quotes erd
\end_inset

 in the sense of Exercise\InsetSpace ~
3.
 If 
\begin_inset Formula $\hat{A}$
\end_inset

's Jordan cells cannot be embedded as subspaces within 
\begin_inset Formula $\hat{B}$
\end_inset

's Jordan cells, or if 
\begin_inset Formula $\hat{B}$
\end_inset

 has a root chain that is not a sub-chain of some root chain of 
\begin_inset Formula $\hat{A}$
\end_inset

, then 
\begin_inset Formula $\hat{B}$
\end_inset

 cannot be a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

.
 
\end_layout

\begin_layout Standard
Determining a 
\emph on
sufficient
\emph default
 condition for the existence of 
\begin_inset Formula $p(x)$
\end_inset

 for arbitrary 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 is a complicated task, and I do not consider it here.
\begin_inset Note Note
status collapsed

\begin_layout Standard
Otherwise 
\begin_inset Formula $\hat{B}$
\end_inset

 can be expressed as a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 (however, 
\begin_inset Formula $\hat{A}$
\end_inset

 is not necessarily expressible as a polynomial in 
\begin_inset Formula $\hat{B}$
\end_inset

).
 Finding such a polynomial in practice is a more involved task.
\end_layout

\end_inset

 The following exercise shows how to do this in a particularly simple case.
\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
Two operators 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 are diagonalizable in the same eigenbasis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 with eigenvalues 
\begin_inset Formula $\lambda_{1}$
\end_inset

, ..., 
\begin_inset Formula $\lambda_{n}$
\end_inset

 and 
\begin_inset Formula $\mu_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mu_{n}$
\end_inset

 that all have multiplicity 1.
 Show that 
\begin_inset Formula $\hat{B}=p(\hat{A})$
\end_inset

 for some polynomial 
\begin_inset Formula $p(x)$
\end_inset

 of degree at most 
\begin_inset Formula $N-1$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: We need to map the eigenvalues 
\begin_inset Formula $\left\{ \lambda_{j}\right\} $
\end_inset

 into 
\begin_inset Formula $\left\{ \mu_{j}\right\} $
\end_inset

.
 Choose the polynomial 
\begin_inset Formula $p(x)$
\end_inset

 that maps 
\begin_inset Formula $p(\lambda_{j})=\mu_{j}$
\end_inset

 for 
\begin_inset Formula $j=1,...,N$
\end_inset

.
 Such a polynomial surely exists and is unique if we restrict to polynomials
 of degree not more than 
\begin_inset Formula $N-1$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Section
* Construction of projectors onto Jordan cells
\end_layout

\begin_layout Standard
We now consider the problem of determining the Jordan cells.
 It turns out that we can write a general expression for a projector onto
 a single Jordan cell of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The projector is expressed as a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 with known coefficients.
 (Note that 
\begin_inset Formula $\hat{A}$
\end_inset

 may or may not be diagonalizable.) 
\end_layout

\begin_layout Standard
The required projector 
\begin_inset Formula $\hat{P}$
\end_inset

 can be viewed as an operator that has the same Jordan cells as 
\begin_inset Formula $\hat{A}$
\end_inset

 but the eigenvalues are 
\begin_inset Formula $1$
\end_inset

 for a single chosen Jordan cell and 
\begin_inset Formula $0$
\end_inset

 for all other Jordan cells.
 One way to construct the projector 
\begin_inset Formula $\hat{P}$
\end_inset

 is to look for a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 such that the eigenvalues and the Jordan cells are mapped as desired.
 Some examples of this were discussed at the end of the previous subsection;
 however, the construction required a complete knowledge of the Jordan canonical
 form of 
\begin_inset Formula $\hat{A}$
\end_inset

 with all eigenvectors and root vectors.
 We will consider a different method of computing the projector 
\begin_inset Formula $\hat{P}$
\end_inset

.
 With this method, we only need to know the characteristic polynomial of
 
\begin_inset Formula $\hat{A}$
\end_inset

, a single eigenvalue, and the 
\emph on
algebraic
\emph default
 multiplicity of the chosen eigenvalue.
 We will develop this method beginning with the simplest case.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
If the characteristic polynomial 
\begin_inset Formula $Q\left(\lambda\right)$
\end_inset

 of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has a zero 
\begin_inset Formula $\lambda=\lambda_{0}$
\end_inset

 of multiplicity 1, i.e.\InsetSpace ~
if 
\begin_inset Formula $Q(\lambda_{0})=0$
\end_inset

 and 
\begin_inset Formula $Q'(\lambda_{0})\neq0$
\end_inset

, then the operator 
\begin_inset Formula $\hat{P}_{\lambda_{0}}$
\end_inset

 defined by
\begin_inset Formula \[
\hat{P}_{\lambda_{0}}\equiv-\frac{1}{Q^{\prime}(\lambda_{0})}{\big[{\wedge^{N-1}(\hat{A}-\lambda_{0}\hat{1}_{V})^{N-1}}\big]}^{\wedge T}\]

\end_inset

is a projector
\begin_inset LatexCommand \index{projector}

\end_inset

 onto the one-dimen\SpecialChar \-
sion\SpecialChar \-
al eigenspace of the eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

.
 The prefactor can be computed also as 
\begin_inset Formula $-Q^{\prime}(\lambda_{0})=\wedge^{N}(\hat{A}-\lambda_{0}\hat{1}_{V})^{N-1}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We denote 
\begin_inset Formula $\hat{P}\equiv\hat{P}_{\lambda_{0}}$
\end_inset

 for brevity.
 We will first show that for any vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

, the vector 
\begin_inset Formula $\hat{P}\mathbf{x}$
\end_inset

 is an eigenvector of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

, i.e.\InsetSpace ~
that the image of 
\begin_inset Formula $\hat{P}$
\end_inset

 is a subspace of the 
\begin_inset Formula $\lambda_{0}$
\end_inset

-eigenspace.
 Then it will be sufficient to show that 
\begin_inset Formula $\hat{P}\mathbf{v}_{0}=\mathbf{v}_{0}$
\end_inset

 for an eigenvector 
\begin_inset Formula $\mathbf{v}_{0}$
\end_inset

; it will follow that 
\begin_inset Formula $\hat{P}\hat{P}=\hat{P}$
\end_inset

 and so it will be proved that 
\begin_inset Formula $\hat{P}$
\end_inset

 is a projector onto the eigenspace.
\end_layout

\begin_layout Standard
Without loss of generality, we may set 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

 (or else we consider the operator 
\begin_inset Formula $\hat{A}-\lambda_{0}\hat{1}_{V}$
\end_inset

 instead of 
\begin_inset Formula $\hat{A}$
\end_inset

).
 Then we have 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

, while the number 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-1}$
\end_inset

 is equal to the last-but-one coefficient in the characteristic polynomial,
 which is the same as 
\begin_inset Formula $-Q^{\prime}(\lambda_{0})$
\end_inset

 and is nonzero.
 Thus we set
\begin_inset Formula \[
\hat{P}=\frac{1}{\wedge^{N}\hat{A}^{N-1}}\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}=\frac{1}{\wedge^{N}\hat{A}^{N-1}}\tilde{\hat{A}}\]

\end_inset

and note that by Lemma\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset


\begin_inset Formula \[
\hat{P}\hat{A}=\frac{1}{\wedge^{N}\hat{A}^{N-1}}(\det\hat{A})\hat{1}_{V}=\hat{0}_{V}.\]

\end_inset

Since 
\begin_inset Formula $\hat{P}$
\end_inset

 is a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

, we have 
\begin_inset Formula $\hat{P}\hat{A}=\hat{A}\hat{P}=0$
\end_inset

.
 Therefore 
\begin_inset Formula $\hat{A}(\hat{P}\mathbf{x})=0$
\end_inset

 for all 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

, so 
\begin_inset Formula $\textrm{im}\hat{P}$
\end_inset

 is indeed a subspace of the eigenspace of the eigenvalue 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

.
 
\end_layout

\begin_layout Standard
It remains to show that 
\begin_inset Formula $\hat{P}\mathbf{v}_{0}=\mathbf{v}_{0}$
\end_inset

 for an eigenvector 
\begin_inset Formula $\mathbf{v}_{0}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}_{0}=0$
\end_inset

.
 This is verified by a calculation: We use Lemma\InsetSpace ~
1 in Sec.\InsetSpace ~
\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

, which is the identity
\begin_inset Formula \[
\big({\wedge^{N-1}\hat{A}^{N-n}}\big)^{\wedge T}\hat{A}+\big({\wedge^{N-1}\hat{A}^{N-n+1}}\big)^{\wedge T}=(\wedge^{N}\hat{A}^{N-n+1})\hat{1}_{V}\]

\end_inset

valid for all 
\begin_inset Formula $n=1$
\end_inset

, ..., 
\begin_inset Formula $N$
\end_inset

, and apply both sides to the vector 
\begin_inset Formula $\mathbf{v}_{0}$
\end_inset

 with 
\begin_inset Formula $n=2$
\end_inset

:
\begin_inset Formula \[
\big({\wedge^{N-1}\hat{A}^{N-2}}\big)^{\wedge T}\hat{A}\mathbf{v}_{0}+\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\mathbf{v}_{0}=(\wedge^{N}\hat{A}^{N-1})\mathbf{v}_{0},\]

\end_inset

which yields the required formula, 
\begin_inset Formula \[
\frac{\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\mathbf{v}_{0}}{\wedge^{N}\hat{A}^{N-1}}=\mathbf{v}_{0},\]

\end_inset

since 
\begin_inset Formula $\hat{A}\mathbf{v}_{0}=0$
\end_inset

.
 
\begin_inset Note Note
status collapsed

\begin_layout Standard
Suppose 
\begin_inset Formula $\left\{ \mathbf{v}_{0},\mathbf{e}_{1},...,\mathbf{e}_{N-1}\right\} $
\end_inset

 is any basis containing 
\begin_inset Formula $\mathbf{v}_{0}$
\end_inset

, and let us determine the components of the vector 
\begin_inset Formula $\tilde{\hat{A}}\mathbf{v}_{0}$
\end_inset

 in this basis,
\begin_inset Formula \[
\tilde{\hat{A}}\mathbf{v}_{0}=c_{0}\mathbf{v}_{0}+\sum_{i=1}^{N-1}c_{i}\mathbf{e}_{i}.\]

\end_inset

 The coefficient 
\begin_inset Formula $c_{0}$
\end_inset

 is found by calculating
\begin_inset Formula \begin{align*}
\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\wedge c_{0}\mathbf{v}_{0} & =\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\wedge\tilde{\hat{A}}\mathbf{v}_{0}\\
 & =\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\wedge\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\mathbf{v}_{0}\\
 & =\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{N-1}\wedge\mathbf{v}_{0}\\
 & =\wedge^{N}\hat{A}^{N-1}(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\wedge\mathbf{v}_{0}).\end{align*}

\end_inset

The last line is obtained since 
\begin_inset Formula $\hat{A}\mathbf{v}_{0}=0$
\end_inset

 and thus 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-1}$
\end_inset

 acting on the basis tensor 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\wedge\mathbf{v}_{0}$
\end_inset

 produces only one nonzero term, namely 
\begin_inset Formula $\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{N-1}\wedge\mathbf{v}_{0}$
\end_inset

.
 Therefore 
\begin_inset Formula $c_{0}=\wedge^{N}\hat{A}^{N-1}$
\end_inset

.
 Note that the number 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-1}$
\end_inset

 is equal to minus the last-but-one coefficient in the characteristic polynomial
,
\begin_inset Formula \[
Q_{\hat{A}}(\lambda)=\left(-\lambda\right)^{N}+...-(\wedge^{N}\hat{A}^{N-1})\lambda+(\wedge^{N}\hat{A}^{N}).\]

\end_inset

In our case, 
\begin_inset Formula $\lambda=\lambda_{0}=0$
\end_inset

 is a root of multiplicity 1, hence we must have 
\begin_inset Formula $\wedge^{N}\hat{A}^{N-1}\neq0$
\end_inset

 and hence 
\begin_inset Formula \[
\wedge^{N}\hat{A}^{N-1}=-Q^{\prime}(\lambda_{0}).\]

\end_inset


\end_layout

\begin_layout Standard
The coefficients 
\begin_inset Formula $c_{i}$
\end_inset

, 
\begin_inset Formula $i=1,...,N-1$
\end_inset

 are all equal to zero: For example,
\begin_inset Formula \begin{align*}
\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N-1}\wedge\mathbf{v}_{0}\wedge c_{1}\mathbf{e}_{1} & =\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N-1}\wedge\mathbf{v}_{0}\wedge\tilde{\hat{A}}\mathbf{e}_{1}\\
 & =\hat{A}\mathbf{e}_{2}\wedge...\wedge\hat{A}\mathbf{e}_{N-1}\wedge\hat{A}\mathbf{v}_{0}\wedge\mathbf{e}_{1}=0.\end{align*}

\end_inset

It follows that 
\series bold

\begin_inset Formula \[
\tilde{\hat{A}}\mathbf{v}_{0}=c_{0}\mathbf{v}_{0}=(\wedge^{N}\hat{A}^{N-1})\mathbf{v}_{0}=-Q^{\prime}(\lambda_{0})\mathbf{v}_{0}.\]

\end_inset


\end_layout

\end_inset

Therefore, 
\begin_inset Formula $\hat{P}\mathbf{v}_{0}=\mathbf{v}_{0}$
\end_inset

 as required.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The projector 
\begin_inset Formula $\hat{P}_{\lambda_{0}}$
\end_inset

 is a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 with coefficients that are known if the characteristic polynomial 
\begin_inset Formula $Q(\lambda)$
\end_inset

 is known.
 The quantity 
\begin_inset Formula $Q'(\lambda_{0})$
\end_inset

 is also an algebraically constructed object that can be calculated without
 taking derivatives.
 More precisely, the following formula holds.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}$
\end_inset

 is any operator in 
\begin_inset Formula $V$
\end_inset

, prove that
\begin_inset Formula \begin{align}
\left(-1\right)^{k}\frac{\partial^{k}}{\partial\lambda^{k}}Q_{\hat{A}}\left(\lambda\right) & \equiv\left(-1\right)^{k}\frac{\partial^{k}}{\partial\lambda^{k}}\wedge^{N}(\hat{A}-\lambda\hat{1}_{V})^{N}\nonumber \\
 & =k!\wedge^{N}(\hat{A}-\lambda\hat{1}_{V})^{N-k}.\label{eq:Q prime formula}\end{align}

\end_inset


\end_layout

\begin_layout Subparagraph
Solution:
\end_layout

\begin_layout Standard
An easy calculation.
 For example, with 
\begin_inset Formula $k=2$
\end_inset

 and 
\begin_inset Formula $N=2$
\end_inset

,
\begin_inset Formula \begin{align*}
\frac{\partial^{2}}{\partial\lambda^{2}}\wedge^{2}(\hat{A}-\lambda\hat{1}_{V})^{2}\mathbf{u}\wedge\mathbf{v} & =\frac{\partial^{2}}{\partial\lambda^{2}}\left[(\hat{A}-\lambda\hat{1}_{V})\mathbf{u}\wedge(\hat{A}-\lambda\hat{1}_{V})\mathbf{v}\right]\\
 & =2\mathbf{u}\wedge\mathbf{v}.\end{align*}

\end_inset

The formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:Q prime formula}

\end_inset

) shows that the derivatives of the characteristic polynomial are algebraically
 defined quantities with a polynomial dependence on the operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
We illustrate this construction of the projector in a two-dimen\SpecialChar \-
sion\SpecialChar \-
al space
 for simplicity.
 Let 
\begin_inset Formula $V$
\end_inset

 be a space of polynomials in 
\begin_inset Formula $x$
\end_inset

 of degree at most 1, i.e.\InsetSpace ~
polynomials of the form 
\begin_inset Formula $\alpha+\beta x$
\end_inset

 with 
\begin_inset Formula $\alpha,\beta\in\mathbb{C}$
\end_inset

, and consider the linear operator 
\begin_inset Formula $\hat{A}=x\frac{d}{dx}$
\end_inset

 in this space.
 The basis in 
\begin_inset Formula $V$
\end_inset

 is 
\begin_inset Formula $\{\underbar{1},\underbar{x}\}$
\end_inset

, where we use an underbar to distinguish the 
\emph on
polynomials
\emph default
 
\begin_inset Formula $\underbar{1}$
\end_inset

 and 
\begin_inset Formula $\underbar{x}$
\end_inset

 from 
\emph on
numbers
\emph default
 such as 1.
 We first determine the characteristic polynomial,
\begin_inset Formula \[
Q_{\hat{A}}(\lambda)=\det(\hat{A}-\lambda\hat{1})=\frac{(\hat{A}-\lambda)\underbar{1}\wedge(\hat{A}-\lambda)\underbar{x}}{\underbar{1}\wedge\underbar{x}}=-\lambda(1-\lambda).\]

\end_inset

Let us determine the projector onto the eigenspace of 
\begin_inset Formula $\lambda=0$
\end_inset

.
 We have 
\begin_inset Formula $\wedge^{2}\hat{A}^{1}=-Q^{\prime}(0)=1$
\end_inset

 and 
\begin_inset Formula \[
\hat{P}_{0}=-\frac{1}{Q^{\prime}(0)}\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T}=(\wedge^{2}\hat{A}^{1})\hat{1}-\hat{A}=\hat{1}-x\frac{d}{dx}.\]

\end_inset

Since 
\begin_inset Formula $\hat{P}_{0}\underbar{1}=\underbar{1}$
\end_inset

 while 
\begin_inset Formula $\hat{P}_{0}\underbar{x}=0$
\end_inset

, the image of 
\begin_inset Formula $\hat{P}$
\end_inset

 is the subspace spanned by 
\begin_inset Formula $\underbar{1}$
\end_inset

.
 Hence, the eigenspace of 
\begin_inset Formula $\lambda=0$
\end_inset

 is 
\begin_inset Formula $\text{Span}\{\underbar{1}\}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
What if the eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

 has an algebraic multiplicity larger than 1? Let us first consider the
 easier case when the geometric multiplicity is equal to the algebraic multiplic
ity.
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\lambda_{0}$
\end_inset

 is an eigenvalue of both geometric and algebraic multiplicity 
\begin_inset Formula $n$
\end_inset

 then the operator 
\begin_inset Formula $\hat{P}_{\lambda_{0}}^{(n)}$
\end_inset

 defined by
\begin_inset Formula \begin{equation}
\hat{P}_{\lambda_{0}}^{(n)}\equiv{\big[{\wedge^{N}\hat{A}^{N-n}}\big]}^{-1}{\big[{\wedge^{N-1}(\hat{A}-\lambda_{0}\hat{1}_{V})^{N-n}}\big]}^{\wedge T}\label{eq:P lambda n}\end{equation}

\end_inset

is a projector onto the subspace of eigenvectors with eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
As in the proof of Statement\InsetSpace ~
1, we first show that the image 
\begin_inset Formula $(\text{im}\,\hat{P}_{\lambda_{0}}^{(n)})$
\end_inset

 is a subspace of the 
\begin_inset Formula $\lambda_{0}$
\end_inset

-eigenspace of 
\begin_inset Formula $\hat{A}$
\end_inset

, and then show that any eigenvector 
\begin_inset Formula $\mathbf{v}_{0}$
\end_inset

 of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

 satisfies 
\begin_inset Formula $\hat{P}_{\lambda_{0}}^{(n)}\mathbf{v}_{0}=\mathbf{v}_{0}$
\end_inset

.
 Let us write 
\begin_inset Formula $\hat{P}\equiv\hat{P}_{\lambda_{0}}^{(n)}$
\end_inset

 for brevity.
\end_layout

\begin_layout Standard
We first need to show that 
\begin_inset Formula $(\hat{A}-\lambda_{0}\hat{1})\hat{P}=0$
\end_inset

.
 Since by assumption 
\begin_inset Formula $\lambda_{0}$
\end_inset

 has algebraic multiplicity 
\begin_inset Formula $n$
\end_inset

, the characteristic polynomial is of the form 
\begin_inset Formula $Q_{\hat{A}}(\lambda)=\left(\lambda_{0}-\lambda\right)^{n}p(\lambda)$
\end_inset

, where 
\begin_inset Formula $p(\lambda)$
\end_inset

 is another polynomial such that 
\begin_inset Formula $p(\lambda_{0})\neq0$
\end_inset

.
 Without loss of generality we set 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

.
 With 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

, the factor 
\begin_inset Formula $\left(-\lambda^{n}\right)$
\end_inset

 in the characteristic polynomial means that many of its coefficients 
\begin_inset Formula $q_{k}\equiv\wedge^{N}\hat{A}^{N-k}$
\end_inset

 are equal to zero: 
\begin_inset Formula $q_{k}=0$
\end_inset

 for 
\begin_inset Formula $k=0$
\end_inset

, ..., 
\begin_inset Formula $n-1$
\end_inset

 but 
\begin_inset Formula $q_{n}\neq0$
\end_inset

.
 (Thus the denominator in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:P lambda n}

\end_inset

) is nonzero.) 
\end_layout

\begin_layout Standard
By Lemma\InsetSpace ~
1 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:The-algebraic-complement}

\end_inset

, for every 
\begin_inset Formula $k=1$
\end_inset

, ..., 
\begin_inset Formula $N$
\end_inset

 we have the identity
\begin_inset Formula \[
\big({\wedge^{N-1}\hat{A}^{N-k}}\big)^{\wedge T}\hat{A}+\big({\wedge^{N-1}\hat{A}^{N-k+1}}\big)^{\wedge T}=(\wedge^{N}\hat{A}^{N-k+1})\hat{1}_{V}.\]

\end_inset

We can rewrite this as
\begin_inset Formula \begin{equation}
\hat{A}_{(k)}\hat{A}+\hat{A}_{(k-1)}=q_{k-1}\hat{1},\label{eq:A identity}\end{equation}

\end_inset

where we denoted, as before,
\begin_inset Formula \[
\hat{A}_{(k)}\equiv\big({\wedge^{N-1}\hat{A}^{N-k}}\big)^{\wedge T}.\]

\end_inset

Setting 
\begin_inset Formula $k=n$
\end_inset

, we find
\begin_inset Formula \[
\hat{A}_{(n)}\hat{A}=q_{n}\hat{P}^{(n)}\hat{A}=0.\]

\end_inset

Since 
\begin_inset Formula $q_{n}\neq0$
\end_inset

, we find 
\begin_inset Formula $\hat{P}\hat{A}=0$
\end_inset

.
\begin_inset Note Note
status collapsed

\begin_layout Standard
By assumption, there exists a basis of the form 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

 where 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 are all eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

.
 Acting with the operator 
\begin_inset Formula $\wedge^{N-1}\hat{A}^{N-n+1}$
\end_inset

 on the exterior product of all vectors from this basis, we find
\begin_inset Formula \[
\wedge^{N-1}\hat{A}^{N-n+1}(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\wedge\mathbf{e}_{n+1}\wedge...\wedge\mathbf{e}_{N})=0\]

\end_inset

 since at least one operator 
\begin_inset Formula $\hat{A}$
\end_inset

 must act on some 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

, which yields zero.
 Therefore
\begin_inset Formula \[
\big({\wedge^{N-1}\hat{A}^{N-n}}\big)^{\wedge T}\hat{A}=0.\]

\end_inset


\end_layout

\end_inset

 Since 
\begin_inset Formula $\hat{P}$
\end_inset

 is a polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

, it commutes with 
\begin_inset Formula $\hat{A}$
\end_inset

, so 
\begin_inset Formula $\hat{P}\hat{A}=\hat{A}\hat{P}=0$
\end_inset

.
 Hence the image of 
\begin_inset Formula $\hat{P}$
\end_inset

 is a subspace of the eigenspace of 
\begin_inset Formula $\hat{A}$
\end_inset

 with 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

.
\end_layout

\begin_layout Standard
Now it remains to show that all 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

's are eigenvectors of 
\begin_inset Formula $\hat{P}$
\end_inset

 with eigenvalue 1.
 We set 
\begin_inset Formula $k=n+1$
\end_inset

 in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:A identity}

\end_inset

) and obtain
\begin_inset Formula \[
\hat{A}_{(n+1)}\hat{A}\mathbf{v}_{i}+\hat{A}_{(n)}\mathbf{v}_{i}=q_{n}\mathbf{v}_{i}.\]

\end_inset

Since 
\begin_inset Formula $\hat{A}\mathbf{v}_{i}=0$
\end_inset

, it follows that 
\begin_inset Formula $\hat{A}_{(n)}\mathbf{v}_{i}=q_{n}\mathbf{v}_{i}$
\end_inset

.
 
\begin_inset Note Note
status collapsed

\begin_layout Standard
Let us prove that 
\begin_inset Formula $\hat{P}\mathbf{v}_{1}=\mathbf{v}_{1}$
\end_inset

; the proof for every other eigenvector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 will be the same.
\end_layout

\begin_layout Standard
Consider the decomposition of 
\begin_inset Formula $\hat{P}\mathbf{v}_{1}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

:
\begin_inset Formula \[
\hat{P}\mathbf{v}_{1}=\sum_{i=1}^{n}c_{i}\mathbf{v}_{i}+\sum_{i=n+1}^{N}c_{i}\mathbf{e}_{i}.\]

\end_inset

We will now determine the coefficients 
\begin_inset Formula $c_{i}$
\end_inset

.
 Let us denote for brevity 
\begin_inset Formula $q\equiv\big[{\wedge^{N}\hat{A}^{N-n}}\big]^{-1}$
\end_inset

.
 The coefficient 
\begin_inset Formula $c_{1}$
\end_inset

 can be determined as follows,
\begin_inset Formula \begin{align*}
c_{1}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{e}_{N} & =\hat{P}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{e}_{N}\\
 & =q\big({\wedge^{N-1}\hat{A}^{N-n}}\big)^{\wedge T}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{e}_{N}\\
 & =q\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{n}\wedge\hat{A}\mathbf{e}_{n+1}\wedge...\wedge\hat{A}\mathbf{e}_{N}\\
 & =q(\wedge^{N}\hat{A}^{N-1})(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\wedge\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N})\\
 & =\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\wedge\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\end{align*}

\end_inset

because 
\begin_inset Formula $\hat{A}\mathbf{v}_{i}=0$
\end_inset

.
 Therefore 
\begin_inset Formula $c_{1}=1$
\end_inset

.
 All other coefficients 
\begin_inset Formula $c_{i}$
\end_inset

 (
\begin_inset Formula $i\neq1$
\end_inset

) are equal to zero: For example,
\begin_inset Formula \begin{align*}
c_{2}\mathbf{v}_{2}\wedge\mathbf{v}_{1}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{e}_{N} & =\hat{P}\mathbf{v}_{1}\wedge\mathbf{v}_{1}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{e}_{N}\\
 & =q\big({\wedge^{N-1}\hat{A}^{N-n}}\big)^{\wedge T}\mathbf{v}_{1}\wedge\mathbf{v}_{1}\wedge...\wedge\mathbf{e}_{N}\\
 & =q\mathbf{v}_{1}\wedge\mathbf{v}_{1}\wedge...=0.\end{align*}

\end_inset


\end_layout

\end_inset

Therefore 
\begin_inset Formula $\hat{P}\mathbf{v}_{1}=\mathbf{v}_{1}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
It remains to consider the case when the geometric multiplicity of 
\begin_inset Formula $\lambda_{0}$
\end_inset

 is less than the algebraic multiplicity, i.e.\InsetSpace ~
if there exist some root vectors.
\end_layout

\begin_layout Paragraph
Statement 3:
\end_layout

\begin_layout Standard
We work with an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 whose characteristic polynomial is known,
\begin_inset Formula \[
Q_{\hat{A}}(\lambda)=q_{0}+\left(-\lambda\right)q_{1}+...+\left(-\lambda\right)^{N-1}q_{N-1}+\left(-\lambda\right)^{N}.\]

\end_inset

Without loss of generality, we assume that 
\begin_inset Formula $\hat{A}$
\end_inset

 has an eigenvalue 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

 of algebraic multiplicity 
\begin_inset Formula $n\geq1$
\end_inset

.
 The geometric multiplicity of 
\begin_inset Formula $\lambda_{0}$
\end_inset

 may be less than or equal to 
\begin_inset Formula $n$
\end_inset

.
 (For nonzero eigenvalues 
\begin_inset Formula $\lambda_{0}$
\end_inset

, we consider the operator 
\begin_inset Formula $\hat{A}-\lambda_{0}\hat{1}$
\end_inset

 instead of 
\begin_inset Formula $\hat{A}$
\end_inset

.)
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 A projector onto the Jordan cell of dimension 
\begin_inset Formula $n$
\end_inset

 belonging to eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

 is given by the operator 
\begin_inset Formula \begin{equation}
\hat{P}_{\lambda_{0}}\equiv\sum_{k=1}^{n}c_{k}\hat{A}_{(k)}=\hat{1}+\sum_{k=1}^{n}\sum_{i=n}^{N-k}c_{k}q_{i+k}(-\hat{A})^{i},\label{eq:projector jordan cell general}\end{equation}

\end_inset

where 
\begin_inset Formula \[
\hat{A}_{(k)}\equiv(\wedge^{N-1}\hat{A}^{N-k})^{\wedge T},\quad1\leq k\leq N-1,\]

\end_inset

and 
\begin_inset Formula $c_{1}$
\end_inset

, ..., 
\begin_inset Formula $c_{n}$
\end_inset

 are the numbers that solve the system of equations 
\begin_inset Formula \[
\left(\begin{array}{ccccc}
q_{n} & q_{n+1} & q_{n+2} & \cdots & q_{2n-1}\\
0 & q_{n} & q_{n+1} & \cdots & q_{2n-2}\\
\vdots & 0 & \ddots & \ddots & \vdots\\
0 & \vdots & \ddots & q_{n} & q_{n+1}\\
0 & 0 & \cdots & 0 & q_{n}\end{array}\right)\left[\begin{array}{c}
c_{1}\\
c_{2}\\
\vdots\\
c_{n-1}\\
c_{n}\end{array}\right]=\left[\begin{array}{c}
0_{\,}\\
0_{\,}\\
\vdots\\
0_{\,}\\
1_{\,}\end{array}\right].\]

\end_inset

For convenience, we have set 
\begin_inset Formula $q_{N}\equiv1$
\end_inset

 and 
\begin_inset Formula $q_{i}\equiv0$
\end_inset

 for 
\begin_inset Formula $i>N$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 No polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 can be a projector onto the subspace of 
\emph on
eigenvectors
\emph default
 within the Jordan cell (rather than a projector onto the entire Jordan
 cell) when the geometric multiplicity is strictly less than the algebraic.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 The Jordan cell consists of all vectors 
\begin_inset Formula $\mathbf{x}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}^{n}\mathbf{x}=0$
\end_inset

.
 We proceed as in the proof of Statement\InsetSpace ~
2, starting from Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:A identity}

\end_inset

).
 By induction in 
\begin_inset Formula $k$
\end_inset

, starting from 
\begin_inset Formula $k=1$
\end_inset

 until 
\begin_inset Formula $k=n$
\end_inset

, we obtain
\begin_inset Formula \begin{align*}
\hat{A}\hat{A}_{(1)} & =q_{0}\hat{1}=0,\\
\hat{A}^{2}\hat{A}_{(2)}+\hat{A}\hat{A}_{(1)} & =\hat{A}q_{1}\hat{1}=0\;\Rightarrow\;\hat{A}^{2}\hat{A}_{(2)}=0,\\
...,\quad & \Rightarrow\;\hat{A}^{n}\hat{A}_{(n)}=0.\end{align*}

\end_inset

So we find 
\begin_inset Formula $\hat{A}^{n}\hat{A}_{(k)}=0$
\end_inset

 for all 
\begin_inset Formula $k$
\end_inset

 (
\begin_inset Formula $1\leq k\leq n$
\end_inset

).
 Since 
\begin_inset Formula $\hat{P}_{\lambda_{0}}$
\end_inset

 is by construction equal to a linear combination of these 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

, we have 
\begin_inset Formula $\hat{A}^{n}\hat{P}_{\lambda_{0}}=0$
\end_inset

, i.e.\InsetSpace ~
the image of 
\begin_inset Formula $\hat{P}_{\lambda_{0}}$
\end_inset

 is contained in the Jordan cell.
 
\end_layout

\begin_layout Standard
It remains to prove that the Jordan cell is also 
\emph on
contained
\emph default
 in the image of 
\begin_inset Formula $\hat{P}_{\lambda_{0}}$
\end_inset

, that is, to show that 
\begin_inset Formula $\hat{A}^{n}\mathbf{x}=0$
\end_inset

 implies 
\begin_inset Formula $\hat{P}_{\lambda_{0}}\mathbf{x}=\mathbf{x}$
\end_inset

.
 We use the explicit formulas for 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

 that can be obtained by induction from Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:A identity}

\end_inset

)
\begin_inset Note Note
status collapsed

\begin_layout Standard
Suppose 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 are either eigenvectors or root vectors belonging to the Jordan cell with
 eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

.
 This means (with 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

) that, for each 
\begin_inset Formula $i=1,...,n$
\end_inset

 we have either 
\begin_inset Formula $\hat{A}\mathbf{v}_{i}=\mathbf{v}_{j}$
\end_inset

 for some 
\begin_inset Formula $j\neq i$
\end_inset

, 
\begin_inset Formula $1\leq j\leq n$
\end_inset

, or 
\begin_inset Formula $\hat{A}\mathbf{v}_{i}=0$
\end_inset

.
 By assumption, the eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

 has algebraic multiplicity 
\begin_inset Formula $n$
\end_inset

.
 We proceed by analogy with the proof of Statement 2.
 There exists a basis of the form 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

; acting with 
\begin_inset Formula $\wedge^{N-1}\hat{A}^{N-n+1}$
\end_inset

 on the exterior product of vectors in this basis, we find
\begin_inset Formula \[
\wedge^{N-1}\hat{A}^{N-n+1}(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\wedge\mathbf{e}_{n+1}\wedge...\mathbf{e}_{N})=0\]

\end_inset

 since at least one operator 
\begin_inset Formula $\hat{A}$
\end_inset

 must act on some 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

, which yields zero within the exterior product.
 (By construction, either 
\begin_inset Formula $\hat{A}\mathbf{v}_{i}=0$
\end_inset

 or 
\begin_inset Formula $\hat{A}\mathbf{v}_{i}=\mathbf{v}_{j}$
\end_inset

 with 
\begin_inset Formula $i\neq j$
\end_inset

.) Therefore
\begin_inset Formula \[
\big({\wedge^{N-1}\hat{A}^{N-n}}\big)^{\wedge T}\hat{A}=0\]

\end_inset

as in the proof of Statement\InsetSpace ~
2.
 It follows that the image of 
\begin_inset Formula $\hat{P}$
\end_inset

 is within the Jordan cell.
\end_layout

\begin_layout Standard
Finally, a calculation quite similar to that in the proof of Statement\InsetSpace ~
2
 shows that every vector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 (whether it is an eigenvector or a root vector of 
\begin_inset Formula $\hat{A}$
\end_inset

) is an eigenvector of 
\begin_inset Formula $\hat{P}$
\end_inset

 with eigenvalue 1.
 I leave the details as an exercise.
\end_layout

\end_inset

 starting with 
\begin_inset Formula $k=N$
\end_inset

: we have 
\begin_inset Formula $\hat{A}_{(N)}=0$
\end_inset

, 
\begin_inset Formula $\hat{A}_{(N-1)}=q_{N-1}\hat{1}-\hat{A}$
\end_inset

, and finally
\begin_inset Formula \begin{equation}
\hat{A}_{(k)}=q_{k}\hat{1}-q_{k+1}\hat{A}+...+q_{N}{(-\hat{A})}^{N-k}=\sum_{i=0}^{N-k}q_{k+i}(-\hat{A})^{i},\quad k\geq1.\label{eq:Ak explicit}\end{equation}

\end_inset

The operator 
\begin_inset Formula $\hat{P}_{\lambda_{0}}$
\end_inset

 is a linear combination of 
\begin_inset Formula $\hat{A}_{(k)}$
\end_inset

 with 
\begin_inset Formula $1\leq k\leq n$
\end_inset

.
 The Jordan cell of dimension 
\begin_inset Formula $n$
\end_inset

 consists of all 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 such that 
\begin_inset Formula $\hat{A}^{n}\mathbf{x}=0$
\end_inset

.
 Therefore, while computing 
\begin_inset Formula $\hat{P}_{\lambda_{0}}\mathbf{x}$
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}^{n}\mathbf{x}=0$
\end_inset

, we can restrict the summation over 
\begin_inset Formula $i$
\end_inset

 to 
\begin_inset Formula $0\leq i\leq n-1$
\end_inset

,
\begin_inset Formula \[
\hat{P}_{\lambda_{0}}\mathbf{x}=\sum_{k=1}^{n}c_{k}\sum_{i=0}^{N-k}q_{k+i}(-\hat{A})^{i}\mathbf{x}=\sum_{k=1}^{n}\sum_{i=0}^{n-1}c_{k}q_{k+i}(-\hat{A})^{i}\mathbf{x}.\]

\end_inset

We would like to choose the coefficients 
\begin_inset Formula $c_{k}$
\end_inset

 such that the sum above contains only the term 
\begin_inset Formula $(-\hat{A})^{0}\mathbf{x}=\mathbf{x}$
\end_inset

 with coefficient 1, while all other powers of 
\begin_inset Formula $\hat{A}$
\end_inset

 will enter with zero coefficient.
 In other words, we require that
\begin_inset Formula \begin{equation}
\sum_{k=1}^{n}\sum_{i=0}^{n-1}c_{k}q_{k+i}(-\hat{A})^{i}=\hat{1}\label{eq:ck condition}\end{equation}

\end_inset

identically as polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

.
 This will happen if the coefficients 
\begin_inset Formula $c_{k}$
\end_inset

 satisfy 
\begin_inset Formula \begin{align*}
\sum_{k=1}^{n}c_{k}q_{k} & =1,\\
\sum_{k=1}^{n}c_{k}q_{k+i} & =0,\quad i=1,...,n-1.\end{align*}

\end_inset

This system of equations for the unknown coefficients 
\begin_inset Formula $c_{k}$
\end_inset

 can be rewritten in matrix form as 
\begin_inset Formula \[
\left(\begin{array}{ccccc}
q_{n} & q_{n+1} & q_{n+2} & \cdots & q_{2n-1}\\
q_{n-1} & q_{n} & q_{n+1} & \cdots & q_{2n-2}\\
\vdots & q_{n-1} & \ddots & \ddots & \vdots\\
q_{2} & \vdots & \ddots & q_{n} & q_{n+1}\\
q_{1} & q_{2} & \cdots & q_{n-1} & q_{n}\end{array}\right)\left[\begin{array}{c}
c_{1}\\
c_{2}\\
\vdots\\
c_{n-1}\\
c_{n}\end{array}\right]=\left[\begin{array}{c}
0_{\,}\\
0_{\,}\\
\vdots\\
0_{\,}\\
1_{\,}\end{array}\right].\]

\end_inset

However, it is given that 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

 is a root of multiplicity 
\begin_inset Formula $n$
\end_inset

, therefore 
\begin_inset Formula $q_{0}=...=q_{n-1}=0$
\end_inset

 while 
\begin_inset Formula $q_{n}\neq0$
\end_inset

.
 Therefore, the system of equations has the triangular form as given in
 Statement\InsetSpace ~
3.
 Its solution is unique since 
\begin_inset Formula $q_{n}\neq0$
\end_inset

.
 Thus, we are able to choose 
\begin_inset Formula $c_{k}$
\end_inset

 such that 
\begin_inset Formula $\hat{P}_{\lambda_{0}}\mathbf{x}=\mathbf{x}$
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}$
\end_inset

 within the Jordan cell.
\end_layout

\begin_layout Standard
The formula for 
\begin_inset Formula $\hat{P}_{\lambda_{0}}$
\end_inset

 can be simplified by writing
\begin_inset Formula \[
\hat{P}_{\lambda_{0}}=\sum_{k=1}^{n}\left[\sum_{i=0}^{n-1}c_{k}q_{k+i}(-\hat{A})^{i}+\sum_{i=n}^{N-k}c_{k}q_{k+i}(-\hat{A})^{i}\right].\]

\end_inset

The first sum yields 
\begin_inset Formula $\hat{1}$
\end_inset

 by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:ck condition}

\end_inset

), and so we obtain Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:projector jordan cell general}

\end_inset

).
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 A simple counterexample is the (non-diagonalizable) operator 
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)=\mathbf{e}_{1}\otimes\mathbf{e}_{2}^{*}.\]

\end_inset

This operator has a Jordan cell with eigenvalue 0 spanned by the basis vectors
 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

.
 The eigenvector with eigenvalue 
\begin_inset Formula $0$
\end_inset

 is 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, and a possible projector onto this eigenvector is 
\begin_inset Formula $\hat{P}=\mathbf{e}_{1}\otimes\mathbf{e}_{1}^{*}$
\end_inset

.
 However, no polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 can yield 
\begin_inset Formula $\hat{P}$
\end_inset

 or any other projector only onto 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

.
 This can be seen as follows.
 We note that 
\begin_inset Formula $\hat{A}\hat{A}=0$
\end_inset

, and thus any polynomial in 
\begin_inset Formula $\hat{A}$
\end_inset

 can be rewritten as 
\begin_inset Formula $a_{0}\hat{1}_{V}+a_{1}\hat{A}$
\end_inset

.
 However, if an operator of the form 
\begin_inset Formula $a_{0}\hat{1}_{V}+a_{1}\hat{A}$
\end_inset

 is a projector, and 
\begin_inset Formula $\hat{A}\hat{A}=0$
\end_inset

, then we can derive that 
\begin_inset Formula $a_{0}^{2}=a_{0}$
\end_inset

 and 
\begin_inset Formula $a_{1}=2a_{0}a_{1}$
\end_inset

, which forces 
\begin_inset Formula $a_{0}=1$
\end_inset

 and 
\begin_inset Formula $a_{1}=0$
\end_inset

.
 Therefore the only result of a polynomial formula can be the projector
 
\begin_inset Formula $\mathbf{e}_{1}\otimes\mathbf{e}_{1}^{*}+\mathbf{e}_{2}\otimes\mathbf{e}_{2}^{*}$
\end_inset

 onto the entire Jordan cell.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Consider the space of polynomials in 
\begin_inset Formula $x$
\end_inset

 and 
\begin_inset Formula $y$
\end_inset

 of degree at most 1, i.e.\InsetSpace ~
the space spanned by 
\begin_inset Formula $\{\underbar{1},\underbar{x},\underbar{y}\}$
\end_inset

, and the operator
\begin_inset Formula \[
\hat{A}=x\frac{\partial}{\partial x}+\frac{\partial}{\partial y}.\]

\end_inset

The characteristic polynomial of 
\begin_inset Formula $\hat{A}$
\end_inset

 is found as
\begin_inset Formula \begin{align*}
Q_{\hat{A}}(\lambda) & =\frac{(\hat{A}-\lambda)\underbar{1}\wedge(\hat{A}-\lambda)\underbar{x}\wedge(\hat{A}-\lambda)\underbar{y}}{\underbar{1}\wedge\underbar{x}\wedge\underbar{y}}\\
 & =\lambda^{2}-\lambda^{3}\equiv q_{0}-q_{1}\lambda+q_{2}\lambda^{2}-q_{3}\lambda^{3}.\end{align*}

\end_inset

Hence 
\begin_inset Formula $\lambda=0$
\end_inset

 is an eigenvalue of algebraic multiplicity 2.
 It is easy to guess the eigenvectors, 
\begin_inset Formula $\mathbf{v}_{1}=\underbar{1}$
\end_inset

 (
\begin_inset Formula $\lambda=0$
\end_inset

) and 
\begin_inset Formula $\mathbf{v}_{2}=\underbar{x}$
\end_inset

 (
\begin_inset Formula $\lambda=1)$
\end_inset

, as well as the root vector 
\begin_inset Formula $\mathbf{v}_{3}=\underbar{y}$
\end_inset

 (
\begin_inset Formula $\lambda=0$
\end_inset

).
 However, let us pretend that we do not know the Jordan basis, and instead
 determine the projector 
\begin_inset Formula $\hat{P}_{0}$
\end_inset

 onto the Jordan cell belonging to the eigenvalue 
\begin_inset Formula $\lambda_{0}=0$
\end_inset

 using Statement\InsetSpace ~
3 with 
\begin_inset Formula $n=2$
\end_inset

 and 
\begin_inset Formula $N=3$
\end_inset

.
 
\end_layout

\begin_layout Standard
We have 
\begin_inset Formula $q_{0}=q_{1}=0$
\end_inset

, 
\begin_inset Formula $q_{2}=q_{3}=1$
\end_inset

.
 The system of equations for the coefficients 
\begin_inset Formula $c_{k}$
\end_inset

 is
\begin_inset Formula \begin{align*}
q_{2}c_{1}+q_{3}c_{2} & =0,\\
q_{2}c_{2} & =1,\end{align*}

\end_inset

and the solution is 
\begin_inset Formula $c_{1}=-1$
\end_inset

 and 
\begin_inset Formula $c_{2}=1$
\end_inset

.
 We note that in our example,
\begin_inset Formula \[
\hat{A}^{2}=x\frac{\partial}{\partial x}.\]

\end_inset

So we can compute the projector 
\begin_inset Formula $\hat{P}_{0}$
\end_inset

 by using Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:projector jordan cell general}

\end_inset

): 
\begin_inset Formula \begin{align*}
\hat{P}_{0} & =\hat{1}+\sum_{k=1}^{2}\sum_{i=2}^{3-k}c_{k}q_{i+k}(-\hat{A})^{i}\\
 & =\hat{1}+c_{1}q_{3}\hat{A}^{2}=\hat{1}-x\frac{\partial}{\partial x}.\end{align*}

\end_inset

(The summation over 
\begin_inset Formula $k$
\end_inset

 and 
\begin_inset Formula $i$
\end_inset

 collapses to a single term 
\begin_inset Formula $k=1$
\end_inset

, 
\begin_inset Formula $i=2$
\end_inset

.) The image of 
\begin_inset Formula $\hat{P}_{0}$
\end_inset

 is 
\begin_inset Formula $\text{Span}\left\{ \underbar{1},\underbar{y}\right\} $
\end_inset

, and we have 
\begin_inset Formula $\hat{P}_{0}\hat{P}_{0}=\hat{P}_{0}$
\end_inset

.
 Hence 
\begin_inset Formula $\hat{P}_{0}$
\end_inset

 is indeed a projector onto the Jordan cell 
\begin_inset Formula $\text{Span}\,\{\underbar{1},\underbar{y}\}$
\end_inset

 that belongs to the eigenvalue 
\begin_inset Formula $\lambda=0$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Suppose the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

 with algebraic multiplicity 
\begin_inset Formula $n$
\end_inset

.
 Show that one can choose a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

 such that 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 are eigenvalues or root vectors belonging to the eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

, and 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 are such that the vectors 
\begin_inset Formula $(\hat{A}-\lambda_{0}\hat{1})\mathbf{e}_{j}$
\end_inset

 (with 
\begin_inset Formula $j=n+1$
\end_inset

,...,
\begin_inset Formula $N$
\end_inset

) belong to the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

.
 Deduce that the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

 is mapped one-to-one onto itself by the operator 
\begin_inset Formula $\hat{A}-\lambda_{0}\hat{1}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Assume that the Jordan canonical form of 
\begin_inset Formula $\hat{A}$
\end_inset

 is known.
 Show that
\begin_inset Formula \[
\wedge^{N-n}(\hat{A}-\lambda_{0}\hat{1})^{N-n}(\mathbf{e}_{n+1}\wedge...\wedge\mathbf{e}_{N})\neq0.\]

\end_inset

(Otherwise, a linear combination of 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 is an eigenvector with eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

.)
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Operators of the form 
\begin_inset Formula \begin{equation}
\hat{R}_{k}\equiv{\big[{\wedge^{N-1}(\hat{A}-\lambda_{0}\hat{1}_{V})^{N-k}}\big]}^{\wedge T}\label{eq:general op k}\end{equation}

\end_inset

with 
\begin_inset Formula $k\leq n$
\end_inset

 are used in the construction of projectors onto the Jordan cell.
 What if we use Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:general op k}

\end_inset

) with other values of 
\begin_inset Formula $k$
\end_inset

? It turns out that the resulting operators are not projectors.
 If 
\begin_inset Formula $k\geq n$
\end_inset

, the operator 
\begin_inset Formula $\hat{R}_{k}$
\end_inset

 does not map into the Jordan cell.
 If 
\begin_inset Formula $k<n$
\end_inset

, the operator 
\begin_inset Formula $\hat{R}_{k}$
\end_inset

 does not map onto the 
\emph on
entire
\emph default
 Jordan cell but rather onto a subspace of the Jordan cell; the image of
 
\begin_inset Formula $\hat{R}_{k}$
\end_inset

 contains eigenvectors or root vectors of a certain order.
 An example of this property will be shown in Exercise\InsetSpace ~
3.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Suppose an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has an eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

 with algebraic multiplicity 
\begin_inset Formula $n$
\end_inset

 and geometric multiplicity 
\begin_inset Formula $n-1$
\end_inset

.
 This means (according to the theory of the Jordan canonical form) that
 there exist 
\begin_inset Formula $n-1$
\end_inset

 eigenvectors and 
\emph on
one
\emph default
 root vector of order 1.
 Let us denote that root vector by 
\begin_inset Formula $\mathbf{x}_{1}$
\end_inset

 and let 
\begin_inset Formula $\mathbf{v}_{2},...,\mathbf{v}_{n}$
\end_inset

 be the 
\begin_inset Formula $\left(n-1\right)$
\end_inset

 eigenvectors with eigenvalue 
\begin_inset Formula $\lambda_{0}$
\end_inset

.
 Moreover, let us choose 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}_{1}=\lambda_{0}\mathbf{x}_{1}+\mathbf{v}_{2}$
\end_inset

 (i.e.\InsetSpace ~
the vectors 
\begin_inset Formula $\mathbf{x}_{1},\mathbf{v}_{2}$
\end_inset

 are a root chain).
 Show that the operator 
\begin_inset Formula $\hat{R}_{k}$
\end_inset

 given by the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:general op k}

\end_inset

), with 
\begin_inset Formula $k=n-1$
\end_inset

, satisfies
\begin_inset Formula \begin{align*}
\hat{R}_{n-1}\mathbf{x}_{1} & =\text{const}\cdot\mathbf{v}_{2};\quad\hat{R}_{n-1}\mathbf{v}_{j}=0,\quad j=2,...,n;\\
\hat{R}_{n-1}\mathbf{e}_{j} & =0,\quad j=n+1,...,N.\end{align*}

\end_inset

In other words, the image of the operator 
\begin_inset Formula $\hat{R}_{n-1}$
\end_inset

 contains only the eigenvector 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

; that is, the image contains the eigenvector related to a root vector of
 order 1.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Use a basis of the form 
\begin_inset Formula $\left\{ \mathbf{x}_{1},\mathbf{v}_{2},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

 as in Exercise\InsetSpace ~
2.
 
\end_layout

\begin_layout Chapter
Scalar product 
\end_layout

\begin_layout Standard
Until now we did not use any scalar product in our vector spaces.
 In this chapter we explore the properties of spaces with a scalar product.
 The exterior product techniques  are especially powerful when used together
 with a scalar product.
 
\end_layout

\begin_layout Section
Vector spaces with scalar product
\begin_inset LatexCommand \label{sub:Vector-spaces-with-scalar-product}

\end_inset


\end_layout

\begin_layout Standard
As you already know, the scalar product of vectors is related to the geometric
 notions of angle and length.
 These notions are most useful in vector spaces over 
\emph on
real
\emph default
 numbers, so in most of this chapter I will assume that 
\begin_inset Formula $\mathbb{K}$
\end_inset

 is a field where it makes sense to compare numbers (i.e.\InsetSpace ~
the comparison 
\begin_inset Formula $x>y$
\end_inset

 is defined and has the usual properties) and where statements such as 
\begin_inset Formula $\lambda^{2}\geq0$
\end_inset

 (
\begin_inset Formula $\forall\lambda\in\mathbb{K}$
\end_inset

) hold.
 (Scalar products in complex spaces are defined in a different way and will
 be considered in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Scalar-product-for-complex}

\end_inset

.)
\end_layout

\begin_layout Standard
In order to understand the properties of spaces with a scalar product, it
 is helpful to define the scalar product in a purely algebraic way, without
 any geometric constructions.
 The geometric interpretation will be developed subsequently.
\end_layout

\begin_layout Standard
The scalar product of two vectors is a 
\emph on
number
\emph default
, i.e.\InsetSpace ~
the scalar product maps a pair of vectors into a number.
 We will denote the scalar product by 
\begin_inset Formula $\left\langle \mathbf{u},\mathbf{v}\right\rangle $
\end_inset

, or sometimes by writing it in a functional form, 
\begin_inset Formula $S\left(\mathbf{u},\mathbf{v}\right)$
\end_inset

.
 
\begin_inset Note Note
status collapsed

\begin_layout Standard
The set of all pairs of vectors is denoted 
\begin_inset Formula $V\times V$
\end_inset

, e.g.\InsetSpace ~

\begin_inset Formula $\left(\mathbf{u},\mathbf{v}\right)\in V\times V$
\end_inset

.
\end_layout

\end_inset


\end_layout

\begin_layout Standard
A scalar product must be compatible with the linear structure of the vector
 space, so it cannot be an arbitrary map.
 The precise definition is the following.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
A map 
\begin_inset Formula $B:V\times V\rightarrow\mathbb{K}$
\end_inset

 is a 
\series bold
bilinear form
\series default
 in a vector space 
\begin_inset Formula $V$
\end_inset

 if for any vectors 
\begin_inset Formula $\mathbf{u},\mathbf{v},\mathbf{w}\in V$
\end_inset

 and for any 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

,
\begin_inset Formula \begin{align*}
B\left(\mathbf{u},\mathbf{v}+\lambda\mathbf{w}\right) & =B\left(\mathbf{u},\mathbf{v}\right)+\lambda B\left(\mathbf{u},\mathbf{w}\right),\\
B\left(\mathbf{v}+\lambda\mathbf{w},\mathbf{u}\right) & =B\left(\mathbf{v},\mathbf{u}\right)+\lambda B\left(\mathbf{w},\mathbf{u}\right).\end{align*}

\end_inset

A bilinear form 
\begin_inset Formula $B$
\end_inset

 is 
\series bold
symmetric
\series default
 if 
\begin_inset Formula $B\left(\mathbf{v},\mathbf{w}\right)=B\left(\mathbf{w},\mathbf{v}\right)$
\end_inset

 for any 
\series bold

\begin_inset Formula $\mathbf{v}$
\end_inset


\series default
, 
\begin_inset Formula $\mathbf{w}$
\end_inset

.
 A bilinear form is 
\series bold
nondegenerate
\series default
 if for any nonzero vector 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

 there exists another vector 
\begin_inset Formula $\mathbf{w}$
\end_inset

 such that 
\begin_inset Formula $B\left(\mathbf{v},\mathbf{w}\right)\neq0$
\end_inset

.
 A bilinear form is 
\series bold
positive-definite
\series default
 if 
\begin_inset Formula $B\left(\mathbf{v},\mathbf{v}\right)>0$
\end_inset

 for all nonzero vectors 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

.
 
\end_layout

\begin_layout Standard
A 
\series bold
scalar product
\series default
 in 
\begin_inset Formula $V$
\end_inset

 is a nondegenerate, positive-definite, symmetric bilinear form 
\begin_inset Formula $S:V\times V\rightarrow\mathbb{K}$
\end_inset

.
 The action of the scalar product on pairs of vectors is also denoted by
 
\begin_inset Formula $\left\langle \mathbf{v},\mathbf{w}\right\rangle \equiv S\left(\mathbf{v},\mathbf{w}\right)$
\end_inset

.
 A finite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

 with a scalar product is called a 
\series bold
Euclidean
\series default
 
\series bold
space
\series default

\begin_inset LatexCommand \index{Euclidean space}

\end_inset

.
 The 
\series bold
length
\series default

\begin_inset LatexCommand \index{length of a vector}

\end_inset

 of a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is the non-neg\SpecialChar \-
at\SpecialChar \-
i\SpecialChar \-
ve number 
\begin_inset Formula $\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$
\end_inset

.
 (This number is also called the 
\series bold
norm
\series default
 of 
\begin_inset Formula $\mathbf{v}$
\end_inset

.)
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Verifying that a map 
\begin_inset Formula $S:V\times V\rightarrow\mathbb{K}$
\end_inset

 is a scalar product in 
\begin_inset Formula $V$
\end_inset

 requires proving that 
\begin_inset Formula $S$
\end_inset

 is a bilinear form satisfying certain properties.
 For instance, the zero function 
\begin_inset Formula $B\left(\mathbf{v},\mathbf{w}\right)=0$
\end_inset

 is symmetric but is not a scalar product because it is degenerate.
 
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The above definition of the scalar product is an 
\begin_inset Quotes eld
\end_inset

abstract definition
\begin_inset Quotes erd
\end_inset

 because it does not specify any particular scalar product in a given vector
 space.
 To specify a scalar product, one usually gives an explicit formula for
 computing 
\begin_inset Formula $\left\langle \mathbf{a},\mathbf{b}\right\rangle $
\end_inset

.
 In the same space 
\begin_inset Formula $V$
\end_inset

, one could consider different scalar products.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
In the space 
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset

, the standard scalar product is
\begin_inset Formula \begin{equation}
\left\langle \left(x_{1},...,x_{N}\right),\left(y_{1},...,y_{N}\right)\right\rangle \equiv\sum_{j=1}^{N}x_{j}y_{j}.\label{eq:standard scalar product}\end{equation}

\end_inset

Let us verify that this defines a symmetric, nondegenerate, and positive-definit
e bilinear form.
 This is a bilinear form because it depends linearly on each 
\begin_inset Formula $x_{j}$
\end_inset

 and on each 
\begin_inset Formula $y_{j}$
\end_inset

.
 This form is symmetric because it is invariant under the interchange of
 
\begin_inset Formula $x_{j}$
\end_inset

 with 
\begin_inset Formula $y_{j}$
\end_inset

.
 This form is nondegenerate because for any 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset

 at least one of 
\begin_inset Formula $x_{j}$
\end_inset

, say 
\begin_inset Formula $x_{1}$
\end_inset

, is nonzero; then the scalar product of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 with the vector 
\begin_inset Formula $\mathbf{w}\equiv\left(1,0,0,...,0\right)$
\end_inset

 is nonzero.
 So for any 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset

 there exists 
\begin_inset Formula $\mathbf{w}$
\end_inset

 such that 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{w}\right\rangle \neq0$
\end_inset

, which is the nondegeneracy property.
 Finally, the scalar product is positive-definite because for any nonzero
 
\begin_inset Formula $\mathbf{x}$
\end_inset

 there is at least one nonzero 
\begin_inset Formula $x_{j}$
\end_inset

 and thus 
\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{x}\right\rangle =\left\langle \left(x_{1},...,x_{N}\right),\left(x_{1},...,x_{N}\right)\right\rangle \equiv\sum_{j=1}^{N}x_{j}^{2}>0.\]

\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The fact that a bilinear form is nondegenerate does not mean that it must
 always be nonzero on any two vectors.
 It is perfectly possible that 
\begin_inset Formula $\left\langle \mathbf{a},\mathbf{b}\right\rangle =0$
\end_inset

 while 
\begin_inset Formula $\mathbf{a}\neq0$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}\neq0$
\end_inset

.
 In the usual Euclidean space, this would mean that 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 are orthogonal to each other.
 Nondegeneracy means that no vector is orthogonal to 
\emph on
every
\emph default
 other vector.
 It is also 
\emph on
impossible
\emph default
 that 
\begin_inset Formula $\left\langle \mathbf{a},\mathbf{a}\right\rangle =0$
\end_inset

 while 
\begin_inset Formula $\mathbf{a}\neq0$
\end_inset

 (this contradicts the positive-definiteness).
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Consider the space 
\begin_inset Formula $\text{End}\, V$
\end_inset

 of linear operators in 
\begin_inset Formula $V$
\end_inset

.
 We can define a bilinear form in the space 
\begin_inset Formula $\text{End}\, V$
\end_inset

 as follows: For any two operators 
\begin_inset Formula $\hat{A},\hat{B}\in\text{End}\, V$
\end_inset

 we set 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}(\hat{A}\hat{B})$
\end_inset

.
 This bilinear form is 
\emph on
not
\emph default
 posit\SpecialChar \-
ive-def\SpecialChar \-
in\SpecialChar \-
ite.
 For example, if there is an operator 
\begin_inset Formula $\hat{J}$
\end_inset

 such that 
\begin_inset Formula $\hat{J}^{2}=-\hat{1}_{V}$
\end_inset

 then 
\begin_inset Formula $\text{Tr}(\hat{J}\hat{J})=-N<0$
\end_inset

 while 
\begin_inset Formula $\text{Tr}(\hat{1}\hat{1})=N>0$
\end_inset

, so neither 
\begin_inset Formula $\text{Tr}(\hat{A}\hat{B})$
\end_inset

 nor 
\begin_inset Formula $-\text{Tr}(\hat{A}\hat{B})$
\end_inset

 can be posit\SpecialChar \-
ive-def\SpecialChar \-
in\SpecialChar \-
ite.
 (See Exercise\InsetSpace ~
4 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Correspondence-between-vectors}

\end_inset

 below for more information.)
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Bilinear forms that are not positive-def\SpecialChar \-
in\SpecialChar \-
ite (or even degenerate) are sometimes
 useful as 
\begin_inset Quotes eld
\end_inset

pseudo-scalar products.
\begin_inset Quotes erd
\end_inset

 We will not discuss these cases here.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Prove that two vectors are equal, 
\begin_inset Formula $\mathbf{u}=\mathbf{v}$
\end_inset

, if and only if 
\begin_inset Formula $\left\langle \mathbf{u},\mathbf{x}\right\rangle =\left\langle \mathbf{v},\mathbf{x}\right\rangle $
\end_inset

 for all vectors 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
 
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Consider the vector 
\begin_inset Formula $\mathbf{u}-\mathbf{v}$
\end_inset

 and the definition of nondegeneracy of the scalar product.
\end_layout

\begin_layout Subparagraph
Solution:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\mathbf{u}-\mathbf{v}=0$
\end_inset

 then by the linearity of the scalar product 
\begin_inset Formula $\left\langle \mathbf{u}-\mathbf{v},\mathbf{x}\right\rangle =0=\left\langle \mathbf{u},\mathbf{x}\right\rangle -\left\langle \mathbf{v},\mathbf{x}\right\rangle $
\end_inset

.
 Conversely, suppose that 
\begin_inset Formula $\mathbf{u}\neq\mathbf{v}$
\end_inset

; then 
\begin_inset Formula $\mathbf{u}-\mathbf{v}\neq0$
\end_inset

, and (by definition of nondegeneracy of the scalar product) there exists
 a vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 such that 
\begin_inset Formula $\left\langle \mathbf{u}-\mathbf{v},\mathbf{x}\right\rangle \neq0$
\end_inset

.
 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Prove that two linear operators 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

 are equal as operators, 
\begin_inset Formula $\hat{A}=\hat{B}$
\end_inset

, if and only if 
\begin_inset Formula $\langle\hat{A}\mathbf{x},\mathbf{y}\rangle=\langle\hat{B}\mathbf{x},\mathbf{y}\rangle$
\end_inset

 for all vectors 
\begin_inset Formula $\mathbf{x},\mathbf{y}\in V$
\end_inset

.
 
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Consider the vector 
\begin_inset Formula $\hat{A}\mathbf{x}-\hat{B}\mathbf{x}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Subsection
Orthonormal bases
\begin_inset LatexCommand \label{sub:Orthonormal-bases}

\end_inset


\end_layout

\begin_layout Standard
A scalar product defines an important property of a basis in 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Paragraph
Definition: 
\end_layout

\begin_layout Standard
A set of vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

 in a space 
\begin_inset Formula $V$
\end_inset

 is 
\series bold
orthonormal
\series default
 with respect to the scalar product if
\begin_inset Formula \[
\left\langle \mathbf{e}_{i},\mathbf{e}_{j}\right\rangle =\delta_{ij},\quad1\leq i,j\leq k.\]

\end_inset

 If an orthonormal set 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

, it is called an 
\series bold
orthonormal basis
\series default

\begin_inset LatexCommand \index{orthonormal basis}

\end_inset

.
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
In the space 
\begin_inset Formula $\mathbb{R}^{N}$
\end_inset

 of 
\begin_inset Formula $N$
\end_inset

-tuples of real numbers 
\begin_inset Formula $\left(x_{1},...,x_{N}\right)$
\end_inset

, the natural scalar product is defined by the formula\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:standard scalar product}

\end_inset

).
 Then the standard basis in 
\begin_inset Formula $\mathbb{R}^{N}$
\end_inset

, i.e.\InsetSpace ~
the basis consisting of vectors 
\begin_inset Formula $\left(1,0,...,0\right)$
\end_inset

, 
\begin_inset Formula $\left(0,1,0,...,0\right)$
\end_inset

, ..., 
\begin_inset Formula $\left(0,...,0,1\right)$
\end_inset

, is orthonormal with respect to this scalar product.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The standard properties of orthonormal bases are summarized in the following
 theorems.
\end_layout

\begin_layout Paragraph
Statement: 
\end_layout

\begin_layout Standard
Any orthonormal set of vectors is linearly independent.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
If an orthonormal set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

 is linearly dependent, there exist numbers 
\begin_inset Formula $\lambda_{j}$
\end_inset

, not all equal to zero, such that
\begin_inset Formula \[
\sum_{j=1}^{k}\lambda_{j}\mathbf{e}_{j}=0.\]

\end_inset

By assumption, there exists an index 
\begin_inset Formula $s$
\end_inset

 such that 
\begin_inset Formula $\lambda_{s}\neq0$
\end_inset

; then the scalar product of the above sum with 
\begin_inset Formula $\mathbf{e}_{s}$
\end_inset

 yields a contradiction, 
\begin_inset Formula \[
0=\left\langle 0,\mathbf{e}_{s}\right\rangle =\left\langle \sum_{j=1}^{k}\lambda_{j}\mathbf{e}_{j}\,,\,\mathbf{e}_{s}\right\rangle =\sum_{j=1}^{k}\delta_{js}\lambda_{j}=\lambda_{s}\neq0.\]

\end_inset

Hence, any orthonormal set is linearly independent (although it is not necessari
ly a basis).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Theorem 1:
\end_layout

\begin_layout Standard
Assume that 
\begin_inset Formula $V$
\end_inset

 is a finite-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space with a scalar product and 
\begin_inset Formula $\mathbb{K}$
\end_inset

 is a field where one can compute square roots (i.e.\InsetSpace ~
for any 
\begin_inset Formula $\lambda\in\mathbb{K}$
\end_inset

, 
\begin_inset Formula $\lambda>0$
\end_inset

 there exists another number 
\begin_inset Formula $\mu\equiv\sqrt{\lambda}\in\mathbb{K}$
\end_inset

 such that 
\begin_inset Formula $\lambda=\mu^{2}$
\end_inset

).
 Then there exists an orthonormal basis in 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We can build a basis by the standard orthogonalization procedure (the 
\series bold
Gram-Schmidt
\series default
 
\series bold
procedure
\series default

\begin_inset LatexCommand \index{Gram-Schmidt procedure}

\end_inset

).
 This procedure uses induction to determine a sequence of orthonormal sets
 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

 for 
\begin_inset Formula $k=1,$
\end_inset

 ..., 
\begin_inset Formula $N$
\end_inset

.
 
\end_layout

\begin_layout Standard
Basis of induction: Choose any nonzero vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and compute 
\begin_inset Formula $\left\langle \mathbf{v},\mathbf{v}\right\rangle $
\end_inset

; since 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

, we have 
\begin_inset Formula $\left\langle \mathbf{v},\mathbf{v}\right\rangle >0$
\end_inset

, so 
\begin_inset Formula $\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$
\end_inset

 exists, and we can define 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 by 
\begin_inset Formula \[
\mathbf{e}_{1}\equiv\frac{\mathbf{v}}{\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }}.\]

\end_inset

It follows that 
\begin_inset Formula $\left\langle \mathbf{e}_{1},\mathbf{e}_{1}\right\rangle =1$
\end_inset

.
\end_layout

\begin_layout Standard
Induction step: If 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

 is an orthonormal set, we need to find a vector 
\begin_inset Formula $\mathbf{e}_{k+1}$
\end_inset

 such that 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{e}_{k+1}\right\} $
\end_inset

 is again an orthonormal set.
 To find a suitable vector 
\begin_inset Formula $\mathbf{e}_{k+1}$
\end_inset

, we first take any vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 such that the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{v}\right\} $
\end_inset

 is linearly independent; such 
\begin_inset Formula $\mathbf{v}$
\end_inset

 exists if 
\begin_inset Formula $k<N$
\end_inset

, while for 
\begin_inset Formula $k=N$
\end_inset

 there is nothing left to prove.
 Then we define a new vector
\begin_inset Formula \[
\mathbf{w}\equiv\mathbf{v}-\sum_{j=1}^{k}\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle \mathbf{e}_{j}.\]

\end_inset

This vector has the property 
\begin_inset Formula $\left\langle \mathbf{e}_{j},\mathbf{w}\right\rangle =0$
\end_inset

 for 
\begin_inset Formula $1\leq j\leq k$
\end_inset

.
 We have 
\begin_inset Formula $\mathbf{w}\neq0$
\end_inset

 because (by construction) 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is not a linear combination of 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{k}$
\end_inset

; therefore 
\begin_inset Formula $\left\langle \mathbf{w},\mathbf{w}\right\rangle >0$
\end_inset

.
 Finally, we define 
\begin_inset Formula \[
\mathbf{e}_{k+1}\equiv\frac{\mathbf{w}}{\sqrt{\left\langle \mathbf{w},\mathbf{w}\right\rangle }},\]

\end_inset

so that 
\begin_inset Formula $\left\langle \mathbf{e}_{k+1},\mathbf{e}_{k+1}\right\rangle =1$
\end_inset

; then the set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{e}_{k+1}\right\} $
\end_inset

 is orthonormal.
 So the required set 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k+1}\right\} $
\end_inset

 is now constructed.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
What about number fields 
\begin_inset Formula $\mathbb{K}$
\end_inset

 where the square root does not exist, for example the field of rational
 numbers 
\begin_inset Formula $\mathbb{Q}$
\end_inset

?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
In that case, an orthonormal basis may or may not exist.
 For example, suppose that we consider vectors in 
\begin_inset Formula $\mathbb{Q}^{2}$
\end_inset

 and the scalar product 
\begin_inset Formula \[
\left\langle (x_{1},x_{2}),(y_{1},y_{2})\right\rangle =x_{1}y_{1}+5x_{2}y_{2}.\]

\end_inset

Then we cannot normalize the vectors: there exists no vector 
\begin_inset Formula $\mathbf{x}\equiv\left(x_{1},x_{2}\right)\in\mathbb{Q}^{2}$
\end_inset

 such that 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{x}\right\rangle =x_{1}^{2}+5x_{2}^{2}=1$
\end_inset

.
 The proof of this is similar to the ancient proof of the irrationality
 of 
\begin_inset Formula $\sqrt{2}$
\end_inset

.
 Thus, there exists no orthonormal basis in this space with this scalar
 product.
\end_layout

\begin_layout Paragraph
Theorem 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis then any vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 is expanded according to the formula
\begin_inset Formula \[
\mathbf{v}=\sum_{j=1}^{N}v_{j}\mathbf{e}_{j},\quad v_{j}\equiv\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle .\]

\end_inset

In other words, the 
\begin_inset Formula $j$
\end_inset

-th component of the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 is equal to the scalar product 
\begin_inset Formula $\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle $
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Compute the scalar product 
\begin_inset Formula $\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle $
\end_inset

 and obtain 
\begin_inset Formula $v_{j}\equiv\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle $
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Theorem\InsetSpace ~
2 shows that the components of a vector in an orthonormal basis can
 be computed quickly.
 As we have seen before, the component 
\begin_inset Formula $v_{j}$
\end_inset

 of a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is given by the covector 
\begin_inset Formula $\mathbf{e}_{j}^{*}$
\end_inset

 from the dual basis, 
\begin_inset Formula $v_{j}=\mathbf{e}_{j}^{*}(\mathbf{v})$
\end_inset

.
 Hence, the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 consists of linear functions 
\begin_inset Formula \begin{equation}
\mathbf{e}_{j}^{*}:\mathbf{x}\mapsto\left\langle \mathbf{e}_{j},\mathbf{x}\right\rangle .\end{equation}

\end_inset

 In contrast, determining the dual basis for a general (non-orthonormal)
 basis requires a complicated construction, such as that given in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Computing-the-dual}

\end_inset

.
 
\end_layout

\begin_layout Paragraph
Corollary:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 is an arbitrary basis in 
\begin_inset Formula $V$
\end_inset

, there exists a scalar product with respect to which 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis.
 
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{e}_{1}^{*},...,\mathbf{e}_{N}^{*}\right\} $
\end_inset

 be the dual basis in 
\begin_inset Formula $V^{*}$
\end_inset

.
 The required scalar product is defined by the bilinear form
\begin_inset Formula \[
S\left(\mathbf{u},\mathbf{v}\right)=\sum_{j=1}^{N}\mathbf{e}_{j}^{*}\left(\mathbf{u}\right)\,\mathbf{e}_{j}^{*}\left(\mathbf{v}\right).\]

\end_inset

 It is easy to show that the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is orthonormal with respect to the bilinear form 
\begin_inset Formula $S$
\end_inset

, namely 
\begin_inset Formula $S(\mathbf{e}_{i},\mathbf{e}_{j})=\delta_{ij}$
\end_inset

 (where 
\begin_inset Formula $\delta_{ij}$
\end_inset

 is the Kronecker symbol
\begin_inset LatexCommand \index{Kronecker symbol}

\end_inset

).
 It remains to prove that 
\begin_inset Formula $S$
\end_inset

 is nondegenerate and positive-definite.
 To prove the nondegeneracy: Suppose that 
\begin_inset Formula $\mathbf{u}\neq0$
\end_inset

; then we can decompose 
\begin_inset Formula $\mathbf{u}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, 
\begin_inset Formula \[
\mathbf{u}=\sum_{j=1}^{N}u_{j}\mathbf{e}_{j}.\]

\end_inset

There will be at least one nonzero coefficient 
\begin_inset Formula $u_{s}$
\end_inset

, thus 
\begin_inset Formula $S\left(\mathbf{e}_{s},\mathbf{u}\right)=u_{s}\neq0$
\end_inset

.
 To prove that 
\begin_inset Formula $S$
\end_inset

 is positive-definite, compute 
\begin_inset Formula \[
S\left(\mathbf{u},\mathbf{u}\right)=\sum_{j=1}^{N}u_{j}^{2}>0\]

\end_inset

as long as at least one coefficient 
\begin_inset Formula $u_{j}$
\end_inset

 is nonzero.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 be a basis in 
\begin_inset Formula $V$
\end_inset

, and let 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 be an orthonormal basis.
 Show that the linear operator
\begin_inset Formula \[
\hat{A}\mathbf{x}\equiv\sum_{i=1}^{N}\left\langle \mathbf{e}_{i},\mathbf{x}\right\rangle \mathbf{v}_{i}\]

\end_inset

maps the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

 into the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 with 
\begin_inset Formula $n<N$
\end_inset

 be a linearly independent set (not necessarily orthonormal).
 Show that this set can be completed to a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

, such that every vector 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 (
\begin_inset Formula $j=n+1,...,N$
\end_inset

) is orthogonal to every vector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,n$
\end_inset

).
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Follow the proof of Theorem\InsetSpace ~
1 but begin the Gram-Schmidt procedure at step
 
\begin_inset Formula $n$
\end_inset

, without orthogonalizing the vectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 be an orthonormal basis, and let 
\begin_inset Formula $v_{i}\equiv\left\langle \mathbf{v},\mathbf{e}_{i}\right\rangle $
\end_inset

.
 Show that
\begin_inset Formula \[
\left\langle \mathbf{v},\mathbf{v}\right\rangle =\sum_{i=1}^{N}\left|v_{i}\right|^{2}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
Consider the space of polynomials of degree at most 2 in the variable 
\begin_inset Formula $x$
\end_inset

.
 Let us define the scalar product of two polynomials 
\begin_inset Formula $p_{1}(x)$
\end_inset

 and 
\begin_inset Formula $p_{2}(x)$
\end_inset

 by the formula
\begin_inset Formula \[
\left\langle p_{1},p_{2}\right\rangle =\frac{1}{2}\int_{-1}^{1}p_{1}(x)p_{2}(x)dx.\]

\end_inset

Find a linear polynomial 
\begin_inset Formula $q_{1}(x)$
\end_inset

 and a quadratic polynomial 
\begin_inset Formula $q_{2}(x)$
\end_inset

 such that 
\begin_inset Formula $\left\{ \underbar{1},q_{1},q_{2}\right\} $
\end_inset

 is an orthonormal basis in this space.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Some of the properties of the scalar product are related in an essential
 way to the assumption that we are working with real numbers.
 As an example of what could go wrong if we naively extended the same results
 to complex vector spaces, let us consider a vector 
\begin_inset Formula $\mathbf{x}=\left(1,\text{i}\right)\in\mathbb{C}^{2}$
\end_inset

 and compute its scalar product with itself by the formula
\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{x}\right\rangle =x_{1}^{2}+x_{2}^{2}=1^{2}+\text{i}^{2}=0.\]

\end_inset

Hence we have a nonzero vector whose 
\begin_inset Quotes eld
\end_inset

length
\begin_inset Quotes erd
\end_inset

 is zero.
 To correct this problem when working with complex numbers, one usually
 considers a different kind of scalar product designed for complex vector
 spaces.
 For instance, the scalar product in 
\begin_inset Formula $\mathbb{C}^{n}$
\end_inset

 is defined by the formula
\begin_inset Formula \[
\left\langle (x_{1},...,x_{n}),\,(y_{1},...,y_{n})\right\rangle =\sum_{j=1}^{n}x_{j}^{*}y_{j},\]

\end_inset

 where 
\begin_inset Formula $x_{j}^{*}$
\end_inset

 is the complex conjugate of the component 
\begin_inset Formula $x_{j}$
\end_inset

.
 This scalar product is called 
\series bold
Hermitian
\series default

\begin_inset LatexCommand \index{Hermitian scalar product}

\end_inset

 and has the property
\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{y}\right\rangle =\left\langle \mathbf{y},\mathbf{x}\right\rangle ^{*},\]

\end_inset

that is, it is not symmetric but becomes complex-conjugated when the order
 of vectors is interchanged.
 According to this scalar product, we have for the vector 
\begin_inset Formula $\mathbf{x}=\left(1,\text{i}\right)\in\mathbb{C}^{2}$
\end_inset

 a sensible result, 
\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{x}\right\rangle =x_{1}^{*}x_{1}+x_{2}^{*}x_{2}=\left|1\right|^{2}+\left|\text{i}\right|^{2}=2.\]

\end_inset

 More generally, for 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset


\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{x}\right\rangle =\sum_{i=1}^{N}\left|x_{i}\right|^{2}>0.\]

\end_inset

 In this text, I will use this kind of scalar product only once (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Scalar-product-for-complex}

\end_inset

).
 
\end_layout

\begin_layout Subsection
Correspondence between vectors and covectors 
\begin_inset LatexCommand \label{sub:Correspondence-between-vectors}

\end_inset


\end_layout

\begin_layout Standard
Let us temporarily consider the scalar product 
\begin_inset Formula $\left\langle \mathbf{v},\mathbf{x}\right\rangle $
\end_inset

 as a function of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 for a 
\emph on
fixed
\emph default
 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 We may denote this function by 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

.
 So 
\begin_inset Formula $\mathbf{f}^{*}:\mathbf{x}\mapsto\left\langle \mathbf{v},\mathbf{x}\right\rangle $
\end_inset

 is a linear map 
\begin_inset Formula $V\rightarrow\mathbb{K}$
\end_inset

, i.e.\InsetSpace ~
(by definition) an element of 
\begin_inset Formula $V^{*}$
\end_inset

.
 Thus, a covector 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 is determined for every 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 Therefore we have defined a map 
\begin_inset Formula $V\rightarrow V^{*}$
\end_inset

 whereby a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is mapped to the covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

, which is defined by its action on vectors 
\begin_inset Formula $\mathbf{x}$
\end_inset

 as follows,
\begin_inset Formula \begin{equation}
\mathbf{v}\mapsto\mathbf{f}^{*};\quad\mathbf{f}^{*}\left(\mathbf{x}\right)\equiv\left\langle \mathbf{v},\mathbf{x}\right\rangle ,\quad\forall\mathbf{x}\in V.\label{eq:v vstar iso}\end{equation}

\end_inset

This map is an isomorphism between 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $V^{*}$
\end_inset

 (not a canonical one, since it depends on the choice of the scalar product),
 as the following statement shows.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
A nondegenerate bilinear form 
\begin_inset Formula $B:V\otimes V\rightarrow\mathbb{K}$
\end_inset

 defines an isomorphism 
\begin_inset Formula $V\rightarrow V^{*}$
\end_inset

 by the formula 
\begin_inset Formula $\mathbf{v}\mapsto\mathbf{f}^{*}$
\end_inset

, 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})\equiv B(\mathbf{v},\mathbf{x})$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We need to show that the map 
\begin_inset Formula $\hat{B}:V\rightarrow V^{*}$
\end_inset

 is a linear one-to-one (bijective) map.
 Linearity easily follows from the bilinearity of 
\begin_inset Formula $B$
\end_inset

.
 Bijectivity requires that no two different vectors are mapped into one
 and the same covector, and that any covector is an image of some vector.
 If two vectors 
\begin_inset Formula $\mathbf{u}\neq\mathbf{v}$
\end_inset

 are mapped into one covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 then 
\begin_inset Formula $\hat{B}\left(\mathbf{u}-\mathbf{v}\right)=\mathbf{f}^{*}-\mathbf{f}^{*}=0\in V^{*}$
\end_inset

, in other words, 
\begin_inset Formula $B\left(\mathbf{u}-\mathbf{v},\mathbf{x}\right)=0$
\end_inset

 for all 
\begin_inset Formula $\mathbf{x}$
\end_inset

.
 However, from the nondegeneracy of 
\begin_inset Formula $B$
\end_inset

 it follows that there exists 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 such that 
\begin_inset Formula $B\left(\mathbf{u}-\mathbf{v},\mathbf{x}\right)\neq0$
\end_inset

, which gives a contradiction.
 Finally, consider a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

.
 Its image 
\begin_inset Formula $\{\hat{B}\mathbf{v}_{1},...,\hat{B}\mathbf{v}_{N}\}$
\end_inset

 must be a linearly independent set in 
\begin_inset Formula $V^{*}$
\end_inset

 because a vanishing linear combination 
\begin_inset Formula \[
\sum_{k}\lambda_{k}\hat{B}\mathbf{v}_{k}=0=\hat{B}\big(\sum_{k}\lambda_{k}\mathbf{v}_{k}\big)\]

\end_inset

 entails 
\begin_inset Formula $\sum_{k}\lambda_{k}\mathbf{v}_{k}=0$
\end_inset

 (we just proved that a nonzero vector cannot be mapped into the zero covector).
 Therefore 
\begin_inset Formula $\{\hat{B}\mathbf{v}_{1},...,\hat{B}\mathbf{v}_{N}\}$
\end_inset

 is a basis in 
\begin_inset Formula $V^{*}$
\end_inset

, and any covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is a linear combination 
\begin_inset Formula \[
\mathbf{f}^{*}=\sum_{k}f_{k}^{*}\hat{B}\mathbf{v}_{k}=\hat{B}\big(\sum_{k}f_{k}^{*}\mathbf{v}_{k}\big).\]

\end_inset

 It follows that any vector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is an image of some vector from 
\begin_inset Formula $V$
\end_inset

.
 Thus 
\begin_inset Formula $\hat{B}$
\end_inset

 is a one-to-one map.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Let us show explicitly how to use the scalar product in order to map vectors
 to covectors and vice versa.
\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
We use the scalar product as the bilinear form 
\begin_inset Formula $B$
\end_inset

, so 
\begin_inset Formula $B(\mathbf{x},\mathbf{y})\equiv\left\langle \mathbf{x},\mathbf{y}\right\rangle $
\end_inset

.
 Suppose 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis.
 What is the covector 
\begin_inset Formula $\hat{B}\mathbf{e}_{1}$
\end_inset

? By Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:v vstar iso}

\end_inset

), this covector acts on an arbitrary vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 as 
\begin_inset Formula \[
\hat{B}\mathbf{e}_{1}(\mathbf{x})=\left\langle \mathbf{e}_{1},\mathbf{x}\right\rangle \equiv x_{1},\]

\end_inset

where 
\begin_inset Formula $x_{1}$
\end_inset

 is the first component of the vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{e}_{i}$
\end_inset

.
 We find that 
\begin_inset Formula $\hat{B}\mathbf{e}_{1}$
\end_inset

 is the same as the covector 
\begin_inset Formula $\mathbf{e}_{1}^{*}$
\end_inset

 from the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 dual to 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 is a given covector.
 What is its pre-image 
\begin_inset Formula $\hat{B}^{-1}\mathbf{f}^{*}\in V$
\end_inset

? It is a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{x})=\left\langle \mathbf{v},\mathbf{x}\right\rangle $
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
 In order to determine 
\begin_inset Formula $\mathbf{v}$
\end_inset

, let us substitute the basis vectors 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 instead of 
\begin_inset Formula $\mathbf{x}$
\end_inset

; we then obtain
\begin_inset Formula \[
\mathbf{f}^{*}(\mathbf{e}_{j})=\left\langle \mathbf{v},\mathbf{e}_{j}\right\rangle .\]

\end_inset

Since the covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is given, the numbers 
\begin_inset Formula $\mathbf{f}^{*}(\mathbf{e}_{j})$
\end_inset

 are known, and hence 
\begin_inset Formula \[
\mathbf{v}=\sum_{i=1}^{n}\mathbf{e}_{j}\left\langle \mathbf{v},\mathbf{e}_{j}\right\rangle =\sum_{i=1}^{N}\mathbf{e}_{j}\,\mathbf{f}^{*}(\mathbf{e}_{j}).\]

\end_inset


\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Bilinear forms can be viewed as elements of the space 
\begin_inset Formula $V^{*}\otimes V^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
All bilinear forms in 
\begin_inset Formula $V$
\end_inset

 constitute a vector space  canonically isomorphic to 
\begin_inset Formula $V^{*}\otimes V^{*}$
\end_inset

.
 A basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is orthonormal with respect to the bilinear form 
\begin_inset Formula \[
B\equiv\sum_{j=1}^{N}\mathbf{e}_{j}^{*}\otimes\mathbf{e}_{j}^{*}.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Left as exercise.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 be a basis in 
\begin_inset Formula $V$
\end_inset

 (not necessarily orthonormal), and denote by 
\begin_inset Formula $\left\{ \mathbf{v}_{i}^{*}\right\} $
\end_inset

 the dual basis to 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

.
 The dual basis is a basis in 
\begin_inset Formula $V^{*}$
\end_inset

.
 Now, we can map 
\begin_inset Formula $\left\{ \mathbf{v}_{i}^{*}\right\} $
\end_inset

 into a basis 
\begin_inset Formula $\left\{ \mathbf{u}_{i}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 using the covector-vector correspondence.
 Show that 
\begin_inset Formula $\left\langle \mathbf{v}_{i},\mathbf{u}_{j}\right\rangle =\delta_{ij}$
\end_inset

.
 Use this formula to show that this construction, applied to an orthonormal
 basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

, yields again the same basis 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\right\} $
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: If vectors 
\begin_inset Formula $\mathbf{x}$
\end_inset

 and 
\begin_inset Formula $\mathbf{y}$
\end_inset

 have the same scalar products 
\begin_inset Formula $\left\langle \mathbf{v}_{i},\mathbf{x}\right\rangle =\left\langle \mathbf{v}_{i},\mathbf{y}\right\rangle $
\end_inset

 (for 
\begin_inset Formula $i=1,...,N$
\end_inset

) then 
\begin_inset Formula $\mathbf{x}=\mathbf{y}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 be a given (not necessarily orthonormal) basis in 
\begin_inset Formula $V$
\end_inset

, and denote by 
\begin_inset Formula $\left\{ \mathbf{v}_{i}^{*}\right\} $
\end_inset

 the dual basis to 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

.
 Due to the vector-covector correspondence, 
\begin_inset Formula $\left\{ \mathbf{v}_{i}^{*}\right\} $
\end_inset

 is mapped into a basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

, so the tensor 
\begin_inset Formula \[
\hat{1}_{V}\equiv\sum_{i=1}^{N}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}\]

\end_inset

is mapped into a bilinear form 
\begin_inset Formula $B$
\end_inset

 acting as
\begin_inset Formula \[
B(\mathbf{x},\mathbf{y})=\sum_{i=1}^{N}\left\langle \mathbf{v}_{i},\mathbf{x}\right\rangle \left\langle \mathbf{u}_{i},\mathbf{y}\right\rangle .\]

\end_inset

 Show that this bilinear form coincides with the scalar product, i.e.
 
\begin_inset Formula \[
B(\mathbf{x},\mathbf{y})=\left\langle \mathbf{x},\mathbf{y}\right\rangle ,\quad\forall\mathbf{x},\mathbf{y}\in V.\]

\end_inset


\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Since 
\begin_inset Formula $\sum_{i=1}^{N}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}=\hat{1}_{V}$
\end_inset

, we have 
\begin_inset Formula $\sum_{i=1}^{N}\mathbf{v}_{i}\left\langle \mathbf{u}_{i},\mathbf{y}\right\rangle =\mathbf{y}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
If a scalar product 
\begin_inset Formula $\left\langle \cdot,\cdot\right\rangle $
\end_inset

 is given in 
\begin_inset Formula $V$
\end_inset

, a scalar product 
\begin_inset Formula $\left\langle \cdot,\cdot\right\rangle _{*}$
\end_inset

 can be constructed also in 
\begin_inset Formula $V^{*}$
\end_inset

 as follows: Given any two covectors 
\begin_inset Formula $\mathbf{f}^{*},\mathbf{g}^{*}\in V^{*}$
\end_inset

, we map them into vectors 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in V$
\end_inset

 and then define 
\begin_inset Formula \[
\left\langle \mathbf{f}^{*},\mathbf{g}^{*}\right\rangle _{*}\equiv\left\langle \mathbf{u},\mathbf{v}\right\rangle .\]

\end_inset

Show that this scalar product is bilinear and positive-definite if 
\begin_inset Formula $\left\langle \cdot,\cdot\right\rangle $
\end_inset

 is.
 For an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, show that the dual basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}^{*}\right\} $
\end_inset

 in 
\begin_inset Formula $V^{*}$
\end_inset

 is also orthonormal with respect to this scalar product.
\end_layout

\begin_layout Paragraph
Exercise 4:*
\end_layout

\begin_layout Standard
Consider the space 
\begin_inset Formula $\text{End}\, V$
\end_inset

 of linear operators in a vector space 
\begin_inset Formula $V$
\end_inset

 with 
\begin_inset Formula $\dim V\geq2$
\end_inset

.
 A bilinear form in the space 
\begin_inset Formula $\text{End}\, V$
\end_inset

 is defined as follows: for any two operators 
\begin_inset Formula $\hat{A},\hat{B}\in\text{End}\, V$
\end_inset

 we set 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}(\hat{A}\hat{B})$
\end_inset

.
 Show that 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle$
\end_inset

 is bilinear, symmetric, and nondegenerate, but 
\emph on
not
\emph default
 positive-def\SpecialChar \-
in\SpecialChar \-
ite.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: To show nondegeneracy, consider a nonzero operator 
\begin_inset Formula $\hat{A}$
\end_inset

; there exists 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 such that 
\begin_inset Formula $\hat{A}\mathbf{v}\neq0$
\end_inset

, and then one can choose 
\begin_inset Formula $\mathbf{f}^{*}\in V^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}(\hat{A}\mathbf{v})\neq0$
\end_inset

; then define 
\begin_inset Formula $\hat{B}\equiv\mathbf{v}\otimes\mathbf{f}^{*}$
\end_inset

 and verify that 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle$
\end_inset

 is nonzero.
 To show that the scalar product is not positive-definite, consider 
\begin_inset Formula $\hat{C}=\mathbf{v}\otimes\mathbf{f}^{*}+\mathbf{w}\otimes\mathbf{g}^{*}$
\end_inset

 and choose the vectors and the covectors appropriately so that 
\begin_inset Formula $\text{Tr}(\hat{C}^{2})<0$
\end_inset

.
 
\end_layout

\begin_layout Subsection
* Example: bilinear forms on 
\begin_inset Formula $V\oplus V^{*}$
\end_inset


\end_layout

\begin_layout Standard
If 
\begin_inset Formula $V$
\end_inset

 is a vector space then the space 
\begin_inset Formula $V\oplus V^{*}$
\end_inset

 has 
\emph on
two
\emph default
 canonically defined bilinear forms that could be useful under certain circumsta
nces (when positive-definiteness is not required).
 This construction is used in abstract algebra, and I mention it here as
 an example of a purely algebraic and basis-free definition of a bilinear
 form.
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left(\mathbf{u},\mathbf{f}^{*}\right)$
\end_inset

 and 
\begin_inset Formula $\left(\mathbf{v},\mathbf{g}^{*}\right)$
\end_inset

 are two elements of 
\begin_inset Formula $V\oplus V^{*}$
\end_inset

, a canonical bilinear form is defined by the formula
\begin_inset Formula \begin{equation}
\left\langle \left(\mathbf{u},\mathbf{f}^{*}\right),\left(\mathbf{v},\mathbf{g}^{*}\right)\right\rangle =\mathbf{f}^{*}\left(\mathbf{v}\right)+\mathbf{g}^{*}\left(\mathbf{u}\right).\label{eq:scalar product vv}\end{equation}

\end_inset


\end_layout

\begin_layout Standard
This formula does 
\emph on
not
\emph default
 define a positive-definite bilinear form because 
\begin_inset Formula \[
\left\langle \left(\mathbf{u},\mathbf{f}^{*}\right),\left(\mathbf{u},\mathbf{f}^{*}\right)\right\rangle =2\mathbf{f}^{*}\left(\mathbf{u}\right),\]

\end_inset

which can be positive, negative, or zero for some 
\begin_inset Formula $\left(\mathbf{u},\mathbf{f}^{*}\right)\in V\oplus V^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Statement: 
\end_layout

\begin_layout Standard
The bilinear form defined by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:scalar product vv}

\end_inset

) is symmetric and nondegenerate.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The symmetry is obvious from Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:scalar product vv}

\end_inset

).
 Then for any nonzero vector 
\begin_inset Formula $\left(\mathbf{u},\mathbf{f}^{*}\right)$
\end_inset

 we need to find a vector 
\begin_inset Formula $\left(\mathbf{v},\mathbf{g}^{*}\right)$
\end_inset

 such that 
\begin_inset Formula $\left\langle \left(\mathbf{u},\mathbf{f}^{*}\right),\left(\mathbf{v},\mathbf{g}^{*}\right)\right\rangle \neq0$
\end_inset

.
 By assumption, either 
\begin_inset Formula $\mathbf{u}\neq0$
\end_inset

 or 
\begin_inset Formula $\mathbf{f}^{*}\neq0$
\end_inset

 or both.
 If 
\begin_inset Formula $\mathbf{u}\neq0$
\end_inset

, there exists a covector 
\begin_inset Formula $\mathbf{g}^{*}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{g}^{*}\left(\mathbf{u}\right)\neq0$
\end_inset

; then we choose 
\begin_inset Formula $\mathbf{v}=0$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{f}^{*}\neq0$
\end_inset

, there exists a vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 such that 
\begin_inset Formula $\mathbf{f}^{*}\left(\mathbf{v}\right)\neq0$
\end_inset

, and then we choose 
\begin_inset Formula $\mathbf{g}^{*}=0$
\end_inset

.
 Thus the nondegeneracy is proved.
 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Alternatively, there is a canonically defined 
\emph on
antisymmetric
\emph default
 bilinear form (or 2-form),
\begin_inset Formula \[
\left\langle \left(\mathbf{u},\mathbf{f}^{*}\right),\left(\mathbf{v},\mathbf{g}^{*}\right)\right\rangle =\mathbf{f}^{*}\left(\mathbf{v}\right)-\mathbf{g}^{*}\left(\mathbf{u}\right).\]

\end_inset

This bilinear form is also nondegenerate (the same proof goes through as
 for the symmetric bilinear form above).
 Nevertheless, none of the two bilinear forms can serve as a scalar product:
 the former lacks positive-definiteness, the latter is antisymmetric rather
 than symmetric.
 
\end_layout

\begin_layout Subsection
Scalar product in index notation
\end_layout

\begin_layout Standard
In the index notation, the scalar product tensor 
\begin_inset Formula $S\in V^{*}\otimes V^{*}$
\end_inset

 is represented by a matrix 
\begin_inset Formula $S_{ij}$
\end_inset

 (with lower indices), and so the scalar product of two vectors is written
 as
\begin_inset Formula \[
\left\langle \mathbf{u},\mathbf{v}\right\rangle =u^{i}v^{j}S_{ij}.\]

\end_inset

Alternatively, one uses the vector-to-covector map 
\begin_inset Formula $\hat{S}:V\rightarrow V^{*}$
\end_inset

 and writes
\begin_inset Formula \[
\left\langle \mathbf{u},\mathbf{v}\right\rangle =\mathbf{u}^{*}\left(\mathbf{v}\right)=u_{i}v^{i},\]

\end_inset

where the covector 
\begin_inset Formula $\mathbf{u}^{*}$
\end_inset

 is defined by
\begin_inset Formula \[
\mathbf{u}^{*}\equiv\hat{S}\mathbf{u}\,\,\Rightarrow\,\, u_{i}\equiv S_{ij}u^{j}.\]

\end_inset

Typically, in the index notation one uses the same symbol to denote a vector,
 
\begin_inset Formula $u^{i}$
\end_inset

, and the corresponding covector, 
\begin_inset Formula $u_{i}$
\end_inset

.
 This is unambiguous as long as the scalar product is fixed.
\end_layout

\begin_layout Section
Orthogonal subspaces
\end_layout

\begin_layout Standard
From now on, we work in a real, 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space 
\begin_inset Formula $V$
\end_inset

 equipped with a scalar product.
\end_layout

\begin_layout Standard
We call two subspaces 
\begin_inset Formula $V_{1}\subset V$
\end_inset

 and 
\begin_inset Formula $V_{2}\subset V$
\end_inset

 
\series bold
orthogonal
\series default
 if every vector from 
\begin_inset Formula $V_{1}$
\end_inset

 is orthogonal to every vector from 
\begin_inset Formula $V_{2}$
\end_inset

.
 An important example of orthogonal subspaces is given by the construction
 of the orthogonal complement.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
The set of vectors orthogonal to a given vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is denoted by 
\begin_inset Formula $\mathbf{v}^{\perp}$
\end_inset

 and is called the 
\series bold
orthogonal
\series default
 
\series bold
complement
\series default

\begin_inset LatexCommand \index{orthogonal complement}

\end_inset

 of the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
 Written as a formula:
\begin_inset Formula \[
\mathbf{v}^{\perp}=\left\{ \mathbf{x}\,|\,\mathbf{x}\in V,\,\left\langle \mathbf{x},\mathbf{v}\right\rangle =0\right\} .\]

\end_inset

 Similarly, the set of vectors orthogonal to each of the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is denoted by 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Examples:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3},\mathbf{e}_{4}\right\} $
\end_inset

 is an orthonormal basis in 
\begin_inset Formula $V$
\end_inset

 then the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{1},\mathbf{e}_{3}\right\} $
\end_inset

 is orthogonal to the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{2},\mathbf{e}_{4}\right\} $
\end_inset

 because any linear combination of 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{3}$
\end_inset

 is orthogonal to any linear combination of 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{4}$
\end_inset

.
 The orthogonal complement of 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 is 
\begin_inset Formula \[
\mathbf{e}_{1}^{\perp}=\text{Span}\left\{ \mathbf{e}_{2},\mathbf{e}_{3},\mathbf{e}_{4}\right\} .\]

\end_inset


\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 The orthogonal complement 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
\end_inset

 is a subspace of 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 Every vector from the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 is orthogonal to every vector from 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
(1)
\series default
 If two vectors 
\begin_inset Formula $\mathbf{x},\mathbf{y}$
\end_inset

 belong to 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
\end_inset

, it means that 
\begin_inset Formula $\left\langle \mathbf{v}_{i},\mathbf{x}\right\rangle =0$
\end_inset

 and 
\begin_inset Formula $\left\langle \mathbf{v}_{i},\mathbf{y}\right\rangle =0$
\end_inset

 for 
\begin_inset Formula $i=1,...,n$
\end_inset

.
 Since the scalar product is linear, it follows that 
\begin_inset Formula \[
\left\langle \mathbf{v}_{i},\,\mathbf{x}+\lambda\mathbf{y}\right\rangle =0,\quad i=1,...,n.\]

\end_inset

Therefore, any linear combination of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 and 
\begin_inset Formula $\mathbf{y}$
\end_inset

 also belongs to 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
\end_inset

.
 This is the same as to say that 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
\end_inset

 is a subspace of 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
(2)
\series default
 Suppose 
\begin_inset Formula $\mathbf{x}\in\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
\end_inset

 and 
\begin_inset Formula $\mathbf{y}\in\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
\end_inset

; then we may express 
\begin_inset Formula $\mathbf{x}=\sum_{i=1}^{n}\lambda_{i}\mathbf{v}_{i}$
\end_inset

 with some coefficients 
\begin_inset Formula $\lambda_{i}$
\end_inset

, while 
\begin_inset Formula $\left\langle \mathbf{v}_{i},\mathbf{y}\right\rangle =0$
\end_inset

 for 
\begin_inset Formula $i=1,...,n$
\end_inset

.
 It follows from the linearity of the scalar product that 
\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{y}\right\rangle =\sum_{i=1}^{n}\left\langle \lambda_{i}\mathbf{v}_{i},\mathbf{y}\right\rangle =0.\]

\end_inset

Hence, every such 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is orthogonal to every such 
\begin_inset Formula $\mathbf{y}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $U\subset V$
\end_inset

 is a given subspace, the 
\series bold
orthogonal
\series default
 
\series bold
complement
\series default
 
\begin_inset Formula $U^{\perp}$
\end_inset

 is defined as the subspace of vectors that are orthogonal to every vector
 from 
\begin_inset Formula $U$
\end_inset

.
 (It is easy to see that all these vectors form a subspace.)
\end_layout

\begin_layout Paragraph
Exercise 1: 
\end_layout

\begin_layout Standard
Given a subspace 
\begin_inset Formula $U\subset V$
\end_inset

, we may choose a basis 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
\end_inset

 in 
\begin_inset Formula $U$
\end_inset

 and then construct the orthogonal complement 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} ^{\perp}$
\end_inset

 as defined above.
 Show that the subspace 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} ^{\perp}$
\end_inset

 is the same as 
\begin_inset Formula $U^{\perp}$
\end_inset

 independently of the choice of the basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 in 
\begin_inset Formula $U$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The space 
\begin_inset Formula $V$
\end_inset

 can be decomposed into a direct sum of orthogonal subspaces.
\end_layout

\begin_layout Standard

\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
Given a subspace 
\begin_inset Formula $U\subset V$
\end_inset

, we can construct its orthogonal complement 
\begin_inset Formula $U^{\perp}\subset V$
\end_inset

.
 Then 
\begin_inset Formula $V=U\oplus U^{\perp}$
\end_inset

; in other words, every vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 can be uniquely decomposed as 
\begin_inset Formula $\mathbf{x}=\mathbf{u}+\mathbf{w}$
\end_inset

 where 
\begin_inset Formula $\mathbf{u}\in U$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}\in U^{\perp}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Choose a basis 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
\end_inset

 of 
\begin_inset Formula $U$
\end_inset

.
 If 
\begin_inset Formula $n=N$
\end_inset

, the orthogonal complement 
\begin_inset Formula $U^{\perp}$
\end_inset

 is the zero-dimen\SpecialChar \-
sion\SpecialChar \-
al subspace, so there is nothing left to prove.
 If 
\begin_inset Formula $n<N$
\end_inset

, we may choose some additional vectors 
\begin_inset Formula $\mathbf{e}_{n+1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{N}$
\end_inset

 such that the set 
\begin_inset Formula $\{\mathbf{u}_{1},...,\mathbf{u}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\}$
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

 and 
\emph on
every
\emph default
 vector 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 is orthogonal to 
\emph on
every
\emph default
 vector 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

.
 Such a basis exists (see Exercise\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Orthonormal-bases}

\end_inset

).
 Then every vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 can be decomposed as
\begin_inset Formula \[
\mathbf{x}=\sum_{i=1}^{n}\lambda_{i}\mathbf{u}_{i}+\sum_{i=n+1}^{N}\mu_{i}\mathbf{e}_{i}\equiv\mathbf{u}+\mathbf{w}.\]

\end_inset

This decomposition provides the required decomposition of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 into two vectors.
 
\end_layout

\begin_layout Standard
It remains to show that this decomposition is unique (in particular, independent
 of the choice of bases).
 If there were two different such decompositions, say 
\begin_inset Formula $\mathbf{x}=\mathbf{u}+\mathbf{w}=\mathbf{u}^{\prime}+\mathbf{w}^{\prime}$
\end_inset

, we would have 
\begin_inset Formula \[
0\,{\lyxbuildrel!\above=}\left\langle \mathbf{u}-\mathbf{u}^{\prime}+\mathbf{w}-\mathbf{w}^{\prime},\mathbf{y}\right\rangle ,\quad\forall\mathbf{y}\in V.\]

\end_inset

Let us now show that 
\begin_inset Formula $\mathbf{u}=\mathbf{u}^{\prime}$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}=\mathbf{w}^{\prime}$
\end_inset

: Taking an arbitrary 
\begin_inset Formula $\mathbf{y}\in U$
\end_inset

, we have 
\begin_inset Formula $\left\langle \mathbf{w}-\mathbf{w}^{\prime},\mathbf{y}=0\right\rangle $
\end_inset

 and hence find that 
\begin_inset Formula $\mathbf{u}-\mathbf{u}^{\prime}$
\end_inset

 is orthogonal to 
\begin_inset Formula $\mathbf{y}$
\end_inset

.
 It means that the vector 
\begin_inset Formula $\mathbf{u}-\mathbf{u}^{\prime}\in U$
\end_inset

 is orthogonal to 
\emph on
every
\emph default
 vector 
\begin_inset Formula $\mathbf{y}\in U$
\end_inset

, e.g.\InsetSpace ~
to 
\begin_inset Formula $\mathbf{y}\equiv\mathbf{u}-\mathbf{u}^{\prime}$
\end_inset

; since the scalar product of a nonzero vector with itself cannot be equal
 to zero, we must have 
\begin_inset Formula $\mathbf{u}-\mathbf{u}^{\prime}=0$
\end_inset

.
 Similarly, by taking an arbitrary 
\begin_inset Formula $\mathbf{z}\in U^{\perp}$
\end_inset

, we find that 
\begin_inset Formula $\mathbf{w}-\mathbf{w}^{\prime}$
\end_inset

 is orthogonal to 
\begin_inset Formula $\mathbf{z}$
\end_inset

, hence we must have 
\begin_inset Formula $\mathbf{w}-\mathbf{w}^{\prime}=0$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
An important operation is the orthogonal projection onto a subspace.
\end_layout

\begin_layout Paragraph
Statement 3:
\end_layout

\begin_layout Standard
There are many projectors onto a given subspace 
\begin_inset Formula $U\subset V$
\end_inset

, but only one projector 
\begin_inset Formula $\hat{P}_{U}$
\end_inset

 that preserves the scalar product with vectors from 
\begin_inset Formula $U$
\end_inset

.
 Namely, there exists a unique linear operator 
\begin_inset Formula $\hat{P}_{U}$
\end_inset

, called the 
\series bold
orthogonal
\series default
 
\series bold
projector
\series default

\begin_inset LatexCommand \index{orthogonal projection}

\end_inset

 onto the subspace 
\begin_inset Formula $U$
\end_inset

, such that
\begin_inset Formula \begin{align*}
\hat{P}_{U}\hat{P}_{U}=\hat{P}_{U};\quad(\hat{P}_{U}\mathbf{x})\in U\:\text{for}\,\forall\mathbf{x}\in V & \quad\text{--- projection property};\\
\langle\hat{P}_{U}\mathbf{x},\mathbf{a}\rangle=\left\langle \mathbf{x},\mathbf{a}\right\rangle ,\;\forall\mathbf{x}\in V,\:\mathbf{a}\in U & \quad\text{--- preserves }\left\langle \cdot,\cdot\right\rangle .\end{align*}

\end_inset


\end_layout

\begin_layout Paragraph
Remark: 
\end_layout

\begin_layout Standard
The name 
\begin_inset Quotes eld
\end_inset

orthogonal projections
\begin_inset Quotes erd
\end_inset

 (this is quite different from 
\begin_inset Quotes eld
\end_inset

orthogonal transformations
\begin_inset Quotes erd
\end_inset

 defined in the next section!) comes from a geometric analogy: Projecting
 a three-dimen\SpecialChar \-
sion\SpecialChar \-
al vector orthogonally onto a plane means that the projection
 does not add to the vector any components parallel to the plane.
 The vector is 
\begin_inset Quotes eld
\end_inset

cast down
\begin_inset Quotes erd
\end_inset

 in the direction normal to the plane.
 The projection modifies a vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 by adding to it some vector orthogonal to the plane; this modification
 preserves the scalar products of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 with vectors in the plane.
 Perhaps a better word would be 
\begin_inset Quotes eld
\end_inset

normal projection
\begin_inset LatexCommand \index{normal projection}

\end_inset

.
\begin_inset Quotes erd
\end_inset


\end_layout

\begin_layout Paragraph
Proof:
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
\end_inset

 is a basis in the subspace 
\begin_inset Formula $U$
\end_inset

, and assume that 
\begin_inset Formula $n<N$
\end_inset

 (or else 
\begin_inset Formula $U=V$
\end_inset

 and there exists only one projector onto 
\begin_inset Formula $U$
\end_inset

, namely the identity operator, which preserves the scalar product, so there
 is nothing left to prove).
 We may complete the basis 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
\end_inset

 of 
\begin_inset Formula $U$
\end_inset

 to a basis 
\begin_inset Formula $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
\end_inset

 in the entire space 
\begin_inset Formula $V$
\end_inset

.
 Let 
\begin_inset Formula $\left\{ \mathbf{u}_{1}^{*},...,\mathbf{u}_{n}^{*},\mathbf{e}_{n+1}^{*},...,\mathbf{e}_{N}^{*}\right\} $
\end_inset

 be the corresponding dual basis.
 Then a projector onto 
\begin_inset Formula $U$
\end_inset

 can be defined by
\begin_inset Formula \[
\hat{P}=\sum_{i=1}^{n}\mathbf{u}_{i}\otimes\mathbf{u}_{i}^{*},\]

\end_inset

that is, 
\begin_inset Formula $\hat{P}\mathbf{x}$
\end_inset

 simply omits the components of the vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 parallel to any 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 (
\begin_inset Formula $j=n+1,...,N$
\end_inset

).
 For example, the operator 
\begin_inset Formula $\hat{P}$
\end_inset

 maps the linear combination 
\begin_inset Formula $\lambda\mathbf{u}_{1}+\mu\mathbf{e}_{n+1}$
\end_inset

 to 
\begin_inset Formula $\lambda\mathbf{u}_{1}$
\end_inset

, omitting the component parallel to 
\begin_inset Formula $\mathbf{e}_{n+1}$
\end_inset

.
 There are infinitely many ways of choosing 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\,|\, j=n+1,...,N\right\} $
\end_inset

; for instance, one can add to 
\begin_inset Formula $\mathbf{e}_{n+1}$
\end_inset

 an arbitrary linear combination of 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 and obtain another possible choice of 
\begin_inset Formula $\mathbf{e}_{n+1}$
\end_inset

.
 Hence there are infinitely many possible projectors onto 
\begin_inset Formula $U$
\end_inset

.
 
\end_layout

\begin_layout Standard
While all these projectors satisfy the projection property, not all of them
 preserve the scalar product.
 The orthogonal projector is the one obtained from a particular completion
 of the basis, namely such that every vector 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 is orthogonal to every vector 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

.
 Such a basis exists (see Exercise\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Orthonormal-bases}

\end_inset

).
 Using the construction shown above, we obtain a projector that we will
 denote 
\begin_inset Formula $\hat{P}_{U}$
\end_inset

.
 We will now show that this projector is unique and satisfies the scalar
 product preservation property.
\end_layout

\begin_layout Standard
The scalar product is preserved for the following reason.
 For any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

, we have a unique decomposition 
\begin_inset Formula $\mathbf{x}=\mathbf{u}+\mathbf{w}$
\end_inset

, where 
\begin_inset Formula $\mathbf{u}\in U$
\end_inset

 and 
\begin_inset Formula $\mathbf{w}\in U^{\perp}$
\end_inset

.
 The definition of 
\begin_inset Formula $\hat{P}_{U}$
\end_inset

 guarantees that 
\begin_inset Formula $\hat{P}_{U}\mathbf{x}=\mathbf{u}$
\end_inset

.
 Hence 
\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{a}\right\rangle =\left\langle \mathbf{u}+\mathbf{w},\mathbf{a}\right\rangle =\left\langle \mathbf{u},\mathbf{a}\right\rangle =\langle\hat{P}_{U}\mathbf{x},\mathbf{a}\rangle,\quad\forall\mathbf{x}\in V,\:\mathbf{a}\in U.\]

\end_inset


\end_layout

\begin_layout Standard
Now the uniqueness: If there were two projectors 
\begin_inset Formula $\hat{P}_{U}$
\end_inset

 and 
\begin_inset Formula $\hat{P}_{U}^{\prime}$
\end_inset

, both satisfying the scalar product preservation property, then 
\begin_inset Formula \[
\langle(\hat{P}_{U}-\hat{P}_{U}^{\prime})\mathbf{x},\mathbf{u}\rangle=0\quad\forall\mathbf{x}\in V,\:\mathbf{u}\in U.\]

\end_inset

For a given 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

, the vector 
\begin_inset Formula $\mathbf{y}\equiv(\hat{P}_{U}-\hat{P}_{U}^{\prime})\mathbf{x}$
\end_inset

 belongs to 
\begin_inset Formula $U$
\end_inset

 and is orthogonal to every vector in 
\begin_inset Formula $U$
\end_inset

.
 Therefore 
\begin_inset Formula $\mathbf{y}=0$
\end_inset

.
 It follows that 
\begin_inset Formula $(\hat{P}_{U}-\hat{P}_{U}^{\prime})\mathbf{x}=0$
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

, i.e.\InsetSpace ~
the operator 
\begin_inset Formula $(\hat{P}_{U}-\hat{P}_{U}^{\prime})$
\end_inset

 is equal to zero.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
Given a nonzero vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

, let us construct the orthogonal projector onto the subspace 
\begin_inset Formula $\mathbf{v}^{\perp}$
\end_inset

.
 It seems (judging from the proof of Statement\InsetSpace ~
3) that we need to chose a
 basis in 
\begin_inset Formula $\mathbf{v}^{\perp}$
\end_inset

.
 However, the projector (as we know) is in fact independent of the choice
 of the basis and can be constructed as follows:
\begin_inset Formula \[
\hat{P}_{\mathbf{v}^{\perp}}\mathbf{x}\equiv\mathbf{x}-\mathbf{v}\frac{\left\langle \mathbf{v},\mathbf{x}\right\rangle }{\left\langle \mathbf{v},\mathbf{v}\right\rangle }.\]

\end_inset

It is easy to check that this is indeed a projector onto 
\begin_inset Formula $\mathbf{v}^{\perp}$
\end_inset

, namely we can check that 
\begin_inset Formula $\langle\hat{P}_{\mathbf{v}^{\perp}}\mathbf{x},\mathbf{v}\rangle=0$
\end_inset

 for all 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

, and that 
\begin_inset Formula $\mathbf{v}^{\perp}$
\end_inset

 is an invariant subspace under 
\begin_inset Formula $\hat{P}_{\mathbf{v}^{\perp}}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Construct an orthogonal projector 
\begin_inset Formula $\hat{P}_{\mathbf{v}}$
\end_inset

 onto the space spanned by the vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Answer
\emph default
: 
\begin_inset Formula $\hat{P}_{\mathbf{v}}\mathbf{x}=\mathbf{v}\frac{\left\langle \mathbf{v},\mathbf{x}\right\rangle }{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$
\end_inset

.
\end_layout

\begin_layout Subsection
Affine hyperplanes
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\mathbf{n}\in V$
\end_inset

 is a given vector and 
\begin_inset Formula $\alpha$
\end_inset

 a given number.
 The set of vectors 
\begin_inset Formula $\mathbf{x}$
\end_inset

 satisfying the equation
\begin_inset Formula \[
\left\langle \mathbf{n},\mathbf{x}\right\rangle =\alpha\]

\end_inset

 is called an 
\series bold
affine
\series default
 
\series bold
hyperplane
\series default

\begin_inset LatexCommand \index{affine hyperplane}

\end_inset

.
 Note that an affine hyperplane is not necessarily a subspace of 
\begin_inset Formula $V$
\end_inset

 because 
\begin_inset Formula $\mathbf{x}=0$
\end_inset

 does not belong to the hyperplane when 
\begin_inset Formula $\alpha\neq0$
\end_inset

.
\end_layout

\begin_layout Standard
The geometric interpretation of a hyperplane follows from the fact that
 the difference of any two vectors 
\begin_inset Formula $\mathbf{x}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{x}_{2}$
\end_inset

, both belonging to the hyperplane, satisfies
\begin_inset Formula \[
\left\langle \mathbf{n},\mathbf{x}_{1}-\mathbf{x}_{2}\right\rangle =0.\]

\end_inset

Hence, all vectors in the hyperplane can be represented as a sum of one
 such vector, say 
\begin_inset Formula $\mathbf{x}_{0}$
\end_inset

, and an arbitrary vector orthogonal to 
\begin_inset Formula $\mathbf{n}$
\end_inset

.
 Geometrically, this means that the hyperplane is orthogonal to the vector
 
\begin_inset Formula $\mathbf{n}$
\end_inset

 and may be shifted from the origin.
\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
Let us consider an affine hyperplane given by the equation 
\begin_inset Formula $\left\langle \mathbf{n},\mathbf{x}\right\rangle =1$
\end_inset

, and let us compute the shortest vector belonging to the hyperplane.
 Any vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 can be written as
\begin_inset Formula \[
\mathbf{x}=\lambda\mathbf{n}+\mathbf{b},\]

\end_inset

where 
\begin_inset Formula $\mathbf{b}$
\end_inset

 is some vector such that 
\begin_inset Formula $\left\langle \mathbf{n},\mathbf{b}\right\rangle =0$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{x}$
\end_inset

 belongs to the hyperplane, we have
\begin_inset Formula \[
1=\left\langle \mathbf{n},\mathbf{x}\right\rangle =\left\langle \mathbf{n},\lambda\mathbf{n}+\mathbf{b}\right\rangle =\lambda\left\langle \mathbf{n},\mathbf{n}\right\rangle .\]

\end_inset

Hence, we must have
\begin_inset Formula \[
\lambda=\frac{1}{\left\langle \mathbf{n},\mathbf{n}\right\rangle }.\]

\end_inset

The squared length of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is then computed as
\begin_inset Formula \begin{align*}
\left\langle \mathbf{x},\mathbf{x}\right\rangle  & =\lambda^{2}\left\langle \mathbf{n},\mathbf{n}\right\rangle +\left\langle \mathbf{b},\mathbf{b}\right\rangle \\
 & =\frac{1}{\left\langle \mathbf{n},\mathbf{n}\right\rangle }+\left\langle \mathbf{b},\mathbf{b}\right\rangle \geq\frac{1}{\left\langle \mathbf{n},\mathbf{n}\right\rangle }.\end{align*}

\end_inset

The inequality becomes an equality when 
\begin_inset Formula $\mathbf{b}=0$
\end_inset

, i.e.\InsetSpace ~
when 
\begin_inset Formula $\mathbf{x}=\lambda\mathbf{n}$
\end_inset

.
 Therefore, the smallest possible length of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is equal to 
\begin_inset Formula $\sqrt{\lambda}$
\end_inset

, which is equal to the inverse length of 
\begin_inset Formula $\mathbf{n}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Compute the shortest distance between two parallel hyperplanes defined by
 equations 
\begin_inset Formula $\left\langle \mathbf{n},\mathbf{x}\right\rangle =\alpha$
\end_inset

 and 
\begin_inset Formula $\left\langle \mathbf{n},\mathbf{x}\right\rangle =\beta$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula \[
\frac{\left|\alpha-\beta\right|}{\sqrt{\left\langle \mathbf{n},\mathbf{n}\right\rangle }}.\]

\end_inset


\end_layout

\begin_layout Section
Orthogonal transformations
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is called an 
\series bold
orthogonal transformation
\series default
 with respect to the scalar product 
\begin_inset Formula $\left\langle ,\right\rangle $
\end_inset

 if 
\begin_inset Formula \[
\langle\hat{A}\mathbf{v},\hat{A}\mathbf{w}\rangle=\left\langle \mathbf{v},\mathbf{w}\right\rangle ,\quad\forall\mathbf{v},\mathbf{w}\in V.\]

\end_inset

(We use the words 
\begin_inset Quotes eld
\end_inset

transformation
\begin_inset Quotes erd
\end_inset

 and 
\begin_inset Quotes eld
\end_inset

operator
\begin_inset Quotes erd
\end_inset

 interchangeably since we are always working within the same vector space
 
\begin_inset Formula $V$
\end_inset

.)
\end_layout

\begin_layout Subsection
Examples and properties
\begin_inset LatexCommand \label{sub:examples-Orthogonal-transformations}

\end_inset


\end_layout

\begin_layout Paragraph
Example 1: 
\end_layout

\begin_layout Standard
Rotation by a fixed angle is an orthogonal transformation in a Euclidean
 plane.
 It is easy to see that such a rotation preserves scalar products (angles
 and lengths are preserved by a rotation).
 Let us define this transformation by a formula.
 If 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

 is a positively oriented orthonormal basis in the Euclidean plane, then
 we define the 
\series bold
rotation
\series default

\begin_inset LatexCommand \index{rotation}

\end_inset

 
\begin_inset Formula $\hat{R}_{\alpha}$
\end_inset

 of the plane by angle 
\begin_inset Formula $\alpha$
\end_inset

 in the counter-clockwise direction by 
\begin_inset Formula \begin{align*}
\hat{R}_{\alpha}\mathbf{e}_{1} & \equiv\mathbf{e}_{1}\cos\alpha-\mathbf{e}_{2}\sin\alpha,\\
\hat{R}_{\alpha}\mathbf{e}_{2} & \equiv\mathbf{e}_{1}\sin\alpha+\mathbf{e}_{2}\cos\alpha.\end{align*}

\end_inset

One can quickly verify that the transformed basis 
\begin_inset Formula $\{\hat{R}_{\alpha}\mathbf{e}_{1},\hat{R}_{\alpha}\mathbf{e}_{2}\}$
\end_inset

 is also an orthonormal basis; for example, 
\begin_inset Formula \[
\langle\hat{R}_{\alpha}\mathbf{e}_{1},\hat{R}_{\alpha}\mathbf{e}_{1}\rangle=\left\langle \mathbf{e}_{1},\mathbf{e}_{1}\right\rangle \cos^{2}\alpha+\left\langle \mathbf{e}_{2},\mathbf{e}_{2}\right\rangle \sin^{2}\alpha=1.\]

\end_inset


\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Mirror reflections are also orthogonal transformations.
 A mirror reflection with respect to the basis vector 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 maps a vector 
\begin_inset Formula $\mathbf{x}=\lambda_{1}\mathbf{e}_{1}+\lambda_{2}\mathbf{e}_{2}+...+\lambda_{N}\mathbf{e}_{N}$
\end_inset

 into 
\begin_inset Formula $\hat{M}_{\mathbf{e}_{1}}\mathbf{x}=-\lambda_{1}\mathbf{e}_{1}+\lambda_{2}\mathbf{e}_{2}+...+\lambda_{N}\mathbf{e}_{N}$
\end_inset

, i.e.\InsetSpace ~
only the first coefficient changes sign.
 A mirror reflection with respect to an arbitrary axis 
\begin_inset Formula $\mathbf{n}$
\end_inset

 (where 
\begin_inset Formula $\mathbf{n}$
\end_inset

 is a 
\series bold
unit
\series default
 vector, i.e.\InsetSpace ~

\begin_inset Formula $\left\langle \mathbf{n},\mathbf{n}\right\rangle =1$
\end_inset

) can be defined as the transformation
\begin_inset Formula \[
\hat{M}_{\mathbf{n}}\mathbf{x}\equiv\mathbf{x}-2\left\langle \mathbf{n},\mathbf{x}\right\rangle \mathbf{n}.\]

\end_inset

This transformation is interpreted geometrically as mirror reflection with
 respect to the hyperplane 
\begin_inset Formula $\mathbf{n}^{\perp}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
An interesting fact is that orthogonality 
\emph on
entails
\emph default
 linearity.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
If a map 
\begin_inset Formula $\hat{A}:V\rightarrow V$
\end_inset

 is orthogonal then it is a linear map, 
\begin_inset Formula $\hat{A}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\hat{A}\mathbf{u}+\lambda\hat{A}\mathbf{v}$
\end_inset

.
\begin_inset Note Note
status collapsed

\begin_layout Standard
Lemma 1:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis and 
\begin_inset Formula $\hat{A}$
\end_inset

 is an orthogonal operator then the set 
\begin_inset Formula $\{\hat{A}\mathbf{e}_{j}\}$
\end_inset

 is also an orthonormal basis.
\end_layout

\end_inset


\begin_inset Note Note
status collapsed

\begin_layout Standard
Proof of Lemma 1:
\end_layout

\begin_layout Standard
We have
\begin_inset Formula \[
\langle\hat{A}\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle=\left\langle \mathbf{e}_{i},\mathbf{e}_{j}\right\rangle =\delta_{ij}.\]

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Consider an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

.
 The set 
\begin_inset Formula $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{N}\}$
\end_inset

 is orthonormal because 
\begin_inset Formula \[
\langle\hat{A}\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle=\left\langle \mathbf{e}_{i},\mathbf{e}_{j}\right\rangle =\delta_{ij}.\]

\end_inset

By Theorem\InsetSpace ~
1 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Vector-spaces-with-scalar-product}

\end_inset

 the set 
\begin_inset Formula $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{N}\}$
\end_inset

 is linearly independent and is therefore an 
\emph on
orthonormal
\emph default
 
\emph on
basis
\emph default
 in 
\begin_inset Formula $V$
\end_inset

.
 Consider an arbitrary vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and its image 
\begin_inset Formula $\hat{A}\mathbf{v}$
\end_inset

 after the transformation 
\begin_inset Formula $\hat{A}$
\end_inset

.
 By Theorem\InsetSpace ~
2 of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Orthonormal-bases}

\end_inset

, we can decompose 
\begin_inset Formula $\mathbf{v}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and 
\begin_inset Formula $\hat{A}\mathbf{v}$
\end_inset

 in the basis 
\begin_inset Formula $\{\hat{A}\mathbf{e}_{j}\}$
\end_inset

 as follows, 
\begin_inset Formula \begin{align*}
\mathbf{v} & =\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle \mathbf{e}_{j},\\
\hat{A}\mathbf{v} & =\sum_{j=1}^{N}\langle\hat{A}\mathbf{e}_{j},\hat{A}\mathbf{v}\rangle\,\hat{A}\mathbf{e}_{j}=\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle \hat{A}\mathbf{e}_{j}.\end{align*}

\end_inset

Any other vector 
\begin_inset Formula $\mathbf{u}\in V$
\end_inset

 can be similarly decomposed, and so we obtain
\begin_inset Formula \begin{align*}
\hat{A}\left(\mathbf{u}+\lambda\mathbf{v}\right) & =\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{u}+\lambda\mathbf{v}\right\rangle \,\hat{A}\mathbf{e}_{j}\\
 & =\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{u}\right\rangle \hat{A}\mathbf{e}_{j}+\lambda\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle \hat{A}\mathbf{e}_{j}\\
 & =\hat{A}\mathbf{u}+\lambda\hat{A}\mathbf{v},\quad\forall\mathbf{u},\mathbf{v}\in V,\:\lambda\in\mathbb{K},\end{align*}

\end_inset

showing that the map 
\begin_inset Formula $\hat{A}$
\end_inset

 is linear.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
An orthogonal operator always maps an orthonormal basis into another orthonormal
 basis (this was shown in the proof of Statement\InsetSpace ~
1).
 The following exercise shows that the converse is also true.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Prove that a transformation is orthogonal if and only if it maps 
\emph on
some
\emph default
 orthonormal basis into another orthonormal basis.
 Deduce that any orthogonal transformation is invertible.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
If a linear transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies 
\begin_inset Formula $\langle\hat{A}\mathbf{x},\hat{A}\mathbf{x}\rangle=\left\langle \mathbf{x},\mathbf{x}\right\rangle $
\end_inset

 for all 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

, show that 
\begin_inset Formula $\hat{A}$
\end_inset

 is an orthogonal transformation.
 (This shows how to check more easily whether a given linear transformation
 is orthogonal.) 
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Substitute 
\begin_inset Formula $\mathbf{x}=\mathbf{y}+\mathbf{z}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Show that for any two orthonormal bases 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\,|\, j=1,...,N\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\,|\, j=1,...,N\right\} $
\end_inset

, there exists an orthogonal operator 
\begin_inset Formula $\hat{R}$
\end_inset

 that maps the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 into the basis 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\right\} $
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $\hat{R}\mathbf{e}_{j}=\mathbf{f}_{j}$
\end_inset

 for 
\begin_inset Formula $j=1,...,N$
\end_inset

.
 
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: A linear operator mapping 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 into 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\right\} $
\end_inset

 exists; show that this operator is orthogonal.
\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
Prove that 
\begin_inset Formula $\hat{M}_{\mathbf{n}}$
\end_inset

 (as defined in Example\InsetSpace ~
2) is an orthogonal transformation by showing that
 
\begin_inset Formula $\langle\hat{M}_{\mathbf{n}}\mathbf{x},\hat{M}_{\mathbf{n}}\mathbf{x}\rangle=\left\langle \mathbf{x},\mathbf{x}\right\rangle $
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 5:
\end_layout

\begin_layout Standard
Consider the orthogonal transformations 
\begin_inset Formula $\hat{R}_{\alpha}$
\end_inset

 and 
\begin_inset Formula $\hat{M}_{\mathbf{n}}$
\end_inset

 and an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
\end_inset

 as defined in Examples\InsetSpace ~
1 and 2.
 Show by a direct calculation that 
\begin_inset Formula \[
(\hat{R}_{\alpha}\mathbf{e}_{1})\wedge(\hat{R}_{\alpha}\mathbf{e}_{2})=\mathbf{e}_{1}\wedge\mathbf{e}_{2}\]

\end_inset

 and that 
\begin_inset Formula \[
(\hat{M}_{\mathbf{n}}\mathbf{e}_{1})\wedge(\hat{M}_{\mathbf{n}}\mathbf{e}_{2})=-\mathbf{e}_{1}\wedge\mathbf{e}_{2}.\]

\end_inset

This is the same as to say that 
\begin_inset Formula $\det\hat{R}_{\alpha}=1$
\end_inset

 and 
\begin_inset Formula $\det\hat{M}_{\mathbf{n}}=-1$
\end_inset

.
 This indicates that rotations preserve orientation while mirror reflections
 reverse orientation.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Transposition
\end_layout

\begin_layout Standard
Another way to characterize orthogonal transformations is by using transposed
 operators
\begin_inset LatexCommand \index{transposed operator}

\end_inset

.
 Recall that the canonically defined transpose to 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula $\hat{A}^{T}:V^{*}\rightarrow V^{*}$
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{par:Definition:transpose}

\end_inset

, p.\InsetSpace ~

\begin_inset LatexCommand \pageref{par:Definition:transpose}

\end_inset

 for a definition).
 In a (finite-dimen\SpecialChar \-
sion\SpecialChar \-
al) space with a scalar product, the one-to-one correspon
dence between 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $V^{*}$
\end_inset

 means that 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 can be identified with some operator acting in 
\begin_inset Formula $V$
\end_inset

 (rather than in 
\begin_inset Formula $V^{*}$
\end_inset

).
 Let us also denote that operator by 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 and call it the 
\series bold
transposed
\begin_inset LatexCommand \index{transposed operator}

\end_inset


\series default
 to 
\begin_inset Formula $\hat{A}$
\end_inset

.
 (This transposition is not canonical but depends on the scalar product.)
 We can formulate the definition of 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 as follows.
 
\end_layout

\begin_layout Paragraph
Definition 1:
\end_layout

\begin_layout Standard
In a finite-dimen\SpecialChar \-
sion\SpecialChar \-
al space with a scalar product, the 
\series bold
transposed
\series default
 operator 
\begin_inset Formula $\hat{A}^{T}:V\rightarrow V$
\end_inset

 is defined by
\begin_inset Formula \[
\langle\hat{A}^{T}\mathbf{x},\mathbf{y}\rangle\equiv\langle\mathbf{x},\hat{A}\mathbf{y}\rangle,\quad\forall\mathbf{x},\mathbf{y}\in V.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Show that 
\begin_inset Formula $(\hat{A}\hat{B})^{T}=\hat{B}^{T}\hat{A}^{T}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}$
\end_inset

 is orthogonal then 
\begin_inset Formula $\hat{A}^{T}\hat{A}=\hat{1}_{V}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Proof: 
\end_layout

\begin_layout Standard
By definition of orthogonal transformation, 
\begin_inset Formula $\langle\hat{A}\mathbf{x},\hat{A}\mathbf{y}\rangle=\langle\mathbf{x},\mathbf{y}\rangle$
\end_inset

 for all 
\begin_inset Formula $\mathbf{x},\mathbf{y}\in V$
\end_inset

.
 Then we use the definition of 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 and obtain 
\begin_inset Formula \[
\langle\mathbf{x},\mathbf{y}\rangle=\langle\hat{A}\mathbf{x},\hat{A}\mathbf{y}\rangle=\langle\hat{A}^{T}\hat{A}\mathbf{x},\mathbf{y}\rangle.\]

\end_inset

Since this holds for all 
\begin_inset Formula $\mathbf{x},\mathbf{y}\in V$
\end_inset

, we conclude that 
\begin_inset Formula $\hat{A}^{T}\hat{A}=\hat{1}_{V}$
\end_inset

 (see Exercise\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Vector-spaces-with-scalar-product}

\end_inset

).
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Let us now see how transposed operators appear in matrix form.
 Suppose 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis in 
\begin_inset Formula $V$
\end_inset

; then the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be represented by some matrix 
\begin_inset Formula $A_{ij}$
\end_inset

 in this basis.
 Then the operator 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 is represented by the matrix 
\begin_inset Formula $A_{ji}$
\end_inset

 in the same basis (i.e.\InsetSpace ~
by the matrix transpose of 
\begin_inset Formula $A_{ij}$
\end_inset

), as shown in the following exercise.
 (Note that the operator 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 is 
\emph on
not
\emph default
 represented by the transposed matrix when the basis is not orthonormal.)
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Show that the operator 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 is represented by the transposed matrix 
\begin_inset Formula $A_{ji}$
\end_inset

 in the same (orthonormal) basis in which the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has the matrix 
\begin_inset Formula $A_{ij}$
\end_inset

.
 Deduce that 
\begin_inset Formula $\det\hat{A}=\det\,(\hat{A}^{T})$
\end_inset

.
 
\end_layout

\begin_layout Subparagraph
Solution:
\end_layout

\begin_layout Standard
The matrix element 
\begin_inset Formula $A_{ij}$
\end_inset

 with respect to an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is the coefficient in the tensor decomposition 
\begin_inset Formula $\hat{A}=\sum_{i,j=1}^{N}A_{ij}\mathbf{e}_{i}\otimes\mathbf{e}_{j}^{*}$
\end_inset

 and can be computed using the scalar product as
\begin_inset Formula \[
A_{ij}=\langle\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle.\]

\end_inset

The transposed operator satisfies 
\begin_inset Formula \[
\langle\mathbf{e}_{i},\hat{A}^{T}\mathbf{e}_{j}\rangle=\langle\hat{A}\mathbf{e}_{i},\mathbf{e}_{j}\rangle=A_{ji}.\]

\end_inset

 Hence, the matrix elements of 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

 are 
\begin_inset Formula $A_{ji}$
\end_inset

, i.e.\InsetSpace ~
the matrix elements of the transposed matrix.
 We know that 
\begin_inset Formula $\det(A_{ji})=\det(A_{ij})$
\end_inset

.
 If the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is not orthonormal, the property 
\begin_inset Formula $A_{ij}=\langle\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle$
\end_inset

 does not hold and the argument fails.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
We have seen in Exercise\InsetSpace ~
5 (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:examples-Orthogonal-transformations}

\end_inset

) that the determinants of some orthogonal transformations were equal to
 
\begin_inset Formula $+1$
\end_inset

 or 
\begin_inset Formula $-1$
\end_inset

.
 This is, in fact, a general property.
\end_layout

\begin_layout Paragraph
Statement\InsetSpace ~
2:
\end_layout

\begin_layout Standard
The determinant of an orthogonal transformation is equal to 
\begin_inset Formula $1$
\end_inset

 or to 
\begin_inset Formula $-1$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
An orthogonal transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies 
\begin_inset Formula $\hat{A}^{T}\hat{A}=\hat{1}_{V}$
\end_inset

.
 Compute the determinant of both sides; since the determinant of the transposed
 operator is equal to that of the original operator, we have 
\begin_inset Formula $(\det\hat{A})^{2}=1$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Section
Applications of exterior product
\end_layout

\begin_layout Standard
We will now apply the exterior product techniques to spaces with a scalar
 product and obtain several important results.
 
\end_layout

\begin_layout Subsection
Orthonormal bases, volume, and 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 
\end_layout

\begin_layout Standard
If an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is chosen, we can consider a special tensor in 
\begin_inset Formula $\wedge^{N}V$
\end_inset

, namely
\begin_inset Formula \[
\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset

Since 
\begin_inset Formula $\omega\neq0$
\end_inset

, the tensor 
\begin_inset Formula $\omega$
\end_inset

 can be considered a basis tensor in the one-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.
 This choice allows one to identify the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 with scalars (the one-dimen\SpecialChar \-
sion\SpecialChar \-
al space of numbers, 
\begin_inset Formula $\mathbb{K}$
\end_inset

).
 Namely, any tensor 
\begin_inset Formula $\tau\in\wedge^{N}V$
\end_inset

 must be proportional to 
\begin_inset Formula $\omega$
\end_inset

 (since 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is one-dimen\SpecialChar \-
sion\SpecialChar \-
al), so 
\begin_inset Formula $\tau=t\omega$
\end_inset

 where 
\begin_inset Formula $t\in\mathbb{K}$
\end_inset

 is some number.
 The number 
\begin_inset Formula $t$
\end_inset

 corresponds uniquely to each 
\begin_inset Formula $\tau\in\wedge^{N}V$
\end_inset

.
\end_layout

\begin_layout Standard
As we have seen before, tensors from 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 have the interpretation of oriented volumes.
 In this interpretation, 
\begin_inset Formula $\omega$
\end_inset

 represents the volume of a parallelepiped spanned by the unit basis vectors
 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 Since the vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 are orthonormal and have unit length, it is reasonable to assume that they
 span a 
\emph on
unit
\emph default
 volume.
 Hence, the oriented volume represented by 
\begin_inset Formula $\omega$
\end_inset

 is equal to 
\begin_inset Formula $\pm1$
\end_inset

 depending on the orientation of the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 The tensor 
\begin_inset Formula $\omega$
\end_inset

 is called the 
\series bold
unit volume tensor
\series default
.
\begin_inset LatexCommand \index{unit volume tensor}

\end_inset


\end_layout

\begin_layout Standard
Once 
\begin_inset Formula $\omega$
\end_inset

 is fixed, the (oriented) volume of a parallelepiped spanned by arbitrary
 vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is equal to the constant 
\begin_inset Formula $C$
\end_inset

 in the equality
\begin_inset Formula \begin{equation}
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=C\omega.\label{eq:v basis equ C}\end{equation}

\end_inset

In our notation of 
\begin_inset Quotes eld
\end_inset

tensor division,
\begin_inset Quotes erd
\end_inset

 we can also write
\begin_inset Formula \[
\text{Vol}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} \equiv C=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\omega}.\]

\end_inset


\end_layout

\begin_layout Standard
It might appear that 
\begin_inset Formula $\omega$
\end_inset

 is arbitrarily chosen and will change when we select another orthonormal
 basis.
 However, it turns out that the basis tensor 
\begin_inset Formula $\omega$
\end_inset

 does not actually depend on the choice of the orthonormal basis, 
\emph on
up to a sign
\emph default
.
 (The sign of 
\begin_inset Formula $\omega$
\end_inset

 is necessarily ambiguous because one can always interchange, say, 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

 in the orthonormal basis, and then the sign of 
\begin_inset Formula $\omega$
\end_inset

 will be flipped.) We will now prove that a different orthonormal basis yields
 again either 
\begin_inset Formula $\omega$
\end_inset

 or 
\begin_inset Formula $-\omega$
\end_inset

, depending on the order of vectors.
 In other words, 
\begin_inset Formula $\omega$
\end_inset

 depends on the choice of the scalar product but not on the choice of an
 orthonormal basis, 
\emph on
up
\emph default
 
\emph on
to
\emph default
 
\emph on
a sign
\emph default
.
 
\end_layout

\begin_layout Standard
\begin_inset Note Note
status collapsed

\begin_layout Standard
Here we work in an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space 
\begin_inset Formula $V$
\end_inset

 with a scalar product.
 We have already accumulated sufficient knowledge about such spaces, so
 now we can quickly derive a few useful results.
\end_layout

\end_inset


\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
Given two orthonormal bases 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\right\} $
\end_inset

, let us define two tensors 
\begin_inset Formula $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

 and 
\begin_inset Formula $\omega'\equiv\mathbf{f}_{1}\wedge...\wedge\mathbf{f}_{N}$
\end_inset

.
 Then 
\begin_inset Formula $\omega'=\pm\omega$
\end_inset

.
 
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
There exists an orthogonal transformation 
\begin_inset Formula $\hat{R}$
\end_inset

 that maps the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 into the basis 
\begin_inset Formula $\left\{ \mathbf{f}_{j}\right\} $
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $\hat{R}\mathbf{e}_{j}=\mathbf{f}_{j}$
\end_inset

 for 
\begin_inset Formula $j=1,...,N$
\end_inset

.
 Then 
\begin_inset Formula $\det\hat{R}=\pm1$
\end_inset

 and thus 
\begin_inset Formula \[
\omega'=\hat{R}\mathbf{e}_{1}\wedge...\wedge\hat{R}\mathbf{e}_{N}=(\det\hat{R})\omega=\pm\omega.\]

\end_inset

 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The sign factor 
\begin_inset Formula $\pm1$
\end_inset

 in the definition of the unit-volume tensor 
\begin_inset Formula $\omega$
\end_inset

 is an essential ambiguity that cannot be avoided; instead, one simply chooses
 some orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, computes 
\begin_inset Formula $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, and declares this 
\begin_inset Formula $\omega$
\end_inset

 to be 
\begin_inset Quotes eld
\end_inset

positively oriented.
\begin_inset Quotes erd
\end_inset

 Any other nonzero 
\begin_inset Formula $N$
\end_inset

-vector 
\begin_inset Formula $\psi\in\wedge^{N}V$
\end_inset

 can then be compared with 
\begin_inset Formula $\omega$
\end_inset

 as 
\begin_inset Formula $\psi=C\omega$
\end_inset

, yielding a constant 
\begin_inset Formula $C\neq0$
\end_inset

.
 If 
\begin_inset Formula $C>0$
\end_inset

 then 
\begin_inset Formula $\psi$
\end_inset

 is also 
\begin_inset Quotes eld
\end_inset

positively oriented,
\begin_inset Quotes erd
\end_inset

 otherwise 
\begin_inset Formula $\psi$
\end_inset

 is 
\begin_inset Quotes eld
\end_inset

negatively oriented.
\begin_inset Quotes erd
\end_inset

 Similarly, any given basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is then deemed to be 
\begin_inset Quotes eld
\end_inset

positively oriented
\begin_inset Quotes erd
\end_inset

 if Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:v basis equ C}

\end_inset

) holds with 
\begin_inset Formula $C>0$
\end_inset

.
 Choosing 
\begin_inset Formula $\omega$
\end_inset

 is therefore called 
\begin_inset Quotes eld
\end_inset

fixing the 
\series bold
orientation of space
\series default
.
\begin_inset Quotes erd
\end_inset


\begin_inset LatexCommand \index{orientation of space}

\end_inset

 
\end_layout

\begin_layout Paragraph
Remark: right-hand rule
\begin_inset LatexCommand \index{right-hand rule}

\end_inset

.
\end_layout

\begin_layout Standard
To fix the orientation of the basis in the 3-dimen\SpecialChar \-
sion\SpecialChar \-
al space, frequently
 the 
\begin_inset Quotes eld
\end_inset

right-hand rule
\begin_inset Quotes erd
\end_inset

 is used: The thumb, the index finger, and the middle finger of a relaxed
 
\emph on
right
\emph default
 
\emph on
hand
\emph default
 are considered the 
\begin_inset Quotes eld
\end_inset

positively oriented
\begin_inset Quotes erd
\end_inset

 basis vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

.
 However, this is not really a definition in the mathematical sense because
 the concept of 
\begin_inset Quotes eld
\end_inset

fingers of a right hand
\begin_inset Quotes erd
\end_inset

 is undefined and actually 
\emph on
cannot
\emph default
 be defined in geometric terms.
 In other words, it is impossible to give a purely algebraic or geometric
 definition of a 
\begin_inset Quotes eld
\end_inset

positively oriented
\begin_inset Quotes erd
\end_inset

 basis in terms of any properties of the vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 alone! (Not to mention that there is no human hand in 
\begin_inset Formula $N$
\end_inset

 dimensions.) However, once an 
\emph on
arbitrary
\emph default
 basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is selected and declared to be 
\begin_inset Quotes eld
\end_inset

positively oriented
\begin_inset LatexCommand \index{positively orientated basis}

\end_inset

,
\begin_inset Quotes erd
\end_inset

 we may look at any other basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

, compute 
\begin_inset Formula \[
C\equiv\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\omega},\]

\end_inset

and examine the sign of 
\begin_inset Formula $C$
\end_inset

.
 We will have 
\begin_inset Formula $C\neq0$
\end_inset

 since 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is a basis.
 If 
\begin_inset Formula $C>0$
\end_inset

, the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is positively oriented.
 If 
\begin_inset Formula $C<0$
\end_inset

, we need to change the ordering of vectors in 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

; for instance, we may swap the first two vectors and use 
\begin_inset Formula $\{\mathbf{v}_{2},\mathbf{v}_{1},\mathbf{v}_{3},...,\mathbf{v}_{N}\}$
\end_inset

 as the positively oriented basis.
 In other words, 
\begin_inset Quotes eld
\end_inset

a positive orientation of space
\begin_inset LatexCommand \index{orientation of space}

\end_inset


\begin_inset Quotes erd
\end_inset

 simply means choosing a certain ordering of vectors in each basis.
 As we have seen, it suffices to choose the unit volume tensor 
\begin_inset Formula $\omega$
\end_inset

 (rather than a basis) to fix the orientation of space.
 The choice of sign of 
\begin_inset Formula $\omega$
\end_inset

 is quite arbitrary and does not influence the results of any calculations
 because the tensor 
\begin_inset Formula $\omega$
\end_inset

 always appears on both sides of equations or in a quadratic combination.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Vector product in 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

 and Levi-Civita symbol 
\begin_inset Formula $\varepsilon$
\end_inset


\begin_inset LatexCommand \label{sub:The-vector-product}

\end_inset


\end_layout

\begin_layout Standard
In the familiar three-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean space, 
\begin_inset Formula $V=\mathbb{R}^{3}$
\end_inset

, there is a vector product 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

 and a scalar product 
\begin_inset Formula $\mathbf{a}\cdot\mathbf{b}$
\end_inset

.
 We will now show how the vector product can be expressed through the exterior
 product.
\end_layout

\begin_layout Standard
A positively oriented orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

 defines the unit volume tensor 
\begin_inset Formula $\omega\equiv\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

 in 
\begin_inset Formula $\wedge^{3}V$
\end_inset

.
 Due to the presence of the scalar product, 
\begin_inset Formula $V$
\end_inset

 can be identified with 
\begin_inset Formula $V^{*}$
\end_inset

, as we have seen.
 
\end_layout

\begin_layout Standard
Further, the space 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 can be identified with 
\begin_inset Formula $V$
\end_inset

 by the following construction.
 A 2-vector 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

 generates a covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 by the formula
\begin_inset Formula \[
\mathbf{f}^{*}(\mathbf{x})\equiv\frac{\mathbf{x}\wedge A}{\omega},\quad\forall\mathbf{x}\in V.\]

\end_inset

Now the identification of vectors and covectors shows that 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 corresponds to a certain vector 
\begin_inset Formula $\mathbf{c}$
\end_inset

.
 Thus, a 2-vector 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

 is mapped to a vector 
\begin_inset Formula $\mathbf{c}\in V$
\end_inset

.
 Let us denote this map by the 
\begin_inset Quotes eld
\end_inset

star
\begin_inset Quotes erd
\end_inset

 symbol and write 
\begin_inset Formula $\mathbf{c}=*A$
\end_inset

.
 This map is called the 
\series bold
Hodge star
\series default

\begin_inset LatexCommand \index{Hodge star}

\end_inset

; it is a linear map 
\begin_inset Formula $\wedge^{2}V\rightarrow V$
\end_inset

.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
Let us compute 
\begin_inset Formula $*(\mathbf{e}_{2}\wedge\mathbf{e}_{3})$
\end_inset

.
 The 2-vector 
\begin_inset Formula $\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

 is mapped to the covector 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 defined by
\begin_inset Formula \[
\mathbf{f}^{*}(\mathbf{x})\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}\equiv\mathbf{x}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}=x_{1}\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3},\]

\end_inset

where 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is an arbitrary vector and 
\begin_inset Formula $x_{1}\equiv\mathbf{e}_{1}^{*}(\mathbf{x})$
\end_inset

 is the first component of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 in the basis.
 Therefore 
\begin_inset Formula $\mathbf{f}^{*}=\mathbf{e}_{1}^{*}$
\end_inset

.
 By the vector-covector correspondence, 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

 is mapped to the vector 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

 since 
\begin_inset Formula \[
x_{1}=\mathbf{e}_{1}^{*}(\mathbf{x})=\left\langle \mathbf{e}_{1},\mathbf{x}\right\rangle .\]

\end_inset

 Therefore 
\begin_inset Formula $*(\mathbf{e}_{2}\wedge\mathbf{e}_{3})=\mathbf{e}_{1}$
\end_inset

.
 
\end_layout

\begin_layout Standard
Similarly we compute 
\begin_inset Formula $*(\mathbf{e}_{1}\wedge\mathbf{e}_{3})=-\mathbf{e}_{2}$
\end_inset

 and 
\begin_inset Formula $*(\mathbf{e}_{1}\wedge\mathbf{e}_{2})=\mathbf{e}_{3}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Generalizing Example\InsetSpace ~
1 to a single-term product 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

, where 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

 are vectors from 
\begin_inset Formula $V$
\end_inset

, we find that the vector 
\begin_inset Formula $\mathbf{c}=*(\mathbf{a}\wedge\mathbf{b})$
\end_inset

 is equal to the usually defined 
\series bold
vector
\series default
 
\series bold
product
\series default

\begin_inset LatexCommand \index{vector product}

\end_inset

 or 
\begin_inset Quotes eld
\end_inset

cross product
\begin_inset Quotes erd
\end_inset

 
\begin_inset Formula $\mathbf{c}=\mathbf{a}\times\mathbf{b}$
\end_inset

.
 We note that the vector product depends on the choice of the 
\emph on
orientation
\emph default
 of the basis; exchanging the order of any two basis vectors will change
 the sign of the tensor 
\begin_inset Formula $\omega$
\end_inset

 and hence will change the sign of the vector product.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
The vector product in 
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset

 is usually defined through the components of vectors in an orthogonal basis,
 as in Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:3d vector product}

\end_inset

).
 Show that the definition 
\begin_inset Formula \[
\mathbf{a}\times\mathbf{b}\equiv*(\mathbf{a}\wedge\mathbf{b})\]

\end_inset

is equivalent to that.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Since the vector product is bilinear, it is sufficient to show that 
\begin_inset Formula $*(\mathbf{a}\wedge\mathbf{b})$
\end_inset

 is linear in both 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

, and then to consider the pairwise vector products 
\begin_inset Formula $\mathbf{e}_{1}\times\mathbf{e}_{2}$
\end_inset

, 
\begin_inset Formula $\mathbf{e}_{2}\times\mathbf{e}_{3},$
\end_inset

 
\begin_inset Formula $\mathbf{e}_{3}\times\mathbf{e}_{1}$
\end_inset

 for an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
\end_inset

.
 Some of these calculations were performed in Example\InsetSpace ~
1.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The Hodge star is a one-to-one map because 
\begin_inset Formula $*(\mathbf{a}\wedge\mathbf{b})=0$
\end_inset

 if and only if 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}=0$
\end_inset

.
 Hence, the inverse map 
\begin_inset Formula $V\rightarrow\wedge^{2}V$
\end_inset

 exists.
 It is convenient to denote the inverse map also by the same 
\begin_inset Quotes eld
\end_inset

star
\begin_inset Quotes erd
\end_inset

 symbol, so that we have the map 
\begin_inset Formula $*:V\rightarrow\wedge^{2}V$
\end_inset

.
 For example, 
\begin_inset Formula \begin{align*}
*(\mathbf{e}_{1}) & =\mathbf{e}_{2}\wedge\mathbf{e}_{3},\quad*(\mathbf{e}_{2})=-\mathbf{e}_{1}\wedge\mathbf{e}_{3},\\
**(\mathbf{e}_{1}) & =*(\mathbf{e}_{2}\wedge\mathbf{e}_{3})=\mathbf{e}_{1}.\end{align*}

\end_inset

We may then write symbolically 
\begin_inset Formula $**=\hat{1}$
\end_inset

; here one of the stars stands for the map 
\begin_inset Formula $V\rightarrow\wedge^{2}V$
\end_inset

, and the other star is the map 
\begin_inset Formula $\wedge^{2}V\rightarrow V$
\end_inset

.
 
\end_layout

\begin_layout Standard
The 
\series bold
triple product
\series default

\begin_inset LatexCommand \index{triple product}

\end_inset

 is defined by the formula
\begin_inset Formula \[
\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)\equiv\left\langle \mathbf{a},\mathbf{b}\times\mathbf{c}\right\rangle .\]

\end_inset

The triple product is fully antisymmetric,
\begin_inset Formula \[
\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)=-\left(\mathbf{b},\mathbf{a},\mathbf{c}\right)=-\left(\mathbf{a},\mathbf{c},\mathbf{b}\right)=+\left(\mathbf{c},\mathbf{a},\mathbf{b}\right)=...\]

\end_inset

The geometric interpretation of the triple product is that of the oriented
 volume of the parallelepiped spanned by the vectors 
\begin_inset Formula $\mathbf{a}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}$
\end_inset

, 
\begin_inset Formula $\mathbf{c}$
\end_inset

.
 This suggests a connection with the exterior power 
\begin_inset Formula $\wedge^{3}(\mathbb{R}^{3})$
\end_inset

.
 
\begin_inset Note Note
status collapsed

\begin_layout Standard
because we have seen that the tensor 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\in\wedge^{3}\left(\mathbb{R}^{3}\right)$
\end_inset

 changes under linear transformations in the same way as the parallelepiped's
 volume.
\end_layout

\end_inset


\end_layout

\begin_layout Standard
Indeed, the triple product can be expressed through the exterior product.
 We again use the tensor 
\begin_inset Formula $\omega=\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

.
 Since 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis, the volume of the parallelepiped spanned by 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, 
\begin_inset Formula $\mathbf{e}_{2}$
\end_inset

, 
\series bold

\begin_inset Formula $\mathbf{e}_{3}$
\end_inset


\series default
 is equal to 
\begin_inset Formula $1$
\end_inset

.
 Then we can express 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

 as 
\begin_inset Formula \[
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\left\langle \mathbf{a},*(\mathbf{b}\wedge\mathbf{c})\right\rangle \omega=\left\langle \mathbf{a},\mathbf{b}\times\mathbf{c}\right\rangle \omega=\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)\omega.\]

\end_inset

Therefore we may write
\begin_inset Formula \[
\left(\mathbf{a},\mathbf{b,}\mathbf{c}\right)=\frac{\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}}{\omega}.\]

\end_inset


\end_layout

\begin_layout Standard
In the index notation, the triple product is written as
\begin_inset Formula \[
\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)\equiv\varepsilon_{jkl}a^{j}b^{k}c^{l}.\]

\end_inset

Here the symbol 
\begin_inset Formula $\varepsilon_{jkl}$
\end_inset

 (the 
\series bold
Levi-Civita symbol
\series default

\begin_inset LatexCommand \index{Levi-Civita symbol}

\end_inset

) is by definition 
\begin_inset Formula $\varepsilon_{123}=1$
\end_inset

 and 
\begin_inset Formula $\varepsilon_{ijk}=-\varepsilon_{jik}=-\varepsilon_{ikj}$
\end_inset

.
 This antisymmetric array of numbers, 
\begin_inset Formula $\varepsilon_{ijk}$
\end_inset

, can be also thought of as the index representation of the unit volume
 tensor 
\begin_inset Formula $\omega=\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
\end_inset

 because
\begin_inset Formula \[
\omega=\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}=\frac{1}{3!}\sum_{i,j,k=1}^{3}\varepsilon_{ijk}\mathbf{e}_{i}\wedge\mathbf{e}_{j}\wedge\mathbf{e}_{k}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Remark: Geometric interpretation.
 
\end_layout

\begin_layout Standard
The Hodge star is useful in conjunction with the interpretation of bivectors
 as oriented areas.
 If a bivector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 represents the oriented area of a parallelogram spanned by the vectors
 
\begin_inset Formula $\mathbf{a}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}$
\end_inset

, then 
\begin_inset Formula $*(\mathbf{a}\wedge\mathbf{b})$
\end_inset

 is the vector 
\begin_inset Formula $\mathbf{a}\times\mathbf{b}$
\end_inset

, i.e.\InsetSpace ~
the vector orthogonal to the plane of the parallelogram whose length
 is numerically equal to the area of the parallelogram.
 Conversely, if 
\begin_inset Formula $\mathbf{n}$
\end_inset

 is a vector then 
\begin_inset Formula $*(\mathbf{n})$
\end_inset

 is a bivector that may represent some parallelogram orthogonal to 
\begin_inset Formula $\mathbf{n}$
\end_inset

 with the appropriate area.
 
\end_layout

\begin_layout Standard
Another geometric example is the computation of the intersection of two
 planes: If 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 and 
\begin_inset Formula $\mathbf{c}\wedge\mathbf{d}$
\end_inset

 represent two parallelograms in space then 
\begin_inset Formula \[
*\big([*(\mathbf{a}\wedge\mathbf{b})]\wedge[*(\mathbf{c}\wedge\mathbf{d})]\big)=(\mathbf{a}\times\mathbf{b})\times(\mathbf{c}\times\mathbf{d})\]

\end_inset

is a vector parallel to the line of intersection of the two planes containing
 the two parallelograms.
 While in three dimensions the Hodge star yields the same results as the
 cross product, the advantage of the Hodge star is that it is defined in
 any dimensions, as the next section shows.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Hodge star and Levi-Civita symbol in 
\begin_inset Formula $N$
\end_inset

 dimensions
\end_layout

\begin_layout Standard
We would like to generalize our results to an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
 We begin by defining the unit volume tensor
\begin_inset LatexCommand \index{unit volume tensor}

\end_inset

 
\begin_inset Formula $\omega=\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, where 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is a positively oriented orthonormal basis.
 As we have seen, the tensor 
\begin_inset Formula $\omega$
\end_inset

 is independent of the choice of the orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 and depends only on the scalar product and on the choice of the orientation
 of space.
 (Alternatively, the choice of 
\begin_inset Formula $\omega$
\end_inset

 rather than 
\begin_inset Formula $-\omega$
\end_inset

 as the unit volume tensor defines the fact that the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is positively oriented.) Below we will always assume that the orthonormal
 basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is chosen to be positively oriented.
\end_layout

\begin_layout Standard
The 
\series bold
Hodge star
\series default
 is now defined as a linear map 
\begin_inset Formula $V\rightarrow\wedge^{N-1}V$
\end_inset

 through its action on the basis vectors,
\begin_inset Formula \[
*(\mathbf{e}_{j})\equiv(-1)^{j-1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{j-1}\wedge\mathbf{e}_{j+1}\wedge...\wedge\mathbf{e}_{N},\]

\end_inset

where we write the exterior product of all the basis vectors except 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

.
 To check the sign, we note the identity
\begin_inset Formula \[
\mathbf{e}_{j}\wedge*(\mathbf{e}_{j})=\omega,\quad1\leq j\leq N.\]

\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The Hodge star map depends on the scalar product and on the choice of the
 orientation of the space 
\begin_inset Formula $V$
\end_inset

, i.e.\InsetSpace ~
on the choice of the 
\emph on
sign
\emph default
 in the basis tensor 
\begin_inset Formula $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, but not on the choice of the vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 in a positively oriented orthonormal basis.
 This is in contrast with the 
\begin_inset Quotes eld
\end_inset

complement
\begin_inset Quotes erd
\end_inset

 operation defined in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Computing-the-dual}

\end_inset

, where the scalar product was not available: the 
\begin_inset Quotes eld
\end_inset

complement
\begin_inset Quotes erd
\end_inset

 operation depends on the choice of 
\emph on
every
\emph default
 vector in the basis.
 The 
\begin_inset Quotes eld
\end_inset

complement
\begin_inset Quotes erd
\end_inset

 operation is equivalent to the Hodge star only if we use an orthonormal
 basis.
 
\end_layout

\begin_layout Standard
Alternatively, given some basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

, we may temporarily introduce a new scalar product such that 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is orthonormal.
 The 
\begin_inset Quotes eld
\end_inset

complement
\begin_inset Quotes erd
\end_inset

 operation
\begin_inset LatexCommand \index{Grassmann's complement}

\end_inset

 is then the same as the Hodge star defined with respect to the new scalar
 product.
 The 
\begin_inset Quotes eld
\end_inset

complement
\begin_inset Quotes erd
\end_inset

 operation was introduced by H.
 Grassmann (1844) long before the now standard definitions of vector space
 and scalar product were developed.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The Hodge star
\begin_inset LatexCommand \index{Hodge star!general definition}

\end_inset

 can be also defined more generally as a map of 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 to 
\begin_inset Formula $\wedge^{N-k}V$
\end_inset

.
 The construction of the Hodge star map is as follows.
 We require that it be a linear map.
 So it suffices to define the Hodge star on single-term products of the
 form 
\begin_inset Formula $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k}$
\end_inset

.
 The vectors 
\begin_inset Formula $\left\{ \mathbf{a}_{i}\,|\, i=1,...,k\right\} $
\end_inset

 define a subspace of 
\begin_inset Formula $V$
\end_inset

, which we temporarily denote by 
\begin_inset Formula $U\equiv\text{Span}\left\{ \mathbf{a}_{i}\right\} $
\end_inset

.
 Through the scalar product, we can construct the orthogonal complement
 subspace 
\begin_inset Formula $U^{\perp}$
\end_inset

; this subspace consists of all vectors that are orthogonal to every 
\begin_inset Formula $\mathbf{a}_{i}$
\end_inset

.
 Thus, 
\begin_inset Formula $U$
\end_inset

 is an 
\begin_inset Formula $\left(N-k\right)$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al subspace of 
\begin_inset Formula $V$
\end_inset

.
 We can find a basis 
\begin_inset Formula $\left\{ \mathbf{b}_{i}\,|\, i=k+1,...,N\right\} $
\end_inset

 in 
\begin_inset Formula $U^{\perp}$
\end_inset

 such that 
\begin_inset Formula \begin{equation}
\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k}\wedge\mathbf{b}_{k+1}\wedge...\wedge\mathbf{b}_{N}=\omega.\label{eq:hodge star def}\end{equation}

\end_inset

Then we define 
\begin_inset Formula \[
*(\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k})\equiv\mathbf{b}_{k+1}\wedge...\wedge\mathbf{b}_{N}\in\wedge^{N-k}V.\]

\end_inset


\end_layout

\begin_layout Paragraph
Examples:
\end_layout

\begin_layout Standard
\begin_inset Formula \begin{align*}
*(\mathbf{e}_{1}\wedge\mathbf{e}_{3}) & =-\mathbf{e}_{2}\wedge\mathbf{e}_{4}\wedge...\wedge\mathbf{e}_{N};\\
*(1) & =\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N};\quad*(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N})=1.\end{align*}

\end_inset

The fact that we denote different maps by the same star symbol will not
 cause confusion because in each case we will write the tensor to which
 the Hodge star is applied.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Even though (by definition) 
\begin_inset Formula $\mathbf{e}_{j}\wedge*(\mathbf{e}_{j})=\omega$
\end_inset

 for the basis vectors 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

, it is 
\emph on
not
\emph default
 true that 
\begin_inset Formula $\mathbf{x}\wedge*(\mathbf{x})=\omega$
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Show that 
\begin_inset Formula $\mathbf{x}\wedge(*\mathbf{x})=\left\langle \mathbf{x},\mathbf{x}\right\rangle \omega$
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
 Then set 
\begin_inset Formula $\mathbf{x}=\mathbf{a}+\mathbf{b}$
\end_inset

 and show (using 
\begin_inset Formula $*\omega=1$
\end_inset

) that 
\begin_inset Formula \[
\left\langle \mathbf{a},\mathbf{b}\right\rangle =*(\mathbf{a}\wedge*\mathbf{b})=*(\mathbf{b}\wedge*\mathbf{a}),\quad\forall\mathbf{a},\mathbf{b}\in V.\]

\end_inset


\end_layout

\begin_layout Paragraph
Statement:
\end_layout

\begin_layout Standard
The Hodge star map 
\begin_inset Formula $*:\wedge^{k}V\rightarrow\wedge^{N-k}V$
\end_inset

, as defined above, is independent of the choice of the basis in 
\begin_inset Formula $U^{\perp}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
A different choice of basis in 
\begin_inset Formula $U^{\perp}$
\end_inset

, say 
\begin_inset Formula $\left\{ \mathbf{b}_{i}^{\prime}\right\} $
\end_inset

 instead of 
\begin_inset Formula $\left\{ \mathbf{b}_{i}\right\} $
\end_inset

, will yield a tensor 
\begin_inset Formula $\mathbf{b}_{k+1}^{\prime}\wedge...\wedge\mathbf{b}_{N}^{\prime}$
\end_inset

 that is proportional to 
\begin_inset Formula $\mathbf{b}_{k+1}\wedge...\wedge\mathbf{b}_{N}$
\end_inset

.
 The coefficient of proportionality is fixed by Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:hodge star def}

\end_inset

).
 Therefore, no ambiguity remains.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The insertion map
\begin_inset LatexCommand \index{insertion map}

\end_inset

 
\begin_inset Formula $\iota_{\mathbf{a}^{*}}$
\end_inset

 was defined in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Linear-maps-between-spaces}

\end_inset

 for covectors 
\begin_inset Formula $\mathbf{a}^{*}$
\end_inset

.
 Due to the correspondence between vectors and covectors, we may now use
 the insertion map with vectors.
 Namely, we define 
\begin_inset Formula \[
\iota_{\mathbf{x}}\psi\equiv\iota_{\mathbf{x}^{*}}\psi,\]

\end_inset

where the covector 
\begin_inset Formula $\mathbf{x}^{*}$
\end_inset

 is defined by 
\begin_inset Formula \[
\mathbf{x}^{*}(\mathbf{v})\equiv\left\langle \mathbf{x},\mathbf{v}\right\rangle ,\quad\forall\mathbf{v}\in V.\]

\end_inset

For example, we then have
\begin_inset Formula \[
\iota_{\mathbf{x}}(\mathbf{a}\wedge\mathbf{b})=\left\langle \mathbf{x},\mathbf{a}\right\rangle \mathbf{b}-\left\langle \mathbf{x},\mathbf{b}\right\rangle \mathbf{a}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Show that 
\begin_inset Formula $*(\mathbf{e}_{i})=\iota_{\mathbf{e}_{i}}\omega$
\end_inset

 for basis vectors 
\begin_inset Formula $\mathbf{e}_{i}$
\end_inset

.
 Deduce that 
\begin_inset Formula $*\mathbf{x}=\iota_{\mathbf{x}}\omega$
\end_inset

 for any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Show that
\begin_inset Formula \[
*\mathbf{x}=\sum_{i=1}^{N}\left\langle \mathbf{x},\mathbf{e}_{i}\right\rangle \iota_{\mathbf{e}_{i}}\omega=\sum_{i=1}^{N}(\iota_{\mathbf{e}_{i}}\mathbf{x})(\iota_{\mathbf{e}_{i}}\omega).\]

\end_inset

Here 
\begin_inset Formula $\iota_{\mathbf{a}}\mathbf{b}\equiv\left\langle \mathbf{a},\mathbf{b}\right\rangle $
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
In the previous section, we saw that 
\begin_inset Formula $**\mathbf{e}_{1}=\mathbf{e}_{1}$
\end_inset

 (in three dimensions).
 The following exercise shows what happens in 
\begin_inset Formula $N$
\end_inset

 dimensions: we may get a minus sign.
\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
a) Given a vector 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

, define 
\begin_inset Formula $\psi\in\wedge^{N-1}V$
\end_inset

 as 
\begin_inset Formula $\psi\equiv*\mathbf{x}$
\end_inset

.
 Then show that 
\begin_inset Formula \[
*\psi\equiv*(*\mathbf{x})=(-1)^{N-1}\mathbf{x}.\]

\end_inset


\end_layout

\begin_layout Standard
b) Show that 
\begin_inset Formula $**=(-1)^{k(N-k)}\hat{1}$
\end_inset

 when applied to the space 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 or 
\begin_inset Formula $\wedge^{N-k}V$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Since 
\begin_inset Formula $*$
\end_inset

 is a linear map, it is sufficient to consider its action on a basis vector,
 say 
\begin_inset Formula $\mathbf{e}_{1}$
\end_inset

, or a basis tensor 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k}\in\wedge^{k}V$
\end_inset

, where 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis.
\end_layout

\begin_layout Paragraph
Exercise 5:
\end_layout

\begin_layout Standard
Suppose that 
\begin_inset Formula $\mathbf{a}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{a}_{k}$
\end_inset

, 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 are such that 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{a}_{i}\right\rangle =0$
\end_inset

 for all 
\begin_inset Formula $i=1,...,k$
\end_inset

 while 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{x}\right\rangle =1$
\end_inset

.
 The 
\begin_inset Formula $k$
\end_inset

-vector 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 is then defined as a function of 
\begin_inset Formula $t$
\end_inset

 by
\begin_inset Formula \[
\psi(t)\equiv\left(\mathbf{a}_{1}+t\mathbf{x}\right)\wedge...\wedge\left(\mathbf{a}_{k}+t\mathbf{x}\right).\]

\end_inset

 Show that 
\begin_inset Formula $t\partial_{t}\psi=\mathbf{x}\wedge\iota_{\mathbf{x}}\psi$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 6:
\end_layout

\begin_layout Standard
For 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 and 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 (
\begin_inset Formula $1\leq k\leq N$
\end_inset

), the tensor 
\begin_inset Formula $\iota_{\mathbf{x}}\psi\in\wedge^{k-1}V$
\end_inset

 is called the 
\series bold
interior product
\series default

\begin_inset LatexCommand \index{interior product}

\end_inset

 of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 and 
\begin_inset Formula $\psi$
\end_inset

.
 Show that
\begin_inset Formula \[
\iota_{\mathbf{x}}\psi=*(\mathbf{x}\wedge*\psi).\]

\end_inset

(Note however that 
\begin_inset Formula $\psi\wedge*\mathbf{x}=0$
\end_inset

 for 
\begin_inset Formula $k\geq2$
\end_inset

.)
\end_layout

\begin_layout Paragraph
Exercise 7:
\end_layout

\begin_layout Standard
a) Suppose 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

 and 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 are such that 
\begin_inset Formula $\mathbf{x}\wedge\psi=0$
\end_inset

 while 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{x}\right\rangle =1$
\end_inset

.
 Show that
\begin_inset Formula \[
\psi=\mathbf{x}\wedge\iota_{\mathbf{x}}\psi.\]

\end_inset


\emph on
Hint
\emph default
: Use Exercise 2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Properties-of-the-ext-powers}

\end_inset

 with a suitable 
\begin_inset Formula $\mathbf{f}^{*}$
\end_inset

.
 
\end_layout

\begin_layout Standard
b) For any 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

, show that 
\begin_inset Formula \[
\psi=\frac{1}{k}\sum_{j=1}^{N}\mathbf{e}_{j}\wedge\iota_{\mathbf{e}_{j}}\psi,\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: It suffices to consider 
\begin_inset Formula $\psi=\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The Levi-Civita symbol
\begin_inset LatexCommand \index{Levi-Civita symbol}

\end_inset

 
\begin_inset Formula $\varepsilon_{i_{1}...i_{N}}$
\end_inset

 is defined in an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space as the coordinate representation of the unit volume tensor
 
\begin_inset Formula $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\in\wedge^{N}V$
\end_inset

 (see also Sections\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Exterior-product-in-index}

\end_inset

 and 
\begin_inset LatexCommand \ref{sub:Index-notation-for-determinants}

\end_inset

).
 When a scalar product is fixed, the tensor 
\begin_inset Formula $\omega$
\end_inset

 is unique up to a sign; if we assume that 
\begin_inset Formula $\omega$
\end_inset

 corresponds to a positively oriented basis, the Levi-Civita symbol is the
 index representation of 
\begin_inset Formula $\omega$
\end_inset

 in 
\emph on
any
\emph default
 positively oriented orthonormal basis.
 It is  instructive to see how one writes the Hodge star in the index notation
 using the Levi-Civita symbol.
 (I will write the summations explicitly here, but keep in mind that in
 the physics literature the summations are implicit.) 
\end_layout

\begin_layout Standard
Given an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, the natural basis in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 is the set of tensors 
\begin_inset Formula $\left\{ \mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}\right\} $
\end_inset

 where all indices 
\begin_inset Formula $i_{1},...,i_{k}$
\end_inset

 are different (or else the exterior product vanishes).
 Therefore, an arbitrary tensor 
\begin_inset Formula $\psi\in\wedge^{k}V$
\end_inset

 can be expanded in this basis as
\begin_inset Formula \[
\psi=\frac{1}{k!}\sum_{i_{1},...,i_{k}=1}^{N}A^{i_{1}...i_{k}}\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}},\]

\end_inset

where 
\begin_inset Formula $A^{i_{1}...i_{k}}$
\end_inset

 are some scalar coefficients.
 I have included the prefactor 
\begin_inset Formula $1/k!$
\end_inset

 in order to cancel the combinatorial factor 
\begin_inset Formula $k!$
\end_inset

 that appears due to the summation over all the indices 
\begin_inset Formula $i_{1},...,i_{k}$
\end_inset

.
 
\end_layout

\begin_layout Standard
Let us write the tensor 
\begin_inset Formula $\psi\equiv*(\mathbf{e}_{1})$
\end_inset

 in this way.
 The corresponding coefficients 
\begin_inset Formula $A^{i_{1}...i_{N-1}}$
\end_inset

 are zero unless the set of indices 
\begin_inset Formula $(i_{1},...,i_{N-1})$
\end_inset

 is a permutation of the set 
\begin_inset Formula $(2,3,...,N)$
\end_inset

.
 This statement can be written more concisely as
\begin_inset Formula \[
(*\mathbf{e}_{1})^{i_{1}...i_{N-1}}\equiv A^{i_{1}...i_{N-1}}=\varepsilon^{1i_{1}...i_{N-1}}.\]

\end_inset

Generalizing to an arbitrary vector 
\begin_inset Formula $\mathbf{x}=\sum_{j=1}^{N}x_{j}\mathbf{e}_{j}$
\end_inset

, we find
\begin_inset Formula \[
(*\mathbf{x})^{i_{1}...i_{N-1}}\equiv\sum_{j=1}^{N}x^{j}(*\mathbf{e}_{j})^{i_{1}...i_{N-1}}=\sum_{i,j=1}^{N}x^{j}\delta_{ji}\varepsilon^{ii_{1}...i_{N-1}}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The extra Kronecker symbol above is introduced for consistency of the notation
 (summing only over a pair of opposite indices).
 However, this Kronecker symbol can be interpreted as the coordinate representat
ion of the scalar product in the orthonormal basis.
 This formula then shows how to write the Hodge star in another basis: replace
 
\begin_inset Formula $\delta_{ji}$
\end_inset

 with the matrix representation of the scalar product.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Similarly, we can write the Hodge star of an arbitrary 
\begin_inset Formula $k$
\end_inset

-vector in the index notation through the 
\begin_inset Formula $\varepsilon$
\end_inset

 symbol.
 For example, in a four-dimen\SpecialChar \-
sion\SpecialChar \-
al space one maps a 2-vector 
\begin_inset Formula $\sum_{i,j}A^{ij}\mathbf{e}_{i}\wedge\mathbf{e}_{j}$
\end_inset

 into
\begin_inset Formula \[
*\big(\sum_{i,j}A^{ij}\mathbf{e}_{i}\wedge\mathbf{e}_{j}\big)=\sum_{k,l}B^{kl}\mathbf{e}_{k}\wedge\mathbf{e}_{l},\]

\end_inset

where 
\begin_inset Formula \[
B^{kl}\equiv\frac{1}{2!}\sum_{i,j,m,n}\delta^{km}\delta^{ln}\varepsilon_{ijmn}A^{ij}.\]

\end_inset

A vector 
\begin_inset Formula $\mathbf{v}=\sum_{i}v^{i}\mathbf{e}_{i}$
\end_inset

 is mapped into
\begin_inset Formula \[
*(\mathbf{v})=*\big(\sum_{i}v^{i}\mathbf{e}_{i}\big)=\frac{1}{3!}\sum_{i,j,k,l}\varepsilon_{ijkl}v^{i}\mathbf{e}_{j}\wedge\mathbf{e}_{k}\wedge\mathbf{e}_{l}.\]

\end_inset

Note the combinatorial factors 
\begin_inset Formula $2!$
\end_inset

 and 
\begin_inset Formula $3!$
\end_inset

 appearing in these formulas, according to the number of indices in 
\begin_inset Formula $\varepsilon$
\end_inset

 that are being summed over.
\end_layout

\begin_layout Subsection
Reciprocal basis
\begin_inset LatexCommand \label{sub:Reciprocal-basis}

\end_inset


\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

, not necessarily orthonormal.
 For any 
\begin_inset Formula $\mathbf{x}\in V$
\end_inset

, we can compute the components of 
\begin_inset Formula $\mathbf{x}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 by first computing the dual basis, 
\begin_inset Formula $\left\{ \mathbf{v}_{j}^{*}\right\} $
\end_inset

, as in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Computing-the-dual}

\end_inset

, and then writing
\begin_inset Formula \[
\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{v}_{i},\quad x_{i}\equiv\mathbf{v}_{i}^{*}(\mathbf{x}).\]

\end_inset

The scalar product in 
\begin_inset Formula $V$
\end_inset

 provides a vector-covector correspondence.
 Hence, each 
\begin_inset Formula $\mathbf{v}_{i}^{*}$
\end_inset

 has a corresponding vector; let us denote that vector temporarily by 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

.
 We then obtain a set of 
\begin_inset Formula $N$
\end_inset

 vectors, 
\begin_inset Formula $\{\mathbf{u}_{1},...,\mathbf{u}_{N}\}$
\end_inset

.
 By definition of the vector-covector correspondence, the vector 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 is such that
\begin_inset Formula \[
\left\langle \mathbf{u}_{i},\mathbf{x}\right\rangle =\mathbf{v}_{i}^{*}(\mathbf{x})\equiv x_{i},\quad\forall\mathbf{x}\in V.\]

\end_inset

We will now show that the set 
\begin_inset Formula $\{\mathbf{u}_{1},...,\mathbf{u}_{N}\}$
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 It is called the 
\series bold
reciprocal basis
\series default

\begin_inset LatexCommand \index{reciprocal basis}

\end_inset

 for the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 The reciprocal basis is useful, in particular, because the components of
 a vector 
\begin_inset Formula $\mathbf{x}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 are computed conveniently through scalar products with the vectors 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

, as shown by the formula above.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
The set 
\begin_inset Formula $\{\mathbf{u}_{1},...,\mathbf{u}_{N}\}$
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We first note that
\begin_inset Formula \[
\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle \equiv\mathbf{v}_{i}^{*}(\mathbf{v}_{j})=\delta_{ij}.\]

\end_inset


\end_layout

\begin_layout Standard
We need to show that the set 
\begin_inset Formula $\{\mathbf{u}_{1},...,\mathbf{u}_{N}\}$
\end_inset

 is linearly independent.
 Suppose a vanishing linear combination exists,
\begin_inset Formula \[
\sum_{i=1}^{N}\lambda_{i}\mathbf{u}_{i}=0,\]

\end_inset

and take its scalar product with the vector 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

,
\begin_inset Formula \[
0=\big\langle\mathbf{v}_{1},\sum_{i=1}^{N}\lambda_{i}\mathbf{u}_{i}\big\rangle=\sum_{i=1}^{N}\lambda_{i}\delta_{1i}=\lambda_{1}.\]

\end_inset

In the same way we show that all 
\begin_inset Formula $\lambda_{i}$
\end_inset

 are zero.
 A linearly independent set of 
\begin_inset Formula $N$
\end_inset

 vectors in an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space is always a basis, hence 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 is a basis.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Show that computing the reciprocal basis to an 
\emph on
orthonormal
\emph default
 basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 gives again the same basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The following statement shows that, in some sense, the reciprocal basis
 is the 
\begin_inset Quotes eld
\end_inset

inverse
\begin_inset Quotes erd
\end_inset

 of the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
The oriented volume of the parallelepiped spanned by 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 is the inverse of that spanned by 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
The volume of the parallelepiped spanned by 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 is found as
\begin_inset Formula \[
\text{Vol}\left\{ \mathbf{u}_{j}\right\} =\frac{\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}},\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is a positively oriented orthonormal basis.
 Let us introduce an auxiliary transformation 
\begin_inset Formula $\hat{M}$
\end_inset

 that maps 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 into 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

; such a transformation surely exists and is invertible.
 Since 
\begin_inset Formula $\hat{M}\mathbf{e}_{j}=\mathbf{v}_{j}$
\end_inset

 (
\begin_inset Formula $j=1,...,N$
\end_inset

), we have
\begin_inset Formula \[
\det\hat{M}=\frac{\hat{M}\mathbf{e}_{1}\wedge...\wedge\hat{M}\mathbf{e}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\text{Vol}\left\{ \mathbf{v}_{j}\right\} .\]

\end_inset

Consider the transposed operator 
\begin_inset Formula $\hat{M}^{T}$
\end_inset

 (the transposition is performed using the scalar product, see Definition\InsetSpace ~
1
 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:examples-Orthogonal-transformations}

\end_inset

).
 We can now show that 
\begin_inset Formula $\hat{M}^{T}$
\end_inset

 maps the dual basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 into 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 To show this, we consider the scalar products 
\begin_inset Formula \[
\langle\mathbf{e}_{i},\hat{M}^{T}\mathbf{u}_{j}\rangle=\langle\hat{M}\mathbf{e}_{i},\mathbf{u}_{j}\rangle=\left\langle \mathbf{v}_{i},\mathbf{u}_{j}\right\rangle =\delta_{ij}.\]

\end_inset

Since the above is true for any 
\begin_inset Formula $i,j=1,...,N$
\end_inset

, it follows that 
\begin_inset Formula $\hat{M}^{T}\mathbf{u}_{j}=\mathbf{e}_{j}$
\end_inset

 as desired.
 
\end_layout

\begin_layout Standard
Since 
\begin_inset Formula $\det\hat{M}^{T}=\det\hat{M}$
\end_inset

, we have 
\begin_inset Formula \[
\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\hat{M}^{T}\mathbf{u}_{1}\wedge...\wedge\hat{M}^{T}\mathbf{u}_{N}=(\det\hat{M})\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}.\]

\end_inset

It follows that 
\begin_inset Formula \[
\text{Vol}\left\{ \mathbf{u}_{j}\right\} =\frac{\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\frac{1}{\det\hat{M}}=\frac{1}{\text{Vol}\left\{ \mathbf{v}_{j}\right\} }.\]

\end_inset


\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The vectors of the reciprocal basis can be also computed using the Hodge
 star, as follows.
\end_layout

\begin_layout Paragraph
Exercise\InsetSpace ~
2:
\end_layout

\begin_layout Standard
Suppose that 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is a basis (not necessarily orthonormal) and 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 is its reciprocal basis.
 Show that 
\begin_inset Formula \[
\mathbf{u}_{1}=*(\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N})\frac{\omega}{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}},\]

\end_inset

where 
\begin_inset Formula $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is a positively oriented orthonormal basis, and we use the Hodge star as
 a map from 
\begin_inset Formula $\wedge^{N-1}V$
\end_inset

 to 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Use the formula for the dual basis (Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Computing-the-dual}

\end_inset

),
\begin_inset Formula \[
\mathbf{v}_{1}^{*}(\mathbf{x})=\frac{\mathbf{x}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}},\]

\end_inset

 and the property
\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{u}\right\rangle \omega=\mathbf{x}\wedge*\mathbf{u}.\]

\end_inset


\end_layout

\begin_layout Section
Scalar product in 
\begin_inset Formula $\wedge^{k}V$
\end_inset


\end_layout

\begin_layout Standard
In this section we will apply the techniques developed until now to the
 problem of computing 
\begin_inset Formula $k$
\end_inset

-dimensional volumes.
 
\end_layout

\begin_layout Standard
If a scalar product is given in 
\begin_inset Formula $V$
\end_inset

, one can naturally define a scalar product also in each of the spaces 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 (
\begin_inset Formula $k=2,...,N$
\end_inset

).
 We will show that this scalar product allows one to compute the ordinary
 (number-valued) volumes represented by tensors from 
\begin_inset Formula $\wedge^{k}V$
\end_inset

.
 This is fully analogous to computing the lengths of vectors through the
 scalar product in 
\begin_inset Formula $V$
\end_inset

.
 A vector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 in a Euclidean space represents at once the orientation and the length
 of a straight line segment between two points; the length is found as 
\begin_inset Formula $\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$
\end_inset

 using the scalar product in 
\begin_inset Formula $V$
\end_inset

.
 Similarly, a tensor 
\begin_inset Formula $\psi=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$
\end_inset

 represents at once the orientation and the volume of a parallelepiped spanned
 by the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

; the unoriented volume of the parallelepiped will be found as 
\begin_inset Formula $\sqrt{\left\langle \psi,\psi\right\rangle }$
\end_inset

 using the scalar product in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

.
\end_layout

\begin_layout Standard
We begin by considering the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.
\end_layout

\begin_layout Subsection
Scalar product in 
\begin_inset Formula $\wedge^{N}V$
\end_inset


\begin_inset LatexCommand \label{sub:Scalar-product-in-lambdaNv}

\end_inset


\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 are two bases in 
\begin_inset Formula $V$
\end_inset

, not necessarily orthonormal, and consider the pairwise scalar products
\begin_inset Formula \[
G_{jk}\equiv\left\langle \mathbf{u}_{j},\mathbf{v}_{k}\right\rangle ,\quad j,k=1,...,N.\]

\end_inset

The coefficients 
\begin_inset Formula $G_{jk}$
\end_inset

 can be arranged into a square-shaped table, i.e.\InsetSpace ~
into a 
\series bold
matrix
\series default
.
 The determinant of this matrix, 
\begin_inset Formula $\det(G_{jk})$
\end_inset

, can be computed using Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:detA bad}

\end_inset

).
 Now consider two tensors 
\begin_inset Formula $\omega_{1},\omega_{2}\in\wedge^{N}V$
\end_inset

 defined as 
\begin_inset Formula \[
\omega_{1}\equiv\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N},\quad\omega_{2}\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]

\end_inset

 Then 
\begin_inset Formula $\det(G_{jk})$
\end_inset

, understood as a 
\emph on
function
\emph default
 of the tensors 
\begin_inset Formula $\omega_{1}$
\end_inset

 and 
\begin_inset Formula $\omega_{2}$
\end_inset

, is bilinear and symmetric, and thus can be interpreted as the 
\series bold
scalar product
\series default
 of 
\begin_inset Formula $\omega_{1}$
\end_inset

 and 
\begin_inset Formula $\omega_{2}$
\end_inset

.
 After some work proving the necessary properties, we obtain a scalar product
 in the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

, given a scalar product in 
\begin_inset Formula $V$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
We try to define the scalar product
\begin_inset LatexCommand \index{scalar product in $\wedge^{N}V$}

\end_inset

 in the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 as follows: Given a scalar product 
\begin_inset Formula $\left\langle \cdot,\cdot\right\rangle $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 and given two tensors 
\begin_inset Formula $\omega_{1},\omega_{2}\in\wedge^{N}V$
\end_inset

, we first represent these tensors 
\emph on
in
\emph default
 
\emph on
some
\emph default
 
\emph on
way
\emph default
 as products
\begin_inset Formula \[
\omega_{1}\equiv\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N},\quad\omega_{2}\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N},\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{u}_{i}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

 are 
\emph on
some
\emph default
 suitable sets of vectors, then consider the matrix of pairwise scalar products
 
\begin_inset Formula $\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle $
\end_inset

, and finally define the scalar product 
\begin_inset Formula $\left\langle \omega_{1},\omega_{2}\right\rangle $
\end_inset

 as the determinant of that matrix: 
\begin_inset Formula \[
\left\langle \omega_{1},\omega_{2}\right\rangle \equiv\det\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle .\]

\end_inset

Prove that this definition really yields a symmetric bilinear form in 
\begin_inset Formula $\wedge^{N}V$
\end_inset

, independently of the particular representation of 
\begin_inset Formula $\omega_{1},\omega_{2}$
\end_inset

 through vectors.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: The known properties of the determinant show that 
\begin_inset Formula $\left\langle \omega_{1},\omega_{2}\right\rangle $
\end_inset

 is an antisymmetric and multilinear function of every 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

.
 A linear transformation of the vectors 
\begin_inset Formula $\left\{ \mathbf{u}_{i}\right\} $
\end_inset

 that leaves 
\begin_inset Formula $\omega_{1}$
\end_inset

 constant will also leave 
\begin_inset Formula $\left\langle \omega_{1},\omega_{2}\right\rangle $
\end_inset

 constant.
 Therefore, it can be considered as a linear function of the tensors 
\begin_inset Formula $\omega_{1}$
\end_inset

 and 
\begin_inset Formula $\omega_{2}$
\end_inset

.
 Symmetry follows from 
\begin_inset Formula $\det(G_{ij})=\det(G_{ji})$
\end_inset

.
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\begin_layout Standard
Given an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\,|\, j=1,...,N\right\} $
\end_inset

, let us consider the unit volume tensor 
\begin_inset Formula $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\in\wedge^{N}V$
\end_inset

.
\end_layout

\begin_layout Standard
a) Show that 
\begin_inset Formula $\left\langle \omega,\omega\right\rangle =1$
\end_inset

, where the scalar product in 
\begin_inset Formula $\wedge^{N}V$
\end_inset

 is chosen according to the definition in Exercise\InsetSpace ~
1.
 
\end_layout
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b) Given a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

, show that 
\begin_inset Formula $\det\hat{A}=\langle\omega,\wedge^{N}\hat{A}^{N}\omega\rangle$
\end_inset

.
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Exercise 3:
\end_layout

\begin_layout Standard
For any 
\begin_inset Formula $\phi,\psi\in\wedge^{N}V$
\end_inset

, show that
\begin_inset Formula \[
\left\langle \phi,\psi\right\rangle =\frac{\phi}{\omega}\,\frac{\psi}{\omega},\]

\end_inset

where 
\begin_inset Formula $\omega$
\end_inset

 is the unit volume tensor.
 Deduce that 
\begin_inset Formula $\left\langle \phi,\psi\right\rangle $
\end_inset

 is a positive-definite bilinear form.
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Statement:
\end_layout

\begin_layout Standard
The volume of a parallelepiped spanned by vectors 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{v}_{N}$
\end_inset

 is equal to 
\begin_inset Formula $\sqrt{\det(G_{ij})}$
\end_inset

, where 
\begin_inset Formula $G_{ij}\equiv\left\langle \mathbf{v}_{i},\mathbf{v}_{j}\right\rangle $
\end_inset

 is the matrix of the pairwise scalar products.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\neq0$
\end_inset

, the set of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\,|\, j=1,...,N\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 Let us also choose some orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\,|\, j=1,...,N\right\} $
\end_inset

.
 There exists a linear transformation 
\begin_inset Formula $\hat{A}$
\end_inset

 that maps the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 into the basis 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 Then we have 
\begin_inset Formula $\hat{A}\mathbf{e}_{j}=\mathbf{v}_{j}$
\end_inset

 and hence
\begin_inset Formula \[
G_{ij}=\left\langle \mathbf{v}_{i},\mathbf{v}_{j}\right\rangle =\langle\hat{A}\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle=\langle\hat{A}^{T}\hat{A}\mathbf{e}_{i},\mathbf{e}_{j}\rangle.\]

\end_inset

It follows that the matrix 
\begin_inset Formula $G_{ij}$
\end_inset

 is equal to the matrix representation of the operator 
\begin_inset Formula $\hat{A}^{T}\hat{A}$
\end_inset

 in the basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 Therefore,
\begin_inset Formula \[
\det(G_{ij})=\det(\hat{A}^{T}\hat{A})=(\det\hat{A})^{2}.\]

\end_inset

Finally, we note that the volume 
\begin_inset Formula $v$
\end_inset

 of the parallelepiped spanned by 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is the coefficient in the tensor equality 
\begin_inset Formula \[
v\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=(\det\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]

\end_inset

 Hence 
\begin_inset Formula $v^{2}=(\det\hat{A})^{2}=\det(G_{ij})$
\end_inset

.
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\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Standard
We have found that the (unoriented, i.e.\InsetSpace ~
number-valued) 
\begin_inset Formula $N$
\end_inset

-dimensional volume of a parallelepiped spanned by a set of 
\begin_inset Formula $N$
\end_inset

 vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 is expressed as 
\begin_inset Formula $v=\sqrt{\left\langle \psi,\psi\right\rangle }$
\end_inset

, where 
\begin_inset Formula $\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
\end_inset

 is the tensor representing the oriented volume of the parallelepiped, and
 
\begin_inset Formula $\left\langle \psi,\psi\right\rangle $
\end_inset

 is the scalar product in the space 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.
 The expression 
\begin_inset Formula $\left|\psi\right|\equiv\sqrt{\left\langle \psi,\psi\right\rangle }$
\end_inset

 is naturally interpreted as the 
\begin_inset Quotes eld
\end_inset

length
\begin_inset Quotes erd
\end_inset

 of the tensor 
\begin_inset Formula $\psi$
\end_inset

.
 In this way, we obtain a geometric interpretation of tensors 
\begin_inset Formula $\psi\in\wedge^{N}V$
\end_inset

 as oriented volumes of parallelepipeds: The tensor 
\begin_inset Formula $\psi$
\end_inset

 represents at once the orientation of the parallelepiped and the magnitude
 of the volume.
\end_layout

\begin_layout Subsection
Volumes of 
\begin_inset Formula $k$
\end_inset

-dimensional parallelepipeds
\begin_inset LatexCommand \label{sub:Volumes-of-k-dimensional}

\end_inset


\end_layout

\begin_layout Standard
In a similar way we treat 
\begin_inset Formula $k$
\end_inset

-dimensional volumes.
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\begin_layout Standard
We begin by defining a scalar product in the spaces 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 for 
\begin_inset Formula $2\leq k\leq N$
\end_inset

.
\begin_inset LatexCommand \index{scalar product in $\wedge^k V$}

\end_inset

 Let us choose an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 in 
\begin_inset Formula $V$
\end_inset

 and consider the set of 
\begin_inset Formula ${N \choose k}$
\end_inset

 tensors 
\begin_inset Formula \[
\omega_{i_{1}...i_{k}}\equiv\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}\in\wedge^{k}V.\]

\end_inset

Since the set of these tensors (for all admissible sets of indices) is a
 basis in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

, it is sufficient to define the scalar product of any two tensors 
\begin_inset Formula $\omega_{i_{1}...i_{k}}$
\end_inset

.
 It is natural to define the scalar product such that 
\begin_inset Formula $\omega_{i_{1}...i_{k}}$
\end_inset

 are 
\emph on
orthonormal
\emph default
: 
\begin_inset Formula \begin{align*}
\left\langle \omega_{i_{1}...i_{k}},\:\omega_{i_{1}...i_{k}}\right\rangle  & =1,\\
\left\langle \omega_{i_{1}...i_{k}},\:\omega_{j_{1}...j_{k}}\right\rangle  & =0\quad\text{if}\quad\omega_{i_{1}...i_{k}}\neq\pm\omega_{j_{1}...j_{k}}.\end{align*}

\end_inset

 For any two tensors 
\begin_inset Formula $\psi_{1},\psi_{2}\in\wedge^{k}V$
\end_inset

, we then define 
\begin_inset Formula $\left\langle \psi_{1},\psi_{2}\right\rangle $
\end_inset

 by expressing 
\begin_inset Formula $\psi_{1},\psi_{2}$
\end_inset

 through the basis tensors 
\begin_inset Formula $\omega_{i_{1}...i_{k}}$
\end_inset

 and requiring the bilinearity of the scalar product.
\end_layout

\begin_layout Standard
In the following exercise, we derive an explicit formula for the scalar
 product 
\begin_inset Formula $\left\langle \psi_{1},\psi_{2}\right\rangle $
\end_inset

 through scalar products of the constituent vectors.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Use the definition above to prove that 
\begin_inset Formula \begin{equation}
\left\langle \mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k},\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right\rangle =\det\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle .\label{eq:scalar product lkv}\end{equation}

\end_inset


\emph on
Hint
\emph default
s: The right side of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:scalar product lkv}

\end_inset

) is a totally antisymmetric, linear function of every 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 due to the known properties of the determinant.
 Also, the function is invariant under the interchange of 
\begin_inset Formula $\mathbf{u}_{j}$
\end_inset

 with 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

.
 The left side of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:scalar product lkv}

\end_inset

) has the same symmetry and linearity properties.
 Therefore, it is sufficient to verify Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:scalar product lkv}

\end_inset

) when vectors 
\begin_inset Formula $\mathbf{u}_{i}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

 are chosen from the set of orthonormal basis vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 Then 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 are among the basis tensors 
\begin_inset Formula $\omega_{i_{1}...i_{k}}$
\end_inset

.
 Show that the matrix 
\begin_inset Formula $\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle $
\end_inset
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\size normal
\emph off
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\noun off
\color none
 has at least one row or one column of zeros unless the sets 
\begin_inset Formula $\left\{ \mathbf{u}_{i}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

 
\family default
\series default
\shape default
\size default
\emph on
\bar default
\noun default
coincide
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
 as unordered sets of vectors, i.e.\InsetSpace ~
unless
\begin_inset Formula \[
\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}=\pm\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}.\]

\end_inset

If the above does not hold, 
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
both sides of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:scalar product lkv}

\end_inset

) are zero.
 It remains to verify that both sides of Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:scalar product lkv}

\end_inset

) are equal to 1 when we choose identical vectors 
\begin_inset Formula $\mathbf{u}_{i}=\mathbf{v}_{i}$
\end_inset

 from the orthonormal basis, for instance if 
\begin_inset Formula $\mathbf{u}_{j}=\mathbf{v}_{j}=\mathbf{e}_{j}$
\end_inset

 for 
\begin_inset Formula $j=1,...,k$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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We now come back to the problem of computing the volume of a 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepiped spanned by vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 in an 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al Euclidean space 
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset

.
 In Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Area-of-two-dimensional-parallelograms}

\end_inset

 we considered a parallelogram (i.e.\InsetSpace ~
we had 
\begin_inset Formula $k=2$
\end_inset

), and we projected the parallelogram onto the 
\begin_inset Formula ${N \choose 2}$
\end_inset

 coordinate planes to define a 
\begin_inset Quotes eld
\end_inset

vector-valued
\begin_inset Quotes erd
\end_inset

 area.
 We now generalize that construction to 
\begin_inset Formula $k$
\end_inset

-dimensional parallelepipeds.
 We project the given parallelepiped onto each of the 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al coordinate hyperplanes in the space, which are the subspaces
 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{i_{1}},...,\mathbf{e}_{i_{k}}\right\} $
\end_inset

 (with 
\begin_inset Formula $1\leq i_{1}<...<i_{k}\leq n$
\end_inset

).
 There will be 
\begin_inset Formula ${N \choose k}$
\end_inset

 such coordinate hyperplanes and, accordingly, we may determine the 
\begin_inset Formula ${N \choose k}$
\end_inset

 oriented 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al volumes of these projections.
 It is natural to view these numbers as the components of the 
\emph on
oriented volume
\emph default
 of the 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepiped in some basis in the 
\begin_inset Formula ${N \choose k}$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al 
\begin_inset Quotes eld
\end_inset

space of oriented volumes.
\begin_inset Quotes erd
\end_inset

 As we have shown before, oriented volumes are antisymmetric in the vectors
 
\begin_inset Formula $\mathbf{v}_{j}$
\end_inset

.
 The space of all antisymmetric combinations of 
\begin_inset Formula $k$
\end_inset

 vectors is, in our present notation, 
\begin_inset Formula $\wedge^{k}V$
\end_inset

.
 Thus the oriented volume of the 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepiped is represented by the tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$
\end_inset

.
 The unoriented volume is computed as the 
\begin_inset Quotes eld
\end_inset

length
\begin_inset Quotes erd
\end_inset

 of the oriented volume, defined via the scalar product in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

.
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Statement:
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\begin_layout Standard
The unoriented 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al volume 
\begin_inset Formula $v$
\end_inset

 of a parallelepiped span\SpecialChar \-
ned by 
\begin_inset Formula $k$
\end_inset

 vectors 
\begin_inset Formula $\{\mathbf{v}_{1},...,\mathbf{v}_{k}\}$
\end_inset

 is equal to 
\begin_inset Formula $\sqrt{\left\langle \psi,\psi\right\rangle }$
\end_inset

, where 
\begin_inset Formula $\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 and 
\begin_inset Formula $\left\langle \psi,\psi\right\rangle $
\end_inset

 is the scalar product defined above.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Consider the orthogonal projection of the given 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepiped onto some 
\begin_inset Formula $k$
\end_inset

-dimensional coordinate hyperplane, e.g.\InsetSpace ~
onto the hyperplane 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

.
 Each vector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 is projected orthogonally, i.e.\InsetSpace ~
by omitting the components of 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 at 
\begin_inset Formula $\mathbf{e}_{k+1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{N}$
\end_inset

.
 Let us denote the projected vectors by 
\begin_inset Formula $\tilde{\mathbf{v}}_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,k$
\end_inset

).
 The projection is a 
\begin_inset Formula $k$
\end_inset

-dimensional parallelepiped spanned by 
\begin_inset Formula $\left\{ \tilde{\mathbf{v}}_{i}\right\} $
\end_inset

 in the coordinate hyperplane.
 Let us now restrict attention to the subspace 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

.
 In this subspace, the oriented 
\begin_inset Formula $k$
\end_inset

-dimensional volume of the projected parallelepiped is represented by the
 tensor 
\begin_inset Formula $\tilde{\psi}\equiv\tilde{\mathbf{v}}_{1}\wedge...\wedge\tilde{\mathbf{v}}_{k}$
\end_inset

.
 By construction, 
\begin_inset Formula $\tilde{\psi}$
\end_inset

 is proportional to the unit volume tensor in the subspace, 
\begin_inset Formula $\tilde{\psi}=\lambda\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k}$
\end_inset

 for some 
\begin_inset Formula $\lambda$
\end_inset

.
 Therefore, the oriented 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al volume of the projected parallelepiped is equal to 
\begin_inset Formula $\lambda$
\end_inset

.
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Let us now decompose the tensor 
\begin_inset Formula $\psi$
\end_inset

 into the basis tensors in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

,
\begin_inset Formula \begin{align*}
\psi & =\sum_{1\leq i_{1}<...<i_{k}\leq N}c_{i_{1}...i_{k}}\omega_{i_{1}...i_{k}}\\
 & =c_{1...k}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k}+c_{13...(k+1)}\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge...\wedge\mathbf{e}_{k+1}+...,\end{align*}

\end_inset

where we have only written down the first two of the 
\begin_inset Formula ${N \choose k}$
\end_inset

 possible terms of the expansion.
 The projection of 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

 onto the hyperplane 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

 removes the components proportional to 
\begin_inset Formula $\mathbf{e}_{k+1}$
\end_inset

, ..., 
\begin_inset Formula $\mathbf{e}_{N}$
\end_inset

, hence 
\begin_inset Formula $\tilde{\psi}$
\end_inset

 is equal to the first term 
\begin_inset Formula $c_{1...k}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k}$
\end_inset

.
 Therefore, the oriented volume of the projection onto the hyperplane 
\begin_inset Formula $\text{Span}\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
\end_inset

 is equal to 
\begin_inset Formula $c_{1...k}$
\end_inset

.
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By definition of the scalar product in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

, all the basis tensors 
\begin_inset Formula $\omega_{i_{1}...i_{k}}$
\end_inset

 are orthonormal.
 Hence, the coefficients 
\begin_inset Formula $c_{i_{1}...i_{k}}$
\end_inset

 can be computed as
\begin_inset Formula \[
c_{i_{1}...i_{k}}=\left\langle \psi,\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}\right\rangle \equiv\left\langle \psi,\omega_{i_{1}...i_{k}}\right\rangle .\]

\end_inset

For brevity, we may introduce the 
\series bold
multi
\series default
-
\series bold
index
\series default

\begin_inset LatexCommand \index{multi-index}

\end_inset

 
\begin_inset Formula $I\equiv\left\{ i_{1},...,i_{k}\right\} $
\end_inset

 and rewrite the above as
\begin_inset Formula \[
c_{I}=\left\langle \psi,\omega_{I}\right\rangle .\]

\end_inset

 Then the value 
\begin_inset Formula $\left\langle \psi,\psi\right\rangle $
\end_inset

 can be computed as 
\begin_inset Formula \begin{align*}
\left\langle \psi,\psi\right\rangle  & =\big\langle\sum_{I}c_{I}\omega_{I},\sum_{J}c_{J}\omega_{J}\big\rangle=\sum_{I,J}c_{I}c_{J}\left\langle \omega_{I},\omega_{J}\right\rangle \\
 & =\sum_{I,J}c_{I}c_{J}\delta_{IJ}=\sum_{I}\left|c_{I}\right|^{2}.\end{align*}

\end_inset

 In other words, we have shown that 
\begin_inset Formula $\left\langle \psi,\psi\right\rangle $
\end_inset

 is equal to the sum of all 
\begin_inset Formula ${N \choose k}$
\end_inset

 squared projected volumes,
\begin_inset Formula \[
\left\langle \psi,\psi\right\rangle =\sum_{1\leq i_{1}<...<i_{k}\leq N}\left|c_{i_{1}...i_{k}}\right|^{2}.\]

\end_inset


\end_layout

\begin_layout Standard
It remains to show that 
\begin_inset Formula $\sqrt{\left\langle \psi,\psi\right\rangle }$
\end_inset

 is actually equal to the unoriented volume 
\begin_inset Formula $v$
\end_inset

 of the parallelepiped.
 To this end, let us choose a new orthonormal basis 
\begin_inset Formula $\left\{ \tilde{\mathbf{e}}_{j}\right\} $
\end_inset

 (
\begin_inset Formula $j=1,...,N$
\end_inset

) such that every vector 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 (
\begin_inset Formula $i=1,...,k$
\end_inset

) lies entirely within the hyperplane spanned by the first 
\begin_inset Formula $k$
\end_inset

 basis vectors.
 (This choice of basis is certainly possible, for instance, by choosing
 an orthonormal basis in 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}_{i}\right\} $
\end_inset

 and then completing it to an orthonormal basis in 
\begin_inset Formula $V$
\end_inset

.) Then we will have 
\begin_inset Formula $\psi=\tilde{\lambda}\tilde{\mathbf{e}}_{1}\wedge...\wedge\tilde{\mathbf{e}}_{k}$
\end_inset

, i.e.\InsetSpace ~
with zero coefficients for all other basis tensors.
 Restricting attention to the subspace 
\begin_inset Formula $\text{Span}\left\{ \tilde{\mathbf{e}}_{1},...,\tilde{\mathbf{e}}_{k}\right\} $
\end_inset

, we can use the results of Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Scalar-product-in-lambdaNv}

\end_inset

 to find that the volume 
\begin_inset Formula $v$
\end_inset

 is equal to 
\begin_inset Formula $|\tilde{\lambda}|$
\end_inset

.
 It remains to show that 
\begin_inset Formula $\sqrt{\left\langle \psi,\psi\right\rangle }=|\tilde{\lambda}|$
\end_inset

.
\end_layout

\begin_layout Standard
The transformation from the old basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 to 
\begin_inset Formula $\left\{ \tilde{\mathbf{e}}_{j}\right\} $
\end_inset

 can be performed using a certain orthogonal transformation 
\begin_inset Formula $\hat{R}$
\end_inset

 such that 
\begin_inset Formula $\hat{R}\mathbf{e}_{j}=\tilde{\mathbf{e}}_{j}$
\end_inset

 (
\begin_inset Formula $j=1,...,N)$
\end_inset

.
 Since the scalar product in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 is defined directly through scalar products of vectors in 
\begin_inset Formula $V$
\end_inset

 (Exercise\InsetSpace ~
1) and since 
\begin_inset Formula $\hat{R}$
\end_inset

 is orthogonal, we have for any 
\begin_inset Formula $\left\{ \mathbf{a}_{i}\right\} $
\end_inset

 and 
\begin_inset Formula $\left\{ \mathbf{b}_{i}\right\} $
\end_inset

 that 
\begin_inset Formula \begin{align*}
 & \langle\hat{R}\mathbf{a}_{1}\wedge...\wedge\hat{R}\mathbf{a}_{k},\hat{R}\mathbf{b}_{1}\wedge...\wedge\hat{R}\mathbf{b}_{k}\rangle=\det\langle\hat{R}\mathbf{a}_{i},\hat{R}\mathbf{b}_{j}\rangle\\
 & \quad=\det\left\langle \mathbf{a}_{i},\mathbf{b}_{j}\right\rangle =\left\langle \mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k},\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{k}\right\rangle .\end{align*}

\end_inset

 In other words, the operator 
\begin_inset Formula $\wedge^{k}\hat{R}^{k}$
\end_inset

 is an 
\emph on
orthogonal
\emph default
 
\emph on
transformation
\emph default
 in 
\begin_inset Formula $\wedge^{k}V$
\end_inset

.
 Therefore,
\begin_inset Formula \begin{align*}
\psi & =\tilde{\lambda}\tilde{\mathbf{e}}_{1}\wedge...\wedge\tilde{\mathbf{e}}_{k}=\tilde{\lambda}\hat{R}\mathbf{e}_{1}\wedge...\wedge\hat{R}\mathbf{e}_{k}=\tilde{\lambda}\big({\wedge^{k}\hat{R}^{k}}\omega_{1...k}\big);\\
\left\langle \psi,\psi\right\rangle  & =\tilde{\lambda}^{2}\langle\wedge^{k}\hat{R}^{k}\omega_{1...k},\wedge^{k}\hat{R}^{k}\omega_{1...k}\rangle=\tilde{\lambda}^{2}\left\langle \omega_{1...k},\omega_{1...k}\right\rangle =\tilde{\lambda}^{2}.\end{align*}

\end_inset

Therefore, 
\begin_inset Formula $\sqrt{\left\langle \psi,\psi\right\rangle }=|\tilde{\lambda}|=v$
\end_inset

 as required.
\begin_inset LatexCommand \label{proof-of-pythagoras}

\end_inset


\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The scalar product in the space 
\begin_inset Formula $\wedge^{k}V$
\end_inset

 is related the 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al volume of a body embedded in the space 
\begin_inset Formula $V$
\end_inset

, in the same way as the scalar product in 
\begin_inset Formula $V$
\end_inset

 is related to the length of a straight line segment embedded in 
\begin_inset Formula $V$
\end_inset

.
 The tensor 
\begin_inset Formula $\psi=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
\end_inset

 fully represents the orientation of the 
\begin_inset Formula $k$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepiped spanned by the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

, while the 
\begin_inset Quotes eld
\end_inset

length
\begin_inset Quotes erd
\end_inset

 
\begin_inset Formula $\sqrt{\left\langle \psi,\psi\right\rangle }$
\end_inset

 of this tensor gives the numerical value of the volume of the parallelepiped.
 This is a multidimensional generalization of the Pythagoras theorem that
 is not easy to visualize! The techniques of exterior algebra enables us
 to calculate these quantities without visualizing them.
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
In a Euclidean space 
\begin_inset Formula $\mathbb{R}^{4}$
\end_inset

 with a standard orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, a three-dimen\SpecialChar \-
sion\SpecialChar \-
al parallelepiped is spanned by the given vectors 
\begin_inset Formula \[
\mathbf{a}=\mathbf{e}_{1}+2\mathbf{e}_{2},\;\mathbf{b}=\mathbf{e}_{3}-\mathbf{e}_{1},\;\mathbf{c}=\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}.\]

\end_inset

We would like to determine the volume of the parallelepiped.
 We compute the wedge product 
\begin_inset Formula $\psi\equiv\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
\end_inset

 using Gaussian elimination,
\begin_inset Formula \begin{align*}
\psi & =\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{3}-\mathbf{e}_{1}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right)\\
 & =\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{3}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right)\\
 & =\left[\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\mathbf{e}_{3}+2\mathbf{e}_{1}\wedge\mathbf{e}_{2}\right]\wedge\left({\textstyle \frac{1}{2}}\mathbf{e}_{3}+\mathbf{e}_{4}\right)\\
 & =\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}\\
 & \quad+2\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}+2\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{4}.\end{align*}

\end_inset

We see that the volumes of the projections onto the four coordinate hyperplanes
 are 1, 1, 2, 2.
 Therefore the numerical value of the volume is
\begin_inset Formula \[
v=\sqrt{\left\langle \psi,\psi\right\rangle }=\sqrt{1+1+4+4}=\sqrt{10}.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Show that the scalar product of two tensors 
\begin_inset Formula $\psi_{1},\psi_{2}\in\wedge^{k}V$
\end_inset

 can be expressed through the Hodge
\begin_inset LatexCommand \index{Hodge star}

\end_inset

 star as 
\begin_inset Formula \[
\left\langle \psi_{1},\psi_{2}\right\rangle =*\big(\psi_{1}\wedge*\psi_{2}\big)\quad\text{or as}\quad\left\langle \psi_{1},\psi_{2}\right\rangle =*\big(\psi_{2}\wedge*\psi_{1}\big),\]

\end_inset

depending on whether 
\begin_inset Formula $2k\leq N$
\end_inset

 or 
\begin_inset Formula $2k\geq N$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Since both sides are linear in 
\begin_inset Formula $\psi_{1}$
\end_inset

 and 
\begin_inset Formula $\psi_{2}$
\end_inset

, it is sufficient to show that the relationship holds for basis tensors
 
\begin_inset Formula $\omega_{i_{1}...i_{k}}\equiv\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3: Intersection of hyperplanes
\begin_inset LatexCommand \index{hyperplane}

\end_inset

.
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $U_{1}$
\end_inset

, ..., 
\begin_inset Formula $U_{N-1}\subset V$
\end_inset

 are some (
\begin_inset Formula $N-1$
\end_inset

)-dimen\SpecialChar \-
sion\SpecialChar \-
al subspaces (hyperplanes) in 
\begin_inset Formula $V$
\end_inset

.
 Each 
\begin_inset Formula $U_{i}$
\end_inset

 can be represented by a tensor 
\begin_inset Formula $\psi_{i}\in\wedge^{N-1}V$
\end_inset

, e.g.\InsetSpace ~
by choosing 
\begin_inset Formula $\psi_{i}$
\end_inset

 as the exterior product of all vectors in a basis in 
\begin_inset Formula $U$
\end_inset

.
 Define the vector
\begin_inset Formula \[
\mathbf{v}\equiv*\big[(*\psi_{1})\wedge...\wedge(*\psi_{N-1})\big].\]

\end_inset

If 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

, show that 
\begin_inset Formula $\mathbf{v}$
\end_inset

 belongs to the intersection of all the (
\begin_inset Formula $N-1$
\end_inset

)-dimen\SpecialChar \-
sion\SpecialChar \-
al hyperplanes.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Show that 
\begin_inset Formula $\mathbf{v}\wedge\psi_{i}=0$
\end_inset

 for each 
\begin_inset Formula $i=1,...,N-1$
\end_inset

.
 Use Exercise\InsetSpace ~
2.
\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
Show that 
\begin_inset Formula $\left\langle \mathbf{v},\mathbf{v}\right\rangle =\left\langle *\mathbf{v},*\mathbf{v}\right\rangle $
\end_inset

 for 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 (noting that 
\begin_inset Formula $*\mathbf{v}\in\wedge^{N-1}V$
\end_inset

 and using the scalar product in that space).
 Show more generally that
\begin_inset Formula \[
\left\langle \psi_{1},\psi_{2}\right\rangle =\left\langle *\psi_{1},*\psi_{2}\right\rangle ,\]

\end_inset

where 
\begin_inset Formula $\psi_{1},\psi_{2}\in\wedge^{k}V$
\end_inset

 and thus 
\begin_inset Formula $*\psi_{1}$
\end_inset

 and 
\begin_inset Formula $*\psi_{2}$
\end_inset

 belong to 
\begin_inset Formula $\wedge^{N-k}V$
\end_inset

.
 Deduce that the Hodge star is an orthogonal transformation in 
\begin_inset Formula $\wedge^{N/2}V$
\end_inset

 (if 
\begin_inset Formula $N$
\end_inset

 is even).
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Use Exercise 2.
\end_layout

\begin_layout Section
Scalar product for complex spaces
\begin_inset LatexCommand \label{sub:Scalar-product-for-complex}

\end_inset


\end_layout

\begin_layout Standard
In complex spaces, one can get useful results if one defines the scalar
 product in a different way.
 In this section we work in a complex vector space 
\begin_inset Formula $V$
\end_inset

.
\end_layout

\begin_layout Standard
A 
\series bold
Hermitian
\series default

\begin_inset LatexCommand \index{Hermitian scalar product}

\end_inset

 
\series bold
scalar
\series default
 
\series bold
product
\series default
 is a complex function of two vectors 
\begin_inset Formula $\mathbf{a},\mathbf{b}\in V$
\end_inset

 with the properties
\begin_inset Formula \begin{align*}
\left\langle \mathbf{a},\lambda\mathbf{b}\right\rangle  & =\lambda\left\langle \mathbf{a},\mathbf{b}\right\rangle ,\quad\left\langle \lambda\mathbf{a},\mathbf{b}\right\rangle =\lambda^{*}\left\langle \mathbf{a},\mathbf{b}\right\rangle ,\\
\left\langle \mathbf{a}+\mathbf{b},\mathbf{c}\right\rangle  & =\left\langle \mathbf{a},\mathbf{c}\right\rangle +\left\langle \mathbf{b},\mathbf{c}\right\rangle ,\quad\left\langle \mathbf{b},\mathbf{a}\right\rangle =\left\langle \mathbf{a},\mathbf{b}\right\rangle ^{*},\end{align*}

\end_inset

and nondegeneracy (
\begin_inset Formula $\forall\mathbf{a}\in V$
\end_inset

, 
\begin_inset Formula $\exists\mathbf{b}\in V$
\end_inset

 such that 
\begin_inset Formula $\left\langle \mathbf{a},\mathbf{b}\neq0\right\rangle $
\end_inset

).
 (Note that 
\begin_inset Formula $\lambda^{*}$
\end_inset

 in the formula above means the complex conjugate to 
\begin_inset Formula $\lambda$
\end_inset

.) It follows that 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{x}\right\rangle $
\end_inset

 is real-valued.
 One usually also imposes the property 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{x}\right\rangle >0$
\end_inset

 for 
\begin_inset Formula $\mathbf{x}\neq0$
\end_inset

, which is positive-definiteness.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Note that the scalar product is not linear in the first argument because
 we have the factor 
\begin_inset Formula $\lambda^{*}$
\end_inset

 instead of 
\begin_inset Formula $\lambda$
\end_inset

; one says that it is 
\series bold
antilinear
\series default
.
 One can also define a Hermitian scalar product that is linear in the 
\emph on
first
\emph default
 argument but antilinear in the second argument, i.e.\InsetSpace ~

\begin_inset Formula $\left\langle \mathbf{a},\lambda\mathbf{b}\right\rangle =\lambda^{*}\left\langle \mathbf{a},\mathbf{b}\right\rangle $
\end_inset

 and 
\begin_inset Formula $\left\langle \lambda\mathbf{a},\mathbf{b}\right\rangle =\lambda\left\langle \mathbf{a},\mathbf{b}\right\rangle $
\end_inset

.
 Here we follow the definition used in the physics literature.
 This definition is designed to be compatible with the Dirac notation for
 complex spaces (see Example 3 below).
\end_layout

\begin_layout Paragraph
Example 1:
\end_layout

\begin_layout Standard
In the vector space 
\begin_inset Formula $\mathbb{C}^{n}$
\end_inset

, vectors are 
\begin_inset Formula $n$
\end_inset

-tuples of complex numbers, 
\begin_inset Formula $\mathbf{x}=\left(x_{1},...,x_{n}\right)$
\end_inset

.
 A Hermitian scalar product is defined by the formula
\begin_inset Formula \[
\left\langle \mathbf{x},\mathbf{y}\right\rangle =\sum_{i=1}^{n}x_{i}^{*}y_{i}.\]

\end_inset

This scalar product is nondegenerate and positive-definite.
 
\end_layout

\begin_layout Paragraph
Example 2:
\end_layout

\begin_layout Standard
Suppose we have a real, 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space 
\begin_inset Formula $V$
\end_inset

 with an ordinary (real) scalar product 
\begin_inset Formula $\left\langle \cdot,\cdot\right\rangle $
\end_inset

.
 We can construct a 
\emph on
complex
\emph default
 vector space out of 
\begin_inset Formula $V$
\end_inset

 by the following construction (called the 
\series bold
complexification
\series default

\begin_inset LatexCommand \index{complexification}

\end_inset

 of 
\begin_inset Formula $V$
\end_inset

).
 First we consider the space 
\begin_inset Formula $\mathbb{C}$
\end_inset

 as a real, two-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
 Then we consider the tensor product 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

, still a vector space over 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
 Elements of 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 are linear combinations of terms of the form 
\begin_inset Formula $\mathbf{v}\otimes\lambda$
\end_inset

, where 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

 and 
\begin_inset Formula $\lambda\in\mathbb{C}$
\end_inset

.
 However, the (
\begin_inset Formula $2N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al, real) vector space 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 can be also viewed as a vector space over 
\begin_inset Formula $\mathbb{C}$
\end_inset

: the multiplication of 
\begin_inset Formula $\mathbf{v}\otimes\lambda$
\end_inset

 by a complex number 
\begin_inset Formula $z$
\end_inset

 yields 
\begin_inset Formula $\mathbf{v}\otimes(\lambda z)$
\end_inset

.
 Then 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 is interpreted as an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al, complex vector space.
 A Hermitian scalar product in this space is defined by
\begin_inset Formula \[
\left\langle \mathbf{a}\otimes\lambda,\mathbf{b}\otimes\mu\right\rangle \equiv\left\langle \mathbf{a},\mathbf{b}\right\rangle \lambda^{*}\mu.\]

\end_inset

Here 
\begin_inset Formula $\left\langle \mathbf{a},\mathbf{b}\right\rangle $
\end_inset

 is the ordinary (real) scalar product in 
\begin_inset Formula $V$
\end_inset

.
 It is easy to verify that the properties of a Hermitian scalar product
 are satisfied by the above definition.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Using the Hermitian scalar product, one defines an orthonormal basis and
 other constructions analogous to those defined using the ordinary (real)
 scalar product.
 For instance, the Hermitian scalar product allows one to identify vectors
 and covectors.
 
\end_layout

\begin_layout Paragraph
Example 3:
\end_layout

\begin_layout Standard
The vector-covector correspondence in complex spaces is slightly different
 from that in real spaces.
 Consider a vector 
\begin_inset Formula $\mathbf{v}\in V$
\end_inset

; the corresponding covector 
\begin_inset Formula $\mathbf{f}^{*}:V\rightarrow\mathbb{C}$
\end_inset

 may be defined as
\begin_inset Formula \[
\mathbf{f}^{*}(\mathbf{x})\equiv\left\langle \mathbf{v},\mathbf{x}\right\rangle \in\mathbb{C}.\]

\end_inset

We denote the map 
\begin_inset Formula $\mathbf{v}\mapsto\mathbf{f}^{*}$
\end_inset

 by a dagger symbol, called 
\series bold
Hermitian
\series default
 
\series bold
conjugation
\series default

\begin_inset LatexCommand \index{Hermitian conjugate}

\end_inset

, so that 
\begin_inset Formula $\left(\mathbf{v}\right)^{\dagger}=\mathbf{f}^{*}$
\end_inset

.
 Due to the antilinearity of the scalar product, we have the property
\begin_inset Formula \[
\left(\lambda\mathbf{v}\right)^{\dagger}=\lambda^{*}\left(\mathbf{v}\right)^{\dagger}.\]

\end_inset

In the Dirac notation, one denotes covectors by the 
\begin_inset Quotes eld
\end_inset

bra
\begin_inset Quotes erd
\end_inset

 symbols such as 
\begin_inset Formula $\left\langle v\right|$
\end_inset

.
 One then may write
\begin_inset Formula \[
\left(\left|v\right\rangle \right)^{\dagger}=\left\langle v\right|,\]

\end_inset

i.e.\InsetSpace ~
one uses the same label 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $v$
\end_inset


\begin_inset Quotes erd
\end_inset

 inside the special brackets.
 We then have 
\begin_inset Formula \[
\left(\lambda\left|v\right\rangle \right)^{\dagger}=\lambda^{*}\left\langle v\right|.\]

\end_inset

The Hermitian scalar product of vectors 
\begin_inset Formula $\left|a\right\rangle $
\end_inset

 and 
\begin_inset Formula $\left|b\right\rangle $
\end_inset

 is equal to the action of 
\begin_inset Formula $\left(\left|a\right\rangle \right)^{\dagger}$
\end_inset

 on 
\begin_inset Formula $\left|b\right\rangle $
\end_inset

 and denoted 
\begin_inset Formula $\left\langle a|b\right\rangle $
\end_inset

.
 Thus, the scalar product of 
\begin_inset Formula $\left|a\right\rangle $
\end_inset

 and 
\begin_inset Formula $\lambda\left|b\right\rangle $
\end_inset

 is equal to 
\begin_inset Formula $\left\langle a\right|\lambda\left|b\right\rangle =\lambda\left\langle a|b\right\rangle $
\end_inset

, while the scalar product of 
\begin_inset Formula $\lambda\left|a\right\rangle $
\end_inset

 and 
\begin_inset Formula $\left|b\right\rangle $
\end_inset

 is equal to 
\begin_inset Formula $\lambda^{*}\left\langle a|b\right\rangle $
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Similarly to the transposed operator 
\begin_inset Formula $\hat{A}^{T}$
\end_inset

, the 
\series bold
Hermitian
\series default
 
\series bold
conjugate
\series default
 operator
\begin_inset LatexCommand \index{Hermitian conjugate}

\end_inset

 
\begin_inset Formula $\hat{A}^{\dagger}$
\end_inset

 is defined by
\begin_inset Formula \[
\langle\hat{A}^{\dagger}\mathbf{x},\mathbf{y}\rangle\equiv\langle\mathbf{x},\hat{A}\mathbf{y}\rangle,\quad\forall\mathbf{x},\mathbf{y}\in V.\]

\end_inset

In an orthonormal basis, the matrix describing the Hermitian conjugate operator
 
\begin_inset Formula $\hat{A}^{\dagger}$
\end_inset

 is obtained from the matrix of 
\begin_inset Formula $\hat{A}$
\end_inset

 by transposing and complex conjugating each matrix element.
\end_layout

\begin_layout Paragraph
Example 4:
\end_layout

\begin_layout Standard
In the space of linear operators 
\begin_inset Formula $\text{End}\, V$
\end_inset

, a bilinear form can be defined by
\begin_inset Formula \[
\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}\,(\hat{A}^{\dagger}\hat{B}).\]

\end_inset

As we will see in the next section (Exercise\InsetSpace ~
2), this bilinear form is a
 positive-definite scalar product in the space 
\begin_inset Formula $\text{End}\, V$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
In the following sections, we consider some applications of the Hermitian
 scalar product.
\end_layout

\begin_layout Subsection
Symmetric and Hermitian operators
\end_layout

\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\series bold
symmetric
\series default

\begin_inset LatexCommand \index{symmetric operator}

\end_inset

 with respect to the scalar product if 
\begin_inset Formula \[
\langle\mathbf{u},\hat{A}\mathbf{v}\rangle=\langle\hat{A}\mathbf{u},\mathbf{v}\rangle,\quad\forall\mathbf{u},\mathbf{v}\in V.\]

\end_inset

 According to the definition of the transposed operator, the above property
 is the same as 
\begin_inset Formula $\hat{A}^{T}=\hat{A}$
\end_inset

.
 
\end_layout

\begin_layout Standard
The notion of a symmetric operator is suitable for a real vector space.
 In a complex vector space, one uses Hermitian conjugation instead of transposit
ion: An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is called 
\series bold
Hermitian
\series default

\begin_inset LatexCommand \index{Hermitian operator}

\end_inset

 if 
\begin_inset Formula $\hat{A}^{\dagger}=\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard
Symmetric as well as Hermitian operators often occur in applications and
 have useful properties.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard

\series bold
a)
\series default
 All eigenvalues of a Hermitian operator are real (have zero imaginary part).
\end_layout

\begin_layout Standard

\series bold
b)
\series default
 If 
\begin_inset Formula $\hat{A}$
\end_inset

 is a symmetric or Hermitian operator and 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

, 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 are eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 corresponding to different eigenvalues 
\begin_inset Formula $\lambda_{1}\neq\lambda_{2}$
\end_inset

, then 
\begin_inset Formula $\mathbf{v}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}_{2}$
\end_inset

 are orthogonal to each other: 
\begin_inset Formula $\left\langle \mathbf{v}_{1},\mathbf{v}_{2}\right\rangle =0$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard

\series bold
a)
\series default
 If 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is an eigenvector of a Hermitian operator 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

, we have
\begin_inset Formula \begin{align*}
 & \langle\mathbf{v},\hat{A}\mathbf{v}\rangle=\left\langle \mathbf{v},\lambda\mathbf{v}\right\rangle =\lambda\left\langle \mathbf{v},\mathbf{v}\right\rangle \\
 & =\langle\hat{A}\mathbf{v},\mathbf{v}\rangle=\left\langle \lambda\mathbf{v},\mathbf{v}\right\rangle =\lambda^{*}\left\langle \mathbf{v},\mathbf{v}\right\rangle .\end{align*}

\end_inset

Since 
\begin_inset Formula $\left\langle \mathbf{v},\mathbf{v}\right\rangle \neq0$
\end_inset

, we have 
\begin_inset Formula $\lambda=\lambda^{*}$
\end_inset

, i.e.\InsetSpace ~

\begin_inset Formula $\lambda$
\end_inset

 is purely real.
\end_layout

\begin_layout Standard

\series bold
b)
\series default
 We compute
\begin_inset Formula \begin{align*}
\langle\mathbf{v}_{1},\hat{A}\mathbf{v}_{2}\rangle & =\lambda_{2}\left\langle \mathbf{v}_{1},\mathbf{v}_{2}\right\rangle \\
 & \,{\lyxbuildrel!\above=}\,\langle\hat{A}\mathbf{v}_{1},\mathbf{v}_{2}\rangle=\lambda_{1}\left\langle \mathbf{v}_{1},\mathbf{v}_{2}\right\rangle .\end{align*}

\end_inset

(In the case of Hermitian operators, we have used the fact that 
\begin_inset Formula $\lambda_{1}$
\end_inset

 is real.) Hence, either 
\begin_inset Formula $\lambda_{1}=\lambda_{2}$
\end_inset

 or 
\begin_inset Formula $\left\langle \mathbf{v}_{1},\mathbf{v}_{2}\right\rangle =0$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Statement 2: 
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}$
\end_inset

 is either symmetric or Hermitian and has an eigenvector 
\begin_inset Formula $\mathbf{v}$
\end_inset

, the subspace orthogonal to 
\begin_inset Formula $\mathbf{v}$
\end_inset

 is invariant under 
\begin_inset Formula $\hat{A}$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We need to show that 
\begin_inset Formula $\left\langle \mathbf{x},\mathbf{v}\right\rangle =0$
\end_inset

 entails 
\begin_inset Formula $\langle\hat{A}\mathbf{x},\mathbf{v}\rangle=0$
\end_inset

.
 We compute 
\begin_inset Formula \[
\langle\hat{A}\mathbf{x},\mathbf{v}\rangle=\langle\mathbf{x},\hat{A}\mathbf{v}\rangle=\lambda\left\langle \mathbf{x},\mathbf{v}\right\rangle =0.\]

\end_inset

Hence, 
\begin_inset Formula $\hat{A}\mathbf{x}$
\end_inset

 also belongs to the subspace orthogonal to 
\begin_inset Formula $\mathbf{v}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Statement 3:
\end_layout

\begin_layout Standard
A Hermitian operator is diagonalizable.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We work in an 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

.
 The characteristic polynomial of an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 has at least one (perhaps complex-valued) root 
\begin_inset Formula $\lambda$
\end_inset

, which is an eigenvalue of 
\begin_inset Formula $\hat{A}$
\end_inset

, and thus there exists at least one eigenvector 
\begin_inset Formula $\mathbf{v}$
\end_inset

 corresponding to 
\begin_inset Formula $\lambda$
\end_inset

.
 By Statement\InsetSpace ~
2, the subspace 
\begin_inset Formula $\mathbf{v}^{\perp}$
\end_inset

 (the orthogonal complement of 
\begin_inset Formula $\mathbf{v}$
\end_inset

) is invariant under 
\begin_inset Formula $\hat{A}$
\end_inset

.
 The space 
\begin_inset Formula $V$
\end_inset

 splits into a direct sum of 
\begin_inset Formula $\text{Span}\left\{ \mathbf{v}\right\} $
\end_inset

 and the subspace 
\begin_inset Formula $\mathbf{v}^{\perp}$
\end_inset

.
 We may consider the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in that subspace; again we find that there exists at least one eigenvector
 in 
\begin_inset Formula $\mathbf{v}^{\perp}$
\end_inset

.
 Continuing this argument, we split the entire space into a direct sum of
 
\begin_inset Formula $N$
\end_inset

 orthogonal eigenspaces.
 Hence, there exist 
\begin_inset Formula $N$
\end_inset

 eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Statement 4:
\end_layout

\begin_layout Standard
A symmetric operator in a real 
\begin_inset Formula $N$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al vector space is diagonalizable, i.e.\InsetSpace ~
it has 
\begin_inset Formula $N$
\end_inset

 real eigenvectors with real eigenvalues.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We cannot repeat the proof of Statement\InsetSpace ~
3 literally, since we do not know
 
\emph on
a priori
\emph default
 that the characteristic polynomial of a symmetric operator has all real
 roots; this is something we need to prove.
 Therefore we complexify the space 
\begin_inset Formula $V$
\end_inset

, i.e.\InsetSpace ~
we consider the space 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 as a vector space over 
\begin_inset Formula $\mathbb{C}$
\end_inset

.
 In this space, we introduce a Hermitian scalar product as in Example\InsetSpace ~
2 in
 Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Scalar-product-for-complex}

\end_inset

.
 In the space 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 there is a special notion of 
\begin_inset Quotes eld
\end_inset

real
\begin_inset Quotes erd
\end_inset

 vectors; these are vectors of the form 
\begin_inset Formula $\mathbf{v}\otimes c$
\end_inset

 with real 
\begin_inset Formula $c$
\end_inset

.
\end_layout

\begin_layout Standard
The operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is extended to the space 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 by
\begin_inset Formula \[
\hat{A}(\mathbf{v}\otimes c)\equiv(\hat{A}\mathbf{v})\otimes c.\]

\end_inset

It is important to observe that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 transforms real vectors into real vectors, and moreover that 
\begin_inset Formula $\hat{A}$
\end_inset

 is Hermitian in 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 if 
\begin_inset Formula $\hat{A}$
\end_inset

 is symmetric in 
\begin_inset Formula $V$
\end_inset

.
 Therefore, 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable in 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 with real eigenvalues.
\end_layout

\begin_layout Standard
It remains to show that all the eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 can be chosen 
\emph on
real
\emph default
; this will prove that 
\begin_inset Formula $\hat{A}$
\end_inset

 is also diagonalizable in the original space 
\begin_inset Formula $V$
\end_inset

.
 So far we only know that 
\begin_inset Formula $\hat{A}$
\end_inset

 has 
\begin_inset Formula $N$
\end_inset

 eigenvectors in 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

.
 Any vector from 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 can be transformed into the expression 
\begin_inset Formula $\mathbf{u}\otimes1+\mathbf{v}\otimes\text{i}$
\end_inset

 with 
\begin_inset Formula $\mathbf{u},\mathbf{v}\in V$
\end_inset

.
 Let us assume that 
\begin_inset Formula $\mathbf{u}\otimes1+\mathbf{v}\otimes\text{i}$
\end_inset

 is an eigenvector of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{v}=0$
\end_inset

, the eigenvector is real, and there is nothing left to prove; so we assume
 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

.
 Since 
\begin_inset Formula $\lambda$
\end_inset

 is real, we have
\begin_inset Formula \begin{align*}
\hat{A}(\mathbf{u}\otimes1+\mathbf{v}\otimes\text{i}) & =(\hat{A}\mathbf{u})\otimes1+(\hat{A}\mathbf{v})\otimes\text{i}\\
 & \,{\lyxbuildrel!\above=}\,\lambda\mathbf{u}\otimes1+\lambda\mathbf{v}\otimes\text{i}.\end{align*}

\end_inset

If both 
\begin_inset Formula $\mathbf{u}\neq0$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}\neq0$
\end_inset

, it follows that 
\begin_inset Formula $\mathbf{u}$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}$
\end_inset

 are both eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 with eigenvalue 
\begin_inset Formula $\lambda$
\end_inset

.
 Hence, the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 can be diagonalized by choosing the real eigenvectors as 
\begin_inset Formula $\mathbf{u}\otimes1$
\end_inset

 and 
\begin_inset Formula $\mathbf{v}\otimes1$
\end_inset

 instead of the complex eigenvector 
\begin_inset Formula $\mathbf{u}\otimes1+\mathbf{v}\otimes\text{i}$
\end_inset

.
 If 
\begin_inset Formula $\mathbf{u}=0$
\end_inset

, we only need to replace the complex eigenvector 
\begin_inset Formula $\mathbf{v}\otimes\text{i}$
\end_inset

 by the equivalent real eigenvector 
\begin_inset Formula $\mathbf{v}\otimes1$
\end_inset

.
 We have thus shown that the eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 in 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 can be chosen real.
 
\hfill

\begin_inset Formula $\blacksquare$
\end_inset
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\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
If an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies 
\begin_inset Formula $\hat{A}^{\dagger}=-\hat{A}$
\end_inset

, it is called 
\series bold
anti-Her\SpecialChar \-
mit\SpecialChar \-
ian
\series default

\begin_inset LatexCommand \index{anti-Hermitian operator}

\end_inset

.
 Show that all eigenvalues of 
\begin_inset Formula $\hat{A}$
\end_inset

 are pure imaginary or zero, that eigenvectors of 
\begin_inset Formula $\hat{A}$
\end_inset

 are orthogonal to each other, and that 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: The operator 
\begin_inset Formula $\hat{B}\equiv\text{i}\hat{A}$
\end_inset

 is Hermitian; use the properties of Hermitian operators (Statements\InsetSpace ~
1,2,3).
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
 Show that 
\begin_inset Formula $\text{Tr}(\hat{A}^{T}\hat{A})>0$
\end_inset

 for operators in a real space with a scalar product, and 
\begin_inset Formula $\text{Tr}(\hat{A}^{\dagger}\hat{A})>0$
\end_inset

 for operators in a complex space with a Hermitian scalar product.
 Deduce that 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}\,(\hat{A}^{T}\hat{B})$
\end_inset

 and 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}\,(\hat{A}^{\dagger}\hat{B})$
\end_inset

 are positive-definite scalar products in the spaces of operators (assuming
 real or, respectively, complex space 
\begin_inset Formula $V$
\end_inset

 with a scalar product).
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Compute 
\begin_inset Formula $\text{Tr}(\hat{A}^{T}\hat{A})$
\end_inset

 or 
\begin_inset Formula $\text{Tr}(\hat{A}^{\dagger}\hat{A})$
\end_inset

 directly through components of 
\begin_inset Formula $\hat{A}$
\end_inset

 in an orthonormal basis.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Show that the set of all Hermitian operators is a subspace of 
\begin_inset Formula $\text{End}\, V$
\end_inset

, and the same for anti-Her\SpecialChar \-
mit\SpecialChar \-
ian operators.
 Then show that these two subspaces are orthogonal to each other with respect
 to the scalar product of Exercise\InsetSpace ~
2.
\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
Consider the space 
\begin_inset Formula $\text{End}\, V$
\end_inset

 of linear operators and two of its subspaces: the subspace of 
\series bold
traceless
\series default

\begin_inset LatexCommand \index{traceless operator}

\end_inset

 operators (i.e.\InsetSpace ~
operators 
\begin_inset Formula $\hat{A}$
\end_inset

 with 
\begin_inset Formula $\text{Tr}\hat{A}=0$
\end_inset

) and the subspace of operators proportional to the identity (i.e.\InsetSpace ~
operators
 
\begin_inset Formula $\lambda\hat{1}_{V}$
\end_inset

 for 
\begin_inset Formula $\lambda\in\mathbb{R}$
\end_inset

).
 Show that these two subspaces are orthogonal with respect to the scalar
 products 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}(\hat{A}^{T}\hat{B})$
\end_inset

 or 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}\,(\hat{A}^{\dagger}\hat{B})$
\end_inset

.
 
\end_layout

\begin_layout Subsection
Unitary transformations
\end_layout

\begin_layout Standard
In complex spaces, the notion analogous to orthogonal transformations is
 unitary transformations.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
An operator is called 
\series bold
unitary
\series default

\begin_inset LatexCommand \index{unitary operator}

\end_inset

 if it preserves the Hermitian scalar product:
\begin_inset Formula \[
\langle\hat{A}\mathbf{x},\hat{A}\mathbf{y}\rangle=\left\langle \mathbf{x},\mathbf{y}\right\rangle ,\quad\forall\mathbf{x},\mathbf{y}\in V.\]

\end_inset


\end_layout

\begin_layout Standard
It follows that a unitary operator 
\begin_inset Formula $\hat{A}$
\end_inset

 satisfies 
\begin_inset Formula $\hat{A}^{\dagger}\hat{A}=\hat{1}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\hat{A}$
\end_inset

 is Hermitian, show that the operators 
\begin_inset Formula $(1+\text{i}\hat{A})^{-1}(1-\text{i}\hat{A})$
\end_inset

 and 
\begin_inset Formula $\exp\,(\text{i}\hat{A})$
\end_inset

 are unitary.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: The Hermitian conjugate of 
\begin_inset Formula $f(\text{i}\hat{A})$
\end_inset

 is 
\begin_inset Formula $f(-\text{i}\hat{A}^{\dagger})$
\end_inset

 if 
\begin_inset Formula $f(z)$
\end_inset

 is an analytic function.
 This can be shown by considering each term in the power series for 
\begin_inset Formula $f(z)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Show that the determinant of a unitary operator is a complex number 
\begin_inset Formula $c$
\end_inset

 such that 
\begin_inset Formula $\left|c\right|=1$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: First show that 
\begin_inset Formula $\det(\hat{A}^{\dagger})$
\end_inset

 is the complex conjugate of 
\begin_inset Formula $\det\hat{A}$
\end_inset

.
\end_layout

\begin_layout Section
Antisymmetric operators 
\begin_inset LatexCommand \label{sub:Antisymmetric-operators-and}

\end_inset


\end_layout

\begin_layout Standard
In this and the following sections we work in a real vector space 
\begin_inset Formula $V$
\end_inset

 in which a scalar product 
\begin_inset Formula $\left\langle \cdot,\cdot\right\rangle $
\end_inset

 is defined.
 The dimension of 
\begin_inset Formula $V$
\end_inset

 is 
\begin_inset Formula $N\equiv\dim V$
\end_inset

.
 
\end_layout

\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\series bold
antisymmetric
\series default

\begin_inset LatexCommand \index{antisymmetric operator}

\end_inset

 with respect to the scalar product if
\begin_inset Formula \[
\langle\mathbf{u},\hat{A}\mathbf{v}\rangle+\langle\hat{A}\mathbf{u},\mathbf{v}\rangle=0,\quad\forall\mathbf{u},\mathbf{v}\in V.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Show that the set of all antisymmetric operators is a subspace of 
\begin_inset Formula $V\otimes V^{*}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Show that 
\begin_inset Formula $\hat{A}^{T}+\hat{A}=0$
\end_inset

 if and only if the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is antisymmetric.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Exercise 2 shows that antisymmetric operators are represented by antisymmetric
 matrices --- in an 
\emph on
orthonormal
\emph default
 
\emph on
basis
\emph default
.
 However, the matrix of an operator in some other basis does not have to
 be antisymmetric.
 An operator can be antisymmetric with respect to one scalar product and
 not antisymmetric with respect to another.
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
Surely an antisymmetric matrix has rather special properties.
 Why is it that the corresponding operator is only antisymmetric 
\emph on
with respect to
\emph default
 
\emph on
some
\emph default
 scalar product? Is it not true that the corresponding operator has by itself
 special properties, regardless of any scalar product?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
Yes, it is true.
 It is a special property of an operator that there exists a scalar product
 
\emph on
with respect to which
\emph default
 the operator is antisymmetric.
 If we know that this is true, we can derive some useful properties of the
 given operator by using that scalar product.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
A 2-vector 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\in\wedge^{2}V$
\end_inset

 can be mapped to an operator in 
\begin_inset Formula $V$
\end_inset

 by
\begin_inset Formula \[
\mathbf{a}\wedge\mathbf{b}\mapsto\hat{A};\quad\hat{A}\mathbf{x}\equiv\mathbf{a}\left\langle \mathbf{b},\mathbf{x}\right\rangle -\mathbf{b}\left\langle \mathbf{a},\mathbf{x}\right\rangle ,\quad\forall\mathbf{x}\in V.\]

\end_inset

This formula defines a canonical isomorphism between the space of antisymmetric
 operators (with respect to the given scalar product) and 
\begin_inset Formula $\wedge^{2}V$
\end_inset

.
 In other words, any antisymmetric operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be represented by a 2-vector 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

 and vice versa.
 
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
Left as exercise.
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
Any 2-vector 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

 can be written as a sum 
\begin_inset Formula $\sum_{j=1}^{n}\mathbf{a}_{k}\wedge\mathbf{b}_{k}$
\end_inset

 using 
\begin_inset Formula $n$
\end_inset

 terms, where 
\begin_inset Formula $n$
\end_inset

 is some number such that 
\begin_inset Formula $n\leq\frac{1}{2}N$
\end_inset

 (here 
\begin_inset Formula $N\equiv\dim V$
\end_inset

), and the set of vectors 
\begin_inset Formula $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
\end_inset

 is linearly independent.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
By definition, a 2-vector 
\begin_inset Formula $A$
\end_inset

 is representable as a linear combination of the form 
\begin_inset Formula \[
A=\sum_{j=1}^{n}\mathbf{a}_{j}\wedge\mathbf{b}_{j},\]

\end_inset

with 
\emph on
some
\emph default
 vectors 
\begin_inset Formula $\mathbf{a}_{j},\mathbf{b}_{j}\in V$
\end_inset

 and 
\emph on
some
\emph default
 value of 
\begin_inset Formula $n$
\end_inset

.
 We will begin with this representation and transform it in order to minimize
 the number of terms.
 
\end_layout

\begin_layout Standard
The idea is to make sure that the set of vectors 
\begin_inset Formula $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
\end_inset

 is linearly independent.
 If this is not so, there exists a linear relation, say 
\begin_inset Formula \[
\mathbf{a}_{1}=\beta_{1}\mathbf{b}_{1}+\sum_{j=2}^{n}\left(\alpha_{j}\mathbf{a}_{j}+\beta_{j}\mathbf{b}_{j}\right),\]

\end_inset

with some coefficients 
\begin_inset Formula $\alpha_{j}$
\end_inset

 and 
\begin_inset Formula $\beta_{j}$
\end_inset

.
 Using this relation, the term 
\begin_inset Formula $\mathbf{a}_{1}\wedge\mathbf{b}_{1}$
\end_inset

 can be rewritten as 
\begin_inset Formula \[
\mathbf{a}_{1}\wedge\mathbf{b}_{1}=\sum_{j=2}^{n}\left(\alpha_{j}\mathbf{a}_{j}+\beta_{j}\mathbf{b}_{j}\right)\wedge\mathbf{b}_{1}.\]

\end_inset

These terms can be absorbed by other terms 
\begin_inset Formula $\mathbf{a}_{j}\wedge\mathbf{b}_{j}$
\end_inset

 (
\begin_inset Formula $j=2,...,N$
\end_inset

).
 For example, by rewriting
\begin_inset Formula \begin{align*}
 & \mathbf{a}_{2}\wedge\mathbf{b}_{2}+\alpha_{2}\mathbf{a}_{2}\wedge\mathbf{b}_{1}+\beta_{2}\mathbf{b}_{2}\wedge\mathbf{b}_{1}\\
 & \quad=(\mathbf{a}_{2}-\beta_{2}\mathbf{b}_{1})\wedge\left(\mathbf{b}_{2}+\alpha_{2}\mathbf{b}_{1}\right)\\
 & \quad\equiv\tilde{\mathbf{a}}_{2}\wedge\tilde{\mathbf{b}}_{2}\end{align*}

\end_inset

we can absorb the term 
\begin_inset Formula $\left(\alpha_{j}\mathbf{a}_{j}+\beta_{j}\mathbf{b}_{j}\right)\wedge\mathbf{b}_{1}$
\end_inset

 with 
\begin_inset Formula $j=2$
\end_inset

 into 
\begin_inset Formula $\mathbf{a}_{2}\wedge\mathbf{b}_{2}$
\end_inset

, replacing the vectors 
\begin_inset Formula $\mathbf{a}_{2}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}_{2}$
\end_inset

 by new vectors 
\begin_inset Formula $\tilde{\mathbf{a}}_{2}$
\end_inset

 and 
\begin_inset Formula $\tilde{\mathbf{b}}_{2}$
\end_inset

.
 In this way, we can redefine the vectors 
\begin_inset Formula $\mathbf{a}_{j},\mathbf{b}_{j}$
\end_inset

 (
\begin_inset Formula $j=2,...,N$
\end_inset

) so that the term 
\begin_inset Formula $\mathbf{a}_{1}\wedge\mathbf{b}_{1}$
\end_inset

 is eliminated from the expression for 
\begin_inset Formula $A$
\end_inset

.
 We continue this procedure until the set of all the vectors 
\begin_inset Formula $\mathbf{a}_{j},\mathbf{b}_{j}$
\end_inset

 is linearly independent.
 We now denote again by 
\begin_inset Formula $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
\end_inset

 the resulting linearly independent set of vectors such that the representation
 
\begin_inset Formula $A=\sum_{j=1}^{n}\mathbf{a}_{j}\wedge\mathbf{b}_{j}$
\end_inset

 still holds.
 Note that the final number 
\begin_inset Formula $n$
\end_inset

 may be smaller than the initial number.
 Since the number of vectors (
\begin_inset Formula $2n$
\end_inset

) in the final, linearly independent set 
\begin_inset Formula $\{\mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\}$
\end_inset

 cannot be greater than 
\begin_inset Formula $N$
\end_inset

, the dimension of the space 
\begin_inset Formula $V$
\end_inset

, we have 
\begin_inset Formula $2n\leq N$
\end_inset

 and so 
\begin_inset Formula $n\leq\frac{1}{2}N$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
A 2-vector 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

 satisfies 
\begin_inset Formula $A\wedge A=0$
\end_inset

.
 Show that 
\begin_inset Formula $A$
\end_inset

 can be expressed as a single-term exterior product, 
\begin_inset Formula $A=\mathbf{a}\wedge\mathbf{b}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Express 
\begin_inset Formula $A$
\end_inset

 as a sum of smallest number of single-term products, 
\begin_inset Formula $A=\sum_{j=1}^{n}\mathbf{a}_{k}\wedge\mathbf{b}_{k}$
\end_inset

, and show that 
\begin_inset Formula $A\wedge A=0$
\end_inset

 implies 
\begin_inset Formula $n=1$
\end_inset

: By Statement\InsetSpace ~
2, the set 
\begin_inset Formula $\left\{ \mathbf{a}_{i},\mathbf{b}_{i}\right\} $
\end_inset

 is linearly independent.
 If 
\begin_inset Formula $n>1$
\end_inset

, the expression 
\begin_inset Formula $A\wedge A$
\end_inset

 will contain terms such as 
\begin_inset Formula $\mathbf{a}_{1}\wedge\mathbf{b}_{1}\wedge\mathbf{a}_{2}\wedge\mathbf{b}_{2}$
\end_inset

; a linear combination of these terms cannot vanish, since they are all
 linearly independent of each other.
 To show that rigorously, apply suitably chosen covectors 
\begin_inset Formula $\mathbf{a}_{i}^{*}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}_{i}^{*}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Antisymmetric operators have the following properties.
 
\end_layout

\begin_layout Paragraph
Exercise 4:
\end_layout

\begin_layout Standard
Show that the trace of an antisymmetric operator is equal to zero.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Use the property 
\begin_inset Formula $\text{Tr}(\hat{A}^{T})=\text{Tr}(\hat{A})$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 5:
\end_layout

\begin_layout Standard
Show that the determinant of the antisymmetric operator is equal to zero
 in an odd-dimen\SpecialChar \-
sion\SpecialChar \-
al space.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Note that the property of being antisymmetric is defined only with respect
 to a chosen scalar product.
 (An operator may be represented by an antisymmetric matrix in some basis,
 but not in another basis.
 An antisymmetric operator is represented by an antisymmetric matrix only
 in an orthonormal basis.) The properties shown in Exercises\InsetSpace ~
3 and 4 will
 hold for any operator 
\begin_inset Formula $\hat{A}$
\end_inset

 such that 
\emph on
some
\emph default
 
\emph on
scalar
\emph default
 
\emph on
product
\emph default
 
\emph on
exists
\emph default
 with respect to which 
\begin_inset Formula $\hat{A}$
\end_inset

 is antisymmetric.
 If 
\begin_inset Formula $\hat{A}$
\end_inset

 is represented by an antisymmetric matrix in a given basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

, we may 
\emph on
define
\emph default
 the scalar product by requiring that 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 be an orthonormal basis; then 
\begin_inset Formula $\hat{A}$
\end_inset

 will be antisymmetric with respect to that scalar product.
 
\end_layout

\begin_layout Paragraph
Exercise 6:
\end_layout

\begin_layout Standard
Show that the canonical scalar product 
\begin_inset Formula $\left\langle A,B\right\rangle $
\end_inset

 in the space 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 (see Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Volumes-of-k-dimensional}

\end_inset

) coincides with the scalar product 
\begin_inset Formula $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}(\hat{A}^{T}\hat{B})$
\end_inset

 when the 2-vectors 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

 are mapped into antisymmetric operators 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: It is sufficient to consider the basis tensors 
\begin_inset Formula $\mathbf{e}_{i}\wedge\mathbf{e}_{j}$
\end_inset

 as operators 
\begin_inset Formula $\hat{A}$
\end_inset

 and 
\begin_inset Formula $\hat{B}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 7:*
\end_layout

\begin_layout Standard
Show that any 2-vector 
\begin_inset Formula $A$
\end_inset

 can be written as 
\begin_inset Formula $A=\sum_{i=1}^{n}\lambda_{i}\mathbf{a}_{i}\wedge\mathbf{b}_{i}$
\end_inset

, where the set 
\begin_inset Formula $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
\end_inset

 is orthonormal.
\end_layout

\begin_layout Standard

\emph on
Outline of solution
\emph default
: Consider the complexified vector space 
\begin_inset Formula $V\otimes\mathbb{C}$
\end_inset

 in which a Hermitian scalar product is defined; extend 
\begin_inset Formula $\hat{A}$
\end_inset

 into that space, and show that 
\begin_inset Formula $\hat{A}$
\end_inset

 is anti-Hermitian.
 Then 
\begin_inset Formula $\hat{A}$
\end_inset

 is diagonalizable and has all imaginary eigenvalues.
 However, the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is real; therefore, its eigenvalues come in pairs of complex conjugate
 imaginary values 
\begin_inset Formula $\left\{ \text{i}\lambda_{1},-\text{i}\lambda_{1},...,\text{i}\lambda_{n},-\text{i}\lambda_{n}\right\} $
\end_inset

.
 The corresponding eigenvectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},\bar{\mathbf{v}}_{1},...,\mathbf{v}_{n},\bar{\mathbf{v}}_{n}\right\} $
\end_inset

 are orthogonal and can be rescaled so that they are orthonormal.
 Further, we may choose these vectors such that 
\begin_inset Formula $\bar{\mathbf{v}}_{i}$
\end_inset

 is the vector complex conjugate to 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

.
 The tensor representation of 
\begin_inset Formula $\hat{A}$
\end_inset

 is 
\begin_inset Formula \[
\hat{A}=\sum_{i=1}^{n}\text{i}\lambda_{i}\left(\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}-\bar{\mathbf{v}}_{i}\otimes\bar{\mathbf{v}}_{i}^{*}\right),\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{v}_{i}^{*},\bar{\mathbf{v}}_{i}^{*}\right\} $
\end_inset

 is the basis dual to 
\begin_inset Formula $\left\{ \mathbf{v}_{i},\bar{\mathbf{v}}_{i}\right\} $
\end_inset

.
 We now define the vectors
\begin_inset Formula \[
\mathbf{a}_{i}\equiv\frac{\mathbf{v}_{i}+\bar{\mathbf{v}}_{i}}{\sqrt{2}},\quad\mathbf{b}_{i}\equiv\frac{\mathbf{v}_{i}-\bar{\mathbf{v}}_{i}}{\text{i}\sqrt{2}},\]

\end_inset

and verify that 
\begin_inset Formula \[
\hat{A}\mathbf{a}_{i}=-\lambda_{i}\mathbf{b}_{i},\quad\hat{A}\mathbf{b}_{i}=\lambda_{i}\mathbf{a}_{i}\quad(i=1,...,n).\]

\end_inset

Furthermore, the set of vectors 
\begin_inset Formula $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
\end_inset

 is orthonormal, and all the vectors 
\begin_inset Formula $\mathbf{a}_{i}$
\end_inset

, 
\begin_inset Formula $\mathbf{b}_{i}$
\end_inset

 are real.
 Therefore, we can represent 
\begin_inset Formula $\hat{A}$
\end_inset

 in the original space 
\begin_inset Formula $V$
\end_inset

 by the 2-vector
\begin_inset Formula \[
A\equiv\sum_{i=1}^{n}\lambda_{i}\left(\mathbf{a}_{i}\wedge\mathbf{b}_{i}\right).\]

\end_inset

 The set 
\begin_inset Formula $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
\end_inset

 yields the solution to the problem.
\end_layout

\begin_layout Section
* Pfaffians 
\end_layout

\begin_layout Standard
The Pfaffian is a construction analogous to the determinant, except that
 it applies only to antisymmetric operators in even-dimen\SpecialChar \-
sion\SpecialChar \-
al spaces with
 a scalar product.
\end_layout

\begin_layout Paragraph
Definition:
\end_layout

\begin_layout Standard
\begin_inset Note Note
status collapsed

\begin_layout Standard
If 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

 and 
\begin_inset Formula $N\equiv\dim V$
\end_inset

 is even, the 
\series bold
Pfaffian
\series default
 of 
\begin_inset Formula $A$
\end_inset

 is the tensor
\begin_inset Formula \[
\textrm{Pf }A\equiv\underbrace{A\wedge...\wedge A}_{N/2}=\bigwedge_{k=1}^{N/2}A\in\wedge^{N}V.\]

\end_inset


\end_layout

\end_inset

If 
\begin_inset Formula $\hat{A}$
\end_inset

 is an antisymmetric operator in 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $N\equiv\dim V$
\end_inset

 is even, the 
\series bold
Pfaffian
\series default

\begin_inset LatexCommand \index{Pfaffian}

\end_inset

 of 
\begin_inset Formula $\hat{A}$
\end_inset

 is the number 
\begin_inset Formula $\textrm{Pf }\hat{A}$
\end_inset

 defined (up to a sign) as the constant factor in the tensor equality
\begin_inset Formula \[
(\textrm{Pf }\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\frac{1}{(N/2)!}\underbrace{A\wedge...\wedge A}_{N/2}=\frac{1}{(N/2)!}\bigwedge_{k=1}^{N/2}A,\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
\end_inset

 is an 
\emph on
orthonormal
\emph default
 basis in 
\begin_inset Formula $V$
\end_inset

 and 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

 is the tensor corresponding to the operator 
\begin_inset Formula $\hat{A}$
\end_inset

.
 (Note that both sides in the equation above are tensors from 
\begin_inset Formula $\wedge^{N}V$
\end_inset

.)
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The sign of the Pfaffian depends on the orientation of the orthonormal basis.
 Other than that, the Pfaffian does not depend on the choice of the orthonormal
 basis 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

.
 If this ambiguity is not desired, one could consider a 
\emph on
tensor-valued
\emph default
 Pfaffian, 
\begin_inset Formula $A\wedge...\wedge A\in\wedge^{N}V$
\end_inset

; this tensor does not depend on the choice of the orientation of the orthonorma
l basis.
 This is quite similar to the ambiguity of the definition of volume and
 to the possibility of defining an unambiguous but tensor-valued 
\begin_inset Quotes eld
\end_inset

oriented volume.
\begin_inset Quotes erd
\end_inset

 However, it is important to note that 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 must be a positively oriented 
\emph on
orthonormal
\emph default
 basis; if we change to an arbitrary basis, the tensor 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

 will be multiplied by some number not equal to 
\begin_inset Formula $\pm1$
\end_inset

, which will make the definition of 
\begin_inset Formula $\text{Pf}\,\hat{A}$
\end_inset

 impossible.
 
\end_layout

\begin_layout Paragraph
Question:
\end_layout

\begin_layout Standard
Can we define the Pfaffian of an operator if we do not have a scalar product
 in 
\begin_inset Formula $V$
\end_inset

? Can we define the Pfaffian of an antisymmetric matrix?
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
We need a scalar product in order to map an operator 
\begin_inset Formula $\hat{A}\in\text{End}V$
\end_inset

 to a bivector 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

; this is central in the construction of the Pfaffian.
 If we know that an operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is antisymmetric with respect to 
\emph on
some
\emph default
 scalar product (i.e.\InsetSpace ~
if we know that such a scalar product 
\emph on
exists
\emph default
) then we can use that scalar product in order to define the Pfaffian of
 
\begin_inset Formula $\hat{A}$
\end_inset

.
 In the language of matrices: If an antisymmetric matrix is given, we can
 postulate that this matrix represents an operator in some basis; then we
 can introduce a scalar product such that this basis is orthonormal, so
 that this operator is an antisymmetric operator with respect to this scalar
 product; and then the Pfaffian can be defined.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
To make the correspondence between operators and bivectors more visual,
 let us represent operators by their matrices in an orthonormal basis.
 Antisymmetric operators are then represented by antisymmetric matrices.
 
\end_layout

\begin_layout Paragraph
Examples:
\end_layout

\begin_layout Standard
First we consider a 
\emph on
two
\emph default
-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

.
 Any 
\begin_inset Formula $2\times2$
\end_inset

 antisymmetric matrix 
\begin_inset Formula $\hat{A}$
\end_inset

 is necessarily of the form 
\begin_inset Formula $\hat{A}=\left(\begin{array}{cc}
0 & a\\
-a & 0\end{array}\right)$
\end_inset

, where 
\begin_inset Formula $a$
\end_inset

 is some number; the determinant of 
\begin_inset Formula $\hat{A}$
\end_inset

 is then 
\begin_inset Formula $a^{2}$
\end_inset

.
 Let us compute the Pfaffian of 
\begin_inset Formula $\hat{A}$
\end_inset

.
 We find the representation of 
\begin_inset Formula $\hat{A}$
\end_inset

 as an element of 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 as follows, 
\begin_inset Formula $\hat{A}=a\mathbf{e}_{1}\wedge\mathbf{e}_{2}$
\end_inset

, and hence 
\begin_inset Formula $\text{Pf }\hat{A}=a$
\end_inset

.
 We note that the determinant is equal to the square of the Pfaffian.
\end_layout

\begin_layout Standard
Let us now consider a four-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

 and a 
\begin_inset Formula $4\times4$
\end_inset

 antisymmetric matrix; such a matrix must be of the form
\begin_inset Formula \[
\hat{B}=\left(\begin{array}{cccc}
0 & a & b & c\\
-a & 0 & x & y\\
-b & -x & 0 & z\\
-c & -y & -z & 0\end{array}\right),\]

\end_inset

where the numbers 
\begin_inset Formula $a,b,c,x,y,z$
\end_inset

 are arbitrary.
 Let us compute the Pfaffian and the determinant of the operator represented
 by this matrix.
 We find the representation of 
\begin_inset Formula $\hat{B}$
\end_inset

 as an element of 
\begin_inset Formula $\wedge^{2}V$
\end_inset

 as follows, 
\begin_inset Formula \begin{align*}
\hat{B} & =a\mathbf{e}_{1}\wedge\mathbf{e}_{2}+b\mathbf{e}_{1}\wedge\mathbf{e}_{3}+c\mathbf{e}_{1}\wedge\mathbf{e}_{4}\\
 & \;+x\mathbf{e}_{2}\wedge\mathbf{e}_{3}+y\mathbf{e}_{2}\wedge\mathbf{e}_{4}+z\mathbf{e}_{3}\wedge\mathbf{e}_{4}.\end{align*}

\end_inset

Therefore,
\begin_inset Formula \[
\frac{1}{2!}\hat{B}\wedge\hat{B}=\left(az-by+cx\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}.\]

\end_inset

(Note that the factor 
\begin_inset Formula $\frac{1}{2!}$
\end_inset

 cancels the combinatorial factor
\begin_inset LatexCommand \index{combinatorial factor}

\end_inset

 2 resulting from the antisymmetry of the exterior product.) Hence, 
\begin_inset Formula $\text{Pf }\hat{B}=az-by+cx$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Compute the determinant of 
\begin_inset Formula $\hat{B}$
\end_inset

 in the example above; show that 
\begin_inset Formula \begin{align*}
\det\hat{B} & =a^{2}z^{2}-2abyz+b^{2}y^{2}-2bcxy+c^{2}x^{2}+2acxz.\end{align*}

\end_inset

We see that, again, the determinant is equal to the square of the Pfaffian
 (which is easier to compute).
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The factor 
\begin_inset Formula $1/(N/2)!$
\end_inset

 used in the definition of the Pfaffian is a combinatorial factor
\begin_inset LatexCommand \index{combinatorial factor}

\end_inset

.
 This factor could be inconvenient if we were calculating in a finite number
 field where one cannot divide by 
\begin_inset Formula $(N/2)!$
\end_inset

.
 This inconvenience can be avoided if we define the Pfaffian of a tensor
 
\begin_inset Formula $A=\mathbf{v}_{1}\wedge\mathbf{v}_{2}+...+\mathbf{v}_{n-1}\wedge\mathbf{v}_{n}$
\end_inset

 as zero if 
\begin_inset Formula $n<N$
\end_inset

 and as the coefficient in the tensor equality 
\begin_inset Formula \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}{\lyxbuildrel!\above=}(\text{Pf }\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\]

\end_inset

 if 
\begin_inset Formula $n=N$
\end_inset

.
 For example, consider the tensor 
\begin_inset Formula \[
A=\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\]

\end_inset

in a four-dimen\SpecialChar \-
sion\SpecialChar \-
al space (
\begin_inset Formula $N=4$
\end_inset

).
 We compute 
\begin_inset Formula \begin{align*}
A\wedge A & =\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)\wedge\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)\\
 & =0+\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}+\mathbf{c}\wedge\mathbf{d}\wedge\mathbf{a}\wedge\mathbf{b}+0\\
 & =2\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}.\end{align*}

\end_inset

It is clear that the factor 
\begin_inset Formula $2=\left(N/2\right)!$
\end_inset

 arises due to the presence of 2 possible permutations of the two tensors
 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}$
\end_inset

 and 
\begin_inset Formula $\mathbf{c}\wedge\mathbf{d}$
\end_inset

 and is therefore a 
\emph on
combinatorial
\emph default
 
\emph on
factor
\emph default

\begin_inset LatexCommand \index{combinatorial factor}

\end_inset

.
 We can avoid the division by 2 in the definition of the Pfaffian if we
 consider the tensor 
\begin_inset Formula $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}$
\end_inset

 right away, instead of dividing 
\begin_inset Formula $A\wedge A$
\end_inset

 by 2.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Determinants are Pfaffians squared
\begin_inset LatexCommand \label{sub:Determinants-are-Pfaffians}

\end_inset


\end_layout

\begin_layout Standard
In the examples in the previous section, we have seen that the determinant
 turned out to be equal to the square of the Pfaffian of the same operator.
 We will now prove this correspondence in the general case.
\end_layout

\begin_layout Paragraph
Theorem:
\end_layout

\begin_layout Standard
Given a linear operator 
\begin_inset Formula $\hat{A}$
\end_inset

 in an even-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $V$
\end_inset

 where a scalar product is defined, and given that the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is antisymmetric with respect to that scalar product, we have 
\begin_inset Formula \[
(\textrm{Pf }\hat{A})^{2}=\det\hat{A}.\]

\end_inset


\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
We know that the tensor 
\begin_inset Formula $A\in\wedge^{2}V$
\end_inset

 corresponding to the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 can be written in the form
\begin_inset Formula \[
A=\mathbf{v}_{1}\wedge\mathbf{v}_{2}+...+\mathbf{v}_{n-1}\wedge\mathbf{v}_{k},\]

\end_inset

where the set of vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 is linearly independent (Statement\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Antisymmetric-operators-and}

\end_inset

) and 
\begin_inset Formula $k\leq N$
\end_inset

 is an even number.
 
\end_layout

\begin_layout Standard
We begin by considering the case 
\begin_inset Formula $k<N$
\end_inset

.
 In this case the exterior product 
\begin_inset Formula $A\wedge...\wedge A$
\end_inset

 (where 
\begin_inset Formula $A$
\end_inset

 is taken 
\begin_inset Formula $N/2$
\end_inset

 times) will be equal to zero because there are only 
\begin_inset Formula $k$
\end_inset

 different vectors in that exterior product, while the total number of vectors
 is 
\begin_inset Formula $N$
\end_inset

, so at least two vectors 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

 must be repeated.
 Also 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

 in this case; this can be shown explicitly by completing 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 to a basis 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k},\mathbf{e}_{k+1},...,\mathbf{e}_{N}\right\} $
\end_inset

 such that all 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

 are orthogonal to all 
\begin_inset Formula $\mathbf{v}_{i}$
\end_inset

.
 (This can be done by first completing 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
\end_inset

 to a basis and then applying the Gram-Schmidt orthogonalization procedure
 to the vectors 
\begin_inset Formula $\mathbf{e}_{j}$
\end_inset

, 
\begin_inset Formula $j=k+1,...,N$
\end_inset

.) Then we will have 
\begin_inset Formula $\hat{A}\mathbf{e}_{j}=0$
\end_inset

 (
\begin_inset Formula $j=k+1,...,N$
\end_inset

).
 Acting with 
\begin_inset Formula $\wedge^{N}\hat{A}^{N}$
\end_inset

 on the tensor 
\begin_inset Formula $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

, we find 
\begin_inset Formula \[
(\wedge^{N}\hat{A}^{N})(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N})=...\wedge\hat{A}\mathbf{e}_{N}=0\]

\end_inset

and hence 
\begin_inset Formula $\det\hat{A}=0$
\end_inset

.
 Thus 
\begin_inset Formula $(\text{Pf }\hat{A})^{2}=0=\det\hat{A}$
\end_inset

, and there is nothing left to prove in case 
\begin_inset Formula $k<N$
\end_inset

.
\end_layout

\begin_layout Standard
It remains to consider the interesting case 
\begin_inset Formula $k=N$
\end_inset

.
 In this case, the set 
\begin_inset Formula $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
\end_inset

 is a basis in 
\begin_inset Formula $V$
\end_inset

.
 The Pfaffian 
\begin_inset Formula $\text{Pf }\hat{A}$
\end_inset

 is the coefficient in the tensor equality
\begin_inset Formula \[
\frac{1}{(N/2)!}\bigwedge_{k=1}^{N/2}A=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}{\lyxbuildrel!\above=}(\text{Pf }\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 is an orthonormal basis.
 In other words, 
\begin_inset Formula $\text{Pf }\hat{A}$
\end_inset

 is the (oriented) volume of the parallelepiped spanned by the vectors 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\,|\, j=1,...,N\right\} $
\end_inset

, if we assume that the vectors 
\begin_inset Formula $\left\{ \mathbf{e}_{j}\right\} $
\end_inset

 span a unit volume.
 Now it is clear that 
\begin_inset Formula $\text{Pf }\hat{A}\neq0$
\end_inset

.
\end_layout

\begin_layout Standard
Let us denote by 
\begin_inset Formula $\left\{ \mathbf{v}_{j}^{*}\right\} $
\end_inset

 the dual basis to 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 Due to the one-to-one correspondence between vectors and covectors, we
 map 
\begin_inset Formula $\left\{ \mathbf{v}_{j}^{*}\right\} $
\end_inset

 into the reciprocal basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

.
 We now apply the operator 
\begin_inset Formula $\hat{A}$
\end_inset

 to the reciprocal basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 and find by a direct calculation (using the property 
\begin_inset Formula $\left\langle \mathbf{v}_{i},\mathbf{u}_{j}\right\rangle =\delta_{ij}$
\end_inset

) that 
\begin_inset Formula $\hat{A}\mathbf{u}_{1}=-\mathbf{v}_{2}$
\end_inset

, 
\begin_inset Formula $\hat{A}\mathbf{u}_{2}=\mathbf{v}_{1}$
\end_inset

, and so on.
 Hence
\begin_inset Formula \begin{align*}
\hat{A}\mathbf{u}_{1}\wedge...\wedge\hat{A}\mathbf{u}_{N} & =(-\mathbf{v}_{2})\wedge\mathbf{v}_{1}\wedge...\wedge(-\mathbf{v}_{N})\wedge\mathbf{v}_{N-1}\\
 & =\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}.\end{align*}

\end_inset

 It follows that 
\begin_inset Formula $\det\hat{A}$
\end_inset

 is the coefficient in the tensor equality 
\begin_inset Formula \begin{equation}
\hat{A}\mathbf{u}_{1}\wedge...\wedge\hat{A}\mathbf{u}_{N}=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}{\lyxbuildrel!\above=}(\det\hat{A})\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}.\label{eq:pfaff1}\end{equation}

\end_inset

In particular, 
\begin_inset Formula $\det\hat{A}\neq0$
\end_inset

.
\end_layout

\begin_layout Standard
In order to prove the desired relationship between the determinant and the
 Pfaffian, it remains to compute the volume spanned by the dual basis 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

, so that the tensor 
\begin_inset Formula $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
\end_inset

 can be related to 
\begin_inset Formula $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
\end_inset

.
 By Statement\InsetSpace ~
2 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Reciprocal-basis}

\end_inset

, the volume spanned by 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 is the inverse of the volume spanned by 
\begin_inset Formula $\left\{ \mathbf{v}_{j}\right\} $
\end_inset

.
 Therefore the volume spanned by 
\begin_inset Formula $\left\{ \mathbf{u}_{j}\right\} $
\end_inset

 is equal to 
\begin_inset Formula $1/\text{Pf }\hat{A}$
\end_inset

.
 Now we can compute the Pfaffian of 
\begin_inset Formula $\hat{A}$
\end_inset

 using 
\begin_inset Formula \[
\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}=(\text{Pf }\hat{A})^{-1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\]

\end_inset

 together with Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:pfaff1}

\end_inset

):
\begin_inset Formula \begin{align*}
\text{Pf }\hat{A} & =\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\frac{(\det\hat{A})(\text{Pf }\hat{A})^{-1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}\\
 & =(\det\hat{A})(\text{Pf }\hat{A})^{-1}.\end{align*}

\end_inset

Hence 
\begin_inset Formula $\det\hat{A}=(\text{Pf }\hat{A})^{2}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Subsection
Further properties
\end_layout

\begin_layout Standard
Having demonstrated the techniques of working with antisymmetric operators
 and Pfaffians, I propose to you the following exercises that demonstrate
 some other properties of Pfaffians.
 These exercises conclude this book.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\hat{A}$
\end_inset

 be an antisymmetric operator; let 
\begin_inset Formula $\hat{B}$
\end_inset

 be an arbitrary operator.
 Prove that 
\begin_inset Formula $\text{Pf }(\hat{B}\hat{A}\hat{B}^{T})=\det(\hat{B})\text{Pf }\hat{A}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: If 
\begin_inset Formula $\hat{A}$
\end_inset

 corresponds to the bivector 
\begin_inset Formula $A=\mathbf{v}_{1}\wedge\mathbf{v}_{2}+...+\mathbf{v}_{k-1}\wedge\mathbf{v}_{k}$
\end_inset

, show that 
\begin_inset Formula $\hat{B}\hat{A}\hat{B}^{T}$
\end_inset

 corresponds to the bivector 
\begin_inset Formula $\hat{B}\mathbf{v}_{1}\wedge\hat{B}\mathbf{v}_{2}+...+\hat{B}\mathbf{v}_{k-1}\wedge\hat{B}\mathbf{v}_{k}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $\hat{A}$
\end_inset

 be an antisymmetric operator such that 
\begin_inset Formula $\det\hat{A}\neq0$
\end_inset

; let 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\,|\, i=1,...,2n\right\} $
\end_inset

 be a given orthonormal basis.
 Prove that there exists an operator 
\begin_inset Formula $\hat{B}$
\end_inset

 such that the operator 
\begin_inset Formula $\hat{B}\hat{A}\hat{B}^{T}$
\end_inset

 is represented by the bivector 
\begin_inset Formula $\mathbf{e}_{1}\wedge\mathbf{e}_{2}+...+\mathbf{e}_{2n-1}\wedge\mathbf{e}_{2n}$
\end_inset

.
 Deduce that 
\begin_inset Formula $\det\hat{A}=(\text{Pf }\hat{A})^{2}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: This is a paraphrase of the proof of Theorem\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Determinants-are-Pfaffians}

\end_inset

.
 Use the previous exercise and represent 
\begin_inset Formula $\hat{A}$
\end_inset

 by the bivector 
\begin_inset Formula $\mathbf{v}_{1}\wedge\mathbf{v}_{2}+...+\mathbf{v}_{2n-1}\wedge\mathbf{v}_{2n}$
\end_inset

, where the set 
\begin_inset Formula $\left\{ \mathbf{v}_{i}\right\} $
\end_inset

 is a basis.
 Define 
\begin_inset Formula $\hat{B}$
\end_inset

 as a map 
\begin_inset Formula $\mathbf{e}_{i}\mapsto\mathbf{v}_{i}$
\end_inset

; then 
\begin_inset Formula $\hat{B}^{-1}$
\end_inset

 exists and maps 
\begin_inset Formula $\mathbf{v}_{i}\mapsto\mathbf{e}_{i}$
\end_inset

.
 Show that 
\begin_inset Formula $\text{Pf}\,\hat{A}=1/(\det\hat{B})$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Use the result of Exercise\InsetSpace ~
5 in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Antisymmetric-operators-and}

\end_inset

 to prove that 
\begin_inset Formula $\det\hat{A}=(\text{Pf }\hat{A})^{2}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: For an operator 
\begin_inset Formula $\hat{A}=\sum_{i=1}^{n}\lambda_{i}\mathbf{a}_{i}\wedge\mathbf{b}_{i}$
\end_inset

, where 
\begin_inset Formula $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
\end_inset

 is a positively oriented 
\emph on
orthonormal
\emph default
 basis and 
\begin_inset Formula $2n\equiv N$
\end_inset

, show that 
\begin_inset Formula $\text{Pf }\hat{A}=\lambda_{1}...\lambda_{n}$
\end_inset

 and 
\begin_inset Formula $\det\hat{A}=\lambda_{1}^{2}...\lambda_{n}^{2}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 4:*
\end_layout

\begin_layout Standard
An operator 
\begin_inset Formula $\hat{A}$
\end_inset

 is antisymmetric and is represented in some orthonormal basis by a block
 matrix of the form
\begin_inset Formula \[
\hat{A}=\left(\begin{array}{cc}
0 & \hat{M}\\
-\hat{M}^{T} & 0\end{array}\right),\]

\end_inset

where 
\begin_inset Formula $\hat{M}$
\end_inset

 is an arbitrary 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al matrix.
 Show that 
\begin_inset Formula \[
\text{Pf }\hat{A}=(-1)^{\frac{1}{2}n(n-1)}\det\hat{M}.\]

\end_inset


\end_layout

\begin_layout Standard

\emph on
Solution
\emph default
: We need to represent 
\begin_inset Formula $\hat{A}$
\end_inset

 by a bivector from 
\begin_inset Formula $\wedge^{2}V$
\end_inset

.
 The given form of the matrix 
\begin_inset Formula $\hat{A}$
\end_inset

 suggests that we consider the splitting of the space 
\begin_inset Formula $V$
\end_inset

 into a direct sum of two orthogonal 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al subspaces, 
\begin_inset Formula $V=U_{1}\oplus U_{2}$
\end_inset

, where 
\begin_inset Formula $U_{1}$
\end_inset

 and 
\begin_inset Formula $U_{2}$
\end_inset

 are two copies of the same 
\begin_inset Formula $n$
\end_inset

-dimen\SpecialChar \-
sion\SpecialChar \-
al space 
\begin_inset Formula $U$
\end_inset

.
 A scalar product in 
\begin_inset Formula $U$
\end_inset

 is defined naturally (by restriction), given the scalar product in 
\begin_inset Formula $V$
\end_inset

.
 We will denote by 
\begin_inset Formula $\left\langle \cdot,\cdot\right\rangle $
\end_inset

 the scalar product in 
\begin_inset Formula $U$
\end_inset

.
 The given matrix form of 
\begin_inset Formula $\hat{A}$
\end_inset

 means that we have a given operator 
\begin_inset Formula $\hat{M}\in\text{End}\, U$
\end_inset

 such that 
\begin_inset Formula $\hat{A}$
\end_inset

 acts on vectors from 
\begin_inset Formula $V$
\end_inset

 as
\begin_inset Formula \begin{equation}
\hat{A}\left(\mathbf{v}_{1}\oplus\mathbf{v}_{2}\right)=(\hat{M}\mathbf{v}_{2})\oplus(-\hat{M}^{T}\mathbf{v}_{1}),\quad\mathbf{v}_{1},\mathbf{v}_{2}\in U.\label{eq:A action v1v2}\end{equation}

\end_inset

We can choose an orthonormal basis 
\begin_inset Formula $\left\{ \mathbf{c}_{i}\,|\, i=1,...,n\right\} $
\end_inset

 in 
\begin_inset Formula $U$
\end_inset

 and represent the operator 
\begin_inset Formula $\hat{M}$
\end_inset

 through some suitable vectors 
\begin_inset Formula $\left\{ \mathbf{m}_{i}|\, i=1,...,n\right\} $
\end_inset

 (not necessarily orthogonal) such that 
\begin_inset Formula \[
\hat{M}\mathbf{u}=\sum_{i=1}^{n}\mathbf{m}_{i}\left\langle \mathbf{c}_{i},\mathbf{u}\right\rangle ,\quad\mathbf{u}\in U.\]

\end_inset

Note that the vectors 
\begin_inset Formula $\mathbf{m}_{i}$
\end_inset

 are found from 
\begin_inset Formula $\hat{M}\mathbf{c}_{i}=\mathbf{m}_{i}$
\end_inset

.
 It follows that 
\begin_inset Formula $\hat{M}^{T}\mathbf{u}=\sum_{i=1}^{n}\mathbf{c}_{i}\left\langle \mathbf{m}_{i},\mathbf{u}\right\rangle $
\end_inset

.
 Using Eq.\InsetSpace ~
(
\begin_inset LatexCommand \ref{eq:A action v1v2}

\end_inset

), we can then write the tensor representation of 
\begin_inset Formula $\hat{A}$
\end_inset

 as
\begin_inset Formula \[
\hat{A}=\sum_{i=1}^{n}\left[(\mathbf{m}_{i}\oplus0)\otimes(0\oplus\mathbf{c}_{i})^{*}-(0\oplus\mathbf{c}_{i})\otimes(\mathbf{m}_{i}\oplus0)^{*}\right].\]

\end_inset

 Hence, 
\begin_inset Formula $\hat{A}$
\end_inset

 can be represented by the 2-vector 
\begin_inset Formula \[
A=\sum_{i=1}^{n}(\mathbf{m}_{i}\oplus0)\wedge(0\oplus\mathbf{c}_{i})\in\wedge^{2}V.\]

\end_inset

The Pfaffian of 
\begin_inset Formula $\hat{A}$
\end_inset

 is then found from 
\begin_inset Formula \[
\text{Pf }\hat{A}=\frac{(\mathbf{m}_{1}\oplus0)\wedge(0\oplus\mathbf{c}_{1})\wedge...\wedge(\mathbf{m}_{n}\oplus0)\wedge(0\oplus\mathbf{c}_{n})}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{2n}},\]

\end_inset

where 
\begin_inset Formula $\left\{ \mathbf{e}_{i}\,|\, i=1,...,2n\right\} $
\end_inset

 is an orthonormal basis in 
\begin_inset Formula $V$
\end_inset

.
 We can choose this basis as 
\begin_inset Formula $\mathbf{e}_{i}=\mathbf{c}_{i}\oplus0$
\end_inset

, 
\begin_inset Formula $\mathbf{e}_{n+i}=0\oplus\mathbf{c}_{i}$
\end_inset

 (for 
\begin_inset Formula $i=1,...,n$
\end_inset

).
 By introducing the sign factor 
\begin_inset Formula $(-1)^{\frac{1}{2}n(n-1)}$
\end_inset

, we may rearrange the exterior products so that all 
\begin_inset Formula $\mathbf{m}_{i}$
\end_inset

 are together.
 Hence
\begin_inset Formula \begin{align*}
 & \text{Pf }\hat{A}=(-1)^{\frac{1}{2}n(n-1)}\\
 & \quad\times\frac{(\mathbf{m}_{1}\oplus0)\wedge...\wedge(\mathbf{m}_{n}\oplus0)\wedge(0\oplus\mathbf{c}_{1})\wedge...\wedge(0\oplus\mathbf{c}_{n})}{\left(\mathbf{c}_{1}\oplus0\right)\wedge...\wedge(\mathbf{c}_{n}\oplus0)\wedge\left(0\oplus\mathbf{c}_{1}\right)\wedge...\wedge(0\oplus\mathbf{c}_{n})}.\end{align*}

\end_inset

Vectors corresponding to different subspaces can be factorized, and then
 the factors containing 
\begin_inset Formula $0\oplus\mathbf{c}_{i}$
\end_inset

 can be canceled:
\begin_inset Formula \begin{align*}
\text{Pf }\hat{A} & =(-1)^{\frac{1}{2}n(n-1)}\frac{\mathbf{m}_{1}\wedge...\wedge\mathbf{m}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}\frac{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}\\
 & =(-1)^{\frac{1}{2}n(n-1)}\frac{\mathbf{m}_{1}\wedge...\wedge\mathbf{m}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}.\end{align*}

\end_inset

Finally, we have 
\begin_inset Formula \[
\frac{\mathbf{m}_{1}\wedge...\wedge\mathbf{m}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}=\frac{\hat{M}\mathbf{c}_{1}\wedge...\wedge\hat{M}\mathbf{c}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}=\det\hat{M}.\]

\end_inset

This concludes the calculation.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Chapter
\start_of_appendix
Complex numbers
\begin_inset LatexCommand \label{sec:Complex-numbers}

\end_inset


\end_layout

\begin_layout Standard
This appendix is a crash course on complex numbers.
\end_layout

\begin_layout Section
Basic definitions
\end_layout

\begin_layout Standard
A 
\series bold
complex number
\series default
 is a formal expression 
\begin_inset Formula $a+\text{i}b$
\end_inset

, where 
\begin_inset Formula $a,b$
\end_inset

 are real numbers.
 In other words, a complex number is simply a pair 
\begin_inset Formula $\left(a,b\right)$
\end_inset

 of real numbers, written in a more convenient notation as 
\begin_inset Formula $a+\text{i}b$
\end_inset

.
 One writes, for example, 
\begin_inset Formula $2+\text{i}3$
\end_inset

 or 
\begin_inset Formula $2+3\text{i}$
\end_inset

 or 
\begin_inset Formula $3+\text{i}$
\end_inset

 or 
\begin_inset Formula $-5\text{i}-8$
\end_inset

, etc.
 The 
\series bold
imaginary
\series default
 
\series bold
unit
\series default
, denoted 
\begin_inset Quotes eld
\end_inset


\begin_inset Formula $\text{i}$
\end_inset


\begin_inset Quotes erd
\end_inset

, is not a real number; it is a symbol which has the property 
\begin_inset Formula $\text{i}^{2}=-1$
\end_inset

.
 Using this property, we can apply the usual algebraic rules to complex
 numbers; this is emphasized by the algebraic notation 
\begin_inset Formula $a+\text{i}b$
\end_inset

.
 For instance, we can add and multiply complex numbers,
\begin_inset Formula \begin{align*}
\left(1+\text{i}\right)+5\text{i} & =1+6\text{i};\\
\left(1-\text{i}\right)\left(2+\text{i}\right) & =2-2\text{i}+\text{i}-\text{i}^{2}\\
 & =3-\text{i};\\
\text{i}^{3} & =\text{i}\text{i}^{2}=-\text{i}.\end{align*}

\end_inset

It is straightforward to see that the result of any arithmetic operation
 on complex numbers turns out to be again a complex number.
 In other words, one can multiply, divide, add, subtract complex numbers
 just as directly as real numbers.
 
\end_layout

\begin_layout Standard
The set of all complex numbers is denoted by 
\begin_inset Formula $\mathbb{C}$
\end_inset

.
 The set of all real numbers is 
\begin_inset Formula $\mathbb{R}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Using directly the definition of the imaginary unit, compute the following
 complex numbers.
 
\begin_inset Formula \[
\frac{1}{\text{i}}=?\quad\text{i}^{4}=?\quad\text{i}^{5}=?\quad\left(\frac{1}{2}+\frac{\text{i}\sqrt{3}}{2}\right)^{3}=?\]

\end_inset


\end_layout

\begin_layout Standard
The complex number 
\begin_inset Formula $a-\text{i}b$
\end_inset

 is called 
\series bold
complex
\series default
 
\series bold
conjugate
\series default
 to 
\begin_inset Formula $a+\text{i}b$
\end_inset

.
 Conjugation is denoted either with an overbar or with a star superscript,
 
\begin_inset Formula \[
z=a+\text{i}b,\quad\bar{z}=z^{*}=a-\text{i}b,\]

\end_inset

according to convenience.
 Note that
\begin_inset Formula \[
zz^{*}=\left(a+\text{i}b\right)\left(a-\text{i}b\right)=a^{2}+b^{2}\in\mathbb{R}.\]

\end_inset


\end_layout

\begin_layout Standard
In order to divide by a complex number more easily, one multiplies the numerator
 and the denominator by the complex conjugate number, e.g.
 
\begin_inset Formula \[
\frac{1}{3+\text{i}}=?=\frac{1}{3+\text{i}}\cdot\frac{3-\text{i}}{3-\text{i}}=\frac{3-\text{i}}{9-\text{i}^{2}}=\frac{3-\text{i}}{10}=\frac{3}{10}-\frac{1}{10}\text{i}.\]

\end_inset

 
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Compute the following complex numbers, 
\begin_inset Formula \[
\frac{1-\text{i}}{1+\text{i}}=?\quad\frac{1-\text{i}}{4+\text{i}}-\frac{1+\text{i}}{4-\text{i}}=?\quad\frac{1}{a+\text{i}b}=?\]

\end_inset

where 
\begin_inset Formula $a,b\in\mathbb{R}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Another view of complex numbers is that they are linear polynomials in the
 formal variable 
\begin_inset Quotes eld
\end_inset

i.
\begin_inset Quotes erd
\end_inset

 Since we may replace 
\begin_inset Formula $\text{i}^{2}$
\end_inset

 by 
\begin_inset Formula $-1$
\end_inset

 and 
\begin_inset Formula $\text{i}^{-1}$
\end_inset

 by 
\begin_inset Formula $-\text{i}$
\end_inset

 wherever any power of 
\begin_inset Quotes eld
\end_inset

i
\begin_inset Quotes erd
\end_inset

 appears, we can reduce any power series in i and/or in 
\begin_inset Formula $\text{i}^{-1}$
\end_inset

 to a linear combination of 1 and i.
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $z=a+\text{i}b$
\end_inset

 where 
\begin_inset Formula $a,b\in\mathbb{R}$
\end_inset

 then 
\begin_inset Formula $a$
\end_inset

 is called the 
\series bold
real part
\series default
, 
\begin_inset Formula $\text{Re}\, z$
\end_inset

, and 
\begin_inset Formula $b$
\end_inset

 is the 
\series bold
imaginary part
\series default
, 
\begin_inset Formula $\text{Im}\, z$
\end_inset

.
 In other words, 
\begin_inset Formula \[
\text{Re}\,\left(a+\text{i}b\right)=a,\quad\text{Im}\,\left(a+\text{i}b\right)=b.\]

\end_inset

 The 
\series bold
absolute
\series default
 
\series bold
value
\series default
 or 
\series bold
modulus
\series default
 of 
\begin_inset Formula $z=a+\text{i}b$
\end_inset

 is the real number 
\begin_inset Formula $\left|z\right|\equiv\sqrt{a^{2}+b^{2}}$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Compute 
\begin_inset Formula \[
\text{Re}\left[\left(2+\text{i}\right)^{2}\right]=?\quad\left|3+4\text{i}\right|=?\]

\end_inset

Prove that 
\begin_inset Formula \begin{align*}
\text{Re}\, z & =\frac{z+\bar{z}}{2};\quad\text{Im}\, z=\frac{z-\bar{z}}{2\text{i}};\quad\left|z\right|^{2}=z\bar{z};\\
\left|z\right| & =\left|\bar{z}\right|;\quad\left|z_{1}z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|;\quad\left(z_{1}z_{2}\right)^{*}=z_{1}^{*}z_{2}^{*}\end{align*}

\end_inset

for any complex numbers 
\begin_inset Formula $z$
\end_inset

, 
\begin_inset Formula $z_{1}$
\end_inset

, 
\begin_inset Formula $z_{2}\in\mathbb{C}$
\end_inset

.
 
\end_layout

\begin_layout Section
Geometric representation 
\end_layout

\begin_layout Standard
Let us draw a complex number 
\begin_inset Formula $z=x+\text{i}y$
\end_inset

 as a point with coordinates 
\begin_inset Formula $\left(x,y\right)$
\end_inset

 in the Euclidean plane, or a vector with real components 
\begin_inset Formula $\left(x,y\right)$
\end_inset

.
 You can check that the sum 
\begin_inset Formula $z_{1}+z_{2}$
\end_inset

 and the product of 
\begin_inset Formula $z$
\end_inset

 with a real number 
\begin_inset Formula $\lambda$
\end_inset

, that is 
\begin_inset Formula $z\mapsto z\lambda$
\end_inset

, correspond to the familiar operations of adding two vectors and multiplying
 a vector by a scalar.
 Also, the absolute value 
\begin_inset Formula $\left|z\right|$
\end_inset

 is equal to the 
\emph on
length
\emph default
 of the two-dimen\SpecialChar \-
sion\SpecialChar \-
al vector 
\begin_inset Formula $\left(x,y\right)$
\end_inset

 as computed in the usual Euclidean space.
 
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Show that the multiplication of 
\begin_inset Formula $z=x+\text{i}y$
\end_inset

 by a complex number 
\begin_inset Formula $r\equiv\cos\phi+\text{i}\sin\phi$
\end_inset

 corresponds to rotating the vector 
\begin_inset Formula $\left(x,y\right)$
\end_inset

 by angle 
\begin_inset Formula $\phi$
\end_inset

 counterclockwise (assuming that the 
\begin_inset Formula $x$
\end_inset

 axis is horizontal and points to the right, and the 
\begin_inset Formula $y$
\end_inset

 axis points vertically upwards).
 Show that 
\begin_inset Formula $\left|rz\right|=\left|z\right|$
\end_inset

, which corresponds to the fact that the length of a vector does not change
 after a rotation.
\end_layout

\begin_layout Section
Analytic functions
\end_layout

\begin_layout Standard

\series bold
Analytic
\series default
 functions are such functions 
\begin_inset Formula $f(x)$
\end_inset

 that can be represented by a power series 
\begin_inset Formula $f(x)=\sum_{n=0}^{\infty}c_{n}x^{n}$
\end_inset

 with some coefficients 
\begin_inset Formula $c_{n}$
\end_inset

 such that the series converges at least for some real 
\begin_inset Formula $x$
\end_inset

.
 In that case, the series will converge also for some complex 
\begin_inset Formula $x$
\end_inset

.
 In this sense, analytic functions are naturally extended from real to complex
 numbers.
 For example, 
\begin_inset Formula $f(x)=x^{2}+1$
\end_inset

 is an analytic function; it can be computed just as well for any complex
 
\begin_inset Formula $x$
\end_inset

 as for real 
\begin_inset Formula $x$
\end_inset

.
 
\end_layout

\begin_layout Standard
An example of a non-analytic function is the 
\series bold
Heaviside step function
\series default

\begin_inset LatexCommand \index{Heaviside step function}

\end_inset


\begin_inset Formula \[
\theta(x)=\begin{cases}
0, & x<0;\\
1, & x\geq0.\end{cases}\]

\end_inset

This function cannot be represented by a power series and thus cannot be
 naturally extended to complex numbers.
 In other words, there is no useful way to define the value of, say, 
\begin_inset Formula $\theta(2\text{i})$
\end_inset

.
 On the other hand, functions such as 
\begin_inset Formula $\cos x$
\end_inset

, 
\begin_inset Formula $\sqrt{x}$
\end_inset

, 
\begin_inset Formula $x/\ln x$
\end_inset

, 
\begin_inset Formula $\int_{0}^{x}e^{-t^{2}}dt$
\end_inset

, and so on, are analytic and can be evaluated for complex 
\begin_inset Formula $x$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Compute 
\begin_inset Formula $\left(1+2\text{i}\right)\left(1+3\text{i}\right)$
\end_inset

 and 
\begin_inset Formula $\left(1-2\text{i}\right)\left(1-3\text{i}\right)$
\end_inset

.
 What did you notice? Prove that 
\begin_inset Formula $f(z^{*})=\left[f(z)\right]^{*}$
\end_inset

 for any analytic function 
\begin_inset Formula $f(z)$
\end_inset

.
 
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
Although 
\begin_inset Formula $\sqrt{x}$
\end_inset

 has no power series expansion at 
\begin_inset Formula $x=0$
\end_inset

, it has a Taylor expansion at 
\begin_inset Formula $x=1$
\end_inset

, which is sufficient for analyticity; one can also define 
\begin_inset Formula $\sqrt{z}$
\end_inset

 for complex 
\begin_inset Formula $z$
\end_inset

 through the property 
\begin_inset Formula $\left(\sqrt{z}\right)^{2}=z$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Derive an explicit formula for the square root of a complex number, 
\begin_inset Formula $\sqrt{a+\text{i}b}$
\end_inset

, where 
\begin_inset Formula $a,b\in\mathbb{R}$
\end_inset

.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Write 
\begin_inset Formula $\sqrt{a+\text{i}b}=x+\text{i}y$
\end_inset

, square both sides, and solve for 
\begin_inset Formula $x$
\end_inset

 and 
\begin_inset Formula $y$
\end_inset

.
\end_layout

\begin_layout Subparagraph
Answer:
\end_layout

\begin_layout Standard
\begin_inset Formula \[
\sqrt{a+\text{i}b}=\pm\left[\sqrt{\frac{\sqrt{a^{2}+b^{2}}+a}{2}}+\text{i}\,\text{sign}(b)\sqrt{\frac{\sqrt{a^{2}+b^{2}}-a}{2}}\right],\]

\end_inset

where 
\begin_inset Formula $\text{sign}(b)=1,0,-1$
\end_inset

 when 
\begin_inset Formula $b$
\end_inset

 is positive, zero, or negative.
 Note that this formula may be rewritten for quicker calculation as
\begin_inset Formula \[
\sqrt{a+\text{i}b}=\pm\left(r+\text{i}\frac{b}{2r}\right),\quad r\equiv\sqrt{\frac{\sqrt{a^{2}+b^{2}}+a}{2}}.\]

\end_inset

(In this formula, the square roots in the definition of 
\begin_inset Formula $r$
\end_inset

 are purely real and positive.)
\end_layout

\begin_layout Standard

\end_layout

\begin_layout Section
Exponent and logarithm
\end_layout

\begin_layout Standard
The exponential function and the logarithmic function are analytic functions.
\end_layout

\begin_layout Standard
The 
\series bold
exponential
\series default
 function is defined through the power series
\begin_inset Formula \[
e^{z}\equiv\exp z\equiv1+\frac{1}{1!}z+\frac{1}{2!}z^{2}+...=\sum_{n=0}^{\infty}\frac{z^{n}}{n!}.\]

\end_inset

This series converges for all complex 
\begin_inset Formula $z$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Verify the 
\series bold
Euler
\series default
 
\series bold
formula
\series default

\begin_inset LatexCommand \index{Euler formula}

\end_inset

, 
\begin_inset Formula \[
e^{\text{i}\phi}=\cos\phi+\text{i}\sin\phi,\quad\phi\in\mathbb{R},\]

\end_inset

by using the known Taylor series for 
\begin_inset Formula $\sin x$
\end_inset

 and 
\begin_inset Formula $\cos x$
\end_inset

.
 Calculate: 
\begin_inset Formula \[
e^{2\text{i}}=?\quad e^{\pi\text{i}}=?\quad e^{\frac{1}{2}\pi\text{i}}=?\quad e^{2\pi\text{i}}=?\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Use the identity 
\begin_inset Formula $e^{a+b}=e^{a}e^{b}$
\end_inset

, which holds also for complex numbers 
\begin_inset Formula $a,b$
\end_inset

, to show that
\begin_inset Formula \[
e^{a+\text{i}b}=e^{a}\left(\cos b+\text{i}\sin b\right),\quad a,b\in\mathbb{R}.\]

\end_inset

Calculate:
\begin_inset Formula \[
\exp\left[\ln2+\frac{\pi}{2}\text{i}\right]=?\quad\exp\left[1+\pi\text{i}\right]=?\quad\cos\left(\frac{1}{2}\pi\text{i}\right)=?\]

\end_inset


\end_layout

\begin_layout Standard
The 
\series bold
logarithm
\series default
 of a complex number 
\begin_inset Formula $z$
\end_inset

 is a complex number denoted 
\begin_inset Formula $\ln z$
\end_inset

 such that 
\begin_inset Formula $e^{\ln z}=z$
\end_inset

.
 It is easy to see that 
\begin_inset Formula \[
\exp\left[z+2\pi\text{i}\right]=\exp z,\quad z\in\mathbb{C},\]

\end_inset

in other words, the logarithm is defined only up to adding 
\begin_inset Formula $2\pi\text{i}$
\end_inset

.
 So the logarithm (at least in our simple-minded approach here) is not a
 single-valued function.
 For example, we have 
\begin_inset Formula $\ln\left(-1\right)=\pi\text{i}$
\end_inset

 or 
\begin_inset Formula $3\pi\text{i}$
\end_inset

 or 
\begin_inset Formula $-\pi\text{i}$
\end_inset

, so one can write 
\begin_inset Formula \[
\ln\left(-1\right)=\left\{ \pi\text{i}+2\pi n\text{i}\,|\, n\in\mathbb{Z}\right\} .\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
a) Calculate:
\begin_inset Formula \[
\ln\text{i}=?\quad\ln\left(-8\text{i}\right)=?\]

\end_inset


\end_layout

\begin_layout Standard
b) Show that the geometric or 
\series bold
polar
\series default
 representation of a complex number 
\begin_inset Formula $z=x+\text{i}y=\rho e^{\text{i}\phi}$
\end_inset

 can be computed using the logarithm:
\begin_inset Formula \[
\rho=\exp\left(\text{Re}\,\ln z\right)=\left|z\right|,\quad\phi=\text{Im}\,\ln z=\arctan\frac{y}{x}.\]

\end_inset

Determine the polar representation of the following complex numbers: 
\begin_inset Formula $z_{1}=2+2\text{i},\quad z_{2}=\sqrt{3}+\text{i}$
\end_inset

.
 Calculate also 
\begin_inset Formula $\ln z_{1}$
\end_inset

 and 
\begin_inset Formula $\ln z_{2}$
\end_inset

.
\end_layout

\begin_layout Standard
c) 
\series bold
Powers
\series default
 of a complex number can be defined by 
\begin_inset Formula $z^{x}\equiv\exp\left[x\ln z\right]$
\end_inset

.
 Here 
\begin_inset Formula $x$
\end_inset

 can be also a complex number! As a rule, 
\begin_inset Formula $z^{x}$
\end_inset

 is not uniquely defined (unless 
\begin_inset Formula $x$
\end_inset

 is a real integer).
 Calculate: 
\begin_inset Formula \[
\sqrt{\text{i}}=?\quad\sqrt{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\text{i}\right)}=?\quad\sqrt[6]{-1}=?\quad\text{i}^{\text{i}}=?\quad3^{2\pi\text{i}}=?\]

\end_inset


\end_layout

\begin_layout Chapter
Permutations
\begin_inset LatexCommand \label{sub:Properties-of-permutations}

\end_inset


\end_layout

\begin_layout Standard
In this appendix I briefly review some basic properties of permutations.
\end_layout

\begin_layout Standard
We consider the ordered set 
\begin_inset Formula $(1,...,N)$
\end_inset

 of integers.
 A 
\series bold
permutation
\series default

\begin_inset LatexCommand \index{permutation}

\end_inset

 of the set 
\begin_inset Formula $(1,...,N)$
\end_inset

 is a map 
\begin_inset Formula $\sigma:(1,...,N)\mapsto(k_{1},...,k_{N})$
\end_inset

 where the 
\begin_inset Formula $k_{j}$
\end_inset

 are all different and again range from 1 to 
\begin_inset Formula $N$
\end_inset

.
 In other words, a permutation 
\begin_inset Formula $\sigma$
\end_inset

 is a one-to-one map of the set 
\begin_inset Formula $(1,...,N)$
\end_inset

 to itself.
 For example,
\begin_inset Formula \[
\sigma:\left(1,2,3,4,5\right)\mapsto\left(4,1,5,3,2\right)\]

\end_inset

 is a permutation of the set of five elements.
\end_layout

\begin_layout Standard
We call a permutation 
\series bold
elementary
\series default

\begin_inset LatexCommand \index{elementary permutation}

\end_inset

 if it exchanges only two adjacent numbers, for example 
\begin_inset Formula $\left(1,2,3,4\right)\mapsto\left(1,3,2,4\right)$
\end_inset

.
 The 
\series bold
identity
\series default
 permutation, denoted by 
\begin_inset Formula $\text{id}$
\end_inset

, does not permute anything.
 Two permutations 
\begin_inset Formula $\sigma_{1}$
\end_inset

 and 
\begin_inset Formula $\sigma_{2}$
\end_inset

 can be executed one after another; the result is also a permutation called
 the 
\series bold
product
\series default
 (composition) of the elementary permutations 
\begin_inset Formula $\sigma_{1}$
\end_inset

 and 
\begin_inset Formula $\sigma_{2}$
\end_inset

 and denoted 
\begin_inset Formula $\sigma_{2}\sigma_{1}$
\end_inset

 (where 
\begin_inset Formula $\sigma_{1}$
\end_inset

 is executed first, and then 
\begin_inset Formula $\sigma_{2}$
\end_inset

).
 For example, the product of 
\begin_inset Formula $\left(1,2,3\right)\mapsto\left(1,3,2\right)$
\end_inset

 and 
\begin_inset Formula $\left(1,2,3\right)\mapsto\left(2,1,3\right)$
\end_inset

 is 
\begin_inset Formula $\left(1,2,3\right)\mapsto\left(3,1,2\right)$
\end_inset

.
 The effect of this (non-elementary) permutation is to move 3 through 1
 and 2 into the first place.
 Note that in this way we can move any number into any other place; for
 that, we need to use as many elementary permutations as places we are passing
 through.
\end_layout

\begin_layout Standard
The set of all permutations of 
\begin_inset Formula $N$
\end_inset

 elements is a group with respect to the product of permutations.
 This group is not commutative.
 
\end_layout

\begin_layout Standard
For brevity, let us write EP for 
\begin_inset Quotes eld
\end_inset

elementary permutation.
\begin_inset Quotes erd
\end_inset

 Note that 
\begin_inset Formula $\sigma\sigma=\text{id}$
\end_inset

 when 
\begin_inset Formula $\sigma$
\end_inset

 is an EP.
 Now we will prove that the permutation group is generated by EPs.
\end_layout

\begin_layout Paragraph
Statement 1:
\end_layout

\begin_layout Standard
Any permutation can be represented as a product of some finite number of
 EPs.
 
\end_layout

\begin_layout Subparagraph
Proof: 
\end_layout

\begin_layout Standard
Suppose 
\begin_inset Formula $\sigma:\left(1,...,N\right)\mapsto\left(k_{1},...,k_{N}\right)$
\end_inset

 is a given permutation.
 Let us try to reduce it to EPs.
 If 
\begin_inset Formula $k_{1}\neq1$
\end_inset

 then 1 is somewhere among the 
\begin_inset Formula $k_{i}$
\end_inset

, say at the place 
\begin_inset Formula $i_{1}$
\end_inset

.
 We can move 1 from the 
\begin_inset Formula $i_{1}$
\end_inset

-th place to the first place by executing a product of 
\begin_inset Formula $i_{1}-1$
\end_inset

 EPs (since we pass through 
\begin_inset Formula $i_{1}-1$
\end_inset

 places).
 Then we repeat the same operation with 2, moving it to the second place,
 and so on.
 The result will be that we obtain some (perhaps a large number of) EPs
 
\begin_inset Formula $\sigma_{1}$
\end_inset

, ..., 
\begin_inset Formula $\sigma_{n}$
\end_inset

, such that 
\begin_inset Formula $\sigma_{1}...\sigma_{n}\sigma=\text{id}$
\end_inset

.
 Using the property 
\begin_inset Formula $\sigma_{i}^{2}=\text{id}$
\end_inset

, we move 
\begin_inset Formula $\sigma_{i}$
\end_inset

's to the right and obtain 
\begin_inset Formula $\sigma=\sigma_{n}...\sigma_{1}$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Any given permutation 
\begin_inset Formula $\sigma$
\end_inset

 is thus equal to a product of EPs 
\begin_inset Formula $\sigma_{1}$
\end_inset

 to 
\begin_inset Formula $\sigma_{n}$
\end_inset

, but this representation is in any case not unique because, say, we may
 insert 
\begin_inset Formula $\sigma_{1}\sigma_{1}=\text{id}$
\end_inset

 in any place of the product 
\begin_inset Formula $\sigma_{n}...\sigma_{1}$
\end_inset

 without changing the result.
 So the 
\emph on
number
\emph default
 of required EPs can be changed.
 However, it is very important (and we will prove this now) that the number
 of required EPs can only be changed by 2, never by 1.
\end_layout

\begin_layout Standard
In other words, we are going to prove the following statement: When a given
 permutation 
\begin_inset Formula $\sigma$
\end_inset

 is represented as a product of EPs, 
\begin_inset Formula $\sigma=\sigma_{n}...\sigma_{1}$
\end_inset

, the number 
\begin_inset Formula $n$
\end_inset

 of these EPs is always either even or odd, depending on 
\begin_inset Formula $\sigma$
\end_inset

 but independent of the choice of the representation 
\begin_inset Formula $\sigma_{n}...\sigma_{1}$
\end_inset

.
 Since the parity of 
\begin_inset Formula $n$
\end_inset

 (
\series bold
parity
\series default

\begin_inset LatexCommand \index{parity}

\end_inset

 is whether 
\begin_inset Formula $n$
\end_inset

 is even or odd) is a property of the permutation 
\begin_inset Formula $\sigma$
\end_inset

 rather than of the representation of 
\begin_inset Formula $\sigma$
\end_inset

 through EPs, it will make sense to say that the permutation 
\begin_inset Formula $\sigma$
\end_inset

 is itself 
\series bold
even
\series default
 or 
\series bold
odd
\series default
.
 
\end_layout

\begin_layout Paragraph
Statement 2:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $\sigma$
\end_inset

 is represented as a product of EPs in two different ways, namely by a product
 of 
\begin_inset Formula $n_{1}$
\end_inset

 EPs and also by a product of 
\begin_inset Formula $n_{2}$
\end_inset

 EPs, then the integers 
\begin_inset Formula $n_{1}$
\end_inset

 and 
\begin_inset Formula $n_{2}$
\end_inset

 are both even or both odd.
\end_layout

\begin_layout Subparagraph
Proof:
\end_layout

\begin_layout Standard
Let us denote by 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 the 
\emph on
smallest
\emph default
 number of EPs required to represent a given permutation 
\begin_inset Formula $\sigma$
\end_inset

.
\begin_inset Foot
status open

\begin_layout Standard
In Definition D0 we used the notation 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 to mean 0 or 1 for even or odd permutations.
 However, the formula uses only 
\begin_inset Formula $\left(-1\right)^{\left|\sigma\right|}$
\end_inset

, so the present definition of 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 is still consistent with Definition\InsetSpace ~
D0.
\end_layout

\end_inset

 We will now show that 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 is equal to the number of 
\series bold
order violations
\series default

\begin_inset LatexCommand \index{permutation!order violations}

\end_inset

 in 
\begin_inset Formula $\sigma$
\end_inset

, i.e.\InsetSpace ~
the number of instances when some larger number is situated to the left
 of some smaller number.
 For example, in the permutation 
\begin_inset Formula $\left(1,2,3,4\right)\mapsto\left(4,1,3,2\right)$
\end_inset

 there are 
\emph on
four
\emph default
 order violations: the pairs 
\begin_inset Formula $\left(4,1\right)$
\end_inset

, 
\begin_inset Formula $\left(4,3\right)$
\end_inset

, 
\begin_inset Formula $\left(4,2\right)$
\end_inset

, and 
\begin_inset Formula $\left(3,2\right)$
\end_inset

.
 It is clear that the correct order can be restored only when each order
 violation is resolved, which requires 
\emph on
one
\emph default
 EP for each order violation.
\end_layout

\begin_layout Standard
The construction in the proof of Statement\InsetSpace ~
1 shows that there exists a choice
 of exactly 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 EPs whose product equals 
\begin_inset Formula $\sigma$
\end_inset

.
 Therefore, 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 (the smallest number of EPs required to represent 
\begin_inset Formula $\sigma$
\end_inset

) is indeed equal to the number of order violations in 
\begin_inset Formula $\sigma$
\end_inset

.
 
\end_layout

\begin_layout Standard
Now consider multiplying 
\begin_inset Formula $\sigma$
\end_inset

 by some EP 
\begin_inset Formula $\sigma_{0}$
\end_inset

; it is clear that the number of order violations changes by 1, that is,
 
\begin_inset Formula $\left|\sigma_{0}\sigma\right|=\left|\sigma\right|\pm1$
\end_inset

, depending on whether 
\begin_inset Formula $\sigma_{0}$
\end_inset

 violates the order existing in 
\begin_inset Formula $\sigma$
\end_inset

 at the two adjacent places affected by 
\begin_inset Formula $\sigma_{0}$
\end_inset

.
 For example, the permutation 
\begin_inset Formula $\sigma=\left(4,1,3,2\right)$
\end_inset

 has four order violations, 
\begin_inset Formula $\left|\sigma\right|=4$
\end_inset

; when we multiply 
\begin_inset Formula $\sigma$
\end_inset

 by 
\begin_inset Formula $\sigma_{0}=\left(1,3,2,4\right)$
\end_inset

, which is an EP exchanging 2 and 3, we remove the order violation in 
\begin_inset Formula $\sigma$
\end_inset

 in the pair 
\begin_inset Formula $\left(1,3\right)$
\end_inset

 since 
\begin_inset Formula $\sigma_{0}\sigma=\left(4,3,1,2\right)$
\end_inset

; hence 
\begin_inset Formula $\left|\sigma_{0}\sigma\right|=3$
\end_inset

.
 Since 
\begin_inset Formula $\left|\sigma\right|$
\end_inset

 is changed by 
\begin_inset Formula $\pm1$
\end_inset

, we have 
\begin_inset Formula $\left(-1\right)^{\left|\sigma_{0}\sigma\right|}=-\left(-1\right)^{\left|\sigma\right|}$
\end_inset

 in any case.
 Now we consider two representations of 
\begin_inset Formula $\sigma$
\end_inset

 through 
\begin_inset Formula $n_{1}$
\end_inset

 and through 
\begin_inset Formula $n_{2}$
\end_inset

 EPs.
 If 
\begin_inset Formula $\sigma=\sigma_{n_{1}}...\sigma_{1}$
\end_inset

, where 
\begin_inset Formula $\sigma_{j}$
\end_inset

 are EPs, we find by induction 
\begin_inset Formula \[
\left(-1\right)^{\left|\sigma\right|}=\left(-1\right)^{\left|\sigma_{n_{1}}...\sigma_{1}\right|}=\left(-1\right)^{n_{1}}.\]

\end_inset

Similarly for the second representation.
 So it follows that 
\begin_inset Formula \[
\left(-1\right)^{\left|\sigma\right|}=\left(-1\right)^{n_{1}}=\left(-1\right)^{n_{2}}.\]

\end_inset

 Hence, the numbers 
\begin_inset Formula $n_{1}$
\end_inset

 and 
\begin_inset Formula $n_{2}$
\end_inset

 are either both even or both odd.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
It follows from the proof of Statement\InsetSpace ~
2 that the number 
\begin_inset Formula $\left(-1\right)^{\left|\sigma\right|}$
\end_inset

 is independent of the representation of 
\begin_inset Formula $\sigma$
\end_inset

 through EPs.
 This number is called the 
\series bold
parity
\series default

\begin_inset LatexCommand \index{permutation!parity of}

\end_inset

 of a permutation 
\begin_inset Formula $\sigma$
\end_inset

.
 For example, the permutation 
\begin_inset Formula \[
\sigma:\left(1,2,3,4\right)\mapsto\left(1,4,3,2\right)\]

\end_inset

 has four order violations, 
\begin_inset Formula $\left|\sigma\right|=4$
\end_inset

, and is therefore an even permutation with parity 
\begin_inset Formula $+1$
\end_inset

.
\end_layout

\begin_layout Paragraph
Definition: 
\end_layout

\begin_layout Standard
For a permutation 
\begin_inset Formula $\sigma$
\end_inset

, the 
\series bold
inverse
\series default
 
\series bold
permutation
\series default

\begin_inset LatexCommand \index{inverse permutation}

\end_inset

 
\begin_inset Formula $\sigma^{-1}$
\end_inset

 is defined by 
\begin_inset Formula $\sigma^{-1}\sigma=\sigma\sigma^{-1}=\text{id}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Statement\InsetSpace ~
3:
\end_layout

\begin_layout Standard
The inverse permutation 
\begin_inset Formula $\sigma^{-1}$
\end_inset

 exists for every permutation 
\begin_inset Formula $\sigma$
\end_inset

, is unique, and the parity of 
\begin_inset Formula $\sigma^{-1}$
\end_inset

 is the same as the parity of 
\begin_inset Formula $\sigma$
\end_inset

.
\end_layout

\begin_layout Paragraph
Proof:
\end_layout

\begin_layout Standard
By Statement\InsetSpace ~
1, we have 
\begin_inset Formula $\sigma=\sigma_{1}...\sigma_{n}$
\end_inset

 where 
\begin_inset Formula $\sigma_{i}$
\end_inset

 are EPs.
 Since 
\begin_inset Formula $\sigma_{i}\sigma_{i}=\text{id}$
\end_inset

, we can define explicitly the inverse permutation as
\begin_inset Formula \[
\sigma^{-1}\equiv\sigma_{n}\sigma_{n-1}...\sigma_{1}.\]

\end_inset

It is obvious that 
\begin_inset Formula $\sigma\sigma^{-1}=\sigma^{-1}\sigma=1$
\end_inset

, and so 
\begin_inset Formula $\sigma^{-1}$
\end_inset

 exists.
 If there were two different inverse permutations, say 
\begin_inset Formula $\sigma^{-1}$
\end_inset

 and 
\begin_inset Formula $\sigma^{\prime}$
\end_inset

, we would have 
\begin_inset Formula \[
\sigma^{-1}=\sigma^{-1}\sigma\sigma^{\prime}=\sigma^{\prime}.\]

\end_inset

Therefore, the inverse is unique.
 Finally, by Statement\InsetSpace ~
2, the parity of 
\begin_inset Formula $\sigma^{-1}$
\end_inset

 is equal to the parity of the number 
\begin_inset Formula $n$
\end_inset

, and thus equal to the parity of 
\begin_inset Formula $\sigma$
\end_inset

.
 (Alternatively, we may show that 
\begin_inset Formula $|\sigma^{-1}|=\left|\sigma\right|$
\end_inset

.)
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Chapter
Matrices
\begin_inset LatexCommand \label{sec:Matrices}

\end_inset


\end_layout

\begin_layout Standard
This appendix is a crash course on vector and matrix algebra.
\end_layout

\begin_layout Section
Definitions
\end_layout

\begin_layout Standard
Matrices are rectangular tables of numbers; here is an example of a 
\begin_inset Formula $4\times4$
\end_inset

 matrix:
\begin_inset Formula \[
\left(\begin{array}{cccc}
1 & 0 & 0 & -\sqrt{2}\\
2 & 1 & 0 & 0\\
3 & 2 & 1 & 0\\
4 & 3 & 2 & 1\end{array}\right).\]

\end_inset

 Matrices are used whenever it is convenient to arrange some numbers in
 a rectangular table.
\end_layout

\begin_layout Standard
To write matrices symbolically, one uses two indices, for example 
\begin_inset Formula $A_{ij}$
\end_inset

 is the matrix element in the 
\begin_inset Formula $i$
\end_inset

-th row and the 
\begin_inset Formula $j$
\end_inset

-th column.
 In this convention, the indices are integers ranging from 1 to each dimension
 of the matrix.
 For example, a 
\begin_inset Formula $3\times2$
\end_inset

 rectangular matrix can be written as a set of coefficients 
\begin_inset Formula $\left\{ B_{ij}\,|\,1\leq i\leq3,\:1\leq j\leq2\right\} $
\end_inset

 and is displayed as
\begin_inset Formula \[
\left(\begin{array}{cc}
B_{11} & B_{12}\\
B_{21} & B_{22}\\
B_{31} & B_{32}\end{array}\right).\]

\end_inset

A matrix with dimensions 
\begin_inset Formula $n\times1$
\end_inset

 is called a 
\series bold
column
\series default
 since it has the shape
\begin_inset Formula \[
\left[\begin{array}{c}
A_{11}\\
\vdots\\
A_{n1}\end{array}\right].\]

\end_inset

 A matrix with dimensions 
\begin_inset Formula $1\times n$
\end_inset

 is called a row since it has the shape
\begin_inset Formula \[
\left[\begin{array}{ccc}
A_{11} & \dots & A_{1n}\end{array}\right].\]

\end_inset

Rows and columns are sometimes distinguished from other matrices by using
 square brackets.
\end_layout

\begin_layout Section
Matrix multiplication
\end_layout

\begin_layout Standard
Matrices can be multiplied by a number  just like vectors: each matrix element
 is multiplied by the number.
 For example,
\begin_inset Formula \[
2\left(\begin{array}{cc}
u & v\\
w & x\\
y & z\end{array}\right)=\left(\begin{array}{cc}
2u & 2v\\
2w & 2x\\
2y & 2z\end{array}\right).\]

\end_inset

Now we will see how to multiply a matrix with another matrix.
\end_layout

\begin_layout Standard
The easiest is to define the multiplication of a row with a column: 
\begin_inset Formula \[
\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3}\end{array}\right]\left[\begin{array}{c}
x_{1}\\
x_{2}\\
x_{3}\end{array}\right]=a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}.\]

\end_inset

So the result of a multiplication of a 
\begin_inset Formula $1\times n$
\end_inset

 matrix with an 
\begin_inset Formula $n\times1$
\end_inset

 matrix is simply a number.
 The general definition is
\begin_inset Formula \[
\left[\begin{array}{ccc}
a_{1} & \dots & a_{n}\end{array}\right]\left[\begin{array}{c}
x_{1}\\
\vdots\\
x_{n}\end{array}\right]=\sum_{i=1}^{n}a_{i}x_{i}.\]

\end_inset


\end_layout

\begin_layout Standard
Let us try to guess how to define the multiplication of a column with a
 matrix consisting of 
\emph on
several
\emph default
 rows.
 Start with just two rows:
\begin_inset Formula \[
\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3}\\
b_{1} & b_{2} & b_{3}\end{array}\right)\left[\begin{array}{c}
x_{1}\\
x_{2}\\
x_{3}\end{array}\right]=?\]

\end_inset

We can multiply each of the two rows with the column 
\begin_inset Formula $\left[x_{i}\right]$
\end_inset

 as before.
 Then we obtain two numbers, and it is natural to put them into a column:
\begin_inset Formula \[
\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3}\\
b_{1} & b_{2} & b_{3}\end{array}\right)\left[\begin{array}{c}
x_{1}\\
x_{2}\\
x_{3}\end{array}\right]=\left[\begin{array}{c}
a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}\\
b_{1}x_{1}+b_{2}x_{2}+b_{3}x_{3}\end{array}\right].\]

\end_inset

In general, we define the product of an 
\begin_inset Formula $m\times n$
\end_inset

 matrix with an 
\begin_inset Formula $n\times1$
\end_inset

 matrix (a column); the result is an 
\begin_inset Formula $m\times1$
\end_inset

 matrix (again a column):
\begin_inset Formula \[
\left(\begin{array}{ccc}
a_{11} & ... & a_{1n}\\
\vdots & \vdots & \vdots\\
a_{m1} & \dots & a_{mn}\end{array}\right)\left[\begin{array}{c}
x_{1}\\
\vdots\\
x_{n}\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{n}a_{1i}x_{i}\\
\vdots\\
\sum_{i=1}^{n}a_{mi}x_{i}\end{array}\right].\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Calculate the following products of matrices and columns:
\begin_inset Formula \begin{align*}
\left(\begin{array}{cc}
-1 & 3\\
4 & 1\end{array}\right)\left[\begin{array}{c}
-2\\
-1\end{array}\right] & =?\\
\left(\begin{array}{cc}
\sqrt{5}-1 & 2\\
2 & \sqrt{5}+1\end{array}\right)\left[\begin{array}{c}
\sqrt{5}+1\\
\sqrt{5}-1\end{array}\right] & =?\\
\left(\begin{array}{ccc}
1 & 9 & -2\\
3 & 0 & 3\\
-6 & 4 & 3\end{array}\right)\left[\begin{array}{c}
-2\\
0\\
4\end{array}\right] & =?\\
\left(\begin{array}{cccc}
1 & 0 & 0 & 0\\
2 & 1 & 0 & 0\\
0 & 2 & 1 & 0\\
0 & 0 & 2 & 1\end{array}\right)\left[\begin{array}{c}
a\\
b\\
c\\
d\end{array}\right] & =?\end{align*}

\end_inset


\begin_inset Formula \[
\left(\begin{array}{cccccc}
2 & 1 & 0 & 0 & \cdots & 0\\
1 & 2 & 1 & 0 & \cdots & 0\\
0 & 1 & 2 & 1 &  & \vdots\\
0 & 0 & 1 & 2 &  & 0\\
\vdots & \vdots &  &  & \ddots & 1\\
0 & 0 &  & \cdots & 1 & 2\end{array}\right)\left[\begin{array}{c}
1\\
-1\\
1\\
\vdots\\
-1\\
1\end{array}\right]=?\]

\end_inset


\end_layout

\begin_layout Standard
Finally, we can extend this definition to products of two matrices of sizes
 
\begin_inset Formula $m\times n$
\end_inset

 and 
\begin_inset Formula $n\times p$
\end_inset

.
 We first multiply the 
\begin_inset Formula $m\times n$
\end_inset

 matrix by each of the 
\begin_inset Formula $n\times1$
\end_inset

 columns in the 
\begin_inset Formula $n\times p$
\end_inset

 matrix, yielding 
\begin_inset Formula $p$
\end_inset

 columns of size 
\begin_inset Formula $m\times1$
\end_inset

, and then arrange these 
\begin_inset Formula $p$
\end_inset

 columns into an 
\begin_inset Formula $m\times p$
\end_inset

 matrix.
 The resulting general definition can be written as a formula for matrix
 multiplication: if 
\begin_inset Formula $A$
\end_inset

 is an 
\begin_inset Formula $m\times n$
\end_inset

 matrix and 
\begin_inset Formula $B$
\end_inset

 is an 
\begin_inset Formula $n\times p$
\end_inset

 matrix then the product of 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

 is an 
\begin_inset Formula $m\times p$
\end_inset

 matrix 
\begin_inset Formula $C$
\end_inset

 whose coefficients are given by
\begin_inset Formula \[
C_{ik}=\sum_{j=1}^{n}A_{ij}B_{jk},\quad1\leq i\leq m,\quad1\leq k\leq p.\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Calculate the following matrix products: 
\begin_inset Formula \begin{align*}
\left[\begin{array}{cc}
2 & 3\end{array}\right]\left(\begin{array}{cc}
-3 & 9\\
2 & -6\end{array}\right) & =?\\
\left(\begin{array}{cc}
-5 & 6\\
-6 & 5\end{array}\right)\left(\begin{array}{cc}
-5 & 5\\
-6 & 6\end{array}\right) & =?\\
\left(\begin{array}{cc}
\frac{\sqrt{1}+\sqrt{2}}{\sqrt{3}} & 0\\
0 & \frac{\sqrt{1}-\sqrt{2}}{\sqrt{3}}\end{array}\right)\left(\begin{array}{cc}
\frac{\sqrt{1}-\sqrt{2}}{\sqrt{3}} & 0\\
0 & \frac{\sqrt{1}+\sqrt{2}}{\sqrt{3}}\end{array}\right) & =?\end{align*}

\end_inset


\begin_inset Formula \[
\left[\begin{array}{ccc}
0 & 1 & 2\end{array}\right]\left(\begin{array}{ccc}
3 & 2 & 1\\
2 & 1 & 0\\
1 & 0 & 0\end{array}\right)\left[\begin{array}{c}
-2\\
0\\
0\end{array}\right]=?\]

\end_inset


\begin_inset Formula \[
\left[\begin{array}{cccc}
w & x & y & z\end{array}\right]\left(\begin{array}{cccc}
2 & 0 & 0 & 0\\
0 & 2 & 0 & 0\\
0 & 0 & 2 & 0\\
0 & 0 & 0 & 2\end{array}\right)\left(\begin{array}{cccc}
3 & 0 & 0 & 0\\
0 & 3 & 0 & 0\\
0 & 0 & 3 & 0\\
0 & 0 & 0 & 3\end{array}\right)\left[\begin{array}{c}
a\\
b\\
c\\
d\end{array}\right]=?\]

\end_inset


\end_layout

\begin_layout Standard
Matrices of size 
\begin_inset Formula $n\times n$
\end_inset

 are called 
\series bold
square
\series default
 matrices.
 They can be multiplied with each other and, according to the rules of matrix
 multiplication, again give square matrices of the same size.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

 are two square matrices such that 
\begin_inset Formula $AB=BA$
\end_inset

 then one says that the matrices 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

 
\series bold
commute
\series default
 with each other.
 Determine whether the following pairs of matrices commute:
\end_layout

\begin_layout Standard
a) 
\begin_inset Formula $A=\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right)$
\end_inset

 and 
\begin_inset Formula $B=\left(\begin{array}{cc}
3 & 0\\
1 & -2\end{array}\right)$
\end_inset

.
 
\end_layout

\begin_layout Standard
b) 
\begin_inset Formula $A=\left(\begin{array}{ccc}
2 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 2\end{array}\right)$
\end_inset

 and 
\begin_inset Formula $B=\left(\begin{array}{ccc}
3 & 1 & -1\\
0 & -1 & 2\\
2 & 8 & -7\end{array}\right)$
\end_inset

.
\end_layout

\begin_layout Standard
c) 
\begin_inset Formula $A=\left(\begin{array}{ccc}
\sqrt{3} & 0 & 0\\
0 & \sqrt{3} & 0\\
0 & 0 & \sqrt{3}\end{array}\right)$
\end_inset

 and 
\begin_inset Formula $B=\left(\begin{array}{ccc}
97 & 12 & -55\\
-8 & 54 & 26\\
31 & 53 & -78\end{array}\right)$
\end_inset

.
 What have you noticed?
\end_layout

\begin_layout Standard
d) Determine 
\emph on
all
\emph default
 possible matrices 
\begin_inset Formula $B=\left(\begin{array}{cc}
w & x\\
y & z\end{array}\right)$
\end_inset

 that commute with the given matrix 
\begin_inset Formula $A=\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right)$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
Note that a square matrix having the elements 1 at the diagonal and zeros
 elsewhere, for example
\begin_inset Formula \[
\left(\begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1\end{array}\right),\]

\end_inset

has the property that it does not modify anything it multiplies.
 Therefore such matrices are called the 
\series bold
identity matrices
\series default

\begin_inset LatexCommand \index{identity matrix}

\end_inset

 and denoted by 
\begin_inset Formula $\hat{1}$
\end_inset

.
 One has 
\begin_inset Formula $\hat{1}A=A$
\end_inset

 and 
\begin_inset Formula $A\hat{1}=A$
\end_inset

 for any matrix 
\begin_inset Formula $A$
\end_inset

 (for which the product is defined).
\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
We consider real-valued 
\begin_inset Formula $2\times2$
\end_inset

 matrices.
\end_layout

\begin_layout Standard
a) The 
\emph on
matrix
\emph default
-valued function 
\begin_inset Formula $A(\phi)$
\end_inset

 is defined by 
\begin_inset Formula \[
A(\phi)=\left(\begin{array}{cc}
\cos\phi & -\sin\phi\\
\sin\phi & \cos\phi\end{array}\right).\]

\end_inset

Show that 
\begin_inset Formula $A(\phi_{1})A(\phi_{2})=A(\phi_{1}+\phi_{2})$
\end_inset

.
 Deduce that 
\begin_inset Formula $A(\phi_{1})$
\end_inset

 commutes with 
\begin_inset Formula $A(\phi_{2})$
\end_inset

 for arbitrary 
\begin_inset Formula $\phi_{1},\phi_{2}$
\end_inset

.
 
\end_layout

\begin_layout Standard
b) For every complex number 
\begin_inset Formula $z=x+\text{i}y=re^{\text{i}\phi}$
\end_inset

, let us now define a matrix 
\begin_inset Formula \[
C(z)=\left(\begin{array}{cc}
r\cos\phi & -r\sin\phi\\
r\sin\phi & r\cos\phi\end{array}\right)=\left(\begin{array}{cc}
x & -y\\
y & x\end{array}\right).\]

\end_inset

Show that 
\begin_inset Formula $C(z_{1})$
\end_inset

 commutes with 
\begin_inset Formula $C(z_{2})$
\end_inset

 for arbitrary complex 
\begin_inset Formula $z_{1},z_{2}$
\end_inset

, and that 
\begin_inset Formula $C(z_{1})+C(z_{2})=C(z_{1}+z_{2})$
\end_inset

 and 
\begin_inset Formula $C(z_{1})C(z_{2})=C(z_{1}z_{2})$
\end_inset

.
 In this way, complex numbers could be replaced by matrices of the form
 
\begin_inset Formula $C(z)$
\end_inset

.
 The addition and the multiplication of matrices of this form corresponds
 exactly to the addition and the multiplication of complex numbers.
 
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
The 
\series bold
Pauli matrices
\series default

\begin_inset LatexCommand \index{Pauli matrices}

\end_inset

 
\begin_inset Formula $\sigma_{1}$
\end_inset

, 
\begin_inset Formula $\sigma_{2}$
\end_inset

, 
\begin_inset Formula $\sigma_{3}$
\end_inset

 are defined as follows, 
\begin_inset Formula \[
\sigma_{1}=\left(\begin{array}{cc}
0 & 1\\
1 & 0\end{array}\right),\quad\sigma_{2}=\left(\begin{array}{cc}
0 & -\text{i}\\
\text{i} & 0\end{array}\right),\quad\sigma_{3}=\left(\begin{array}{cc}
1 & 0\\
0 & -1\end{array}\right).\]

\end_inset

Verify that 
\begin_inset Formula $\sigma_{1}^{2}=\hat{1}$
\end_inset

 (the 
\begin_inset Formula $2\times2$
\end_inset

 identity matrix), 
\begin_inset Formula $\sigma_{1}\sigma_{2}=\text{i}\sigma_{3}$
\end_inset

, 
\begin_inset Formula $\sigma_{2}\sigma_{3}=\text{i}\sigma_{1}$
\end_inset

, and in general
\begin_inset Formula \[
\sigma_{a}\sigma_{b}=\delta_{ab}\hat{1}+\text{i}\sum_{c}\varepsilon_{abc}\sigma_{c}.\]

\end_inset


\end_layout

\begin_layout Standard
b) The expression 
\begin_inset Formula $AB-BA$
\end_inset

 where 
\begin_inset Formula $A,B$
\end_inset

 are two matrices is called the 
\series bold
commutator
\series default

\begin_inset LatexCommand \index{commutator}

\end_inset

 of 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

 and is denoted by 
\begin_inset Formula \[
\left[A,B\right]=AB-BA.\]

\end_inset

 Using the result of part a), compute 
\begin_inset Formula $\left[\sigma_{a},\sigma_{b}\right]$
\end_inset

.
\end_layout

\begin_layout Section
Linear equations 
\end_layout

\begin_layout Standard
A system of linear algebraic equations, for example, 
\begin_inset Formula \begin{align*}
2x+y & =-11\\
3x-y & =6\end{align*}

\end_inset

can be formulated in the matrix language as follows.
 One introduces the column vectors 
\begin_inset Formula $\mathbf{x}\equiv{x \choose y}$
\end_inset

 and 
\begin_inset Formula $\mathbf{b}\equiv{-11 \choose 6}$
\end_inset

 and the matrix 
\begin_inset Formula \[
A\equiv\left(\begin{array}{cc}
2 & 1\\
3 & -1\end{array}\right).\]

\end_inset

Then the above system of equations is equivalent to the single matrix equation,
 
\begin_inset Formula \[
A\mathbf{x}=\mathbf{b},\]

\end_inset

where 
\begin_inset Formula $\mathbf{x}$
\end_inset

 is understood as the unknown vector.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Rewrite the following system of equations in matrix form:
\begin_inset Formula \begin{align*}
x+y-z & =0\\
y-x+2z & =0\\
3y & =2\end{align*}

\end_inset


\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
In a system of equations, the number of unknowns may differ from the number
 of equations.
 In that case we need to use a rectangular (non-square) matrix to rewrite
 the system in a matrix form.
\end_layout

\begin_layout Section
Inverse matrix
\begin_inset LatexCommand \label{sub:Inverse-matrix}

\end_inset


\end_layout

\begin_layout Standard
We consider square matrices 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

.
 If 
\begin_inset Formula $AB=1$
\end_inset

 and 
\begin_inset Formula $BA=1$
\end_inset

 then 
\begin_inset Formula $B$
\end_inset

 is called the 
\series bold
inverse matrix
\series default

\begin_inset LatexCommand \index{inverse matrix}

\end_inset

 to 
\begin_inset Formula $A$
\end_inset

 (and vice versa).
 The inverse matrix to 
\begin_inset Formula $A$
\end_inset

 is denoted by 
\begin_inset Formula $A^{-1}$
\end_inset

, so that one has 
\begin_inset Formula $AA^{-1}=A^{-1}A=1$
\end_inset

.
\end_layout

\begin_layout Paragraph
Remark:
\end_layout

\begin_layout Standard
The inverse matrix does not always exist; for instance, the matrix
\begin_inset Formula \[
\left(\begin{array}{cc}
1 & 1\\
2 & 2\end{array}\right)\]

\end_inset

does not have an inverse.
 For 
\emph on
finite
\emph default
-
\emph on
dimen\SpecialChar \-
sion\SpecialChar \-
al
\emph default
 square matrices 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

, one can derive from 
\begin_inset Formula $AB=1$
\end_inset

 that also 
\begin_inset Formula $BA=1$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The inverse matrix is useful for solving linear equations.
 For instance, if a matrix 
\begin_inset Formula $A$
\end_inset

 has an inverse, 
\begin_inset Formula $A^{-1}$
\end_inset

, then any equation 
\begin_inset Formula $A\mathbf{x}=\mathbf{b}$
\end_inset

 can be solved immediately as\InsetSpace ~
 
\begin_inset Formula $\mathbf{x}=A^{-1}\mathbf{b}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 1:
\end_layout

\begin_layout Standard
a) Show that the inverse to a 
\begin_inset Formula $2\times2$
\end_inset

 matrix 
\begin_inset Formula $A=\left(\begin{array}{cc}
w & x\\
y & z\end{array}\right)$
\end_inset

 exists when 
\begin_inset Formula $wz-xy\neq0$
\end_inset

 and is given explicitly by the formula
\begin_inset Formula \[
A^{-1}=\frac{1}{wz-xy}\left(\begin{array}{cc}
z & -x\\
-y & w\end{array}\right).\]

\end_inset

b) Compute the inverse matrices 
\begin_inset Formula $A^{-1}$
\end_inset

 and 
\begin_inset Formula $B^{-1}$
\end_inset

 for 
\begin_inset Formula $A=\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right)$
\end_inset

 and 
\begin_inset Formula $B=\left(\begin{array}{cc}
3 & 0\\
1 & -2\end{array}\right)$
\end_inset

.
 Then compute the solutions of the linear systems 
\begin_inset Formula \[
\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right)\left[\begin{array}{c}
x\\
y\end{array}\right]=\left[\begin{array}{c}
-3\\
5\end{array}\right];\qquad\left(\begin{array}{cc}
3 & 0\\
1 & -2\end{array}\right)\left[\begin{array}{c}
x\\
y\end{array}\right]=\left[\begin{array}{c}
-6\\
0\end{array}\right].\]

\end_inset


\end_layout

\begin_layout Paragraph
Exercise 2:
\end_layout

\begin_layout Standard
Show that 
\begin_inset Formula $(AB)^{-1}=B^{-1}A^{-1}$
\end_inset

, assuming that the inverse matrices to 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

 exist.
 
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Simplify the expression 
\begin_inset Formula $(AB)(B^{-1}A^{-1})$
\end_inset

.
\end_layout

\begin_layout Paragraph
Exercise 3:
\end_layout

\begin_layout Standard
Show that 
\begin_inset Formula \[
(\hat{1}+BA)^{-1}=A^{-1}(\hat{1}+AB)^{-1}A,\]

\end_inset

assuming that all the needed inverse matrices exist.
\end_layout

\begin_layout Standard

\emph on
Hint
\emph default
: Use the property 
\begin_inset Formula $A(\hat{1}+BA)=A+ABA=(\hat{1}+AB)A$
\end_inset

.
\hfill

\begin_inset Formula $\blacksquare$
\end_inset


\end_layout

\begin_layout Standard
The inverse matrix to a given 
\begin_inset Formula $n\times n$
\end_inset

 matrix 
\begin_inset Formula $A$
\end_inset

 can be computed by solving 
\begin_inset Formula $n$
\end_inset

 systems of equations,
\begin_inset Formula \[
A\mathbf{x}_{1}=\mathbf{e}_{1},\,...,\, A\mathbf{x}_{n}=\mathbf{e}_{n},\]

\end_inset

where the vectors 
\begin_inset Formula $\mathbf{e}_{i}$
\end_inset

 are the standard basis vectors, 
\begin_inset Formula \begin{align*}
\mathbf{e}_{1} & =\left(1,0,...,0\right),\;\mathbf{e}_{2}=\left(0,1,0,...,0\right),\\
 & ...,\;\mathbf{e}_{n}=\left(0,...,0,1\right),\end{align*}

\end_inset

while the vectors 
\begin_inset Formula $\mathbf{x}_{1},...,\mathbf{x}_{n}$
\end_inset

 are unknown.
 When 
\begin_inset Formula $\left\{ \mathbf{x}_{i}\right\} $
\end_inset

 are determined, their components 
\begin_inset Formula $x_{ij}$
\end_inset

 form the inverse matrix.
\begin_inset Note Note
status collapsed

\begin_layout Standard
Remark:
\end_layout

\begin_layout Standard

\series bold
From this point on, the text is in German.
 This can be skipped to the end of the book; it was a part of another handout
 for a lecture in linear algebra.
 This part of the text will be either removed or translated into English
 in a future revision.
 
\end_layout

\end_inset


\end_layout

\begin_layout Section
Determinants
\end_layout

\begin_layout Standard
In the construction of the inverse matrix for a given matrix 
\begin_inset Formula $A_{ij}$
\end_inset

, one finds a formula of a peculiar type: Each element of the inverse matrix
 
\begin_inset Formula $A^{-1}$
\end_inset

 is equal to some polynomial in 
\begin_inset Formula $A_{ij}$
\end_inset

, divided by a certain function of 
\begin_inset Formula $A_{ij}$
\end_inset

.
 For example, Exercise\InsetSpace ~
1a in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Inverse-matrix}

\end_inset

 gives such a formula for 
\begin_inset Formula $2\times2$
\end_inset

 matrices; that formula contains the expression 
\begin_inset Formula $wz-xy$
\end_inset

 in every denominator.
\end_layout

\begin_layout Standard
The expression in the denominator is 
\emph on
the
\emph default
 
\emph on
same
\emph default
 for every element of 
\begin_inset Formula $A^{-1}$
\end_inset

.
 This expression needs to be nonzero in that formula, or else we cannot
 divide by it (and then the inverse matrix does not exist).
 In other words, this expression (which is a function of the matrix 
\begin_inset Formula $A_{ij}$
\end_inset

) 
\begin_inset Quotes eld
\end_inset

determines
\begin_inset Quotes erd
\end_inset

 whether the inverse matrix exists.
 Essentially, this function (after fixing a numerical prefactor) is called
 the 
\series bold
determinant
\series default

\begin_inset LatexCommand \index{determinant}

\end_inset

 of the matrix 
\begin_inset Formula $A_{ij}$
\end_inset

.
\end_layout

\begin_layout Standard
The determinant for a 
\begin_inset Formula $2\times2$
\end_inset

 or 
\begin_inset Formula $3\times3$
\end_inset

 matrix is given
\begin_inset Foot
status open

\begin_layout Standard
I do not derive this result here; a derivation is given in the main text.
\end_layout

\end_inset

 by the formulas
\begin_inset Formula \begin{align*}
\det\left(\begin{array}{cc}
a & b\\
x & y\end{array}\right) & =ay-bx,\\
\det\left(\begin{array}{ccc}
a & b & c\\
p & q & r\\
x & y & z\end{array}\right) & =aqz+brx+cpy-bpz-cqx-ary.\end{align*}

\end_inset

Determinants are also sometimes written as matrices with straight vertical
 lines at both sides, e.g.
\begin_inset Formula \[
\det\left(\begin{array}{cc}
1 & 2\\
0 & 3\end{array}\right)\equiv\left|\begin{array}{cc}
1 & 2\\
0 & 3\end{array}\right|=3.\]

\end_inset

In this notation, a determinant resembles a matrix, so it requires that
 we clearly distinguish between a matrix (a table of numbers) and a determinant
 (which is a 
\emph on
single number
\emph default
 computed from a matrix).
 
\end_layout

\begin_layout Standard
To compute the determinant of an arbitrary 
\begin_inset Formula $n\times n$
\end_inset

 matrix 
\begin_inset Formula $A$
\end_inset

, one can use the procedure called the 
\series bold
Laplace expansion
\series default

\begin_inset LatexCommand \index{Laplace expansion}

\end_inset

.
\begin_inset Foot
status open

\begin_layout Standard
Here I will only present the Laplace expansion as a computational procedure
 without derivation.
 A derivation is given as an exercise in Sec.\InsetSpace ~

\begin_inset LatexCommand \ref{sub:Determinants-of-square}

\end_inset

.
\end_layout

\end_inset

 First one defines the notion of a 
\series bold
minor
\series default

\begin_inset LatexCommand \index{minor}

\end_inset

 
\begin_inset Formula $M_{ij}$
\end_inset

 corresponding to some element 
\begin_inset Formula $A_{ij}$
\end_inset

: By definition, 
\begin_inset Formula $M_{ij}$
\end_inset

 is the determinant of a matrix obtained from 
\begin_inset Formula $A$
\end_inset

 by deleting row 
\begin_inset Formula $i$
\end_inset

 and column 
\begin_inset Formula $j$
\end_inset

.
 For example, the minor corresponding to the element 
\begin_inset Formula $b$
\end_inset

 of the matrix 
\begin_inset Formula \[
A=\left(\begin{array}{ccc}
a & b & c\\
p & q & r\\
x & y & z\end{array}\right)\]

\end_inset

is the minor corresponding to 
\begin_inset Formula $A_{12}$
\end_inset

, hence we delete row 1 and column 2 from 
\begin_inset Formula $A$
\end_inset

 and obtain
\begin_inset Formula \[
M_{12}=\left|\begin{array}{cc}
p & r\\
x & z\end{array}\right|=pz-rx.\]

\end_inset

 Then, one sums over all the elements 
\begin_inset Formula $A_{1i}$
\end_inset

 (
\begin_inset Formula $i=1,...,n$
\end_inset

) in the first row of 
\begin_inset Formula $A$
\end_inset

, multiplied by the corresponding minors and the sign factor 
\begin_inset Formula $\left(-1\right)^{i-1}$
\end_inset

.
 In other words, the Laplace expansion is the formula
\begin_inset Formula \[
\det(A)=\sum_{i=1}^{n}\left(-1\right)^{i-1}A_{1i}M_{1i}.\]

\end_inset

A similar formula holds for any other row 
\begin_inset Formula $j$
\end_inset

 instead of the first row; one needs an additional sign factor 
\begin_inset Formula $\left(-1\right)^{j-1}$
\end_inset

 in that case.
\end_layout

\begin_layout Paragraph
Example:
\end_layout

\begin_layout Standard
We compute the determinant of the matrix
\begin_inset Formula \[
A=\left(\begin{array}{ccc}
a & b & c\\
p & q & r\\
x & y & z\end{array}\right)\]

\end_inset

 using the Laplace expansion in the first row.
 The minors are
\begin_inset Formula \begin{align*}
M_{11} & =\left|\begin{array}{cc}
q & r\\
y & z\end{array}\right|=qz-ry,\\
M_{12} & =\left|\begin{array}{cc}
p & r\\
x & z\end{array}\right|=pz-rx,\\
M_{13} & =\left|\begin{array}{cc}
p & q\\
x & y\end{array}\right|=py-qx.\end{align*}

\end_inset

Hence
\begin_inset Formula \begin{align*}
\det A & =aM_{11}-bM_{12}+bM_{13}\\
 & =a(qx-ry)-b(pz-rx)+c(py-qx).\end{align*}

\end_inset

This agrees with the formula given previously.
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Compute the following determinants.
\end_layout

\begin_layout Standard
a)
\begin_inset Formula \begin{align*}
\left|\begin{array}{cc}
15 & -12\\
-\frac{1}{2} & \frac{2}{5}\end{array}\right|=? & \qquad\left|\begin{array}{cc}
1+x^{2} & 1+x^{2}\\
1+x^{2} & 1+x^{4}\end{array}\right|=?\\
\left|\begin{array}{cccc}
1 & -99 & -99 & -99\\
0 & 2 & -99 & -99\\
0 & 0 & 3 & -99\\
0 & 0 & 0 & 4\end{array}\right| & =?\qquad\left|\begin{array}{ccc}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9\end{array}\right|=?\end{align*}

\end_inset

 
\end_layout

\begin_layout Standard
b) 
\begin_inset Formula \begin{align*}
A_{2}=\left|\begin{array}{cc}
2 & -1\\
-1 & 2\end{array}\right| & =?\qquad A_{3}=\left|\begin{array}{ccc}
2 & -1 & 0\\
-1 & 2 & -1\\
0 & -1 & 2\end{array}\right|=?\\
 & A_{4}=\left|\begin{array}{cccc}
2 & -1 & 0 & 0\\
-1 & 2 & -1 & 0\\
0 & -1 & 2 & -1\\
0 & 0 & -1 & 2\end{array}\right|=?\end{align*}

\end_inset

Guess and then prove (using the Laplace expansion) the general formula for
 determinants 
\begin_inset Formula $A_{n}$
\end_inset

 of this form for arbitrary 
\begin_inset Formula $n$
\end_inset

, 
\begin_inset Formula \[
A_{n}=\left|\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0\\
-1 & 2 & -1 & \cdots & \vdots\\
0 & -1 & 2 & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & -1\\
0 & \cdots & 0 & -1 & 2\end{array}\right|=?\]

\end_inset


\emph on
Hint
\emph default
: Use the Laplace expansion to prove the recurrence relation 
\begin_inset Formula $A_{n+1}=2A_{n}-A_{n-1}$
\end_inset

.
\end_layout

\begin_layout Section
Tensor product
\end_layout

\begin_layout Standard
A matrix with rows and columns reversed is called the 
\series bold
transposed
\series default

\begin_inset LatexCommand \index{transposed matrix}

\end_inset

 matrix.
 For example, if
\begin_inset Formula \[
A=\left(\begin{array}{ccc}
a & b & c\\
x & y & z\end{array}\right)\]

\end_inset

 is a given 
\begin_inset Formula $2\times3$
\end_inset

 matrix then the transposed matrix, denoted by 
\begin_inset Formula $A^{T}$
\end_inset

, is the following 
\begin_inset Formula $3\times2$
\end_inset

 matrix:
\begin_inset Formula \[
A^{T}=\left(\begin{array}{cc}
a & x\\
b & y\\
c & z\end{array}\right).\]

\end_inset

Note that a row vector becomes a column vector when transposed, and vice
 versa.
 In general, an 
\begin_inset Formula $m\times n$
\end_inset

 matrix becomes an 
\begin_inset Formula $n\times m$
\end_inset

 matrix when transposed.
\end_layout

\begin_layout Standard
The scalar product of vectors, 
\begin_inset Formula $\mathbf{q}\cdot\mathbf{r}$
\end_inset

, can be represented as a matrix product 
\begin_inset Formula $\mathbf{q}^{T}\mathbf{r}$
\end_inset

.
 For example, if 
\begin_inset Formula $\mathbf{q}=\left(a,b,c\right)$
\end_inset

 and 
\begin_inset Formula $\mathbf{r}=\left(x,y,z\right)$
\end_inset

 then 
\begin_inset Formula \[
\mathbf{q}\cdot\mathbf{r}=ax+by+cz=\left[\begin{array}{ccc}
x & y & z\end{array}\right]\left[\begin{array}{c}
a\\
b\\
c\end{array}\right]=\mathbf{q}^{T}\mathbf{r}=\mathbf{r}^{T}\mathbf{q}.\]

\end_inset

A matrix product taken in the opposite order (i.e.\InsetSpace ~
a column vector times a
 row vector) gives a 
\emph on
matrix
\emph default
 as a result, 
\begin_inset Formula \[
\mathbf{q}\mathbf{r}^{T}=\left[\begin{array}{c}
a\\
b\\
c\end{array}\right]\left[\begin{array}{ccc}
x & y & z\end{array}\right]=\left[\begin{array}{ccc}
ax & ay & az\\
bx & by & bz\\
cx & cy & cz\end{array}\right].\]

\end_inset

This is known as the 
\series bold
tensor product
\series default

\begin_inset LatexCommand \index{tensor product}

\end_inset

 of two vectors.
 An alternative notation is 
\begin_inset Formula $\mathbf{q}\otimes\mathbf{r}^{T}$
\end_inset

.
 Note that the result of the tensor product is not a vector but a matrix,
 i.e.\InsetSpace ~
an object of a different kind.
 (The space of 
\begin_inset Formula $n\times n$
\end_inset

 matrices is also denoted by 
\begin_inset Formula $\mathbb{R}^{n}\otimes\mathbb{R}^{n}$
\end_inset

.)
\end_layout

\begin_layout Paragraph
Exercise:
\end_layout

\begin_layout Standard
Does the tensor product commute? In a three-dimen\SpecialChar \-
sion\SpecialChar \-
al space, compute the
 matrix 
\begin_inset Formula $\mathbf{q}\otimes\mathbf{r}^{T}-\mathbf{r}\otimes\mathbf{q}^{T}$
\end_inset

.
 Compare that matrix with the vector product 
\begin_inset Formula $\mathbf{q}\times\mathbf{r}$
\end_inset

.
 
\end_layout

\begin_layout Chapter
Distribution of this text
\end_layout

\begin_layout Section
Motivation
\end_layout

\begin_layout Standard
A scientist receives financial support from the society and the freedom
 to do research in any field.
 I believe it is a duty of scientists to make the results of their science
 freely available to the interested public in the form of understandable,
 clearly written textbooks.
 This task has been significantly alleviated by modern technology.
 Especially in theoretical sciences where no experimentally obtained photographs
 or other such significant third-party material need to be displayed, authors
 are able (if not always willing) to prepare the entire book on a personal
 computer, typing the text and drawing the diagrams using freely available
 software.
 Ubiquitous access to the Internet makes it possible to create texts of
 high typographic quality in ready-to-print form, such as a PDF file, and
 to distribute these texts essentially at no cost.
 
\end_layout

\begin_layout Standard
The distribution of texts in today's society is inextricably connected with
 the problem of intellectual property.
 One could simply upload PDF files to a Web site and declare these texts
 to be in public domain, so that everyone would be entitled to download
 them for free, print them, or distribute further.
 However, malicious persons might then prepare a slightly modified version
 and inhibit further distribution of the text by imposing a non-free license
 on the modified version and by threatening to sue anyone who wants to distribut
e 
\emph on
any
\emph default
 version of the text, including the old public-domain version.
 Merely a threat of a lawsuit suffices for an Internet service provider
 to take down any web page allegedly violating copyright, even if the actual
 lawsuit may be unsuccessful.
\end_layout

\begin_layout Standard
To protect the freedom of the readers, one thus needs to release the text
 under a 
\emph on
copyright
\emph default
 rather than into public domain, and at the same time one needs to make
 sure that the text, as well as any future revisions thereof, remains freely
 distributable.
 I believe that a free license, such as GNU FDL (see the next subsection),
 is an appropriate way of copyrighting a science textbook.
 
\end_layout

\begin_layout Standard
The present book is released under GNU FDL.
 According to the license, everyone is allowed to print this book or distribute
 it in any other way.
 In particular, any commercial publisher may offer professionally printed
 and bound copies of the book for sale; the permission to do so is 
\emph on
already
\emph default
 
\emph on
granted
\emph default
.
 Since the FDL disallows granting exclusive distribution rights, I (or anybody
 else) will not be able to sign a standard exclusive-rights contract with
 a publisher for printing this book (or any further revision of this book).
 I am happy that 
\series bold
lulu.com
\series default
 offers commercial printing of the book at low cost and at the same time
 adheres to the conditions of a free license (the GNU FDL).
 The full text of the license follows.
\end_layout

\begin_layout Standard

\size small
\begin_inset Include \input{gfdl.lyx}
preview false

\end_inset


\end_layout

\begin_layout Standard
\begin_inset LatexCommand \printindex{}

\end_inset


\end_layout

\begin_layout Standard
\align center

\size large
\begin_inset VSpace bigskip
\end_inset

Notes
\end_layout
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\begin_layout Section
GNU Free Documentation License
\begin_inset LatexCommand \label{sec:GFDL}

\end_inset

 
\end_layout

\begin_layout Standard
Version 1.2, November 2002
\end_layout

\begin_layout Standard
Copyright (c) 2000,2001,2002 Free Software Foundation, Inc.
 
\end_layout

\begin_layout Standard
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
\end_layout

\begin_layout Standard
Everyone is permitted to copy and distribute verbatim copies of this license
 document, but changing it is not allowed.
\end_layout

\begin_layout Standard
\begin_inset ERT
status collapsed

\begin_layout Standard

%
\backslash
setcounter{subsection}{-1}%this made Preamble the subsection 0, not sure
 why I did it before
\end_layout

\end_inset


\end_layout

\begin_layout Subsection
Preamble
\end_layout

\begin_layout Standard
The purpose of this License is to make a manual, textbook, or other functional
 and useful document free in the sense of freedom: to assure everyone the
 effective freedom to copy and redistribute it, with or without modifying
 it, either commercially or noncommercially.
 Secondarily, this License preserves for the author and publisher a way
 to get credit for their work, while not being considered responsible for
 modifications made by others.
\end_layout

\begin_layout Standard
This License is a kind of ``copyleft'', which means that derivative works
 of the document must themselves be free in the same sense.
 It complements the GNU General Public License, which is a copyleft license
 designed for free software.
\end_layout

\begin_layout Standard
We have designed this License in order to use it for manuals for free software,
 because free software needs free documentation: a free program should come
 with manuals providing the same freedoms that the software does.
 But this License is not limited to software manuals; it can be used for
 any textual work, regardless of subject matter or whether it is published
 as a printed book.
 We recommend this License principally for works whose purpose is instruction
 or reference.
\end_layout

\begin_layout Subsection
Applicability and definitions
\begin_inset LatexCommand \label{sub:1Applicability-and-definitions}

\end_inset


\end_layout

\begin_layout Standard
This License applies to any manual or other work, in any medium, that contains
 a notice placed by the copyright holder saying it can be distributed under
 the terms of this License.
 Such a notice grants a world-wide, royalty-free license, unlimited in duration,
 to use that work under the conditions stated herein.
 The ``Document'', below, refers to any such manual or work.
 Any member of the public is a licensee, and is addressed as ``you''.
 You accept the license if you copy, modify or distribute the work in a
 way requiring permission under copyright law.
\end_layout

\begin_layout Standard
A ``Modified Version'' of the Document means any work containing the Document
 or a portion of it, either copied verbatim, or with modifications and/or
 translated into another language.
\end_layout

\begin_layout Standard
A ``Secondary Section'' is a named appendix or a front-matter section of
 the Document that deals exclusively with the relationship of the publishers
 or authors of the Document to the Document's overall subject (or to related
 matters) and contains nothing that could fall directly within that overall
 subject.
 (Thus, if the Document is in part a textbook of mathematics, a Secondary
 Section may not explain any mathematics.) The relationship could be a matter
 of historical connection with the subject or with related matters, or of
 legal, commercial, philosophical, ethical or political position regarding
 them.
\end_layout

\begin_layout Standard
The ``Invariant Sections'' are certain Secondary Sections whose titles are
 designated, as being those of Invariant Sections, in the notice that says
 that the Document is released under this License.
 If a section does not fit the above definition of Secondary then it is
 not allowed to be designated as Invariant.
 The Document may contain zero Invariant Sections.
 If the Document does not identify any Invariant Sections then there are
 none.
\end_layout

\begin_layout Standard
The ``Cover Texts'' are certain short passages of text that are listed,
 as Front-Cover Texts or Back-Cover Texts, in the notice that says that
 the Document is released under this License.
 A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be
 at most 25 words.
\end_layout

\begin_layout Standard
A ``Transparent'' copy of the Document means a machine-readable copy, represente
d in a format whose specification is available to the general public, that
 is suitable for revising the document straightforwardly with generic text
 editors or (for images composed of pixels) generic paint programs or (for
 drawings) some widely available drawing editor, and that is suitable for
 input to text formatters or for automatic translation to a variety of formats
 suitable for input to text formatters.
 A copy made in an otherwise Transparent file format whose markup, or absence
 of markup, has been arranged to thwart or discourage subsequent modification
 by readers is not Transparent.
 An image format is not Transparent if used for any substantial amount of
 text.
 A copy that is not ``Transparent'' is called ``Opaque''.
\end_layout

\begin_layout Standard
Examples of suitable formats for Transparent copies include plain ASCII
 without markup, Texinfo input format, LaTeX input format, SGML or XML using
 a publicly available DTD, and standard-conforming simple HTML, Post\SpecialChar \-
Script
 or PDF designed for human modification.
 Examples of transparent image formats include PNG, XCF and JPG.
 Opaque formats include proprietary formats that can be read and edited
 only by proprietary word processors, SGML or XML for which the DTD and/or
 processing tools are not generally available, and the machine-generated
 HTML, Post\SpecialChar \-
Script or PDF produced by some word processors for output purposes
 only.
\end_layout

\begin_layout Standard
The ``Title Page'' means, for a printed book, the title page itself, plus
 such following pages as are needed to hold, legibly, the material this
 License requires to appear in the title page.
 For works in formats which do not have any title page as such, ``Title
 Page'' means the text near the most prominent appearance of the work's
 title, preceding the beginning of the body of the text.
\end_layout

\begin_layout Standard
A section ``Entitled XYZ'' means a named subunit of the Document whose title
 either is precisely XYZ or contains XYZ in parentheses following text that
 translates XYZ in another language.
 (Here XYZ stands for a specific section name mentioned below, such as ``Acknowl
edgements'', ``Dedications'', ``Endorsements'', or ``History''.) To ``Preserve
 the Title'' of such a section when you modify the Document means that it
 remains a section ``Entitled XYZ'' according to this definition.
\end_layout

\begin_layout Standard
The Document may include Warranty Disclaimers next to the notice which states
 that this License applies to the Document.
 These Warranty Disclaimers are considered to be included by reference in
 this License, but only as regards disclaiming warranties: any other implication
 that these Warranty Disclaimers may have is void and has no effect on the
 meaning of this License.
\end_layout

\begin_layout Subsection
Verbatim copying
\begin_inset LatexCommand \label{sub:2Verbatim-copying}

\end_inset


\end_layout

\begin_layout Standard
You may copy and distribute the Document in any medium, either commercially
 or noncommercially, provided that this License, the copyright notices,
 and the license notice saying this License applies to the Document are
 reproduced in all copies, and that you add no other conditions whatsoever
 to those of this License.
 You may not use technical measures to obstruct or control the reading or
 further copying of the copies you make or distribute.
 However, you may accept compensation in exchange for copies.
 If you distribute a large enough number of copies you must also follow
 the conditions in section\InsetSpace ~

\begin_inset LatexCommand \ref{sub:3Copying-in-quantity}

\end_inset

.
\end_layout

\begin_layout Standard
You may also lend copies, under the same conditions stated above, and you
 may publicly display copies.
\end_layout

\begin_layout Subsection
Copying in quantity
\begin_inset LatexCommand \label{sub:3Copying-in-quantity}

\end_inset


\end_layout

\begin_layout Standard
If you publish printed copies (or copies in media that commonly have printed
 covers) of the Document, numbering more than 100, and the Document's license
 notice requires Cover Texts, you must enclose the copies in covers that
 carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on
 the front cover, and Back-Cover Texts on the back cover.
 Both covers must also clearly and legibly identify you as the publisher
 of these copies.
 The front cover must present the full title with all words of the title
 equally prominent and visible.
 You may add other material on the covers in addition.
 Copying with changes limited to the covers, as long as they preserve the
 title of the Document and satisfy these conditions, can be treated as verbatim
 copying in other respects.
\end_layout

\begin_layout Standard
If the required texts for either cover are too voluminous to fit legibly,
 you should put the first ones listed (as many as fit reasonably) on the
 actual cover, and continue the rest onto adjacent pages.
\end_layout

\begin_layout Standard
If you publish or distribute Opaque copies of the Document numbering more
 than 100, you must either include a mach\SpecialChar \-
ine-read\SpecialChar \-
able Transparent copy along
 with each Opaque copy, or state in or with each Opaque copy a com\SpecialChar \-
put\SpecialChar \-
er-net\SpecialChar \-
work
 location from which the general net\SpecialChar \-
work-using public has access to download
 using public-standard network protocols a complete Transparent copy of
 the Document, free of added material.
 If you use the latter option, you must take reasonably prudent steps, when
 you begin distribution of Opaque copies in quantity, to ensure that this
 Transparent copy will remain thus accessible at the stated location until
 at least one year after the last time you distribute an Opaque copy (directly
 or through your agents or retailers) of that edition to the public.
\end_layout

\begin_layout Standard
It is requested, but not required, that you contact the authors of the Document
 well before redistributing any large number of copies, to give them a chance
 to provide you with an updated version of the Document.
\end_layout

\begin_layout Subsection
Modifications
\begin_inset LatexCommand \label{sub:4Modifications}

\end_inset


\end_layout

\begin_layout Standard
You may copy and distribute a Modified Version of the Document under the
 conditions of sections\InsetSpace ~

\begin_inset LatexCommand \ref{sub:2Verbatim-copying}

\end_inset

 and 
\begin_inset LatexCommand \ref{sub:3Copying-in-quantity}

\end_inset

 above, provided that you release the Modified Version under precisely this
 License, with the Modified Version filling the role of the Document, thus
 licensing distribution and modification of the Modified Version to whoever
 possesses a copy of it.
 In addition, you must do these things in the Modified Version:
\end_layout

\begin_layout Standard
A.
 Use in the Title Page (and on the covers, if any) a title distinct from
 that of the Document, and from those of previous versions (which should,
 if there were any, be listed in the History section of the Document).
 You may use the same title as a previous version if the original publisher
 of that version gives permission.
\end_layout

\begin_layout Standard
B.
 List on the Title Page, as authors, one or more persons or entities responsible
 for authorship of the modifications in the Modified Version, together with
 at least five of the principal authors of the Document (all of its principal
 authors, if it has fewer than five), unless they release you from this
 requirement.
\end_layout

\begin_layout Standard
C.
 State on the Title page the name of the publisher of the Modified Version,
 as the publisher.
\end_layout

\begin_layout Standard
D.
 Preserve all the copyright notices of the Document.
\end_layout

\begin_layout Standard
E.
 Add an appropriate copyright notice for your modifications adjacent to
 the other copyright notices.
\end_layout

\begin_layout Standard
F.
 Include, immediately after the copyright notices, a license notice giving
 the public permission to use the Modified Version under the terms of this
 License, in the form shown in the Addendum below.
\end_layout

\begin_layout Standard
G.
 Preserve in that license notice the full lists of Invariant Sections and
 required Cover Texts given in the Document's license notice.
\end_layout

\begin_layout Standard
H.
 Include an unaltered copy of this License.
\end_layout

\begin_layout Standard
I.
 Preserve the section Entitled ``History'', Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and publisher
 of the Modified Version as given on the Title Page.
 If there is no section Entitled ``History'' in the Document, create one
 stating the title, year, authors, and publisher of the Document as given
 on its Title Page, then add an item describing the Modified Version as
 stated in the previous sentence.
\end_layout

\begin_layout Standard
J.
 Preserve the network location, if any, given in the Document for public
 access to a Transparent copy of the Document, and likewise the network
 locations given in the Document for previous versions it was based on.
 These may be placed in the ``History'' section.
 You may omit a network location for a work that was published at least
 four years before the Document itself, or if the original publisher of
 the version it refers to gives permission.
\end_layout

\begin_layout Standard
K.
 For any section Entitled ``Acknowledgements'' or ``Dedications'', Preserve
 the Title of the section, and preserve in the section all the substance
 and tone of each of the contributor acknowledgements and/or dedications
 given therein.
\end_layout

\begin_layout Standard
L.
 Preserve all the Invariant Sections of the Document, unaltered in their
 text and in their titles.
 Section numbers or the equivalent are not considered part of the section
 titles.
\end_layout

\begin_layout Standard
M.
 Delete any section Entitled ``Endorsements''.
 Such a section may not be included in the Modified Version.
\end_layout

\begin_layout Standard
N.
 Do not retitle any existing section to be Entitled ``Endorsements'' or
 to conflict in title with any Invariant Section.
\end_layout

\begin_layout Standard
O.
 Preserve any Warranty Disclaimers.
\end_layout

\begin_layout Standard
If the Modified Version includes new front-matter sections or appendices
 that qualify as Secondary Sections and contain no material copied from
 the Document, you may at your option designate some or all of these sections
 as invariant.
 To do this, add their titles to the list of Invariant Sections in the Modified
 Version's license notice.
 These titles must be distinct from any other section titles.
\end_layout

\begin_layout Standard
You may add a section Entitled ``Endorsements'', provided it contains nothing
 but endorsements of your Modified Version by various parties---for example,
 statements of peer review or that the text has been approved by an organization
 as the authoritative definition of a standard.
\end_layout

\begin_layout Standard
You may add a passage of up to five words as a Front-Cover Text, and a passage
 of up to 25 words as a Back-Cover Text, to the end of the list of Cover
 Texts in the Modified Version.
 Only one passage of Front-Cover Text and one of Back-Cover Text may be
 added by (or through arrangements made by) any one entity.
 If the Document already includes a cover text for the same cover, previously
 added by you or by arrangement made by the same entity you are acting on
 behalf of, you may not add another; but you may replace the old one, on
 explicit permission from the previous publisher that added the old one.
\end_layout

\begin_layout Standard
The author(s) and publisher(s) of the Document do not by this License give
 permission to use their names for publicity for or to assert or imply endorseme
nt of any Modified Version.
\end_layout

\begin_layout Subsection
Combining documents
\end_layout

\begin_layout Standard
You may combine the Document with other documents released under this License,
 under the terms defined in section 4 above for modified versions, provided
 that you include in the combination all of the Invariant Sections of all
 of the original documents, unmodified, and list them all as Invariant Sections
 of your combined work in its license notice, and that you preserve all
 their Warranty Disclaimers.
\end_layout

\begin_layout Standard
The combined work need only contain one copy of this License, and multiple
 identical Invariant Sections may be replaced with a single copy.
 If there are multiple Invariant Sections with the same name but different
 contents, make the title of each such section unique by adding at the end
 of it, in parentheses, the name of the original author or publisher of
 that section if known, or else a unique number.
 Make the same adjustment to the section titles in the list of Invariant
 Sections in the license notice of the combined work.
\end_layout

\begin_layout Standard
In the combination, you must combine any sections Entitled ``History'' in
 the various original documents, forming one section Entitled ``History'';
 likewise combine any sections Entitled ``Acknowledgements'', and any sections
 Entitled ``Dedications''.
 You must delete all sections Entitled ``Endorsements.''
\end_layout

\begin_layout Subsection
Collections of documents
\end_layout

\begin_layout Standard
You may make a collection consisting of the Document and other documents
 released under this License, and replace the individual copies of this
 License in the various documents with a single copy that is included in
 the collection, provided that you follow the rules of this License for
 verbatim copying of each of the documents in all other respects.
\end_layout

\begin_layout Standard
You may extract a single document from such a collection, and distribute
 it individually under this License, provided you insert a copy of this
 License into the extracted document, and follow this License in all other
 respects regarding verbatim copying of that document.
\end_layout

\begin_layout Subsection
Aggregation with independent works
\end_layout

\begin_layout Standard
A compilation of the Document or its derivatives with other separate and
 independent documents or works, in or on a volume of a storage or distribution
 medium, is called an ``aggregate'' if the copyright resulting from the
 compilation is not used to limit the legal rights of the compilation's
 users beyond what the individual works permit.
 When the Document is included an aggregate, this License does not apply
 to the other works in the aggregate which are not themselves derivative
 works of the Document.
\end_layout

\begin_layout Standard
If the Cover Text requirement of section\InsetSpace ~

\begin_inset LatexCommand \ref{sub:3Copying-in-quantity}

\end_inset

 is applicable to these copies of the Document, then if the Document is
 less than one half of the entire aggregate, the Document's Cover Texts
 may be placed on covers that bracket the Document within the aggregate,
 or the electronic equivalent of covers if the Document is in electronic
 form.
 Otherwise they must appear on printed covers that bracket the whole aggregate.
\end_layout

\begin_layout Subsection
Translation
\end_layout

\begin_layout Standard
Translation is considered a kind of modification, so you may distribute
 translations of the Document under the terms of section\InsetSpace ~

\begin_inset LatexCommand \ref{sub:4Modifications}

\end_inset

.
 Replacing Invariant Sections with translations requires special permission
 from their copyright holders, but you may include translations of some
 or all Invariant Sections in addition to the original versions of these
 Invariant Sections.
 You may include a translation of this License, and all the license notices
 in the Document, and any Warrany Disclaimers, provided that you also include
 the original English version of this License and the original versions
 of those notices and disclaimers.
 In case of a disagreement between the translation and the original version
 of this License or a notice or disclaimer, the original version will prevail.
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\begin_layout Standard
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You may not copy, modify, sublicense, or distribute the Document except
 as expressly provided for under this License.
 Any other attempt to copy, modify, sublicense or distribute the Document
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\begin_layout Standard
Each version of the License is given a distinguishing version number.
 If the Document specifies that a particular numbered version of this License
 ``or any later version'' applies to it, you have the option of following
 the terms and conditions either of that specified version or of any later
 version that has been published (not as a draft) by the Free Software Foundatio
n.
 If the Document does not specify a version number of this License, you
 may choose any version ever published (not as a draft) by the Free Software
 Foundation.
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\begin_layout Subsection
Addendum: How to use this License for your documents
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\begin_layout Standard
To use this License in a document you have written, include a copy of the
 License in the document and put the following copyright and license notices
 just after the title page:
\end_layout

\begin_layout Standard
Copyright (c) <year> <your name>.
 Permission is granted to copy, distribute and/or modify this document under
 the terms of the GNU Free Documentation License, Version 1.2 or any later
 version published by the Free Software Foundation; with no Invariant Sections,
 no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled ``GNU Free Documentat
ion License''.
\end_layout

\begin_layout Standard
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
 replace the ``with...Texts.'' line with this:
\end_layout

\begin_layout Standard
with the Invariant Sections being <list their titles>, with the Front-Cover
 Texts being <list>, and with the Back-Cover Texts being <list>.
\end_layout

\begin_layout Standard
If you have Invariant Sections without Cover Texts, or some other combination
 of the three, merge those two alternatives to suit the situation.
\end_layout

\begin_layout Standard
If your document contains nontrivial examples of program code, we recommend
 releasing these examples in parallel under your choice of free software
 license, such as the GNU General Public License, to permit their use in
 free software.
\end_layout

\begin_layout Subsection
Copyright 
\end_layout

\begin_layout Standard
Copyright (c) 2000, 2001, 2002 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
\end_layout

\begin_layout Standard
Everyone is permitted to copy and distribute verbatim copies of this license
 document, but changing it is not allowed.
\end_layout
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use is made of the exterior (anti-commutative, {}``wedge'') product
of vectors. The co\-or\-din\-ate-free formalism and the exterior
product, while somewhat more abstract, provide a deeper understanding
of the classical results in linear algebra. The standard properties
of determinants, the Pythagoras theorem for multidimensional volumes,
the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem,
properties of Pfaffians, the Jordan canonical form, as well as some
generalizations of these results  are derived without cumbersome matrix
calculations. For the benefit of students, every result is logically
motivated and discussed. Exercises with some hints are provided.}}
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\addchap{Preface}

In a first course of linear algebra, one learns the various uses of
matrices, for instance the properties of determinants, eigenvectors
and eigenvalues, and methods for solving linear equations. The required
calculations are straightforward (because, conceptually, vectors and
matrices are merely {}``arrays of numbers'') if cumbersome. However,
there is a more abstract and more powerful approach: Vectors are elements
of abstract vector spaces, and matrices represent linear transformations
of vectors. This \textbf{invariant} or \textbf{coordinate-free}\index{coordinate-free approach}
approach is important in algebra and has found many applications in
science. 

The purpose of this book is to help the reader make a transition to
the abstract coordinate-free approach, and also to give a hands-on
introduction to exterior products, a powerful tool of linear algebra.
I show how the coordin\-ate-free approach together with exterior
products can be used to clarify the basic results of matrix algebra,
at the same time avoiding all the laborious matrix calculations. 

Here is a simple theorem that illustrates the advantages of the exterior
product approach. A triangle is oriented arbitrarily in three-dim\-en\-sion\-al
space; the three orthogonal projections of this triangle are triangles
in the three coordinate planes. Let $S$ be the area of the initial
triangle, and let $A,B,C$ be the areas of the three projections.
Then \[
S^{2}=A^{2}+B^{2}+C^{2}.\]
If one uses bivectors to represent the oriented areas of the triangle
and of its three projections, the statement above is equivalent to
the Pythagoras theorem in the space of bivectors, and the proof requires
only a few straightforward definitions and checks. A generalization
of this result to volumes of $k$-dim\-en\-sion\-al bodies embedded
in $N$-dim\-en\-sion\-al spaces is then obtained with no extra
work. I hope that the readers will appreciate the beauty of an approach
to linear algebra that allows us to obtain such results quickly and
almost without calculations.

The exterior product is widely used in connection with $n$-forms,
which are exterior products of \emph{covectors}. In this book I do
not use $n$-forms --- instead I use vectors, $n$-vectors, and their
exterior products. This approach allows a more straightforward geometric
interpretation and also simplifies calculations and proofs.

To make the book logically self-contained, I present a proof of every
basic result of linear algebra. The emphasis is not on computational
techniques, although the coordinate-free approach \emph{does} make
many computations easier and more elegant.%
\footnote{\textbf{Elegant}\index{elegance} means shorter and easier to remember.
Usually, \textbf{elegant} derivations are those in which some powerful
basic idea is exploited to obtain the result quickly.%
} The main topics covered are tensor products; exterior products; coordinate-free
definitions of the determinant $\det\hat{A}$, the trace $\textrm{Tr}\hat{A}$,
and the characteristic polynomial $Q_{\hat{A}}\left(\lambda\right)$;
basic properties of determinants; solution of linear equations, including
over-determined or under-determined systems, using Kramer's rule;
the Liouville formula $\det\exp\hat{A}=\exp\textrm{Tr}\hat{A}$ as
an identity of formal series; the algebraic complement (cofactor)
matrix; Jacobi's formula for the variation of the determinant; variation
of the characteristic polynomial and of eigenvalue; the Cayley-Hamilton
theorem; analytic functions of operators; Jordan canonical form; construction
of projectors onto Jordan cells; Hodge star and the computation of
$k$-dimensional volumes through $k$-vectors; definition and properties
of the Pfaffian $\textrm{Pf}\hat{A}$ for antisymmetric operators
$\hat{A}$. All these standard results are derived without matrix
calculations; instead, the exterior product is used as a main computational
tool. 

This book is largely \textbf{pedagogical}, meaning that the results
are long known, and the emphasis is on a clear and self-contained,
logically motivated presentation aimed at students. Therefore, some
exercises with hints and partial solutions are included, but not references
to literature.%
\footnote{The approach to determinants via exterior products has been known
since at least 1880 but does not seem especially popular in textbooks,
perhaps due to the somewhat abstract nature of the tensor product.
I believe that this approach to determinants and to other results
in linear algebra deserves to be more widely appreciated.%
} I have tried to avoid being overly pedantic while keeping the exposition
mathematically rigorous.

Sections marked with a star $^{*}$ are not especially difficult but
contain material that may be skipped at first reading. (Exercises
marked with a star \emph{are} more difficult.)

The first chapter is an introduction to the invariant approach to
vector spaces. I assume that readers are familiar with elementary
linear algebra in the language of row/column vectors and matrices;
Appendix~\ref{sec:Matrices} contains a brief overview of that material.
Good introductory books (which I did not read in detail but which
have a certain overlap with the present notes) are {}``Finite-dimen\-sion\-al
Vector Spaces'' by P. Halmos and {}``Linear Algebra'' by J. Hefferon
(the latter is a free book).

I started thinking about the approach to linear algebra based on exterior
products while still a student. I am especially grateful to Sergei
Arkhipov, Leonid Positsel'sky, and Arkady Vaintrob who have stimulated
my interest at that time and taught me much of what I could not otherwise
learn about algebra. Thanks are also due to Prof.~Howard Haber (UCSC)
for constructive feedback on an earlier version of this text.

\mainmatter\pagenumbering{arabic}
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\chapter{Introduction and summary}

All the notions mentioned in this section will be explained below.
If you already know the definition of tensor and exterior products
and are familiar with statements such as $\textrm{End }V\cong V\otimes V^{*}$,
you may skip to Chapter ~\ref{sec:Exterior-product}. 


\section{Notation}

The following conventions are used throughout this text. 

I use the \textbf{bold emphasis} to define a new word, term, or notion,
and the definition always appears near the boldface text (whether
or not I write the word {}``Definition'').

Ordered sets are denoted by round parentheses, e.g.~$\left(1,2,3\right)$.
Unordered sets are denoted using the curly parentheses, e.g.~$\left\{ a,b,c\right\} $.

The symbol $\equiv$ means {}``is now being defined as'' or {}``equals
by a previously given definition.'' 

The symbol ${\lyxbuildrel!\above=}$ means {}``as we already know,
equals.''

A set consisting of all elements $x$ satisfying some property $P(x)$
is denoted by $\left\{ \, x\,|\, P(x)\,\text{is true }\right\} $.

A map $f$ from a set $V$ to $W$ is denoted by $f:V\rightarrow W$.
An element $v\in V$ is then mapped to an element $w\in W$, which
is written as $f:v\mapsto w$ or $f(v)=w$.

The sets of rational numbers, real numbers, and complex numbers are
denoted respectively by $\mathbb{Q}$, $\mathbb{R}$, and $\mathbb{C}$.

Statements, Lemmas, Theorems, Examples, and Exercises are numbered
only within a single subsection, so references are always to a certain
statement in a certain subsection.%
\footnote{I was too lazy to implement a comprehensive system of numbering for
all these items.%
} A reference to {}``Theorem~\ref{sub:Dimension-of-V}'' means the
unnumbered theorem in Sec.~\ref{sub:Dimension-of-V}. 

Proofs, solutions, examples, and exercises are separated from the
rest by the symbol $\blacksquare$. More precisely, this symbol means
{}``I have finished with this; now we look at something else.''

$V$ is a finite-dimen\-sion\-al \textbf{vector} \textbf{space}
over a \textbf{field} $\mathbb{K}$. Vectors from $V$ are denoted
by boldface lowercase letters, e.g.~$\mathbf{v}\in V$. The \textbf{dimension}
of $V$ is $N\equiv\dim V$. 

The standard $N$-dimen\-sion\-al space over real numbers (the space
consisting of $N$-tuples of real numbers) is denoted by $\mathbb{R}^{N}$.

The \textbf{subspace spanned by} a given set of vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
is denoted by $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $. 

The vector space \textbf{dual} to $V$ is $V^{*}$. Elements of $V^{*}$
(\textbf{covectors}) are denoted by starred letters, e.g.~$\mathbf{f}^{*}\in V^{*}$.
A covector $\mathbf{f}^{*}$ acts on a vector $\mathbf{v}$ and produces
a number $\mathbf{f}^{*}(\mathbf{v})$.

The space of linear maps (\textbf{homomorphisms}) $V\rightarrow W$
is $\textrm{Hom}\left(V,W\right)$. The space of \textbf{linear operators}
(also called \textbf{endomorphisms}) of a vector space $V$, i.e.~the
space of all linear maps $V\rightarrow V$, is $\textrm{End }V$.
Operators are denoted by the circumflex accent, e.g.~$\hat{A}$.
The \textbf{identity} operator on $V$ is $\hat{1}_{V}\in\textrm{End }V$
(sometimes also denoted $\hat{1}$ for brevity).

The \textbf{direct} \textbf{sum} of spaces $V$ and $W$ is $V\oplus W$.
The \textbf{tensor} \textbf{product} of spaces $V$ and $W$ is $V\otimes W$.
The \textbf{exterior} (\textbf{anti-commutative}) \textbf{product}
of $V$ and $V$ is $V\!\wedge\! V$. The exterior product of $n$
copies of $V$ is $\wedge^{n}V$. \textbf{Canonical} \textbf{isomorphisms}
of vector spaces are denoted by the symbol $\cong$; for example,
$\textrm{End }V\cong V\otimes V^{*}$.

The \textbf{scalar product} of vectors is denoted by $\left\langle \mathbf{u},\mathbf{v}\right\rangle $.
The notation $\mathbf{a}\times\mathbf{b}$ is used \emph{only} for
the traditional \textbf{vector product} (also called \textbf{cross
product}) in 3-dimen\-sion\-al space. Otherwise, the product symbol
$\times$ is used to denote the continuation a long expression that
is being split between lines.

The \textbf{exterior} (\textbf{wedge}) product of vectors is denoted
by $\mathbf{a}\wedge\mathbf{b}\in\wedge^{2}V$. 

Any two nonzero tensors $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}$
and $\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{N}$ in an $N$-dimensional
space are proportional to each other, say\[
\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}=\lambda\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{N}.\]
 It is then convenient to denote $\lambda$ by the {}``tensor ratio''\[
\lambda\equiv\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}}{\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{N}}.\]


The number of unordered choices of $k$ items from $n$ is denoted
by \[
{n \choose k}=\frac{n!}{k!(n-k)!}.\]


The $k$-linear action of a linear operator $\hat{A}$ in the space
$\wedge^{n}V$ is denoted by $\wedge^{n}\hat{A}^{k}$. (Here $0\leq k\leq n\leq N$.)
For example,\begin{align*}
(\wedge^{3}\hat{A}^{2})\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c} & \equiv\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}\\
 & +\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}.\end{align*}


The imaginary unit ($\sqrt{-1}$) is denoted by a \emph{roman} {}``$\text{i}$,''
while the base of natural logarithms is written as an \emph{italic}
{}``$e$.'' For example, I would write $e^{\text{i}\pi}=-1$. This
convention is designed to avoid conflicts with the much used index
$i$ and with labeled vectors such as $\mathbf{e}_{i}$.

I write an italic $d$ in the derivatives, such as $df/dx$, and in
integrals, such as $\int f(x)dx$, because in these cases the symbols
$dx$ do not refer to a separate well-defined object {}``$dx$''
but are a part of the traditional symbolic notation used in calculus.
Differential forms (or, for that matter, nonstandard calculus) \emph{do}
make {}``$\text{d}x$'' into a well-defined object; in that case
I write a roman {}``d'' in {}``$\text{d}x$.'' Neither calculus
nor differential forms are actually used in this book; the only exception
is the occasional use of the derivative $d/dx$ applied to polynomials
in $x$. I will not need to make a distinction between $d/dx$ and
$\partial/\partial x$; the derivative of a function $f$ with respect
to $x$ is denoted by $\partial_{x}f$.


\section{Sample quiz problems}

The following problems can be solved using techniques explained in
this book. (These problems are of varying difficulty.) In these problems
$V$ is an $N$-dimen\-sion\-al vector space (with a scalar product
if indicated).


\paragraph{Exterior multiplication:}

If two tensors $\omega_{1},\omega_{2}\in\wedge^{k}V$ (with $1\leq k\leq N-1$)
are such that $\omega_{1}\wedge\mathbf{v}=\omega_{2}\wedge\mathbf{v}$
for \emph{all} vectors $\mathbf{v}\in V$, show that $\omega_{1}=\omega_{2}$.


\paragraph{Insertions:}

a) It is given that $\psi\in\wedge^{k}V$ (with $1\leq k\leq N-1$)
and $\psi\wedge\mathbf{a}=0$, where $\mathbf{a}\in V$ and $\mathbf{a}\neq0$.
Further, a covector $\mathbf{f}^{*}\in V^{*}$ is given such that
$\mathbf{f}^{*}(\mathbf{a})\neq0$. Show that \[
\psi=\frac{1}{\mathbf{f}^{*}(\mathbf{a})}\mathbf{a}\wedge(\iota_{\mathbf{f}^{*}}\psi).\]


b) It is given that $\psi\wedge\mathbf{a}=0$ and $\psi\wedge\mathbf{b}=0$,
where $\psi\in\wedge^{k}V$ (with $2\leq k\leq N-1$) and $\mathbf{a},\mathbf{b}\in V$
such that $\mathbf{a}\wedge\mathbf{b}\neq0$. Show that there exists
$\chi\in\wedge^{k-2}V$ such that $\psi=\mathbf{a}\wedge\mathbf{b}\wedge\chi$. 

c) It is given that $\psi\wedge\mathbf{a}\wedge\mathbf{b}=0$, where
$\psi\in\wedge^{k}V$ (with $2\leq k\leq N-2$) and $\mathbf{a},\mathbf{b}\in V$
such that $\mathbf{a}\wedge\mathbf{b}\neq0$. Is it always true that
$\psi=\mathbf{a}\wedge\mathbf{b}\wedge\chi$ for some $\chi\in\wedge^{k-2}V$?


\paragraph{Determinants:}

a) Suppose $\hat{A}$ is a linear operator defined by $\hat{A}=\sum_{i=1}^{N}\mathbf{a}_{i}\otimes\mathbf{b}_{i}^{*}$,
where $\mathbf{a}_{i}\in V$ are given vectors and $\mathbf{b}_{i}\in V^{*}$
are given covectors; $N=\dim V$. Show that \[
\det\hat{A}=\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}\,\frac{\mathbf{b}_{1}^{*}\wedge...\wedge\mathbf{b}_{N}^{*}}{\mathbf{e}_{1}^{*}\wedge...\wedge\mathbf{e}_{N}^{*}},\]
where $\left\{ \mathbf{e}_{j}\right\} $ is an arbitrary basis and
$\left\{ \mathbf{e}_{j}^{*}\right\} $ is the corresponding dual basis.
Show that the expression above is independent of the choice of the
basis $\left\{ \mathbf{e}_{j}\right\} $.

b) Suppose that a scalar product is given in $V$, and an operator
$\hat{A}$ is defined by \[
\hat{A}\mathbf{x}\equiv\sum_{i=1}^{N}\mathbf{a}_{i}\left\langle \mathbf{b}_{i},\mathbf{x}\right\rangle .\]
Further, suppose that $\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal
basis in $V$. Show that\[
\det\hat{A}=\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}\,\frac{\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}},\]
and that this expression is independent of the choice of the orthonormal
basis $\left\{ \mathbf{e}_{j}\right\} $ and of the orientation of
the basis.


\paragraph{Hyperplanes:}

a) Let us suppose that the {}``price'' of the vector $\mathbf{x}\in V$
is given by the formula \[
\text{Cost}\left(\mathbf{x}\right)\equiv C(\mathbf{x},\mathbf{x}),\]
where $C(\mathbf{a},\mathbf{b})$ is a known, positive-definite bilinear
form. Determine the {}``cheapest'' vector $\mathbf{x}$ belonging
to the affine hyperplane $\mathbf{a}^{*}(\mathbf{x})=\alpha$, where
$\mathbf{a}^{*}\in V^{*}$ is a nonzero covector and $\alpha$ is
a number.\index{hyperplane}

b) We are now working in a vector space with a scalar product, and
the {}``price'' of a vector $\mathbf{x}$ is $\left\langle \mathbf{x},\mathbf{x}\right\rangle $.
Two affine hyperplanes are given by equations $\left\langle \mathbf{a},\mathbf{x}\right\rangle =\alpha$
and $\left\langle \mathbf{b},\mathbf{x}\right\rangle =\beta$, where
$\mathbf{a}$ and $\mathbf{b}$ are given vectors, $\alpha$ and $\beta$
are numbers, and $\mathbf{x}\in V$. (It is assured that $\mathbf{a}$
and $\mathbf{b}$ are nonzero and not parallel to each other.) Determine
the {}``cheapest'' vector $\mathbf{x}$ belonging to the intersection
of the two hyperplanes.


\paragraph{Too few equations:}

A linear operator $\hat{A}$ is defined by $\hat{A}=\sum_{i=1}^{k}\mathbf{a}_{i}\otimes\mathbf{b}_{i}^{*}$,
where $\mathbf{a}_{i}\in V$ are given vectors and $\mathbf{b}_{i}^{*}\in V^{*}$
are given covectors, and $k<N=\dim V$. Show that the vector equation
$\hat{A}\mathbf{x}=\mathbf{c}$ has no solutions if $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k}\wedge\mathbf{c}\neq0$.
In case $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k}\wedge\mathbf{c}=0$,
show that solutions $\mathbf{x}$ surely exist when $\mathbf{b}_{1}^{*}\wedge...\wedge\mathbf{b}_{k}^{*}\neq0$
but may not exist otherwise.


\paragraph{Operator functions:}

It is known that the operator $\hat{A}$ satisfies the operator equation
$\hat{A}^{2}=-\hat{1}$. Simplify the oper\-ator-valued functions
$\frac{1+\hat{A}}{3-\hat{A}}$, $\cos(\lambda\hat{A})$, and $\sqrt{\hat{A}+2}$
to linear formulas involving $\hat{A}$. (Here $\lambda$ is a number,
while the numbers $1$, $2$, $3$ stand for multiples of the identity
operator.) Compare the results with the complex numbers $\frac{1+\text{i}}{3-\text{i}}$,
$\cos(\lambda\text{i})$, $\sqrt{\text{i}+2}$ and generalize the
conclusion to a theorem about computing analytic functions $f(\hat{A})$.


\paragraph{Inverse operator:}

It is known that $\hat{A}\hat{B}=\lambda\hat{1}_{V}$, where $\lambda\neq0$
is a number. Prove that also $\hat{B}\hat{A}=\lambda\hat{1}_{V}$.
(Both $\hat{A}$ and $\hat{B}$ are linear operators in a fin\-ite-dimen\-sion\-al
space $V$.)


\paragraph{Trace and determinant: }

Consider the space of polynomials in the variables $x$ and $y$,
where we admit only polynomials of the form $a_{0}+a_{1}x+a_{2}y+a_{3}xy$
(with $a_{j}\in\mathbb{R}$). An operator $\hat{A}$ is defined by
\[
\hat{A}\equiv x\frac{\partial}{\partial x}-\frac{\partial}{\partial y}.\]
Show that $\hat{A}$ is a linear operator in this space. Compute the
trace and the determinant of $\hat{A}$. If $\hat{A}$ is invertible,
compute $\hat{A}^{-1}(x+y)$.


\paragraph{Cayley-Hamilton theorem:}

Express $\det\hat{A}$ through $\text{Tr}\hat{A}$ and $\text{Tr}(\hat{A}^{2})$
for an arbitrary operator $\hat{A}$ in a \emph{two}-dimen\-sion\-al
space.


\paragraph{Algebraic complement:}

Let $\hat{A}$ be a linear operator and $\tilde{\hat{A}}$ its algebraic
complement. 

a) Show that \[
\text{Tr}\tilde{\hat{A}}=\wedge^{N}\hat{A}^{N-1}.\]
Here $\wedge^{N}\hat{A}^{N-1}$ is the coefficient at $(-\lambda)$
in the characteristic polynomial of $\hat{A}$ (that is, minus the
coefficient preceding the determinant).

b) For $t$-independent operators $\hat{A}$ and $\hat{B}$, show
that\[
\frac{\partial}{\partial t}\det(\hat{A}+t\hat{B})=\text{Tr}(\tilde{\hat{A}}\hat{B}).\]



\paragraph{Liouville formula:}

Suppose $\hat{X}(t)$ is a defined as solution of the differential
equation\[
\partial_{t}\hat{X}(t)=\hat{A}(t)\hat{X}(t)-\hat{X}(t)\hat{A}(t),\]
where $\hat{A}(t)$ is a given operator. (Operators that are functions
of $t$ can be understood as oper\-ator-valued formal power series.) 

a) Show that the determinant of $\hat{X}(t)$ is independent of $t$. 

b) Show that all the coefficients of the characteristic polynomial
of $\hat{X}(t)$ are independent of $t$.


\paragraph{Hodge star:}

Suppose $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ is a
basis in $V$, not necessarily orthonormal, while $\left\{ \mathbf{e}_{j}\right\} $
is a positively oriented orthonormal basis. Show that \[
*(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N})=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}.\]



\paragraph{Volume in space:}

Consider the space of polynomials of degree at most 4 in the variable
$x$. The scalar product of two polynomials $p_{1}(x)$ and $p_{2}(x)$
is defined by\[
\left\langle p_{1},p_{2}\right\rangle \equiv\frac{1}{2}\int_{-1}^{1}p_{1}(x)p_{2}(x)dx.\]
Determine the three-dimensional volume of the tetrahedron with vertices
at the {}``points'' $0$, $1+x$, $x^{2}+x^{3}$, $x^{4}$ in this
five-dimen\-sion\-al space.


\section{A list of results}

Here is a list of some results explained in this book. If you already
know all these results and their derivations, you may not need to
read any further.

Vector spaces may be defined over an abstract number field, without
specifying the number of dimensions or a basis.

The set $\left\{ a+b\sqrt{41}\,|\, a,b\in\mathbb{Q}\right\} $ is
a number field.

Any vector can be represented as a linear combination of basis vectors.
All bases have equally many vectors.

The set of all linear maps from one vector space to another is denoted
$\text{Hom}(V,W)$ and is a vector space.

The zero vector is not an eigenvector (by definition).

An operator having in some basis the matrix representation $\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)$ cannot be diagonalized.

The dual vector space $V^{*}$ has the same dimension as $V$ (for
finite-dimen\-sion\-al spaces).

Given a nonzero covector $\mathbf{f}^{*}\in V^{*}$, the set of vectors
$\mathbf{v}\in V$ such that $\mathbf{f}^{*}(\mathbf{v})=0$ is a
subspace of codimension 1 (a hyperplane).

The tensor product of $\mathbb{R}^{m}$ and $\mathbb{R}^{n}$ has
dimension $mn$.

Any linear map $\hat{A}:V\rightarrow W$ can be represented by a tensor
of the form $\sum_{i=1}^{k}\mathbf{v}_{i}^{*}\otimes\mathbf{w}_{i}\in V^{*}\otimes W$.
The rank of $\hat{A}$ is equal to the smallest number of simple tensor
product terms $\mathbf{v}_{i}^{*}\otimes\mathbf{w}_{i}$ required
for this representation.

The identity map $\hat{1}_{V}:V\rightarrow V$ is represented as the
tensor $\sum_{i=1}^{N}\mathbf{e}_{i}^{*}\otimes\mathbf{e}_{i}\in V^{*}\otimes V$,
where $\left\{ \mathbf{e}_{i}\right\} $ is any basis and $\left\{ \mathbf{e}_{i}^{*}\right\} $
its dual basis. This tensor does not depend on the choice of the basis
$\left\{ \mathbf{e}_{i}\right\} $.

A set of vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
is linearly independent if and only if $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\neq0$.
If $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\neq0$ but $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{x}=0$
then the vector $\mathbf{x}$ belongs to the subspace $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $.

The dimension of the space $\wedge^{k}V$ is ${N \choose k}$, where
$N\equiv\dim V$.

Insertion $\iota_{\mathbf{a}^{*}}\omega$ of a covector $\mathbf{a}^{*}\in V^{*}$
into an antisymmetric tensor $\omega\in\wedge^{k}V$ has the property
\[
\mathbf{v}\wedge(\iota_{\mathbf{a}^{*}}\omega)+\iota_{\mathbf{a}^{*}}(\mathbf{v}\wedge\omega)=\mathbf{a}^{*}(\mathbf{v})\omega.\]


Given a basis $\left\{ \mathbf{e}_{i}\right\} $, the dual basis $\left\{ \mathbf{e}_{i}^{*}\right\} $
may be computed as\[
\mathbf{e}_{i}^{*}(\mathbf{x})=\frac{\mathbf{e}_{1}\wedge...\wedge\mathbf{x}\wedge...\wedge\mathbf{e}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}},\]
where $\mathbf{x}$ replaces $\mathbf{e}_{i}$ in the numerator.

The subspace spanned by a set of vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $,
not necessarily linearly independent, can be characterized by a certain
antisymmetric tensor $\omega$, which is the exterior product of the
largest number of $\mathbf{v}_{i}$'s such that $\omega\neq0$. The
tensor $\omega$, computed in this way, is unique up to a constant
factor.

The $n$-vector (antisymmetric tensor) $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}$
represents geometrically the oriented $n$-dimen\-sion\-al volume
of the parallelepiped spanned by the vectors $\mathbf{v}_{i}$.

The determinant of a linear operator $\hat{A}$ is the coefficient
that multiplies the oriented volume of any parallelepiped transformed
by $\hat{A}$. In our notation, the operator $\wedge^{N}\hat{A}^{N}$
acts in $\wedge^{N}V$ as multiplication by $\det\hat{A}$.

If each of the given vectors $\{\mathbf{v}{}_{1},...,\mathbf{v}_{N}\}$
is expressed through a basis $\left\{ \mathbf{e}_{i}\right\} $ as
$\mathbf{v}_{j}=\sum_{i=1}^{N}v_{ij}\mathbf{e}_{i}$, the determinant
of the matrix $v_{ij}$ is found as \[
\det(v_{ij})=\det(v_{ji})=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}.\]


A linear operator $\hat{A}:V\rightarrow V$ and its canonically defined
transpose $\hat{A}^{T}:V^{*}\rightarrow V^{*}$ have the same characteristic
polynomials.

If $\det\hat{A}\neq0$ then the inverse operator $\hat{A}^{-1}$ exists,
and a linear equation $\hat{A}\mathbf{x}=\mathbf{b}$ has the unique
solution $\mathbf{x}=\hat{A}^{-1}\mathbf{b}$. Otherwise, solutions
exist if $\mathbf{b}$ belongs to the image of $\hat{A}$. Explicit
solutions may be constructed using Kramer's rule: If a vector $\mathbf{b}$
belongs to the subspace spanned by vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
then $\mathbf{b}=\sum_{i=1}^{n}b$$_{i}\mathbf{v}_{i}$, where the
coefficients $\mathbf{b}_{i}$ may be found (assuming $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\neq0$)
as\[
b_{i}=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{x}\wedge...\wedge\mathbf{v}_{n}}{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}}\]
(here $\mathbf{x}$ replaces $\mathbf{v}_{i}$ in the exterior product
in the numerator).

Eigenvalues of a linear operator are roots of its characteristic polynomial.
For each root $\lambda_{i}$, there exists at least one eigenvector
corresponding to the eigenvalue $\lambda_{i}$. 

If $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $ are eigenvectors
corresponding to \emph{all different} eigenvalues $\lambda_{1},...,\lambda_{k}$
of some operator, then the set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
is linearly independent.

The dimension of the eigenspace corresponding to $\lambda_{i}$ is
not larger than the algebraic multiplicity of the root $\lambda_{i}$
in the characteristic polynomial.

\emph{(Below in this section we always denote by $N$ the dimension
of the space $V$.)}

The trace of an operator $\hat{A}$ can be expressed as $\wedge^{N}\hat{A}^{1}$. 

We have $\text{Tr}(\hat{A}\hat{B})=\mbox{\text{Tr}}(\hat{B}\hat{A})$.
This holds even if $\hat{A},\hat{B}$ are maps between different spaces,
i.e.~$\hat{A}:V\rightarrow W$ and $\hat{B}:W\rightarrow V$.

If an operator $\hat{A}$ is nilpotent, its characteristic polynomial
is $\left(-\lambda\right)^{N}$, i.e.~the same as the characteristic
polynomial of a zero operator.

The $j$-th coefficient of the characteristic polynomial of $\hat{A}$
is $\left(-1\right)^{j}(\wedge^{N}\hat{A}^{j})$.

Each coefficient of the characteristic polynomial of $\hat{A}$ can
be expressed as a polynomial function of $N$ traces of the form $\text{Tr}(\hat{A}^{k})$,
$k=1,...,N$.

The space $\wedge^{N-1}V$ is $N$-dimen\-sion\-al like $V$ itself,
and there is a canonical isomorphism between $\text{End}(\wedge^{N-1}V)$
and $\text{End}(V)$. This isomorphism, called \textbf{exterior} \textbf{transposition}\index{exterior transposition},
is denoted by $(...)^{\wedge T}$. The exterior transpose of an operator
$\hat{X}\in\text{End}\, V$ is defined by \[
(\hat{X}^{\wedge T}\omega)\wedge\mathbf{v}\equiv\omega\wedge\hat{X}\mathbf{v},\quad\forall\omega\in\wedge^{N-1}V,\:\mathbf{v}\in V.\]
Similarly, one defines the exterior transposition map between $\text{End}(\wedge^{N-k}V)$
and $\text{End}(\wedge^{k}V)$ for all $k=1,...,N$.

The algebraic complement operator (normally defined as a matrix consisting
of minors) is canonically defined through exterior transposition as
$\tilde{\hat{A}}\equiv({\wedge^{N-1}\hat{A}^{N-1}})^{\wedge T}$.
It can be expressed as a polynomial in $\hat{A}$ and satisfies the
identity $\tilde{\hat{A}}\hat{A}=(\det\hat{A})\hat{1}_{V}$. Also,
all other operators\[
\hat{A}_{(k)}\equiv\big({\wedge^{N-1}\hat{A}^{N-k}}\big)^{\wedge T},\quad k=1,...,N\]
can be expressed as polynomials in $\hat{A}$ with known coefficients.

The characteristic polynomial of $\hat{A}$ gives the zero operator
if applied to the operator $\hat{A}$ (the Cayley-Ham\-il\-ton theorem).
A similar theorem holds for each of the operators $\wedge^{k}\hat{A}^{1}$,
$2\leq k\leq N-1$ (with different polynomials).

A formal power series $f(t)$ can be applied to the operator $t\hat{A}$;
the result is an oper\-ator-valued formal series $f(t\hat{A})$ that
has the usual properties, e.g.\[
\partial_{t}f(t\hat{A})=\hat{A}f^{\prime}(t\hat{A}).\]


If $\hat{A}$ is diagonalized with eigenvalues $\left\{ \lambda_{i}\right\} $
in the eigenbasis $\left\{ \mathbf{e}_{i}\right\} $, then a formal
power series $f(t\hat{A})$ is diagonalized in the same basis with
eigenvalues $f(t\lambda_{i})$.

If an operator $\hat{A}$ satisfies a polynomial equation such as
$p(\hat{A})=0$, where $p(x)$ is a known polynomial of degree $k$
(not necessarily, but possibly, the characteristic polynomial of $\hat{A}$)
then any formal power series $f(t\hat{A})$ is reduced to a polynomial
in $t\hat{A}$ of degree not larger than $k-1$. This polynomial can
be computed as the interpolating polynomial for the function $f(tx)$
at points $x=x_{i}$ where $x_{i}$ are the (all different) roots
of $p(x)$. Suitable modifications are available when \emph{not all}
roots are different. So one can compute any analytic function $f(\hat{A})$
of the operator $\hat{A}$ as long as one knows a polynomial equation
satisfied by $\hat{A}$. 

A square root of an operator $\hat{A}$ (i.e.~a linear operator $\hat{B}$
such that $\hat{B}\hat{B}=\hat{A}$) is not unique and does not always
exist. In two and three dimensions, one can either obtain all square
roots explicitly as polynomials in $\hat{A}$, or determine that some
square roots are not expressible as polynomials in $\hat{A}$ or that
square roots of $\hat{A}$ do not exist at all. 

If an operator $\hat{A}$ depends on a parameter $t$, one can express
the derivative of the determinant of $\hat{A}$ through the algebraic
complement $\tilde{\hat{A}}$ (Jacobi's formula),\[
\partial_{t}\det\hat{A}(t)=\text{Tr}(\tilde{\hat{A}}\partial_{t}\hat{A}).\]
Derivatives of other coefficients $q_{k}\equiv\wedge^{N}\hat{A}^{N-k}$
of the characteristic polynomial are given by similar formulas, \[
\partial_{t}q_{k}=\text{Tr}\,\big[(\wedge^{N-1}\hat{A}^{N-k-1})^{\wedge T}\partial_{t}\hat{A}\big].\]


The Liouville formula holds: $\det\exp\hat{A}=\exp\text{Tr}\hat{A}$.

Any operator (not necessarily diagonalizable) can be reduced to a
Jordan canonical form in a Jordan basis. The Jordan basis consists
of eigenvectors and root vectors for each eigenvalue.

Given an operator $\hat{A}$ whose characteristic polynomial is known
(hence all roots $\lambda_{i}$ and their algebraic multiplicities
$m_{i}$ are known), one can construct explicitly a projector $\hat{P}_{\lambda_{i}}$
onto a Jordan cell for any chosen eigenvalue $\lambda_{i}$. The projector
is found as a polynomial in $\hat{A}$ with known coefficients.

\emph{(Below in this section we assume that a scalar product is fixed
in $V$.)}

A nondegenerate scalar product provides a one-to-one correspondence
between vectors and covectors. Then the canonically transposed operator
$\hat{A}^{T}:V^{*}\rightarrow V^{*}$ can be mapped into an operator
in $V$, denoted also by $\hat{A}^{T}$. (This operator is represented
by the transposed matrix only in an \emph{orthonormal} basis.) We
have $(\hat{A}\hat{B})^{T}=\hat{B}^{T}\hat{A}^{T}$ and $\det(\hat{A}^{T})=\det\hat{A}$.

Orthogonal transformations have determinants equal to $\pm1$. Mirror
reflections are orthogonal transformations and have determinant equal
to $-1$.

Given an orthonormal basis $\left\{ \mathbf{e}_{i}\right\} $, one
can define the \textbf{unit volume tensor}\index{unit volume tensor}
$\omega=\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$. The tensor
$\omega$ is then independent of the choice of $\left\{ \mathbf{e}_{i}\right\} $
up to a factor $\pm1$ due to the orientation of the basis (i.e.~the
ordering of the vectors of the basis), as long as the scalar product
is kept fixed.

Given a fixed scalar product $\left\langle \cdot,\cdot\right\rangle $
and a fixed orientation of space, the Hodge star operation is uniquely
defined as a linear map (isomorphism) $\wedge^{k}V\rightarrow\wedge^{N-k}V$
for each $k=0,...,N$. For instance, \[
*\mathbf{e}_{1}=\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge...\wedge\mathbf{e}_{N};\quad*(\mathbf{e}_{1}\wedge\mathbf{e}_{2})=\mathbf{e}_{3}\wedge...\wedge\mathbf{e}_{N},\]
 if $\left\{ \mathbf{e}_{i}\right\} $ is \emph{any} positively oriented,
orthonormal basis.

The Hodge star map satisfies\[
\left\langle \mathbf{a},\mathbf{b}\right\rangle =*(\mathbf{a}\wedge*\mathbf{b})=*(\mathbf{b}\wedge*\mathbf{a}),\quad\mathbf{a},\mathbf{b}\in V.\]


In a three-dimen\-sion\-al space, the usual vector product and triple
product can be expressed through the Hodge star as\[
\mathbf{a}\times\mathbf{b}=*(\mathcal{\mathbf{a}\wedge\mathbf{b}}),\;\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})=*(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}).\]


The volume of an $N$-dimen\-sion\-al parallelepiped spanned by
$\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ is equal to
$\sqrt{\det(G_{ij})}$, where $G_{ij}\equiv\left\langle \mathbf{v}_{i},\mathbf{v}_{j}\right\rangle $
is the matrix of the pairwise scalar products.

Given a scalar product in $V$, a scalar product is canonically defined
also in the spaces $\wedge^{k}V$ for all $k=2,...,N$. This scalar
product can be defined by \[
\left\langle \omega_{1},\omega_{2}\right\rangle =*(\omega_{1}\wedge*\omega_{2})=*(\omega_{2}\wedge*\omega_{1})=\left\langle \omega_{2},\omega_{1}\right\rangle ,\]
where $\omega_{1,2}\in\wedge^{k}V$. Alternatively, this scalar product
is defined by choosing an orthonormal basis $\left\{ \mathbf{e}_{j}\right\} $
and postulating that $\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}$
is normalized and orthogonal to any other such tensor with different
indices $\left\{ i_{j}|j=1,...,k\right\} $. The $k$-dimen\-sion\-al
volume of a parallelepiped spanned by vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
is found as $\sqrt{\left\langle \psi,\psi\right\rangle }$ with $\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$.

The insertion $\iota_{\mathbf{v}}\psi$ of a vector $\mathbf{v}$
into a $k$-vector $\psi\in\wedge^{k}V$ (or the {}``interior product'')
can be expressed as\[
\iota_{\mathbf{v}}\psi=*(\mathbf{v}\wedge*\psi).\]
If $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$ is the
unit volume tensor, we have $\iota_{\mathbf{v}}\omega=*\mathbf{v}$.

Symmetric, antisymmetric, Hermitian, and anti-Hermitian operators
are always diagonalizable (if we allow complex eigenvalues and eigenvectors).
Eigenvectors of these operators can be chosen orthogonal to each other. 

Antisymmetric operators are representable as elements of $\wedge^{2}V$
of the form $\sum_{i=1}^{n}\mathbf{a}_{i}\wedge\mathbf{b}_{i}$, where
one needs no more than $N/2$ terms, and the vectors $\mathbf{a}_{i}$,
$\mathbf{b}_{i}$ can be chosen mutually orthogonal to each other.
(For this, we do not need complex vectors.)

The \textbf{Pfaffian}\index{Pfaffian} of an antisymmetric operator
$\hat{A}$ in even-dimen\-sion\-al space is the number $\text{Pf}\,\hat{A}$
defined as \[
\frac{1}{(N/2)!}\underbrace{A\wedge...\wedge A}_{N/2}=(\text{Pf}\,\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\]
 where $\left\{ \mathbf{e}_{i}\right\} $ is an orthonormal basis.
Some basic properties of the Pfaffian are \begin{align*}
(\text{Pf }\hat{A})^{2} & =\det\hat{A},\\
\text{Pf }(\hat{B}\hat{A}\hat{B}^{T}) & =(\det\hat{B})(\text{Pf }\hat{A}),\end{align*}
where $\hat{A}$ is an antisymmetric operator ($\hat{A}^{T}=-\hat{A}$)
and $\hat{B}$ is an arbitrary operator.


\chapter{Linear algebra without coordinates}


\section{Vector spaces}

Abstract vector spaces are developed as a generalization of the familiar
vectors in Euclidean space.


\subsection{Three-dimen\-sion\-al Euclidean geometry}

Let us begin with something you already know. Three-dimen\-sion\-al
vectors are specified by triples of coordinates, $\mathbf{r}\equiv\left(x,y,z\right)$.
The operations of \textbf{vector sum} and \textbf{vector product}
of such vectors are defined by \begin{align}
\left(x_{1},y_{1},z_{1}\right)+\left(x_{2},y_{2},z_{2}\right) & \equiv\left(x_{1}+x_{2},y_{1}+y_{2},z_{1}+z_{2}\right);\label{eq:3d sum}\\
\left(x_{1},y_{1},z_{1}\right)\times\left(x_{2},y_{2},z_{2}\right) & \equiv(y_{1}z_{2}-z_{1}y_{2},\, z_{1}x_{2}-x_{1}z_{2},\nonumber \\
 & x_{1}y_{2}-y_{1}x_{2}).\label{eq:3d vector product}\end{align}
(I assume that these definitions are familiar to you.) Vectors can
be \textbf{rescaled} by multiplying them with real numbers, \begin{equation}
c\mathbf{r}=c\left(x,y,z\right)\equiv\left(cx,cy,cz\right).\label{eq:3d scalar mult}\end{equation}
A rescaled vector is parallel to the original vector and points either
in the same or in the opposite direction. In addition, a \textbf{scalar
product} of two vectors is defined,\begin{equation}
\left(x_{1},y_{1},z_{1}\right)\cdot\left(x_{2},y_{2},z_{2}\right)\equiv x_{1}x_{2}+y_{1}y_{2}+z_{1}z_{2}.\label{eq:3d scalar prod}\end{equation}
These operations encapsulate all of Euclidean geometry in a purely
algebraic language. For example, the \textbf{length} of a vector $\mathbf{r}$
is \begin{equation}
\left|\mathbf{r}\right|\equiv\sqrt{\mathbf{r}\cdot\mathbf{r}}=\sqrt{x^{2}+y^{2}+z^{2}},\label{eq:r modulus}\end{equation}
 the \textbf{angle} $\alpha$ between vectors $\mathbf{r}_{1}$ and
$\mathbf{r}_{2}$ is found from the relation (the cosine theorem)\[
\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|\cos\alpha=\mathbf{r}_{1}\cdot\mathbf{r}_{2},\]
while the \textbf{area} of a triangle spanned by vectors $\mathbf{r}_{1}$
and $\mathbf{r}_{2}$ is\[
S=\frac{1}{2}\left|\mathbf{r}_{1}\times\mathbf{r}_{2}\right|.\]


Using these definitions, one can reformulate every geometric statement
(such as, {}``a triangle having two equal sides has also two equal
angles'') in terms of relations between vectors, which are ultimately
reducible to algebraic equations involving a set of numbers. The replacement
of geometric constructions by algebraic relations is useful because
it allows us to free ourselves from the confines of our three-dimensional
intuition; we are then able to solve problems in higher-dimen\-sion\-al
spaces. The price is a greater complication of the algebraic equations
and inequalities that need to be solved. To make these equations more
transparent and easier to handle, the theory of linear algebra is
developed. The first step is to realize what features of vectors are
essential and what are just accidental facts of our familiar three-dimen\-sion\-al
Euclidean space.


\subsection{From three-dimen\-sion\-al vectors to abstract vectors}

Abstract vector spaces retain the essential properties of the familiar
Euclidean geometry but generalize it in two ways: First, the dimension
of space is not 3 but  an arbitrary integer number (or even  infinity);
second, the coordinates are {}``abstract numbers'' (see below) instead
of real numbers. Let us first pass to higher-dimen\-sion\-al vectors. 

Generalizing the notion of a three-dimen\-sion\-al vector to a higher
(still finite) dimension is straightforward: instead of triples $\left(x,y,z\right)$
one considers sets of $n$ coordinates $\left(x_{1},...,x_{n}\right)$.
The definitions of the vector sum~(\ref{eq:3d sum}), scaling~(\ref{eq:3d scalar mult})
and scalar product~(\ref{eq:3d scalar prod}) are straightforwardly
generalized to $n$-tuples of coordinates. In this way we can describe
$n$-dimen\-sion\-al Euclidean geometry. All theorems of linear
algebra are proved in the same way regardless of the number of components
in vectors, so the generalization to $n$-dimen\-sion\-al spaces
is a natural thing to do.


\paragraph{Question:}

The scalar product can be generalized to $n$-dimen\-sion\-al spaces,
\[
\left(x_{1},...,x_{n}\right)\cdot\left(y_{1},...,y_{n}\right)\equiv x_{1}y_{1}+...+x_{n}y_{n},\]
but what about the vector product? The formula~(\ref{eq:3d vector product})
seems to be complicated, and it is hard to guess what should be written,
say, in four dimensions.


\subparagraph{Answer:}

It turns out that the vector product~(\ref{eq:3d vector product})
\emph{cannot} be generalized to arbitrary $n$-dimen\-sion\-al spaces.%
\footnote{A vector product exists only in some cases, e.g.~$n=3$ and $n=7$.
This is a theorem of higher algebra which we will not prove here.%
} At this point we will not require the vector spaces to have either
a vector or a scalar product; instead we will concentrate on the basic
algebraic properties of vectors. Later we will see that there is an
algebraic construction (the exterior product) that replaces the vector
product in higher dimensions.


\subsection*{Abstract numbers}

The motivation to replace the real coordinates $x$, $y$, $z$ by
complex coordinates, rational coordinates, or by some other, more
abstract numbers comes from many branches of physics and mathematics.
In any case, the statements of linear algebra almost never rely on
the fact that coordinates of vectors are real numbers. Only \emph{certain
properties} of real numbers are actually used, namely that one can
add or multiply or divide numbers. So one can easily replace real
numbers by complex numbers or by some other kind of numbers as long
as one can add, multiply and divide them as usual. (The use of the
square root as in Eq.~(\ref{eq:r modulus}) can be avoided if one
considers only \emph{squared} lengths of vectors.)

Instead of specifying each time that one works with real numbers or
with complex numbers, one says that one is working with some {}``abstract
numbers'' that have all the needed properties of numbers. The required
properties of such {}``abstract numbers'' are summarized by the
axioms of a number field.


\paragraph{Definition:}

A \textbf{number field} (also called simply a \textbf{field}) \index{number field}is
a set $\mathbb{K}$ which is an abelian group with respect to addition
and multiplication, such that the distributive law holds. More precisely:
There exist elements $0$ and $1$, and the operations $+$, $-$,
$*$, and $/$ are defined such that $a+b=b+a$, $a*b=b*a$, $0+a=a$,
$1*a=a$, $0*a=0$, and for every $a\in\mathbb{K}$ the numbers $-a$
and $1/a$ (for $a\neq0$) exist such that $a+(-a)=0$, $a*(1/a)=1$,
and also $a*(b+c)=a*b+a*c$. The operations $-$ and $/$ are defined
by $a-b\equiv a+(-b)$ and $a/b=a*(1/b)$. 

In a more visual language: A field is a set of elements on which the
operations $+$, $-$, $*$, and $/$ are defined, the elements 0
and 1 exist, and the familiar arithmetic properties such as $a+b=b+a,$
$a+0=0$, $a-a=0$, $a*1=1$, $a/b*b=a$ (for $b\neq0$), etc.~are
satisfied. Elements of a field can be visualized as {}``abstract
numbers'' because they can be added, subtracted, multiplied, and
divided, with the usual arithmetic rules. (For instance, division
by zero is still undefined, even with abstract numbers!) I will call
elements of a number field simply \textbf{numbers} when (in my view)
it does not cause confusion.


\subsection*{Examples of number fields}

Real numbers $\mathbb{R}$ are a field, as are rational numbers $\mathbb{Q}$
and complex numbers $\mathbb{C}$, with all arithmetic operations
defined as usual. Integer numbers $\mathbb{Z}$ with the usual arithmetic
are \emph{not} a field because e.g.~the division of $1$ by a nonzero
number $2$ cannot be an integer.

Another interesting example is the set of numbers of the form $a+b\sqrt{3}$,
where $a,b\in\mathbb{Q}$ are \emph{rational} numbers. It is easy
to see that sums, products, and ratios of such numbers are again numbers
from the same set, for example\begin{align*}
 & (a_{1}+b_{1}\sqrt{3})(a_{2}+b_{2}\sqrt{3})\\
 & =\left(a_{1}a_{2}+3b_{1}b_{2}\right)+\left(a_{1}b_{2}+a_{2}b_{1}\right)\sqrt{3}.\end{align*}
 Let's check the division property:\[
\frac{1}{a+b\sqrt{3}}=\frac{a-b\sqrt{3}}{a-b\sqrt{3}}\frac{1}{a+b\sqrt{3}}=\frac{a-b\sqrt{3}}{a^{2}-3b^{2}}.\]
Note that $\sqrt{3}$ is irrational, so the denominator $a^{2}-3b^{2}$
is never zero as long as $a$ and $b$ are rational and at least one
of $a,b$ is nonzero. Therefore, we can divide numbers of the form
$a+b\sqrt{3}$ and again get numbers of the same kind. It follows
that the set $\left\{ a+b\sqrt{3}\,|\, a,b\in\mathbb{Q}\right\} $
is indeed a number field. This field is usually denoted by $\mathbb{Q}[\sqrt{3}]$
and called an extension of rational numbers by $\sqrt{3}$. Fields
of this form are useful in algebraic number theory.

A field might even consist of a \emph{finite} set of numbers (in which
case it is called a \textbf{finite field}). For example, the set of
three numbers $\left\{ 0,1,2\right\} $ can be made a field if we
define the arithmetic operations as\[
1+2\equiv0,\,2+2\equiv1,\,2*2\equiv1,\,1/2\equiv2,\]
with all other operations as in usual arithmetic. This is the field
of integers modulo $3$ and is denoted by $\mathbb{F}_{3}$. Fields
of this form are useful, for instance, in cryptography.

Any field must contain elements that play the role of the numbers
$0$ and $1$; we denote these elements simply by $0$ and $1$. Therefore
the smallest possible field is the set $\left\{ 0,1\right\} $ with
the usual relations $0+1=1$, $1\cdot1=1$ etc. This field is denoted
by $\mathbb{F}_{2}$. 

Most of the time we will not need to specify the number field; it
is all right to imagine that we always use $\mathbb{R}$ or $\mathbb{C}$
as the field. (See Appendix~\ref{sec:Complex-numbers} for a brief
introduction to complex numbers.)


\paragraph{Exercise:}

Which of the following sets are number fields: 

a) $\left\{ x+\text{i}y\sqrt{2}\,|\, x,y\in\mathbb{Q}\right\} $,
where $\text{i}$ is the imaginary unit.

b) $\left\{ x+y\sqrt{2}\,|\, x,y\in\mathbb{Z}\right\} $.


\subsection*{Abstract vector spaces}

After a generalization of the three-dimen\-sion\-al vector geometry
to $n$-dimen\-sion\-al spaces and real numbers $\mathbb{R}$ to
abstract number fields, we arrive at the following definition of a
vector space.


\paragraph{Definition V1:}

An $n$-dimen\-sion\-al vector space over a field $\mathbb{K}$
is the set of all $n$-tuples $\left(x_{1},...,x_{n}\right)$, where
$x_{i}\in\mathbb{K}$; the numbers $x_{i}$ are called \textbf{components}
of the vector\index{components of a vector} (in older books they
were called \textbf{coordinates}). The operations of vector sum and
the scaling of vectors by numbers are given by the formulas\begin{align*}
\left(x_{1},...,x_{n}\right)+\left(y_{1},...,y_{n}\right) & \equiv\left(x_{1}+y_{1},...,x_{n}+y_{n}\right),\; x_{i},y_{i}\in\mathbb{K};\\
\lambda\left(x_{1},...,x_{n}\right) & \equiv\left(\lambda x_{1},...,\lambda x_{n}\right),\;\lambda\in\mathbb{K}.\end{align*}
This vector space is denoted by $\mathbb{K}^{n}$. 

Most problems in physics involve vector spaces over the field of real
numbers $\mathbb{K}=\mathbb{R}$ or complex numbers $\mathbb{K}=\mathbb{C}$.
However, most results of basic linear algebra hold for arbitrary number
fields, and for now we will consider vector spaces over an arbitrary
number field $\mathbb{K}$.

Definition V1 is adequate for applications involving \emph{finite}-dimen\-sion\-al
vector spaces. However, it turns out that further abstraction is necessary
when one considers infinite-dimen\-sional spaces. Namely, one needs
to do away with coordinates and define the vector space by the basic
requirements on the vector sum and scaling operations.

We will adopt the following {}``coordinate-free'' definition of
a vector space.


\paragraph{Definition V2:}

A set $V$ is a \textbf{vector space over a number field} $\mathbb{K}$
if the following conditions are met:
\begin{enumerate}
\item $V$ is an abelian group; the \textbf{sum} of two vectors is denoted
by the {}``$+$'' sign, the zero element is the vector $\mathbf{0}$.
So for any $\mathbf{u},\mathbf{v}\in V$ the vector $\mathbf{u}+\mathbf{v}\in V$
exists, $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$, and in particular
$\mathbf{v}+\mathbf{0}=\mathbf{v}$ for any $\mathbf{v}\in V$.
\item An operation of \textbf{multiplication by numbers} is defined, such
that for each $\lambda\in\mathbb{K}$, $\mathbf{v}\in V$ the vector
$\lambda\mathbf{v}\in V$ is determined.
\item The following properties hold, for all vectors $\mathbf{u},\mathbf{v}\in V$
and all numbers $\lambda,\mu\in\mathbb{K}$:\begin{align*}
\left(\lambda+\mu\right)\mathbf{v} & =\lambda\mathbf{v}+\mu\mathbf{v},\quad\lambda\left(\mathbf{v}+\mathbf{u}\right)=\lambda\mathbf{v}+\lambda\mathbf{u},\\
1\mathbf{v} & =\mathbf{v},\quad0\mathbf{v}=\mathbf{0}.\end{align*}
These properties guarantee that the multiplication by numbers is compatible
with the vector sum, so that usual rules of arithmetic and algebra
are applicable.
\end{enumerate}
Below I will not be so pedantic as to write the boldface $\mathbf{0}$
for the zero vector $\mathbf{0}\in V$; denoting the zero vector simply
by $0$ never creates confusion in practice.

Elements of a vector space are called \textbf{vectors}; in contrast,
numbers from the field $\mathbb{K}$ are called \textbf{scalars}.
For clarity, since this is an introductory text, I will print all
vectors in boldface font so that $\mathbf{v}$, $\mathbf{a}$, $\mathbf{x}$
are vectors but $v,a,x$ are scalars (i.e.~numbers). Sometimes, for
additional clarity, one uses Greek letters such as $\alpha,\lambda,\mu$
to denote scalars and Latin letters to denote vectors. For example,
one writes expressions of the form $\lambda_{1}\mathbf{v}_{1}+\lambda_{2}\mathbf{v}_{2}+...+\lambda_{n}\mathbf{v}_{n}$;
these are called \textbf{linear combinations\index{linear combination}}
of vectors $\mathbf{v}_{1}$, $\mathbf{v}_{2}$, ..., $\mathbf{v}_{n}$. 

The definition V2 is standard in abstract algebra. As we will see
below, the coordinate-free language is well suited to proving theorems
about general properties of vectors.


\paragraph{Question:}

I do not understand how to work with abstract vectors in abstract
vector spaces. According to the vector space axioms (definition V2),
I should be able to add vectors together and multiply them by scalars.
It is clear how to add the $n$-tuples $\left(v_{1},...,v_{n}\right)$,
but how can I compute anything with an abstract vector $\mathbf{v}$
that does not seem to have any components? 


\subparagraph{Answer:}

Definition V2 is {}``abstract'' in the sense that it does not explain
\emph{how} to add particular kinds of vectors, instead it merely lists
the set of properties \emph{any} vector space must satisfy. To define
a \emph{particular} vector space, we of course need to specify a particular
set of vectors and a rule for adding its elements in an explicit fashion
(see examples below in Sec.~\ref{sub:Examples-of-vector}). Definition
V2 is used in the following way: Suppose someone claims that a certain
set $X$ of particular mathematical objects is a vector space over
some number field, then we only need to check that the sum of vectors
and the multiplication of vector by a number are well-defined and
conform to the properties listed in Definition V2. If every property
holds, then the set $X$ is a vector space, and all the theorems of
linear algebra will automatically hold for the elements of the set
$X$. Viewed from this perspective, Definition V1 specifies a \emph{particular}
vector space---the space of rows of numbers $(v_{1},...,v_{n})$.
In some cases the vector space at hand is exactly that of Definition
V1, and then it is convenient to work with components $v_{j}$ when
performing calculations with specific vectors. However, components
are not needed for proving general theorems. In this book, when I
say that {}``a vector $\mathbf{v}\in V$ is given,'' I imagine that
enough concrete information about $\mathbf{v}$ will be available
when it is actually needed. 


\subsection{Examples of vector spaces\label{sub:Examples-of-vector}}


\paragraph{Example 0.}

The familiar example is the three-dimen\-sion\-al Euclidean space.
This space is denoted by $\mathbb{R}^{3}$ and is the set of all triples
$\left(x_{1},x_{2},x_{3}\right)$, where $x_{i}$ are real numbers.
This is a vector space over $\mathbb{R}$. 


\paragraph{Example 1.}

The set of complex numbers $\mathbb{C}$ is a vector space over the
field of real numbers $\mathbb{R}$. Indeed, complex numbers can be
added and multiplied by real numbers.


\paragraph{Example 2.}

Consider the set of all three-dimen\-sion\-al vectors $\mathbf{v}\in\mathbb{R}^{3}$
which are orthogonal to a given vector $\mathbf{a}\neq0$; here we
use the standard scalar product~(\ref{eq:3d scalar prod}); vectors
$\mathbf{a}$ and $\mathbf{b}$ are called \textbf{orthogonal to each
other} if $\mathbf{a}\cdot\mathbf{b}=0$. This set is closed under
vector sum and scalar multiplication because if $\mathbf{u}\cdot\mathbf{a}=0$
and $\mathbf{v}\cdot\mathbf{a}=0$, then for any $\lambda\in\mathbb{R}$
we have $\left(\mathbf{u}+\lambda\mathbf{v}\right)\cdot\mathbf{a}=0$.
Thus we obtain a vector space (a certain subset of $\mathbb{R}^{3}$)
which is defined not in terms of components but through geometric
relations between vectors of another (previously defined) space.


\paragraph{Example 3.}

Consider the set of all real-valued continuous functions $f\left(x\right)$
defined for $x\in\left[0,1\right]$ and such that $f\left(0\right)=0$
and $f\left(1\right)=0$. This set is a vector space over $\mathbb{R}$.
Indeed, the definition of a vector space is satisfied if we define
the sum of two functions as $f\left(x\right)+f\left(y\right)$ and
the multiplication by scalars, $\lambda f\left(x\right)$, in the
natural way. It is easy to see that the axioms of the vector space
are satisfied: If $h\left(x\right)=f\left(x\right)+\lambda g\left(x\right)$,
where $f\left(x\right)$ and $g\left(x\right)$ are vectors from this
space, then the function $h\left(x\right)$ is continuous on $\left[0,1\right]$
and satisfies $h\left(0\right)=h\left(1\right)=0$, i.e.~the function
$h\left(x\right)$ is also an element of the same space. 


\paragraph{Example 4.}

To represent the fact that there are $\lambda_{1}$ gallons of water
and $\lambda_{2}$ gallons of oil, we may write the expression $\lambda_{1}\mathbf{X}+\lambda_{2}\mathbf{Y}$,
where $\mathbf{X}$ and $\mathbf{Y}$ are formal symbols and $\lambda_{1,2}$
are numbers. The set of all such expressions is a vector space. This
space is called the space of \textbf{formal linear combinations}\index{formal linear combination}
of the symbols $\mathbf{X}$ and $\mathbf{Y}$. The operations of
sum and scalar multiplication are defined in the natural way, so that
we can perform calculations such as\[
\frac{1}{2}\left(2\mathbf{X}+3\mathbf{Y}\right)-\frac{1}{2}\left(2\mathbf{X}-3\mathbf{Y}\right)=3\mathbf{Y}.\]
For the purpose of manipulating such expressions, it is unimportant
that $\mathbf{X}$ and $\mathbf{Y}$ stand for water and oil. We may
simply work with formal expressions such as $2\mathbf{X}+3\mathbf{Y}$,
where $\mathbf{X}$ and $\mathbf{Y}$ and {}``+'' are symbols that
do not mean anything by themselves except that they can appear in
such linear combinations and have familiar properties of algebraic
objects (the operation {}``+'' is commutative and associative, etc.).
Such formal constructions are often encountered in mathematics. 


\paragraph{Question:}

It seems that such {}``formal'' constructions are absurd and/or
useless. I know how to add numbers or vectors, but how can I add $\mathbf{X}+\mathbf{Y}$
if $\mathbf{X}$ and $\mathbf{Y}$ are, as you say, {}``meaningless
symbols''?


\subparagraph{Answer:}

Usually when we write {}``$a+b$'' we imply that the operation {}``+''
is already defined, so $a+b$ is another number if $a$ and $b$ are
numbers. However, in the case of formal expressions described in Example~4,
the {}``+'' sign is actually going to acquire a \emph{new} definition.
So $\mathbf{X}+\mathbf{Y}$ is not equal to a new symbol $\mathbf{Z}$,
instead $\mathbf{X}+\mathbf{Y}$ is just \emph{an expression} that
we can manipulate. Consider the analogy with complex numbers: the
number $1+2\text{i}$ is an expression that we manipulate, and the
imaginary unit, $\text{i}$, is a symbol that is never {}``equal
to something else.'' According to its definition, the expression
$\mathbf{X}+\mathbf{Y}$ cannot be simplified to anything else, just
like $1+2\text{i}$ cannot be simplified. The symbols $\mathbf{X}$,
$\mathbf{Y}$, $\text{i}$ are \emph{not} meaningless: their meaning
comes \emph{from} \emph{the} \emph{rules} \emph{of} \emph{computations}
with these symbols.

Maybe it helps to change notation. Let us begin by writing a pair
$\left(a,b\right)$ instead of $a\mathbf{X}+b\mathbf{Y}$. We can
define the sum of such pairs in the natural way, e.g.\[
\left(2,3\right)+\left(-2,1\right)=\left(0,4\right).\]
It is clear that these pairs build a vector space. Now, to remind
ourselves that the numbers of the pair stand for, say, quantities
of water and oil, we write $\left(2\mathbf{X},3\mathbf{Y}\right)$
instead of $\left(2,3\right)$. The symbols $\mathbf{X}$ and $\mathbf{Y}$
are merely part of the notation. Now it is natural to change the notation
further and to write simply $2\mathbf{X}$ instead of $\left(2\mathbf{X},0\mathbf{Y}\right)$
and $a\mathbf{X}+b\mathbf{Y}$ instead of $\left(a\mathbf{X},b\mathbf{Y}\right)$.
It is clear that we do not introduce anything new when we write $a\mathbf{X}+b\mathbf{Y}$
instead of $\left(a\mathbf{X},b\mathbf{Y}\right)$: We merely change
the notation so that computations appear easier. Similarly, complex
numbers can be understood as pairs of real numbers, such as $\left(3,2\right)$,
for which $3+2\text{i}$ is merely a more convenient notation that
helps remember the rules of computation.\hfill{}$\blacksquare$


\paragraph{Example 5.}

The set of all polynomials of degree at most $n$ in the variable
$x$ with complex coefficients is a vector space over $\mathbb{C}$.
Such polynomials are expressions of the form $p\left(x\right)=p_{0}+p_{1}x+...+p_{n}x^{n}$,
where $x$ is a \textbf{formal} \textbf{variable} (i.e.~no value
is assigned to $x$), $n$ is an integer, and $p_{i}$ are complex
numbers. 


\paragraph{Example 6.}

Consider now the set of all polynomials in the variables $x$, $y$,
and $z$, with complex coefficients, and such that the combined degree
in $x$, in $y$, and in $z$ is at most $2$. For instance, the polynomial
$1+2\text{i}x-yz-\sqrt{3}x^{2}$ is an element of that vector space
(while $x^{2}y$ is not because its combined degree is $3$). It is
clear that the degree will never increase above $2$ when any two
such polynomials are added together, so these polynomials indeed form
a vector space over the field $\mathbb{C}$. 


\paragraph{Exercise.}

Which of the following are vector spaces over $\mathbb{R}$? 
\begin{enumerate}
\item The set of all complex numbers $z$ whose real part is equal to 0.
The complex numbers are added and multiplied by real constants as
usual.
\item The set of all complex numbers $z$ whose imaginary part is equal
to 3. The complex numbers are added and multiplied by real constants
as usual.
\item The set of pairs of the form $\left(\textrm{apples},\$3.1415926\right)$,
where the first element is always the word {}``apples'' and the
second element is a price in dollars (the price may be an arbitrary
real number, not necessarily positive or with an integer number of
cents). Addition and multiplication by real constants is defined as
follows:\begin{align*}
\left(\textrm{apples},\$x\right)+\left(\textrm{apples},\$y\right) & \equiv\left(\textrm{apples},\$(x+y)\right)\\
\lambda\cdot\left(\textrm{apples},\$x\right) & \equiv\left(\textrm{apples},\$(\lambda\cdot x)\right)\end{align*}

\item The set of pairs of the form either $\left(\textrm{apples},\$x\right)$
or $\left(\textrm{chocolate},\$y\right)$, where $x$ and $y$ are
real numbers. The pairs are added as follows,\begin{align*}
\left(\textrm{apples},\$x\right)+\left(\textrm{apples},\$y\right) & \equiv\left(\textrm{apples},\$(x+y)\right)\\
\left(\textrm{chocolate},\$x\right)+\left(\textrm{chocolate},\$y\right) & \equiv\left(\textrm{chocolate},\$(x+y)\right)\\
\left(\textrm{chocolate},\$x\right)+\left(\textrm{apples},\$y\right) & \equiv\left(\textrm{chocolate},\$(x+y)\right)\end{align*}
(that is, chocolate {}``takes precedence'' over apples). The multiplication
by a number is defined as in the previous question.
\item The set of {}``bracketed complex numbers,'' denoted $\left[z\right]$,
where $z$ is a complex number such that $\left|z\right|=1$. For
example: $\left[\text{i}\right]$, $\left[\frac{1}{2}-\frac{1}{2}\text{i}\sqrt{3}\right]$,
$\left[-1\right]$. Addition and multiplication by real constants
$\lambda$ are defined as follows,\[
\left[z_{1}\right]+\left[z_{2}\right]=\left[z_{1}z_{2}\right],\quad\lambda\cdot\left[z\right]=\left[ze^{\text{i}\lambda}\right].\]

\item The set of infinite arrays $\left(a_{1},a_{2},...\right)$ of arbitrary
real numbers. Addition and multiplication are defined term-by-term.
\item The set of polynomials in the variable $x$ with real coefficients
and of arbitrary (but finite) degree. Addition and multiplication
is defined as usual in algebra.
\end{enumerate}

\paragraph{Question: }

All these abstract definitions notwithstanding, would it be all right
if I always keep in the back of my mind that a vector \textbf{$\mathbf{v}$}
is a row of components $(v_{1},...,v_{n})$?


\subparagraph{Answer:}

It will be perfectly all right \emph{as long as} you work with \emph{finite}-dimen\-sion\-al
vector spaces. (This intuition often fails when working with infinite-dimen\-sion\-al
spaces!) Even if all we need is finite-dimen\-sion\-al vectors,
there is another argument in favor of the coordinate-free thinking.
Suppose I persist in visualizing vectors as rows $\left(v_{1},...,v_{n}\right)$;
let us see what happens. First, I introduce the vector notation and
write $\mathbf{u}+\mathbf{v}$ instead of $\left(u_{1}+v_{1},...,u_{n}+v_{n}\right)$;
this is just for convenience and to save time. Then I check the axioms
of the vector space (see the definition V2 above); row vectors of
course obey these axioms. Suppose I somehow manage to produce all
proofs and calculations using only the vector notation and the axioms
of the abstract vector space, and suppose I never use the coordinates
$v_{j}$ explicitly, even though I keep them in the back of my mind.
Then all my results will be valid not only for collections of components
$(v_{1},...,v_{n})$ but also for \emph{any} mathematical objects
that obey the axioms of the abstract vector space. In fact I would
then realize that I have been working with abstract vectors \emph{all}
\emph{along} while carrying the image of a row vector $(v_{1},...,v_{n})$
in the back of my mind.


\subsection{Dimen\-sion\-ality and bases \label{sub:Dimension-of-V}}

Unlike the definition V1, the definition V2 does not include any information
about the dimen\-sion\-ality of the vector space. So, on the one
hand, this definition treats finite- and infinite-dimen\-sion\-al
spaces on the same footing; the definition V2 lets us establish that
a certain set is a vector space without knowing its dimen\-sion\-ality
in advance. On the other hand, once a particular vector space is given,
we may need some additional work to figure out the number of dimensions
in it. The key notion used for that purpose is {}``linear independence.'' 

We say, for example, the vector $\mathbf{w}\equiv2\mathbf{u}-3\mathbf{v}$
is {}``linearly dependent'' on $\mathbf{u}$ and $\mathbf{v}$.
A vector $\mathbf{x}$ is linearly independent of vectors $\mathbf{u}$
and $\mathbf{v}$ if $\mathbf{x}$ \emph{cannot} be expressed as a
linear combination $\lambda_{1}\mathbf{u}+\lambda_{2}\mathbf{v}$.

A set of vectors is \textbf{linearly dependent} if one of the vectors
is a linear combination of others. This property can be formulated
more elegantly:


\paragraph{Definition:}

The set of vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
is a \textbf{linearly dependent} \textbf{set} if there exist numbers
$\lambda_{1}$, ..., $\lambda_{n}\in\mathbb{K}$, not all equal to
zero, such that\begin{equation}
\lambda_{1}\mathbf{v}_{1}+...+\lambda_{n}\mathbf{v}_{n}=0.\label{eq:linear dependence}\end{equation}
If no such numbers exist, i.e.~if Eq.~(\ref{eq:linear dependence})
holds only with all $\lambda_{i}=0$, the vectors $\left\{ \mathbf{v}_{i}\right\} $
constitute a \textbf{linearly independent} \textbf{set}.\index{linearly (in)dependent set}


\subparagraph{Interpretation:}

As a first example, consider the set $\left\{ \mathbf{v}\right\} $
consisting of a single nonzero vector $\mathbf{v}\neq0$. The set
$\left\{ \mathbf{v}\right\} $ is a linearly independent set because
$\lambda\mathbf{v}=0$ only if $\lambda=0$. Now consider the set
$\left\{ \mathbf{u},\mathbf{v},\mathbf{w}\right\} $, where $\mathbf{u}=2\mathbf{v}$
and $\mathbf{w}$ is any vector. This set is linearly dependent because
there exists a nontrivial linear combination (i.e.~a linear combination
with \emph{some} nonzero coefficients) which is equal to zero, \[
\mathbf{u}-2\mathbf{v}=1\mathbf{u}+\left(-2\right)\mathbf{v}+0\mathbf{w}=0.\]
More generally: If a set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
is linearly dependent, then there exists at least one vector equal
to a linear combination of other vectors. Indeed, by definition there
must be at least one nonzero number among the numbers $\lambda_{i}$
involved in Eq.~(\ref{eq:linear dependence}); suppose $\lambda_{1}\neq0$,
then we can divide Eq.~(\ref{eq:linear dependence}) by $\lambda_{1}$
and express $\mathbf{v}_{1}$ through other vectors, \[
\mathbf{v}_{1}=-\frac{1}{\lambda_{1}}\left(\lambda_{2}\mathbf{v}_{2}+...+\lambda_{n}\mathbf{v}_{n}\right).\]
In other words, the existence of numbers $\lambda_{i}$, not all equal
to zero, is indeed the formal statement of the idea that at least
some vector in the set $\left\{ \mathbf{v}_{i}\right\} $ is a linear
combination of other vectors. By writing a linear combination $\sum_{i}\lambda_{i}\mathbf{v}_{i}=0$
and by saying that {}``not all $\lambda_{i}$ are zero'' we avoid
specifying \emph{which} vector is equal to a linear combination of
others.


\paragraph{Remark:}

Often instead of saying {}``a linearly independent \emph{set} of
vectors'' one says {}``a set of linearly independent \emph{vectors}.''
This is intended to mean the same thing but might be confusing because,
taken literally, the phrase {}``a set of independent vectors'' means
a set in which each vector is {}``independent'' by itself. Keep
in mind that linear independence is a property of a \emph{set} \emph{of
vectors}; this property depends on the relationships between all the
vectors in the set and is not a property of each vector taken separately.
It would be more consistent to say e.g.~{}``a set of \emph{mutually}
independent vectors.'' In this text, I will pedantically stick to
the phrase {}``linearly independent set.'' 


\paragraph{Example 1:}

Consider the vectors $\mathbf{a}=\left(0,1\right)$, $\mathbf{b}=\left(1,1\right)$
in $\mathbb{R}^{2}$. Is the set $\left\{ \mathbf{a},\mathbf{b}\right\} $
linearly independent? Suppose there exists a linear combination $\alpha\mathbf{a}+\beta\mathbf{b}=0$
with at least one of $\alpha,\beta\neq0$. Then we would have\[
\alpha\mathbf{a}+\beta\mathbf{b}=\left(0,\alpha\right)+\left(\beta,\beta\right)=\left(\beta,\alpha+\beta\right){\lyxbuildrel!\above=}\,0.\]
This is possible only if $\beta=0$ and $\alpha=0$. Therefore, $\left\{ \mathbf{a},\mathbf{b}\right\} $
is linearly independent.


\paragraph{Exercise 1:}

a) A set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $ is
linearly independent. Prove that any subset, say $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $,
where $k<n$, is also a linearly independent set.

b) Decide whether the given sets $\left\{ \mathbf{a},\mathbf{b}\right\} $
or $\left\{ \mathbf{a},\mathbf{b},\mathbf{c}\right\} $ are linearly
independent sets of vectors from $\mathbb{R}^{2}$ or other spaces
as indicated. For linearly dependent sets, find a linear combination
showing this. 
\begin{enumerate}
\item $\mathbf{a}=\left(2,\sqrt{2}\right)$, $\mathbf{b}=(\frac{1}{\sqrt{2}},\frac{1}{2})$
in $\mathbb{R}^{2}$
\item $\mathbf{a}=\left(-2,3\right)$, $\mathbf{b}=(6,-9)$ in $\mathbb{R}^{2}$
\item $\mathbf{a}=\left(1+2\text{i},10,20\right)$, $\mathbf{b}=\left(1-2\text{i},10,20\right)$
in $\mathbb{C}^{3}$
\item $\mathbf{a}=\left(0,10\text{i},20\text{i},30\text{i}\right)$, $\mathbf{b}=\left(0,20\text{i},40\text{i},60\text{i}\right)$,
$\mathbf{c}=\left(0,30\text{i},60\text{i},90\text{i}\right)$ in $\mathbb{C}^{4}$
\item $\mathbf{a}=\left(3,1,2\right)$, $\mathbf{b}=\left(1,0,1\right)$,
$\mathbf{c}=\left(0,-1,2\right)$ in $\mathbb{R}^{3}$ 
\end{enumerate}
The \textbf{number of dimensions} (or simply the \textbf{dimension})
of a vector space is the maximum possible number of vectors in a linearly
independent set. The formal definition is the following. 


\paragraph{Definition:}

A vector space is $n$-\textbf{dimen\-sion\-al} if linearly independent
sets of $n$ vectors can be found in it, but no linearly independent
sets of $n+1$ vectors. The dimension of a vector space $V$ is then
denoted by $\dim V\equiv n$. A vector space is \textbf{infinite-dimen\-sion\-al}
if linearly independent sets having \emph{arbitrarily} \emph{many}
vectors can be found in it. 

By this definition, in an $n$-dimen\-sion\-al vector space there
exists \emph{at least one} linearly independent set of $n$ vectors
$\{\mathbf{e}_{1}$, ..., $\mathbf{e}_{n}\}$. Linearly independent
sets containing exactly $n=\dim V$ vectors have useful properties,
to which we now turn.


\paragraph{Definition:}

A \textbf{basis} in the space $V$ is a linearly independent set of
vectors $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $ such
that for any vector $\mathbf{v}\in V$ there exist numbers $v_{k}\in\mathbb{K}$
such that $\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}$. (In other
words, every other vector $\mathbf{v}$ is a linear combination of
basis vectors.) The numbers $v_{k}$ are called the \textbf{components}\index{components of a vector}
(or \textbf{coordinates}) of the vector $\mathbf{v}$ \emph{with respect
to} \emph{the} \emph{basis} $\left\{ \mathbf{e}_{i}\right\} $. 


\paragraph{Example 2:}

In the three-dimen\-sion\-al Euclidean space $\mathbb{R}^{3}$,
the set of three triples $\left(1,0,0\right)$, $\left(0,1,0\right)$,
and $\left(0,0,1\right)$ is a basis because every vector $\mathbf{x}=(x,y,z)$
can be expressed as \[
\mathbf{x}=(x,y,z)=x\left(1,0,0\right)+y\left(0,1,0\right)+z\left(0,0,1\right).\]
This basis is called the \textbf{standard}\index{standard basis}
\textbf{basis}. Analogously one defines the standard basis in $\mathbb{R}^{n}$.\hfill{}$\blacksquare$

The following statement is standard, and I write out its full proof
here as an example of an argument based on the abstract definition
of vectors.


\paragraph{Theorem:}

\textbf{(1)} If a set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
is linearly independent and $n=\dim V$, then the set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
is a basis in $V$. \textbf{(2)} For a given vector $\mathbf{v}\in V$
and a given basis $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $,
the coefficients $v_{k}$ involved in the decomposition $\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}$
are uniquely determined.


\subparagraph{Proof:}

\textbf{(1)} By definition of dimension, the set $\{\mathbf{v},\mathbf{e}_{1},...,\mathbf{e}_{n}\}$
must be linearly \emph{dependent}. By definition of linear dependence,
there exist numbers $\lambda_{0}$, ..., $\lambda_{n}$, not all equal
to zero, such that\begin{equation}
\lambda_{0}\mathbf{v}+\lambda_{1}\mathbf{e}_{1}+...+\lambda_{n}\mathbf{e}_{n}=0.\label{eq:v expr}\end{equation}
Now if we had $\lambda_{0}=0$, it would mean that not all numbers
in the smaller set $\left\{ \lambda_{1},...,\lambda_{n}\right\} $
are zero; however, in that case Eq.~(\ref{eq:v expr}) would contradict
the linear independence of the set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $.
Therefore $\lambda_{0}\neq0$ and Eq.~(\ref{eq:v expr}) shows that
the vector $\mathbf{v}$ can be expressed through the basis, $\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}$
with the coefficients $v_{k}\equiv-\lambda_{k}/\lambda_{0}$. 

\textbf{(2)} To show that the set of coefficients $\left\{ v_{k}\right\} $
is unique, we assume that there are two such sets, $\left\{ v_{k}\right\} $
and $\left\{ v_{k}^{\prime}\right\} $. Then \[
0=\mathbf{v}-\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}-\sum_{k=1}^{n}v_{k}^{\prime}\mathbf{e}_{k}=\sum_{k=1}^{n}\left(v_{k}-v_{k}^{\prime}\right)\mathbf{e}_{k}.\]
Since the set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
is linearly independent, all coefficients in this linear combination
must vanish, so $v_{k}=v_{k}^{\prime}$ for all $k$.\hfill{}$\blacksquare$

If we fix a basis $\left\{ \mathbf{e}_{i}\right\} $ in a finite-dimen\-sion\-al
vector space $V$ then all vectors $\mathbf{v}\in V$ are uniquely
represented by $n$-tuples $\left\{ v_{1},...,v_{n}\right\} $ of
their components. Thus we recover the original picture of a vector
space as a set of $n$-tuples of numbers. (Below we will prove that
\emph{every} basis in an $n$-dimen\-sion\-al space has the same
number of vectors, namely $n$.) Now, if we choose another basis $\left\{ \mathbf{e}_{i}^{\prime}\right\} $,
the same vector $\mathbf{v}$ will have different components $v_{k}^{\prime}$:\[
\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}=\sum_{k=1}^{n}v_{k}^{\prime}\mathbf{e}_{k}^{\prime}.\]



\paragraph{Remark: }

One sometimes reads that {}``the components are transformed'' or
that {}``vectors are sets of numbers that transform under a change
of basis.'' I do not use this language because it suggests that the
components $v_{k}$, which are numbers such as $\frac{1}{3}$ or $\sqrt{2}$,
are somehow not simply numbers but {}``know how to transform.''
I prefer to say that the components $v_{k}$ of a vector $\mathbf{v}$
in a particular basis $\left\{ \mathbf{e}_{k}\right\} $ express the
relationship of $\mathbf{v}$ to that basis and are therefore functions
of the vector $\mathbf{v}$ and of \emph{all} basis vectors $\mathbf{e}_{j}$.\hfill{}$\blacksquare$

For many purposes it is better to think about a vector $\mathbf{v}$
not as a set of its components $\left\{ v_{1},...,v_{n}\right\} $
in some basis, but as a geometric object; a {}``directed magnitude''
is a useful heuristic idea. Geometric objects exist in the vector
space independently of a choice of basis. In linear algebra, one is
typically interested in problems involving relations between vectors,
for example $\mathbf{u}=a\mathbf{v}+b\mathbf{w}$, where $a,b\in\mathbb{K}$
are numbers. No choice of basis is necessary to describe such relations
between vectors; I will call such relations \textbf{coordinate-free}\index{coordinate-free approach}
or \textbf{geometric}\index{geometric relation}. As I will demonstrate
later in this text, many statements of linear algebra are more transparent
and easier to prove in the coordinate-free language. Of course, in
many practical applications one absolutely needs to perform specific
calculations with components in an appropriately chosen basis, and
facility with such calculations is important. But I find it helpful
to keep a coordinate-free (geometric) picture in the back of my mind
even when I am doing calculations in coordinates.


\paragraph{Question:}

I am not sure how to determine the number of dimensions in a vector
space. According to the definition, I should figure out whether there
exist certain linearly independent sets of vectors. But surely it
is impossible to go over all sets of $n$ vectors checking the linear
independence of each set?


\subparagraph{Answer:}

Of course it is impossible when there are infinitely many vectors.
This is simply not the way to go. We can determine the dimen\-sion\-ality
of a given vector space by \emph{proving} that the space has a basis
consisting of a certain number of vectors. A particular vector space
must be specified in concrete terms (see Sec.~\ref{sub:Examples-of-vector}
for examples), and in each case we should manage to find a general
proof that covers all sets of $n$ vectors at once.


\paragraph{Exercise 2:}

For each vector space in the examples in Sec.~\ref{sub:Examples-of-vector},
find the dimension or show that the dimension is infinite.


\subparagraph{Solution for Example~1:}

The set $\mathbb{C}$ of complex numbers is a two-dimen\-sion\-al
vector space over $\mathbb{R}$ because every complex number $a+\text{i}b$
can be represented as a linear combination of \emph{two} basis vectors
($1$ and $\text{i}$) with real coefficients $a,b$. The set $\left\{ 1,\text{i}\right\} $
is linearly independent because $a+\text{i}b=0$ only when both $a=b=0$.


\subparagraph{Solution for Example~2:}

The space $V$ is defined as the set of triples $\left(x,y,z\right)$
such that $ax+by+cz=0$, where at least one of $a,b,c$ is nonzero.
Suppose, without loss of generality, that $a\neq0$; then we can express
\[
x=-\frac{b}{a}y-\frac{c}{a}z.\]
Now the two parameters $y$ and $z$ are arbitrary while $x$ is determined.
Hence it appears plausible that the space $V$ is \emph{two}-dimen\-sion\-al.
Let us prove this formally. Choose as the possible basis vectors $\mathbf{e}_{1}=(-\frac{b}{a},1,0)$
and $\mathbf{e}_{2}=\left(-\frac{c}{a},0,1\right)$. These vectors
belong to $V$, and the set $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
is linearly independent (straightforward checks). It remains to show
that every vector $\mathbf{x}\in V$ is expressed as a linear combination
of $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$. Indeed, any such $\mathbf{x}$
must have components $x,y,z$ that satisfy $x=-\frac{b}{a}y-\frac{c}{a}z$.
Hence, $\mathbf{x}=y\mathbf{e}_{1}+z\mathbf{e}_{2}$.


\paragraph{Exercise 3:}

Describe a vector space that has dimension zero.


\subparagraph{Solution: }

If there are \emph{no} linearly independent sets in a space $V$,
it means that all sets consisting of just one vector $\left\{ \mathbf{v}\right\} $
are already linearly \emph{dependent}. More formally, $\forall\mathbf{v}\in V:\exists\lambda\neq0$
such that $\lambda\mathbf{v}=0$. Thus $\mathbf{v}=0$, that is, all
vectors $\mathbf{v}\in V$ are equal to the zero vector. Therefore
a zero-dimen\-sion\-al space is a space that consists of only one
vector: the zero vector.


\paragraph{Exercise 4$^{\mathbf{*}}$:}

Usually a vector space admits infinitely many choices of a basis.
However, above I cautiously wrote that a vector space {}``has at
least one basis.'' Is there an example of a vector space that has
\emph{only one} basis? 

\emph{Hints:} The answer is positive. Try to build a new basis from
an existing one and see where that might fail. This has to do with
finite number fields (try $\mathbb{F}_{2}$), and the only available
example is rather dull.


\subsection{All bases have equally many vectors\label{sub:All-bases-have}}

We have seen that any linearly independent set of $n$ vectors in
an $n$-dimen\-sion\-al space is a basis. The following statement
shows that a basis cannot have \emph{fewer} than $n$ vectors. The
proof is somewhat long and can be skipped unless you would like to
gain more facility with coordinate-free manipulations.


\paragraph{Theorem: }

In a finite-dimen\-sion\-al vector space, all bases have equally
many vectors.


\subparagraph{Proof:}

Suppose that $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{m}\right\} $
and $\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n}\right\} $ are two
bases in a vector space $V$ and $m\neq n$. I will show that this
assumption leads to contradiction, and then it will follow that any
two bases must have equally many vectors.

Assume that $m>n$. The idea of the proof is to take the larger set
$\left\{ \mathbf{e}_{1},...,\mathbf{e}_{m}\right\} $ and to replace
one of its vectors, say $\mathbf{e}_{s}$, by $\mathbf{f}_{1}$, so
that the resulting set of $m$ vectors\begin{equation}
\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s-1},\mathbf{f}_{1},\mathbf{e}_{s+1},...,\mathbf{e}_{m}\right\} \label{eq:aux set 1}\end{equation}
is still linearly independent. I will prove shortly that such a replacement
is possible, assuming only that the initial set is linearly independent.
Then I will continue to replace other vectors $\mathbf{e}_{k}$ by
$\mathbf{f}_{2}$, $\mathbf{f}_{3}$, etc., always keeping the resulting
set linearly independent. Finally, I will arrive to the linearly independent
set \[
\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n},\mathbf{e}_{k_{1}},\mathbf{e}_{k_{2}},...,\mathbf{e}_{k_{m-n}}\right\} ,\]
 which contains all $\mathbf{f}_{j}$ as well as $\left(m-n\right)$
vectors $\mathbf{e}_{k_{1}}$, $\mathbf{e}_{k_{2}}$, ..., $\mathbf{e}_{k_{m-n}}$
left over from the original set; there must be at least one such vector
left over because (by assumption) there are more vectors in the basis
$\left\{ \mathbf{e}_{j}\right\} $ than in the basis $\left\{ \mathbf{f}_{j}\right\} $,
in other words, because $m-n\geq1$. Since the set $\left\{ \mathbf{f}_{j}\right\} $
is a basis, the vector $\mathbf{e}_{k_{1}}$ is a linear combination
of $\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n}\right\} $, so the set
$\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n},\mathbf{e}_{k_{1}},...\right\} $
cannot be linearly independent. This contradiction proves the theorem.

It remains to show that it is possible to find the index $s$ such
that the set~(\ref{eq:aux set 1}) is linearly independent. The required
statement is the following: If $\left\{ \mathbf{e}_{j}\,|\,1\leq j\leq m\right\} $
and $\left\{ \mathbf{f}_{j}\,|\,1\leq j\leq n\right\} $ are two bases
in the space $V$, and if the set $S\equiv\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{f}_{1},...,\mathbf{f}_{l}\right\} $
(where $l<n$) is linearly independent then there exists an index
$s$ such that $\mathbf{e}_{s}$ in $S$ can be replaced by $\mathbf{f}_{l+1}$
and the new set \begin{equation}
T\equiv\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s-1},\mathbf{f}_{l+1},\mathbf{e}_{s+1},...,\mathbf{e}_{k},\mathbf{f}_{1},...,\mathbf{f}_{l}\right\} \label{eq:aux set 3}\end{equation}
is still linearly independent. To find a suitable index $s$, we try
to decompose $\mathbf{f}_{l+1}$ into a linear combination of vectors
from $S$. In other words, we ask whether the set \[
S'\equiv S\cup\left\{ \mathbf{f}_{l+1}\right\} =\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{f}_{1},...,\mathbf{f}_{l+1}\right\} \]
 is linearly independent. There are two possibilities: First, if $S'$
is linearly independent, we can remove any $\mathbf{e}_{s}$, say
$\mathbf{e}_{1}$, from it, and the resulting set \[
T=\left\{ \mathbf{e}_{2},...,\mathbf{e}_{k},\mathbf{f}_{1},...,\mathbf{f}_{l+1}\right\} \]
 will be again linearly independent. This set $T$ is obtained from
$S$ by replacing $\mathbf{e}_{1}$ with $\mathbf{f}_{l+1}$, so now
there is nothing left to prove. Now consider the second possibility:
$S'$ is linearly dependent. In that case, $\mathbf{f}_{l+1}$ can
be decomposed as\begin{equation}
\mathbf{f}_{l+1}=\sum_{j=1}^{k}\lambda_{j}\mathbf{e}_{j}+\sum_{j=1}^{l}\mu_{j}\mathbf{f}_{j},\label{eq:aux lc 1}\end{equation}
where $\lambda_{j},\mu_{j}$ are some constants, not all equal to
zero. Suppose all $\lambda_{j}$ are zero; then $\mathbf{f}_{l+1}$
would be a linear combination of other $\mathbf{f}_{j}$; but this
cannot happen for a basis $\left\{ \mathbf{f}_{j}\right\} $. Therefore
not all $\lambda_{j}$, $1\leq j\leq k$ are zero; for example, $\lambda_{s}\neq0$.
This gives us the index $s$. Now we can replace $\mathbf{e}_{s}$
in the set $S$ by $\mathbf{f}_{l+1}$; it remains to prove that the
resulting set $T$ defined by Eq.~(\ref{eq:aux set 3}) is linearly
independent. 

This last proof is again by contradiction: if $T$ is linearly \emph{dependent},
there exists a vanishing linear combination of the form\begin{equation}
\sum_{j=1}^{s-1}\rho_{j}\mathbf{e}_{j}+\sigma_{l+1}\mathbf{f}_{l+1}+\sum_{j=s+1}^{k}\rho_{j}\mathbf{e}_{j}+\sum_{j=1}^{l}\sigma_{j}\mathbf{f}_{j}=0,\label{eq:aux lc 2}\end{equation}
where $\rho_{j},\sigma_{j}$ are not all zero. In particular, $\sigma_{l+1}\neq0$
because otherwise the initial set $S$ would be linearly dependent,\[
\sum_{j=1}^{s-1}\rho_{j}\mathbf{e}_{j}+\sum_{j=s+1}^{k}\rho_{j}\mathbf{e}_{j}+\sum_{j=1}^{l}\sigma_{j}\mathbf{f}_{j}=0.\]
 If we now substitute Eq.~(\ref{eq:aux lc 1}) into Eq.~(\ref{eq:aux lc 2}),
we will obtain a vanishing linear combination that contains only vectors
from the initial set $S$ in which the coefficient at the vector $\mathbf{e}_{s}$
is $\sigma_{l+1}\lambda_{s}\neq0$. This contradicts the linear independence
of the set $S$. Therefore the set $T$ is linearly independent.\hfill{}$\blacksquare$


\paragraph{Exercise 1: Completing a basis.}

If a set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $, $\mathbf{v}_{j}\in V$
is linearly independent and $k<n\equiv\dim V$, the theorem says that
the set $\left\{ \mathbf{v}_{j}\right\} $ is \emph{not} a basis in
$V$. Prove that there exist $\left(n-k\right)$ additional vectors
$\mathbf{v}_{k+1}$, ..., $\mathbf{v}_{n}\in V$ such that the set
$\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $ is a basis in
$V$. 

\emph{Outline of proof:} If $\left\{ \mathbf{v}_{j}\right\} $ is
not yet a basis, it means that there exists at least one vector $\mathbf{v}\in V$
which cannot be represented by a linear combination of $\left\{ \mathbf{v}_{j}\right\} $.
Add it to the set $\left\{ \mathbf{v}_{j}\right\} $; prove that the
resulting set is still linearly independent. Repeat these steps until
a basis is built; by the above Theorem, the basis will contain exactly
$n$ vectors. 


\paragraph{Exercise 2: Eliminating unnecessary vectors.}

Suppose that a set of vectors $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s}\right\} $
\textbf{spans the space} $V$, i.e.~every vector $\mathbf{v}\in V$
can be represented by a linear combination of $\left\{ \mathbf{v}_{j}\right\} $;
and suppose that $s>n\equiv\dim V$. By definition of dimension, the
set $\left\{ \mathbf{e}_{j}\right\} $ must be linearly dependent,
so it is not a basis in $V$. Prove that one can remove certain vectors
from this set so that the remaining vectors are a basis in $V$.

\emph{Hint:} The set has too many vectors. Consider a nontrivial linear
combination of vectors $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s}\right\} $
that is equal to zero. Show that one can remove some vector $\mathbf{e}_{k}$
from the set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{s}\right\} $
such that the remaining set still spans $V$. The procedure can be
repeated until a basis in $V$ remains.


\paragraph{Exercise 3: Finding a basis.}

Consider the vector space of polynomials of degree at most 2 in the
variable $x$, with real coefficients. Determine whether the following
four sets of vectors are linearly independent, and which of them can
serve as a basis in that space. The sets are $\left\{ 1+x,1-x\right\} $;
$\left\{ 1,1+x,1-x\right\} $; $\left\{ 1,1+x-x^{2}\right\} $; $\left\{ 1,1+x,1+x+x^{2}\right\} $.


\paragraph{Exercise 4: Not a basis.}

Suppose that a set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
in an $n$-dimen\-sion\-al space $V$ is not a basis; show that
this set must be linearly dependent.


\section{Linear maps in vector spaces}

An important role in linear algebra is played by matrices, which usually
represent linear transformations of vectors. Namely, with the definition
\textbf{V1} of vectors as $n$-tuples $v_{i}$, one defines matrices
as square tables of numbers, $A_{ij}$, that describe transformations
of vectors according to the formula\begin{equation}
u_{i}\equiv\sum_{j=1}^{n}A_{ij}v_{j}.\label{eq:matrix repr}\end{equation}
This transformation takes a vector $\mathbf{v}$ into a new vector
$\mathbf{u}=\hat{A}\mathbf{v}$ in the same vector space. For example,
in two dimensions one writes the transformation of column vectors
as\[
\left[\begin{array}{c}
u_{1}\\
u_{2}\end{array}\right]=\left(\begin{array}{cc}
A_{11} & A_{12}\\
A_{21} & A_{22}\end{array}\right)\left[\begin{array}{c}
v_{1}\\
v_{2}\end{array}\right]\equiv\left[\begin{array}{c}
A_{11}v_{1}+A_{12}v_{2}\\
A_{21}v_{1}+A_{22}v_{2}\end{array}\right].\]
 The \textbf{composition} of two transformations $A_{ij}$ and $B_{ij}$
is a transformation described by the matrix \begin{equation}
C_{ij}=\sum_{k=1}^{n}A_{ik}B_{kj}.\label{eq:matrix mult}\end{equation}
 This is the law of matrix multiplication. (I assume that all this
is familiar to you.)

More generally, a map from an $m$-dimen\-sion\-al space $V$ to
an $n$-dimen\-sion\-al space $W$ is described by a rectangular
$m\times n$ matrix that transforms $m$-tuples into $n$-tuples in
an analogous way. Most of the time we will be working with transformations
within one vector space (described by square matrices). 

This picture of matrix transformations is straightforward but relies
on the coordinate representation of vectors and so has two drawbacks:
(i) The calculations with matrix components are often unnecessarily
cumbersome. (ii) Definitions and calculations cannot be easily generalized
to infinite-dimen\-sion\-al spaces. Nevertheless, many of the results
have nothing to do with components and \emph{do} apply to infinite-dimen\-sion\-al
spaces. We need a different approach to characterizing linear transformations
of vectors.

The way out is to concentrate on the \textbf{linearity} of the transformations,
i.e.~on the properties\begin{align*}
\hat{A}\left(\lambda\mathbf{v}\right) & =\lambda\hat{A}\left(\mathbf{v}\right),\\
\hat{A}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) & =\hat{A}\left(\mathbf{v}_{1}\right)+\hat{A}\left(\mathbf{v}_{2}\right),\end{align*}
which are easy to check directly. In fact it turns out that the multiplication
law and the matrix representation of transformations can be \emph{derived}
from the above requirements of linearity. Below we will see how this
is done.


\subsection{Abstract definition of linear maps}

First, we define an abstract \textbf{linear map} as follows.


\paragraph{Definition:\index{linearity}}

A map $\hat{A}:V\rightarrow W$ between two vector spaces $V$, $W$
is \textbf{linear} if for any $\lambda\in\mathbb{K}$ and $\mathbf{u},\mathbf{v}\in V$,\begin{equation}
\hat{A}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\hat{A}\mathbf{u}+\lambda\hat{A}\mathbf{v}.\label{eq:linear def}\end{equation}
 (Note, pedantically, that the {}``$+$'' in the left side of Eq.~(\ref{eq:linear def})
is the vector sum in the space $V$, while in the right side it is
the vector sum in the space $W$.)

Linear maps are also called \textbf{homomorphisms}\index{homomorphism}
of vector spaces. Linear maps acting from a space $V$ to the same
space are called \textbf{linear operators}\index{linear operator}
or \textbf{endomorphisms}\index{endomorphism} of the space $V$.

At first sight it might appear that the abstract definition of a linear
transformation offers much less information than the definition in
terms of matrices. This is true: the abstract definition does not
\emph{specify} any particular linear map, it only gives conditions
for a map to be linear. If the vector space is finite-dimen\-sion\-al
and a basis $\left\{ \mathbf{e}_{i}\right\} $ is selected then the
familiar matrix picture is immediately recovered from the abstract
definition. Let us first, for simplicity, consider a linear map $\hat{A}:V\rightarrow V$. 


\paragraph{Statement 1:}

If $\hat{A}$ is a linear map $V\rightarrow V$ and $\left\{ \mathbf{e}_{j}\right\} $
is a basis then there exist numbers $A_{jk}$ ($j,k=1,...,n$) such
that the vector $\hat{A}\mathbf{v}$ has components $\sum_{k}A_{jk}v_{k}$
if a vector $\mathbf{v}$ has components $v_{k}$ in the basis $\left\{ \mathbf{e}_{j}\right\} $.


\subparagraph{Proof:}

For any vector $\mathbf{v}$ we have a decomposition $\mathbf{v}=\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}$
with some components $v_{k}$. By linearity, the result of application
of the map $\hat{A}$ to the vector $\mathbf{v}$ is\[
\hat{A}\mathbf{v}=\hat{A}\big(\sum_{k=1}^{n}v_{k}\mathbf{e}_{k}\big)=\sum_{k=1}^{n}v_{k}(\hat{A}\mathbf{e}_{k}).\]
Therefore, it is sufficient to know how the map $\hat{A}$ transforms
the basis vectors $\mathbf{e}_{k}$, $k=1,...,n$. Each of the vectors
$\hat{A}\mathbf{e}_{k}$ has (in the basis $\left\{ \mathbf{e}_{i}\right\} $)
a decomposition\[
\hat{A}\mathbf{e}_{k}=\sum_{j=1}^{n}A_{jk}\mathbf{e}_{j},\quad k=1,...,n,\]
where $A_{jk}$ with $1\leq j,k\leq n$ are some coefficients; these
$A_{jk}$ are just some numbers that we can calculate for a specific
given linear transformation and a specific basis. It is convenient
to arrange these numbers into a square table (matrix) $A_{jk}$. Finally,
we compute $\hat{A}\mathbf{v}$ as \[
\hat{A}\mathbf{v}=\sum_{k=1}^{n}v_{k}\sum_{j=1}^{n}A_{jk}\mathbf{e}_{j}=\sum_{j=1}^{n}u_{j}\mathbf{e}_{j},\]
where the components $u_{j}$ of the vector $\mathbf{u}\equiv\hat{A}\mathbf{v}$
are\[
u_{j}\equiv\sum_{k=1}^{n}A_{jk}v_{k}.\]
This is exactly the law~(\ref{eq:matrix repr}) of multiplication
of the matrix $A_{jk}$ by a column vector $v_{k}$. Therefore the
formula of the matrix representation~(\ref{eq:matrix repr}) is a
necessary consequence of the linearity of a transformation.\hfill{}$\blacksquare$

The analogous matrix representation holds for linear maps $\hat{A}:V\rightarrow W$
between different vector spaces.

It is helpful to imagine that the linear transformation $\hat{A}$
somehow exists as a geometric object (an object that {}``knows how
to transform vectors''), while the matrix representation $A_{jk}$
is merely a set of coefficients needed to describe that transformation
in a particular basis. The matrix $A_{jk}$ depends on the choice
of the basis, but there any many properties of the linear transformation
$\hat{A}$ that \emph{do not} depend on the basis; these properties
can be thought of as the {}``geometric'' properties of the transformation.%
\footnote{Example: the properties $A_{11}=0$, $A_{11}>A_{12}$, and $A_{ij}=-2A_{ji}$
are not geometric properties of the linear transformation $\hat{A}$
because they may hold in one basis but not in another basis. However,
the number $\sum_{i=1}^{n}A_{ii}$ turns out to be geometric (independent
of the basis), as we will see below.%
} Below we will be concerned only with geometric properties of objects.


\paragraph{Definition:}

Two linear maps $\hat{A}$, $\hat{B}$ are \textbf{equal} if $\hat{A}\mathbf{v}=\hat{B}\mathbf{v}$
for all $\mathbf{v}\in V$. The \textbf{composition} of linear maps
$\hat{A}$, $\hat{B}$ is the map $\hat{A}\hat{B}$ which acts on
vectors $\mathbf{v}$ as $(\hat{A}\hat{B})\mathbf{v}\equiv\hat{A}(\hat{B}\mathbf{v})$. 


\paragraph{Statement 2:}

The composition of two linear transformations is again a linear transformation.


\subparagraph{Proof:}

I give two proofs to contrast the coordinate-free language with the
language of matrices, and also to show the derivation of the matrix
multiplication law.

(\emph{Coordinate-free proof}:) We need to demonstrate the property~(\ref{eq:linear def}).
If $\hat{A}$ and $\hat{B}$ are linear transformations then we have,
by definition,

\[
\hat{A}\hat{B}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\hat{A}(\hat{B}\mathbf{u}+\lambda\hat{B}\mathbf{v})=\hat{A}\hat{B}\mathbf{u}+\lambda\hat{A}\hat{B}\mathbf{v}.\]
Therefore the composition $\hat{A}\hat{B}$ is a linear map.

(\emph{Proof using matrices}:) We need to show that for any vector
$\mathbf{v}$ with components $v_{i}$ and for any two transformation
matrices $A_{ij}$ and $B_{ij}$, the result of first transforming
with $B_{ij}$ and then with $A_{ij}$ is equivalent to transforming
$\mathbf{v}$ with some other matrix. We calculate the components
$v_{i}^{\prime}$ of the transformed vector, \[
v_{i}^{\prime}=\sum_{j=1}^{n}A_{ij}\sum_{k=1}^{n}B_{jk}v_{k}=\sum_{k=1}^{n}\left(\sum_{j=1}^{n}A_{ij}B_{jk}\right)v_{k}\equiv\sum_{k=1}^{n}C_{ik}v_{k},\]
where $C_{ik}$ is the matrix of the new transformation. \hfill{}$\blacksquare$

Note that we need to work more in the second proof because matrices
are \emph{defined} through their components, as {}``tables of numbers.''
So we cannot prove linearity without also finding an \emph{explicit}
\emph{formula} for the matrix product in terms of matrix components.
The first proof does not use such a formula.


\subsection{Examples of linear maps\label{sub:Examples-of-linear-maps}}

The easiest example of a linear map is the \textbf{identity operator}
$\hat{1}_{V}$. This is a map $V\rightarrow V$ defined by $\hat{1}_{V}\mathbf{v}=\mathbf{v}$.
It is clear that this map is linear, and that its matrix elements
in any basis are given by the \textbf{Kronecker\index{Kronecker symbol}
delta} symbol \[
\delta_{ij}\equiv\left\{ \begin{array}{c}
1,\; i=j;\\
0,\; i\neq j.\end{array}\right.\]


We can also define a map which multiplies all vectors $\mathbf{v}\in V$
by a fixed number $\lambda$. This is also obviously a linear map,
and we denote it by $\lambda\hat{1}_{V}$. If $\lambda=0$, we may
write $\hat{0}_{V}$ to denote the map that transforms all vectors
into the zero vector.

Another example of a linear transformation is the following. Suppose
that the set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
is a basis in the space $V$; then any vector $\mathbf{v}\in V$ is
uniquely expressed as a linear combination $\mathbf{v}=\sum_{j=1}^{n}v_{j}\mathbf{e}_{j}$.
We denote by $\mathbf{e}_{1}^{*}\left(\mathbf{v}\right)$ the function
that gives the component $v_{1}$ of a vector $\mathbf{v}$ in the
basis $\left\{ \mathbf{e}_{j}\right\} $. Then we define the map $\hat{M}$
by the formula\[
\hat{M}\mathbf{v}\equiv v_{1}\mathbf{e}_{2}=\mathbf{e}_{1}^{*}\left(\mathbf{v}\right)\mathbf{e}_{2}.\]
In other words, the new vector $\hat{M}\mathbf{v}$ is always parallel
to $\mathbf{e}_{2}$ but has the coefficient $v_{1}$. It is easy
to prove that this map is linear (you need to check that the first
component of a sum of vectors is equal to the sum of their first components).
The matrix corresponding to $\hat{M}$ in the basis $\left\{ \mathbf{e}_{j}\right\} $
is\[
M_{ij}=\left(\begin{array}{cccc}
0 & 0 & 0 & ...\\
1 & 0 & 0 & ...\\
0 & 0 & 0 & ...\\
... & ... & ... & ...\end{array}\right).\]


The map that shifts all vectors by a fixed vector, $\hat{S}_{\mathbf{a}}\mathbf{v}\equiv\mathbf{v}+\mathbf{a}$,
is not linear because \[
\hat{S}_{\mathbf{a}}\left(\mathbf{u}+\mathbf{v}\right)=\mathbf{u}+\mathbf{v}+\mathbf{a}\neq\hat{S}_{\mathbf{a}}\left(\mathbf{u}\right)+\hat{S}_{\mathbf{a}}\left(\mathbf{v}\right)=\mathbf{u}+\mathbf{v}+2\mathbf{a}.\]



\paragraph{Question:}

I understand how to work with a linear transformation specified by
its matrix $A_{jk}$. But how can I work with an abstract {}``linear
map'' $\hat{A}$ if the only thing I know about $\hat{A}$ is that
it is linear? It seems that I cannot specify linear transformations
or perform calculations with them unless I use matrices.


\subparagraph{Answer:}

It is true that the abstract definition of a linear map does not include
a specification of a particular transformation, unlike the concrete
definition in terms of a matrix. However, it does not mean that matrices
are always needed. For a particular problem in linear algebra, a particular
transformation is always specified either as a certain matrix in a
given basis, or in a \emph{geometric}, i.e.~basis-free manner, e.g.~{}``the
transformation $\hat{B}$ multiplies a vector by $3/2$ and then projects
onto the plane orthogonal to the fixed vector $\mathbf{a}$.'' In
this book I concentrate on general properties of linear transformations,
which are best formulated and studied in the geometric (coordinate-free)
language rather than in the matrix language. Below we will see many
coordinate-free calculations with linear maps. In Sec.~\ref{sub:Linear-operators-as}
we will also see how to specify arbitrary linear transformations in
a coordinate-free manner, although it will then be quite similar to
the matrix notation. 


\paragraph{Exercise 1:}

If $V$ is a one-dimen\-sion\-al vector space over a field $\mathbb{K}$,
prove that any linear operator $\hat{A}$ on $V$ must act simply
as a multiplication by a number.


\subparagraph{Solution:}

Let $\mathbf{e}\neq0$ be a basis vector; note that any nonzero vector
$\mathbf{e}$ is a basis in $V$, and that every vector $\mathbf{v}\in V$
is proportional to $\mathbf{e}$. Consider the action of $\hat{A}$
on the vector $\mathbf{e}$: the vector $\hat{A}\mathbf{e}$ must
also be proportional to $\mathbf{e}$, say $\hat{A}\mathbf{e}=a\mathbf{e}$
where $a\in\mathbb{K}$ is some constant. Then by linearity of $\hat{A}$,
for any vector $\mathbf{v}=v\mathbf{e}$ we get $\hat{A}\mathbf{v}=\hat{A}v\mathbf{e}=av\mathbf{e}=a\mathbf{v}$,
so the operator $\hat{A}$ multiplies all vectors by the same number
$a$. \hfill{}$\blacksquare$


\paragraph{Exercise 2:}

If $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $ is a basis
in $V$ and $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is a set of $N$ arbitrary vectors, does there exist a linear map
$\hat{A}$ such that $\hat{A}\mathbf{e}_{j}=\mathbf{v}_{j}$ for $j=1,...,N$?
If so, is this map unique? 


\subparagraph{Solution:}

For any $\mathbf{x}\in V$ there exists a unique set of $N$ numbers
$x_{1}$, ..., $x_{N}$ such that $\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{e}_{i}$.
Since $\hat{A}$ must be linear, the action of $\hat{A}$ on $\mathbf{x}$
\emph{must} be given by the formula $\hat{A}\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{v}_{i}$.
This formula defines $\hat{A}\mathbf{x}$ for all $\mathbf{x}$. Hence,
the map $\hat{A}$ exists and is unique.\hfill{}$\blacksquare$


\subsection{Vector space of all linear maps }

Suppose that $V$ and $W$ are two vector spaces and consider \emph{all}
linear maps $\hat{A}:V\rightarrow W$. The set of all such maps is
itself a vector space because we can add two linear maps and multiply
linear maps by scalars, getting again a linear map. More formally,
if $\hat{A}$ and $\hat{B}$ are linear maps from $V$ to $W$ and
$\lambda\in\mathbb{K}$ is a number (a scalar) then we define $\lambda\hat{A}$
and $\hat{A}+\hat{B}$ in the natural way:\begin{align*}
(\lambda\hat{A})\mathbf{v} & \equiv\lambda(\hat{A}\mathbf{v}),\\
(\hat{A}+\hat{B})\mathbf{v} & \equiv\hat{A}\mathbf{v}+\hat{B}\mathbf{v},\quad\forall\mathbf{v}\in V.\end{align*}
In words: the map $\lambda\hat{A}$ acts on a vector $\mathbf{v}$
by first acting on it with $\hat{A}$ and then multiplying the result
by the scalar $\lambda$; the map $\hat{A}+\hat{B}$ acts on a vector
$\mathbf{v}$ by adding the vectors $\hat{A}\mathbf{v}$ and $\hat{B}\mathbf{v}$.
It is straightforward to check that the maps $\lambda\hat{A}$ and
$\hat{A}+\hat{B}$ defined in this way are \emph{linear} maps $V\rightarrow W$.
Therefore, the set of all linear maps $V\rightarrow W$ is a vector
space. This vector space is denoted $\textrm{Hom}\left(V,W\right)$,
meaning the {}``space of \textbf{homomorphisms}\index{homomorphism}''
from $V$ to $W$.

The space of linear maps from $V$ to itself is called the space of
\textbf{endomorphisms}\index{endomorphism} of $V$ and is denoted
$\textrm{End}\, V$. Endomorphisms of $V$ are also called \textbf{linear
operators} in the space $V$. (We have been talking about linear operators
all along, but we did not call them endomorphisms until now.)


\subsection{Eigenvectors and eigenvalues}


\paragraph{Definition 1:}

Suppose $\hat{A}:V\rightarrow V$ is a linear operator, and a vector
$\mathbf{v}\neq0$ is such that $\hat{A}\mathbf{v}=\lambda\mathbf{v}$
where $\lambda\in\mathbb{K}$ is some number. Then $\mathbf{v}$ is
called the \textbf{eigenvector\index{eigenvector} of} $\hat{A}$
\textbf{with the} \textbf{eigenvalue} $\lambda$. 

The geometric interpretation is that $\mathbf{v}$ is a special direction
for the transformation $\hat{A}$ such that $\hat{A}$ acts simply
as a scaling by a certain number $\lambda$ in that direction. 


\paragraph{Remark:}

Without the condition $\mathbf{v}\neq0$ in the definition, it would
follow that the zero vector is an eigenvector for any operator with
any eigenvalue, which would not be very useful, so we exclude the
trivial case $\mathbf{v}=0$.


\paragraph{Example 1:}

Suppose $\hat{A}$ is the transformation that rotates vectors around
some fixed axis by a fixed angle. Then any vector $\mathbf{v}$ parallel
to the axis is unchanged by the rotation, so it is an eigenvector
of $\hat{A}$ with eigenvalue $1$. 


\paragraph{Example 2:}

Suppose $\hat{A}$ is the operator of multiplication by a number $\alpha$,
i.e.~we define $\hat{A}\mathbf{x}\equiv\alpha\mathbf{x}$ for all
$\mathbf{x}$. Then \emph{all} nonzero vectors $\mathbf{x}\neq0$
are eigenvectors of $\hat{A}$ with eigenvalue $\alpha$.


\paragraph{Exercise 1:}

Suppose $\mathbf{v}$ is an eigenvector of $\hat{A}$ with eigenvalue
$\lambda$. Show that $c\mathbf{v}$ for any $c\in\mathbb{K}$, $c\neq0$,
is also an eigenvector with the same eigenvalue. 


\subparagraph{Solution: }

$\hat{A}(c\mathbf{v})=c\hat{A}\mathbf{v}=c\lambda\mathbf{v}=\lambda(c\mathbf{v})$.


\paragraph{Example 3:}

Suppose that an operator $\hat{A}\in\textrm{End }V$ is such that
it has $N=\dim V$ eigenvectors $\mathbf{v}_{1}$, ..., $\mathbf{v}_{N}$
that constitute a basis in $V$. Suppose that $\lambda_{1}$, ...,
$\lambda_{N}$ are the corresponding eigenvalues (not necessarily
different). Then the matrix representation of $\hat{A}$ in the basis
$\left\{ \mathbf{v}_{j}\right\} $ is a \textbf{diagonal} matrix\[
A_{ij}=\textrm{diag}\left(\lambda_{1},...,\lambda_{N}\right)\equiv\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0\\
0 & \lambda_{2} & \ldots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \ldots & \lambda_{N}\end{array}\right).\]
Thus a basis consisting of eigenvectors (the \textbf{eigenbasis}\index{eigenbasis}),
if it exists, is a particularly convenient choice of basis for a given
operator. 


\paragraph{Remark:}

The task of determining the eigenbasis (also called the \textbf{diagonalization
of an operator}) is a standard, well-studied problem for which efficient
numerical methods exist. (This book is not about these methods.) However,
it is important to know that not all operators can be diagonalized.
The simplest example of a non-diagonalizable operator is one with
the matrix representation $\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)$ in $\mathbb{R}^{2}$. This operator has \emph{only one} eigenvector,
${1 \choose 0}$, so we have no hope of finding an eigenbasis. The
theory of the {}``Jordan canonical form\index{Jordan canonical form}''
(see Sec.~\ref{sub:The-Jordan-canonical}) explains how to choose
the basis for a non-diagonalizable operator so that its matrix in
that basis becomes as simple as possible.


\paragraph{Definition 2:}

A map $\hat{A}:V\rightarrow W$ is \textbf{invertible}\index{invertible operator}
if there exists a map $\hat{A}^{-1}:W\rightarrow V$ such that $\hat{A}\hat{A}^{-1}=\hat{1}_{W}$
and $\hat{A}^{-1}\hat{A}=\hat{1}_{V}$. The map $\hat{A}^{-1}$ is
called the \textbf{inverse} of $\hat{A}$.


\paragraph{Exercise 2:}

Suppose that an operator $\hat{A}\in\textrm{End }V$ has an eigenvector
with eigenvalue 0. Show that $\hat{A}$ describes a non-invertible
transformation.


\subparagraph{Outline of the solution:}

Show that the inverse of a linear operator (if the inverse exists)
is again a linear operator. A linear operator must transform the zero
vector into the zero vector. We have $\hat{A}\mathbf{v}=0$ and yet
we must have $\hat{A}^{-1}0=0$ if $\hat{A}^{-1}$ exists.\hfill{}$\blacksquare$


\paragraph{Exercise 3:}

Suppose that an operator $\hat{A}\in\textrm{End }V$ in an $n$-dimen\-sion\-al
vector space $V$ describes a non-invertible transformation. Show
that the operator $\hat{A}$ has \emph{at least one} eigenvector $\mathbf{v}$
with eigenvalue 0.


\subparagraph{Outline of the solution:}

Let $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $ be a basis;
consider the set of vectors $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{n}\}$
and show that it is not a basis, hence linearly \emph{dependent} (otherwise
$\hat{A}$ would be invertible). Then there exists a linear combination
$\sum_{j}c_{j}(\hat{A}\mathbf{e}_{j})=0$ where not all $c_{j}$ are
zero; $\mathbf{v}\equiv\sum_{j}c_{j}\mathbf{e}_{j}$ is then nonzero,
and is the desired eigenvector.\hfill{}$\blacksquare$


\section{Subspaces}


\paragraph{Definition:}

A \textbf{subspace} of a vector space $V$ is a subset $S\subset V$
such that $S$ is itself a vector space.

A subspace is not just any subset of $V$. For example, if $\mathbf{v}\in V$
is a nonzero vector then the subset $S$ consisting of the single
vector, $S=\left\{ \mathbf{v}\right\} $, is not a subspace: for instance,
$\mathbf{v}+\mathbf{v}=2\mathbf{v}$, but $2\mathbf{v}\not\in S$.


\paragraph{Example 1.}

The set $\left\{ \lambda\mathbf{v}\,|\,\forall\lambda\in\mathbb{K}\right\} $
is called the subspace \textbf{spanned by} the vector $\mathbf{v}$.
This set is a subspace because we can add vectors from this set to
each other and obtain again vectors from the same set. More generally,
if $\mathbf{v}_{1},...,\mathbf{v}_{n}\in V$ are some vectors, we
define the \textbf{subspace spanned by} $\left\{ \mathbf{v}_{j}\right\} $
as the set of all linear combinations \[
\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} \equiv\left\{ \lambda_{1}\mathbf{v}_{1}+...+\lambda_{n}\mathbf{v}_{n}\,|\,\forall\lambda_{i}\in\mathbb{K}\right\} .\]
It is obvious that $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
is a subspace of $V$.

If $\left\{ \mathbf{e}_{j}\right\} $ is a basis in the space $V$
then the subspace spanned by the vectors $\left\{ \mathbf{e}_{j}\right\} $
is equal to $V$ itself.


\paragraph{Exercise 1: }

Show that the intersection of two subspaces is also a subspace.


\paragraph{Example 2: Kernel of an operator.}

Suppose $\hat{A}\in\text{End}\, V$ is a linear operator. The set
of all vectors $\mathbf{v}$ such that $\hat{A}\mathbf{v}=0$ is called
the \textbf{kernel} of the operator $\hat{A}$ and is denoted by $\ker\hat{A}$.
In formal notation, \[
\textrm{ker }\hat{A}\equiv\{\mathbf{u}\in V\,|\,\hat{A}\mathbf{u}=0\}.\]
This set is a subspace of $V$ because if $\mathbf{u},\mathbf{v}\in\ker\hat{A}$
then \[
\hat{A}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\hat{A}\mathbf{u}+\lambda\hat{A}\mathbf{v}=0,\]
 and so $\mathbf{u}+\lambda\mathbf{v}\in\ker\hat{A}$.


\paragraph{Example 3: Image of an operator.}

Suppose $\hat{A}:V\rightarrow V$ is a linear operator. The \textbf{image}
of the operator $\hat{A}$, denoted $\textrm{im}\, A$, is by definition
the set of all vectors $\mathbf{v}$ obtained by acting with $\hat{A}$
on some other vectors $\mathbf{u}\in V$. In formal notation, \[
\textrm{im }\hat{A}\equiv\{\hat{A}\mathbf{u}\,|\,\forall\mathbf{u}\in V\}.\]
 This set is also a subspace of $V$ (prove this!).


\paragraph{Exercise 2:}

In a vector space $V$, let us choose a vector $\mathbf{v}\neq0$.
Consider the set $S_{0}$ of all linear operators $\hat{A}\in\text{End}\, V$
such that $\hat{A}\mathbf{v}=0$. Is $S_{0}$ a subspace? Same question
for the set $S_{3}$ of operators $\hat{A}$ such that $\hat{A}\mathbf{v}=3\mathbf{v}$.
Same question for the set $S^{\prime}$ of all operators $\hat{A}$
for which there exists some $\lambda\in\mathbb{K}$ such that $\hat{A}\mathbf{v}=\lambda\mathbf{v}$,
where $\lambda$ may be different for each $\hat{A}$.


\subsection{Projectors and subspaces}


\paragraph{Definition:}

A linear operator $\hat{P}:V\rightarrow V$ is called a \textbf{projector}\index{projector}
if $\hat{P}\hat{P}=\hat{P}$.

Projectors are useful for defining subspaces: The result of a projection
remains invariant under further projections, $\hat{P}(\hat{P}\mathbf{v})=\hat{P}\mathbf{v}$,
so a projector $\hat{P}$ defines a subspace $\textrm{im}\,\hat{P}$,
which consists of all vectors invariant under $\hat{P}$.

As an example, consider the transformation of $\mathbb{R}^{3}$ given
by the matrix\[
\hat{P}=\left(\begin{array}{ccc}
1 & 0 & a\\
0 & 1 & b\\
0 & 0 & 0\end{array}\right),\]
where $a,b$ are arbitrary numbers. It is easy to check that $\hat{P}\hat{P}=\hat{P}$
for any $a,b$. This transformation is a projector onto the subspace
spanned by the vectors $\left(1,0,0\right)$ and $\left(0,1,0\right)$.
(Note that $a$ and $b$ can be chosen at will; there are many projectors
onto the same subspace.)


\paragraph{Statement:}

Eigenvalues of a projector can be only the numbers $0$ and $1$.


\subparagraph{Proof:}

If $\mathbf{v}\in V$ is an eigenvector of a projector $\hat{P}$
with the eigenvalue $\lambda$ then \[
\lambda\mathbf{v}=\hat{P}\mathbf{v}=\hat{P}\hat{P}\mathbf{v}=\hat{P}\lambda\mathbf{v}=\lambda^{2}\mathbf{v}\,\Rightarrow\,\lambda\left(\lambda-1\right)\mathbf{v}=0.\]
Since $\mathbf{v}\neq0$, we must have either $\lambda=0$ or $\lambda=1$.\hfill{}$\blacksquare$


\subsection{Eigenspaces}

Another way to specify a subspace is through eigenvectors of some
operator.


\paragraph{Exercise 1:}

For a linear operator $\hat{A}$ and a fixed number $\lambda\in\mathbb{K}$,
the set of all vectors $\mathbf{v}\in V$ such that $\hat{A}\mathbf{v}=\lambda\mathbf{v}$
is a \emph{subspace} of $V$.

The subspace of all such vectors is called the \textbf{eigenspace}\index{eigenspace}
of $\hat{A}$ with the eigenvalue $\lambda$. Any nonzero vector from
that subspace is an eigenvector of $\hat{A}$ with eigenvalue $\lambda$.


\paragraph{Example:}

If $\hat{P}$ is a projector then $\textrm{im}\,\hat{P}$ is the eigenspace
of $\hat{P}$ with eigenvalue $1$. 


\paragraph{Exercise 2:}

Show that eigenspaces $V_{\lambda}$ and $V_{\mu}$ corresponding
to different eigenvalues, $\lambda\neq\mu$, have only one common
vector --- the zero vector. ($V_{\lambda}\cap V_{\mu}=\{0\}$.)

By definition, a subspace $U\subset V$ is \textbf{invariant}\index{invariant subspace}
under the action of some operator $\hat{A}$ if $\hat{A}\mathbf{u}\in U$
for all $\mathbf{u}\in U$.


\paragraph{Exercise 3:}

Show that the eigenspace of $\hat{A}$ with eigenvalue $\lambda$
is invariant under $\hat{A}$.


\paragraph{Exercise 4:}

In a space of polynomials in the variable $x$ of any (finite) degree,
consider the subspace $U$ of polynomials of degree not more than
2 and the operator $\hat{A}\equiv x\frac{d}{dx}$, that is, \[
\hat{A}:p(x)\mapsto x\frac{dp(x)}{dx}.\]
 Show that $U$ is invariant under $\hat{A}$.


\section{Isomorphisms of vector spaces}

Two vector spaces are \textbf{isomorphic} if there exists a one-to-one
linear map between them. This linear map is called the \textbf{isomorphism}.


\paragraph{Exercise 1:}

If $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ is a linearly
independent set of vectors ($\mathbf{v}_{j}\in V$) and $\hat{M}:V\rightarrow W$
is an isomorphism then the set $\{\hat{M}\mathbf{v}_{1},...,\hat{M}\mathbf{v}_{N}\}$
is also linearly independent. In particular, $\hat{M}$ maps a basis
in $V$ into a basis in $W$.

\emph{Hint:} First show that $\hat{M}\mathbf{v}=0$ if and only if
$\mathbf{v}=0$. Then consider the result of $\hat{M}\left(\lambda_{1}\mathbf{v}_{1}+...+\lambda_{N}\mathbf{v}_{N}\right)$.


\paragraph{Statement 1:}

Any vector space $V$ of dimension $n$ is isomorphic to the space
$\mathbb{K}^{n}$ of $n$-tuples. 


\subparagraph{Proof:}

To demonstrate this, it is sufficient to present \emph{some} isomorphism.
We can always choose a basis $\left\{ \mathbf{e}_{i}\right\} $ in
$V$, so that any vector $\mathbf{v}\in V$ is decomposed as $\mathbf{v}=\sum_{i=1}^{n}\lambda_{i}\mathbf{e}_{i}$.
Then we define the isomorphism map $\hat{M}$ between $V$ and the
space $\mathbb{K}^{n}$ as\[
\hat{M}\mathbf{v}\equiv\left(\lambda_{1},...,\lambda_{n}\right).\]
It is easy to see that $\hat{M}$ is linear and one-to-one.\hfill{}$\blacksquare$

Vector spaces $\mathbb{K}^{m}$ and $\mathbb{K}^{n}$ are isomorphic
only if they have equal dimension, $m=n$. The reason they are not
isomorphic for $m\neq n$ is that they have different numbers of vectors
in a basis, while one-to-one linear maps must preserve linear independence
and map a basis to a basis. (For $m\neq n$, there are plenty of linear
maps from $\mathbb{K}^{m}$ to $\mathbb{K}^{n}$ but none of them
is a one-to-one map. It also follows that a one-to-one map between
$\mathbb{K}^{m}$ and $\mathbb{K}^{n}$ cannot be linear.)

Note that the isomorphism $\hat{M}$ constructed in the proof of Statement~1
will depend on the choice of the basis: a different basis $\left\{ \mathbf{e}_{i}^{\prime}\right\} $
yields a different map $\hat{M}^{\prime}$. For this reason, the isomorphism
$\hat{M}$ is \emph{not canonical}.


\paragraph{Definition:}

A linear map between two vector spaces $V$ and $W$ is \textbf{canonically
defined} or \textbf{canonical}\index{canonical isomorphism} if it
is defined independently of a choice of bases in $V$ and $W$. (We
are of course allowed to choose a basis \emph{while} constructing
a canonical map, but at the end we need to prove that the resulting
map does not depend on that choice.) Vector spaces $V$ and $W$ are
\textbf{canonically isomorphic} if there exists a canonically defined
isomorphism between them; I write $V\cong W$ in this case.


\paragraph{Examples of canonical isomorphisms:}
\begin{enumerate}
\item Any vector space $V$ is canonically isomorphic to itself, $V\cong V$;
the isomorphism is the identity map $\mathbf{v}\rightarrow\mathbf{v}$
which is defined regardless of any basis. (This is trivial but still,
a valid example.)
\item If $V$ is a one-dimen\-sion\-al vector space then $\textrm{End}\, V\cong\mathbb{K}$.
You have seen the map $\textrm{End }V\rightarrow\mathbb{K}$ in the
Exercise~\ref{sub:Examples-of-linear-maps}, where you had to show
that any linear operator in $V$ is a multiplication by a number;
this number is the element of $\mathbb{K}$ corresponding to the given
operator. Note that $V\not\cong\mathbb{K}$ unless there is a {}``preferred''
vector $\mathbf{e}\in V$, $\mathbf{e}\neq0$ which would be mapped
into the number $1\in\mathbb{K}$. Usually vector spaces do not have
any special vectors, so there is no canonical isomorphism. (However,
$\text{End}\, V$ does have a special element --- the identity $\hat{1}_{V}$.)
\end{enumerate}
At this point I cannot give more interesting examples of canonical
maps, but I will show many of them later. My intuitive picture is
that canonically isomorphic spaces have a fundamental structural similarity.
An isomorphism that depends on the choice of basis, as in the Statement~1
above, is unsatisfactory if we are interested in properties that can
be formulated geometrically (independently of any basis). 




\section{Direct sum of vector spaces}

If $V$ and $W$ are two given vector spaces over a field $\mathbb{K}$,
we define a new vector space $V\oplus W$ as the space of pairs $(\mathbf{v},\mathbf{w})$,
where $\mathbf{v}\in V$ and $\mathbf{w}\in W$. The operations of
vector sum and scalar multiplication are defined in the natural way,\begin{align*}
\left(\mathbf{v}_{1},\mathbf{w}_{1}\right)+\left(\mathbf{v}_{2},\mathbf{w}_{2}\right) & =\left(\mathbf{v}_{1}+\mathbf{v}_{2},\mathbf{w}_{1}+\mathbf{w}_{2}\right),\\
\lambda\left(\mathbf{v}_{1},\mathbf{w}_{1}\right) & =\left(\lambda\mathbf{v}_{1},\lambda\mathbf{w}_{1}\right).\end{align*}
 The new vector space is called the \textbf{direct sum} of the spaces
$V$ and $W$. 


\paragraph{Statement:}

The dimension of the direct sum is $\dim\left(V\oplus W\right)=\dim V+\dim W$.


\subparagraph{Proof:}

If $\mathbf{v}_{1}$, ..., $\mathbf{v}_{m}$ and $\mathbf{w}_{1}$,
..., $\mathbf{w}_{n}$ are bases in $V$ and W respectively,  consider
the set of $m+n$ vectors\[
\left(\mathbf{v}_{1},0\right),...,\left(\mathbf{v}_{m},0\right),\left(0,\mathbf{w}_{1}\right),...,\left(0,\mathbf{w}_{n}\right).\]
It is easy to prove that this set is linearly independent. Then it
is clear that any vector $\left(\mathbf{v},\mathbf{w}\right)\in V\oplus W$
can be represented as a linear combination of the vectors from the
above set, therefore that set is a basis and the dimension of $V\oplus W$
is $m+n$. (This proof is sketchy but the material is standard and
straightforward.)\hfill{}$\blacksquare$


\paragraph{Exercise 1:}

Complete the proof.

\emph{Hint:} If $\left(\mathbf{v},\mathbf{w}\right)=0$ then $\mathbf{v}=0$
and $\mathbf{w}=0$ separately.


\subsection{$V$ and $W$ as subspaces of $V\oplus W$; canonical projections}

If $V$ and $W$ are two vector spaces then the space $V\oplus W$
has a certain subspace which is canonically isomorphic to $V$. This
subspace is the set of all vectors from $V\oplus W$ of the form $\left(\mathbf{v},0\right)$,
where $\mathbf{v}\in V$. It is obvious that this set forms a subspace
(it is closed under linear operations) and is isomorphic to $V$.
To demonstrate this, we present a canonical isomorphism which we denote
$\hat{P}_{V}:V\oplus W\rightarrow V$. The isomorphism $\hat{P}_{V}$
is the \textbf{canonical projection}\index{canonical projection}
defined by\[
\hat{P}_{V}\left(\mathbf{v},\mathbf{w}\right)\equiv\mathbf{v}.\]
 It is easy to check that this is a linear and one-to-one map of the
subspace $\left\{ \left(\mathbf{v},0\right)\,|\,\mathbf{v}\in V\right\} $
to $V$, and that $\hat{P}$ is a projector. This projector is \emph{canonical}
because we have defined it without reference to any basis. The relation
is so simple that it is convenient to write $\mathbf{v}\in V\oplus W$
instead of $\left(\mathbf{v},0\right)\in V\oplus W$.

Similarly, we define the subspace isomorphic to $W$ and the corresponding
canonical projection. 

It is usually convenient to denote vectors from $V\oplus W$ by formal
linear combinations, e.g.~$\mathbf{v}+\mathbf{w}$, instead of the
pair notation $\left(\mathbf{v},\mathbf{w}\right)$. A pair $\left(\mathbf{v},0\right)$
is denoted simply by $\mathbf{v}\in V\oplus W$. 


\paragraph{Exercise 1: }

Show that the space $\mathbb{R}^{n}\oplus\mathbb{R}^{m}$ is isomorphic
to $\mathbb{R}^{n+m}$, but not canonically.

\emph{Hint}: The image of $\mathbb{R}^{n}\subset\mathbb{R}^{n}\oplus\mathbb{R}^{m}$
under the isomorphism is a subspace of $\mathbb{R}^{n+m}$, but there
are no canonically defined subspaces in that space.


\section{Dual (conjugate) vector space \label{sub:Dual-vector-space}}

Given a vector space $V$, we define another vector space $V^{*}$
called the \textbf{dual} or the \textbf{conjugate} to $V$. The elements
of $V^{*}$ are \textbf{linear functions} on $V$, that is to say,
maps $\mathbf{f}^{*}:V\rightarrow\mathbb{K}\,$ having the property\[
\mathbf{f}^{*}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\mathbf{f}^{*}\left(\mathbf{u}\right)+\lambda\mathbf{f}^{*}\left(\mathbf{v}\right),\quad\forall\mathbf{u},\mathbf{v}\in V,\:\forall\lambda\in\mathbb{K}.\]
The elements of $V^{*}$ are called \textbf{dual vectors}, \textbf{covectors}
or \textbf{linear forms}; I will say {}``covectors'' to save space. 


\paragraph{Definition:}

A \textbf{covector}\index{covector} is a linear map $V\rightarrow\mathbb{K}$.
The set of all covectors is the \textbf{dual space}\index{dual space}
to the vector space $V$. The \textbf{zero covector} is the linear
function that maps all vectors into zero. Covectors $\mathbf{f}^{*}$
and $\mathbf{g}^{*}$ are \textbf{equal} if \[
\mathbf{f}^{*}\left(\mathbf{v}\right)=\mathbf{g}^{*}\left(\mathbf{v}\right),\quad\forall\mathbf{v}\in V.\]


It is clear that the set of \emph{all} linear functions is a vector
space because e.g.~the sum of linear functions is again a linear
function. This {}``space of all linear functions'' is the space
we denote by $V^{*}$. In our earlier notation, this space is the
same as $\text{Hom}(V,\mathbb{K})$.


\paragraph{Example 1:}

For the space $\mathbb{R}^{2}$ with vectors $\mathbf{v}\equiv\left(x,y\right)$,
we may define the functions $\mathbf{f}^{*}\left(\mathbf{v}\right)\equiv2x$,
$\mathbf{g}^{*}\left(\mathbf{v}\right)\equiv y-x$. It is straightforward
to check that these functions are linear.


\paragraph{Example 2:}

Let $V$ be the space of polynomials of degree not more than 2 in
the variable $x$ with real coefficients. This space $V$ is three-dimen\-sion\-al
and contains elements such as $\mathbf{p}\equiv p(x)=a+bx+cx^{2}$.
A linear function $\mathbf{f}^{*}$ on $V$ could be defined in a
way that might appear nontrivial, such as\[
\mathbf{f}^{*}(\mathbf{p})=\int_{0}^{\infty}e^{-x}p(x)dx.\]
Nevertheless, it is clear that this is a \emph{linear} function mapping
$V$ into $\mathbb{R}$. Similarly,\[
\mathbf{g}^{*}(\mathbf{p})=\left.\frac{d}{dx}\right|_{x=1}p(x)\]
 is a linear function. Hence, $\mathbf{f}^{*}$ and $\mathbf{g}^{*}$
belong to $V^{*}$.


\paragraph{Remark: }

One says that a covector $\mathbf{f}^{*}$ \textbf{is applied to}
a vector $\mathbf{v}$ and yields a number $\mathbf{f}^{*}(\mathbf{v)}$,
or alternatively that a covector \textbf{acts on} a vector. This is
similar to writing $\cos(0)=1$ and saying that the cosine function
is applied to the number $0$, or {}``acts on the number 0,'' and
then yields the number $1$. Other notations for a covector acting
on a vector are $\left\langle \mathbf{f}^{*},\mathbf{v}\right\rangle $
and $\mathbf{f}^{*}\cdot\mathbf{v}$, and also $\iota_{\mathbf{v}}\mathbf{f}^{*}$
or $\iota_{\mathbf{f}^{*}}\mathbf{v}$ (here the symbol $\iota$ stands
for {}``insert''). However, in this text I will always use the notation
$\mathbf{f}^{*}(\mathbf{v})$ for clarity. The notation $\left\langle \mathbf{x},\mathbf{y}\right\rangle $
will be used for scalar products.


\paragraph{Question:}

It is unclear how to visualize the dual space when it is defined in
such abstract terms, as the set of \emph{all} functions having some
property. How do I know which functions are there, and how can I describe
this space in more concrete terms? 


\subparagraph{Answer: }

Indeed, we need some work to characterize $V^{*}$ more explicitly.
We will do this in the next subsection by constructing a basis in
$V^{*}$.


\subsection{Dual basis}

Suppose $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $ is a
basis in $V$; then any vector $\mathbf{v}\in V$ is uniquely expressed
as a linear combination\[
\mathbf{v}=\sum_{j=1}^{n}v_{j}\mathbf{e}_{j}.\]
The coefficient $v_{1}$, understood \emph{as a function of the vector}
$\mathbf{v}$, is a linear function of $\mathbf{v}$ because\[
\mathbf{u}+\lambda\mathbf{v}=\sum_{j=1}^{n}u_{j}\mathbf{e}_{j}+\lambda\sum_{j=1}^{n}v_{j}\mathbf{e}_{j}=\sum_{j=1}^{n}\left(u_{i}+\lambda v_{j}\right)\mathbf{e}_{j},\]
therefore the first coefficient of the vector $\mathbf{u}+\lambda\mathbf{v}$
is $u_{1}+\lambda v_{1}$. So the coefficients $v_{k}$, $1\leq k\leq n$,
are linear functions of the vector $\mathbf{v}$; therefore they are
\emph{covectors}, i.e.~elements of $V^{*}$. Let us denote these
covectors by $\mathbf{e}_{1}^{*}$, ..., $\mathbf{e}_{n}^{*}$. Please
note that $\mathbf{e}_{1}^{*}$ depends on the \emph{entire} basis
$\left\{ \mathbf{e}_{j}\right\} $ and not only on $\mathbf{e}_{1}$,
as it might appear from the notation $\mathbf{e}_{1}^{*}$. In other
words, $\mathbf{e}_{1}^{*}$ is not a result of some {}``star''
operation applied only to $\mathbf{e}_{1}$. The covector $\mathbf{e}_{1}^{*}$
will change if we change $\mathbf{e}_{2}$ or any other basis vector.
This is so because the component $v_{1}$ of a fixed vector $\mathbf{v}$
depends not only on $\mathbf{e}_{1}$ but also on every other basis
vector $\mathbf{e}_{j}$.


\paragraph{Theorem:}

The set of $n$ covectors $\mathbf{e}_{1}^{*}$, ..., $\mathbf{e}_{n}^{*}$
is a basis in $V^{*}$. Thus, the dimension of the dual space $V^{*}$
is equal to that of $V$.


\subparagraph{Proof:}

First, we show by an explicit calculation that any covector $\mathbf{f}^{*}$
is a linear combination of $\left\{ \mathbf{e}_{j}^{*}\right\} $.
Namely, for any $\mathbf{f}^{*}\in V^{*}$ and $\mathbf{v}\in V$
we have\[
\mathbf{f}^{*}\left(\mathbf{v}\right)=\mathbf{f}^{*}\big(\sum_{j=1}^{n}v_{j}\mathbf{e}_{j}\big)=\sum_{j=1}^{n}v_{j}\mathbf{f}^{*}\left(\mathbf{e}_{j}\right)=\sum_{j=1}^{n}\mathbf{e}_{j}^{*}\left(\mathbf{v}\right)\mathbf{f}^{*}\left(\mathbf{e}_{j}\right).\]
Note that in the last line the quantities $\mathbf{f}^{*}\left(\mathbf{e}_{j}\right)$
are some numbers that do not depend on $\mathbf{v}$. Let us denote
$\phi_{j}\equiv\mathbf{f}^{*}\left(\mathbf{e}_{j}\right)$ for brevity;
then we obtain the following linear decomposition of $\mathbf{f}^{*}$
through the covectors $\left\{ \mathbf{e}_{j}^{*}\right\} $,\[
\mathbf{f}^{*}\left(\mathbf{v}\right)=\sum_{j=1}^{n}\phi_{j}\mathbf{e}_{j}^{*}\left(\mathbf{v}\right)\,\Rightarrow\,\mathbf{f}^{*}=\sum_{j=1}^{n}\phi_{j}\mathbf{e}_{j}^{*}.\]
So indeed all covectors $\mathbf{f}^{*}$ are linear combinations
of $\mathbf{e}_{j}^{*}$.

It remains to prove that the set $\left\{ \mathbf{e}_{j}^{*}\right\} $
is linearly independent. If this were not so, we would have $\sum_{i}\lambda_{i}\mathbf{e}_{i}^{*}=0$
where not all $\lambda_{i}$ are zero. Act on a vector $\mathbf{e}_{k}$
($k=1,...,n$) with this linear combination and get\[
0\,{\lyxbuildrel!\above=}\,(\sum_{i=1}^{n}\lambda_{i}\mathbf{e}_{i}^{*})(\mathbf{e}_{k})=\lambda_{k},\quad k=1,...,n.\]
Hence all $\lambda_{k}$ are zero.\hfill{}$\blacksquare$


\paragraph{Remark: }

The theorem holds only for finite-dimen\-sion\-al spaces! For infinite-dimen\-sion\-al
spaces $V$, the dual space $V^{*}$ may be {}``larger'' or {}``smaller''
than $V$. Infinite-dimen\-sion\-al spaces are subtle, and one should
not think that they are simply {}``spaces with infinitely many basis
vectors.'' More detail (\emph{much} more detail!) can be found in
standard textbooks on functional analysis.\hfill{}$\blacksquare$

The set of covectors $\left\{ \mathbf{e}_{j}^{*}\right\} $ is called
the \textbf{dual basis}\index{dual basis} to the basis $\left\{ \mathbf{e}_{j}\right\} $.
The covectors $\mathbf{e}_{j}^{*}$ of the dual basis have the useful
property\[
\mathbf{e}_{i}^{*}\left(\mathbf{e}_{j}\right)=\delta_{ij}\]
(please check this!). Here $\delta_{ij}$ is the \textbf{Kronecker}
\textbf{symbol}\index{Kronecker symbol}: $\delta_{ij}=0$ if $i\neq j$
and $\delta_{ii}=1$. For instance, $\mathbf{e}_{1}^{*}\left(\mathbf{e}_{1}\right)=1$
and $\mathbf{e}_{1}^{*}\left(\mathbf{e}_{k}\right)=0$ for $k\geq2$.


\paragraph{Question:}

I would like to see a concrete calculation. How do I compute $\mathbf{f}^{*}\left(\mathbf{v}\right)$
if a vector $\mathbf{v}\in V$ and a covector $\mathbf{f}^{*}\in V^{*}$
are {}``given''?


\subparagraph{Answer:}

Vectors are usually {}``given'' by listing their components in some
basis. Suppose $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
is a basis in $V$ and $\left\{ \mathbf{e}_{1}^{*},...,\mathbf{e}_{N}^{*}\right\} $
is its dual basis. If the vector $\mathbf{v}$ has components $v_{k}$
in a basis $\left\{ \mathbf{e}_{k}\right\} $ and the covector $\mathbf{f}^{*}\in V^{*}$
has components $f_{k}^{*}$ in the dual basis $\left\{ \mathbf{e}_{k}^{*}\right\} $,
then \begin{equation}
\mathbf{f}^{*}\left(\mathbf{v}\right)=\sum_{k=1}^{N}f_{k}^{*}\mathbf{e}_{k}^{*}\big(\sum_{l=1}^{N}v_{l}\mathbf{e}_{l}\big)=\sum_{k=1}^{N}f_{k}^{*}v_{k}.\label{eq:f star v}\end{equation}



\paragraph{Question:}

The formula~(\ref{eq:f star v}) looks like the scalar product~(\ref{eq:3d scalar prod}).
How come?


\subparagraph{Answer:}

Yes, it does look like that, but Eq.~(\ref{eq:f star v}) does not
describe a scalar product because for one thing, $\mathbf{f}^{*}$
and $\mathbf{v}$ are from \emph{different} vector spaces. I would
rather say that the scalar product resembles Eq.~(\ref{eq:f star v}),
and this happens only for a special choice of basis (an \emph{orthonormal}
basis) in $V$. This will be explained in more detail in Sec.~\ref{sub:Vector-spaces-with-scalar-product}.


\paragraph{Question:}

The dual basis still seems too abstract to me. Suppose $V$ is the
three-dimen\-sion\-al space of polynomials in the variable $x$
with real coefficients and degree no more than 2. The three polynomials
$\left\{ 1,x,x^{2}\right\} $ are a basis in $V$. How can I compute
explicitly the dual basis to this basis?


\subparagraph{Answer:}

An arbitrary vector from this space is a polynomial $a+bx+cx^{2}$.
The basis dual to $\left\{ 1,x,x^{2}\right\} $ consists of three
covectors. Let us denote the set of these covectors by $\left\{ \mathbf{e}_{1}^{*},\mathbf{e}_{2}^{*},\mathbf{e}_{3}^{*}\right\} $.
These covectors are linear functions defined like this:\begin{align*}
\mathbf{e}_{1}^{*}\left(a+bx+cx^{2}\right) & =a,\\
\mathbf{e}_{2}^{*}\left(a+bx+cx^{2}\right) & =b,\\
\mathbf{e}_{3}^{*}\left(a+bx+cx^{2}\right) & =c.\end{align*}
If you like, you can visualize them as differential operators acting
on the polynomials $p(x)$ like this:\[
\mathbf{e}_{1}^{*}(p)=\left.p(x)\right|_{x=0};\quad\mathbf{e}_{2}^{*}(p)=\left.\frac{dp}{dx}\right|_{x=0};\quad\mathbf{e}_{3}^{*}(p)=\frac{1}{2}\left.\frac{d^{2}p}{dx^{2}}\right|_{x=0}.\]
However, this is a bit too complicated; the covector $\mathbf{e}_{3}^{*}$
just extracts the coefficient of the polynomial $p(x)$ at $x^{2}$.
To make it clear that, say, $\mathbf{e}_{2}^{*}$ and $\mathbf{e}_{3}^{*}$
can be evaluated without taking derivatives or limits, we may write
the formulas for $\mathbf{e}_{j}^{*}(p)$ in another equivalent way,
e.g.\[
\mathbf{e}_{2}^{*}(p)=\frac{p(1)-p(-1)}{2},\quad\mathbf{e}_{3}^{*}(p)=\frac{p(1)-2p(0)+p(-1)}{2}.\]
It is straightforward to check that these formulas are indeed equivalent
by substituting $p(x)=a+bx+cx^{2}$. 


\paragraph{Exercise 1:}

Compute $\mathbf{f}^{*}$ and $\mathbf{g}^{*}$ from Example~2 in
terms of the basis $\left\{ \mathbf{e}_{i}^{*}\right\} $ defined
above.


\paragraph{Question:}

I'm still not sure what to do in the general case. For example, the
set $\left\{ 1,1+x,1+x+\frac{1}{2}x^{2}\right\} $ is also a basis
in the space $V$ of quadratic polynomials. How do I explicitly compute
the dual basis now? The previous trick with derivatives does not work.


\subparagraph{Answer:}

Let's denote this basis by $\left\{ \mathbf{f}_{1},\mathbf{f}_{2},\mathbf{f}_{3}\right\} $;
we are looking for the dual basis $\left\{ \mathbf{f}_{1}^{*},\mathbf{f}_{2}^{*},\mathbf{f}_{3}^{*}\right\} $.
It will certainly be sufficiently explicit if we manage to express
the covectors $\mathbf{f}_{j}^{*}$ through the covectors $\left\{ \mathbf{e}_{1}^{*},\mathbf{e}_{2}^{*},\mathbf{e}_{3}^{*}\right\} $
that we just found previously. Since the set of covectors $\left\{ \mathbf{e}_{1}^{*},\mathbf{e}_{2}^{*},\mathbf{e}_{3}^{*}\right\} $
is a basis in $V^{*}$, we expect that $\mathbf{f}_{1}^{*}$ is a
linear combination of $\left\{ \mathbf{e}_{1}^{*},\mathbf{e}_{2}^{*},\mathbf{e}_{3}^{*}\right\} $
with some constant coefficients, and similarly $\mathbf{f}_{2}^{*}$
and $\mathbf{f}_{3}^{*}$. Let us, for instance, determine $\mathbf{f}_{1}^{*}$.
We write \[
\mathbf{f}_{1}^{*}=A\mathbf{e}_{1}^{*}+B\mathbf{e}_{2}^{*}+C\mathbf{e}_{3}^{*}\]
with unknown coefficients $A,B,C$. By definition, $\mathbf{f}_{1}^{*}$
acting on an arbitrary vector $\mathbf{v}=c_{1}\mathbf{f}_{1}+c_{2}\mathbf{f}_{2}+c_{3}\mathbf{f}_{3}$
must yield $c_{1}$. Recall that $\mathbf{e}_{i}^{*}$, $i=1,2,3$
yield the coefficients of the polynomial at $1$, $x$, and $x^{2}$.
Therefore\begin{align*}
c_{1} & \,{\lyxbuildrel!\above=}\,\mathbf{f}_{1}^{*}(\mathbf{v})=\mathbf{f}_{1}^{*}\left(c_{1}\mathbf{f}_{1}+c_{2}\mathbf{f}_{2}+c_{3}\mathbf{f}_{3}\right)\\
 & =\left(A\mathbf{e}_{1}^{*}+B\mathbf{e}_{2}^{*}+C\mathbf{e}_{3}^{*}\right)\left(c_{1}\mathbf{f}_{1}+c_{2}\mathbf{f}_{2}+c_{3}\mathbf{f}_{3}\right)\\
 & =\left(A\mathbf{e}_{1}^{*}+B\mathbf{e}_{2}^{*}+C\mathbf{e}_{3}^{*}\right)\left(c_{1}+c_{2}\left(1+x\right)+c_{3}\big(1+x+{\textstyle \frac{1}{2}}x^{2}\big)\right)\\
 & =Ac_{1}+Ac_{2}+Ac_{3}+Bc_{2}+Bc_{3}+{\textstyle \frac{1}{2}}Cc_{3}.\end{align*}
Since this must hold for every $c_{1},c_{2},c_{3}$, we obtain a system
of equations for the unknown constants $A,B,C$:\begin{align*}
A & =1;\\
A+B & =0;\\
A+B+{\textstyle \frac{1}{2}}C & =0.\end{align*}
The solution is $A=1$, $B=-1$, $C=0$. Therefore $\mathbf{f}_{1}^{*}=\mathbf{e}_{1}^{*}-\mathbf{e}_{2}^{*}$.
In the same way we can determine $\mathbf{f}_{2}^{*}$ and $\mathbf{f}_{3}^{*}$.\hfill{}$\blacksquare$

Here are some useful properties of covectors.


\paragraph{Statement:}

\textbf{(1)} If $\mathbf{f}^{*}\neq0$ is a given covector,  there
exists a basis $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
of $V$ such that $\mathbf{f}^{*}\left(\mathbf{v}_{1}\right)=1$ while
$\mathbf{f}^{*}\left(\mathbf{v}_{i}\right)=0$ for $2\leq i\leq N$. 

\textbf{(2)} Once such a basis is found, the set $\left\{ \mathbf{a},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
will still be a basis in $V$ for any vector $\mathbf{a}$ such that
$\mathbf{f}^{*}\left(\mathbf{a}\right)\neq0$.


\subparagraph{Proof:}

\textbf{(1)} By definition, the property $\mathbf{f}^{*}\neq0$ means
that there exists at least one vector $\mathbf{u}\in V$ such that
$\mathbf{f}^{*}(\mathbf{u})\neq0$. Given the vector $\mathbf{u}$,
we define the vector $\mathbf{v}_{1}$ by\[
\mathbf{v}_{1}\equiv\frac{1}{\mathbf{f}^{*}\left(\mathbf{u}\right)}\mathbf{u}.\]
It follows (using the linearity of $\mathbf{f}^{*}$) that $\mathbf{f}^{*}(\mathbf{v}_{1})=1$.
Then by Exercise~1 in Sec.~\ref{sub:All-bases-have} the vector
$\mathbf{v}_{1}$ can be completed to \emph{some} basis $\left\{ \mathbf{v}_{1},\mathbf{w}_{2},...,\mathbf{w}_{N}\right\} $.
Thereafter we define the vectors $\mathbf{v}_{2}$, ..., $\mathbf{v}_{N}$
by the formula\[
\mathbf{v}_{i}\equiv\mathbf{w}_{i}-\mathbf{f}^{*}\left(\mathbf{w}_{i}\right)\mathbf{v}_{1},\quad2\leq i\leq N,\]
and obtain a set of vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
such that $\mathbf{f}^{*}(\mathbf{v}_{1})=1$ and $\mathbf{f}^{*}(\mathbf{v}_{i})=0$
for $2\leq i\leq N$. This set is linearly independent because a linear
dependence among $\left\{ \mathbf{v}_{j}\right\} $,\[
0=\sum_{i=1}^{N}\lambda_{i}\mathbf{v}_{i}=\big(\lambda_{1}-\sum_{i=2}^{N}\lambda_{i}\mathbf{f}^{*}(\mathbf{w}_{i})\big)\mathbf{v}_{1}+\sum_{i=2}^{N}\lambda_{i}\mathbf{w}_{i},\]
 together with the linear independence of the basis $\left\{ \mathbf{v}_{1},\mathbf{w}_{2},...,\mathbf{w}_{N}\right\} $,
forces $\lambda_{i}=0$ for all $i\geq2$ and hence also $\lambda_{1}=0$.
Therefore, the set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is the required basis.

\textbf{(2)} If the set $\left\{ \mathbf{a},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
were linearly dependent,\[
\lambda\mathbf{a}+\sum_{j=2}^{N}\lambda_{j}\mathbf{v}_{j}=0,\]
with $\lambda_{j},\lambda$ not all zero, then we would have \[
\mathbf{f}^{*}\big(\lambda\mathbf{a}+\sum_{j=2}^{N}\lambda_{j}\mathbf{v}_{j}\big)=\lambda\mathbf{f}^{*}\left(\mathbf{a}\right)=0,\]
which forces $\lambda=0$ since by assumption $\mathbf{f}^{*}(\mathbf{a})\neq0$.
However, $\lambda=0$ entails\[
\sum_{j=2}^{N}\lambda_{j}\mathbf{v}_{j}=0,\]
with $\lambda_{j}$ not all zero, which contradicts the linear independence
of the set $\left\{ \mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $.\hfill{}$\blacksquare$


\paragraph{Exercise 2:}

Suppose that $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $,
$\mathbf{v}_{j}\in V$ is a linearly independent set (not necessarily
a basis). Prove that there exists at least one covector $\mathbf{f}^{*}\in V^{*}$
such that \[
\mathbf{f}^{*}(\mathbf{v}_{1})=1,\:\textrm{while}\:\mathbf{f}^{*}(\mathbf{v}_{2})=...=\mathbf{f}^{*}(\mathbf{v}_{k})=0.\]


\emph{Outline of proof:} The set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
can be completed to a basis in $V$, see Exercise~1 in Sec.~\ref{sub:All-bases-have}.
Then $\mathbf{f}^{*}$ is the covector dual to $\mathbf{v}_{1}$ in
that basis.


\paragraph{Exercise 3:}

Prove that the space dual to $V^{*}$ is canonically isomorphic to
$V$, i.e.~$V^{**}\cong V$ (for finite-dimen\-sion\-al $V$).

\emph{Hint:} Vectors $\mathbf{v}\in V$ can be thought of as linear
functions on $V^{*}$, defined by $\mathbf{v}(\mathbf{f}^{*})\equiv\mathbf{f}^{*}(\mathbf{v})$.
This provides a map $V\rightarrow V^{**}$, so the space $V$ is a
subspace of $V^{**}$. Show that this map is injective. The dimensions
of the spaces $V$, $V^{*}$, and $V^{**}$ are the same; deduce that
$V$ as a subspace of $V^{**}$ coincides with the whole space $V^{**}$. 


\subsection{Hyperplanes}

Covectors are convenient for characterizing hyperplanes.

Let us begin with a familiar example: In three dimensions, the set
of points with coordinate $x=0$ is a \emph{plane}. The set of points
whose coordinates satisfy the linear equation $x+2y-z=0$ is another
plane. 

Instead of writing a linear equation with coordinates, one can write
a covector applied to the vector of coordinates. For example, the
equation $x+2y-z=0$ can be rewritten as $\mathbf{f}^{*}(\mathbf{x})=0$,
where $\mathbf{x}\equiv\{x,y,z\}\in\mathbb{R}^{3}$, while the covector
$\mathbf{f}^{*}\in\left(\mathbb{R}^{3}\right)^{*}$ is expressed through
the dual basis $\left\{ \mathbf{e}_{j}^{*}\right\} $ as \[
\mathbf{f}^{*}\equiv\mathbf{e}_{1}^{*}+2\mathbf{e}_{2}^{*}-\mathbf{e}_{3}^{*}.\]


The generalization of this to $N$ dimensions is as follows.


\paragraph{Definition 1:}

The \textbf{hyperplane}\index{hyperplane} (i.e.~subspace of \textbf{codimension}
1) \textbf{annihilated by} a covector $\mathbf{f}^{*}\in V^{*}$ is
the set of all vectors $\mathbf{x}\in V$ such that $\mathbf{f}^{*}(\mathbf{x})=0$.
(Note that the zero vector, $\mathbf{x}=0$, belongs to the hyperplane.)


\paragraph{Statement:}

The hyperplane annihilated by a nonzero covector $\mathbf{f}^{*}$
is a subspace of $V$ of dimension $N-1$ (where $N\equiv\dim V$).


\subparagraph{Proof: }

It is clear that the hyperplane is a subspace of $V$ because for
any $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ in the hyperplane we have\[
\mathbf{f}^{*}(\mathbf{x}_{1}+\lambda\mathbf{x}_{2})=\mathbf{f}^{*}(\mathbf{x}_{1})+\lambda\mathbf{f}^{*}(\mathbf{x}_{2})=0.\]
Hence any linear combination of $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$
also belongs to the hyperplane, so the hyperplane is a subspace.

To determine the dimension of this subspace, we would like to construct
a basis for the hyperplane. Since $\mathbf{f}^{*}\in V^{*}$ is a
nonzero covector, there exists some vector $\mathbf{u}\in V$ such
that $\mathbf{f}^{*}\left(\mathbf{u}\right)\neq0$. (This vector does
not belong to the hyperplane.) The idea is to complete $\mathbf{u}$
to a basis $\{\mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$ in
$V$, such that $\mathbf{f}^{*}(\mathbf{u})\neq0$ but $\mathbf{f}^{*}(\mathbf{v}_{i})=0$;
then $\{\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$ will be a basis in
the hyperplane. To find such a basis $\{\mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$,
let us first complete $\mathbf{u}$ to \emph{some} basis $\{\mathbf{u},\mathbf{u}_{1},...,\mathbf{u}_{N-1}\}$.
Then we define $\mathbf{v}_{i}=\mathbf{u}_{i}-c_{i}\mathbf{u}$ with
appropriately chosen $c_{i}$. To achieve $\mathbf{f}^{*}(\mathbf{v}_{i})=0$,
we set\[
c_{i}=\frac{\mathbf{f}^{*}(\mathbf{u}_{i})}{\mathbf{f}^{*}(\mathbf{u})}.\]
 It remains to prove that $\left\{ \mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\right\} $
is again a basis. Applying $\mathbf{f}^{*}$ to a supposedly existing
vanishing linear combination,\[
\lambda\mathbf{u}+\sum_{i=1}^{N-1}\lambda_{i}\mathbf{v}_{i}=0,\]
we obtain $\lambda=0$. Expressing $\mathbf{v}_{i}$ through $\mathbf{u}$
and $\mathbf{u}_{i}$, we obtain a vanishing linear combination of
vectors $\{\mathbf{u},\mathbf{u}_{1},...,\mathbf{u}_{N-1}\}$ with
coefficients $\lambda_{i}$ at $\mathbf{u}_{i}$. Hence, all $\lambda_{i}$
are zero, and so the set $\{\mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$
is linearly independent and thus a basis in $V$.

Finally, we show that $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N-1}\right\} $
is a basis in the hyperplane. By construction, every $\mathbf{v}_{i}$
belongs to the hyperplane, and so does every linear combination of
the $\mathbf{v}_{i}$'s. It remains to show that every $\mathbf{x}$
such that $\mathbf{f}^{*}(\mathbf{x})=0$ can be expressed as a linear
combination of the $\left\{ \mathbf{v}_{j}\right\} $. For any such
$\mathbf{x}$ we have the decomposition in the basis$\left\{ \mathbf{u},\mathbf{v}_{1},...,\mathbf{v}_{N-1}\right\} $,\[
\mathbf{x}=\lambda\mathbf{u}+\sum_{i=1}^{N-1}\lambda_{i}\mathbf{v}_{i}.\]
Applying $\mathbf{f}^{*}$ to this, we find $\lambda=0$. Hence, $\mathbf{x}$
is a linear combination only of the $\left\{ \mathbf{v}_{j}\right\} $.
This shows that the set $\left\{ \mathbf{v}_{j}\right\} $ spans the
hyperplane. The set $\left\{ \mathbf{v}_{j}\right\} $ is linearly
independent since it is a subset of a basis in $V$. Hence, $\left\{ \mathbf{v}_{j}\right\} $
is a basis in the hyperplane. Therefore, the hyperplane has dimension
$N-1$.\hfill{}$\blacksquare$

Hyperplanes considered so far always contain the zero vector. Another
useful construction is that of an \emph{affine} hyperplane: Geometrically
speaking, this is a hyperplane that has been shifted away from the
origin.


\paragraph{Definition 2:}

An \textbf{affine hyperplane}\index{affine hyperplane} is the set
of all vectors $\mathbf{x}\in V$ such that $\mathbf{f}^{*}(\mathbf{x})=\alpha$,
where $\mathbf{f}^{*}\in V^{*}$ is nonzero, and $\alpha$ is a number.


\paragraph{Remark:}

An affine hyperplane with $\alpha\neq0$ is \emph{not} a subspace
of $V$ and may be described more constructively as follows. We first
obtain a basis $\{\mathbf{v}_{1},...,\mathbf{v}_{N-1}\}$ of the hyperplane
$\mathbf{f}^{*}(\mathbf{x})=0$, as described above. We then choose
some vector $\mathbf{u}$ such that $\mathbf{f}^{*}(\mathbf{u})\neq0$;
such a vector exists since $\mathbf{f}^{*}\neq0$. We can then multiply
$\mathbf{u}$ by a constant $\lambda$ such that $\mathbf{f}^{*}(\lambda\mathbf{u})=\alpha$,
that is, the vector $\lambda\mathbf{u}$ belongs to the affine hyperplane.
Now, every vector $\mathbf{x}$ of the form\[
\mathbf{x}=\lambda\mathbf{u}+\sum_{i=1}^{N-1}\lambda_{i}\mathbf{v}_{i},\]
with arbitrary $\lambda_{i}$, belongs to the hyperplane since $\mathbf{f}^{*}(\mathbf{x})=\alpha$
by construction. Thus, the set $\{\mathbf{x}\,|\,\mathbf{f}^{*}(\mathbf{x})=\alpha\}$
is a hyperplane drawn through $\lambda\mathbf{u}$ parallel to the
vectors $\left\{ \mathbf{v}_{i}\right\} $. Affine hyperplanes described
by the same covector $\mathbf{f}^{*}$ but with different values of
$\alpha$ will differ only in the choice of the initial vector $\lambda\mathbf{u}$
and thus are parallel to each other, in the geometric sense.


\paragraph{Exercise: Intersection of many hyperplanes.}

a) Suppose $\mathbf{f}_{1}^{*},...,\mathbf{f}_{k}^{*}\in V$. Show
that the set of all vectors $\mathbf{x}\in V$ such that $\mathbf{f}_{i}^{*}(\mathbf{x})=0$
($i=1,...k$) is a subspace of $V$. 

b){*} Show that the dimension of that subspace is equal to $N-k$
(where $N\equiv\text{dim}V$) if the set $\{\mathbf{f}_{1}^{*},...,\mathbf{f}_{k}^{*}\}$
is linearly independent.


\section{Tensor product of vector spaces}

The tensor product is an abstract construction which is important
in many applications. The motivation is that we would like to define
a product of vectors, $\mathbf{u}\otimes\mathbf{v}$, which behaves
as we expect a product to behave, e.g. \[
\left(\mathbf{a}+\lambda\mathbf{b}\right)\otimes\mathbf{c}=\mathbf{a}\otimes\mathbf{c}+\lambda\mathbf{b}\otimes\mathbf{c},\quad\forall\lambda\in\mathbb{K},\:\forall\mathbf{a},\mathbf{b},\mathbf{c}\in V,\]
and the same with respect to the second vector. This property is called
\textbf{bilinearity}. A {}``trivial'' product would be $\mathbf{a}\otimes\mathbf{b}=0$
for all $\mathbf{a},\mathbf{b}$; of course, this product has the
bilinearity property but is useless. It turns out to be impossible
to define a nontrivial product of vectors in a general vector space,
such that the result is again a vector in the same space.%
\footnote{The impossibility of this is proved in abstract algebra but I do not
know the proof.%
} The solution is to define a product of vectors so that the resulting
object $\mathbf{u}\otimes\mathbf{v}$ is not a vector from $V$ but
an element of \emph{another} \emph{space}. This space is constructed
in the following definition.


\paragraph{Definition:}

Suppose $V$ and $W$ are two vector spaces over a field $\mathbb{K}$;
then one defines a new vector space, which is called the \textbf{tensor\index{tensor product}
product} of $V$ and $W$ and denoted by $V\otimes W$. This is the
space of \emph{expressions} of the form\begin{equation}
\mathbf{v}_{1}\otimes\mathbf{w}_{1}+...+\mathbf{v}_{n}\otimes\mathbf{w}_{n},\label{eq:VW product repre}\end{equation}
where $\mathbf{v}_{i}\in V$, $\mathbf{w}_{i}\in W$. The plus sign
behaves as usual (commutative and associative). The symbol $\otimes$
is a special separator symbol. Further, we postulate that the following
combinations are equal,\begin{align}
\lambda\left(\mathbf{v}\otimes\mathbf{w}\right) & =\left(\lambda\mathbf{v}\right)\otimes\mathbf{w}=\mathbf{v}\otimes\left(\lambda\mathbf{w}\right),\label{eq:tp props 0}\\
\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\otimes\mathbf{w} & =\mathbf{v}_{1}\otimes\mathbf{w}+\mathbf{v}_{2}\otimes\mathbf{w},\label{eq:tp props 1}\\
\mathbf{v}\otimes\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right) & =\mathbf{v}\otimes\mathbf{w}_{1}+\mathbf{v}\otimes\mathbf{w}_{2},\label{eq:tp props 2}\end{align}
for any vectors $\mathbf{v},\mathbf{w},\mathbf{v}_{1,2},\mathbf{w}_{1,2}$
and for any constant $\lambda$. (One could say that the symbol $\otimes$
{}``behaves as a noncommutative product sign''.) The expression
$\mathbf{v}\otimes\mathbf{w}$, which is by definition an element
of $V\otimes W$, is called the \textbf{tensor product} of vectors
$\mathbf{v}$ and $\mathbf{w}$. In the space $V\otimes W$, the operations
of addition and multiplication by scalars are defined in the natural
way. Elements of the tensor product space are called \textbf{tensors}.


\paragraph{Question: }

The set $V\otimes W$ is a vector space. What is the zero vector in
that space?


\subparagraph{Answer:}

Since $V\otimes W$ is a vector space, the zero element $0\in V\otimes W$
can be obtained by multiplying any other element of $V\otimes W$
by the number $0$. So, according to Eq.~(\ref{eq:tp props 0}),
we have $0=0\left(\mathbf{v}\otimes\mathbf{w}\right)=\left(0\mathbf{v}\right)\otimes\mathbf{w}=0\otimes\mathbf{w}=0\otimes(0\mathbf{w})=0\otimes0$.
In other words, the zero element is represented by the tensor $0\otimes0$.
It will not cause confusion if we simply write $0$ for this zero
tensor.\hfill{}$\blacksquare$

Generally, one calls something a \textbf{tensor}\index{tensor} if
it belongs to a space that was previously defined as a tensor product
of some other vector spaces\textsl{.}

According to the above definition, we may perform calculations with
the tensor product expressions by expanding brackets or moving scalar
factors, as if $\otimes$ is a kind of multiplication. For example,
if $\mathbf{v}_{i}\in V$ and $\mathbf{w}_{i}\in W$ then\begin{align*}
\frac{1}{3}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\otimes\left(\mathbf{w}_{1}-2\mathbf{w}_{2}\right) & =\frac{1}{3}\mathbf{v}_{1}\otimes\mathbf{w}_{1}-\frac{1}{3}\mathbf{v}_{2}\otimes\mathbf{w}_{1}\\
 & -\frac{2}{3}\mathbf{v}_{1}\otimes\mathbf{w}_{2}+\frac{2}{3}\mathbf{v}_{2}\otimes\mathbf{w}_{2}.\end{align*}
Note that we cannot simplify this expression any further, because
by definition \emph{no other combinations} of tensor products are
equal \emph{except} those specified in Eqs.~(\ref{eq:tp props 0})--(\ref{eq:tp props 2}).
This calculation illustrates that $\otimes$ is a formal symbol, so
in particular $\mathbf{v}\otimes\mathbf{w}$ is not a new vector from
$V$ or from $W$ but is a new entity, an element of a new vector
space that we just defined. 


\paragraph{Question:}

The logic behind the operation $\otimes$ is still unclear. How could
we write the properties~(\ref{eq:tp props 0})--(\ref{eq:tp props 2})
if the operation $\otimes$ was not yet defined?


\subparagraph{Answer:}

We actually \emph{define} the operation $\otimes$ through these properties.
In other words, the object $\mathbf{a}\otimes\mathbf{b}$ is defined
as an expression with which one may perform certain manipulations.
Here is a more formal definition of the tensor product space. We first
consider the space of \emph{all} formal linear combinations\[
\lambda_{1}\mathbf{v}_{1}\otimes\mathbf{w}_{1}+...+\lambda_{n}\mathbf{v}_{n}\otimes\mathbf{w}_{n},\]
which is a very large vector space. Then we introduce equivalence
relations expressed by Eqs.~(\ref{eq:tp props 0})--(\ref{eq:tp props 2}).
The space $V\otimes W$ is, by definition, the set of equivalence
classes of linear combinations with respect to these relations. Representatives
of these equivalence classes may be written in the form~(\ref{eq:VW product repre})
and calculations can be performed using only the axioms~(\ref{eq:tp props 0})--(\ref{eq:tp props 2}).\hfill{}$\blacksquare$

Note that $\mathbf{v}\otimes\mathbf{w}$ is generally different from
$\mathbf{w}\otimes\mathbf{v}$ because the vectors $\mathbf{v}$ and
$\mathbf{w}$ can belong to different vector spaces. Pedantically,
one can also define the tensor product space $W\otimes V$ and then
demonstrate a canonical isomorphism $V\otimes W\cong W\otimes V$. 


\paragraph{Exercise:}

Prove that the spaces $V\otimes W$ and $W\otimes V$ are canonically
isomorphic.


\subparagraph{Answer:}

A canonical isomorphism will map the expression $\mathbf{v}\otimes\mathbf{w}\in V\otimes W$
into $\mathbf{w}\otimes\mathbf{v}\in W\otimes V$.\hfill{}$\blacksquare$

The representation of a tensor $A\in V\otimes W$ in the form~(\ref{eq:VW product repre})
is \emph{not} \emph{unique}, i.e.~there may be many possible choices
of the vectors $\mathbf{v}_{j}$ and $\mathbf{w}_{j}$ that give the
same tensor $A$. For example,\begin{align*}
A & \equiv\mathbf{v}_{1}\otimes\mathbf{w}_{1}+\mathbf{v}_{2}\otimes\mathbf{w}_{2}=\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\otimes\mathbf{w}_{1}+\mathbf{v}_{2}\otimes\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right).\end{align*}
This is quite similar to the identity $2+3=(2-1)+(3+1)$, except that
in this case we can simplify $2+3=5$ while in the tensor product
space no such simplification is possible. I stress that two tensor
expressions $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}$ and $\sum_{k}\mathbf{v}_{k}^{\prime}\otimes\mathbf{w}_{k}^{\prime}$
are equal \emph{only if} they can be related by a chain of identities
of the form~(\ref{eq:tp props 0})--(\ref{eq:tp props 2}); such
are the axioms of the tensor product.


\subsection{First examples}


\paragraph{Example 1: polynomials.}

Let $V$ be the space of polynomials having a degree $\leq2$ in the
variable $x$, and let $W$ be the space of polynomials of degree
$\leq2$ in the variable $y$. We consider the tensor product of the
elements $p(x)=1+x$ and $q(y)=y^{2}-2y$. Expanding the tensor product
according to the axioms, we find\[
\left(1+x\right)\otimes\left(y^{2}-2y\right)=1\otimes y^{2}-1\otimes2y+x\otimes y^{2}-x\otimes2y.\]
Let us compare this with the formula we would obtain by multiplying
the polynomials in the conventional way,\[
\left(1+x\right)\left(y^{2}-2y\right)=y^{2}-2y+xy^{2}-2xy.\]
Note that $1\otimes2y=2\otimes y$ and $x\otimes2y=2x\otimes y$ according
to the axioms of the tensor product. So we can see that the tensor
product space $V\otimes W$ has a natural interpretation through the
algebra of polynomials. The space $V\otimes W$ can be visualized
as the space of polynomials in both $x$ and $y$ of degree at most
$2$ in each variable. To make this interpretation precise, we can
construct a canonical isomorphism between the space $V\otimes W$
and the space of polynomials in $x$ and $y$ of degree at most $2$
in each variable. The isomorphism maps the tensor $p(x)\otimes q(y)$
to the polynomial $p(x)q(y)$.


\paragraph{Example 2: ${\mathbb{R}^{3}\otimes\mathbb{C}}$.}

Let $V$ be the three-dimen\-sion\-al space $\mathbb{R}^{3}$, and
let $W$ be the set of all complex numbers $\mathbb{C}$ considered
as a vector space over $\mathbb{R}$. Then the tensor product of $V$
and $W$ is, by definition, the space of combinations of the form\[
\left(x_{1},y_{1},z_{1}\right)\otimes\left(a_{1}+b_{1}\text{i}\right)+\left(x_{2},y_{2},z_{2}\right)\otimes\left(a_{2}+b_{2}\text{i}\right)+...\]
Here {}``i'' can be treated as a formal symbol; of course we know
that $\text{i}^{2}=-1$, but our vector spaces are over $\mathbb{R}$
and so we will not need to \emph{multiply} complex numbers when we
perform calculations in these spaces. Since\begin{align*}
\left(x,y,z\right)\otimes\left(a+b\text{i}\right) & =\left(ax,ay,az\right)\otimes1+\left(bx,by,bz\right)\otimes\text{i},\end{align*}
any element of ${\mathbb{R}^{3}\otimes\mathbb{C}}$ can be represented
by the expression $\mathbf{v}_{1}\otimes1+\mathbf{v}_{2}\otimes\text{i}$,
where $\mathbf{v}_{1,2}\in\mathbb{R}^{3}$. For brevity one can write
such expressions as $\mathbf{v}_{1}+\mathbf{v}_{2}\text{i}$. One
also writes ${\mathbb{R}^{3}\otimes_{\mathbb{R}}\mathbb{C}}$ to emphasize
the fact that it is a space over $\mathbb{R}$. In other words, ${\mathbb{R}^{3}\otimes_{\mathbb{R}}\mathbb{C}}$
is the space of three-dimen\-sion\-al vectors {}``with complex
coefficients.''  This space is six-dimen\-sion\-al.


\paragraph{Exercise:}

We can consider ${\mathbb{R}^{3}\otimes_{\mathbb{R}}\mathbb{C}}$
as a vector space over $\mathbb{C}$ if we define the multiplication
by a complex number $\lambda$ by $\lambda(\mathbf{v}\otimes z)\equiv\mathbf{v}\otimes(\lambda z)$
for $\mathbf{v}\in V$ and $\lambda,z\in\mathbb{C}$. Compute explicitly
\[
\lambda\left(\mathbf{v}_{1}\otimes1+\mathbf{v}_{2}\otimes\text{i}\right)=?\]
 Determine the dimension of the space ${\mathbb{R}^{3}\otimes_{\mathbb{R}}\mathbb{C}}$
when viewed as a vector space over $\mathbb{C}$ in this way.


\paragraph{Example 3: $V\otimes\mathbb{K}$ is isomorphic to $V$.}

Since $\mathbb{K}$ is a vector space over itself, we can consider
the tensor product of $V$ and $\mathbb{K}$. However, nothing is
gained: the space $V\otimes\mathbb{K}$ is canonically isomorphic
to $V$. This can be easily verified: an element $\mathbf{x}$ of
$V\otimes\mathbb{K}$ is by definition an expression of the form $\mathbf{x}=\mathbf{v}_{1}\otimes\lambda_{1}+...+\mathbf{v}_{n}\otimes\lambda_{n}$,
however, it follows from the axiom~(\ref{eq:tp props 0})  that $\mathbf{v}_{1}\otimes\lambda_{1}=\left(\lambda_{1}\mathbf{v}_{1}\right)\otimes1$,
therefore $\mathbf{x}=\left(\lambda_{1}\mathbf{v}_{1}+...+\lambda_{n}\mathbf{v}_{n}\right)\otimes1$.
Thus for any $\mathbf{x}\in V\otimes\mathbb{K}$ there exists a unique
$\mathbf{v}\in V$ such that $\mathbf{x}=\mathbf{v}\otimes1$. In
other words, there is a canonical isomorphism $V\rightarrow V\otimes\mathbb{K}$
which maps $\mathbf{v}$ into $\mathbf{v}\otimes1$. 


\subsection{Example: $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$\label{sub:Example:mn}}

Let $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{m}\right\} $ and $\left\{ \mathbf{f}_{1},...,\mathbf{f}_{n}\right\} $
be the standard bases in $\mathbb{R}^{m}$ and $\mathbb{R}^{n}$ respectively.
The vector space $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$ consists,
by definition, of expressions of the form\[
\mathbf{v}_{1}\otimes\mathbf{w}_{1}+...+\mathbf{v}_{k}\otimes\mathbf{w}_{k}=\sum_{i=1}^{k}\mathbf{v}_{i}\otimes\mathbf{w}_{i},\quad\mathbf{v}_{i}\in\mathbb{R}^{m},\,\mathbf{w}_{i}\in\mathbb{R}^{n}.\]
The vectors $\mathbf{v}_{i},\mathbf{w}_{i}$ can be decomposed as
follows,\begin{equation}
\mathbf{v}_{i}=\sum_{j=1}^{m}\lambda_{ij}\mathbf{e}_{j},\quad\mathbf{w}_{i}=\sum_{l=1}^{n}\mu_{il}\mathbf{f}_{l},\label{eq:v w expr}\end{equation}
where $\lambda_{ij}$ and $\mu_{ij}$ are some coefficients. Then\begin{align*}
\sum_{i=1}^{k}\mathbf{v}_{i}\otimes\mathbf{w}_{i} & =\sum_{i=1}^{k}\left(\sum_{j=1}^{m}\lambda_{ij}\mathbf{e}_{j}\right)\otimes\left(\sum_{l=1}^{n}\mu_{il}\mathbf{f}_{l}\right)\\
 & =\sum_{j=1}^{m}\sum_{l=1}^{n}\left(\sum_{i=1}^{k}\lambda_{ij}\mu_{il}\right)\left(\mathbf{e}_{j}\otimes\mathbf{f}_{l}\right)\\
 & =\sum_{j=1}^{m}\sum_{l=1}^{n}C_{jl}\mathbf{e}_{j}\otimes\mathbf{f}_{l},\end{align*}
where $C_{jl}\equiv\sum_{i=1}^{k}\lambda_{ij}\mu_{il}$ is a certain
set of numbers. In other words, an arbitrary element of $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
can be expressed as a linear combination of $\mathbf{e}_{j}\otimes\mathbf{f}_{l}$.
In Sec.~\ref{sub:Dimension-of-tensor} (after some preparatory work)
we will prove that the the set of tensors \[
\left\{ \mathbf{e}_{j}\otimes\mathbf{f}_{l}\,|\,1\leq j\leq m,1\leq l\leq n\right\} \]
 is linearly independent and therefore is a basis in the space $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$.
It follows that the space $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$ has
dimension $mn$ and that elements of $\mathbb{R}^{m}\otimes\mathbb{R}^{n}$
can be represented by \emph{rectangular tables} of components $C_{jl}$,
where $1\leq j\leq m$, $1\leq l\leq n$. In other words, the space
$\mathbb{R}^{m}\otimes\mathbb{R}^{n}$ is isomorphic to the linear
space of rectangular $m\times n$ matrices with coefficients from
$\mathbb{K}$. This isomorphism is \emph{not} \emph{canonical} because
the components $C_{jl}$ depend on the choice of the bases $\left\{ \mathbf{e}_{j}\right\} $
and $\left\{ \mathbf{f}_{j}\right\} $.


\subsection{Dimension of tensor product is the product of dimensions\label{sub:Dimension-of-tensor}}

We have seen above that the dimension of a direct sum $V\oplus W$
is the sum of dimensions of $V$ and of $W$. Now the analogous statement:
The dimension of a tensor product space $V\otimes W$ is equal to
$\dim V\cdot\dim W$. 

To prove this statement, we will explicitly construct a basis in $V\otimes W$
out of two given bases in $V$ and in $W$. Throughout this section,
we consider finite-dimen\-sion\-al vector spaces $V$ and $W$ and
vectors $\mathbf{v}_{j}\in V$, $\mathbf{w}_{j}\in W$.


\paragraph{Lemma 1:}

\textbf{a)} If $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{m}\right\} $
and $\left\{ \mathbf{w}_{1},...,\mathbf{w}_{n}\right\} $ are two
bases in their respective spaces then any element $A\in V\otimes W$
can be expressed as a linear combination of the form\[
A=\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}\]
with some coefficients $\lambda_{jk}$.

\textbf{b)} Any tensor $A\in V\otimes W$ can be written as a linear
combination $A=\sum_{k}\mathbf{a}_{k}\otimes\mathbf{b}_{k}$, where
$\mathbf{a}_{k}\in V$ and $\mathbf{b}_{k}\in W$, with at most $\min\left(m,n\right)$
terms in the sum.


\subparagraph{Proof:}

\textbf{a)} The required decomposition was given in Example~\ref{sub:Example:mn}. 

\textbf{b)} We can group the $n$ terms $\lambda_{jk}\mathbf{w}_{k}$
into new vectors $\mathbf{b}_{j}$ and obtain the required formula
with $m$ terms:\[
A=\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}=\sum_{j=1}^{m}\mathbf{v}_{j}\otimes\mathbf{b}_{j},\quad\mathbf{b}_{j}\equiv\sum_{k=1}^{n}\lambda_{jk}\mathbf{w}_{k}.\]
I will call this formula the \textbf{decomposition} of the tensor
$A$ in the basis $\left\{ \mathbf{v}_{j}\right\} $. Since a similar
decomposition with $n$ terms exists for the basis $\left\{ \mathbf{w}_{k}\right\} $,
it follows that $A$ has a decomposition with at most $\min\left(m,n\right)$
terms (not all terms in the decomposition need to be nonzero).\hfill{}$\blacksquare$

We have proved that the set $\left\{ \mathbf{v}_{j}\otimes\mathbf{w}_{k}\right\} $
allows us to express any tensor $A$ as a linear combination; in other
words, the set \[
\left\{ \mathbf{v}_{j}\otimes\mathbf{w}_{k}\,|\,1\leq j\leq m,\,1\leq k\leq n\right\} \]
 spans the space $V\otimes W$. This set will be a basis in $V\otimes W$
if it is linearly independent, which we have not yet proved. This
is a somewhat subtle point; indeed, how do we show that there exists
no linear dependence, say, of the form \textbf{\[
\lambda_{1}\mathbf{v}_{1}\otimes\mathbf{w}_{1}+\lambda_{2}\mathbf{v}_{2}\otimes\mathbf{w}_{2}=0\]
}with some nonzero coefficients $\lambda_{i}$? Is it perhaps possible
to juggle tensor products to obtain such a relation? The answer is
negative, but the proof is a bit circumspect. We will use covectors
from $V^{*}$ in a nontraditional way, namely not as linear maps $V\rightarrow\mathbb{K}$
but as maps $V\otimes W\rightarrow W$.


\paragraph{Lemma 2:}

If $\mathbf{f}^{*}\in V^{*}$ is any covector, we define the map $\mathbf{f}^{*}:V\otimes W\rightarrow W$
(tensors into vectors) by the formula\begin{equation}
\mathbf{f}^{*}\big(\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}\big)\equiv\sum_{k}\mathbf{f}^{*}\left(\mathbf{v}_{k}\right)\mathbf{w}_{k}.\label{eq:fg rule}\end{equation}
Then this map is a linear map $V\otimes W\rightarrow W$.


\subparagraph{Proof:}

The formula~(\ref{eq:fg rule}) defines the map explicitly (and canonically!).
It is easy to see that any linear combinations of tensors are mapped
into the corresponding linear combinations of vectors,\[
\mathbf{f}^{*}\left(\mathbf{v}_{k}\otimes\mathbf{w}_{k}+\lambda\mathbf{v}_{k}^{\prime}\otimes\mathbf{w}_{k}^{\prime}\right)=\mathbf{f}^{*}\left(\mathbf{v}_{k}\right)\mathbf{w}_{k}+\lambda\mathbf{f}^{*}\left(\mathbf{v}_{k}^{\prime}\right)\mathbf{w}_{k}^{\prime}.\]
This follows from the definition~(\ref{eq:fg rule}) and the linearity
of the map $\mathbf{f}^{*}$. However, there is one potential problem:
there exist \emph{many} representations of an element $A\in V\otimes W$
as an expression of the form $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}$
with different choices of $\mathbf{v}_{k},\mathbf{w}_{k}$. Thus we
need to show that the map $\mathbf{f}^{*}$ is well-defined by Eq.~(\ref{eq:fg rule}),
i.e.~that $\mathbf{f}^{*}(A)$ is always the same vector regardless
of the choice of the vectors $\mathbf{v}_{k}$ and $\mathbf{w}_{k}$
used to represent $A$ as $A=\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}$.
Recall that different expressions of the form $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}$
can be equal as a consequence of the axioms~(\ref{eq:tp props 0})--(\ref{eq:tp props 2}).

In other words, we need to prove that a tensor equality\begin{equation}
\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}=\sum_{k}\mathbf{v}_{k}^{\prime}\otimes\mathbf{w}_{k}^{\prime}\label{eq:vw equal}\end{equation}
entails\[
\mathbf{f}^{*}\big(\sum_{k}\mathbf{v}_{k}\otimes\mathbf{w}_{k}\big)=\mathbf{f}^{*}\big(\sum_{k}\mathbf{v}_{k}^{\prime}\otimes\mathbf{w}_{k}^{\prime}\big).\]
 To prove this, we need to use the definition of the tensor product.
Two expressions in Eq.~(\ref{eq:vw equal}) can be equal \emph{only}
if they are related by a chain of identities of the form~(\ref{eq:tp props 0})--(\ref{eq:tp props 2}),
therefore it is sufficient to prove that the map $\mathbf{f}^{*}$
transforms both sides of each of those identities into the same vector.
This is verified by explicit calculations, for example we need to
check that\begin{align*}
\mathbf{f}^{*}\left(\lambda\mathbf{v}\otimes\mathbf{w}\right) & =\lambda\mathbf{f}^{*}\left(\mathbf{v}\otimes\mathbf{w}\right),\\
\mathbf{f}^{*}\left[\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\otimes\mathbf{w}\right] & =\mathbf{f}^{*}\left(\mathbf{v}_{1}\otimes\mathbf{w}\right)+\mathbf{f}^{*}\left(\mathbf{v}_{2}\otimes\mathbf{w}\right),\\
\mathbf{f}^{*}\left[\mathbf{v}\otimes\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)\right] & =\mathbf{f}^{*}\left(\mathbf{v}\otimes\mathbf{w}_{1}\right)+\mathbf{f}^{*}\left(\mathbf{v}\otimes\mathbf{w}_{2}\right).\end{align*}
These simple calculations look tautological, so please check that
you can do them and explain why they are necessary for this proof.\hfill{}$\blacksquare$


\paragraph{Lemma 3:}

If $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{m}\right\} $ and $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
are two linearly independent sets in their respective spaces then
the set \[
\left\{ \mathbf{v}_{j}\otimes\mathbf{w}_{k}\right\} \equiv\left\{ \mathbf{v}_{1}\otimes\mathbf{w}_{1},\mathbf{v}_{1}\otimes\mathbf{w}_{2},...,\mathbf{v}_{m}\otimes\mathbf{w}_{n-1},\mathbf{v}_{m}\otimes\mathbf{w}_{n}\right\} \]
is linearly independent in the space $V\otimes W$.


\subparagraph{Proof:}

We need to prove that a vanishing linear combination \begin{equation}
\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}=0\label{eq:comb1 vw}\end{equation}
is possible only if all $\lambda_{jk}=0$. Let us choose some fixed
value $j_{1}$; we will now prove that $\lambda_{j_{1}k}=0$ for all
$k$. By the result of Exercise~1 in Sec.~\ref{sub:Dual-vector-space}
there exists a covector $\mathbf{f}^{*}\in V^{*}$ such that $\mathbf{f}^{*}\left(\mathbf{v}_{j}\right)=\delta_{j_{1}j}$
for $j=1,...,n$. Then we apply the map $\mathbf{f}^{*}:V\otimes W\rightarrow W$
defined in Lemma~1 to Eq.~(\ref{eq:comb1 vw}). On the one hand,
it follows from Eq.~(\ref{eq:comb1 vw}) that\[
\mathbf{f}^{*}\big[\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}\big]=\mathbf{f}^{*}\left(0\right)=0.\]
On the other hand, by definition of the map $\mathbf{f}^{*}$ we have\begin{align*}
\mathbf{f}^{*}\big[\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{v}_{j}\otimes\mathbf{w}_{k}\big] & =\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\mathbf{f}^{*}\left(\mathbf{v}_{j}\right)\mathbf{w}_{k}\\
 & =\sum_{j=1}^{m}\sum_{k=1}^{n}\lambda_{jk}\delta_{j_{1}j}\mathbf{w}_{k}=\sum_{k=1}^{n}\lambda_{j_{1}k}\mathbf{w}_{k}.\end{align*}
Therefore $\sum_{k}\lambda_{j_{1}k}\mathbf{w}_{k}=0$. Since the set
$\left\{ \mathbf{w}_{k}\right\} $ is linearly independent, we must
have $\lambda_{j_{1}k}=0$ for all $k=1,...,n$.\hfill{}$\blacksquare$

Now we are ready to prove the main statement of this section.


\paragraph{Theorem:}

If $V$ and $W$ are finite-dimen\-sion\-al vector spaces then \[
\dim\left(V\otimes W\right)=\dim V\cdot\dim W.\]



\subparagraph{Proof:}

By definition of dimension, there exist linearly independent sets
of $m\equiv\dim V$ vectors in $V$ and of $n\equiv\dim W$ vectors
in $W$, and by the basis theorem these sets are bases in $V$ and
$W$ respectively. By Lemma~1 the set of $mn$ elements $\left\{ \mathbf{v}_{j}\otimes\mathbf{w}_{k}\right\} $
spans the space $V\otimes W$, and by Lemma~3 this set is linearly
independent. Therefore this set is a basis. Hence, there are no linearly
independent sets of $mn+1$ elements in $V\otimes W$, so $\dim\left(V\otimes W\right)=mn$.\hfill{}$\blacksquare$


\subsection{Higher-rank tensor products}

The tensor product of several spaces is defined similarly, e.g.~$U\otimes V\otimes W$
is the space of expressions of the form\[
\mathbf{u}_{1}\otimes\mathbf{v}_{1}\otimes\mathbf{w}_{1}+...+\mathbf{u}_{n}\otimes\mathbf{v}_{n}\otimes\mathbf{w}_{n},\quad\mathbf{u}_{i},\mathbf{v}_{i},\mathbf{w}_{i}\in V.\]
Alternatively (and equivalently) one can define the space $U\otimes V\otimes W$
as the tensor product of the spaces $U\otimes V$ and $W$.


\paragraph{Exercise$^{*}$:}

Prove that $(U\otimes V)\otimes W\cong U\otimes(V\otimes W)$.


\paragraph{Definition: }

If we only work with one space $V$ and if all other spaces are constructed
out of $V$ and $V^{*}$ using the tensor product, then we only need
spaces of the form \[
\underbrace{V\otimes...\otimes V}_{m}\otimes\underbrace{V^{*}\otimes...\otimes V^{*}}_{n}.\]
Elements of such spaces are called \textbf{tensors of} \textbf{rank}
$(m,n)$. For example, vectors $\mathbf{v}\in V$ have rank $\left(1,0\right)$,
covectors $\mathbf{f}^{*}\in V^{*}$ have rank $\left(0,1\right)$,
tensors from $V\otimes V^{*}$ have rank $\left(1,1\right)$, tensors
from $V\otimes V$ have rank $\left(2,0\right)$, and so on. Scalars
from $\mathbb{K}$ have rank $\left(0,0\right)$. 

In many applications, the spaces $V$ and $V^{*}$ are identified
(e.g.~using a scalar product; see below). In that case, the rank
is reduced to a single number --- the sum of $m$ and $n$. Thus,
in this simplified counting, tensors from $V\otimes V^{*}$ as well
as tensors from $V\otimes V$ have rank 2.


\subsection{{*} Distributivity of tensor product}

We have two operations that build new vector spaces out of old ones:
the direct sum $V\oplus W$ and the tensor product $V\otimes W$.
Is there something like the formula $\left(U\oplus V\right)\otimes W\cong\left(U\otimes W\right)\oplus\left(V\otimes W\right)$?
The answer is positive. I will not need this construction below; this
is just another example of how different spaces are related by a canonical
isomorphism.


\paragraph{Statement:}

The spaces $\left(U\oplus V\right)\otimes W$ and $\left(U\otimes W\right)\oplus\left(V\otimes W\right)$
are canonically isomorphic.


\subparagraph{Proof:}

An element $\left(\mathbf{u},\mathbf{v}\right)\otimes\mathbf{w}\in\left(U\oplus V\right)\otimes W$
is mapped into the pair $\left(\mathbf{u}\otimes\mathbf{w},\mathbf{v}\otimes\mathbf{w}\right)\in\left(U\otimes W\right)\oplus\left(V\otimes W\right)$.
It is easy to see that this map is a canonical isomorphism. I leave
the details to you.\hfill{}$\blacksquare$


\paragraph{Exercise:}

Let $U$, $V$, and $W$ be some vector spaces. Demonstrate the following
canonical isomorphisms:\begin{align*}
\left(U\oplus V\right)^{*} & \cong U^{*}\oplus V^{*},\\
\left(U\otimes V\right)^{*} & \cong U^{*}\otimes V^{*}.\end{align*}



\section{Linear maps and tensors\label{sub:Linear-operators-as}}

The tensor product construction may appear an abstract plaything at
this point, but in fact it is a universal tool to describe linear
maps.

We have seen that the set of all linear operators $\hat{A}:V\rightarrow V$
is a vector space because one can naturally define the sum of two
operators and the product of a number and an operator. This vector
space is called the space of \textbf{endomorphisms} of $V$ and denoted
by $\textrm{End }V$. 

In this section I will show that linear operators can be thought of
as elements of the space $V\otimes V^{*}$. This gives a convenient
way to represent a linear operator by a coordinate-free formula. Later
we will see that the space $\textrm{Hom}\left(V,W\right)$ of linear
maps $V\rightarrow W$ is canonically isomorphic to $W\otimes V^{*}$.


\subsection{Tensors as linear operators}

First, we will show that any tensor from the space $V\otimes V^{*}$
acts as a linear map $V\rightarrow V$.


\paragraph{Lemma:}

A tensor $A\in V\otimes V^{*}$ expressed as\[
A\equiv\sum_{j=1}^{k}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}\]
 defines a linear operator $\hat{A}:V\rightarrow V$ according to
the formula\begin{equation}
\hat{A}\mathbf{x}\equiv\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{x})\,\mathbf{v}_{j}.\label{eq:Ax action}\end{equation}



\subparagraph{Proof:}

Compare this linear map with the linear map defined in Eq.~(\ref{eq:fg rule}),
Lemma~2 of Sec.~\ref{sub:Dimension-of-tensor}. We need to prove
two statements: 

(1) The transformation is linear, $\hat{A}(\mathbf{x}+\lambda\mathbf{y})=\hat{A}\mathbf{x}+\lambda\hat{A}\mathbf{y}$.

(2) The operator $\hat{A}$ does not depend on the decomposition of
the tensor $A$ using particular vectors $\mathbf{v}_{j}$ and covectors
$\mathbf{f}_{j}^{*}$: two decompositions of the tensor $A$,\[
A=\sum_{j=1}^{k}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}=\sum_{j=1}^{l}\mathbf{w}_{j}\otimes\mathbf{g}_{j}^{*},\]
yield the same operator,\[
\hat{A}\mathbf{x}=\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{x})\,\mathbf{v}_{j}=\sum_{j=1}^{l}\mathbf{g}_{j}^{*}(\mathbf{x})\,\mathbf{w}_{j},\quad\forall\mathbf{x}.\]


The first statement, $\hat{A}\left(\mathbf{x}+\lambda\mathbf{y}\right)=\hat{A}\mathbf{x}+\lambda\hat{A}\mathbf{y}$,
follows from the linearity of $\mathbf{f}_{j}^{*}$ as a map $V\rightarrow\mathbb{K}$
and is easy to verify by explicit calculation:\begin{align*}
\hat{A}(\mathbf{x}+\lambda\mathbf{y}) & =\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{x}+\lambda\mathbf{y})\,\mathbf{v}_{j}\\
 & =\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{x})\,\mathbf{v}_{j}+\lambda\sum_{j=1}^{k}\mathbf{f}_{j}^{*}(\mathbf{y})\,\mathbf{v}_{j}\\
 & =\hat{A}\mathbf{x}+\lambda\hat{A}\mathbf{y}.\end{align*}
The second statement is proved using the axioms~(\ref{eq:tp props 0})--(\ref{eq:tp props 2})
of the tensor product. Two different expressions for the tensor $A$
can be equal only if they are related through the axioms~(\ref{eq:tp props 0})--(\ref{eq:tp props 2}).
So it suffices to check that the operator $\hat{A}$ remains unchanged
when we use each of the three axioms to replace $\sum_{j=1}^{k}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}$
by an equivalent tensor expression. Let us check the first axiom:
We need to compare the action of $\sum_{j}\left(\mathbf{u}_{j}+\mathbf{v}_{j}\right)\otimes\mathbf{f}_{j}^{*}$
on a vector $\mathbf{x}\in V$ and the action of the sum of $\sum_{j}\mathbf{u}_{j}\otimes\mathbf{f}_{j}^{*}$
and $\sum_{j}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}$ on the same
vector:\begin{align*}
\hat{A}\mathbf{x} & =\bigg[\sum_{j}\left(\mathbf{u}_{j}+\mathbf{v}_{j}\right)\otimes\mathbf{f}_{j}^{*}\bigg]\mathbf{x}\\
 & =\sum_{j}\mathbf{f}_{j}^{*}\left(\mathbf{x}\right)\left(\mathbf{u}_{j}+\mathbf{v}_{j}\right)\\
 & =\bigg[\sum_{j}\mathbf{u}_{j}\otimes\mathbf{f}_{j}^{*}\bigg]\mathbf{x}+\bigg[\sum_{j}\mathbf{v}_{j}\otimes\mathbf{f}_{j}^{*}\bigg]\mathbf{x}.\end{align*}
The action of $\hat{A}$ on $\mathbf{x}$ remains unchanged for every
$\mathbf{x}$, which means that the operator $\hat{A}$ itself is
unchanged. Similarly, we (more precisely, \emph{you}) can check directly
that the other two axioms also leave $\hat{A}$ unchanged. It follows
that the action of $\hat{A}$ on a vector $\mathbf{x}$, as defined
by Eq.~(\ref{eq:Ax action}), is independent of the choice of representation
of the tensor $A$ through vectors $\mathbf{v}_{j}$ and covectors
$\mathbf{f}_{j}^{*}$.\hfill{}$\blacksquare$


\paragraph{Question: }

I am wondering what kind of operators correspond to tensor expressions.
For example, take the single-term tensor $A=\mathbf{v}\otimes\mathbf{w}^{*}$.
What is the geometric meaning of the corresponding operator $\hat{A}$?


\subparagraph{Answer:}

Let us calculate: $\hat{A}\mathbf{x}=\mathbf{w}^{*}\left(\mathbf{x}\right)\mathbf{v}$,
i.e.~the operator $\hat{A}$ acts on any vector $\mathbf{x}\in V$
and produces a vector that is always proportional to the fixed vector
$\mathbf{v}$. Hence, the image of the operator $\hat{A}$ is the
one-dimen\-sion\-al subspace spanned by $\mathbf{v}$. However,
$\hat{A}$ is not necessarily a projector because in general $\hat{A}\hat{A}\neq\hat{A}$:\[
\hat{A}(\hat{A}\mathbf{x})=\mathbf{w}^{*}\left(\mathbf{v}\right)\mathbf{w}^{*}\left(\mathbf{x}\right)\mathbf{v}\neq\mathbf{w}^{*}\left(\mathbf{x}\right)\mathbf{v},\,\,\textrm{unless}\,\,\mathbf{w}^{*}\left(\mathbf{v}\right)=1.\]



\paragraph{Exercise 1:}

An operator $\hat{A}$ is given by the formula\[
\hat{A}=\hat{1}_{V}+\lambda\mathbf{v}\otimes\mathbf{w}^{*},\]
where $\lambda\in\mathbb{K}$, $\mathbf{v}\in V$, $\mathbf{w}^{*}\in V^{*}$.
Compute $\hat{A}\mathbf{x}$ for any $\mathbf{x}\in V$.


\subparagraph{Answer:}

$\hat{A}\mathbf{x}=\mathbf{x}+\lambda\mathbf{w}^{*}\left(\mathbf{x}\right)\mathbf{v}$.


\paragraph{Exercise 2:}

Let $\mathbf{n}\in V$ and $\mathbf{f}^{*}\in V^{*}$ such that $\mathbf{f}^{*}(\mathbf{n})=1$.
Show that the operator $\hat{P}\equiv\hat{1}_{V}-\mathbf{n}\otimes\mathbf{f}^{*}$
is a projector\index{projector} onto the subspace annihilated by
$\mathbf{f}^{*}$.

\emph{Hint}: You need to show that $\hat{P}\hat{P}=\hat{P}$; that
any vector $\mathbf{x}$ annihilated by $\mathbf{f}^{*}$ is invariant
under $\hat{P}$ (i.e.~if $\mathbf{f}^{*}(\mathbf{x})=0$ then $\hat{P}\mathbf{x}=\mathbf{x}$);
and that for any vector $\mathbf{x}$, $\mathbf{f}^{*}(\hat{P}\mathbf{x})=0$. 


\subsection{Linear operators as tensors\label{sub:Linear-operators-as-tensors}}

We have seen that any tensor $A\in V\otimes V^{*}$ has a corresponding
linear map in $\textrm{End }V$. Now conversely, let $\hat{A}\in\textrm{End }V$
be a linear operator and let $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
be a basis in $V$. We will now find such covectors $\mathbf{f}_{k}^{*}\in V^{*}$
that the tensor $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$
corresponds to $\hat{A}$. The required covectors $\mathbf{f}_{k}^{*}\in V^{*}$
can be defined by the formula\[
\mathbf{f}_{k}^{*}\left(\mathbf{x}\right)\equiv\mathbf{v}_{k}^{*}(\hat{A}\mathbf{x}),\quad\forall\mathbf{x}\in V,\]
where $\left\{ \mathbf{v}_{k}^{*}\right\} $ is the dual basis. With
this definition, we have\[
\bigg[\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}\bigg]\mathbf{x}=\sum_{k=1}^{n}\mathbf{f}_{k}^{*}\left(\mathbf{x}\right)\mathbf{v}_{k}=\sum_{k=1}^{n}\mathbf{v}_{k}^{*}(\hat{A}\mathbf{x})\mathbf{v}_{k}=\hat{A}\mathbf{x}.\]
The last equality is based on the formula \[
\sum_{k=1}^{n}\mathbf{v}_{k}^{*}\left(\mathbf{y}\right)\mathbf{v}_{k}=\mathbf{y},\]
 which holds because the components of a vector $\mathbf{y}$ in the
basis $\left\{ \mathbf{v}_{k}\right\} $ are $\mathbf{v}_{k}^{*}\left(\mathbf{y}\right)$.
Then it follows from the definition~(\ref{eq:Ax action}) that $\big[\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}\big]\mathbf{x}=\hat{A}\mathbf{x}$.

Let us look at this construction in another way: we have defined a
map ~$\hat{}\,:V\otimes V^{*}\rightarrow\textrm{End }V$ whereby
any tensor $A\in V\otimes V^{*}$ is transformed into a linear operator
$\hat{A}\in\textrm{End }V$. 


\paragraph{Theorem:}

\textbf{(1)} There is a canonical isomorphism $A\rightarrow\hat{A}$
between the spaces $V\otimes V^{*}$ and $\textrm{End }V$. In other
words, linear operators are canonically (without choosing a basis)
and uniquely mapped into tensors of the form\[
\mathbf{v}_{1}\otimes\mathbf{f}_{1}^{*}+...+\mathbf{v}_{n}\otimes\mathbf{f}_{n}^{*}.\]
Conversely, a tensor $\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$
is mapped into the operator $\hat{A}$ defined by Eq.~(\ref{eq:Ax action}).

\textbf{(2)} It is possible to write a tensor $A$ as a sum of not
more than $N\equiv\dim V$ terms, \[
A=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*},\quad n\leq N.\]



\subparagraph{Proof:}

\textbf{(1)} To prove that a map is an isomorphism of vector spaces,
we need to show that this map is linear and \textbf{bijective} (one-to-one).
Linearity easily follows from the definition of the map ~$\hat{}$~:
if $A,B\in V\otimes V^{*}$ are two tensors then $A+\lambda B\in V\otimes V^{*}$
is mapped into $\hat{A}+\lambda\hat{B}$. To prove the bijectivity,
we need to show that for any operator $\hat{A}$ there exists a corresponding
tensor $A=\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$ (this
we have already shown above), and that two different tensors $A\neq B$
cannot be mapped into the same operator $\hat{A}=\hat{B}$. If two
different tensors $A\neq B$ were mapped into the same operator $\hat{A}=\hat{B}$,
it would follow from the linearity of ~$\hat{}$~ that $\widehat{A-B}=\hat{A}-\hat{B}=0$,
in other words, that a nonzero tensor $C\equiv A-B\neq0$ is mapped
into the zero operator, $\hat{C}=0$. We will now arrive to a contradiction.
The tensor $C$ has a decomposition $C=\sum_{k}\mathbf{v}_{k}\otimes\mathbf{c}_{k}^{*}$
in the basis $\left\{ \mathbf{v}_{k}\right\} $. Since $C\neq0$,
it follows that at least one covector $\mathbf{c}_{k}^{*}$ is nonzero.
Suppose $\mathbf{c}_{1}^{*}\neq0$; then there exists at least one
vector $\mathbf{x}\in V$ such that $\mathbf{c}_{1}^{*}\left(\mathbf{x}\right)\neq0$.
We now act on $\mathbf{x}$ with the operator $\hat{C}$: by assumption,
$\hat{C}=\hat{A}-\hat{B}=0$, but at the same time\[
0=\hat{C}\mathbf{x}\equiv\sum_{k}\mathbf{v}_{k}\mathbf{c}_{k}^{*}\left(\mathbf{x}\right)=\mathbf{v}_{1}\mathbf{c}_{1}\left(\mathbf{x}\right)+...\]
This is a contradiction because a linear combination of vectors $\mathbf{v}_{k}$
with at least one nonzero coefficient cannot vanish (the vectors $\left\{ \mathbf{v}_{k}\right\} $
are a basis).

Note that we \emph{did} use a basis $\left\{ \mathbf{v}_{k}\right\} $
in the construction of the map $\textrm{End }V\rightarrow V\otimes V^{*}$,
when we defined the covectors $\mathbf{f}_{k}^{*}$. However, this
map is canonical because it is the same map for all choices of the
basis. Indeed, if we choose another basis $\left\{ \mathbf{v}_{k}^{\prime}\right\} $
then of course the covectors $\mathbf{f}_{k}^{\prime*}$ will be different
from $\mathbf{f}_{k}^{*}$, but the tensor $A$ will remain the same,\[
A=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}=A^{\prime}=\sum_{k=1}^{n}\mathbf{v}_{k}^{\prime}\otimes\mathbf{f}_{k}^{\prime*}\in V\otimes V^{*},\]
because (as we just proved) different tensors are always mapped into
different operators.

\textbf{(2)} This follows from Lemma~1 of Sec.~\ref{sub:Dimension-of-tensor}.\hfill{}$\blacksquare$

From now on, I will not use the map $\hat{\;}$ explicitly. Rather,
I will simply not distinguish between the spaces $\textrm{End }V$
and $V\otimes V^{*}$. I will write things like $\mathbf{v}\otimes\mathbf{w}^{*}\in\textrm{End }V$
or $\hat{A}=\mathbf{x}\otimes\mathbf{y}^{*}$. The space implied in
each case will be clear from the context.


\subsection{Examples and exercises}


\paragraph{Example 1: The identity operator.}

How to represent the identity operator $\hat{1}_{V}$ by a tensor
$A\in V\otimes V^{*}$?

Choose a basis $\left\{ \mathbf{v}_{k}\right\} $ in $V$; this choice
defines the dual basis $\left\{ \mathbf{v}_{k}^{*}\right\} $ in $V^{*}$
(see Sec.~\ref{sub:Dual-vector-space}) such that $\mathbf{v}_{j}^{*}\left(\mathbf{v}_{k}\right)=\delta_{jk}$.
Now apply the construction of Sec.~\ref{sub:Linear-operators-as-tensors}
to find \[
A=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*},\quad\mathbf{f}_{k}^{*}\left(\mathbf{x}\right)=\mathbf{v}_{k}^{*}\left(\hat{1}_{V}\mathbf{x}\right)=\mathbf{v}_{k}^{*}\left(\mathbf{x}\right)\,\Rightarrow\mathbf{f}_{k}^{*}=\mathbf{v}_{k}^{*}.\]
Therefore\index{decomposition of identity} \begin{equation}
\hat{1}_{V}=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{v}_{k}^{*}.\label{eq:identity decomposed}\end{equation}



\paragraph{Question:}

The identity operator $\hat{1}_{V}$ is defined \textbf{canonically},
i.e.~independently of a basis in $V$; it is simply the transformation
that does not change any vectors. However, the tensor representation~(\ref{eq:identity decomposed})
seems to depend on the choice of a basis $\left\{ \mathbf{v}_{k}\right\} $.
What is going on? Is the tensor $\hat{1}\in V\otimes V^{*}$ defined
canonically?


\subparagraph{Answer:}

Yes. The tensor $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{v}_{k}^{*}$
is \emph{the} \emph{same} \emph{tensor} regardless of which basis
$\left\{ \mathbf{v}_{k}\right\} $ we choose; of course the correct
dual basis $\left\{ \mathbf{v}_{k}^{*}\right\} $ must be used. In
other words, for any two bases $\left\{ \mathbf{v}_{k}\right\} $
and $\left\{ \tilde{\mathbf{v}}_{k}\right\} $, and with $\left\{ \mathbf{v}_{k}^{*}\right\} $
and $\left\{ \tilde{\mathbf{v}}_{k}^{*}\right\} $ being the corresponding
dual bases, we have the tensor equality\[
\sum_{k}\mathbf{v}_{k}\otimes\mathbf{v}_{k}^{*}=\sum_{k}\tilde{\mathbf{v}}_{k}\otimes\tilde{\mathbf{v}}_{k}^{*}.\]
 We have proved this in Theorem~\ref{sub:Linear-operators-as-tensors}
when we established that two different tensors are always mapped into
different operators by the map ~$\hat{}$~. One can say that $\sum_{k}\mathbf{v}_{k}\otimes\mathbf{v}_{k}^{*}$
is a \emph{canonically defined tensor} in $V\otimes V^{*}$ since
it is the unique tensor corresponding to the canonically defined identity
operator $\hat{1}_{V}$. Recall that a given tensor can be written
as a linear combination of tensor products in many different ways!
Here is a worked-out example:

Let $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $ be a basis in
a two-dimen\-sion\-al space; let $\left\{ \mathbf{v}_{1}^{*},\mathbf{v}_{2}^{*}\right\} $
be the corresponding dual basis. We can choose another basis, e.g.\[
\left\{ \mathbf{w}_{1},\mathbf{w}_{2}\right\} \equiv\left\{ \mathbf{v}_{1}+\mathbf{v}_{2},\mathbf{v}_{1}-\mathbf{v}_{2}\right\} .\]
 Its dual basis is (verify this!)\[
\mathbf{w}_{1}^{*}=\frac{1}{2}\left(\mathbf{v}_{1}^{*}+\mathbf{v}_{2}^{*}\right),\quad\mathbf{w}_{2}^{*}=\frac{1}{2}\left(\mathbf{v}_{1}^{*}-\mathbf{v}_{2}^{*}\right).\]
 Then we compute the identity tensor:\begin{align*}
\hat{1}=\mathbf{w}_{1}\otimes\mathbf{w}_{1}^{*}+\mathbf{w}_{2}\otimes\mathbf{w}_{2}^{*} & =\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\otimes\frac{1}{2}\left(\mathbf{v}_{1}^{*}+\mathbf{v}_{2}^{*}\right)\\
 & +\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\otimes\frac{1}{2}\left(\mathbf{v}_{1}^{*}-\mathbf{v}_{2}^{*}\right)\\
 & =\mathbf{v}_{1}\otimes\mathbf{v}_{1}^{*}+\mathbf{v}_{2}\otimes\mathbf{v}_{2}^{*}.\end{align*}
The tensor expressions $\mathbf{w}_{1}\otimes\mathbf{w}_{1}^{*}+\mathbf{w}_{2}\otimes\mathbf{w}_{2}^{*}$
and $\mathbf{v}_{1}\otimes\mathbf{v}_{1}^{*}+\mathbf{v}_{2}\otimes\mathbf{v}_{2}^{*}$
are \emph{equal} because of distributivity and linearity of tensor
product, i.e.~due to the axioms of the tensor product.


\paragraph{Exercise 1: Matrices as tensors.}

Now suppose we have a matrix $A_{jk}$ that specifies the linear operator
$\hat{A}$ in a basis $\left\{ \mathbf{e}_{k}\right\} $. Which tensor
$A\in V\otimes V^{*}$ corresponds to this operator?


\subparagraph{Answer:}

$A=\sum_{j,k=1}^{n}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*}$.


\paragraph{Exercise 2: Product of linear operators.}

Suppose $\hat{A}=\sum_{k=1}^{n}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$
and $\hat{B}=\sum_{l=1}^{n}\mathbf{w}_{l}\otimes\mathbf{g}_{l}^{*}$
are two operators. Obtain the tensor representation of the product
$\hat{A}\hat{B}$.


\subparagraph{Answer:}

$\hat{A}\hat{B}=\sum_{k=1}^{n}\sum_{l=1}^{n}\mathbf{f}_{k}^{*}\left(\mathbf{w}_{l}\right)\mathbf{v}_{k}\otimes\mathbf{g}_{l}^{*}.$


\paragraph{Exercise 3: }

Verify that $\hat{1}_{V}\hat{1}_{V}=\hat{1}_{V}$ by explicit computation
using the tensor representation~(\ref{eq:identity decomposed}). 

\emph{Hint:} Use the formula $\mathbf{v}_{j}^{*}\left(\mathbf{v}_{k}\right)=\delta_{jk}$. 


\paragraph{Exercise 4: Eigenvalues.}

Suppose $\hat{A}=\alpha\hat{1}_{V}+\mathbf{u}\otimes\mathbf{f}^{*}$
and $\hat{B}=\mathbf{u}\otimes\mathbf{f}^{*}+\mathbf{v}\otimes\mathbf{g}^{*}$,
where $\mathbf{u},\mathbf{v}\in V$ are a linearly independent set,
$\alpha\in\mathbb{K},$ and $\mathbf{f}^{*},\mathbf{g}^{*}\in V^{*}$
are nonzero but such that $\mathbf{f}^{*}(\mathbf{v})=0$ and $\mathbf{g}^{*}(\mathbf{u})=0$
while $\mathbf{f}^{*}(\mathbf{u})\neq0$ and $\mathbf{g}^{*}(\mathbf{v})\neq0$.
Determine the eigenvalues and eigenvectors of the operators $\hat{A}$
and $\hat{B}$.


\subparagraph{Solution:}

(I give a solution because it is an instructive calculation showing
how to handle tensors in the index-free approach. Note that the vectors
$\mathbf{u},\mathbf{v}$ and the covectors $\mathbf{f}^{*},\mathbf{g}^{*}$
are {}``given,'' which means that numbers such as $\mathbf{f}^{*}(\mathbf{u})$
are known constants.)

For the operator $\hat{A}$, the eigenvalue equation $\hat{A}\mathbf{x}=\lambda\mathbf{x}$
yields \[
\alpha\mathbf{x}+\mathbf{u}\mathbf{f}^{*}(\mathbf{x})=\lambda\mathbf{x}.\]
 Either $\lambda=\alpha$ and then $\mathbf{f}^{*}\left(\mathbf{x}\right)=0$,
or $\lambda\neq\alpha$ and then $\mathbf{x}$ is proportional to
$\mathbf{u}$; substituting $\mathbf{x}=\mathbf{u}$ into the above
equation, we find $\lambda=\alpha+\mathbf{f}^{*}\left(\mathbf{u}\right)$.
Therefore the operator $\hat{A}$ has two eigenvalues, $\lambda=\alpha$
and $\lambda=\alpha+\mathbf{f}^{*}\left(\mathbf{u}\right)$. The eigenspace
with the eigenvalue $\lambda=\alpha$ is the set of all $\mathbf{x}\in V$
such that $\mathbf{f}^{*}\left(\mathbf{x}\right)=0$. The eigenspace
with the eigenvalue $\lambda=\alpha+\mathbf{f}^{*}\left(\mathbf{u}\right)$
is the set of vectors proportional to $\mathbf{u}$. (It might happen
that $\mathbf{f}^{*}\left(\mathbf{u}\right)=0$; then there is only
one eigenvalue, $\lambda=\alpha$, and no second eigenspace.)

For the operator $\hat{B}$, the calculations are longer. Since $\left\{ \mathbf{u},\mathbf{v}\right\} $
is a linearly independent set, we may add some vectors $\mathbf{e}_{k}$
to that set in order to complete it to a basis $\left\{ \mathbf{u},\mathbf{v},\mathbf{e}_{3},...,\mathbf{e}_{N}\right\} $.
It is convenient to adapt this basis to the given covectors $\mathbf{f}^{*}$
and $\mathbf{g}^{*}$; namely, it is possible to choose this basis
such that $\mathbf{f}^{*}(\mathbf{e}_{k})=0$ and $\mathbf{g}^{*}(\mathbf{e}_{k})=0$
for $k=3,...,N$. (We may replace $\mathbf{e}_{k}\mapsto\mathbf{e}_{k}-a_{k}\mathbf{u}-b_{k}\mathbf{v}$
with some suitable constants $a_{k},b_{k}$ to achieve this, using
the given properties $\mathbf{f}^{*}(\mathbf{v})=0$, $\mathbf{g}^{*}(\mathbf{u})=0$,
$\mathbf{f}^{*}(\mathbf{u})\neq0$, and $\mathbf{g}^{*}(\mathbf{v})\neq0$.)
Suppose $\mathbf{x}$ is an unknown eigenvector with the eigenvalue
$\lambda$; then $\mathbf{x}$ can be expressed as $\mathbf{x}=\alpha\mathbf{u}+\beta\mathbf{v}+\sum_{k=3}^{N}y_{k}\mathbf{e}_{k}$
in this basis, where $\alpha$, $\beta$, and $y_{k}$ are unknown
constants. Our goal is therefore to determine $\alpha$, $\beta$,
$y_{k}$, and $\lambda$. Denote $\mathbf{y}\equiv\sum_{k=3}^{N}y_{k}\mathbf{e}_{k}$
and transform the eigenvalue equation using the given conditions $\mathbf{f}^{*}(\mathbf{v})=\mathbf{g}^{*}(\mathbf{u})=0$
as well as the properties $\mathbf{f}^{*}(\mathbf{y})=\mathbf{g}^{*}(\mathbf{y})=0$,\begin{align*}
\hat{B}\mathbf{x}-\lambda\mathbf{x}= & \mathbf{u}\left(\alpha\mathbf{f}^{*}\left(\mathbf{u}\right)+\beta\mathbf{f}^{*}\left(\mathbf{v}\right)+\mathbf{f}^{*}\left(\mathbf{y}\right)-\alpha\lambda\right)\\
 & +\mathbf{v}\left(\alpha\mathbf{g}^{*}\left(\mathbf{u}\right)+\beta\mathbf{g}^{*}\left(\mathbf{v}\right)+\mathbf{g}^{*}\left(\mathbf{y}\right)-\beta\lambda\right)-\lambda\mathbf{y}\\
= & \mathbf{u}\left(\alpha\mathbf{f}^{*}\left(\mathbf{u}\right)-\alpha\lambda\right)+\mathbf{v}\left(\beta\mathbf{g}^{*}\left(\mathbf{v}\right)-\beta\lambda\right)-\lambda\mathbf{y}=0.\end{align*}
The above equation says that a certain linear combination of the vectors
$\mathbf{u}$, $\mathbf{v}$, and $\mathbf{y}$ is zero. If $\mathbf{y}\neq0$,
the set $\left\{ \mathbf{u},\mathbf{v},\mathbf{y}\right\} $ is linearly
independent since $\left\{ \mathbf{u},\mathbf{v},\mathbf{e}_{3},...,\mathbf{e}_{N}\right\} $
is a basis (see Exercise~1 in Sec.~\ref{sub:Dimension-of-V}). Then
the linear combination of the three vectors $\mathbf{u}$, $\mathbf{v}$,
and $\mathbf{y}$ can be zero only if all three coefficients are zero.
On the other hand, if $\mathbf{y}=0$ then we are left only with two
coefficients that must vanish. Thus, we can proceed by considering
separately the two possible cases, $\mathbf{y}\neq0$ and $\mathbf{y}=0$. 

We begin with the case $\mathbf{y}=0$. In this case, $\hat{B}\mathbf{x}-\lambda\mathbf{x}=0$
is equivalent to the vanishing of the linear combination\[
\mathbf{u}\left(\alpha\mathbf{f}^{*}(\mathbf{u})-\alpha\lambda\right)+\mathbf{v}\left(\beta\mathbf{g}^{*}(\mathbf{v})-\beta\lambda\right)=0.\]
Since $\left\{ \mathbf{u},\mathbf{v}\right\} $ is linearly independent,
this linear combination can vanish only when both coefficients vanish:\begin{align*}
\alpha\left(\mathbf{f}^{*}\left(\mathbf{u}\right)-\lambda\right) & =0,\\
\beta\left(\mathbf{g}^{*}\left(\mathbf{v}\right)-\lambda\right) & =0.\end{align*}
This is a system of two linear equations for the two unknowns $\alpha$
and $\beta$; when we solve it, we will determine the possible eigenvectors
$\mathbf{x}=\alpha\mathbf{u}+\beta\mathbf{v}$ and the corresponding
eigenvalues $\lambda$. Note that we are looking for \emph{nonzero}
solutions, so $\alpha$ and $\beta$ cannot be both zero. If $\alpha\neq0$,
we must have $\lambda=\mathbf{f}^{*}(\mathbf{u})$. If $\mathbf{f}^{*}(\mathbf{u})\neq\mathbf{g}^{*}(\mathbf{v})$,
the second equation forces $\beta=0$. Otherwise, any $\beta$ is
a solution. Likewise, if $\beta\neq0$ then we must have $\lambda=\mathbf{g}^{*}(\mathbf{v})$.
Therefore we obtain the following possibilities:

a) $\mathbf{f}^{*}(\mathbf{u})\neq\mathbf{g}^{*}(\mathbf{v})$, two
nonzero eigenvalues $\lambda_{1}=\mathbf{f}^{*}(\mathbf{u})$ with
eigenvector $\mathbf{x}_{1}=\alpha\mathbf{u}$ (with any $\alpha\neq0$)
and $\lambda_{2}=\mathbf{g}^{*}(\mathbf{v})$ with eigenvector $\mathbf{x}_{2}=\beta\mathbf{v}$
(with any $\beta\neq0$).

b) $\mathbf{f}^{*}(\mathbf{u})=\mathbf{g}^{*}(\mathbf{v})$, one nonzero
eigenvalue $\lambda=\mathbf{f}^{*}(\mathbf{u})=\mathbf{g}^{*}(\mathbf{v})$,
two-dimen\-sion\-al eigenspace with eigenvectors $\mathbf{x}=\alpha\mathbf{u}+\beta\mathbf{v}$
where at least one of $\alpha,\beta$ is nonzero.

Now we consider the case $\mathbf{y}\neq0$ (recall that $\mathbf{y}$
is an unknown vector from the subspace $\text{Span}\left\{ \mathbf{e}_{3},...,\mathbf{e}_{N}\right\} $).
In this case, we obtain a system of linear equations for the set of
unknowns $\left(\alpha,\beta,\lambda,\mathbf{y}\right)$: \begin{align*}
\alpha\mathbf{f}^{*}\left(\mathbf{u}\right)-\alpha\lambda & =0,\\
\beta\mathbf{g}^{*}\left(\mathbf{v}\right)-\beta\lambda & =0,\\
-\lambda & =0.\end{align*}
This system is simplified, using $\lambda=0$, to\begin{align*}
\alpha\mathbf{f}^{*}\left(\mathbf{u}\right) & =0,\\
\beta\mathbf{g}^{*}\left(\mathbf{v}\right) & =0.\end{align*}
Since $\mathbf{f}^{*}(\mathbf{u})\neq0$ and $\mathbf{g}^{*}(\mathbf{v})\neq0$,
the only solution is $\alpha=\beta=0$. Hence, the eigenvector is
$\mathbf{x}=\mathbf{y}$ for any nonzero $\mathbf{y}\in\text{Span}\left\{ \mathbf{e}_{3},...,\mathbf{e}_{N}\right\} $.
In other words, there is an $\left(N-2\right)$-dimen\-sion\-al
eigenspace corresponding to the eigenvalue $\lambda=0$.\hfill{}$\blacksquare$


\paragraph{Remark:}

The preceding exercise serves to show that calculations in the coord\-inate-free
approach are not always short! (I even specified some additional constraints
on $\mathbf{u},\mathbf{v},\mathbf{f}^{*},\mathbf{g}^{*}$ in order
to make the solution shorter. Without these constraints, there are
many more cases to be considered.) The coordinate-free approach does
not necessarily provide a shorter way to find eigenvalues of matrices
than the usual methods based on the evaluation of determinants. However,
the coordinate-free method is efficient for the operator $\hat{A}$.
The end result is that we are able to determine eigenvalues and eigenspaces
of operators such as $\hat{A}$ and $\hat{B}$, regardless of the
number of dimensions in the space, by using the special structure
of these operators, which is specified in a purely geometric way.


\paragraph{Exercise 5: }

Find the inverse operator to $\hat{A}=\hat{1}_{V}+\mathbf{u}\otimes\mathbf{f}^{*}$,
where $\mathbf{u}\in V$, $\mathbf{f}^{*}\in V^{*}$. Determine when
$\hat{A}^{-1}$ exists.


\subparagraph{Answer:}

The inverse operator exists only if $\mathbf{f}^{*}(\mathbf{u})\neq-1$:
then \[
\hat{A}^{-1}=\hat{1}_{V}-\frac{1}{1+\mathbf{f}^{*}(\mathbf{u})}\mathbf{u}\otimes\mathbf{f}^{*}.\]
When $\mathbf{f}^{*}(\mathbf{u})=-1$, the operator $\hat{A}$ has
an eigenvector $\mathbf{u}$ with eigenvalue 0, so $\hat{A}^{-1}$
cannot exist.


\subsection{Linear maps between \emph{different} spaces\label{sub:Linear-maps-between-different-spaces}}

So far we have been dealing with linear operators that map a space
$V$ into itself; what about linear maps $V\rightarrow W$ between
\emph{different} spaces? If we replace $V^{*}$ by $W^{*}$ in many
of our definitions and proofs, we will obtain a parallel set of results
for linear maps $V\rightarrow W$. 


\paragraph{Theorem 1:}

Any tensor $A\equiv\sum_{j=1}^{k}\mathbf{w}_{j}\otimes\mathbf{f}_{j}^{*}\in W\otimes V^{*}$
acts as a linear map $V\rightarrow W$ according to the formula\[
A\mathbf{x}\equiv\sum_{j=1}^{k}\mathbf{f}_{j}^{*}\left(\mathbf{x}\right)\mathbf{w}_{j}.\]
The space $\textrm{Hom}\left(V,W\right)$ of all linear operators
$V\rightarrow W$ is canonically isomorphic to the space $W\otimes V^{*}$. 


\subparagraph{Proof:}

Left as an exercise since it is fully analogous to previous proofs.


\paragraph{Example 1: Covectors as tensors.}

We know that the number field $\mathbb{K}$ is a vector space over
itself and $V\cong V\otimes\mathbb{K}$. Therefore linear maps $V\rightarrow\mathbb{K}$
are tensors from $V^{*}\otimes\mathbb{K}\cong V^{*}$, i.e.~covectors,
in agreement with the definition of $V^{*}$.


\paragraph{Example 2:}

If $V$ and $W$ are vector spaces, what are tensors from $V^{*}\otimes W^{*}$?

They can be viewed as (1) linear maps from $V$ into $W^{*}$, (2)
linear maps from $W$ into $V^{*}$, (3) linear maps from $V\otimes W$
into $\mathbb{K}$. These possibilities can be written as canonical
isomorphisms: \[
V^{*}\otimes W^{*}\cong\textrm{Hom}\left(V,W^{*}\right)\cong\textrm{Hom}\left(W,V^{*}\right)\cong\textrm{Hom}\left(V\otimes W,\mathbb{K}\right).\]



\paragraph{Exercise 1:}

How can we interpret the space $V\otimes V\otimes V^{*}$? Same question
for the space $V^{*}\otimes V^{*}\otimes V\otimes V$.


\subparagraph{Answer:}

In many different ways:\begin{align*}
 & V\otimes V\otimes V^{*}\cong\textrm{Hom}\left(V,V\otimes V\right)\\
 & \cong\textrm{Hom}\left(\textrm{End }V,V\right)\cong\textrm{Hom}\left(V^{*},\textrm{End }V\right)\cong...\;\text{and}\\
 & V^{*}\otimes V^{*}\otimes V\otimes V\cong\textrm{Hom}\left(V,V^{*}\otimes V\otimes V\right)\\
 & \cong\textrm{Hom}\left(V\otimes V,V\otimes V\right)\cong\textrm{Hom}\left(\textrm{End }V,\textrm{End }V\right)\cong...\end{align*}
 For example, $V\otimes V\otimes V^{*}$ can be visualized as the
space of linear maps from $V^{*}$ to linear operators in $V$. The
action of a tensor $\mathbf{u}\otimes\mathbf{v}\otimes\mathbf{w}^{*}\in V\otimes V\otimes V^{*}$
on a covector $\mathbf{f}^{*}\in V^{*}$ may be defined either as
$\mathbf{f}^{*}\left(\mathbf{u}\right)\mathbf{v}\otimes\mathbf{w}^{*}\in V\otimes V^{*}$
or alternatively as $\mathbf{f}^{*}\left(\mathbf{v}\right)\mathbf{u}\otimes\mathbf{w}^{*}\in V\otimes V^{*}$.
Note that these two definitions are \emph{not} equivalent, i.e.~the
same tensors are mapped to \emph{different} operators. In each case,
one of the copies of $V$ (from $V\otimes V\otimes V^{*}$) is {}``paired
up'' with $V^{*}$.


\paragraph{Question:}

We have seen in the proof of Lemma~1 in Sec.~\ref{sub:Dimension-of-tensor}
that covectors $\mathbf{f}^{*}\in V^{*}$ act as linear maps $V\otimes W\rightarrow W$.
However, I am now sufficiently illuminated to know that linear maps
$V\otimes W\rightarrow W$ are elements of the space $W\otimes W^{*}\otimes V^{*}$
and not elements of $V^{*}$. How can this be reconciled?


\subparagraph{Answer:}

There is an injection map $V^{*}\rightarrow W\otimes W^{*}\otimes V^{*}$
defined by the formula $\mathbf{f}^{*}\rightarrow\hat{1}_{W}\otimes\mathbf{f}^{*}$,
where $\hat{1}_{W}\in W\otimes W^{*}$ is the identity operator. Since
$\hat{1}_{W}$ is a canonically defined element of $W\otimes W^{*}$,
the map is canonical (defined without choice of basis, i.e.~\emph{geometrically}).
Thus covectors $\mathbf{f}^{*}\in V^{*}$ can be naturally considered
as elements of the space $\textrm{Hom}\left(V\otimes W,W\right)$.


\paragraph{Question:}

The space $V\otimes V^{*}$ can be interpreted as $\textrm{End }V$,
as $\textrm{End }V^{*}$, or as $\textrm{Hom}\left(V\otimes V^{*},\mathbb{K}\right)$.
This means that one tensor $A\in V\otimes V^{*}$ represents an operator
in $V$, an operator in $V^{*}$, or a map from operators into numbers.
What is the relation between all these different interpretations of
the tensor $A$? For example, what is the interpretation of the identity
operator $\hat{1}_{V}\in V\otimes V^{*}$ as an element of $\textrm{Hom}\left(V\otimes V^{*},\mathbb{K}\right)$?


\subparagraph{Answer:}

The identity tensor $\hat{1}_{V}$ represents the identity operator
in $V$ and in $V^{*}$. It also represents the following map $V\otimes V^{*}\rightarrow\mathbb{K}$,\[
\hat{1}_{V}:\mathbf{v}\otimes\mathbf{f}^{*}\mapsto\mathbf{f}^{*}\left(\mathbf{v}\right).\]
This map applied to an operator $\hat{A}\in V\otimes V^{*}$ yields
the \textbf{trace} \index{trace}of that operator (see Sec.~\ref{sub:The-trace}).

The definition below explains the relation between operators in $V$
and operators in $V^{*}$ represented by the same tensor.


\paragraph{Definition:}

\label{par:Definition:transpose}If $\hat{A}:V\rightarrow W$ is a
linear map then the \textbf{transposed operator}\index{transposed operator}
$\hat{A}^{T}:W^{*}\rightarrow V^{*}$ is the map  defined by\begin{equation}
(\hat{A}^{T}\mathbf{f}^{*})\left(\mathbf{v}\right)\equiv\mathbf{f}^{*}(\hat{A}\mathbf{v}),\quad\forall\mathbf{v}\in V,\:\forall\mathbf{f}^{*}\in W^{*}.\label{eq:AT def}\end{equation}
 In particular, this defines the transposed operator $\hat{A}^{T}:V^{*}\rightarrow V^{*}$
given an operator $\hat{A}:V\rightarrow V$.


\paragraph{Remark:}

The above definition is an example of {}``mathematical style'':
I just wrote formula~(\ref{eq:AT def}) and left it for you to digest.
In case you have trouble with this formula, let me translate: The
operator $\hat{A}^{T}$ is by definition such that it will transform
an arbitrary covector $\mathbf{f}^{*}\in W^{*}$ into a new covector
$(\hat{A}^{T}\mathbf{f}^{*})\in V^{*}$, which is a linear function
defined by its action on vectors $\mathbf{v}\in V$. The formula says
that the value of that linear function applied to an arbitrary vector
$\mathbf{v}$ should be equal to the number $\mathbf{f}^{*}(\hat{A}\mathbf{v})$;
thus we defined the action of the covector $\hat{A}^{T}\mathbf{f}^{*}$
on any vector $\mathbf{v}$. Note how in the formula $(\hat{A}^{T}\mathbf{f}^{*})\left(\mathbf{v}\right)$
the parentheses are used to show that the first object is acting on
the second. 

Since we have defined the covector $\hat{A}^{T}\mathbf{f}^{*}$ for
any $\mathbf{f}^{*}\in W^{*}$, it follows that we have thereby defined
the operator $\hat{A}^{T}$ acting in the space $W^{*}$ and yielding
a covector from $V^{*}$. Please read the formula again and check
that you can understand it. The difficulty of understanding equations
such as Eq.~(\ref{eq:AT def}) is that one needs to keep in mind
all the mathematical notations introduced previously and used here,
and one also needs to guess the argument implied by the formula. In
this case, the implied argument is that we will \emph{define a new
operator} $\hat{A}^{T}$ if we show, for any $\mathbf{f}^{*}\in W^{*}$,
how the new covector $(\hat{A}^{T}\mathbf{f}^{*})\in V^{*}$ works
on any vector $\mathbf{v}\in V$. Only after some practice with such
arguments will it become easier to read mathematical definitions.\hfill{}$\blacksquare$

Note that the transpose map $\hat{A}^{T}$ is defined \textbf{canonically}
(i.e.~without choosing a basis) through the original map $\hat{A}$.


\paragraph{Question:}

How to use this definition when the operator $\hat{A}$ is given?
Eq.~(\ref{eq:AT def}) is not a formula that gives $\hat{A}^{T}\mathbf{f}^{*}$
directly; rather, it is an identity connecting some values for arbitrary
$\mathbf{v}$ and $\mathbf{f}^{*}$.


\subparagraph{Answer:}

In order to use this definition, we need to apply $\hat{A}^{T}\mathbf{f}^{*}$
to an arbitrary vector $\mathbf{v}$ and transform the resulting expression.
We could also compute the coefficients of the operator $\hat{A}^{T}$
in some basis.


\paragraph{Exercise 2: }

If $A=\sum_{k}\mathbf{w}_{k}\otimes\mathbf{f}_{k}^{*}\in W\otimes V^{*}$
is a linear map $V\rightarrow W$, what is the tensor representation
of its transpose $A^{T}$? What is its matrix representation in a
suitable basis?


\subparagraph{Answer:}

The transpose operator $A^{T}$ maps $W^{*}\rightarrow V^{*}$, so
the corresponding tensor is $A^{T}=\sum_{k}\mathbf{f}_{k}^{*}\otimes\mathbf{w}_{k}\in V^{*}\otimes W$.
Its tensor representation consists of the same vectors $\mathbf{w}_{k}\in W$
and covectors $\mathbf{f}_{k}^{*}\in V^{*}$ as the tensor representation
of $A$. The matrix representation of $A^{T}$ is the transposed matrix
of $A$ if we use the same basis $\left\{ \mathbf{e}_{j}\right\} $
and  its dual basis $\left\{ \mathbf{e}_{j}^{*}\right\} $.\hfill{}$\blacksquare$

An important characteristic of linear operators is the rank. (Note
that we have already used the word {}``rank'' to denote the degree
of a tensor product; the following definition presents a \emph{different}
meaning of the word {}``rank.'')


\paragraph{Definition:}

The \textbf{rank}\index{rank of an operator} of a linear map $\hat{A}:V\rightarrow W$
is the dimension of the image subspace $\textrm{im }\hat{A}\subset W$.
(Recall that $\textrm{im }\hat{A}$ is a linear subspace of $W$ that
contains all vectors $\mathbf{w}\in W$ expressed as $\mathbf{w}=\hat{A}\mathbf{v}$
with some $\mathbf{v}\in V$.) The rank may be denoted by $\textrm{rank }\hat{A}\equiv\dim(\textrm{im }\hat{A})$.


\paragraph{Theorem 2:}

The rank of $\hat{A}$ is the smallest number of terms necessary to
write an operator $\hat{A}:V\rightarrow W$ as a sum of single-term
tensor products. In other words, the operator $\hat{A}$ can be expressed
as \[
\hat{A}=\sum_{k=1}^{\textrm{rank }\hat{A}}\mathbf{w}_{k}\otimes\mathbf{f}_{k}^{*}\in W\otimes V^{*},\]
with suitably chosen $\mathbf{w}_{k}\in W$ and $\mathbf{f}_{k}^{*}\in V^{*}$,
but not as a sum of fewer terms.


\subparagraph{Proof:}

We know that $\hat{A}$ can be written as a sum of tensor product
terms,\begin{equation}
\hat{A}=\sum_{k=1}^{n}\mathbf{w}_{k}\otimes\mathbf{f}_{k}^{*},\label{eq:sum A wf1}\end{equation}
where $\mathbf{w}_{k}\in W$, $\mathbf{f}_{k}^{*}\in V^{*}$ are \emph{some}
vectors and covectors, and $n$ is \emph{some} integer. There are
many possible choices of these vectors and the covectors. Let us suppose
that Eq.~(\ref{eq:sum A wf1}) represents a choice such that $n$
is the smallest possible number of terms. We will first show that
$n$ is not smaller than the rank of $\hat{A}$; then we will show
that $n$ is not larger than the rank of $\hat{A}$.

If $n$ is the smallest number of terms, the set $\left\{ \mathbf{w}_{1},...,\mathbf{w}_{n}\right\} $
must be linearly independent, or else we can reduce the number of
terms in the sum~(\ref{eq:sum A wf1}). To show this, suppose that
$\mathbf{w}_{1}$ is equal to a linear combination of other $\mathbf{w}_{k}$,\[
\mathbf{w}_{1}=\sum_{k=2}^{n}\lambda_{k}\mathbf{w}_{k},\]
then we can rewrite $\hat{A}$ as\[
\hat{A}=\mathbf{w}_{1}\otimes\mathbf{f}_{1}^{*}+\sum_{k=2}^{n}\mathbf{w}_{k}\otimes\mathbf{f}_{k}^{*}=\sum_{k=2}^{n}\mathbf{w}_{k}\otimes\left(\mathbf{f}_{k}^{*}+\lambda_{k}\mathbf{f}_{1}^{*}\right),\]
reducing the number of terms from $n$ to $n-1$. Since by assumption
the number of terms cannot be made less than $n$, the set $\left\{ \mathbf{w}_{k}\right\} $
must be linearly independent. In particular, the subspace spanned
by $\left\{ \mathbf{w}_{k}\right\} $ is $n$-dimen\-sion\-al. (The
same reasoning shows that the set $\left\{ \mathbf{f}_{k}^{*}\right\} $
must be also linearly independent, but we will not need to use this.)

The rank of $\hat{A}$ is the dimension of the image of $\hat{A}$;
let us denote $m\equiv\text{rank }\hat{A}$. It follows from the definition
of the map $\hat{A}$ that for any $\mathbf{v}\in V$, the image $\hat{A}\mathbf{v}$
is a linear combination of the vectors $\mathbf{w}_{k}$,\[
\hat{A}\mathbf{v}=\sum_{k=1}^{n}\mathbf{f}_{k}^{*}\left(\mathbf{v}\right)\mathbf{w}_{k}.\]
Therefore, the $m$-dimensional subspace $\text{im}\hat{A}$ is contained
within the $n$-dimen\-sion\-al subspace $\text{Span}\left\{ \mathbf{w}_{1},...,\mathbf{w}_{n}\right\} $,
so $m\leq n$. 

Now, we may choose a basis $\left\{ \mathbf{b}_{1},...,\mathbf{b}_{m}\right\} $
in the subspace $\text{im}\hat{A}$; then for every $\mathbf{v}\in V$
we have\[
\hat{A}\mathbf{v}=\sum_{i=1}^{m}\beta_{i}\mathbf{b}_{i}\]
with some coefficients $\beta_{i}$ that are uniquely determined for
each vector $\mathbf{v}$; in other words, $\beta_{i}$ are \emph{functions}
of $\mathbf{v}$. It is easy to see that the coefficients $\beta_{i}$
are \emph{linear} functions of the vector $\mathbf{v}$ since\[
\hat{A}(\mathbf{v}+\lambda\mathbf{u})=\sum_{i=1}^{m}(\beta_{i}+\lambda\alpha_{i})\mathbf{b}_{i}\]
 if $\hat{A}\mathbf{u}=\sum_{i=1}^{m}\alpha_{i}\mathbf{b}_{i}$. Hence
there exist some covectors $\mathbf{g}_{i}^{*}$ such that $\beta_{i}=\mathbf{g}_{i}^{*}(\mathbf{v})$.
It follows that we are able to express $\hat{A}$ as the tensor $\sum_{i=1}^{m}\mathbf{b}_{i}\otimes\mathbf{g}_{i}^{*}$
using $m$ terms. Since the smallest possible number of terms is $n$,
we must have $m\geq n$.

We have shown that $m\leq n$ and $m\geq n$, therefore $n=m=\textrm{rank }\hat{A}$.
\hfill{}$\blacksquare$


\paragraph{Corollary:}

The rank of a map $\hat{A}:V\rightarrow W$ is equal to the rank of
its transpose $\hat{A}^{T}:W^{*}\rightarrow V^{*}$.


\subparagraph{Proof:}

The maps $\hat{A}$ and $\hat{A}^{T}$ are represented by the same
tensor from the space $W\otimes V^{*}$. Since the rank is equal to
the minimum number of terms necessary to express that tensor, the
ranks of $\hat{A}$ and $\hat{A}^{T}$ always coincide.\hfill{}$\blacksquare$

We conclude that tensor product is a general construction that represents
the space of linear maps between various previously defined spaces.
For example, matrices are representations of linear maps from vectors
to vectors; tensors from $V^{*}\otimes V\otimes V$ can be viewed
as linear maps from matrices to vectors, etc.


\paragraph{Exercise 3:}

Prove that the tensor equality $\mathbf{a}\otimes\mathbf{a}+\mathbf{b}\otimes\mathbf{b}=\mathbf{v}\otimes\mathbf{w}$
where $\mathbf{a}\neq0$ and $\mathbf{b}\neq0$ can hold only when
$\mathbf{a}=\lambda\mathbf{b}$ for some scalar $\lambda$. 

\emph{Hint}: If $\mathbf{a}\neq\lambda\mathbf{b}$ then there exists
a covector $\mathbf{f}^{*}$ such that $\mathbf{f}^{*}(\mathbf{a})=1$
and $\mathbf{f}^{*}(\mathbf{b})=0$. Define the map $\mathbf{f}^{*}:V\otimes V$$\rightarrow V$
as $\mathbf{f}^{*}(\mathbf{x}\otimes\mathbf{y})=\mathbf{f}^{*}(\mathbf{x})\mathbf{y}$.
Compute \[
\mathbf{f}^{*}(\mathbf{a}\otimes\mathbf{a}+\mathbf{b}\otimes\mathbf{b})=\mathbf{a}=\mathbf{f}^{*}(\mathbf{v})\mathbf{w},\]
hence $\mathbf{w}$ is proportional to $\mathbf{a}$. Similarly you
can show that $\mathbf{w}$ is proportional to $\mathbf{b}$.


\section{Index notation for tensors\label{sub:Index-notation}}

So far we have used a purely coordinate-free formalism to define and
describe tensors from spaces such as $V\otimes V^{*}$. However, in
many calculations a basis in $V$ is fixed, and one needs to compute
the components of tensors in that basis. Also, the coordinate-free
notation becomes cumbersome for computations in higher-rank tensor
spaces such as $V\otimes V\otimes V^{*}$ because there is no direct
means of referring to an individual component in the tensor product.
The \textbf{index notation} makes such calculations easier.

Suppose a basis $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
in $V$ is fixed; then the dual basis $\left\{ \mathbf{e}_{k}^{*}\right\} $
is also fixed. Any vector $\mathbf{v}\in V$ is decomposed as $\mathbf{v}=\sum_{k}v_{k}\mathbf{e}_{k}$
and any covector as $\mathbf{f}^{*}=\sum_{k}f_{k}\mathbf{e}_{k}^{*}$.
Any tensor from $V\otimes V$ is decomposed as\[
A=\sum_{j,k}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}\in V\otimes V\]
and so on. The action of a covector on a vector is $\mathbf{f}^{*}\left(\mathbf{v}\right)=\sum_{k}f_{k}v_{k}$,
and the action of an operator on a vector is $\sum_{j,k}A_{jk}v_{k}\mathbf{e}_{k}$.
However, it is cumbersome to keep writing these sums. In the index
notation, one writes \emph{only} the components $v_{k}$ or $A_{jk}$
of vectors and tensors.


\subsection{Definition of  index notation}

The rules are as follows:
\begin{itemize}
\item Basis vectors $\mathbf{e}_{k}$ and basis tensors $\mathbf{e}_{k}\otimes\mathbf{e}_{l}^{*}$
are never written explicitly. (It is assumed that the basis is fixed
and known.)
\item Instead of a vector $\mathbf{v}\in V$, one writes its array of components
$v^{k}$ with the \emph{superscript} index. Covectors $\mathbf{f}^{*}\in V^{*}$
are written $f_{k}$ with the \emph{subscript} index. The index $k$
runs over integers from $1$ to $N$. Components of vectors and tensors
may be thought of as numbers (e.g.~elements of the number field $\mathbb{K}$).
\item Tensors are written as multidimen\-sion\-al arrays of components
with superscript or subscript indices as necessary, for example $A_{jk}\in V^{*}\otimes V^{*}$
or $B_{k}^{lm}\in V\otimes V\otimes V^{*}$. Thus e.g.~the Kronecker
delta symbol is written as $\delta_{k}^{j}$ when it represents the
identity operator $\hat{1}_{V}$. 
\item The choice of indices must be consistent; each index corresponds to
a particular copy of $V$ or $V^{*}$. Thus it is wrong to write $v_{j}=u_{k}$
or $v_{i}+u^{i}=0$. Correct equations are $v_{j}=u_{j}$ and $v^{i}+u^{i}=0$.
This disallows meaningless expressions such as $\mathbf{v}^{*}+\mathbf{u}$
(one cannot add vectors from different spaces).
\item Sums over indices such as $\sum_{k=1}^{N}a_{k}b_{k}$ are not written
explicitly, the $\sum$ symbol is omitted, and the \textbf{Einstein
summation convention} is used instead: Summation over all values of
an index is \emph{always implied} when that index letter appears once
as a subscript and once as a superscript. In this case the letter
is called a \textbf{dummy}\index{dummy index} (or \textbf{mute})
\textbf{index}. Thus one writes $f_{k}v^{k}$ instead of $\sum_{k}f_{k}v_{k}$
and $A_{k}^{j}v^{k}$ instead of $\sum_{k}A_{jk}v_{k}$. 
\item Summation is allowed \emph{only} over one subscript and one superscript
but never over two subscripts or two superscripts and never over three
or more coincident indices. This corresponds to requiring that we
are only allowed to compute the canonical pairing of $V$ and $V^{*}$
{[}see Eq.~(\ref{eq:f star v}){]} but no other pairing. The expression
$v^{k}v^{k}$ is not allowed because there is no canonical pairing
of $V$ and $V$, so, for instance, the sum $\sum_{k=1}^{N}v^{k}v^{k}$
depends on the choice of the basis. For the same reason (dependence
on the basis), expressions such as $u^{i}v^{i}w^{i}$ or $A_{ii}B^{ii}$
are not allowed. Correct expressions are $u_{i}v^{i}w_{k}$ and $A_{ik}B^{ik}$.
\item One needs to pay close attention to the choice and the position of
the letters such as $j,k,l$,...~used as indices. Indices that are
not repeated are \textbf{free}\index{free index} indices. The rank
of a tensor expression is equal to the number of free subscript and
superscript indices. Thus $A_{k}^{j}v^{k}$ is a rank $1$ tensor
(i.e.~a vector) because the expression $A_{k}^{j}v^{k}$ has a single
free index, $j$, and a summation over $k$ is implied. 
\item The tensor product symbol $\otimes$ is never written. For example,
if $\mathbf{v}\otimes\mathbf{f}^{*}=\sum_{jk}v_{j}f_{k}^{*}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*}$,
one writes $v^{k}f_{j}$ to represent the tensor $\mathbf{v}\otimes\mathbf{f}^{*}$.
The index letters in the expression $v^{k}f_{j}$ are intentionally
chosen to be \emph{different} (in this case, $k$ and $j$) so that
no summation would be implied. In other words, a tensor product is
written simply as a product of components, and the index letters are
chosen appropriately. Then one can interpret $v^{k}f_{j}$ as simply
the product of \emph{numbers}. In particular, it makes no difference
whether one writes $f_{j}v^{k}$ or $v^{k}f_{j}$. The \emph{position
of the indices} (rather than the ordering of vectors) shows in every
case how the tensor product is formed. Note that it is not possible
to distinguish $V\otimes V^{*}$ from $V^{*}\otimes V$ in the index
notation.
\end{itemize}

\paragraph{Example 1:}

It follows from the definition of $\delta_{j}^{i}$ that $\delta_{j}^{i}v^{j}=v^{i}$.
This is the index representation of $\hat{1}\mathbf{v}=\mathbf{v}$. 


\paragraph{Example 2:}

Suppose $\mathbf{w}$, $\mathbf{x}$, $\mathbf{y}$, and $\mathbf{z}$
are vectors from $V$ whose components are $w^{i}$, $x^{i}$, $y^{i}$,
$z^{i}$. What are the components of the tensor $\mathbf{w}\otimes\mathbf{x}+2\mathbf{y}\otimes\mathbf{z}\in V\otimes V$?


\subparagraph{Answer:}

$w^{i}x^{k}+2y^{i}z^{k}$. (We need to choose another letter for the
second free index, $k$, which corresponds to the second copy of $V$
in $V\otimes V$.)


\paragraph{Example 3:}

The operator $\hat{A}\equiv\hat{1}_{V}+\lambda\mathbf{v}\otimes\mathbf{u}^{*}\in V\otimes V^{*}$
acts on a vector $\mathbf{x}\in V$. Calculate the resulting vector
$\mathbf{y}\equiv\hat{A}\mathbf{x}$.

In the index-free notation, the calculation is\[
\mathbf{y}=\hat{A}\mathbf{x}=\left(\hat{1}_{V}+\lambda\mathbf{v}\otimes\mathbf{u}^{*}\right)\mathbf{x}=\mathbf{x}+\lambda\mathbf{u}^{*}\left(\mathbf{x}\right)\mathbf{v}.\]
In the index notation, the calculation looks like this:\[
y^{k}=\left(\delta_{j}^{k}+\lambda v^{k}u_{j}\right)x^{j}=x^{k}+\lambda v^{k}u_{j}x^{j}.\]
In this formula, $j$ is a dummy index and $k$ is a free index. We
could have also written $\lambda x^{j}v^{k}u_{j}$ instead of $\lambda v^{k}u_{j}x^{j}$
since the ordering of components makes no difference in the index
notation. 


\paragraph{Exercise: }

In a physics book you find the following formula, \[
H_{\mu\nu}^{\alpha}=\frac{1}{2}\left(h_{\beta\mu\nu}+h_{\beta\nu\mu}-h_{\mu\nu\beta}\right)g^{\alpha\beta}.\]
To what spaces do the tensors $H$, $g$, $h$ belong (assuming these
quantities represent tensors)? Rewrite this formula in the coordinate-free
notation.


\subparagraph{Answer:}

$H\in V\otimes V^{*}\otimes V^{*}$, $h\in V^{*}\otimes V^{*}\otimes V^{*}$,
$g\in V\otimes V$. Assuming the simplest case,\[
h=\mathbf{h}_{1}^{*}\otimes\mathbf{h}_{2}^{*}\otimes\mathbf{h}_{3}^{*},\; g=\mathbf{g}_{1}\otimes\mathbf{g}_{2},\]
the coordinate-free formula is\[
H=\frac{1}{2}\mathbf{g}_{1}\otimes\left(\mathbf{h}_{1}^{*}\left(\mathbf{g}_{2}\right)\mathbf{h}_{2}^{*}\otimes\mathbf{h}_{3}^{*}+\mathbf{h}_{1}^{*}\left(\mathbf{g}_{2}\right)\mathbf{h}_{3}^{*}\otimes\mathbf{h}_{2}^{*}-\mathbf{h}_{3}^{*}\left(\mathbf{g}_{2}\right)\mathbf{h}_{1}^{*}\otimes\mathbf{h}_{2}^{*}\right).\]



\paragraph{Question:}

I would like to decompose a vector $\mathbf{v}$ in the basis $\left\{ \mathbf{e}_{j}\right\} $
using the index notation, $\mathbf{v}=v^{j}\mathbf{e}_{j}$. Is it
okay to write the \emph{lower} index $j$ on the basis vectors $\mathbf{e}_{j}$?
I also want to write $v^{j}=\mathbf{e}_{j}^{*}(\mathbf{v})$ using
the dual basis $\left\{ \mathbf{e}_{j}^{*}\right\} $, but then the
index $j$ is not correctly matched at both sides. 


\subparagraph{Answer:}

The index notation is designed so that you never use the basis vectors
$\mathbf{e}_{j}$ or $\mathbf{e}_{j}^{*}$ --- you only use components
such as $v^{j}$ or $f_{j}$. The only way to keep the upper and the
lower indices consistent (i.e.~having the summation always over one
upper and one lower index) when you want to use both the components
$v^{j}$ and the basis vectors $\mathbf{e}_{j}$ is to use \emph{upper}
indices on the dual basis, i.e.~writing $\left\{ \mathbf{e}^{*j}\right\} $.
Then a covector will have components with lower indices, $\mathbf{f}^{*}=f_{j}\mathbf{e}^{*j}$,
and the index notation remains consistent. A further problem occurs
when you have a scalar product and you would like to express the component
$v^{j}$ as $v^{j}=\left\langle \mathbf{v},\mathbf{e}_{j}\right\rangle $.
In this case, the only way to keep the notation consistent is to use
explicitly a suitable matrix, say $g^{ij}$, in order to represent
the scalar product. Then one would be able to write $v^{j}=g^{jk}\left\langle \mathbf{v},\mathbf{e}_{k}\right\rangle $
and keep the index notation consistent. 


\subsection{Advantages and disadvantages of index notation}

Index notation is conceptually easier than the index-free notation
because one can imagine manipulating {}``merely'' some tables of
numbers, rather than {}``abstract vectors.'' In other words, we
are working with less abstract objects. The price is that we obscure
the geometric interpretation of what we are doing, and proofs of general
theorems become more difficult to understand.

The main advantage of the index notation is that it makes computations
with complicated tensors quicker. Consider, for example, the space
$V\otimes V\otimes V^{*}\otimes V^{*}$ whose elements can be interpreted
as operators from $\textrm{Hom}\,(V\otimes V,V\otimes V)$. The action
of such an operator on a tensor $a^{jk}\in V\otimes V$ is expressed
in the index notation as\[
b^{lm}=A_{jk}^{lm}a^{jk},\]
where $a^{lm}$ and $b^{lm}$ represent tensors from $V\otimes V$
and $A_{jk}^{lm}$ is a tensor from $V\otimes V\otimes V^{*}\otimes V^{*}$,
while the summation over the indices $j$ and $k$ is implied. Each
index letter refers unambiguously to one tensor product factor. Note
that the formula \[
b^{lm}=A_{kj}^{lm}a^{jk}\]
describes another (\emph{inequivalent}) way to define the isomorphism
between the spaces $V\otimes V\otimes V^{*}\otimes V^{*}$ and $\textrm{Hom}\,(V\otimes V,V\otimes V)$.
The index notation expresses this difference in a concise way; of
course, one needs to pay close attention to the position and the order
of indices.

Note that in the coordinate-free notation it is much more cumbersome
to describe and manipulate such tensors. Without the index notation,
it is cumbersome to perform calculations with a tensor such as\[
B_{jl}^{ik}\equiv\delta_{j}^{i}\delta_{l}^{k}-\delta_{j}^{k}\delta_{l}^{i}\in V\otimes V\otimes V^{*}\otimes V^{*}\]
 which acts as an operator in $V\otimes V$, exchanging the two vector
factors:\[
\left(\delta_{j}^{i}\delta_{l}^{k}-\delta_{j}^{k}\delta_{l}^{i}\right)a^{jl}=a^{ik}-a^{ki}.\]
The index-free definition of this operator is simple with single-term
tensor products,\[
\hat{B}\left(\mathbf{u}\otimes\mathbf{v}\right)\equiv\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}.\]
Having defined $\hat{B}$ on single-term tensor products, we require
linearity and so define the operator $\hat{B}$ on the entire space
$V\otimes V$. However, practical calculations are cumbersome if we
are applying $\hat{B}$ to a complicated tensor $X\in V\otimes V$
rather than to a single-term product $\mathbf{u}\otimes\mathbf{v}$,
because, in particular, we are obliged to decompose $X$ into single-term
tensor products in order to perform such a calculation.

Some \emph{disadvantages} of the index notation are as follows: (1)
If the basis is changed, all components need to be recomputed. In
textbooks that use the index notation, quite some time is spent studying
the transformation laws of tensor components under a change of basis.
If different bases are used simultaneously, confusion may result as
to which basis is implied in a particular formula. (2) If we are using
unrelated vector spaces $V$ and $W$, we need to choose a basis in
each of them and always remember which index belongs to which space.
The index notation does not show this explicitly. To alleviate this
problem, one may use e.g.~Greek and Latin indices to distinguish
different spaces, but this is not always convenient or sufficient.
(3) The geometrical meaning of many calculations appears hidden behind
a mass of indices. It is sometimes unclear whether a long expression
with indices can be simplified and how to proceed with calculations.
(Do we need to try all possible relabellings of indices and see what
happens?) 

Despite these disadvantages, the index notation enables one to perform
practical calculations with high-rank tensor spaces, such as those
required in field theory and in general relativity. For this reason,
and also for historical reasons (Einstein used the index notation
when developing the theory of relativity), most physics textbooks
use the index notation. In some cases, calculations can be performed
equally quickly using index and index-free notations. In other cases,
especially when deriving general properties of tensors, the index-free
notation is superior.%
\footnote{I have developed an advanced textbook on general relativity entirely
in the index-free notation and displayed the infrequent cases where
the index notation is easier to use.%
} I use the index-free notation in this book because calculations in
coordinates are not essential for this book's central topics. However,
I will occasionally show how to do some calculations also in the index
notation.


\section{Dirac notation for vectors and covectors}

The Dirac notation was developed for quantum mechanics where one needs
to perform many computations with operators, vectors and covectors
(but \emph{not} with higher-rank tensors!). The Dirac notation is
index-free.


\subsection{Definition of Dirac notation}

The rules are as follows:
\begin{itemize}
\item One writes the symbol $\left|v\right\rangle $ for a vector $\mathbf{v}\in V$
and $\left\langle f\right|$ for a covector $\mathbf{f}^{*}\in V^{*}$.
The labels inside the special brackets $\left|\,\right\rangle $ and
$\left\langle \,\right|$ are chosen according to the problem at hand,
e.g.~one can denote specific vectors by $\left|0\right\rangle $,
$\left|1\right\rangle $, $\left|x\right\rangle $, $\left|v_{1}\right\rangle $,
or even $\left\langle ^{(0)}\tilde{a}_{ij};\, l,m\right|$ if that
helps. (Note that $\left|0\right\rangle $ is normally \emph{not}
the zero vector; the latter is denoted simply by 0, as usual.)
\item Linear combinations of vectors are written like this: $2\left|v\right\rangle -3\left|u\right\rangle $
instead of $2\mathbf{v}-3\mathbf{u}$.
\item The action of a covector on a vector is written as $\left\langle f|v\right\rangle $;
the result is a number. The mnemonic for this is {}``bra-ket'',
so $\left\langle f\right|$ is a {}``bra vector'' and $\left|v\right\rangle $
is a {}``ket vector.'' The action of an operator $\hat{A}$ on a
vector $\left|v\right\rangle $ is written $\hat{A}\left|v\right\rangle $. 
\item The action of the transposed operator $\hat{A}^{T}$ on a covector
$\left\langle f\right|$ is written $\left\langle f\right|\hat{A}$.
Note that the transposition label ($^{T}$) is \emph{not} used. This
is consistent within the Dirac notation: The covector $\left\langle f\right|\hat{A}$
acts on a vector $\left|v\right\rangle $ as $\left\langle f\right|\hat{A}\left|v\right\rangle $,
which is the same (by definition of $\hat{A}^{T}$) as the covector
$\left\langle f\right|$ acting on $\hat{A}\left|v\right\rangle $.
\item The tensor product symbol $\otimes$ is omitted. Instead of $\mathbf{v}\otimes\mathbf{f}^{*}\in V\otimes V^{*}$
or $\mathbf{a}\otimes\mathbf{b}\in V\otimes V$, one writes $\left|v\right\rangle \left\langle f\right|$
and $\left|a\right\rangle \left|b\right\rangle $ respectively. The
tensor space to which a tensor belongs will be clear from the notation
or from explanations in the text. Note that one cannot write $\mathbf{f}^{*}\otimes\mathbf{v}$
as $\left\langle f\right|\left|v\right\rangle $ since $\left\langle f\right|\left|v\right\rangle $
already means $\mathbf{f}^{*}(\mathbf{v})$ in the Dirac notation.
Instead, one always writes $\left|v\right\rangle \left\langle f\right|$
and does not distinguish between $\mathbf{f}^{*}\otimes\mathbf{v}$
and $\mathbf{v}\otimes\mathbf{f}^{*}$.
\end{itemize}

\paragraph{Example 1:}

The action of an operator $\mathbf{a}\otimes\mathbf{b}^{*}\in V\otimes V^{*}$
on a vector $\mathbf{v}\in V$ has been defined by $\left(\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{v}=\mathbf{b}^{*}(\mathbf{v})\,\mathbf{a}$.
In the Dirac notation, this is very easy to express: one acts with
$\left|a\right\rangle \left\langle b\right|$ on a vector $\left|v\right\rangle $
by writing \[
\left(\left|a\right\rangle \left\langle b\right|\right)\left|v\right\rangle =\left|a\right\rangle \left\langle b\right|\left|v\right\rangle =\left|a\right\rangle \left\langle b|v\right\rangle .\]
In other words, we mentally remove one vertical line and get the vector
$\left|a\right\rangle $ times the number $\left\langle b|v\right\rangle $.
This is entirely consistent with the definition of the operator $\mathbf{a}\otimes\mathbf{b}^{*}\in\text{End}\, V$. 


\paragraph{Example 2:}

The action of $\hat{A}\equiv\hat{1}_{V}+\frac{1}{2}\mathbf{v}\otimes\mathbf{u}^{*}\in V\otimes V^{*}$
on a vector $\mathbf{x}\in V$ is written as follows:\begin{align*}
\left|y\right\rangle  & =\hat{A}\left|x\right\rangle =\left(\hat{1}+{\textstyle \frac{1}{2}}\left|v\right\rangle \left\langle u\right|\right)\left|x\right\rangle =\left|x\right\rangle +{\textstyle \frac{1}{2}}\left|v\right\rangle \left\langle u\right|\left|x\right\rangle \\
 & =\left|x\right\rangle +\frac{\left\langle u|x\right\rangle }{2}\left|v\right\rangle .\end{align*}
Note that we have again {}``simplified'' $\left\langle u\right|\left|x\right\rangle $
to $\left\langle u|x\right\rangle $, and the result is correct. Compare
this notation with the same calculation written in the index-free
notation:\[
\mathbf{y}=\hat{A}\mathbf{x}=\left(\hat{1}+{\textstyle \frac{1}{2}}\mathbf{v}\otimes\mathbf{u}^{*}\right)\mathbf{x}=\mathbf{x}+\frac{\mathbf{u}^{*}(\mathbf{x})}{2}\mathbf{v}.\]



\paragraph{Example 3:}

If $\left|e_{1}\right\rangle $, ..., $\left|e_{N}\right\rangle $
is a basis, we denote by $\left\langle e_{k}\right|$ the covectors
from the dual basis, so that $\left\langle e_{j}|e_{k}\right\rangle =\delta_{jk}$.
A vector $\left|v\right\rangle $ is expressed through the basis vectors
as\[
\left|v\right\rangle =\sum_{k}v_{k}\left|e_{k}\right\rangle ,\]
where the coefficients $v_{k}$ can be computed as $v_{k}=\left\langle e_{k}|v\right\rangle $.
An arbitrary operator $\hat{A}$ is decomposed as\[
\hat{A}=\sum_{j,k}A_{jk}\left|e_{j}\right\rangle \left\langle e_{k}\right|.\]
The \textbf{matrix elements} $A_{jk}$ of the operator $\hat{A}$
in this basis are found as\[
A_{jk}=\left\langle e_{j}\right|\hat{A}\left|e_{k}\right\rangle .\]
The identity operator is decomposed as follows,\[
\hat{1}=\sum_{k}\left|e_{k}\right\rangle \left\langle e_{k}\right|.\]
Expressions of this sort abound in quantum mechanics textbooks.


\subsection{Advantages and disadvantages of Dirac notation}

The Dirac notation is convenient when many calculations with vectors
and covectors are required. But calculations become cumbersome if
we need many tensor powers. For example, suppose we would like to
apply a covector $\left\langle f\right|$ to the \emph{second} vector
in the tensor product $\left|a\right\rangle \left|b\right\rangle \left|c\right\rangle $,
so that the answer is $\left|a\right\rangle \langle f\left|b\right\rangle \left|c\right\rangle $.
Now one cannot simply write $\left\langle f\right|X$ with $X=\left|a\right\rangle \left|b\right\rangle \left|c\right\rangle $
because $\left\langle f\right|X$ is ambiguous in this case. The desired
kind of action of covectors on tensors is difficult to express using
the Dirac notation. Only the index notation allows one to write and
to carry out arbitrary operations with this kind of tensor product.
In the example just mentioned, one writes $f_{j}a^{i}b^{j}c^{k}$
to indicate that the covector $f_{j}$ acts on the vector $b^{j}$
but not on the other vectors. Of course, the resulting expression
is harder to read because one needs to pay close attention to every
index.


\chapter{Exterior product \label{sec:Exterior-product}}

In this chapter I introduce one of the most useful constructions in
basic linear algebra --- the exterior product, denoted by $\mathbf{a}\wedge\mathbf{b}$,
where $\mathbf{a}$ and $\mathbf{b}$ are vectors from a space $V$.
The basic idea of the exterior product is that we would like to define
an \emph{antisymmetric} and bilinear product of vectors. In other
words, we would like to have the properties $\mathbf{a}\wedge\mathbf{b}=-\mathbf{b}\wedge\mathbf{a}$
and $\mathbf{a}\wedge(\mathbf{b}+\lambda\mathbf{c})=\mathbf{a}\wedge\mathbf{b}+\lambda\mathbf{a}\wedge\mathbf{c}$. 


\section{Motivation\label{sub:Motivation-for-exterior}}

Here I discuss, at some length, the motivation for introducing the
exterior product. The motivation is geometrical and comes from considering
the properties of areas and volumes in the framework of elementary
Euclidean geometry. I will proceed with a formal definition of the
exterior product in Sec.~\ref{sub:Definition-of-the-exterior}. In
order to understand the definition explained there, it is not necessary
to use this geometric motivation because the definition will be purely
algebraic. Nevertheless, I feel that this motivation will be helpful
for some readers.


\subsection{Two-dimen\-sion\-al oriented area\label{sub:Two-dimensional-oriented}}

We work in a two-dimen\-sion\-al Euclidean space, such as that considered
in elementary geometry. We assume that the usual geometrical definition
of the area of a parallelogram is known.

Consider the area $Ar(\mathbf{a},\mathbf{b})$ of a parallelogram
spanned by vectors $\mathbf{a}$ and $\mathbf{b}$. It is known from
elementary geometry that $Ar(\mathbf{a},\mathbf{b})=\left|\mathbf{a}\right|\cdot\left|\mathbf{b}\right|\cdot\sin\alpha$
where $\alpha$ is the angle between the two vectors, which is always
between 0 and $\pi$ (we do not take into account the orientation
of this angle). Thus defined, the area $Ar$ is always non-negative.

Let us investigate $Ar(\mathbf{a},\mathbf{b})$ as a function of the
vectors $\mathbf{a}$ and $\mathbf{b}$. If we stretch the vector
$\mathbf{a}$, say, by factor 2, the area is also increased by factor
2. However, if we multiply $\mathbf{a}$ by the number $-2$, the
area will be multiplied by $2$ rather than by $-2$:\[
Ar(\mathbf{a},2\mathbf{b})=Ar(\mathbf{a},-2\mathbf{b})=2Ar(\mathbf{a},\mathbf{b}).\]
 Similarly, for some vectors $\mathbf{a},\mathbf{b},\mathbf{c}$ such
as shown in Fig.~\ref{fig:The-area-of2}, we have $Ar(\mathbf{a},\mathbf{b}+\mathbf{c})=Ar(\mathbf{a},\mathbf{b})+Ar(\mathbf{a},\mathbf{c})$.
However, if we consider $\mathbf{b}=-\mathbf{c}$ then we obtain \begin{align*}
Ar(\mathbf{a},\mathbf{b}+\mathbf{c}) & =Ar(\mathbf{a},0)=0\\
 & \neq Ar(\mathbf{a},\mathbf{b})+Ar(\mathbf{a},-\mathbf{b})=2Ar(\mathbf{a},\mathbf{b}).\end{align*}


Hence, the area $Ar(\mathbf{a},\mathbf{b})$ is, strictly speaking,
\emph{not} a linear function of the vectors $\mathbf{a}$ and $\mathbf{b}$:
\begin{align*}
Ar(\lambda\mathbf{a},\mathbf{b}) & =\left|\lambda\right|Ar(\mathbf{a},\mathbf{b})\neq\lambda\, Ar(\mathbf{a},\mathbf{b}),\\
Ar(\mathbf{a},\mathbf{b}+\mathbf{c}) & \neq Ar(\mathbf{a},\mathbf{b})+Ar(\mathbf{a},\mathbf{c}).\end{align*}
Nevertheless, as we have seen, the properties of linearity hold in
\emph{some} cases. If we look closely at those cases, we find that
linearly holds precisely when we do not change the orientation of
the vectors. It would be more convenient if the linearity properties
held in all cases. 

The trick is to replace the area function $Ar$ with the \textbf{oriented
area}\index{oriented area} function $A(\mathbf{a},\mathbf{b})$.
Namely, we define the function $A(\mathbf{a},\mathbf{b})$ by \[
A(\mathbf{a},\mathbf{b})=\pm\left|\mathbf{a}\right|\cdot\left|\mathbf{b}\right|\cdot\sin\alpha,\]
where the sign is chosen positive when the angle $\alpha$ is measured
from the vector $\mathbf{a}$ to the vector $\mathbf{b}$ in the counterclockwise
direction, and negative otherwise.


\paragraph{Statement:}

The oriented area $A(\mathbf{a},\mathbf{b})$ of a parallelogram spanned
by the vectors $\mathbf{a}$ and $\mathbf{b}$ in the two-dimen\-sion\-al
Euclidean space is an antisymmetric and bilinear function of the vectors
$\mathbf{a}$ and $\mathbf{b}$:\begin{align*}
A(\mathbf{a},\mathbf{b}) & =-A(\mathbf{b},\mathbf{a}),\\
A(\lambda\mathbf{a},\mathbf{b}) & =\lambda\, A(\mathbf{a},\mathbf{b}),\\
A(\mathbf{a},\mathbf{b}+\mathbf{c}) & =A(\mathbf{a},\mathbf{b})+A(\mathbf{a},\mathbf{c}).\qquad\text{(the sum law)}\end{align*}


%
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\caption{The area of the parallelogram $0ACB$ spanned by $\mathbf{a}$ and
$\mathbf{b}$ is equal to the area of the parallelogram $0ADE$ spanned
by $\mathbf{a}$ and $\mathbf{b}+\alpha\mathbf{a}$ due to the equality
of areas $ACD$ and $0BE$.\label{fig:The-area-of1}}

\end{figure}



\subparagraph{Proof:}

The first property is a straightforward consequence of the sign rule
in the definition of $A$.

Proving the second property requires considering the cases $\lambda>0$
and $\lambda<0$ separately. If $\lambda>0$ then the orientation
of the pair $\left(\mathbf{a},\mathbf{b}\right)$ remains the same
and then it is clear that the property holds: When we rescale $\mathbf{a}$
by $\lambda$, the parallelogram is stretched and its area increases
by factor $\lambda$. If $\lambda<0$ then the orientation of the
parallelogram is reversed and the oriented area changes sign.

To prove the sum law, we consider  two cases: either $\mathbf{c}$
is parallel to $\mathbf{a}$ or it is not. If $\mathbf{c}$ is parallel
to $\mathbf{a}$, say $\mathbf{c}=\alpha\mathbf{a}$, we use Fig.~\ref{fig:The-area-of1}
to show that $A(\mathbf{a},\mathbf{b}+\lambda\mathbf{a})=A(\mathbf{a},\mathbf{b})$,
which yields the desired statement since $A(\mathbf{a},\lambda\mathbf{a})=0$.
If $\mathbf{c}$ is not parallel to $\mathbf{a}$, we use Fig.~\ref{fig:The-area-of2}
to show that $A(\mathbf{a},\mathbf{b}+\mathbf{c})=A(\mathbf{a},\mathbf{b})+A(\mathbf{a},\mathbf{c})$.
Analogous geometric constructions can be made for different possible
orientations of the vectors $\mathbf{a}$, $\mathbf{b}$, $\mathbf{c}$.\hfill{}$\blacksquare$
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\caption{The area of the parallelogram spanned by $\mathbf{a}$ and $\mathbf{b}$
(equal to the area of $CEFD$) plus the area of the parallelogram
spanned by $\mathbf{a}$ and $\mathbf{c}$ (the area of $ACDB$) equals
the area of the parallelogram spanned by $\mathbf{a}$ and $\mathbf{b}+\mathbf{c}$
(the area of $AEFB$) because of the equality of the areas of $ACE$
and $BDF$.\label{fig:The-area-of2}}

\end{figure}


It is relatively easy to compute the oriented area because of its
algebraic properties. Suppose the vectors $\mathbf{a}$ and $\mathbf{b}$
are given through their components in a standard basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $,
for instance \[
\mathbf{a}=\alpha_{1}\mathbf{e}_{1}+\alpha_{2}\mathbf{e}_{2},\quad\mathbf{b}=\beta_{1}\mathbf{e}_{1}+\beta_{2}\mathbf{e}_{2}.\]
We assume, of course, that the vectors $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$
are orthogonal to each other and have unit length, as is appropriate
in a Euclidean space. We also assume that the right angle is measured
from $\mathbf{e}_{1}$ to $\mathbf{e}_{2}$ in the counter-clockwise
direction, so that $A(\mathbf{e}_{1},\mathbf{e}_{2})=+1$. Then we
use the Statement and the properties $A(\mathbf{e}_{1},\mathbf{e}_{1})=0$,
$A(\mathbf{e}_{1},\mathbf{e}_{2})=1$, $A(\mathbf{e}_{2},\mathbf{e}_{2})=0$
to compute\begin{align*}
A(\mathbf{a},\mathbf{b}) & =A(\alpha_{1}\mathbf{e}_{1}+\alpha_{2}\mathbf{e}_{2},\beta_{1}\mathbf{e}_{1}+\beta_{2}\mathbf{e}_{2})\\
 & =\alpha_{1}\beta_{2}A(\mathbf{e}_{1},\mathbf{e}_{2})+\alpha_{2}\beta_{1}A(\mathbf{e}_{2},\mathbf{e}_{1})\\
 & =\alpha_{1}\beta_{2}-\alpha_{2}\beta_{1}.\end{align*}


The ordinary (unoriented) area is then obtained as the absolute value
of the oriented area, $Ar(\mathbf{a},\mathbf{b})=\left|A(\mathbf{a},\mathbf{b})\right|$.
It turns out that the oriented area, due to its strict linearity properties,
is a much more convenient and powerful construction than the unoriented
area.


\subsection{Parallelograms in $\mathbb{R}^{3}$ and in $\mathbb{R}^{n}$ \label{sub:Area-of-two-dimensional-parallelograms}}

Let us now work in the Euclidean space $\mathbb{R}^{3}$ with a standard
basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $.
We can similarly try to characterize the area of a parallelogram spanned
by two vectors $\mathbf{a}$, $\mathbf{b}$. It is, however, not possible
to characterize the orientation of the area simply by a sign. We also
cannot use a geometric construction such as that in Fig.~\ref{fig:The-area-of2};
in fact it is \emph{not true} in three dimensions that the area spanned
by $\mathbf{a}$ and $\mathbf{b}+\mathbf{c}$ is equal to the sum
of $Ar(\mathbf{a},\mathbf{b})$ and $Ar(\mathbf{a},\mathbf{c})$.
Can we still define some kind of {}``oriented area'' that obeys
the sum law?

Let us consider Fig.~\ref{fig:The-area-of2} as a figure showing
the \emph{projection} of the areas of the three parallelograms onto
some coordinate plane, say, the plane of the basis vectors $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $.
It is straightforward to see that the projections of the areas obey
the sum law as oriented areas.


\paragraph{Statement:}

Let $\mathbf{a},\mathbf{b}$ be two vectors in $\mathbb{R}^{3}$,
and let $P(\mathbf{a},\mathbf{b})$ be the parallelogram spanned by
these vectors. Denote by $P(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$
the parallelogram within the coordinate plane $\text{Span}\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
obtained by projecting $P(\mathbf{a},\mathbf{b})$ onto that coordinate
plane, and similarly for the other two coordinate planes. Denote by
$A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$ the oriented
area of $P(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$.
Then $A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$ is
a bilinear, antisymmetric function of $\mathbf{a}$ and $\mathbf{b}$.


\subparagraph{Proof:}

The projection onto the coordinate plane of $\mathbf{e}_{1},\mathbf{e}_{2}$
is a linear transformation. Hence, the vector $\mathbf{a}+\lambda\mathbf{b}$
is projected onto the sum of the projections of $\mathbf{a}$ and
$\lambda\mathbf{b}$. Then we apply the arguments in the proof of
Statement~\ref{sub:Two-dimensional-oriented} to the \emph{projections}
of the vectors; in particular, Figs.~\ref{fig:The-area-of1} and~\ref{fig:The-area-of2}
are interpreted as showing the projections of all vectors onto the
coordinate plane $\mathbf{e}_{1},\mathbf{e}_{2}$. It is then straightforward
to see that all the properties of the oriented area hold for the projected
oriented areas. Details left as exercise.\hfill{}$\blacksquare$

It is therefore convenient to consider the oriented areas of the three
projections --- $A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}$,
$A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{2},\mathbf{e}_{3}}$, $A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{3},\mathbf{e}_{1}}$
--- as three components of a \emph{vector-valued} area $A(\mathbf{a},\mathbf{b})$
of the parallelogram spanned by $\mathbf{a},\mathbf{b}$. Indeed,
it can be shown that these three projected areas coincide with the
three Euclidean components of the vector product $\mathbf{a}\times\mathbf{b}$.
The vector product is the traditional way such areas are represented
in geometry: the vector $\mathbf{a}\times\mathbf{b}$ represents at
once the magnitude of the area and the orientation of the parallelogram.
One computes the unoriented area of a parallelogram as the length
of the vector $\mathbf{a}\times\mathbf{b}$ representing the oriented
area,\[
Ar(\mathbf{a},\mathbf{b})=\left[A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{1},\mathbf{e}_{2}}^{2}+A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{2},\mathbf{e}_{3}}^{2}+A(\mathbf{a},\mathbf{b})_{\mathbf{e}_{3},\mathbf{e}_{1}}^{2}\right]^{\frac{1}{2}}.\]


However, the vector product cannot be generalized to all higher-dimen\-sion\-al
spaces. Luckily, the vector product does not play an essential role
in the construction of the oriented area. 

Instead of working with the vector product, we will generalize the
idea of projecting the parallelogram onto coordinate planes. Consider
a parallelogram spanned by vectors $\mathbf{a},\mathbf{b}$ in an
$n$-dimen\-sion\-al Euclidean space $V$ with the standard basis
$\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $. While in three-dimen\-sion\-al
space we had just three projections (onto the coordinate planes $xy$,
$xz$, $yz$), in an $n$-dimen\-sion\-al space we have $\frac{1}{2}n(n-1)$
coordinate planes, which can be denoted by $\text{Span}\left\{ \mathbf{e}_{i},\mathbf{e}_{j}\right\} $
(with $1\leq i<j\leq n$). We may construct the $\frac{1}{2}n(n-1)$
projections of the parallelogram onto these coordinate planes. Each
of these projections has an oriented area; that area is a bilinear,
antisymmetric number-valued function of the vectors $\mathbf{a},\mathbf{b}$.
(The proof of the Statement above does not use the fact that the space
is \emph{three}-dimen\-sion\-al!) We may then regard these $\frac{1}{2}n(n-1)$
numbers as the components of a vector representing the oriented area
of the parallelogram. It is clear that all these components are needed
in order to describe the actual geometric \emph{orientation} of the
parallelogram in the $n$-dimen\-sion\-al space.

We arrived at the idea that the oriented area of the parallelogram
spanned by $\mathbf{a},\mathbf{b}$ is an antisymmetric, bilinear
function $A(\mathbf{a},\mathbf{b})$ whose value is a vector with
$\frac{1}{2}n(n-1)$ components, i.e.~a vector \emph{in a new space}
--- the {}``space of oriented areas,'' as it were. This space is
$\frac{1}{2}n(n-1)$-dimen\-sion\-al. We will construct this space
explicitly below; it is the space of bivectors, to be denoted by $\wedge^{2}V$. 

We will see that the unoriented area of the parallelogram is computed
as the \emph{length} of the vector $A(\mathbf{a},\mathbf{b})$, i.e.~as
the square root of the sum of squares of the areas of the projections
of the parallelogram onto the coordinate planes. This is a generalization
of the Pythagoras theorem to areas in higher-dimen\-sion\-al spaces.

The analogy between ordinary vectors and vector-val\-ued areas can
be understood visually as follows. A straight line segment in an $n$-dimen\-sion\-al
space is represented by a vector whose $n$ components (in an orthonormal
basis) are the signed lengths of the $n$ projections of the line
segment onto the coordinate axes. (The components are \emph{signed},
or \emph{oriented}, i.e.~taken with a negative sign if the orientation
of the vector is opposite to the orientation of the axis.) The length
of a straight line segment, i.e.~the length of the vector $\mathbf{v}$,
is then computed as $\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$.
The scalar product $\left\langle \mathbf{v},\mathbf{v}\right\rangle $
is equal to the sum of squared lengths of the projections because
we are using an orthonormal basis. A parallelogram in space is represented
by a vector $\psi$ whose ${n \choose 2}$ components are the \emph{oriented}
areas of the ${n \choose 2}$ projections of the parallelogram onto
the coordinate planes. (The vector $\psi$ belongs to the space of
oriented areas, not to the original $n$-dimen\-sion\-al space.)
The numerical value of the area of the parallelogram is then computed
as $\sqrt{\left\langle \psi,\psi\right\rangle }$. The scalar product
$\left\langle \psi,\psi\right\rangle $ in the space of oriented areas
is equal to the sum of squared areas of the projections because the
${n \choose 2}$ unit areas in the coordinate planes are an orthonormal
basis (according to the definition of the scalar product in the space
of oriented areas).

The generalization of the Pythagoras theorem holds not only for areas
but also for higher-dimen\-sion\-al volumes. A general proof of
this theorem will be given in Sec.~\ref{proof-of-pythagoras}, using
the exterior product and several other constructions to be developed
below.


\section{Exterior product\label{sub:Definition-of-the-exterior}}

In the previous section I motivated the introduction of the antisymmetric
product by showing its connection to areas and volumes. In this section
I will give the definition and work out the properties of the exterior
product in a purely algebraic manner, without using any geometric
intuition. This will enable us to work with vectors in arbitrary dimensions,
to obtain many useful results, and eventually also to appreciate more
fully the geometric significance of the exterior product. 

As explained in Sec.~\ref{sub:Area-of-two-dimensional-parallelograms},
it is possible to represent the oriented area of a parallelogram by
a vector in some auxiliary space. The oriented area is much more convenient
to work with because it is a \emph{bilinear} function of the vectors
$\mathbf{a}$ and $\mathbf{b}$ (this is explained in detail in Sec.~\ref{sub:Motivation-for-exterior}).
{}``Product'' is another word for {}``bilinear function.'' We
have also seen that the oriented area is an \emph{antisymmetric} function
of the vectors $\mathbf{a}$ and $\mathbf{b}$.

In three dimensions, an oriented area is represented by the cross
product $\mathbf{a}\times\mathbf{b}$, which is indeed an antisymmetric
and bilinear product. So we expect that the oriented area in higher
dimensions can be represented by some kind of new antisymmetric product
of $\mathbf{a}$ and $\mathbf{b}$; let us denote this product (to
be defined below) by $\mathbf{a}\wedge\mathbf{b}$, pronounced {}``a
wedge b.'' The value of $\mathbf{a}\wedge\mathbf{b}$ will be a vector
in a \emph{new} vector space. We will also construct this new space
explicitly.


\subsection{Definition of exterior product}

Like the tensor product space, the space of exterior products can
be defined solely by its algebraic properties. We can consider the
space of \emph{formal} \emph{expressions} like $\mathbf{a}\wedge\mathbf{b}$,
$3\mathbf{a}\wedge\mathbf{b}+2\mathbf{c}\wedge\mathbf{d}$, etc.,
and \emph{require} the properties of an antisymmetric, bilinear product
to hold.

Here is a more formal definition of the exterior product space: We
will construct an antisymmetric product {}``by hand,'' using the
tensor product space.


\paragraph{Definition 1:}

Given a vector space $V$, we define a new vector space $V\wedge V$
called the \textbf{exterior product}\index{exterior product} (or
antisymmetric tensor product, or alternating product, or \textbf{wedge
product}\index{wedge product}) of two copies of $V$. The space $V\wedge V$
is the subspace in $V\otimes V$ consisting of all \textbf{antisymmetric}
tensors, i.e.~tensors of the form\[
\mathbf{v}_{1}\otimes\mathbf{v}_{2}-\mathbf{v}_{2}\otimes\mathbf{v}_{1},\quad\mathbf{v}_{1,2}\in V,\]
and all linear combinations of such tensors. The exterior product
of two vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ is the expression
shown above; it is obviously an antisymmetric and bilinear function
of $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$.

For example, here is one particular element from $V\wedge V$, which
we write in two different ways using the axioms of the tensor product:\begin{align}
\left(\mathbf{u}+\mathbf{v}\right)\otimes\left(\mathbf{v}+\mathbf{w}\right)-\left(\mathbf{v}+\mathbf{w}\right)\otimes\left(\mathbf{u}+\mathbf{v}\right)=\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}\nonumber \\
+\mathbf{u}\otimes\mathbf{w}-\mathbf{w}\otimes\mathbf{u}+\mathbf{v}\otimes\mathbf{w}-\mathbf{w}\otimes\mathbf{v}\in V\wedge V.\label{eq:uvw calc 1}\end{align}



\subparagraph{Remark:}

A tensor $\mathbf{v}_{1}\otimes\mathbf{v}_{2}\in V\otimes V$ is not
equal to the tensor $\mathbf{v}_{2}\otimes\mathbf{v}_{1}$ if $\mathbf{v}_{1}\neq\mathbf{v}_{2}$.
This is so because there is no identity among the axioms of the tensor
product that would allow us to exchange the factors $\mathbf{v}_{1}$
and $\mathbf{v}_{2}$ in the expression $\mathbf{v}_{1}\otimes\mathbf{v}_{2}$.


\paragraph{Exercise 1:}

Prove that the {}``exchange map'' $\hat{T}\left(\mathbf{v}_{1}\otimes\mathbf{v}_{2}\right)\equiv\mathbf{v}_{2}\otimes\mathbf{v}_{1}$
is a canonically defined, linear map of $V\otimes V$ into itself.
Show that $\hat{T}$ has only two eigenvalues which are $\pm1$. Give
examples of eigenvectors with eigenvalues $+1$ and $-1$. Show that
the subspace $V\wedge V\subset V\otimes V$ is the eigenspace of the
exchange operator $\hat{T}$ with eigenvalue $-1$

\emph{Hint:} $\hat{T}\hat{T}=\hat{1}_{V\otimes V}$. Consider tensors
of the form $\mathbf{u}\otimes\mathbf{v}\pm\mathbf{v}\otimes\mathbf{u}$
as candidate eigenvectors of $\hat{T}$.\hfill{}$\blacksquare$

It is quite cumbersome to perform calculations in the tensor product
notation as we did in Eq.~(\ref{eq:uvw calc 1}). So let us write
the exterior product as $\mathbf{u}\wedge\mathbf{v}$ instead of $\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}$.
It is then straightforward to see that the {}``wedge'' symbol $\wedge$
indeed works like an anti-commutative multiplication, as we intended.
The rules of computation are summarized in the following statement.


\paragraph{Statement 1:}

One may save time and write $\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}\equiv\mathbf{u}\wedge\mathbf{v}\in V\wedge V$,
and the result of any calculation will be correct, as long as one
follows the rules:\begin{align}
\mathbf{u}\wedge\mathbf{v} & =-\mathbf{v}\wedge\mathbf{u},\label{eq:uv antisymm}\\
\left(\lambda\mathbf{u}\right)\wedge\mathbf{v} & =\lambda\left(\mathbf{u}\wedge\mathbf{v}\right),\\
\left(\mathbf{u}+\mathbf{v}\right)\wedge\mathbf{x} & =\mathbf{u}\wedge\mathbf{x}+\mathbf{v}\wedge\mathbf{x}.\label{eq:uv distrib}\end{align}
It follows also that $\mathbf{u}\wedge\left(\lambda\mathbf{v}\right)=\lambda\left(\mathbf{u}\wedge\mathbf{v}\right)$
and that $\mathbf{v}\wedge\mathbf{v}=0$. (These identities hold for
any vectors $\mathbf{u},\mathbf{v}\in V$ and any scalars $\lambda\in\mathbb{K}$.)


\subparagraph{Proof:}

These properties are direct consequences of the axioms of the tensor
product when applied to antisymmetric tensors. For example, the calculation~(\ref{eq:uvw calc 1})
now requires a simple expansion of brackets,\[
\left(\mathbf{u}+\mathbf{v}\right)\wedge\left(\mathbf{v}+\mathbf{w}\right)=\mathbf{u}\wedge\mathbf{v}+\mathbf{u}\wedge\mathbf{w}+\mathbf{v}\wedge\mathbf{w}.\]
Here we removed the term $\mathbf{v}\wedge\mathbf{v}$ which vanishes
due to the antisymmetry of $\wedge$. Details left as exercise.\hfill{}$\blacksquare$

Elements of the space $V\wedge V$, such as $\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}$,
are sometimes called \textbf{bivectors}\index{bivector}.%
\footnote{It is important to note that a bivector is not necessarily expressible
as a single-term product of two vectors; see the Exercise at the end
of Sec.~\ref{sub:Properties-of-the-ext-powers}.\index{single-term exterior products}%
} We will also want to define the exterior product of more than two
vectors. To define the exterior product of \emph{three} vectors, we
consider the subspace of $V\otimes V\otimes V$ that consists of antisymmetric
tensors of the form\begin{align}
\mathbf{a}\otimes\mathbf{b}\otimes\mathbf{c}-\mathbf{b}\otimes\mathbf{a}\otimes\mathbf{c}+\mathbf{c}\otimes\mathbf{a}\otimes\mathbf{b}-\mathbf{c}\otimes\mathbf{b}\otimes\mathbf{a}\nonumber \\
+\mathbf{b}\otimes\mathbf{c}\otimes\mathbf{a}-\mathbf{a}\otimes\mathbf{c}\otimes\mathbf{b}\label{eq:antisym 3}\end{align}
and linear combinations of such tensors. These tensors are called
\textbf{totally antisymmetric\index{totally antisymmetric}} because
they can be viewed as (tensor-valued) functions of the vectors $\mathbf{a},\mathbf{b},\mathbf{c}$
that change sign under exchange of any two vectors. The expression
in Eq.~(\ref{eq:antisym 3}) will be denoted for brevity by $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$,
similarly to the exterior product of two vectors, $\mathbf{a}\otimes\mathbf{b}-\mathbf{b}\otimes\mathbf{a}$,
which is denoted for brevity by $\mathbf{a}\wedge\mathbf{b}$. Here
is a general definition.


\paragraph{Definition 2:}

The \textbf{exterior product\index{exterior product} of $k$ copies}
of $V$ (also called the \textbf{$k$-th exterior power} of $V$)
is denoted by $\wedge^{k}V$ and is defined as the subspace of totally
antisymmetric tensors within $V\otimes...\otimes V$. In the concise
notation, this is the space spanned by expressions of the form\[
\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k},\quad\mathbf{v}_{j}\in V,\]
assuming that the properties of the wedge product (linearity and antisymmetry)
hold as given by Statement~1. For instance, \begin{equation}
\mathbf{u}\wedge\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}=\left(-1\right)^{k}\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{u}\label{eq:uv pull}\end{equation}
({}``pulling a vector through $k$ other vectors changes sign $k$
times'').\hfill{}$\blacksquare$

The previously defined space of bivectors is in this notation $V\wedge V\equiv\wedge^{2}V$.
A natural extension of this notation is $\wedge^{0}V=\mathbb{K}$
and $\wedge^{1}V=V$. I will also use the following {}``wedge product''
notation,\[
\bigwedge_{k=1}^{n}\mathbf{v}_{k}\equiv\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{n}.\]


Tensors from the space $\wedge^{n}V$ are also called $n$-\textbf{vectors}\index{$n$-vectors}
or \textbf{antisymmetric tensors}\index{antisymmetric tensor} of
rank $n$.


\paragraph{Question:}

How to compute expressions containing multiple products such as $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$?


\subparagraph{Answer:}

Apply the rules shown in Statement~1. For example, one can permute
adjacent vectors and change sign,\[
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=-\mathbf{b}\wedge\mathbf{a}\wedge\mathbf{c}=\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{a},\]
one can expand brackets,\[
\mathbf{a}\wedge(\mathbf{x}+4\mathbf{y})\wedge\mathbf{b}=\mathbf{a}\wedge\mathbf{x}\wedge\mathbf{b}+4\mathbf{a}\wedge\mathbf{y}\wedge\mathbf{b},\]
and so on. If the vectors $\mathbf{a},\mathbf{b},\mathbf{c}$ are
given as linear combinations of some basis vectors $\left\{ \mathbf{e}_{j}\right\} $,
we can thus reduce $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$ to
a linear combination of exterior products of basis vectors, such as
$\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$, $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{4}$,
etc.


\paragraph{Question:}

The notation $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$ suggests
that the exterior product is associative,\[
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\left(\mathbf{a}\wedge\mathbf{b}\right)\wedge\mathbf{c}=\mathbf{a}\wedge(\mathbf{b}\wedge\mathbf{c}).\]
How can we make sense of this?


\subparagraph{Answer:}

If we want to be pedantic, we need to define the exterior product
operation $\wedge$ between a single-term bivector $\mathbf{a}\wedge\mathbf{b}$
and a vector $\mathbf{c}$, such that the result is \emph{by} \emph{definition}
the 3-vector $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$. We then
define the same operation on linear combinations of single-term bivectors,
\[
\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{x}\wedge\mathbf{y}\right)\wedge\mathbf{c}\equiv\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+\mathbf{x}\wedge\mathbf{y}\wedge\mathbf{c}.\]
Thus we have defined the exterior product between $\wedge^{2}V$ and
$V$, the result being a 3-vector from $\wedge^{3}V$. We then need
to verify that the results do not depend on the choice of the vectors
such as $\mathbf{a},\mathbf{b},\mathbf{x},\mathbf{y}$ in the representation
of a bivector: A different representation can be achieved only by
using the properties of the exterior product (i.e.~the axioms of
the tensor product), e.g.~we may replace $\mathbf{a}\wedge\mathbf{b}$
by $-\mathbf{b}\wedge\left(\mathbf{a}+\lambda\mathbf{b}\right)$.
It is easy to verify that any such replacements will not modify the
resulting 3-vector, e.g. \[
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=-\mathbf{b}\wedge\left(\mathbf{a}+\lambda\mathbf{b}\right)\wedge\mathbf{c},\]
again due to the properties of the exterior product. This consideration
shows that calculations with exterior products are consistent with
our algebraic intuition. We may indeed compute $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
as $\left(\mathbf{a}\wedge\mathbf{b}\right)\wedge\mathbf{c}$ or as
$\mathbf{a}\wedge\left(\mathbf{b}\wedge\mathbf{c}\right)$.


\paragraph{Example~1:}

Suppose we work in $\mathbb{R}^{3}$ and have vectors $\mathbf{a}=\left(0,\frac{1}{2},-\frac{1}{2}\right)$,
$\mathbf{b}=\left(2,-2,0\right)$, $\mathbf{c}=\left(-2,5,-3\right)$.
Let us compute various exterior products. Calculations are easier
if we introduce the basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
explicitly:\[
\mathbf{a}=\frac{1}{2}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right),\quad\mathbf{b}=2(\mathbf{e}_{1}-\mathbf{e}_{2}),\quad\mathbf{c}=-2\mathbf{e}_{1}+5\mathbf{e}_{2}-3\mathbf{e}_{3}.\]
We compute the 2-vector $\mathbf{a}\wedge\mathbf{b}$ by using the
properties of the exterior product, such as $\mathbf{x}\wedge\mathbf{x}=0$
and $\mathbf{x}\wedge\mathbf{y}=-\mathbf{y}\wedge\mathbf{x}$, and
simply expanding the brackets as usual in algebra:\begin{align*}
\mathbf{a}\wedge\mathbf{b} & =\frac{1}{2}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)\wedge2\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)\\
 & =\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)\wedge\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)\\
 & =\mathbf{e}_{2}\wedge\mathbf{e}_{1}-\mathbf{e}_{3}\wedge\mathbf{e}_{1}-\mathbf{e}_{2}\wedge\mathbf{e}_{2}+\mathbf{e}_{3}\wedge\mathbf{e}_{2}\\
 & =-\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}-\mathbf{e}_{2}\wedge\mathbf{e}_{3}.\end{align*}
The last expression is the result; note that now there is nothing
more to compute or to simplify. The expressions such as $\mathbf{e}_{1}\wedge\mathbf{e}_{2}$
are the basic expressions out of which the space $\mathbb{R}^{3}\wedge\mathbb{R}^{3}$
is built. Below (Sec.~\ref{sub:Properties-of-the-ext-powers}) we
will show formally that the set of these expressions is a basis in
the space $\mathbb{R}^{3}\wedge\mathbb{R}^{3}$.

Let us also compute the 3-vector $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$,\begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\left(\mathbf{a}\wedge\mathbf{b}\right)\wedge\mathbf{c}\\
 & =\left(-\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}-\mathbf{e}_{2}\wedge\mathbf{e}_{3}\right)\wedge(-2\mathbf{e}_{1}+5\mathbf{e}_{2}-3\mathbf{e}_{3}).\end{align*}
When we expand the brackets here, terms such as $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{1}$
will vanish because \[
\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{1}=-\mathbf{e}_{2}\wedge\mathbf{e}_{1}\wedge\mathbf{e}_{1}=0,\]
so only terms containing all different vectors need to be kept, and
we find\begin{align*}
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c} & =3\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}+5\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{2}+2\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{1}\\
 & =\left(3-5+2\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}=0.\end{align*}
We note that all the terms are proportional to the 3-vector $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$,
so only the coefficient in front of $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
was needed; then, by coincidence, that coefficient turned out to be
zero. So the result is the zero 3-vector.\hfill{}$\blacksquare$


\paragraph{Question:}

Our original goal was to introduce a bilinear, antisymmetric product
of vectors in order to obtain a geometric representation of oriented
areas. Instead, $\mathbf{a}\wedge\mathbf{b}$ was defined algebraically,
through tensor products. It is clear that $\mathbf{a}\wedge\mathbf{b}$
is antisymmetric and bilinear, but why does it represent an oriented
area?


\subparagraph{Answer:}

Indeed, it may not be immediately clear why oriented areas should
be elements of $V\wedge V$. We have seen that the oriented area $A(\mathbf{x},\mathbf{y})$
is an antisymmetric and bilinear function of the two vectors $\mathbf{x}$
and $\mathbf{y}$. Right now we have constructed the space $V\wedge V$
simply as the \emph{space of antisymmetric products}. By constructing
that space merely out of the axioms of the antisymmetric product,
we already covered \emph{every} \emph{possible} bilinear antisymmetric
product. This means that \emph{any} antisymmetric and bilinear function
of the two vectors $\mathbf{x}$ and $\mathbf{y}$ is proportional
to $\mathbf{x}\wedge\mathbf{y}$ or, more generally, is a \emph{linear}
\emph{function} of $\mathbf{x}\wedge\mathbf{y}$ (perhaps with values
in a different space). Therefore, the space of oriented areas (that
is, the space of linear combinations of $A(\mathbf{x},\mathbf{y})$
for various $\mathbf{x}$ and $\mathbf{y}$) is in any case mapped
to a subspace of $V\wedge V$. We have also seen that oriented areas
in $N$ dimensions can be represented through ${N \choose 2}$ projections,
which indicates that they are vectors in some ${N \choose 2}$-dimen\-sion\-al
space. We will see below that the space $V\wedge V$ has exactly this
dimension (Theorem~2 in Sec.~\ref{sub:Properties-of-the-ext-powers}).
Therefore, we can expect that the space of oriented areas coincides
with $V\wedge V$. Below we will be working in a space $V$ with a
scalar product, where the notions of area and volume are well defined.
Then we will see (Sec.~\ref{sub:Volumes-of-k-dimensional}) that
tensors from $V\wedge V$ and the higher exterior powers of $V$ indeed
correspond in a natural way to oriented areas, or more generally to
oriented volumes of a certain dimension.


\paragraph{Remark: Origin of the name {}``exterior.''}

The construction of the exterior product\index{exterior product!origin of the name}
is a modern formulation of the ideas dating back to H. Grassmann (1844).
A 2-vector $\mathbf{a}\wedge\mathbf{b}$ is interpreted geometrically
as the oriented area of the parallelogram spanned by the vectors $\mathbf{a}$
and $\mathbf{b}$. Similarly, a 3-vector $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
represents the oriented 3-volume of a parallelepiped spanned by $\left\{ \mathbf{a},\mathbf{b},\mathbf{c}\right\} $.
Due to the antisymmetry of the exterior product, we have $(\mathbf{a}\wedge\mathbf{b})\wedge(\mathbf{a}\wedge\mathbf{c})=0$,
$(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\wedge(\mathbf{b}\wedge\mathbf{d})=0$,
etc. We can interpret this geometrically by saying that the {}``product''
of two volumes is zero if these volumes have a vector in common. This
motivated Grassmann to call his antisymmetric product {}``exterior.''
In his reasoning, the product of two {}``extensive quantities''
(such as lines, areas, or volumes) is nonzero only when each of the
two quantities is geometrically {}``to the exterior'' (outside)
of the other.


\paragraph{Exercise 2:}

Show that in a \emph{two}-dimensional space $V$, any 3-vector such
as $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$ can be simplified
to the zero 3-vector. Prove the same for $n$-vectors in $N$-dimensional
spaces when $n>N$.\hfill{}$\blacksquare$

One can also consider the exterior powers of the \emph{dual} space
$V^{*}$. Tensors from $\wedge^{n}V^{*}$ are usually (for historical
reasons) called $n$-\textbf{forms}\index{$n$-forms} (rather than
{}``$n$-covectors'').


\paragraph{Question:}

Where is the star here, really? Is the space $\wedge^{n}\left(V^{*}\right)$
different from $\left(\wedge^{n}V\right)^{*}$?


\subparagraph{Answer:}

Good that you asked. These spaces are canonically isomorphic, but
there is a subtle technical issue worth mentioning. Consider an example:
$\mathbf{a}^{*}\wedge\mathbf{b}^{*}\in\wedge^{2}(V^{*})$ can act
upon $\mathbf{u}\wedge\mathbf{v}\in\wedge^{2}V$ by the standard tensor
product rule, namely $\mathbf{a}^{*}\otimes\mathbf{b}^{*}$ acts on
$\mathbf{u}\otimes\mathbf{v}$ as \[
\left(\mathbf{a}^{*}\otimes\mathbf{b}^{*}\right)\left(\mathbf{u}\otimes\mathbf{v}\right)=\mathbf{a}^{*}(\mathbf{u})\,\mathbf{b}^{*}(\mathbf{v}),\]
so by using the definition of $\mathbf{a}^{*}\wedge\mathbf{b}^{*}$
and $\mathbf{u}\wedge\mathbf{v}$ through the tensor product, we find\begin{align*}
\left(\mathbf{a}^{*}\wedge\mathbf{b}^{*}\right)\left(\mathbf{u}\wedge\mathbf{v}\right) & =\left(\mathbf{a}^{*}\otimes\mathbf{b}^{*}-\mathbf{b}^{*}\otimes\mathbf{a}^{*}\right)\left(\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u}\right)\\
 & =2\mathbf{a}^{*}(\mathbf{u})\,\mathbf{b}^{*}(\mathbf{v})-2\mathbf{b}^{*}(\mathbf{u})\,\mathbf{a}^{*}(\mathbf{v}).\end{align*}
We got a \textbf{combinatorial} \textbf{factor}\index{combinatorial factor}
2, that is, a factor that arises because we have \emph{two} permutations
of the set $\left(\mathbf{a},\mathbf{b}\right)$. With $\wedge^{n}\left(V^{*}\right)$
and $\left(\wedge^{n}V\right)^{*}$ we get a factor $n!$. It is not
always convenient to have this combinatorial factor. For example,
in a finite number field the number $n!$ might be \emph{equal to
zero} for large enough $n$. In these cases we could \emph{redefine}
the action of $\mathbf{a}^{*}\wedge\mathbf{b}^{*}$ on $\mathbf{u}\wedge\mathbf{v}$
as \[
\left(\mathbf{a}^{*}\wedge\mathbf{b}^{*}\right)\left(\mathbf{u}\wedge\mathbf{v}\right)\equiv\mathbf{a}^{*}(\mathbf{u})\,\mathbf{b}^{*}(\mathbf{v})-\mathbf{b}^{*}(\mathbf{u})\,\mathbf{a}^{*}(\mathbf{v}).\]
 If we are not working in a finite number field, we are able to divide
by any integer, so we may keep combinatorial factors in the denominators
of expressions where such factors appear. For example, if $\left\{ \mathbf{e}_{j}\right\} $
is a basis in $V$ and $\omega=\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
is the corresponding basis tensor in the one-dimen\-sion\-al space
$\wedge^{N}V$, the dual basis tensor in $\left(\wedge^{N}V\right)^{*}$
could be defined by \[
\omega^{*}=\frac{1}{N!}\mathbf{e}_{1}^{*}\wedge...\wedge\mathbf{e}_{N}^{*},\quad\text{so that}\:\omega^{*}(\omega)=1.\]
The need for such combinatorial factors is a minor technical inconvenience
that does not arise too often. We may give the following definition
that avoids dividing by combinatorial factors (but now we use permutations;
see Appendix~\ref{sub:Properties-of-permutations}).


\paragraph{Definition 3:}

The action of a $k$-form $\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{k}^{*}$
on a $k$-vector $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$ is
defined by\[
\sum_{\sigma}(-1)^{\left|\sigma\right|}\mathbf{f}_{1}^{*}(\mathbf{v}_{\sigma(1)})...\mathbf{f}_{k}^{*}(\mathbf{v}_{\sigma(k)}),\]
where the summation is performed over all permutations $\sigma$ of
the ordered set $\left(1,...,k\right)$.


\paragraph{Example~2:}

With $k=3$ we have\begin{align*}
 & (\mathbf{p}^{*}\wedge\mathbf{q}^{*}\wedge\mathbf{r}^{*})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\\
 & =\mathbf{p}^{*}(\mathbf{a})\mathbf{q}^{*}(\mathbf{b})\mathbf{r}^{*}(\mathbf{c})-\mathbf{p}^{*}(\mathbf{b})\mathbf{q}^{*}(\mathbf{a})\mathbf{r}^{*}(\mathbf{c})\\
 & +\mathbf{p}^{*}(\mathbf{b})\mathbf{q}^{*}(\mathbf{c})\mathbf{r}^{*}(\mathbf{a})-\mathbf{p}^{*}(\mathbf{c})\mathbf{q}^{*}(\mathbf{b})\mathbf{r}^{*}(\mathbf{a})\\
 & +\mathbf{p}^{*}(\mathbf{c})\mathbf{q}^{*}(\mathbf{a})\mathbf{r}^{*}(\mathbf{b})-\mathbf{p}^{*}(\mathbf{c})\mathbf{q}^{*}(\mathbf{b})\mathbf{r}^{*}(\mathbf{a}).\end{align*}



\paragraph{Exercise 3:}

a) Show that $\mathbf{a}\wedge\mathbf{b}\wedge\omega=\omega\wedge\mathbf{a}\wedge\mathbf{b}$
where $\omega$ is any antisymmetric tensor (e.g.~$\omega=\mathbf{x}\wedge\mathbf{y}\wedge\mathbf{z}$).

b) Show that\[
\omega_{1}\wedge\mathbf{a}\wedge\omega_{2}\wedge\mathbf{b}\wedge\omega_{3}=-\omega_{1}\wedge\mathbf{b}\wedge\omega_{2}\wedge\mathbf{a}\wedge\omega_{3},\]
where $\omega_{1}$, $\omega_{2}$, $\omega_{3}$ are arbitrary antisymmetric
tensors and $\mathbf{a},\mathbf{b}$ are vectors. 

c) Due to antisymmetry,  $\mathbf{a}\wedge\mathbf{a}=0$ for any vector
$\mathbf{a}\in V$. Is it also true that $\omega\wedge\omega=0$ for
any bivector $\omega\in\wedge^{2}V$?


\subsection{{*} Symmetric tensor product}


\paragraph{Question:}

At this point it is still unclear why the antisymmetric definition
is at all useful. Perhaps we could define something else, say the
symmetric product, instead of the exterior product? We could try to
define a product, say $\mathbf{a}\odot\mathbf{b}$, with some other
property, such as\[
\mathbf{a}\odot\mathbf{b}=2\mathbf{b}\odot\mathbf{a}.\]



\subparagraph{Answer:}

This does not work because, for example, we would have\[
\mathbf{b}\odot\mathbf{a}=2\mathbf{a}\odot\mathbf{b}=4\mathbf{b}\odot\mathbf{a},\]
so all the {}``$\odot$'' products would have to vanish.

We can define the \emph{symmetric} tensor product, $\otimes_{S}$,
with the property\[
\mathbf{a}\otimes_{S}\mathbf{b}=\mathbf{b}\otimes_{S}\mathbf{a},\]
but it is impossible to define anything else in a similar fashion.%
\footnote{This is a theorem due to Grassmann (1862).%
} 

The antisymmetric tensor product is the eigenspace (within $V\otimes V$)
of the exchange operator $\hat{T}$ with eigenvalue $-1$. That operator
has only eigenvectors with eigenvalues $\pm1$, so the only other
possibility is to consider the eigenspace with eigenvalue $+1$. This
eigenspace is spanned by symmetric tensors of the form $\mathbf{u}\otimes\mathbf{v}+\mathbf{v}\otimes\mathbf{u}$,
and can be considered as the space of symmetric tensor products. We
could write\[
\mathbf{a}\otimes_{S}\mathbf{b}\equiv\mathbf{a}\otimes\mathbf{b}+\mathbf{b}\otimes\mathbf{a}\]
and develop the properties of this product. However, it turns out
that the symmetric tensor product is much less useful for the purposes
of linear algebra than the antisymmetric subspace. This book derives
most of the results of linear algebra using the antisymmetric product
as the main tool!


\section{Properties of spaces $\wedge^{k}V$\label{sec:Properties-of-the-wedgekV}}

As we have seen, tensors from the space $V\otimes V$ are representable
by linear combinations of the form $\mathbf{a}\otimes\mathbf{b}+\mathbf{c}\otimes\mathbf{d}+...$,
but not \emph{uniquely} representable because one can transform one
such linear combination into another by using the axioms of the tensor
product. Similarly, $n$-vectors are not uniquely representable by
linear combinations of exterior products. For example,\[
\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\mathbf{c}+\mathbf{b}\wedge\mathbf{c}=(\mathbf{a}+\mathbf{b})\wedge(\mathbf{b}+\mathbf{c})\]
 since $\mathbf{b}\wedge\mathbf{b}=0$. In other words, the 2-vector
$\omega\equiv\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\mathbf{c}+\mathbf{b}\wedge\mathbf{c}$
has an alternative representation containing only a single-term exterior
product, $\omega=\mathbf{r}\wedge\mathbf{s}$ where $\mathbf{r}=\mathbf{a}+\mathbf{b}$
and $\mathbf{s}=\mathbf{b}+\mathbf{c}$.


\paragraph{Exercise:\index{single-term exterior products}}

Show that any 2-vector in a \emph{three}-dimen\-sion\-al space is
representable by a single-term exterior product, i.e.~to a 2-vector
of the form $\mathbf{a}\wedge\mathbf{b}$.

\emph{Hint}: Choose a basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
and show that $\alpha\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\beta\mathbf{e}_{1}\wedge\mathbf{e}_{3}+\gamma\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
is equal to a single-term product.\hfill{}$\blacksquare$

What about higher-dimen\-sion\-al spaces? We will show (see the
Exercise at the end of Sec.~\ref{sub:Properties-of-the-ext-powers})
that $n$-vectors cannot be in general reduced to a single-term product.
This is, however, always possible for $(N-1)$-vectors in an $N$-dimen\-sion\-al
space. (You showed this for $N=3$ in the exercise above.)


\paragraph{Statement:}

Any $(N-1)$-vector in an $N$-dimen\-sion\-al space can be written
as a single-term exterior product of the form $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N-1}$.


\subparagraph{Proof:}

We prove this by using induction in $N$. The basis of induction is
$N=2$, where there is nothing to prove. The induction step: Suppose
that the statement is proved for $(N-1)$-vectors in $N$-dimen\-sion\-al
spaces, we need to prove it for $N$-vectors in $(N+1)$-dimen\-sion\-al
spaces. Choose a basis $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N+1}\right\} $
in the space. Any $N$-vector $\omega$ can be written as a linear
combination of exterior product terms,\begin{align*}
\omega & =\alpha_{1}\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N+1}+\alpha_{2}\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge...\wedge\mathbf{e}_{N+1}+...\\
 & \quad+\alpha_{N}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\wedge\mathbf{e}_{N+1}+\alpha_{N+1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\end{align*}
where $\left\{ \alpha_{i}\right\} $ are some constants. 

Note that any tensor $\omega\in\wedge^{N-1}V$ can be written in this
way simply by expressing every vector through the basis and by expanding
the exterior products. The result will be a linear combination of
the form shown above, containing at most $N+1$ single-term exterior
products of the form $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$,
$\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N+1}$, and so on. We do
not yet know whether these single-term exterior products constitute
a linearly independent set; this will be established in Sec.~\ref{sub:Properties-of-the-ext-powers}.
Presently, we will not need this property.

Now we would like to transform the expression above to a single term.
We move $\mathbf{e}_{N+1}$ outside brackets in the first $N$ terms:\begin{align*}
\omega & =\big(\alpha_{1}\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}+...+\alpha_{N}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N-1}\big)\wedge\mathbf{e}_{N+1}\\
 & \qquad+\alpha_{N+1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\\
 & \equiv\psi\wedge\mathbf{e}_{N+1}+\alpha_{N+1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\end{align*}
where in the last line we have introduced an auxiliary $(N-1)$-vector
$\psi$. If it happens that $\psi=0$, there is nothing left to prove.
Otherwise, at least one of the $\alpha_{i}$ must be nonzero; without
loss of generality, suppose that $\alpha_{N}\neq0$ and rewrite $\omega$
as \[
\omega=\psi\wedge\mathbf{e}_{N+1}+\alpha_{N+1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\psi\wedge\big(\mathbf{e}_{N+1}+\frac{\alpha_{N+1}}{\alpha_{N}}\mathbf{e}_{N}\big).\]
Now we note that $\psi$ belongs to the space of $\left(N-1\right)$-vectors
over the $N$-dimen\-sion\-al subspace spanned by $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $.
By the inductive assumption, $\psi$ can be written as a single-term
exterior product, $\psi=\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N-1}$,
of some vectors $\left\{ \mathbf{a}_{i}\right\} $. Denoting \[
\mathbf{a}_{N}\equiv\mathbf{e}_{N+1}+\frac{\alpha_{N+1}}{\alpha_{N}}\mathbf{e}_{N},\]
we obtain \[
\omega=\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N-1}\wedge\mathbf{a}_{N},\]
i.e. $\omega$ can be represented as a single-term exterior product.\hfill{}$\blacksquare$ 


\subsection{Linear maps between spaces $\wedge^{k}V$\label{sub:Linear-maps-between-spaces}}

Since the spaces $\wedge^{k}V$ are vector spaces, we may consider
linear maps between them. 

A simplest example is a map\[
L_{\mathbf{a}}:\omega\mapsto\mathbf{a}\wedge\omega,\]
mapping $\wedge^{k}V\rightarrow\wedge^{k+1}V$; here the vector $\mathbf{a}$
is \emph{fixed}. It is important to check that $L_{\mathbf{a}}$ is
a \emph{linear} map between these spaces. How do we check this? We
need to check that $L_{\mathbf{a}}$ maps a linear combination of
tensors into linear combinations; this is easy to see,\begin{align*}
L_{\mathbf{a}} & (\omega+\lambda\omega^{\prime})=\mathbf{a}\wedge(\omega+\lambda\omega')\\
 & =\mathbf{a}\wedge\omega+\lambda\mathbf{a}\wedge\omega'=L_{\mathbf{a}}\omega+\lambda L_{\mathbf{a}}\omega'.\end{align*}


Let us now fix a covector $\mathbf{a}^{*}$. A covector is a map $V\rightarrow\mathbb{K}$.
In Lemma~2 of Sec.~\ref{sub:Dimension-of-tensor} we have used covectors
to define linear maps $\mathbf{a}^{*}:V\otimes W\rightarrow W$ according
to Eq.~(\ref{eq:fg rule}), mapping $\mathbf{v}\otimes\mathbf{w}\mapsto\mathbf{a}^{*}\left(\mathbf{v}\right)\mathbf{w}$.
Now we will apply the analogous construction to exterior powers and
construct a map $V\wedge V\rightarrow V$. Let us denote this map
by $\iota_{\mathbf{a}^{*}}$. 

It would be incorrect to define the map $\iota_{\mathbf{a}^{*}}$
by the formula $\iota_{\mathbf{a}^{*}}(\mathbf{v}\wedge\mathbf{w})=\mathbf{a}^{*}\left(\mathbf{v}\right)\mathbf{w}$
because such a definition does not respect the antisymmetry of the
wedge product and thus violates the linearity condition, \[
\iota_{\mathbf{a}^{*}}\left(\mathbf{w}\wedge\mathbf{v}\right)\,{\lyxbuildrel!\above=}\,\iota_{\mathbf{a}^{*}}\left(\left(-1\right)\mathbf{v}\wedge\mathbf{w}\right)=-\iota_{\mathbf{a}^{*}}\left(\mathbf{v}\wedge\mathbf{w}\right)\neq\mathbf{a}^{*}(\mathbf{v})\mathbf{w}.\]
So we need to act with $\mathbf{a}^{*}$ on \emph{each} of the vectors
in a wedge product and make sure that the correct minus sign comes
out. An acceptable formula for the map $\iota_{\mathbf{a}^{*}}:\wedge^{2}V\rightarrow V$
is\[
\iota_{\mathbf{a}^{*}}\left(\mathbf{v}\wedge\mathbf{w}\right)\equiv\mathbf{a}^{*}\left(\mathbf{v}\right)\mathbf{w}-\mathbf{a}^{*}\left(\mathbf{w}\right)\mathbf{v}.\]
(Please check that the linearity condition now holds!) This is how
we will define the map $\iota_{\mathbf{a}^{*}}$ on $\wedge^{2}V$.

Let us now extend $\iota_{\mathbf{a}^{*}}:\wedge^{2}V\rightarrow V$
to a map \[
\iota_{\mathbf{a}^{*}}:\wedge^{k}V\rightarrow\wedge^{k-1}V,\]
defined as follows: \begin{align}
\iota_{\mathbf{a}^{*}}\mathbf{v} & \equiv\mathbf{a}^{*}(\mathbf{v}),\nonumber \\
\iota_{\mathbf{a}^{*}}(\mathbf{v}\wedge\omega) & \equiv\mathbf{a}^{*}(\mathbf{v})\omega-\mathbf{v}\wedge(\iota_{\mathbf{a}^{*}}\omega).\label{eq:inductive}\end{align}
This definition is \emph{inductive}, i.e.~it shows how to define
$\iota_{\mathbf{a}^{*}}$ on $\wedge^{k}V$ if we know how to define
it on $\wedge^{k-1}V$. The action of $\iota_{\mathbf{a}^{*}}$ on
a sum of terms is defined by requiring  linearity, \[
\iota_{\mathbf{a}^{*}}\left(A+\lambda B\right)\equiv\iota_{\mathbf{a}^{*}}\left(A\right)+\lambda\iota_{\mathbf{a}^{*}}\left(B\right),\quad A,B\in\wedge^{k}V.\]


We can convert this inductive definition into a more explicit formula:
if $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$
then \begin{align*}
\iota_{\mathbf{a}^{*}} & (\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k})\equiv\mathbf{a}^{*}(\mathbf{v}_{1})\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}-\mathbf{a}^{*}(\mathbf{v}_{2})\mathbf{v}_{1}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{k}\\
 & +...+\left(-1\right)^{k-1}\mathbf{a}^{*}(\mathbf{v}_{k})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k-1}.\end{align*}


This map is called the \textbf{interior product}\index{interior product}
or the \textbf{insertion} map\index{insertion map}. This is a useful
operation in  linear algebra. The insertion map $\iota_{\mathbf{a}^{*}}\psi$
{}``inserts'' the covector $\mathbf{a}^{*}$ into the tensor $\psi\in\wedge^{k}V$
by acting with $\mathbf{a}^{*}$ on each of the vectors in the exterior
product that makes up $\psi$.

Let us check formally that the insertion map is linear. 


\paragraph{Statement:}

The map $\iota_{\mathbf{a}^{*}}:\wedge^{k}V\rightarrow\wedge^{k-1}V$
for $1\leq k\leq N$ is a well-defined linear map, according to the
inductive definition.


\subparagraph{Proof:}

First, we need to check that it maps linear combinations into linear
combinations; this is quite easy to see by induction, using the fact
that $\mathbf{a}^{*}:V\rightarrow\mathbb{K}$ is linear. However,
this type of linearity is not sufficient; we also need to check that
the \emph{result} of the map, i.e.~the tensor $\iota_{\mathbf{a}^{*}}(\omega)$,
is defined \emph{independently} \emph{of} \emph{the} \emph{representation}
of $\omega$ through vectors such as $\mathbf{v}_{i}$. The problem
is, there are many such representations, for example some tensor $\omega\in\wedge^{3}V$
might be written using different vectors as \[
\omega=\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\mathbf{v}_{3}=\mathbf{v}_{2}\wedge(\mathbf{v}_{3}-\mathbf{v}_{1})\wedge(\mathbf{v}_{3}+\mathbf{v}_{2})\equiv\tilde{\mathbf{v}}_{1}\wedge\tilde{\mathbf{v}}_{2}\wedge\tilde{\mathbf{v}}_{3}.\]
 We need to verify that any such equivalent representation yields
the same resulting tensor $\iota_{\mathbf{a}^{*}}(\omega)$, despite
the fact that the definition of $\iota_{\mathbf{a}^{*}}$ \emph{appears}
to depend on the choice of the vectors $\mathbf{v}_{i}$. Only then
will it be proved that $\iota_{\mathbf{a}^{*}}$ is a linear map $\wedge^{k}V\rightarrow\wedge^{k-1}V$.

An equivalent representation of a tensor $\omega$ can be obtained
only by using the properties of the exterior product, namely linearity
and antisymmetry. Therefore, we need to verify that $\iota_{\mathbf{a}^{*}}(\omega)$
does not change when we change the representation of $\omega$ in
these two ways: 1) expanding a linear combination,\begin{equation}
(\mathbf{x}+\lambda\mathbf{y})\wedge...\mapsto\mathbf{x}\wedge...+\lambda\mathbf{y}\wedge...;\label{eq:change repr 1}\end{equation}
2) interchanging the order of two vectors in the exterior product
and change the sign,\begin{equation}
\mathbf{x}\wedge\mathbf{y}\wedge...\mapsto-\mathbf{y}\wedge\mathbf{x}\wedge...\label{eq:change repr 2}\end{equation}
It is clear that $\mathbf{a}^{*}(\mathbf{x}+\lambda\mathbf{y})=\mathbf{a}^{*}(\mathbf{x})+\lambda\mathbf{a}^{*}(\mathbf{y})$;
it follows by induction that $\iota_{\mathbf{a}^{*}}\omega$ does
not change under a change of representation of the type~(\ref{eq:change repr 1}).
Now we consider the change of representation of the type~(\ref{eq:change repr 2}).
We have, by definition of $\iota_{\mathbf{a}^{*}}$,\[
\iota_{\mathbf{a}^{*}}(\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\chi)=\mathbf{a}^{*}(\mathbf{v}_{1})\mathbf{v}_{2}\wedge\chi-\mathbf{a}^{*}(\mathbf{v}_{2})\mathbf{v}_{1}\wedge\chi+\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\iota_{\mathbf{a}^{*}}(\chi),\]
where we have denoted by $\chi$ the rest of the exterior product.
It is clear from the above expression that \[
\iota_{\mathbf{a}^{*}}(\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\chi)=-\iota_{\mathbf{a}^{*}}(\mathbf{v}_{2}\wedge\mathbf{v}_{1}\wedge\chi)=\iota_{\mathbf{a}^{*}}(-\mathbf{v}_{2}\wedge\mathbf{v}_{1}\wedge\chi).\]
This proves that $\iota_{\mathbf{a}^{*}}(\omega)$ does not change
under a change of representation of $\omega$ of the type~(\ref{eq:change repr 2}).
This concludes the proof.\hfill{}$\blacksquare$


\paragraph{Remark:}

It is apparent from the proof that the \emph{minus sign} in the inductive
definition~(\ref{eq:inductive}) is crucial for the linearity of
the map $\iota_{\mathbf{a}^{*}}$. Indeed, if we attempt to define
a map by a formula such as\[
\mathbf{v}_{1}\wedge\mathbf{v}_{2}\mapsto\mathbf{a}^{*}(\mathbf{v}_{1})\mathbf{v}_{2}+\mathbf{a}^{*}(\mathbf{v}_{2})\mathbf{v}_{1},\]
the result will \emph{not} be a linear map $\wedge^{2}V\rightarrow V$
despite the appearance of linearity. The correct formula must take
into account the fact that $\mathbf{v}_{1}\wedge\mathbf{v}_{2}=-\mathbf{v}_{2}\wedge\mathbf{v}_{1}$.


\paragraph{Exercise:}

Show by induction in $k$ that\[
L_{\mathbf{x}}\iota_{\mathbf{a}^{*}}\omega+\iota_{\mathbf{a}^{*}}L_{\mathbf{x}}\omega=\mathbf{a}^{*}(\mathbf{x})\omega,\quad\forall\omega\in\wedge^{k}V.\]
In other words, the linear operator $L_{\mathbf{x}}\iota_{\mathbf{a}^{*}}+\iota_{\mathbf{a}^{*}}L_{\mathbf{x}}:\wedge^{k}V\rightarrow\wedge^{k}V$
is simply the multiplication by the number $\mathbf{a}^{*}(\mathbf{x})$.


\paragraph{}


\subsection{Exterior product and linear dependence\label{sub:Properties-of-the-ext-powers}}

The exterior product is useful in many ways. One powerful property
of the exterior product is its close relation to linear independence
of sets of vectors. For example, if $\mathbf{u}=\lambda\mathbf{v}$
then $\mathbf{u}\wedge\mathbf{v}=0$. More generally:


\paragraph{Theorem 1:}

A set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $ of vectors
from $V$ is linearly independent if and only if $(\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k})\neq0$,
i.e.~it is a nonzero tensor from $\wedge^{k}V$.


\subparagraph{Proof:}

If $\left\{ \mathbf{v}_{j}\right\} $ is linearly dependent then without
loss of generality we may assume that $\mathbf{v}_{1}$ is a linear
combination of other vectors, $\mathbf{v}_{1}=\sum_{j=2}^{k}\lambda_{j}\mathbf{v}_{j}$.
Then \begin{align*}
\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k} & =\sum_{j=2}^{k}\lambda_{j}\mathbf{v}_{j}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{k}\\
 & =\sum_{j=2}^{k}\left(-1\right)^{j-1}\mathbf{v}_{2}\wedge...\mathbf{v}_{j}\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{k}=0.\end{align*}
Conversely, we need to prove that the tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\neq0$
if $\left\{ \mathbf{v}_{j}\right\} $ is linearly \emph{in}dependent.
The proof is by induction in $k$. The basis of induction is $k=1$:
if $\left\{ \mathbf{v}_{1}\right\} $ is linearly independent then
clearly $\mathbf{v}_{1}\neq0$. The induction step: Assume that the
statement is proved for $k-1$ and that $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
is a linearly independent set. By Exercise~1 in Sec.~\ref{sub:Dual-vector-space}
there exists a covector $\mathbf{f}^{*}\in V^{*}$ such that $\mathbf{f}^{*}\left(\mathbf{v}_{1}\right)=1$
and $\mathbf{f}^{*}\left(\mathbf{v}_{i}\right)=0$ for $2\leq i\leq k$.
Now we apply the interior product map $\iota_{\mathbf{f}^{*}}:\wedge^{k}V\rightarrow\wedge^{k-1}V$
constructed in Sec.~\ref{sub:Linear-maps-between-spaces} to the
tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$ and find \[
\iota_{\mathbf{f}^{*}}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right)=\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}.\]
By the induction step, the linear independence of $k-1$ vectors $\left\{ \mathbf{v}_{2},...,\mathbf{v}_{k}\right\} $
entails $\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}\neq0$. The map
$\iota_{\mathbf{f}^{*}}$ is linear and cannot map a zero tensor into
a nonzero tensor, therefore $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\neq0$.\hfill{}$\blacksquare$

It is also important to know that any tensor from the highest exterior
power $\wedge^{N}V$ can be represented as just a \emph{single-term}\index{single-term exterior products}
exterior product of $N$ vectors. (Note that the same property for
$\wedge^{N-1}V$ was already established in Sec.~\ref{sec:Properties-of-the-wedgekV}.)


\paragraph{Lemma~1:}

For any tensor $\omega\in\wedge^{N}V$ there exist vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
such that $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$.


\subparagraph{Proof:}

If $\omega=0$ then there is nothing to prove, so we assume $\omega\neq0$.
By definition, the tensor $\omega$ has a representation as a sum
of \emph{several} exterior products, say \[
\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}+\mathbf{v}_{1}^{\prime}\wedge...\wedge\mathbf{v}_{N}^{\prime}+...\]
Let us simplify this expression to just one exterior product. First,
let us omit any zero terms in this expression (for instance, $\mathbf{a}\wedge\mathbf{a}\wedge\mathbf{b}\wedge...=0$).
Then by Theorem~1 the set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is linearly independent (or else the term $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
would be zero). Hence, $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is a basis in $V$. All other vectors such as $\mathbf{v}_{i}^{\prime}$
can be decomposed as linear combinations of vectors in that basis.
Let us denote $\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$.
By expanding the brackets in exterior products such as $\mathbf{v}_{1}^{\prime}\wedge...\wedge\mathbf{v}_{N}^{\prime}$,
we will obtain every time the tensor $\psi$ with different coefficients.
Therefore, the final result of simplification will be that $\omega$
equals  $\psi$ multiplied with some coefficient. This is sufficient
to prove Lemma~1.\hfill{}$\blacksquare$

Now we would like to build a basis in the space $\wedge^{m}V$. For
this we need to determine which sets of tensors from $\wedge^{m}V$
are linearly independent within that space.


\paragraph{Lemma 2:}

If $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $ is a basis
in $V$ then any tensor $A\in\wedge^{m}V$ can be decomposed as a
linear combination of the tensors $\mathbf{e}_{k_{1}}\wedge\mathbf{e}_{k_{2}}\wedge...\wedge\mathbf{e}_{k_{m}}$
with some indices $k_{j}$, $1\leq j\leq m$.


\subparagraph{Proof:}

The tensor $A$ is a linear combination of expressions of the form
$\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$, and each vector $\mathbf{v}_{i}\in V$
can be decomposed in the basis $\left\{ \mathbf{e}_{j}\right\} $.
Expanding the brackets around the wedges using the rules~(\ref{eq:uv antisymm})--(\ref{eq:uv distrib}),
we obtain a decomposition of an arbitrary tensor through the basis
tensors. For example, \begin{align*}
\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{3}\right)-2\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)\wedge\left(\mathbf{e}_{1}-\mathbf{e}_{3}\right)\\
=-\mathbf{e}_{1}\wedge\mathbf{e}_{2}-\mathbf{e}_{1}\wedge\mathbf{e}_{3}+4\mathbf{e}_{2}\wedge\mathbf{e}_{3}\end{align*}
(please verify this yourself!).\hfill{}$\blacksquare$

By Theorem~1, all tensors $\mathbf{e}_{k_{1}}\wedge\mathbf{e}_{k_{2}}\wedge...\wedge\mathbf{e}_{k_{m}}$
constructed out of subsets of vectors from the basis $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
are nonzero, and by Lemma~2 any tensor can be decomposed into a linear
combination of these tensors. But are these tensors a basis in the
space $\wedge^{m}V$? Yes:


\paragraph{Lemma 3:}

If $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $ is a linearly
independent set of vectors (not necessarily a basis in $V$ since
$n\leq N$), then:

\textbf{(1)} The set of ${n \choose 2}$ tensors\[
\left\{ \mathbf{v}_{j}\wedge\mathbf{v}_{k},\:1\leq j<k\leq n\right\} \equiv\left\{ \mathbf{v}_{1}\wedge\mathbf{v}_{2},\mathbf{v}_{1}\wedge\mathbf{v}_{3},...,\mathbf{v}_{n-1}\wedge\mathbf{v}_{n}\right\} \]
is linearly independent in the space $\wedge^{2}V$. 

\textbf{(2)} The set of ${n \choose m}$ tensors\[
\left\{ \mathbf{v}_{k_{1}}\wedge\mathbf{v}_{k_{2}}\wedge...\wedge\mathbf{v}_{k_{m}},\:1\leq k_{1}<k_{2}<...<k_{m}\leq n\right\} \]
 is linearly independent in the space $\wedge^{m}V$ for $2\leq m\leq n$.


\subparagraph{Proof:}

\textbf{(1)} The proof is similar to that of Lemma~3 in Sec.~\ref{sub:Dimension-of-tensor}.
Suppose the set $\left\{ \mathbf{v}_{j}\right\} $ is linearly independent
but the set $\left\{ \mathbf{v}_{j}\wedge\mathbf{v}_{k}\right\} $
is linearly \emph{dependent}, so that there exists a linear combination\[
\sum_{1\leq j<k\leq n}\lambda_{jk}\mathbf{v}_{j}\wedge\mathbf{v}_{k}=0\]
with at least some $\lambda_{jk}\neq0$. Without loss of generality,
$\lambda_{12}\neq0$ (or else we can renumber the vectors $\mathbf{v}_{j}$).
There exists a covector $\mathbf{f}^{*}\in V^{*}$ such that $\mathbf{f}^{*}\left(\mathbf{v}_{1}\right)=1$
and $\mathbf{f}^{*}\left(\mathbf{v}_{i}\right)=0$ for $2\leq i\leq n$.
Apply the interior product with this covector to the above tensor,\[
0=\iota_{\mathbf{f}^{*}}\left[\sum_{1\leq j<k\leq n}\lambda_{jk}\mathbf{v}_{j}\wedge\mathbf{v}_{k}\right]=\sum_{k=2}^{n}\lambda_{1k}\mathbf{v}_{k},\]
therefore by linear independence of $\left\{ \mathbf{v}_{k}\right\} $
all $\lambda_{1k}=0$, contradicting the assumption $\lambda_{12}\neq0$.

\textbf{(2)} The proof of part (1) is straightforwardly generalized
to the space $\wedge^{m}V$, using induction in $m$. We have just
proved the basis of induction, $m=2$. Now the induction step: assume
that the statement is proved for $m-1$ and consider a set $\left\{ \mathbf{v}_{k_{1}}\wedge...\wedge\mathbf{v}_{k_{m}}\right\} $,
of tensors of rank $m$, where $\left\{ \mathbf{v}_{j}\right\} $
is a basis. Suppose that this set is linearly dependent; then there
is a linear combination \[
\omega\equiv\sum_{k_{1},...,k_{m}}\lambda_{k_{1}...k_{m}}\mathbf{v}_{k_{1}}\wedge...\wedge\mathbf{v}_{k_{m}}=0\]
with some nonzero coefficients, e.g.~$\lambda_{12...m}\neq0$. There
exists a covector $\mathbf{f}^{*}$ such that $\mathbf{f}^{*}\left(\mathbf{v}_{1}\right)=1$
and $\mathbf{f}^{*}\left(\mathbf{v}_{i}\right)=0$ for $2\leq i\leq n$.
Apply this covector to the tensor $\omega$ and obtain $\iota_{\mathbf{f}^{*}}\omega=0$,
which yields a vanishing linear combination of tensors $\mathbf{v}_{k_{1}}\wedge...\wedge\mathbf{v}_{k_{m-1}}$
of rank $m-1$ with \emph{some} nonzero coefficients. But this contradicts
the induction assumption, which says that any set of tensors $\mathbf{v}_{k_{1}}\wedge...\wedge\mathbf{v}_{k_{m-1}}$
of rank $m-1$ is linearly independent.\hfill{}$\blacksquare$

Now we are ready to compute the dimension of $\wedge^{m}V$.


\paragraph{Theorem 2:}

The dimension of the space $\wedge^{m}V$ is \[
\dim\wedge^{m}V={N \choose m}=\frac{N!}{m!\left(N-m\right)!},\]
 where $N\equiv\dim V$. For $m>N$ we have $\dim\wedge^{m}V=0$,
i.e.~the spaces $\wedge^{m}V$ for $m>N$ consist solely of the zero
tensor. 


\subparagraph{Proof:}

We will explicitly construct a basis in the space $\wedge^{m}V$.
First choose a basis $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
in $V$. By Lemma~3, the set of ${N \choose m}$ tensors\[
\left\{ \mathbf{e}_{k_{1}}\wedge\mathbf{e}_{k_{2}}\wedge...\wedge\mathbf{e}_{k_{m}},\:1\leq k_{1}<k_{2}<...<k_{m}\leq N\right\} \]
 is linearly independent, and by Lemma~2 any tensor $A\in\wedge^{m}V$
is a linear combination of these tensors. Therefore the set $\left\{ \mathbf{e}_{k_{1}}\wedge\mathbf{e}_{k_{2}}\wedge...\wedge\mathbf{e}_{k_{m}}\right\} $
is a basis in $\wedge^{m}V$. By Theorem~\ref{sub:All-bases-have},
the dimension of space is equal to the number of vectors in any basis,
therefore $\dim\wedge^{m}N={N \choose m}$.

For $m>N$, the existence of a nonzero tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$
contradicts Theorem~1: The set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{m}\right\} $
cannot be linearly independent since it has more vectors than the
dimension of the space. Therefore all such tensors are equal to zero
(more pedantically, to the \emph{zero} \emph{tensor}), which is thus
the only element of $\wedge^{m}V$ for every $m>N$.\hfill{}$\blacksquare$


\paragraph{Exercise 1:}

It is given that the set of four vectors $\left\{ \mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\right\} $
is linearly independent. Show that the tensor $\omega\equiv\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\in\wedge^{2}V$
\emph{cannot} be equal to a single-term\index{single-term exterior products}
exterior product of the form $\mathbf{x}\wedge\mathbf{y}$.

\emph{Outline of solution}: 

1. Constructive solution. There exists $\mathbf{f}^{*}\in V^{*}$
such that $\mathbf{f}^{*}(\mathbf{a})=1$ and $\mathbf{f}^{*}(\mathbf{b})=0$,
$\mathbf{f}^{*}(\mathbf{c})=0$, $\mathbf{f}^{*}(\mathbf{d})=0$.
Compute $\iota_{\mathbf{f}^{*}}\omega=\mathbf{b}$. If $\omega=\mathbf{x}\wedge\mathbf{y}$,
it will follow that a linear combination of $\mathbf{x}$ and $\mathbf{y}$
is equal to $\mathbf{b}$, i.e.~$\mathbf{b}$ belongs to the two-dimen\-sion\-al
space $\text{Span}\left\{ \mathbf{x},\mathbf{y}\right\} $. Repeat
this argument for the remaining three vectors ($\mathbf{a}$, $\mathbf{c}$,
$\mathbf{d}$) and obtain a contradiction.

2. Non-constructive solution. Compute $\omega\wedge\omega=2\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}\neq0$
by linear independence of $\left\{ \mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\right\} $.
If we could express $\omega=\mathbf{x}\wedge\mathbf{y}$ then we would
have $\omega\wedge\omega=0$.\hfill{}$\blacksquare$


\paragraph{Remark:}

While $\mathbf{a}\wedge\mathbf{b}$ is interpreted geometrically as
the oriented area of a parallelogram spanned by $\mathbf{a}$ and
$\mathbf{b}$, a general linear combination such as $\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}+\mathbf{e}\wedge\mathbf{f}$
does not have this interpretation (unless it can be reduced to a single-term
product $\mathbf{x}\wedge\mathbf{y}$). If not reducible to a single-term
product, $\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}$
can be interpreted only as a \emph{formal} linear combination of two
areas.


\paragraph{Exercise 2:}

Suppose that $\psi\in\wedge^{k}V$ and $\mathbf{x}\in V$ are such
that $\mathbf{x}\wedge\psi=0$ while $\mathbf{x}\neq0$. Show that
there exists $\chi\in\wedge^{k-1}V$ such that $\psi=\mathbf{x}\wedge\chi$.
Give an example where $\psi$ and $\chi$ are \emph{not} representable
as a single-term exterior product.

\emph{Outline of solution}: There exists $\mathbf{f}^{*}\in V^{*}$
such that $\mathbf{f}^{*}(\mathbf{x})=1$. Apply $\iota_{\mathbf{f}^{*}}$
to the given equality $\mathbf{x}\wedge\psi=0$:\[
0\,{\lyxbuildrel!\above=}\,\iota_{\mathbf{f}^{*}}(\mathbf{x}\wedge\psi)=\psi-\mathbf{x}\wedge\iota_{\mathbf{f}^{*}}\psi,\]
which means that $\psi=\mathbf{x}\wedge\chi$ with $\chi\equiv\iota_{\mathbf{f}^{*}}\psi$.
An example can be found with $\chi=\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}$
as in Exercise 1, and $\mathbf{x}$ such that the set $\{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},\mathbf{x}\}$
is linearly independent; then $\psi\equiv\mathbf{x}\wedge\psi$ is
also not reducible to a single-term product.


\subsection{Computing the dual basis\label{sub:Computing-the-dual}}

The exterior product allows us to compute explicitly the dual basis\index{dual basis}
for a given basis.

We begin with some motivation. Suppose $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is a given basis; we would like to compute its dual basis. For instance,
the covector $\mathbf{v}_{1}^{*}$ of the dual basis is the linear
function such that $\mathbf{v}_{1}^{*}(\mathbf{x})$ is equal to the
coefficient at $\mathbf{v}_{1}$ in the decomposition of $\mathbf{x}$
in the basis $\left\{ \mathbf{v}_{j}\right\} $,\[
\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{v}_{i};\quad\mathbf{v}_{1}^{*}(\mathbf{x})=x_{1}.\]
We start from the observation that the tensor $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
is nonzero since $\left\{ \mathbf{v}_{j}\right\} $ is a basis. The
exterior product $\mathbf{x}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$
is equal to zero if $\mathbf{x}$ is a linear combination only of
$\mathbf{v}_{2}$, ..., $\mathbf{v}_{N}$, with a zero coefficient
$x_{1}$. This suggests that the exterior product of $\mathbf{x}$
with the $(N-1)$-vector $\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$
is quite similar to the covector $\mathbf{v}_{1}^{*}$ we are looking
for. Indeed, let us compute\[
\mathbf{x}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}=x_{1}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}=x_{1}\omega.\]
Therefore, exterior multiplication with $\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$
acts quite similarly to $\mathbf{v}_{1}^{*}$. To make the notation
more concise, let us introduce a special \textbf{complement}\index{Grassmann's complement}
operation%
\footnote{The complement operation was introduced by H. Grassmann (1844).%
} denoted by a star: \[
*\left(\mathbf{v}_{1}\right)\equiv\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}.\]
Then we can write $\mathbf{v}_{1}^{*}(\mathbf{x})\omega=\mathbf{x}\wedge*(\mathbf{v}_{1})$.
This equation can be used for computing $\mathbf{v}_{1}^{*}$: namely,
for any $\mathbf{x}\in V$ the number $\mathbf{v}_{1}^{*}(\mathbf{x})$
is equal to the constant $\lambda$ in the equation $\mathbf{x}\wedge*(\mathbf{v}_{1})=\lambda\omega$.
To make this kind of equation more convenient, let us write\[
\lambda\equiv\mathbf{v}_{1}^{*}(\mathbf{x})=\frac{\mathbf{x}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}}=\frac{\mathbf{x}\wedge*(\mathbf{v}_{1})}{\omega},\]
where the {}``division'' of one tensor\index{dividing by tensor}
by another is to be understood as follows: We first compute the tensor
$\mathbf{x}\wedge*(\mathbf{v}_{1})$; this tensor is proportional
to the tensor $\omega$ since both belong to the one-dimen\-sion\-al
space $\wedge^{N}V$, so we can determine the number $\lambda$ such
that $\mathbf{x}\wedge*(\mathbf{v}_{1})=\lambda\omega$; the proportionality
coefficient $\lambda$ is then the result of the division of $\mathbf{x}\wedge*(\mathbf{v}_{1})$
by $\omega$.

For $\mathbf{v}_{2}$ we have\[
\mathbf{v}_{1}\wedge\mathbf{x}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}=x_{2}\omega=\mathbf{v}_{2}^{*}(\mathbf{x})\omega.\]
 If we would like to have $x_{2}\omega=\mathbf{x}\wedge*(\mathbf{v}_{2})$,
we need to add an extra minus sign and define\[
*\left(\mathbf{v}_{2}\right)\equiv-\mathbf{v}_{1}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}.\]
Then we indeed obtain $\mathbf{v}_{2}^{*}(\mathbf{x})\omega=\mathbf{x}\wedge*(\mathbf{v}_{2})$. 

It is then clear that we can define the tensors $*(\mathbf{v}_{i})$
for $i=1,...,N$ in this way. The tensor $*(\mathbf{v}_{i})$ is obtained
from $\omega$ by removing the vector $\mathbf{v}_{i}$ and by adding
a sign that corresponds to shifting the vector $\mathbf{v}_{i}$ to
the left position in the exterior product. The {}``complement''
map, $*:V\rightarrow\wedge^{N-1}V$, satisfies $\mathbf{v}_{j}\wedge*(\mathbf{v}_{j})=\omega$
for each \emph{basis} vector $\mathbf{v}_{j}$. (Once defined on the
basis vectors, the complement map can be then extended to all vectors
from $V$ by requiring linearity. However, we will apply the complement
operation only to basis vectors right now.)

With these definitions, we may express the dual basis as\[
\mathbf{v}_{i}^{*}(\mathbf{x})\omega=\mathbf{x}\wedge*(\mathbf{v}_{i}),\quad\mathbf{x}\in V,\: i=1,...,N.\]



\paragraph{Remark:}

The notation $*(\mathbf{v}_{i})$ suggests that e.g.~$*(\mathbf{v}_{1})$
is some operation applied to $\mathbf{v}_{1}$ and is a function only
of the vector $\mathbf{v}_{1}$, but this is not so: The {}``complement''
of a vector depends on the entire basis and not merely on the single
vector! Also, the property $\mathbf{v}_{1}\wedge*(\mathbf{v}_{1})=\omega$
is not sufficient to define the tensor $*\mathbf{v}_{1}$. The proper
definition of $*(\mathbf{v}_{i})$ is the tensor obtained from $\omega$
by removing $\mathbf{v}_{i}$ as just explained.


\paragraph{Example:}

In the space $\mathbb{R}^{2}$, let us compute the dual basis to the
basis $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $ where $\mathbf{v}_{1}={2 \choose 1}$
and $\mathbf{v}_{2}={-1 \choose 1}$.

Denote by $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$ the standard basis
vectors ${1 \choose 0}$ and ${0 \choose 1}$. We first compute the
2-vector \[
\omega=\mathbf{v}_{1}\wedge\mathbf{v}_{2}=\left(2\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(-\mathbf{e}_{1}+\mathbf{e}_{2}\right)=3\mathbf{e}_{1}\wedge\mathbf{e}_{2}.\]
 The {}``complement'' operation for the basis $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $
gives $*(\mathbf{v}_{1})=\mathbf{v}_{2}$ and $*(\mathbf{v}_{2})=-\mathbf{v}_{1}$.
We now define the covectors $\mathbf{v}_{1,2}^{*}$ by their action
on arbitrary vector $\mathbf{x}\equiv x_{1}\mathbf{e}_{1}+x_{2}\mathbf{e}_{2}$,\begin{align*}
\mathbf{v}_{1}^{*}(\mathbf{x})\omega & =\mathbf{x}\wedge\mathbf{v}_{2}=\left(x_{1}\mathbf{e}_{1}+x_{2}\mathbf{e}_{2}\right)\wedge\left(-\mathbf{e}_{1}+\mathbf{e}_{2}\right)\\
 & =\left(x_{1}+x_{2}\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}=\frac{x_{1}+x_{2}}{3}\omega,\\
\mathbf{v}_{2}^{*}(\mathbf{x})\omega & =-\mathbf{x}\wedge\mathbf{v}_{1}=-\left(x_{1}\mathbf{e}_{1}+x_{2}\mathbf{e}_{2}\right)\wedge\left(2\mathbf{e}_{1}+\mathbf{e}_{2}\right)\\
 & =\left(-x_{1}+2x_{2}\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}=\frac{-x_{1}+2x_{2}}{3}\omega.\end{align*}
Therefore, $\mathbf{v}_{1}^{*}=\frac{1}{3}\mathbf{e}_{1}^{*}+\frac{1}{3}\mathbf{e}_{2}^{*}$
and $\mathbf{v}_{2}^{*}=-\frac{1}{3}\mathbf{e}_{1}^{*}+\frac{2}{3}\mathbf{e}_{2}^{*}$.


\paragraph{Question:}

Can we define the complement operation for all $\mathbf{x}\in V$
by the equation $\mathbf{x}\wedge*(\mathbf{x})=\omega$ where $\omega\in\wedge^{N}V$
is a fixed tensor? Does the complement really depend on the entire
basis? Or perhaps a choice of $\omega$ is sufficient?


\subparagraph{Answer: }

No, yes, no. Firstly, $*(\mathbf{x})$ is not uniquely specified by
that equation alone, since $\mathbf{x}\wedge A=\omega$ defines $A$
only up to tensors of the form $\mathbf{x}\wedge...$; secondly, the
equation $\mathbf{x}\wedge*(\mathbf{x})=\omega$ indicates that $*(\lambda\mathbf{x})=\frac{1}{\lambda}\,*\negmedspace(\mathbf{x})$,
so the complement map would not be linear if defined like that. It
is important to keep in mind that the complement map requires an entire
basis for its definition and depends not only on the choice of a tensor
$\omega$, but also on the choice of all the basis vectors. For example,
in two dimensions we have $*(\mathbf{e}_{1})=\mathbf{e}_{2}$; it
is clear that $*(\mathbf{e}_{1})$ depends on the choice of $\mathbf{e}_{2}$!


\paragraph{Remark:}

The situation is different when the vector space is equipped with
a scalar product (see Sec.~\ref{sub:The-vector-product} below).
In that case, one usually chooses an \emph{orthonormal} basis to define
the complement map; then the complement map is called the \textbf{Hodge\index{Hodge star}
star}. It turns out that the Hodge star is independent of the choice
of the basis as long as the basis is orthonormal with respect to the
given scalar product, and as long as the orientation of the basis
is unchanged (i.e.~as long as the tensor $\omega$ does not change
sign). In other words, the Hodge star operation is invariant under
orthogonal and orientation-preserving transformations of the basis;
these transformations preserve the tensor $\omega$. So the Hodge
star operation depends not quite on the detailed choice of the basis,
but rather on the choice of the scalar product and on the orientation
of the basis (the sign of $\omega$). However, right now we are working
with a general space without a scalar product. In this case, the complement
map depends on the entire basis.


\subsection{Gaussian elimination}


\paragraph{Question:}

How much computational effort is actually needed to compute the exterior
product of $n$ vectors? It looks easy in two or three dimensions,
but in $N$ dimensions the product of $n$ vectors $\left\{ \mathbf{x}_{1},...,\mathbf{x}_{n}\right\} $
gives expressions such as\[
\bigwedge_{i=1}^{n}\mathbf{x}_{n}=\left(x_{11}\mathbf{e}_{1}+...+x_{1N}\mathbf{e}_{N}\right)\wedge...\wedge\left(x_{n1}\mathbf{e}_{1}+...+x_{nN}\mathbf{e}_{N}\right),\]
which will be reduced to an exponentially large number (of order $N^{n}$)
of elementary tensor products when we expand all brackets.


\subparagraph{Answer:}

Of course, expanding all brackets is not the best way to compute long
exterior products. We can instead use a procedure similar to the Gaussian
elimination\index{Gaussian elimination} for computing determinants.
The key observation is that\[
\mathbf{x}_{1}\wedge\mathbf{x}_{2}\wedge...=\mathbf{x}_{1}\wedge\left(\mathbf{x}_{2}-\lambda\mathbf{x}_{1}\right)\wedge...\]
for any number $\lambda$, and that it is easy to compute an exterior
product of the form\[
(\alpha_{1}\mathbf{e}_{1}+\alpha_{2}\mathbf{e}_{2}+\alpha_{3}\mathbf{e}_{3})\wedge(\beta_{2}\mathbf{e}_{2}+\beta_{3}\mathbf{e}_{3})\wedge\mathbf{e}_{3}=\alpha_{1}\beta_{2}\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}.\]
It is easy to compute this exterior product because the second vector
($\beta_{2}\mathbf{e}_{2}+\beta_{3}\mathbf{e}_{3}$) does not contain
the basis vector $\mathbf{e}_{1}$ and the third vector does not contain
$\mathbf{e}_{1}$ or $\mathbf{e}_{2}$. So we can simplify the computation
of a long exterior product if we rewrite \begin{align*}
 & \bigwedge_{i=1}^{n}\mathbf{x}_{n}=\mathbf{x}_{1}\wedge\tilde{\mathbf{x}}_{2}\wedge...\wedge\tilde{\mathbf{x}}_{n}\\
 & \equiv\mathbf{x}_{1}\wedge(\mathbf{x}_{2}-\lambda_{11}\mathbf{x}_{1})\wedge...\wedge\left(\mathbf{x}_{n}-\lambda_{n1}\mathbf{x}_{1}-...-\lambda_{n-1,n-1}\mathbf{x}_{n-1}\right),\end{align*}
where the coefficients $\left\{ \lambda_{ij}\,|\,1\leq i\leq n-1,\;1\leq j\leq i\right\} $
are chosen appropriately such that the vector $\tilde{\mathbf{x}}_{2}\equiv\mathbf{x}_{2}-\lambda_{11}\mathbf{x}_{1}$
does not contain the basis vector $\mathbf{e}_{1}$, and generally
the vector \[
\tilde{\mathbf{x}}_{k}\equiv\mathbf{x}_{k}-\lambda_{k1}\mathbf{x}_{1}-...-\lambda_{k-1,k-1}\mathbf{x}_{k-1}\]
 does not contain the basis vectors $\mathbf{e}_{1}$,..., $\mathbf{e}_{k-1}$.
(That is, these basis vectors have been {}``eliminated'' from the
vector $\mathbf{x}_{k}$, hence the name of the method.) Eliminating
$\mathbf{e}_{1}$ from $\mathbf{x}_{2}$ can be done with $\lambda_{11}=\frac{x_{21}}{x_{11}}$,
which is possible provided that $x_{11}\neq0$; if $x_{11}=0$, we
need to renumber the vectors $\left\{ \mathbf{x}_{j}\right\} $. If
none of them contains $\mathbf{e}_{1}$, we skip $\mathbf{e}_{1}$
and proceed with $\mathbf{e}_{2}$ instead. Elimination of other basis
vectors proceeds similarly. After performing this algorithm, we will
either find that some vector $\tilde{\mathbf{x}}_{k}$ is itself zero,
which means that the entire exterior product vanishes, or we will
find the product of vectors of the form\[
\tilde{\mathbf{x}}_{1}\wedge...\wedge\tilde{\mathbf{x}}_{n},\]
 where the vectors $\tilde{\mathbf{x}}_{i}$ are linear combinations
of $\mathbf{e}_{i}$, ..., $\mathbf{e}{}_{N}$ (not containing $\mathbf{e}_{1}$,
..., $\mathbf{e}_{i}$). 

If $n=N$, the product can be evaluated immediately since the last
vector, $\tilde{\mathbf{x}}_{N}$, is proportional to $\mathbf{e}_{N}$,
so\begin{align*}
\tilde{\mathbf{x}}_{1}\wedge...\wedge\tilde{\mathbf{x}}_{n} & =\left(c_{11}\mathbf{e}_{1}+...\right)\wedge...\wedge(c_{nn}\mathbf{e}_{N})\\
 & =c_{11}c_{22}...c_{nn}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\end{align*}
 The computation is somewhat longer if $n<N$, so that \[
\tilde{\mathbf{x}}_{n}=c_{nn}\mathbf{e}_{n}+...+c_{nN}\mathbf{e}_{N}.\]
In that case, we may eliminate, say, $\mathbf{e}_{n}$ from $\tilde{\mathbf{x}}_{1}$,
..., $\tilde{\mathbf{x}}_{n-1}$ by subtracting a multiple of $\tilde{\mathbf{x}}_{n}$
from them, but we cannot simplify the product any more; at that point
we need to expand the last bracket (containing $\tilde{\mathbf{x}}_{n}$)
and write out the terms.


\paragraph{Example 1: }

We will calculate the exterior product\begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\\
 & \equiv(7\mathbf{e}_{1}-8\mathbf{e}_{2}+\mathbf{e}_{3})\wedge(\mathbf{e}_{1}-2\mathbf{e}_{2}-15\mathbf{e}_{3})\wedge(2\mathbf{e}_{1}-5\mathbf{e}_{2}-\mathbf{e}_{3}).\end{align*}
We will eliminate $\mathbf{e}_{1}$ from $\mathbf{a}$ and $\mathbf{c}$
(just to keep the coefficients simpler):\begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=(\mathbf{a}-7\mathbf{b})\wedge\mathbf{b}\wedge(\mathbf{c}-2\mathbf{b})\\
 & =(6\mathbf{e}_{2}+106\mathbf{e}_{3})\wedge\mathbf{b}\wedge(-\mathbf{e}_{2}+9\mathbf{e}_{3})\\
 & \equiv\mathbf{a}_{1}\wedge\mathbf{b}\wedge\mathbf{c}_{1}.\end{align*}
Now we eliminate $\mathbf{e}_{2}$ from $\mathbf{a}_{1}$, and then
the product can be evaluated quickly:\begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\mathbf{a}_{1}\wedge\mathbf{b}\wedge\mathbf{c}_{1}=(\mathbf{a}_{1}+6\mathbf{c}_{1})\wedge\mathbf{b}\wedge\mathbf{c}_{1}\\
 & =(160\mathbf{e}_{3})\wedge(\mathbf{e}_{1}-2\mathbf{e}_{2}-5\mathbf{e}_{3})\wedge(-\mathbf{e}_{2}+9\mathbf{e}_{3})\\
 & =160\mathbf{e}_{3}\wedge\mathbf{e}_{1}\wedge(-\mathbf{e}_{2})=-160\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}.\end{align*}



\paragraph{Example 2:}

Consider\begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\equiv(\mathbf{e}_{1}+2\mathbf{e}_{2}-\mathbf{e}_{3}+\mathbf{e}_{4})\\
 & \quad\wedge(2\mathbf{e}_{1}+\mathbf{e}_{2}-\mathbf{e}_{3}+3\mathbf{e}_{4})\wedge(-\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{4}).\end{align*}
We eliminate $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$:\begin{align*}
 & \mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\mathbf{a}\wedge(\mathbf{b}-2\mathbf{a})\wedge(\mathbf{c}+\mathbf{a})\\
 & =\mathbf{a}\wedge\left(-3\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right)\wedge\left(\mathbf{e}_{2}-\mathbf{e}_{3}+2\mathbf{e}_{4}\right)\\
 & \equiv\mathbf{a}\wedge\mathbf{b}_{1}\wedge\mathbf{c}_{1}=\mathbf{a}\wedge\mathbf{b}_{1}\wedge(\mathbf{c}_{1}+3\mathbf{b}_{1})\\
 & =\mathbf{a}\wedge\mathbf{b}_{1}\wedge(2\mathbf{e}_{3}+5\mathbf{e}_{4})\equiv\mathbf{a}\wedge\mathbf{b}_{1}\wedge\mathbf{c}_{2}.\end{align*}
We can now eliminate $\mathbf{e}_{3}$ from $\mathbf{a}$ and $\mathbf{b}_{1}$:\begin{align*}
 & \mathbf{a}\wedge\mathbf{b}_{1}\wedge\mathbf{c}_{2}=(\mathbf{a}+\frac{1}{2}\mathbf{c}_{2})\wedge(\mathbf{b}_{1}-\frac{1}{2}\mathbf{c}_{2})\wedge\mathbf{c}_{2}\equiv\mathbf{a}_{2}\wedge\mathbf{b}_{2}\wedge\mathbf{c}_{2}\\
 & =(\mathbf{e}_{1}+2\mathbf{e}_{2}+\frac{7}{2}\mathbf{e}_{4})\wedge(-3\mathbf{e}_{2}-\frac{3}{2}\mathbf{e}_{4})\wedge(2\mathbf{e}_{3}+5\mathbf{e}_{4}).\end{align*}
Now we cannot eliminate any more vectors, so we expand the last bracket
and simplify the result by omitting the products of equal vectors:
\begin{align*}
 & \,\mathbf{a}_{2}\wedge\mathbf{b}_{2}\wedge\mathbf{c}_{2}=\mathbf{a}_{2}\wedge\mathbf{b}_{2}\wedge2\mathbf{e}_{3}+\mathbf{a}_{2}\wedge\mathbf{b}_{2}\wedge5\mathbf{e}_{4}\\
 & =\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge(-\frac{3}{2}\mathbf{e}_{4})\wedge2\mathbf{e}_{3}+\mathbf{e}_{1}\wedge(-3\mathbf{e}_{2})\wedge2\mathbf{e}_{3}\\
 & +\mathbf{e}_{1}\wedge(-3\mathbf{e}_{2})\wedge5\mathbf{e}_{4}\\
 & =3\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}+6\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}-6\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}-15\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{4}.\end{align*}
 


\subsection{Rank of a set of vectors\label{sub:Rank-of-a-set-of-vectors}}

We have defined the rank of a map (Sec.~\ref{sub:Linear-maps-between-different-spaces})
as the dimension of the image of the map, and we have seen that the
rank is equal to the minimum number of tensor product terms needed
to represent the map as a tensor. An analogous concept can be introduced
for sets of vectors.


\paragraph{Definition:}

If $S=\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $ is a set
of vectors (where $n$ is not necessarily smaller than the dimension
$N$ of space), the \textbf{rank} of the set $S$ is the dimension
of the subspace spanned by the vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $.
Written as a formula,\[
\text{rank}\,(S)=\dim\,\text{Span}\, S.\]


The rank of a set $S$ is equal to the maximum number of vectors in
any linearly independent subset of $S$. For example, consider the
set $\left\{ 0,\mathbf{v},2\mathbf{v},3\mathbf{v}\right\} $ where
$\mathbf{v}\neq0$. The rank of this set is 1 since these four vectors
span a one-dimen\-sion\-al subspace,\[
\text{Span}\left\{ 0,\mathbf{v},2\mathbf{v},3\mathbf{v}\right\} =\text{Span}\left\{ \mathbf{v}\right\} .\]
Any subset of $S$ having two or more vectors is linearly dependent.

We will now show how to use the exterior product for computing the
rank of a given (finite) set $S=\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $. 

According to Theorem~1 in Sec.~\ref{sub:Properties-of-the-ext-powers},
the set $S$ is linearly independent if and only if $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\neq0$.
So we first compute the tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}$.
If this tensor is nonzero then the set $S$ is linearly independent,
and the rank of $S$ is equal to $n$. If, on the other hand, $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}=0$,
the rank is less than $n$. We can determine the rank of $S$ by the
following procedure. First, we assume that all $\mathbf{v}_{j}\neq0$
(any zero vectors can be omitted without changing the rank of $S$).
Then we compute $\mathbf{v}_{1}\wedge\mathbf{v}_{2}$; if the result
is zero, we may omit $\mathbf{v}_{2}$ since $\mathbf{v}_{2}$ is
proportional to $\mathbf{v}_{1}$ and try $\mathbf{v}_{1}\wedge\mathbf{v}_{3}$.
If $\mathbf{v}_{1}\wedge\mathbf{v}_{2}\neq0$, we try $\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\mathbf{v}_{3}$,
and so on. The procedure can be formulated using induction in the
obvious way. Eventually we will arrive at a subset $\{\mathbf{v}_{i_{1}},...,\mathbf{v}_{i_{k}}\}\subset S$
such that $\mathbf{v}_{i_{1}}\wedge...\wedge...\mathbf{v}_{i_{k}}\neq0$
but $\mathbf{v}_{i_{1}}\wedge...\wedge...\mathbf{v}_{i_{k}}\wedge\mathbf{v}_{j}=0$
for any other $\mathbf{v}_{j}$. Thus, there are no linearly independent
subsets of $S$ having $k+1$ or more vectors. Then the rank of $S$
is equal to $k$. 

The subset $\{\mathbf{v}_{i_{1}},...,\mathbf{v}_{i_{k}}\}$ is built
by a procedure that depends on the order in which the vectors $\mathbf{v}_{j}$
are selected. However, the next statement says that the resulting
subspace spanned by $\{\mathbf{v}_{i_{1}},...,\mathbf{v}_{i_{k}}\}$
is the same regardless of the order of vectors $\mathbf{v}_{j}$.
Hence, the subset $\{\mathbf{v}_{i_{1}},...,\mathbf{v}_{i_{k}}\}$
yields a basis in $\text{Span}\, S$. 


\paragraph{Statement: }

Suppose a set $S$ of vectors has rank $k$ and contains \emph{two}
different linearly independent subsets, say $S_{1}=\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
and $S_{2}=\left\{ \mathbf{u}_{1},...,\mathbf{u}_{k}\right\} $, both
having $k$ vectors (but no linearly independent subsets having $k+1$
or more vectors). Then the tensors $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
and $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$ are proportional
to each other (as tensors from $\wedge^{k}V$).


\subparagraph{Proof:}

The tensors $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$ and $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$
are both nonzero by Theorem~1 in Sec.~\ref{sub:Properties-of-the-ext-powers}.
We will now show that it is possible to replace $\mathbf{v}_{1}$
by one of the vectors from the set $S_{2}$, say $\mathbf{u}_{l}$,
such that the new tensor $\mathbf{u}_{l}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}$
is nonzero and proportional to the original tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$.
It will follow that this procedure can be repeated for every other
vector $\mathbf{v}_{i}$, until we replace all $\mathbf{v}_{i}$'s
by some $\mathbf{u}_{i}$'s and thus prove that the tensors $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
and $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$ are proportional
to each other.

It remains to prove that the vector $\mathbf{v}_{1}$ can be replaced.
We need to find a suitable vector $\mathbf{u}_{l}$. Let $\mathbf{u}_{l}$
be one of the vectors from $S_{2}$, and let us check whether $\mathbf{v}_{1}$
could be replaced by $\mathbf{u}_{l}$. We first note that $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{u}_{l}=0$
since there are no linearly independent subsets of $S$ having $k+1$
vectors. Hence the set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k},\mathbf{u}_{l}\right\} $
is linearly \emph{dependent}. It follows (since the set $\left\{ \mathbf{v}_{i}\,|\, i=1,...,k\right\} $
was linearly independent before we added $\mathbf{u}_{l}$ to it)
that $\mathbf{u}_{l}$ can be expressed as a linear combination of
the $\mathbf{v}_{i}$'s with some coefficients $\alpha_{i}$:\[
\mathbf{u}_{l}=\alpha_{1}\mathbf{v}_{1}+...+\alpha_{k}\mathbf{v}_{k}.\]
If $\alpha_{1}\neq0$ then we will have\[
\mathbf{u}_{l}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}=\alpha_{1}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{k}.\]
The new tensor is nonzero and proportional to the old tensor, so we
can replace $\mathbf{v}_{1}$ by $\mathbf{u}_{l}$. 

However, it could also happen that $\alpha_{1}=0$. In that case we
need to choose a different vector $\mathbf{u}_{l'}\in S_{2}$ such
that the corresponding coefficient $\alpha_{1}$ is nonzero. It remains
to prove that such a choice is possible. If this were impossible then
all $\mathbf{u}_{i}$'s would have been expressible as linear combinations
of $\mathbf{v}_{i}$'s with zero coefficients at the vector $\mathbf{v}_{1}$.
In that case, the exterior product $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$
would be equal to a linear combination of exterior products of vectors
$\mathbf{v}_{i}$ with $i=2,...,k$. These exterior products contain
$k$ vectors among which only $\left(k-1\right)$ vectors are different.
Such exterior products are all equal to zero. However, this contradicts
the assumption $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}\neq0$.
Therefore, at least one vector $\mathbf{u}_{l}$ exists such that
$\alpha_{1}\neq0$, and the required replacement is always possible.\hfill{}$\blacksquare$


\paragraph{Remark:}

It follows from the above Statement that the subspace spanned by $S$
can be uniquely characterized by a nonzero tensor such as $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
in which the constituents --- the vectors $\mathbf{v}_{1}$,..., $\mathbf{v}_{k}$
--- form a basis in the subspace $\text{Span}\, S$. It does not matter
which linearly independent subset we choose for this purpose. We also
have a computational procedure for determining the subspace $\text{Span}\, S$
together with its dimension. Thus, we find that a $k$-dimen\-sion\-al
subspace is adequately specified by selecting a nonzero tensor $\omega\in\wedge^{k}V$
of the form $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$.
For a given subspace, this tensor $\omega$ is unique up to a nonzero
constant factor. Of course, the decomposition of $\omega$ into an
exterior product of vectors $\left\{ \mathbf{v}_{i}\,|\, i=1,...,k\right\} $
is not unique, but any such decomposition yields a set $\left\{ \mathbf{v}_{i}\,|\, i=1,...,k\right\} $
spanning the same subspace. 


\paragraph{Exercise 1:}

Let $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $ be a linearly
independent set of vectors, $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{n}\neq0$,
and $\mathbf{x}$ be a given vector such that $\omega\wedge\mathbf{x}=0$.
Show that $\mathbf{x}$ belongs to the subspace $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $. 


\paragraph{Exercise 2:}

Given a nonzero covector $\mathbf{f}^{*}$ and a vector $\mathbf{n}$
such that $\mathbf{f}^{*}(\mathbf{n})\neq0$, show that the operator
$\hat{P}$ defined by\[
\hat{P}\mathbf{x}=\mathbf{x}-\mathbf{n}\frac{\mathbf{f}^{*}(\mathbf{x})}{\mathbf{f}^{*}(\mathbf{n})}\]
 is a projector\index{projector} onto the subspace $\mathbf{f}^{*\perp}$,
i.e.~that $\mathbf{f}^{*}(\hat{P}\mathbf{x})=0$ for all $\mathbf{x}\in V$.
Show that\[
(\hat{P}\mathbf{x})\wedge\mathbf{n}=\mathbf{x}\wedge\mathbf{n},\quad\forall\mathbf{x}\in V.\]



\subsection{Exterior product in index notation\label{sub:Exterior-product-in-index}}

Here I show how to perform calculations with the exterior product
using the index notation\index{exterior product!in index notation}
(see Sec.~\ref{sub:Index-notation}), although I will not use this
later because the index-free notation is more suitable for the purposes
of this book. 

Let us choose a basis $\left\{ \mathbf{e}_{j}\right\} $ in $V$;
then the dual basis $\left\{ \mathbf{e}_{j}^{*}\right\} $ in $V$
and the basis $\left\{ \mathbf{e}_{k_{1}}\wedge...\wedge\mathbf{e}_{k_{m}}\right\} $
in $\wedge^{m}V$ are fixed. By definition, the exterior product of
two vectors $\mathbf{u}$ and $\mathbf{v}$ is \[
A\equiv\mathbf{u}\wedge\mathbf{v}=\mathbf{u}\otimes\mathbf{v}-\mathbf{v}\otimes\mathbf{u},\]
 therefore it is written in the index notation as $A^{ij}=u^{i}v^{j}-u^{j}v^{i}$.
Note that the matrix $A^{ij}$ is antisymmetric: $A^{ij}=-A^{ji}$.

Another example: The 3-vector $\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}$
can be expanded in the basis as\[
\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}=\sum_{i,j,k=1}^{N}B^{ijk}\mathbf{e}_{i}\wedge\mathbf{e}_{j}\wedge\mathbf{e}_{k}.\]
What is the relation between the components $u^{i}$, $v^{i}$, $w^{i}$
of the vectors and the components $B^{ijk}$? A direct calculation
yields\begin{equation}
B^{ijk}=u^{i}v^{j}w^{k}-u^{i}v^{k}w^{j}+u^{k}v^{i}w^{j}-u^{k}w^{j}v^{i}+u^{j}w^{k}v^{i}-u^{j}w^{i}w^{k}.\label{eq:Bijk formula}\end{equation}
In other words, every permutation of the set $\left(i,j,k\right)$
of indices enters with the sign corresponding to the parity of that
permutation. 


\paragraph{Remark:}

Readers familiar with the standard definition of the matrix determinant
will recognize a formula quite similar to the determinant of a $3\times3$
matrix. The connection between determinants and exterior products
will be fully elucidated in Chapter~\ref{sec:Determinants-and-all}.


\paragraph{Remark:}

The {}``three-dimen\-sion\-al array'' $B^{ijk}$ is antisymmetric
with respect to \emph{any} pair of indices: \[
B^{ijk}=-B^{jik}=-B^{ikj}=...\]
Such arrays are called \textbf{totally antisymmetric\index{totally antisymmetric}}.\hfill{}$\blacksquare$

The formula~(\ref{eq:Bijk formula}) for the components $B^{ijk}$
of $\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}$ is not particularly
convenient and cannot be easily generalized. We will now rewrite Eq.~(\ref{eq:Bijk formula})
in a different form that will be more suitable for expressing exterior
products of arbitrary tensors.

Let us first consider the exterior product of three vectors as a map
$\hat{E}:V\otimes V\otimes V\rightarrow\wedge^{3}V$. This map is
linear and can be represented, in the index notation, in the following
way:\[
u^{i}v^{j}w^{k}\mapsto\left(\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}\right)^{ijk}=\sum_{l,m,n}E_{lmn}^{ijk}u^{l}v^{m}w^{n},\]
where the array $E_{lmn}^{ijk}$ is the component representation of
the map $E$. Comparing with the formula~(\ref{eq:Bijk formula}),
we find that $E_{lmn}^{ijk}$ can be expressed through the Kronecker
$\delta$-symbol as\[
E_{lmn}^{ijk}=\delta_{l}^{i}\delta_{m}^{j}\delta_{n}^{k}-\delta_{l}^{i}\delta_{m}^{k}\delta_{n}^{j}+\delta_{l}^{k}\delta_{m}^{i}\delta_{n}^{j}-\delta_{l}^{k}\delta_{m}^{j}\delta_{n}^{i}+\delta_{l}^{j}\delta_{m}^{k}\delta_{n}^{i}-\delta_{l}^{j}\delta_{m}^{i}\delta_{n}^{k}.\]
 It is now clear that the exterior product of two vectors can be also
written as\[
(\mathbf{u}\wedge\mathbf{v})^{ij}=\sum_{l,m}E_{lm}^{ij}u^{l}v^{m},\]
where\[
E_{lm}^{ij}=\delta_{l}^{i}\delta_{m}^{j}-\delta_{l}^{j}\delta_{m}^{i}.\]
By analogy, the map $\hat{E}:V\otimes...\otimes V\rightarrow\wedge^{n}V$
(for $2\leq n\leq N$) can be represented in the index notation by
the array of components $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$. This
array is totally antisymmetric with respect to all the indices $\left\{ i_{s}\right\} $
and separately with respect to all $\left\{ j_{s}\right\} $. Using
this array, the exterior product of two general antisymmetric tensors,
say $\phi\in\wedge^{m}V$ and $\psi\in\wedge^{n}V$, such that $m+n\leq N$,
can be represented in the index notation by\[
(\phi\wedge\psi)^{i_{1}...i_{m+n}}=\frac{1}{m!n!}\sum_{(j_{s},k_{s})}E_{j_{1}...j_{m}k_{1}...k_{n}}^{i_{1}...i_{m+n}}\phi^{j_{1}...j_{m}}\psi^{k_{1}...k_{n}}.\]
The combinatorial factor $m!n!$ is needed to compensate for the $m!$
equal terms arising from the summation over $\left(j_{1},...,j_{m}\right)$
due to the fact that $\phi^{j_{1}...j_{m}}$ is totally antisymmetric,
and similarly for the $n!$ equal terms arising from the summation
over $\left(k_{1},...,k_{m}\right)$.

It is useful to have a general formula for the array $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$.
One way to define it is\[
E_{j_{1}...j_{n}}^{i_{1}...i_{n}}=\begin{cases}
\left(-1\right)^{\left|\sigma\right|} & \text{ if }\left(i_{1},...,i_{n}\right)\text{ is a permutation }\sigma\text{ of }\left(j_{1},...,j_{n}\right);\\
0 & \text{ otherwise}.\end{cases}\]
We will now show how one can express $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
through the Levi-Civita symbol $\varepsilon$.

The \textbf{Levi-Civita symbol}\index{Levi-Civita symbol} is defined
as a totally antisymmetric array with $N$ indices, whose values are
$0$ or $\pm1$ according to the formula \[
\varepsilon^{i_{1}...i_{N}}=\begin{cases}
\left(-1\right)^{\left|\sigma\right|} & \text{ if }\left(i_{1},...,i_{N}\right)\text{ is a permutation }\sigma\text{ of }\left(1,...,N\right);\\
0 & \text{otherwise.}\end{cases}\]
Comparing this with the definition of $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$,
we notice that\[
\varepsilon^{i_{1}...i_{N}}=E_{1...N}^{i_{1}...i_{N}}.\]
Depending on convenience, we may write $\varepsilon$ with upper or
lower indices since $\varepsilon$ is just an array of numbers in
this calculation. 

In order to express $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$ through $\varepsilon^{i_{1}...i_{N}}$,
we obviously need to use at least two copies of $\varepsilon$ ---
one with upper and one with lower indices. Let us therefore consider
the expression\begin{equation}
\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}}\equiv\sum_{k_{1},...,k_{N-n}}\varepsilon^{i_{1}...i_{n}k_{1}...k_{N-n}}\varepsilon_{j_{1}...j_{n}k_{1}...k_{N-n}},\label{eq:E tilda def}\end{equation}
where the summation is performed \emph{only} over the $N-n$ indices
$\left\{ k_{s}\right\} $. This expression has $2n$ free indices
$i_{1}$, ..., $i_{n}$ and $j_{1}$, ..., $j_{n}$, and is totally
antisymmetric in these free indices (since $\varepsilon$ is totally
antisymmetric in all indices). 


\paragraph{Statement:}

The exterior product operator $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
is expressed through the Levi-Civita symbol as\begin{equation}
E_{j_{1}...j_{n}}^{i_{1}...i_{n}}=\frac{1}{\left(N-n\right)!}\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}},\label{eq:E def}\end{equation}
where $\tilde{E}$ is defined by Eq.~(\ref{eq:E tilda def}).


\subparagraph{Proof:}

Let us compare the values of $E_{j_{1}...j_{n}}^{i_{1}...i_{n}}$
and $\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}}$, where the indices
$\left\{ i_{s}\right\} $ and $\left\{ j_{s}\right\} $ have some
fixed values. There are two cases: either the set $\left(i_{1},...,i_{n}\right)$
is a permutation of the set $\left(j_{1},...,j_{n}\right)$; in that
case we may denote this permutation by $\sigma$; or $\left(i_{1},...,i_{n}\right)$
is not a permutation of $\left(j_{1},...,j_{n}\right)$. 

Considering the case when a permutation $\sigma$ brings $\left(j_{1},...,j_{n}\right)$
into $\left(i_{1},...,i_{n}\right)$, we find that the symbols $\varepsilon$
in Eq.~(\ref{eq:E tilda def}) will be nonzero only if the indices
$\left(k_{1},...,k_{N-n}\right)$ are a permutation of the complement
of the set $\left(i_{1},...,i_{n}\right)$. There are $\left(N-n\right)!$
such permutations, each contributing the same value to the sum in
Eq.~(\ref{eq:E tilda def}). Hence, we may write%
\footnote{In the equation below, I have put the warning {}``no sums'' for
clarity: A summation over all repeated indices is often \emph{implicitly}
assumed in the index notation.%
} the sum as \[
\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}}=\left(N-n\right)!\,\varepsilon^{i_{1}...i_{n}k_{1}...k_{N-n}}\varepsilon_{j_{1}...j_{n}k_{1}...k_{N-n}}\text{ (no sums!)},\]
where the indices $\left\{ k_{s}\right\} $ are chosen such that the
values of $\varepsilon$ are nonzero. Since \[
\sigma\left(j_{1},...,j_{n}\right)=\left(i_{1},...,i_{n}\right),\]
we may permute the first $n$ indices in $\varepsilon_{j_{1}...j_{n}k_{1}...k_{N-n}}$\begin{align*}
\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}} & =\left(N-n\right)!(-1)^{\left|\sigma\right|}\varepsilon^{i_{1}...i_{n}k_{1}...k_{N-n}}\varepsilon_{i_{1}...i_{n}k_{1}...k_{N-n}}\text{ (no sums!)}\\
 & =\left(N-n\right)!(-1)^{\left|\sigma\right|}.\end{align*}
(In the last line, we replaced the squared $\varepsilon$ by $1$.)
Thus, the required formula for $\tilde{E}$ is valid in the first
case.

In the case when $\sigma$ does not exist, we note that\[
\tilde{E}_{j_{1}...j_{n}}^{i_{1}...i_{n}}=0,\]
because in that case one of the $\varepsilon$'s in Eq.~(\ref{eq:E tilda def})
will have at least some indices equal and thus will be zero. Therefore
$\tilde{E}$ and $E$ are equal to zero for the same sets of indices.\hfill{}$\blacksquare$

Note that the formula for the top exterior power ($n=N$) is simple
and involves no summations and no combinatorial factors:\[
E_{j_{1}...j_{N}}^{i_{1}...i_{N}}=\varepsilon^{i_{1}...i_{N}}\varepsilon_{j_{1}...j_{N}}.\]



\paragraph{Exercise:}

The operator $\hat{E}:V\otimes V\otimes V\rightarrow\wedge^{3}V$
can be considered within the subspace $\wedge^{3}V\subset V\otimes V\otimes V$,
which yields an operator $\hat{E}:\wedge^{3}V\rightarrow\wedge^{3}V$.
Show that in this subspace,\[
\hat{E}=3!\,\hat{1}_{\wedge^{3}V}.\]
Generalize to $\wedge^{n}V$ in the natural way. 

\emph{Hint}: Act with $\hat{E}$ on $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$.


\paragraph{Remark:}

As a rule, a summation of the Levi-Civita symbol $\varepsilon$ with
any antisymmetric tensor (e.g.~another $\varepsilon$) gives rise
to a combinatorial factor $n!$ when the summation goes over $n$
indices.


\subsection{{*} Exterior algebra (Grassmann algebra)}

The formalism of exterior algebra is used e.g.~in physical theories
of quantum fermionic fields and supersymmetry.


\paragraph{Definition:}

An \textbf{algebra}\index{algebra} is a vector space with a distributive
multiplication. In other words, ${\cal A}$ is an algebra if it is
a vector space over a field $\mathbb{K}$ and if for any $a,b\in{\cal A}$
their product $ab\in{\cal A}$ is defined, such that $a\left(b+c\right)=ab+ac$
and $\left(a+b\right)c=ac+bc$ and $\lambda\left(ab\right)=\left(\lambda a\right)b=a\left(\lambda b\right)$
for $\lambda\in\mathbb{K}$. An algebra is called \textbf{commutative}
if $ab=ba$ for all $a,b$. 

The properties of the multiplication in an algebra can be summarized
by saying that for any fixed element $a\in{\cal A}$, the transformations
$x\mapsto ax$ and $x\mapsto xa$ are linear maps of the algebra into
itself.


\paragraph{Examples of algebras:}
\begin{enumerate}
\item All $N\times N$ matrices with coefficients from $\mathbb{K}$ are
a $N^{2}$-dimen\-sion\-al algebra. The multiplication is defined
by the usual matrix multiplication formula. This algebra is not commutative
because not all matrices commute. 
\item The field $\mathbb{K}$ is a one-dimen\-sion\-al algebra over itself.
(Not a very exciting example.) This algebra is commutative.
\end{enumerate}

\paragraph{Statement:}

If $\omega\in\wedge^{m}V$ then we can define the map $L_{\omega}:\wedge^{k}V\rightarrow\wedge^{k+m}V$
by the formula\[
L_{\omega}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right)\equiv\omega\wedge\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}.\]
For elements of $\wedge^{0}V\equiv\mathbb{K}$, we define $L_{\lambda}\omega\equiv\lambda\omega$
and also $L_{\omega}\lambda\equiv\lambda\omega$ for any $\omega\in\wedge^{k}V$,
$\lambda\in\mathbb{K}$. Then the map $L_{\omega}$ is linear for
any $\omega\in\wedge^{m}V$, $0\leq m\leq N$.


\subparagraph{Proof: }

Left as exercise.\hfill{}$\blacksquare$


\paragraph{Definition: }

The \textbf{exterior algebra}\index{exterior algebra} (also called
the \textbf{Grassmann algebra}\index{Grassmann algebra}) based on
a vector space $V$ is the space $\wedge V$ defined as the direct
sum, \[
\wedge V\equiv\mathbb{K}\oplus V\oplus\wedge^{2}V\oplus...\oplus\wedge^{N}V,\]
with the multiplication defined by the map $L$, which is extended
to the whole of $\wedge V$ by linearity.

For example, if $\mathbf{u},\mathbf{v}\in V$ then $1+\mathbf{u}\in\wedge V$,\[
A\equiv3-\mathbf{v}+\mathbf{u}-2\mathbf{v}\wedge\mathbf{u}\in\wedge V,\]
and\[
L_{1+\mathbf{u}}A=\left(1+\mathbf{u}\right)\wedge\left(3-\mathbf{v}+\mathbf{u}-2\mathbf{v}\wedge\mathbf{u}\right)=3-\mathbf{v}+4\mathbf{u}-\mathbf{v}\wedge\mathbf{u}.\]
Note that we still write the symbol $\wedge$ to denote multiplication
in $\wedge V$ although now it is not necessarily anticommutative;
for instance, $1\wedge x=x\wedge1=x$ for any $x$ in this algebra.


\paragraph{Remark: }

The summation in expressions such as $1+\mathbf{u}$ above is \emph{formal}
in the usual sense: $1+\mathbf{u}$ is not a new vector or a new tensor,
but an element of a \emph{new} \emph{space}. The exterior algebra
is thus the space of formal linear combinations of numbers, vectors,
2-vectors, etc., all the way to $N$-vectors.\hfill{}$\blacksquare$

Since $\wedge V$ is a direct sum of $\wedge^{0}V$, $\wedge^{1}V$,
etc., the elements of $\wedge V$ are sums of scalars, vectors, bivectors,
etc., i.e.~of objects having a definite {}``grade'' --- scalars
being {}``of grade'' 0, vectors of grade 1, and generally $k$-vectors
being of grade $k$. It is easy to see that $k$-vectors and $l$-vectors
either commute or anticommute, for instance\begin{align*}
\left(\mathbf{a}\wedge\mathbf{b}\right)\wedge\mathbf{c} & =\mathbf{c}\wedge\left(\mathbf{a}\wedge\mathbf{b}\right),\\
\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right)\wedge1 & =1\wedge\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right),\\
\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right)\wedge\mathbf{d} & =-\mathbf{d}\wedge\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right).\end{align*}
The general law of commutation and anticommutation can be written
as \[
\omega_{k}\wedge\omega_{l}=\left(-1\right)^{kl}\omega_{l}\wedge\omega_{k},\]
where $\omega_{k}\in\wedge^{k}V$ and $\omega_{l}\in\wedge^{l}V$.
However, it is important to note that sums of elements having different
grades, such as $1+\mathbf{a}$, are elements of $\wedge V$ that
do \emph{not} have a definite grade, because they do not belong to
any single subspace $\wedge^{k}V\subset\wedge V$. Elements that do
not have a definite grade can of course still be multiplied within
$\wedge V$, but they \emph{neither} commute \emph{nor} anticommute,
for example:\begin{align*}
\left(1+\mathbf{a}\right)\wedge\left(1+\mathbf{b}\right) & =1+\mathbf{a}+\mathbf{b}+\mathbf{a}\wedge\mathbf{b},\\
\left(1+\mathbf{b}\right)\wedge\left(1+\mathbf{a}\right) & =1+\mathbf{a}+\mathbf{b}-\mathbf{a}\wedge\mathbf{b}.\end{align*}
So $\wedge V$ is a \emph{noncommutative} (but associative) algebra.
Nevertheless, the fact that elements of $\wedge V$ having a pure
grade either commute or anticommute is important, so this kind of
algebra is called a \textbf{graded algebra}\index{graded algebra}.


\paragraph{Exercise 1:}

Compute the dimension of the algebra $\wedge V$ as a vector space,
if $\dim V=N$.


\subparagraph{Answer: }

$\dim\left(\wedge V\right)=\sum_{i=0}^{N}{N \choose i}=2^{N}$.


\paragraph{Exercise 2:}

Suppose that an element $x\in\wedge V$ is a sum of elements of \emph{pure
even} grade, e.g.~$x=1+\mathbf{a}\wedge\mathbf{b}$. Show that $x$
commutes with any other element of $\wedge V$. 


\paragraph{Exercise 3:}

Compute $\exp\left(\mathbf{a}\right)$ and $\exp\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)$
by writing the Taylor series using the multiplication within the algebra
$\wedge V$.

\emph{Hint}: Simplify the expression $\exp(x)=1+x+\frac{1}{2}x\wedge x+...$
for the particular $x$ as given.


\subparagraph{Answer: }

$\exp\left(\mathbf{a}\right)=1+\mathbf{a}$; \[
\exp\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)=1+\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}+\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}.\]



\chapter{Basic applications \label{sec:Determinants-and-all}}

In this section we will consider finite-dimen\-sion\-al vector spaces
$V$ without a scalar product. We will denote by $N$ the dimen\-sion\-ality
of $V$, i.e.~$N=\dim V$.


\section{Determinants through permutations: the hard way}

In textbooks on linear algebra, the following definition is found.


\paragraph{Definition D0:}

The \textbf{determinant}\index{determinant} of a square $N\times N$
matrix $A_{ij}$ is the number\begin{equation}
\det(A_{ij})\equiv\sum_{\sigma}\left(-1\right)^{\left|\sigma\right|}A_{\sigma(1)1}...A_{\sigma(N)N},\label{eq:detA bad}\end{equation}
where the summation goes over all permutations $\sigma:\left(1,...,N\right)\mapsto\left(k_{1},...,k_{N}\right)$
of the ordered set $\left(1,...,N\right)$, and the parity function
$\left|\sigma\right|$ is equal to $0$ if the permutation $\sigma$
is even and to $1$ if it is odd. (An \textbf{even} permutation is
reducible to an even number of elementary exchanges of adjacent numbers;
for instance, the permutation $\left(1,3,2\right)$ is odd while $\left(3,1,2\right)$
is even. See Appendix~\ref{sub:Properties-of-permutations} if you
need to refresh your knowledge of permutations.)

Let us illustrate Eq.~(\ref{eq:detA bad}) with $2\times2$ and $3\times3$
matrices. Since there are only two permutations of the set $\left(1,2\right)$,
namely\[
\left(1,2\right)\mapsto\left(1,2\right)\;\text{and}\;\left(1,2\right)\mapsto\left(2,1\right),\]
 and six permutations of the set $\left(1,2,3\right)$, namely\[
\left(1,2,3\right),\left(1,3,2\right),\left(2,1,3\right),\left(2,3,1\right),\left(3,1,2\right),\left(3,2,1\right),\]
we can write explicit formulas for these determinants: \begin{align*}
\det\left(\begin{array}{cc}
a_{11} & a_{12}\\
a_{21} & a_{22}\end{array}\right) & =a_{11}a_{22}-a_{21}a_{12};\\
\det\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\end{array}\right) & =a_{11}a_{22}a_{33}-a_{11}a_{32}a_{23}-a_{21}a_{12}a_{33}\\
 & +a_{21}a_{32}a_{13}+a_{31}a_{12}a_{23}-a_{31}a_{22}a_{13}.\end{align*}
We note that the determinant of an $N\times N$ matrix has $N!$ terms
in this type of formula, because there are $N!$ different permutations
of the set $\left(1,...,N\right)$. A numerical evaluation of the
determinant of a large matrix using this formula is prohibitively
long.

Using the definition D0 and the properties of permutations, one can
directly prove various properties of determinants, for instance their
antisymmetry with respect to exchanges of matrix rows or columns,
and finally the relevance of $\det(A_{ij})$ to linear equations $\sum_{j}A_{ij}x_{j}=a_{i}$,
as well as the important property \[
\det\left(AB\right)=\left(\det A\right)\left(\det B\right).\]
Deriving these properties in this way will require long calculations.


\paragraph{Question:}

To me, definition D0 seems unmotivated and strange. It is not clear
why this complicated combination of matrix elements has any useful
properties at all. Even if so then maybe there exists another complicated
combination of matrix elements that is even more useful? 


\subparagraph{Answer: }

Yes, indeed: There exist other complicated combinations that are also
useful. All this is best understood if we do not begin by studying
the definition~(\ref{eq:detA bad}). Instead, we will proceed in
a coordinate-free manner and build upon geometric intuition. 

We will interpret the matrix $A_{jk}$ not as a {}``table of numbers''
but as a coordinate representation of a linear transformation $\hat{A}$
in some vector space $V$ with respect to some given basis. We will
define an action of the operator $\hat{A}$ on the exterior product
space $\wedge^{N}V$ in a certain way. That action will allow us to
understand the properties and the uses of determinants without long
calculations. 

Another useful interpretation of the matrix $A_{jk}$ is to regard
it as a table of components of a \emph{set} of $N$ vectors $\mathbf{v}_{1},...,\mathbf{v}_{N}$
in a given basis $\left\{ \mathbf{e}_{j}\right\} $, that is,\[
\mathbf{v}_{j}=\sum_{k=1}^{N}A_{jk}\mathbf{e}_{k},\quad j=1,...,N.\]
The determinant of the matrix $A_{jk}$ is then naturally related
to the exterior product $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$.
This construction is especially useful for solving linear equations.

These constructions and related results occupy the present chapter.
Most of the derivations are straightforward and short but require
some facility with calculations involving the exterior product. I
recommend that you repeat all the calculations yourself.


\paragraph{Exercise:}

If $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ are $N$
vectors and $\sigma$ is a permutation of the ordered set $(1,...,N)$,
show that\[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\left(-1\right)^{\left|\sigma\right|}\mathbf{v}_{\sigma(1)}\wedge...\wedge\mathbf{v}_{\sigma(N)}.\]



\section{The space $\wedge^{N}V$ and oriented volume\label{sub:The-highest-exterior}}

Of all the exterior power spaces $\wedge^{k}V$ ($k=1,2,...$), the
last nontrivial space is $\wedge^{N}V$ where $N\equiv\dim V$, for
it is impossible to have a nonzero exterior product of $\left(N+1\right)$
or more vectors. In other words, the spaces $\wedge^{N+1}V$, $\wedge^{N+2}V$
etc.~are all zero-dimen\-sion\-al and thus do not contain any nonzero
tensors.

By Theorem~2 from Sec.~\ref{sub:Properties-of-the-ext-powers},
the space $\wedge^{N}V$ is one-dimen\-sion\-al. Therefore, all
nonzero tensors from $\wedge^{N}V$ are proportional to each other.
Hence, any nonzero tensor $\omega_{1}\in\wedge^{N}V$ can serve as
a basis tensor in $\wedge^{N}V$. 

The space $\wedge^{N}V$ is extremely useful because it is so simple
and yet is directly related to determinants and volumes; this idea
will be developed now. We begin by considering an example. 


\paragraph{Example:}

In a two-dimen\-sion\-al space $V$, let us choose a basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
and consider two arbitrary vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$.
These vectors can be decomposed in the basis as\[
\mathbf{v}_{1}=a_{11}\mathbf{e}_{1}+a_{12}\mathbf{e}_{2},\;\mathbf{v}_{2}=a_{21}\mathbf{e}_{1}+a_{22}\mathbf{e}_{2},\]
where $\left\{ a_{ij}\right\} $ are some coefficients. Let us now
compute the 2-vector $\mathbf{v}_{1}\wedge\mathbf{v}_{2}\in\wedge^{2}V$:\begin{align*}
\mathbf{v}_{1}\wedge\mathbf{v}_{2} & =\left(a_{11}\mathbf{e}_{1}+a_{12}\mathbf{e}_{2}\right)\wedge\left(a_{21}\mathbf{e}_{1}+a_{22}\mathbf{e}_{2}\right)\\
 & =a_{11}a_{22}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+a_{12}a_{21}\mathbf{e}_{2}\wedge\mathbf{e}_{1}\\
 & =\left(a_{11}a_{22}-a_{12}a_{21}\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}.\end{align*}
We may observe that firstly, the 2-vector $\mathbf{v}_{1}\wedge\mathbf{v}_{2}$
is proportional to $\mathbf{e}_{1}\wedge\mathbf{e}_{2}$, and secondly,
the proportionality coefficient is equal to the determinant of the
matrix $a_{ij}$.

If we compute the exterior product $\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\mathbf{v}_{3}$
of three vectors in a 3-dimen\-sion\-al space, we will similarly
notice that the result is proportional to $\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$,
and the proportionality coefficient is again equal to the determinant
of the matrix $a_{ij}$.\hfill{}$\blacksquare$

Let us return to considering a general, $N$-dimen\-sion\-al space
$V$. The examples just given motivate us to study $N$-vectors (i.e.~tensors
from the top exterior power space $\wedge^{N}V$) and their relationships
of the form $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\lambda\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$.

By Lemma~1 from Sec.~\ref{sub:Properties-of-the-ext-powers}, every
nonzero element of $\wedge^{N}V$ must be of the form $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$,
where the set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is linearly independent and thus a basis in $V$. Conversely, each
basis $\left\{ \mathbf{v}_{j}\right\} $ in $V$ yields a nonzero
tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V$.
This tensor has a useful geometric interpretation because, in some
sense, it represents the \emph{volume} of the $N$-dimen\-sion\-al
parallelepiped spanned by the vectors $\left\{ \mathbf{v}_{j}\right\} $.
I will now explain this idea.

A rigorous definition of {}``volume'' in $N$-dimen\-sion\-al
space requires much background work in geometry and measure theory;
I am not prepared to explain all this here. However, we can motivate
the interpretation of the tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
as the volume by appealing to the visual notion of the volume of a
parallelepiped.%
\footnote{In this text, we do not actually need a mathematically rigorous notion
of {}``volume'' --- it is used purely to develop geometrical intuition.
All formulations and proofs in this text are completely algebraic.%
}


\paragraph{Statement: }

Consider an $N$-dimen\-sion\-al space $V$ where the ($N$-dimen\-sion\-al)
volume of solid bodies can be computed through some reasonable%
\footnote{Here by {}``reasonable'' I mean that the volume has the usual properties:
for instance, the volume of a body consisting of two parts equals
the sum of the volumes of the parts. An example of such procedure
would be the $N$-fold integral $\int dx_{1}...\int dx_{N}$, where
$x_{j}$ are coordinates of points in an orthonormal basis.%
} geometric procedure. Then:

\textbf{(1)} Two parallelepipeds spanned by the sets of vectors $\left\{ \mathbf{u}_{1},\mathbf{u}_{2},...,\mathbf{u}_{N}\right\} $
and $\left\{ \mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
have equal volumes if and only if the corresponding tensors from $\wedge^{N}V$
are equal up to a sign,\begin{equation}
\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}=\pm\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\label{eq:v1 eq v2}\end{equation}
Here {}``two bodies have equal volumes'' means (in the style of
ancient Greek geometry) that the bodies can be cut into suitable pieces,
such that the volumes are found to be identical by inspection after
a rearrangement of the pieces.

\textbf{(2)} If $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}=\lambda\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$,
where $\lambda\in\mathbb{K}$ is a number, $\lambda\neq0$, then the
volumes of the two parallelepipeds differ by a factor of $\left|\lambda\right|$.

To prove these statements, we will use the following lemma.


\paragraph{Lemma:}

In an $N$-dimen\-sion\-al space:

\textbf{(1)} The volume of a parallelepiped spanned by $\left\{ \lambda\mathbf{v}_{1},\mathbf{v}_{2}...,\mathbf{v}_{N}\right\} $
is $\lambda$ times greater than that of $\left\{ \mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $.

\textbf{(2)} Two parallelepipeds spanned by the sets of vectors $\left\{ \mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
and $\left\{ \mathbf{v}_{1}+\lambda\mathbf{v}_{2},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
have equal volume.


\subparagraph{Proof of Lemma:}

\textbf{(1)} This is clear from geometric considerations: When a parallelepiped
is stretched $\lambda$ times in one direction, its volume must increase
by the factor $\lambda$. \textbf{(2)} First, we ignore the vectors
$\mathbf{v}_{3}$,...,$\mathbf{v}_{N}$ and consider the two-dimen\-sion\-al
plane containing $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$. In Fig.~\ref{cap:v1v2-vol}
one can see that the parallelograms spanned by $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $
and by $\left\{ \mathbf{v}_{1}+\lambda\mathbf{v}_{2},\mathbf{v}_{2}\right\} $
can be cut into appropriate pieces to demonstrate the equality of
their area. Now, we consider the $N$-dimen\-sion\-al volume (a
three-dimen\-sion\-al example is shown in Fig.~\ref{fig:Parallelepipeds}).
Similarly to the two-dimen\-sion\-al case, we find that the $N$-dimen\-sion\-al
parallelepipeds spanned by $\{\mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\}$
and by $\{\mathbf{v}_{1}+\lambda\mathbf{v}_{2},\mathbf{v}_{2},...,\mathbf{v}_{N}\}$
have equal $N$-dimen\-sion\-al volume. \hfill{}$\blacksquare$

%
\begin{figure}
\begin{centering}
\psfrag{0}{$0$}\psfrag{A}{$A$} \psfrag{B}{$B$} \psfrag{D}{$D$} \psfrag{C}{$C$} \psfrag{E}{$E$} \psfrag{v1}{$\mathbf{v}_1$} \psfrag{v2}{$\mathbf{v}_2$} \psfrag{v1lambda}{$\mathbf{v}_1+\lambda\mathbf{v}_2$}\includegraphics[width=2.2in]{v1v2-vol}
\par\end{centering}

\caption{The area of the parallelogram $0ACB$ spanned by $\left\{ \mathbf{v}_{1},\mathbf{v}_{2}\right\} $
is equal to the area of the parallelogram $0ADE$ spanned by $\left\{ \mathbf{v}_{1}+\lambda\mathbf{v}_{2},\mathbf{v}_{2}\right\} $.\label{cap:v1v2-vol}}

\end{figure}


%
\begin{figure}
\begin{centering}
\psfrag{apluslb}{$\mathbf{a}$} \psfrag{b}{$\mathbf{b}$} \psfrag{c}{$\mathbf{c}$} \psfrag{a}{$\mathbf{a}+\lambda\mathbf{b}$}\includegraphics[width=2.2in]{3dparallelepiped_1}
\par\end{centering}

\caption{Parallelepipeds spanned by $\left\{ \mathbf{a},\mathbf{b},\mathbf{c}\right\} $
and by $\left\{ \mathbf{a}+\lambda\mathbf{b},\mathbf{b},\mathbf{c}\right\} $
have equal volume since the volumes of the shaded regions are equal.\label{fig:Parallelepipeds}}

\end{figure}



\paragraph{Proof of Statement:}

\textbf{(1)} To prove that the volumes are equal when the tensors
are equal, we will transform the first basis $\left\{ \mathbf{u}_{1},\mathbf{u}_{2},...,\mathbf{u}_{N}\right\} $
into the second basis $\left\{ \mathbf{v}_{1},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
by a sequence of transformations of two types: either we will multiply
one of the vectors $\mathbf{v}_{j}$ by a number $\lambda$, or add
$\lambda\mathbf{v}_{j}$ to another vector $\mathbf{v}_{k}$. We first
need to demonstrate that any basis can be transformed into any other
basis by this procedure. To demonstrate this, recall the proof of
Theorem~\ref{sub:All-bases-have} in which vectors from the first
basis were systematically replaced by vectors of the second one. Each
replacement can be implemented by a certain sequence of replacements
of the kind $\mathbf{u}_{j}\rightarrow\lambda\mathbf{u}_{j}$ or $\mathbf{u}_{j}\rightarrow\mathbf{u}_{j}+\lambda\mathbf{u}_{i}$.
Note that the tensor $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
changes in the same way as the volume under these replacements: The
tensor $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$ gets multiplied
by $\lambda$ after $\mathbf{u}_{j}\rightarrow\lambda\mathbf{u}_{j}$
and remains unchanged after $\mathbf{u}_{j}\rightarrow\mathbf{u}_{j}+\lambda\mathbf{u}_{i}$.
At the end of the replacement procedure, the basis $\left\{ \mathbf{u}_{j}\right\} $
becomes the basis $\left\{ \mathbf{v}_{j}\right\} $ (up to the ordering
of vectors), while the volume is multiplied by the same factor as
the tensor $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$. The ordering
of the vectors in the set $\left\{ \mathbf{v}_{j}\right\} $ can be
changed with possibly a sign change in the tensor $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$.
Therefore the statement~(\ref{eq:v1 eq v2}) is equivalent to the
assumption that the volumes of $\left\{ \mathbf{v}_{j}\right\} $
and $\left\{ \mathbf{u}_{j}\right\} $ are equal. \textbf{(2)} A transformation
$\mathbf{v}_{1}\rightarrow\lambda\mathbf{v}_{1}$ increases the volume
by a factor of $\left|\lambda\right|$ and makes the two tensors equal,
therefore the volumes differ by a factor of $\left|\lambda\right|$.\hfill{}$\blacksquare$

Let us now consider the interpretation of the above Statement. Suppose
we somehow know that the parallelepiped spanned by the vectors $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{N}\right\} $
has unit volume. Given this knowledge, the volume of any other parallelepiped
spanned by some other vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is easy to compute. Indeed, we can compute the tensors $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
and $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$. Since the space
$\wedge^{N}V$ is one-dimen\-sion\-al, these two tensors must be
proportional to each other. By expanding the vectors $\mathbf{v}_{j}$
in the basis $\left\{ \mathbf{u}_{j}\right\} $, it is straightforward
to compute the coefficient $\lambda$ in the relationship\[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\lambda\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}.\]
The Statement now says that the volume of a parallelepiped spanned
by the vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is equal to $\left|\lambda\right|$. 


\paragraph{Exercise 1:}

The volume of a parallelepiped spanned by vectors $\mathbf{a}$, $\mathbf{b}$,
$\mathbf{c}$ is equal to 19. Compute the volume of a parallelepiped
spanned by the vectors $2\mathbf{a}-\mathbf{b}$, $\mathbf{c}+3\mathbf{a}$,
$\mathbf{b}$.


\subparagraph{Solution:}

Since $\left(2\mathbf{a}-\mathbf{b}\right)\wedge\left(\mathbf{c}+3\mathbf{a}\right)\wedge\mathbf{b}=2\mathbf{a}\wedge\mathbf{c}\wedge\mathbf{b}=-2\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$,
the volume is 38 (twice 19; we ignored the minus sign since we are
interested only in the absolute value of the volume).\hfill{}$\blacksquare$

It is also clear that the tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
allows us only to \emph{compare} the volumes of two parallelepipeds;
we cannot determine the volume of one parallelepiped taken by itself.
A tensor such as $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$ can
be used to determine the numerical value of the volume only if we
can compare it with another given tensor, $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$,
which (\emph{by} \emph{assumption}) corresponds to a parallelepiped
of unit volume. A choice of a {}``reference'' tensor $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$
can be made, for instance, if we are given a basis in $V$; without
this choice, there is no natural map from $\wedge^{N}V$ to numbers
($\mathbb{K}$). In other words, the space $\wedge^{N}V$ is \emph{not
canonically isomorphic} to the space $\mathbb{K}$ (even though both
$\wedge^{N}V$ and $\mathbb{K}$ are one-dimen\-sion\-al vector
spaces). Indeed, a canonical isomorphism between $\wedge^{N}V$ and
$\mathbb{K}$ would imply that the element $1\in\mathbb{K}$ has a
corresponding canonically defined tensor $\omega_{1}\in\wedge^{N}V$.
In that case there would be some basis $\left\{ \mathbf{e}_{j}\right\} $
in $V$ such that $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\omega_{1}$,
which indicates that the basis $\left\{ \mathbf{e}_{j}\right\} $
is in some sense {}``preferred'' or {}``natural.'' However, there
is no {}``natural'' or {}``preferred'' choice of basis in a vector
space $V$, unless some additional structure is given (such as a scalar
product). Hence, no canonical choice of $\omega_{1}\in\wedge^{N}V$
is possible. 


\paragraph{Remark:}

When a scalar product is defined in $V$, there is a preferred choice
of basis, namely an orthonormal basis $\left\{ \mathbf{e}_{j}\right\} $
such that $\left\langle \mathbf{e}_{i},\mathbf{e}_{j}\right\rangle =\delta_{ij}$
(see Sec.~\ref{sub:Vector-spaces-with-scalar-product}). Since the
length of each of the basis vectors is 1, and the basis vectors are
orthogonal to each other, the volume of the parallelepiped spanned
by $\left\{ \mathbf{e}_{j}\right\} $ is equal to $1$. (This is the
usual Euclidean definition of volume.) Then the tensor $\omega_{1}\equiv\bigwedge_{j=1}^{N}\mathbf{e}_{j}$
can be computed using this basis and used as a unit volume tensor.
We will see below (Sec.~\ref{proof-of-pythagoras}) that this tensor
does not depend on the choice of the orthonormal basis, up to the
orientation. The isomorphism between $\wedge^{N}V$ and $\mathbb{K}$
is then fixed (up to the sign), thanks to the scalar product.\hfill{}$\blacksquare$

In the absence of a scalar product, one can say that the \emph{value
of the volume} in an abstract vector space is not a number but a tensor
from the space $\wedge^{N}V$. It is sufficient to regard the element
$\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V$ as the
\emph{definition} of the {}``$\wedge^{N}V$-valued volume'' of the
parallelepiped spanned by $\left\{ \mathbf{v}_{j}\right\} $. The
space $\wedge^{N}V$ is one-dimen\-sion\-al, so the {}``tensor-valued
volume'' has the familiar properties we expect (it is {}``almost
a number''). One thing is unusual about this {}``volume'': It is
\textbf{oriented}, that is, it changes sign if we exchange the order
of two vectors from the set $\left\{ \mathbf{v}_{j}\right\} $. 


\paragraph{Exercise 2:}

Suppose $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{N}\right\} $ is a
basis in $V$. Let $\mathbf{x}$ be some vector whose components in
the basis $\left\{ \mathbf{u}_{j}\right\} $ are given, $\mathbf{x}=\sum_{j}\alpha_{j}\mathbf{u}_{j}$.
Compute the (tensor-valued) volume of the parallelepiped spanned by
$\left\{ \mathbf{u}_{1}+\mathbf{x},...,\mathbf{u}_{N}+\mathbf{x}\right\} $.
\emph{}\\
\emph{Hints:} Use the linearity property, $\left(\mathbf{a}+\mathbf{x}\right)\wedge...=\mathbf{a}\wedge...+\mathbf{x}\wedge...$,
and notice the simplification \[
\mathbf{x}\wedge(\mathbf{a}+\mathbf{x})\wedge(\mathbf{b}+\mathbf{x})\wedge...\wedge(\mathbf{c}+\mathbf{x})=\mathbf{x}\wedge\mathbf{a}\wedge\mathbf{b}\wedge...\wedge\mathbf{c}.\]



\subparagraph{Answer:}

The volume tensor is \[
\left(\mathbf{u}_{1}+\mathbf{x}\right)\wedge...\wedge\left(\mathbf{u}_{N}+\mathbf{x}\right)=\left(1+\alpha_{1}+...+\alpha_{N}\right)\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}.\]



\paragraph{Remark: tensor-valued area\index{tensor-valued area}. }

The idea that the volume is {}``oriented'' can be understood perhaps
more intuitively by considering the area of the parallelogram spanned
by two vectors $\mathbf{a}$, $\mathbf{b}$ in the familiar 3-dimen\-sion\-al
space. It is customary to draw the vector product $\mathbf{a}\times\mathbf{b}$
as the representation of this area, since the length $\left|\mathbf{a}\times\mathbf{b}\right|$
is equal to the area, and the direction of $\mathbf{a}\times\mathbf{b}$
is normal to the area. Thus, the vector $\mathbf{a}\times\mathbf{b}$
can be understood as the {}``oriented area'' of the parallelogram.
However, note that the direction of the vector $\mathbf{a}\times\mathbf{b}$
depends not only on the angular orientation of the parallelogram in
space, but also on the order of the vectors $\mathbf{a}$, $\mathbf{b}$.
The 2-vector $\mathbf{a}\wedge\mathbf{b}$ is the natural analogue
of the vector product $\mathbf{a}\times\mathbf{b}$ in higher-dimen\-sion\-al
spaces. Hence, it is algebraically natural to regard the tensor $\mathbf{a}\wedge\mathbf{b}\in\wedge^{2}V$
as the {}``tensor-valued'' representation of the area of the parallelogram
spanned by $\left\{ \mathbf{a},\mathbf{b}\right\} $. 

Consider now a parallelogram spanned by $\mathbf{a},\mathbf{b}$ in
a \emph{two}-dimen\-sion\-al plane. We can still represent the oriented
area of this parallelogram by the vector product $\mathbf{a}\times\mathbf{b}$,
where we imagine that the plane is embedded in a three-dimen\-sion\-al
space. The area of the parallelogram does not have a nontrivial angular
orientation any more since the vector product $\mathbf{a}\times\mathbf{b}$
is always orthogonal to the plane; the only feature left from the
orientation is the positive or negative sign of $\mathbf{a}\times\mathbf{b}$
relative to an arbitrarily chosen vector $\mathbf{n}$ normal to the
plane. Hence, we may say that the sign of the oriented volume of a
parallelepiped is the only remnant of the angular orientation of the
parallelepiped in space when the dimension of the parallelepiped is
equal to the dimension of space. (See Sec.~\ref{sub:Motivation-for-exterior}
for more explanations about the geometrical interpretation of volume
in terms of exterior product.)\hfill{}$\blacksquare$




\section{Determinants of operators\label{sub:The-determinant-def}}

Let $\hat{A}\in\textrm{End }V$ be a linear operator. Consider its
action on tensors from the space $\wedge^{N}V$ defined in the following
way, $\mathbf{v}_{1}\wedge...\wedge...\mathbf{v}_{N}\mapsto\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}$.
I denote this operation by $\wedge^{N}\hat{A}^{N}$, so \[
\wedge^{N}\hat{A}^{N}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\right)\equiv(\hat{A}\mathbf{v}_{1})\wedge...\wedge(\hat{A}\mathbf{v}_{N}).\]
The notation $\wedge^{N}\hat{A}^{N}$ underscores the fact that there
are $N$ copies of $\hat{A}$ acting simultaneously.

We have just defined $\wedge^{N}\hat{A}^{N}$ on single-term products
$\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$; the action of $\wedge^{N}\hat{A}^{N}$
on linear combinations of such products is obtained by requiring linearity. 

Let us verify that $\wedge^{N}\hat{A}^{N}$ is a linear map; it is
sufficient to check that it is compatible with the exterior product
axioms:\begin{align*}
\hat{A}(\mathbf{v}+\lambda\mathbf{u})\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N} & =\hat{A}\mathbf{v}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N}\\
 & +\lambda\hat{A}\mathbf{u}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N}\;;\\
\hat{A}\mathbf{v}_{1}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N} & =-\hat{A}\mathbf{v}_{2}\wedge\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}\:.\end{align*}
Therefore, $\wedge^{N}\hat{A}^{N}$ is now defined as a linear operator
$\wedge^{N}V\rightarrow\wedge^{N}V$.

By Theorem~2 in Sec.~\ref{sub:Properties-of-the-ext-powers}, the
space $\wedge^{N}V$ is one-dimen\-sion\-al. So $\wedge^{N}\hat{A}^{N}$,
being a linear operator in a one-dimen\-sion\-al space, must act
simply as multiplication by a number. (\emph{Every} linear operator
in a one-dimen\-sion\-al space must act as multiplication by a number!)
Thus we can write\[
\wedge^{N}\hat{A}^{N}=\alpha\hat{1}_{\wedge^{N}V},\]
where $\alpha\in\mathbb{K}$ is a number which is somehow associated
with the operator $\hat{A}$. What is the significance of this number
$\alpha$? This number is actually equal to the \emph{determinant}
of the operator $\hat{A}$ as given by Definition~D0. But let us
pretend that we do not know anything about determinants; it is very
convenient to use this construction to \emph{define} the determinant
and to derive its properties.


\paragraph{Definition D1:}

The \textbf{determinant}\index{determinant} $\det\hat{A}$ of an
operator $\hat{A}\in\textrm{End }V$ is the number by which any nonzero
tensor $\omega\in\wedge^{N}V$ is multiplied when $\wedge^{N}\hat{A}^{N}$
acts on it:\begin{equation}
(\wedge^{N}\hat{A}^{N})\omega=(\det\hat{A})\omega.\label{eq:det def}\end{equation}
In other words, $\wedge^{N}A^{N}=(\det\hat{A})\hat{1}_{\wedge^{N}V}$.

We can immediately put this definition to use; here are the first
results.


\paragraph{Statement 1:}

The determinant of a product is the product of determinants: $\det(\hat{A}\hat{B})=(\det\hat{A})(\det\hat{B})$. 


\subparagraph{Proof:}

Act with $\wedge^{N}\hat{A}^{N}$ and then with $\wedge^{N}\hat{B}^{N}$
on a nonzero tensor $\omega\in\wedge^{N}V$. Since these operators
act as multiplication by a number, the result is the multiplication
by the product of these numbers. We thus have\[
(\wedge^{N}\hat{A}^{N})(\wedge^{N}\hat{B}^{N})\omega=(\wedge^{N}\hat{A}^{N})(\det\hat{B})\omega=(\det\hat{A})(\det\hat{B})\omega.\]
On the other hand, for $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
we have\begin{align*}
(\wedge^{N}\hat{A}^{N})(\wedge^{N}\hat{B}^{N})\omega & =(\wedge^{N}\hat{A}^{N})\hat{B}\mathbf{v}_{1}\wedge...\wedge\hat{B}\mathbf{v}_{N}\\
 & =\hat{A}\hat{B}\mathbf{v}_{1}\wedge...\wedge\hat{A}\hat{B}\mathbf{v}_{N}=\wedge^{N}(\hat{A}\hat{B})^{N}\omega\\
 & =(\det(\hat{A}\hat{B}))\omega.\end{align*}
Therefore, $\det(\hat{A}\hat{B})=(\det\hat{A})(\det\hat{B})$.\hfill{}$\blacksquare$


\paragraph{Exercise 1:}

Prove that $\det(\lambda\hat{A})=\lambda^{N}\det\hat{A}$ for any
$\lambda\in\mathbb{K}$ and $\hat{A}\in\textrm{End }V$.

Now let us clarify the relation between the determinant and the volume.
We will prove that the determinant of a transformation $\hat{A}$
is the coefficient by which the volume of parallelepipeds will grow
when we act with $\hat{A}$ on the vector space. After proving this,
I will \emph{derive} the relation~(\ref{eq:detA bad}) for the determinant
through the matrix coefficients of $\hat{A}$ in some basis; it will
follow that the formula~(\ref{eq:detA bad}) gives the same results
in any basis. 


\paragraph{Statement 2:}

When a parallelepiped spanned by the vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is transformed by a linear operator $\hat{A}$, so that $\mathbf{v}_{j}\mapsto\hat{A}\mathbf{v}_{j}$,
the volume of the parallelepiped grows by the factor $|\det\hat{A}\,|$.


\subparagraph{Proof: }

Suppose the volume of the parallelepiped spanned by the vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is $v$. The transformed parallelepiped is spanned by vectors $\{\hat{A}\mathbf{v}_{1},...,\hat{A}\mathbf{v}_{N}\}$.
According to the definition of the determinant, $\det\hat{A}$ is
a number such that\[
\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}=(\det\hat{A})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]
By Statement~\ref{sub:The-highest-exterior}, the volume of the transformed
parallelepiped is $|\det\hat{A}\,|$ times the volume of the original
parallelepiped.\hfill{}$\blacksquare$

If we consider the oriented (i.e.~tensor-valued) volume, we find
that it grows by the factor $\det\hat{A}$ (without the absolute value).
Therefore we could define the determinant also in the following way:


\paragraph{Definition D2:}

The determinant $\det\hat{A}$ of a linear transformation $\hat{A}$
is the number by which the \emph{oriented} volume of any parallelepiped
grows after the transformation. (One is then obliged to prove that
this number does not depend on the choice of the initial parallelepiped!
We just proved this in Statement~1 using an algebraic definition
D1 of the determinant.) 

With this definition of the determinant, the property \[
\det(\hat{A}\hat{B})=(\det\hat{A})(\det\hat{B})\]
 is easy to understand: The composition of the transformations $\hat{A}$
and $\hat{B}$ multiplies the volume by the product of the individual
volume growth factors $\det\hat{A}$ and $\det\hat{B}$.

Finally, here is a derivation of the formula~(\ref{eq:detA bad})
from Definition~D1.


\paragraph{Statement 3:}

If $\left\{ \mathbf{e}_{j}\right\} $ is any basis in $V$, $\left\{ \mathbf{e}_{j}^{*}\right\} $
is the dual basis, and a linear operator $\hat{A}$ is represented
by a tensor, \begin{equation}
\hat{A}=\sum_{j,k=1}^{N}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*},\label{eq:A op as tensor}\end{equation}
 then the determinant of $\hat{A}$ is given by the formula~(\ref{eq:detA bad}).


\subparagraph{Proof: }

The operator $\hat{A}$ defined by Eq.~(\ref{eq:A op as tensor})
acts on the basis vectors $\left\{ \mathbf{e}_{j}\right\} $ as follows,\[
\hat{A}\mathbf{e}_{k}=\sum_{j=1}^{N}A_{jk}\mathbf{e}_{j}.\]
 A straightforward calculation is all that is needed to obtain the
formula for the determinant. I first consider the case $N=2$ as an
illustration:\begin{align*}
\wedge^{2}\hat{A}^{2}\left(\mathbf{e}_{1}\wedge\mathbf{e}_{2}\right) & =\hat{A}\mathbf{e}_{1}\wedge\hat{A}\mathbf{e}_{2}\\
 & =\left(A_{11}\mathbf{e}_{1}+A_{21}\mathbf{e}_{2}\right)\wedge\left(A_{12}\mathbf{e}_{1}+A_{22}\mathbf{e}_{2}\right)\\
 & =A_{11}A_{22}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+A_{21}A_{12}\mathbf{e}_{2}\wedge\mathbf{e}_{1}\\
 & =\left(A_{11}A_{22}-A_{12}A_{21}\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}.\end{align*}
Hence $\det\hat{A}=A_{11}A_{22}-A_{12}A_{21}$, in agreement with
the usual formula.

Now I consider the general case. The action of $\wedge^{N}\hat{A}^{N}$
on the basis element $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\in\wedge^{N}V$
is\begin{align}
\wedge^{N}\hat{A}^{N}\left(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\right) & =\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{N}\nonumber \\
=\left(\sum_{j_{1}=1}^{N}A_{j_{1}1}\mathbf{e}_{j_{1}}\right) & \wedge...\wedge\left(\sum_{j_{N}=1}^{N}A_{j_{N}N}\mathbf{e}_{j_{N}}\right)\nonumber \\
=\sum_{j_{1}=1}^{N}...\sum_{j_{N}=1}^{N} & A_{j_{1}1}\mathbf{e}_{j_{1}}\wedge...\wedge A_{j_{N}N}\mathbf{e}_{j_{N}}\nonumber \\
=\sum_{j_{1}=1}^{N}...\sum_{j_{N}=1}^{N} & (A_{j_{1}1}...A_{j_{N}N})\mathbf{e}_{j_{1}}\wedge...\wedge\mathbf{e}_{j_{N}}.\label{eq:last permutation}\end{align}
In the last sum, the only nonzero terms are those in which the indices
$j_{1}$, ..., $j_{N}$ do not repeat; in other words, $\left(j_{1},...,j_{N}\right)$
is a \emph{permutation} of the set (1, ..., $N$). Let us therefore
denote this permutation by $\sigma$ and write $\sigma(1)\equiv j_{1}$,
..., $\sigma(N)\equiv j_{N}$. Using the antisymmetry of the exterior
product and the definition of the parity $\left|\sigma\right|$ of
the permutation $\sigma$, we can express\[
\mathbf{e}_{j_{1}}\wedge...\wedge\mathbf{e}_{j_{N}}=\mathbf{e}_{\sigma(1)}\wedge...\wedge\mathbf{e}_{\sigma(N)}=\left(-1\right)^{\left|\sigma\right|}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]
Now we can rewrite the last line in Eq.~(\ref{eq:last permutation})
in terms of sums over all permutations $\sigma$ instead of sums over
all $\left\{ j_{1},...,j_{N}\right\} $: \begin{align*}
\wedge^{N}\hat{A}^{N}\left(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\right)= & \sum_{\sigma}A_{\sigma(1)1}...A_{\sigma(N)N}\mathbf{e}_{\sigma(1)}\wedge...\wedge\mathbf{e}_{\sigma(N)}\\
=\sum_{\sigma}A_{\sigma(1)1}...A_{\sigma(N)N} & \left(-1\right)^{\left|\sigma\right|}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\end{align*}
Thus we have reproduced the formula~(\ref{eq:detA bad}).\hfill{}$\blacksquare$

We have seen three equivalent definitions of the determinant, each
with its own advantages: first, a direct but complicated definition~(\ref{eq:detA bad})
in terms of matrix coefficients; second, an elegant but abstract definition~(\ref{eq:det def})
that depends on the construction of the exterior product; third, an
intuitive and visual definition in terms of the volume which, however,
is based on the geometric notion of {}``volume of an $N$-dimen\-sion\-al
domain'' rather than on purely algebraic constructions. All three
definitions are equivalent when applied to linear operators in finite-dimen\-sion\-al
spaces.


\subsection{Examples: computing  determinants}


\paragraph{Question:}

We have been working with operators more or less in the same way as
with matrices, like in Eq.~(\ref{eq:A op as tensor}). What is the
advantage of the coord\-in\-ate-free approach if we are again computing
with the elements of matrices?


\subparagraph{Answer:}

In some cases, there is no other way except to represent an operator
in some basis through a matrix such as $A_{ij}$. However, in many
cases an interesting operator can be represented \emph{geometrically},
i.e.~without choosing a basis. It is often useful to express an operator
in a basis-free manner because this yields some nontrivial information
that would otherwise be obscured by an unnecessary (or wrong) choice
of basis. It is useful to be able to employ both the basis-free and
the component-based techniques. Here are some examples where we compute
determinants of operators defined without a basis.


\paragraph{Example 1:}

Operators of the form $\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}$
are useful in geometry because they can represent reflections or projections
with respect to an axis or a plane if $\mathbf{a}$ and $\mathbf{b}^{*}$
are chosen appropriately. For instance, if $\mathbf{b}^{*}\neq0$,
we can define a \textbf{hyperplane}\index{hyperplane} $H_{\mathbf{b}^{*}}\subset V$
as the subspace annihilated by the covector $\mathbf{b}^{*}$, i.e.~the
subspace consisting of vectors $\mathbf{v}\in V$ such that $\mathbf{b}^{*}\left(\mathbf{v}\right)=0$.
If a vector $\mathbf{a}\in V$ is such that $\mathbf{b}^{*}\left(\mathbf{a}\right)\neq0$,
i.e.~$\mathbf{a}\not\in H_{\mathbf{b}^{*}}$, then \[
\hat{P}\equiv\hat{1}_{V}-\frac{1}{\mathbf{b}^{*}\left(\mathbf{a}\right)}\mathbf{a}\otimes\mathbf{b}^{*}\]
is a projector\index{projector} onto $H_{\mathbf{b}^{*}}$, while
the operator\[
\hat{R}\equiv\hat{1}_{V}-\frac{2}{\mathbf{b}^{*}\left(\mathbf{a}\right)}\mathbf{a}\otimes\mathbf{b}^{*}\]
describes a \textbf{mirror} \textbf{reflection}\index{mirror reflection}
with respect to the hyperplane $H_{\mathbf{b}^{*}}$, in the sense
that $\mathbf{v}+\hat{R}\mathbf{v}\in H_{\mathbf{b}^{*}}$ for any
$\mathbf{v}\in V$.\hfill{}$\blacksquare$

The following statement shows how to calculate determinants of such
operators. For instance, with the above definitions we would find
$\det\hat{P}=0$ and $\det\hat{R}=-1$ by a direct application of
Eq.~(\ref{eq:det lambda ab}).


\paragraph{Statement: }

Let $\mathbf{a}\in V$ and $\mathbf{b}^{*}\in V^{*}$. Then\begin{equation}
\det\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)=1+\mathbf{b}^{*}\left(\mathbf{a}\right).\label{eq:det lambda ab}\end{equation}



\subparagraph{Proof:}

If $\mathbf{b}^{*}=0$, the formula is trivial, so we assume that
$\mathbf{b}^{*}\neq0$. Then we need to consider two cases: $\mathbf{b}^{*}(\mathbf{a})\neq0$
or $\mathbf{b}^{*}(\mathbf{a})=0$; however, the final formula~(\ref{eq:det lambda ab})
is the same in both cases. 

Case 1. By Statement~\ref{sub:Dual-vector-space}, if $\mathbf{b}^{*}\left(\mathbf{a}\right)\neq0$
there exists a basis $\left\{ \mathbf{a},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
such that $\mathbf{b}^{*}\left(\mathbf{v}_{i}\right)=0$ for $2\leq i\leq N$,
where $N=\dim V$. Then we compute the determinant by applying the
operator $\wedge^{N}\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)^{N}$
to the tensor $\mathbf{a}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$:
since\begin{align*}
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{a} & =\left(1+\mathbf{b}^{*}\left(\mathbf{a}\right)\right)\mathbf{a},\\
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{v}_{i} & =\mathbf{v}_{i},\quad i=2,...,N,\end{align*}
we get\begin{align*}
\wedge^{N}\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)^{N}\mathbf{a}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}\\
=\left(1+\mathbf{b}^{*}\left(\mathbf{a}\right)\right)\mathbf{a}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}.\end{align*}
Therefore $\det\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)=1+\mathbf{b}^{*}\left(\mathbf{a}\right)$,
as required.

Case 2. If $\mathbf{b}^{*}\left(\mathbf{a}\right)=0$, we will show
that $\det\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)=1$.
We cannot choose the basis $\left\{ \mathbf{a},\mathbf{v}_{2},...,\mathbf{v}_{N}\right\} $
as in case 1, so we need to choose another basis. There exists some
vector $\mathbf{w}\in V$ such that $\mathbf{b}^{*}\left(\mathbf{w}\right)\neq0$
because by assumption $\mathbf{b}^{*}\neq0$. It is clear that $\left\{ \mathbf{w},\mathbf{a}\right\} $
is a linearly independent set: otherwise we would have $\mathbf{b}^{*}(\mathbf{w})=0$.
Therefore, we can complete this set to a basis $\left\{ \mathbf{w},\mathbf{a},\mathbf{v}_{3},...,\mathbf{v}_{N}\right\} $.
Further, the vectors $\mathbf{v}_{3},...,\mathbf{v}_{N}$ can be chosen
such that $\mathbf{b}^{*}\left(\mathbf{v}_{i}\right)=0$ for $3\leq i\leq N$.
Now we compute the determinant by acting with the operator $\wedge^{N}\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)^{N}$
on the tensor $\mathbf{a}\wedge\mathbf{w}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}$:
since\begin{align*}
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{a} & =\mathbf{a},\\
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{w} & =\mathbf{w}+\mathbf{b}^{*}\left(\mathbf{w}\right)\mathbf{a},\\
\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)\mathbf{v}_{i} & =\mathbf{v}_{i},\quad i=3,...,N,\end{align*}
we get\begin{align*}
\wedge^{N}\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)^{N}\mathbf{a}\wedge\mathbf{w}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}\\
=\mathbf{a}\wedge\left(\mathbf{w}+\mathbf{b}^{*}\left(\mathbf{w}\right)\mathbf{a}\right)\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}\\
=\mathbf{a}\wedge\mathbf{w}\wedge\mathbf{v}_{3}\wedge...\wedge\mathbf{v}_{N}.\end{align*}
Therefore $\det\left(\hat{1}_{V}+\mathbf{a}\otimes\mathbf{b}^{*}\right)=1$.\hfill{}$\blacksquare$


\paragraph{Exercise 1: }

In a similar way, prove the following statement: If $\mathbf{a}_{i}\in V$
and $\mathbf{b}_{i}^{*}\in V^{*}$ for $1\leq i\leq n<N$ are such
that $\mathbf{b}_{i}^{*}\left(\mathbf{a}_{j}\right)=0$ for all $i>j$,
then\[
\det\,\bigg(\hat{1}_{V}+\sum_{i=1}^{n}\mathbf{a}_{i}\otimes\mathbf{b}_{i}^{*}\bigg)\,=\prod_{i=1}^{n}\left(1+\mathbf{b}_{i}^{*}\left(\mathbf{a}_{i}\right)\right).\]



\paragraph{Exercise 2: }

Consider the three-dimen\-sion\-al space of polynomials $p(x)$
in the variable $x$ of degree at most 2 with real coefficients. The
operators $\hat{A}$ and $\hat{B}$ are defined by \begin{align*}
(\hat{A}p)(x) & \equiv p(x)+x\frac{dp(x)}{dx},\\
(\hat{B}p)(x) & \equiv x^{2}p(1)+2p(x).\end{align*}
Check that these operators are linear. Compute the determinants of
$\hat{A}$ and $\hat{B}$.


\subparagraph{Solution: }

The operators are linear because they are expressed as formulas containing
$p(x)$ linearly. Let us use the underbar to distinguish the polynomials
$\underbar{1}$, $\underbar{x}$ from numbers such as 1. A convenient
basis tensor of the 3rd exterior power is $\underbar{1}\wedge\underbar{x}\wedge\underbar{x}^{2}$,
so we perform the calculation, \begin{align*}
(\det\hat{A})(\underbar{1}\wedge\underbar{x}\wedge\underbar{x}^{2}) & =(\hat{A}\underbar{1})\wedge(\hat{A}\underbar{x})\wedge(\hat{A}\underbar{x}^{2})\\
=\underbar{1}\wedge(2\underbar{x})\wedge(3\underbar{x}^{2}) & =6(\underbar{1}\wedge\underbar{x}\wedge\underbar{x}^{2}),\end{align*}
and find that $\det\hat{A}=6$. Similarly we find $\det\hat{B}=12$.\hfill{}$\blacksquare$


\paragraph{Exercise 3:}

Suppose the space $V$ is decomposed into a direct sum of $U$ and
$W$, and an operator $\hat{A}$ is such that $U$ and $W$ are invariant
subspaces ($\hat{A}\mathbf{x}\in U$ for all $\mathbf{x}\in U$, and
the same for $W$). Denote by $\hat{A}_{U}$ the restriction of the
operator $\hat{A}$ to the subspace $U$. Show that\[
\det\hat{A}=(\det\hat{A}_{U})(\det\hat{A}_{W}).\]


\emph{Hint}: Choose a basis in $V$ as the union of a basis in $U$
and a basis in $W$. In this basis, the operator $\hat{A}$ is represented
by a \textbf{block-diagonal\index{block-diagonal matrix}} matrix.


\section{Determinants of square tables\label{sub:Determinants-of-square}}

Note that the determinant formula~(\ref{eq:detA bad}) applies to
\emph{any} square matrix, without referring to any transformations
in any vector spaces. Sometimes it is useful to compute the determinants
of matrices that do not represent linear transformations. Such matrices
are really just \emph{tables of numbers}. The properties of determinants
of course remain the same whether or not the matrix represents a linear
transformation in the context of the problem we are solving. The geometric
construction of the determinant through the space $\wedge^{N}V$ is
useful because it helps us understand heuristically where the properties
of the determinant come from. 

Given just a square table of numbers, it is often useful to \emph{introduce}
a linear transformation corresponding to the matrix in some (conveniently
chosen) basis; this often helps solve problems. An example frequently
used in linear algebra is a matrix consisting of the components of
some vectors in a basis. Suppose $\left\{ \mathbf{e}_{j}\,|\, j=1,...,N\right\} $
is a basis and $\left\{ \mathbf{v}_{j}\,|\, j=1,...,N\right\} $ are
some vectors. Since each of the $\mathbf{v}_{j}$ can be decomposed
through the basis $\left\{ \mathbf{e}_{j}\right\} $, say \[
\mathbf{v}_{i}=\sum_{j=1}^{N}v_{ij}\mathbf{e}_{j},\quad i=1,...,N,\]
we may consider the coefficients $v_{ij}$ as a square matrix. This
matrix, at first glance, does not represent a linear transformation;
it's just a square-shaped table of the coefficients $v_{ij}$. However,
let us \emph{define} a linear operator $\hat{A}$ by the condition
that $\hat{A}\mathbf{e}_{i}=\mathbf{v}_{i}$ for all $i=1,...,N$.
This condition defines $\hat{A}\mathbf{x}$ for any vector $\mathbf{x}$
if we assume the linearity of $\hat{A}$ (see Exercise~2 in Sec.~\ref{sub:Examples-of-linear-maps}).
The operator $\hat{A}$ has the following matrix representation with
respect to the basis $\left\{ \mathbf{e}_{i}\right\} $ and the dual
basis $\left\{ \mathbf{e}_{i}^{*}\right\} $:\[
\hat{A}=\sum_{i=1}^{N}\mathbf{v}_{i}\otimes\mathbf{e}_{i}^{*}=\sum_{i=1}^{N}\sum_{j=1}^{N}v_{ij}\mathbf{e}_{j}\otimes\mathbf{e}_{i}^{*}.\]
So the matrix $v_{ji}$ (the transpose of $v_{ij}$) is the matrix
representing the transformation $\hat{A}$. Let us consider the determinant
of this transformation:\[
(\det\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{N}=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]
The determinant of the matrix $v_{ji}$ is thus equal to the determinant
of the transformation $\hat{A}$. Hence, the computation of the determinant
of the matrix $v_{ji}$ is equivalent to the computation of the tensor
$\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V$ and its
comparison with the basis tensor $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$.
We have thus proved the following statement.


\paragraph{Statement 1: }

The determinant\index{determinant} of the matrix $v_{ji}$ made up
by the components of the vectors $\left\{ \mathbf{v}_{j}\right\} $
in a basis $\left\{ \mathbf{e}_{j}\right\} $ ($j=1,...,N$) is the
number $C$ defined as the coefficient in the tensor equality\[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=C\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]



\paragraph{Corollary:}

The determinant of a matrix does not change when a multiple of one
row is added to another row. The determinant is linear as a function
of each row. The determinant changes sign when two rows are exchanged.


\subparagraph{Proof:}

We consider the matrix $v_{ij}$ as the table of coefficients of vectors
$\left\{ \mathbf{v}_{j}\right\} $ in a basis $\left\{ \mathbf{e}_{j}\right\} $,
as explained above. Since\[
(\det v_{ji})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N},\]
we need only to examine the properties of the tensor $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
under various replacements. When a multiple of row $k$ is added to
another row $j$, we replace $\mathbf{v}_{j}\mapsto\mathbf{v}_{j}+\lambda\mathbf{v}_{k}$
for fixed $j,k$; then the tensor $\omega$ does not change,\[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}=\mathbf{v}_{1}\wedge...\wedge\left(\mathbf{v}_{j}+\lambda\mathbf{v}_{k}\right)\wedge...\wedge\mathbf{v}_{N},\]
 hence the determinant of $v_{ij}$ does not change. To show that
the determinant is linear as a function of each row, we consider the
replacement $\mathbf{v}_{j}\mapsto\mathbf{u}+\lambda\mathbf{v}$ for
fixed $j$; the tensor $\omega$ is then equal to the sum of the tensors
$\mathbf{v}_{1}\wedge...\wedge\mathbf{u}\wedge...\wedge\mathbf{v}_{N}$
and $\lambda\mathbf{v}_{1}\wedge...\wedge\mathbf{v}\wedge...\wedge\mathbf{v}_{N}$.
Finally, exchanging the rows $k$ and $l$ in the matrix $v_{ij}$
corresponds to exchanging the vectors $\mathbf{v}_{k}$ and $\mathbf{v}_{l}$,
and then the tensor $\omega$ changes sign.\hfill{}$\blacksquare$

It is an important property that matrix transposition leaves the determinant
unchanged.


\paragraph{Statement 2:}

The determinant of the transposed operator is unchanged: \[
\det\hat{A}^{T}=\det\hat{A}.\]



\subparagraph{Proof:}

I give two proofs, one based on Definition~D0 and the properties
of permutations, another entirely coordinate-free --- based on Definition~D1
of the determinant and definition~\ref{par:Definition:transpose}
of the transposed operator.

\emph{First proof}: According to Definition~D0, the determinant of
the transposed matrix $A_{ji}$ is given by the formula \begin{equation}
\det(A_{ji})\equiv\sum_{\sigma}\left(-1\right)^{\left|\sigma\right|}A_{1,\sigma(1)}...A_{N,\sigma(N)},\label{eq:det transpose 0}\end{equation}
so the only difference between $\det(A_{ij})$ and $\det(A_{ji})$
is the order of indices in the products of matrix elements, namely
$A_{\sigma(i),i}$ instead of $A_{i,\sigma(i)}$. We can show that
the sum in Eq.~(\ref{eq:det transpose 0}) consists of exactly the
same terms as the sum in Eq.~(\ref{eq:detA bad}), only the terms
occur in a different order. This is sufficient to prove that $\det(A_{ij})=\det(A_{ji})$.

The sum in Eq.~(\ref{eq:det transpose 0}) consists of terms of the
form $A_{1,\sigma(1)}...A_{N,\sigma(N)}$, where $\sigma$ is some
permutation. We may reorder factors in this term,\[
A_{1,\sigma(1)}...A_{N,\sigma(N)}=A_{\sigma^{\prime}(1),1}...A_{\sigma^{\prime}(N),N},\]
where $\sigma'$ is another permutation such that $A_{i,\sigma(i)}=A_{\sigma^{\prime}(i),i}$
for $i=1,...,N$. This is achieved when $\sigma'$ is the permutation
inverse to $\sigma$, i.e.~we need to use $\sigma^{\prime}\equiv\sigma^{-1}$.
Since there exists precisely one inverse permutation $\sigma^{-1}$
for each permutation $\sigma$, we may transform the sum in Eq.~(\ref{eq:det transpose 0})
into a sum over all inverse permutations $\sigma'$; each permutation
will still enter exactly once into the new sum. Since the parity of
the inverse permutation $\sigma^{-1}$ is the same as the parity of
$\sigma$ (see Statement~3 in Appendix~\ref{sub:Properties-of-permutations}),
the factor $\left(-1\right)^{|\sigma|}$ will remain unchanged. Therefore,
the sum will remain the same.

\emph{Second proof}: The transposed operator is defined as\[
(\hat{A}^{T}\mathbf{f}^{*})(\mathbf{x})=\mathbf{f}^{*}(\hat{A}\mathbf{x}),\quad\forall\mathbf{f}^{*}\in V^{*},\;\mathbf{x}\in V.\]
In order to compare the determinants $\det\hat{A}$ and $\det(\hat{A}^{T})$
according to Definition~D1, we need to compare the numbers $\wedge^{N}\hat{A}^{N}$
and $\wedge^{N}(\hat{A}^{T})^{N}$. 

Let us choose nonzero tensors $\omega\in\wedge^{N}V$ and $\omega^{*}\in\wedge^{N}V^{*}$.
By Lemma~1 in Sec.~\ref{sub:Properties-of-the-ext-powers}, these
tensors have representations of the form $\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
and $\omega^{*}=\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{N}^{*}$.
We have \[
(\det\hat{A})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}.\]
Now we would like to relate this expression with the analogous expression
for $\hat{A}^{T}$. In order to use the definition of $\hat{A}^{T}$,
we need to act on the vectors $\hat{A}\mathbf{v}_{i}$ by the covectors
$\mathbf{f}_{j}^{*}$. Therefore, we act with the $N$-form $\omega^{*}\in\wedge^{N}V^{*}\cong(\wedge^{N}V)^{*}$
on the $N$-vector $\wedge^{N}\hat{A}^{N}\omega\in\wedge^{N}V$ (this
canonical action was defined by Definition~3 in Sec.~\ref{sub:Definition-of-the-exterior}).
Since this action is linear, we find\[
\omega^{*}(\wedge^{N}\hat{A}^{N}\omega)=(\det\hat{A})\omega^{*}(\omega).\]
(Note that $\omega^{*}(\omega)\neq0$ since by assumption the tensors
$\omega$ and $\omega^{*}$ are nonzero.) On the other hand, \begin{align*}
\omega^{*}\big({\wedge^{N}\hat{A}^{N}}\omega\big) & =\sum_{\sigma}(-1)^{\left|\sigma\right|}\mathbf{f}_{1}^{*}(\hat{A}\mathbf{v}_{\sigma(1)})...\mathbf{f}_{N}^{*}(\hat{A}\mathbf{v}_{\sigma(N)})\\
 & =\sum_{\sigma}(-1)^{\left|\sigma\right|}(\hat{A}^{T}\mathbf{f}_{1}^{*})(\mathbf{v}_{\sigma(1)})...(\hat{A}^{T}\mathbf{f}_{N}^{*})(\mathbf{v}_{\sigma(N)})\\
 & =\big({\wedge^{N}(\hat{A}^{T})^{N}}\omega^{*}\big)(\omega)=(\det\hat{A}^{T})\omega^{*}(\omega).\end{align*}
Hence $\det\hat{A}^{T}=\det\hat{A}$.\hfill{}$\blacksquare$


\paragraph{Exercise{*} (Laplace expansion\index{Laplace expansion}):}

As shown in the Corollary above, the determinant of the matrix $v_{ij}$
is a linear function of each of the vectors $\left\{ \mathbf{v}_{i}\right\} $.
Consider $\det(v_{ij})$ as a linear function of the first vector,
$\mathbf{v}_{1}$; this function is a \emph{covector} that we may
temporarily denote by $\mathbf{f}_{1}^{*}$. Show that $\mathbf{f}_{1}^{*}$
can be represented in the dual basis $\left\{ \mathbf{e}_{j}^{*}\right\} $
as\[
\mathbf{f}_{1}^{*}=\sum_{i=1}^{N}\left(-1\right)^{i-1}B_{1i}\mathbf{e}_{i}^{*},\]
where the coefficients $B_{1i}$ are \textbf{minors}\index{minor}
of the matrix $v_{ij}$, that is, determinants of the matrix $v_{ij}$
from which row 1 and column $i$ have been deleted.


\subparagraph{Solution:}

Consider one of the coefficients, for example $B_{11}\equiv\mathbf{f}_{1}^{*}(\mathbf{e}_{1})$.
This coefficient can be determined from the tensor equality\begin{equation}
\mathbf{e}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}=B_{11}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\label{eq:laplace}\end{equation}
We could reduce $B_{11}$ to a determinant of an $(N-1)\times(N-1)$
matrix if we could cancel $\mathbf{e}_{1}$ on both sides of Eq.~(\ref{eq:laplace}).
We would be able to cancel $\mathbf{e}_{1}$ if we had a tensor equality
of the form \[
\mathbf{e}_{1}\wedge\psi=B_{11}\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N},\]
 where the ($N-1$)-vector $\psi$ were proportional to $\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}$.
However, $\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}$ in Eq.~(\ref{eq:laplace})
is not necessarily proportional to $\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}$;
so we need to transform Eq.~(\ref{eq:laplace}) to a suitable form.
In order to do this, we transform the vectors $\mathbf{v}_{i}$ into
vectors that belong to the subspace spanned by $\left\{ \mathbf{e}_{2},...,\mathbf{e}_{N}\right\} $.
We subtract from each $\mathbf{v}_{i}$ ($i=2,...,N$) a suitable
multiple of $\mathbf{e}_{1}$ and define the vectors $\tilde{\mathbf{v}}_{i}$
($i=2,...,N$) such that $\mathbf{e}_{1}^{*}(\tilde{\mathbf{v}}_{i})=0$:\[
\tilde{\mathbf{v}}_{i}\equiv\mathbf{v}_{i}-\mathbf{e}_{1}^{*}(\mathbf{v}_{i})\mathbf{e}_{1},\quad i=2,...,N.\]
Then $\tilde{\mathbf{v}}_{i}\in\text{Span}\left\{ \mathbf{e}_{2},...,\mathbf{e}_{N}\right\} $
and also \[
\mathbf{e}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}=\mathbf{e}_{1}\wedge\tilde{\mathbf{v}}_{2}\wedge...\wedge\tilde{\mathbf{v}}_{N}.\]
 Now Eq.~(\ref{eq:laplace}) is rewritten as\[
\mathbf{e}_{1}\wedge\tilde{\mathbf{v}}_{2}\wedge...\wedge\tilde{\mathbf{v}}_{N}=B_{11}\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}.\]
Since $\tilde{\mathbf{v}}_{i}\in\text{Span}\left\{ \mathbf{e}_{2},...,\mathbf{e}_{N}\right\} $,
the tensors $\tilde{\mathbf{v}}_{2}\wedge...\wedge\tilde{\mathbf{v}}_{N}$
and $\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}$ are proportional
to each other. Now we are allowed to cancel $\mathbf{e}_{1}$ and
obtain \[
\tilde{\mathbf{v}}_{2}\wedge...\wedge\tilde{\mathbf{v}}_{N}=B_{11}\mathbf{e}_{2}\wedge...\wedge\mathbf{e}_{N}.\]
Note that the vectors $\tilde{\mathbf{v}}_{i}$ have the first components
equal to zero. In other words, $B_{11}$ is equal to the determinant
of the matrix $v_{ij}$ from which row 1 (i.e.~the vector $\mathbf{v}_{1}$)
and column 1 (the coefficients at $\mathbf{e}_{1}$) have been deleted.
The coefficients $B_{1j}$ for $j=2,...,N$ are calculated similarly.\hfill{}$\blacksquare$


\subsection{{*} Index notation for $\wedge^{N}V$ and determinants\label{sub:Index-notation-for-determinants}}

Let us see how determinants are written in the index notation.

In order to use the index notation, we need to fix a basis $\left\{ \mathbf{e}_{j}\right\} $
and represent each vector and each tensor by their components in that
basis. Determinants are related to the space $\wedge^{N}V$. Let us
consider a set of vectors $\{\mathbf{v}_{1},...,\mathbf{v}_{N}\}$
and the tensor \[
\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V.\]
Since the space $\wedge^{N}V$ is one-dimen\-sion\-al and its basis
consists of the single tensor $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$,
the index representation of $\psi$ consists, in principle, of the
single number $C$ in a formula such as\[
\psi=C\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]
 However, it is more convenient to use a totally antisymmetric array
of numbers having $N$ indices, $\psi^{i_{1}...i_{N}}$, so that\[
\psi=\frac{1}{N!}\sum_{i_{1},...,i_{N}=1}^{N}\psi^{i_{1}...i_{N}}\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{N}}.\]
Then the coefficient $C$ is $C\equiv\psi^{12...N}$. In the formula
above, the combinatorial factor $N!$ compensates the fact that we
are summing an antisymmetric product of vectors with a totally antisymmetric
array of coefficients. 

To write such arrays more conveniently, one can use Levi-Civita symbol
$\varepsilon^{i_{1}...i_{N}}$ (see Sec.~\ref{sub:Exterior-product-in-index}).\index{Levi-Civita symbol}
It is clear that any other totally antisymmetric array of numbers
with $N$ indices, such as $\psi^{i_{1}...i_{N}}$, is proportional
to $\varepsilon^{i_{1}...i_{N}}$: For indices $\left\{ i_{1},...,i_{N}\right\} $
that correspond to a permutation $\sigma$ we have \[
\psi^{i_{1}...i_{N}}=\psi^{12...N}(-1)^{\left|\sigma\right|},\]
and hence\[
\psi^{i_{1}...i_{N}}=(\psi^{12...N})\varepsilon^{i_{1}...i_{N}}.\]


How to compute the index representation of $\psi$ given the array
$v_{j}^{k}$ of the components of the vectors $\left\{ \mathbf{v}_{j}\right\} $?
We need to represent the tensor \[
\psi\equiv\sum_{\sigma}\left(-1\right)^{\left|\sigma\right|}\mathbf{v}_{\sigma(1)}\otimes\mathbf{v}_{\sigma(2)}\otimes...\otimes\mathbf{v}_{\sigma(N)}.\]
Hence, we can use the Levi-Civita symbol and write\begin{align*}
\psi^{12...N} & =\sum_{\sigma}\left(-1\right)^{\left|\sigma\right|}v_{\sigma(1)}^{1}\otimes v_{\sigma(2)}^{2}\otimes...\otimes v_{\sigma(N)}^{N}\\
 & =\sum_{i_{1},...,i_{N}=1}^{N}\varepsilon^{i_{1}...i_{N}}v_{i_{1}}^{1}...v_{i_{N}}^{N}.\end{align*}
The component $\psi^{12...N}$ is the only number we need to represent
$\psi$ in the basis $\left\{ \mathbf{e}_{j}\right\} $.

The Levi-Civita symbol itself can be seen as the index representation
of the tensor \[
\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\]
 in the basis $\left\{ \mathbf{e}_{j}\right\} $. (The components
of $\omega$ in a different basis will, of course, differ from $\varepsilon^{i_{1}...i_{N}}$
by a constant factor.)

Now let us construct the index representation of the determinant of
an operator $\hat{A}$. The operator is given by its matrix $A_{j}^{i}$
and acts on a vector $\mathbf{v}$ with components $v^{i}$ yielding
a vector $\mathbf{u}\equiv\hat{A}\mathbf{v}$ with components\[
u^{k}=\sum_{i=1}^{N}A_{i}^{k}v^{i}.\]
Hence, the operator $\wedge^{N}\hat{A}^{N}$ acting on $\psi$ yields
an antisymmetric tensor whose component with the indices $k_{1}...k_{N}$
is\begin{align*}
\left[(\wedge^{N}\hat{A}^{N})\psi\right]^{k_{1}...k_{N}} & =\left[\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}\right]^{k_{1}...k_{N}}\\
 & =\sum_{i_{s},j_{s}}\varepsilon^{i_{1}...i_{N}}A_{j_{1}}^{k_{1}}v_{i_{1}}^{j_{1}}...A_{j_{N}}^{k_{N}}v_{i_{N}}^{j_{N}}.\end{align*}
Since the tensor $\wedge^{N}\hat{A}^{N}\psi$ is proportional to $\psi$
with the coefficient $\det\hat{A}$, the same proportionality holds
for the components of these tensors:\begin{align*}
\sum_{i_{s},j_{s}}\varepsilon^{i_{1}...i_{N}}A_{j_{1}}^{k_{1}}v_{i_{1}}^{j_{1}}...A_{j_{N}}^{k_{N}}v_{i_{N}}^{j_{N}} & =(\det\hat{A})\psi^{k_{1}...k_{N}}\\
 & =(\det\hat{A})\sum_{i_{s}}\varepsilon^{i_{1}...i_{N}}v_{i_{1}}^{k_{1}}...v_{i_{N}}^{k_{N}}.\end{align*}
The relation above must hold for arbitrary vectors $\left\{ \mathbf{v}_{j}\right\} $.
This is sufficient to derive a formula for $\det\hat{A}$. Since $\left\{ \mathbf{v}_{j}\right\} $
are arbitrary, we may select $\left\{ \mathbf{v}_{j}\right\} $ as
the basis vectors $\left\{ \mathbf{e}_{j}\right\} $, so that $v_{i}^{k}=\delta_{i}^{k}$.
Substituting this into the equation above, we find\[
\sum_{i_{s},j_{s}}\varepsilon^{i_{1}...i_{N}}A_{i_{1}}^{k_{1}}...A_{i_{N}}^{k_{N}}=(\det\hat{A})\varepsilon^{k_{1}...k_{N}}.\]
We can now solve for $\det\hat{A}$ by multiplying with another Levi-Civita
symbol $\varepsilon_{k_{1}...k_{N}}$, written this time with lower
indices to comply with the summation convention, and summing over
all $k_{s}$. By elementary combinatorics (there are $N!$ possibilities
to choose the indices $k_{1}$, ..., $k_{N}$ such that they are all
different), we have\[
\sum_{k_{1},...,k_{N}}\varepsilon_{k_{1}...k_{N}}\varepsilon^{k_{1}...k_{N}}=N!,\]
and therefore\[
\det(\hat{A})=\frac{1}{N!}\sum_{i_{s},k_{s}}\varepsilon_{k_{1}...k_{N}}\varepsilon^{i_{1}...i_{N}}A_{i_{1}}^{k_{1}}...A_{i_{N}}^{k_{N}}.\]
This formula can be seen as the index representation of \[
\det\hat{A}=\omega^{*}(\wedge^{N}\hat{A}^{N}\omega),\]
where $\omega^{*}\in(\wedge^{N}V)^{*}$ is the tensor dual to $\omega$
and such that $\omega^{*}(\omega)=1$. The components of $\omega^{*}$
are\[
\frac{1}{N!}\varepsilon_{k_{1}...k_{N}}.\]


We have shown how the index notation can express calculations with
determinants and tensors in the space $\wedge^{N}V$. Such calculations
in the index notation are almost always more cumbersome than in the
index-free notation.


\section{Solving linear equations\label{sub:Condition-for-solvability}}

Determinants allow us to {}``determine'' whether a system of linear
equations has solutions. I will now explain this using exterior products.
I will also show how to use exterior products for actually finding
the solutions of linear equations when they exist.

A system of $N$ linear equations for $N$ unknowns $x_{1}$, ...,
$x_{N}$ can be written in the matrix form,\begin{equation}
\sum_{j=1}^{N}A_{ij}x_{j}=b_{i},\quad i=1,...,N.\label{eq:linear system}\end{equation}
Here $A_{ij}$ is a given matrix of coefficients, and the $N$ numbers
$b_{i}$ are also given.

The first step in studying Eq.~(\ref{eq:linear system}) is to interpret
it in a geometric way, so that $A_{ij}$ is not merely a {}``table
of numbers'' but a geometric object. We introduce an $N$-dimen\-sion\-al
vector space $V=\mathbb{R}^{N}$, in which a basis $\left\{ \mathbf{e}_{i}\right\} $
is fixed. There are two options (both will turn out to be useful).
The first option is to interpret $A_{ij}$, $b_{j}$, and $x_{j}$
as the coefficients representing some linear operator $\hat{A}$ and
some vectors $\mathbf{b},\mathbf{x}$ in the basis $\left\{ \mathbf{e}_{j}\right\} $:\[
\hat{A}\equiv\sum_{i,j=1}^{N}A_{ij}\mathbf{e}_{i}\otimes\mathbf{e}_{j}^{*},\quad\mathbf{b}\equiv\sum_{j=1}^{N}b_{j}\mathbf{e}_{j},\quad\mathbf{x}\equiv\sum_{j=1}^{N}x_{j}\mathbf{e}_{j}.\]
Then we reformulate Eq.~(\ref{eq:linear system}) as the vector equation\begin{equation}
\hat{A}\mathbf{x}=\mathbf{b},\label{eq:Ax equals a}\end{equation}
from which we would like to find the unknown vector $\mathbf{x}$. 

The second option is to interpret $A_{ij}$ as the components of a
\emph{set} of $N$ vectors $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
with respect to the basis, \[
\mathbf{a}_{j}\equiv\sum_{i=1}^{N}A_{ij}\mathbf{e}_{i},\quad j=1,...,N,\]
to define $\mathbf{b}$ as before,\[
\mathbf{b}\equiv\sum_{j=1}^{N}b_{j}\mathbf{e}_{j},\]
and to rewrite Eq.~(\ref{eq:linear system}) as an equation expressing
$\mathbf{b}$ as a linear combination of $\left\{ \mathbf{a}_{j}\right\} $
with unknown coefficients $\left\{ x_{j}\right\} $, \begin{equation}
\sum_{j=1}^{N}x_{j}\mathbf{a}_{j}=\mathbf{b}.\label{eq:x a equals b}\end{equation}
In this interpretation, $\left\{ x_{j}\right\} $ is just a set of
$N$ unknown numbers. These numbers could be interpreted the set of
components of the vector $\mathbf{b}$ in the basis $\left\{ \mathbf{a}_{j}\right\} $
if $\left\{ \mathbf{a}_{j}\right\} $ were actually a basis, which
is not necessarily the case.


\subsection{Existence of solutions\label{sub:Existence-of-solutions}}

Let us begin with the first interpretation, Eq.~(\ref{eq:Ax equals a}).
When does Eq.~(\ref{eq:Ax equals a}) have solutions? The solution
certainly exists when the operator $\hat{A}$ is \textbf{invertible},
i.e.~the \textbf{inverse} \textbf{operator}\index{inverse operator}
$\hat{A}^{-1}$ exists such that $\hat{A}\hat{A}^{-1}=\hat{A}^{-1}\hat{A}=\hat{1}_{V}$;
then the solution is found as $\mathbf{x}=\hat{A}^{-1}\mathbf{b}$.
The condition for the existence of $\hat{A}^{-1}$ is that the determinant
of $\hat{A}$ is nonzero. When the determinant of $\hat{A}$ is zero,
the solution may or may not exist, and the solution is more complicated.
I will give a proof of these statements based on the new definition
D1 of the determinant. 


\paragraph{Theorem 1: }

If $\det\hat{A}\neq0$, the equation $\hat{A}\mathbf{x}=\mathbf{b}$
has a unique solution $\mathbf{x}$ for any $\mathbf{b}\in V$. There
exists a linear operator $\hat{A}^{-1}$ such that the solution $\mathbf{x}$
is expressed as $\mathbf{x}=\hat{A}^{-1}\mathbf{b}$.


\subparagraph{Proof:}

Suppose $\left\{ \mathbf{e}_{i}\,|\, i=1,...,N\right\} $ is a basis
in $V$. It follows from $\det\hat{A}\neq0$ that \[
\wedge^{N}\hat{A}^{N}\left(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\right)=(\hat{A}\mathbf{e}_{1})\wedge...\wedge(\hat{A}\mathbf{e}_{N})\neq0.\]
By Theorem~1 of Sec.~\ref{sub:Properties-of-the-ext-powers}, the
set of vectors $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{N}\}$
is linearly independent and therefore is a basis in $V$. Thus there
exists a unique set of coefficients $\left\{ c_{i}\right\} $ such
that \[
\mathbf{b}=\sum_{i=1}^{N}c_{i}(\hat{A}\mathbf{e}_{i}).\]
Then due to linearity of $\hat{A}$ we have \[
\mathbf{b}=\hat{A}\sum_{i=1}^{N}c_{i}\mathbf{e}_{i};\]
in other words, the solution of the equation $\hat{A}\mathbf{x}=\mathbf{b}$
is $\mathbf{x}\equiv\sum_{i=1}^{N}c_{i}\mathbf{e}_{i}$. Since the
coefficients $\left\{ c_{i}\right\} $ are determined uniquely, the
solution $\mathbf{x}$ is unique.

The solution $\mathbf{x}$ can be expressed as a function of $\mathbf{b}$
as follows. Since $\{\hat{A}\mathbf{e}_{i}\}$ is a basis, there exists
the corresponding dual basis, which we may denote by $\left\{ \mathbf{v}_{j}^{*}\right\} $.
Then the coefficients $c_{i}$ can be expressed as $c_{i}=\mathbf{v}_{i}^{*}(\mathbf{b})$,
and the vector $\mathbf{x}$ as\[
\mathbf{x}=\sum_{i=1}^{N}c_{i}\mathbf{e}_{i}=\sum_{i=1}^{N}\mathbf{e}_{i}\mathbf{v}_{i}^{*}(\mathbf{b})=\big(\sum_{i=1}^{N}\mathbf{e}_{i}\otimes\mathbf{v}_{i}^{*}\big)\mathbf{b}\equiv\hat{A}^{-1}\mathbf{b}.\]
This shows explicitly that the operator $\hat{A}^{-1}$ exists and
is linear.\hfill{}$\blacksquare$


\paragraph{Corollary:}

If $\det\hat{A}\neq0$, the equation $\hat{A}\mathbf{v}=0$ has only
the (trivial) solution $\mathbf{v}=0$.


\subparagraph{Proof: }

The zero vector $\mathbf{v}=0$ is a solution of $\hat{A}\mathbf{v}=0$.
By the above theorem the solution of that equation is unique, thus
there are no other solutions.\hfill{}$\blacksquare$


\paragraph{Theorem 2 (existence of eigenvectors): }

If $\det\hat{A}=0$, there exists at least one eigenvector with eigenvalue
0, that is, at least one nonzero vector $\mathbf{v}$ such that $\hat{A}\mathbf{v}=0$.


\subparagraph{Proof:}

Choose a basis $\left\{ \mathbf{e}_{j}\right\} $ and consider the
set $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{N}\}$. This set
must be linearly dependent since \[
\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{N}=(\det\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=0.\]
 Hence, there must exist at least one linear combination $\sum_{i=1}^{N}\lambda_{i}\hat{A}\mathbf{e}_{i}=0$
with $\lambda_{i}$ not all zero. Then the vector $\mathbf{v}\equiv\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}$
is nonzero and satisfies $\hat{A}\mathbf{v}=0$.\hfill{}$\blacksquare$


\paragraph{Remark:}

If $\det\hat{A}=0$, there \emph{may} exist more than one eigenvector
$\mathbf{v}$ such that $\hat{A}\mathbf{v}=0$; more detailed analysis
is needed to fully determine the eigenspace of zero eigenvalue, but
we found that at least one eigenvector $\mathbf{v}$ exists. If $\det\hat{A}=0$
then the equation $\hat{A}\mathbf{x}=\mathbf{b}$ with $\mathbf{b}\neq0$
may still have solutions, although not for every $\mathbf{b}$. Moreover,
when a solution $\mathbf{x}$ exists it will \emph{not} be unique
because  $\mathbf{x}+\lambda\mathbf{v}$ is another solution if $\mathbf{x}$
is one. The full analysis of solvability of the equation $\hat{A}\mathbf{x}=\mathbf{b}$
when $\det\hat{A}=0$ is more complicated (see the end of Sec.~\ref{sub:Kramers-rule}).\hfill{}$\blacksquare$

Once the inverse operator $\hat{A}^{-1}$ is determined, it is easy
to compute solutions of any number of equations $\hat{A}\mathbf{x}=\mathbf{b}_{1}$,
$\hat{A}\mathbf{x}=\mathbf{b}_{2}$, etc., for any number of vectors
$\mathbf{b}_{1}$, $\mathbf{b}_{2}$, etc. However, if we only need
to solve \emph{one} such equation, $\hat{A}\mathbf{x}=\mathbf{b}$,
then computing the full inverse operator is too much work: We have
to determine the entire dual basis $\left\{ \mathbf{v}_{j}^{*}\right\} $
and construct the operator $\hat{A}^{-1}=\sum_{i=1}^{N}\mathbf{e}_{i}\otimes\mathbf{v}_{i}^{*}$.
 An easier method is then provided by Kramer's rule.


\subsection{Kramer's rule and beyond\label{sub:Kramers-rule}}

We will now use the second interpretation, Eq.~(\ref{eq:x a equals b}),
of a linear system. This equation claims that $\mathbf{b}$ is a linear
combination of the $N$ vectors of the set $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $.
Clearly, this is true for any $\mathbf{b}$ if $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
is a basis in $V$; in that case, the solution $\left\{ x_{j}\right\} $
exists and is unique because the dual basis, $\left\{ \mathbf{a}_{j}^{*}\right\} $,
exists and allows us to write the solution as\[
x_{j}=\mathbf{a}_{j}^{*}(\mathbf{b}).\]
 On the other hand, when $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $
is not a basis in $V$ it is not certain that some given vector $\mathbf{b}$
is a linear combination of $\mathbf{a}_{j}$. In that case, the solution
$\left\{ x_{j}\right\} $ may or may not exist, and when it exists
it will not be unique.

We first consider the case where $\left\{ \mathbf{a}_{j}\right\} $
is a basis in $V$. In this case, the solution $\left\{ x_{j}\right\} $
exists, and we would like to determine it more explicitly. We recall
that an explicit computation of the dual basis was shown in Sec.~\ref{sub:Computing-the-dual}.
Motivated by the constructions given in that section, we consider
the tensor\[
\omega\equiv\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}\in\wedge^{N}V\]
and additionally the $N$ tensors $\left\{ \omega_{j}\,|\, j=1,...,N\right\} $,
defined by\begin{equation}
\omega_{j}\equiv\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{j-1}\wedge\mathbf{b}\wedge\mathbf{a}_{j+1}\wedge...\wedge\mathbf{a}_{N}\in\wedge^{N}V.\label{eq:omega j def}\end{equation}
The tensor $\omega_{j}$ is the exterior product of all the vectors
$\mathbf{a}_{1}$ to $\mathbf{a}_{N}$ except that $\mathbf{a}_{j}$
is replaced by $\mathbf{b}$. Since we know that the solution $x_{j}$
exists, we can substitute $\mathbf{b}=\sum_{i=1}^{N}x_{i}\mathbf{a}_{i}$
into Eq.~(\ref{eq:omega j def}) and find\[
\omega_{j}=\mathbf{a}_{1}\wedge...\wedge x_{j}\mathbf{a}_{j}\wedge...\wedge\mathbf{a}_{N}=x_{j}\omega.\]
Since $\left\{ \mathbf{a}_{j}\right\} $ is a basis, the tensor $\omega\in\wedge^{N}V$
is nonzero (Theorem~1 in Sec.~\ref{sub:Properties-of-the-ext-powers}).
Hence $x_{j}$ ($j=1,...,N$) can be computed as the coefficient of
proportionality between $\omega_{j}$ and $\omega$: \[
x_{j}=\frac{\omega_{j}}{\omega}=\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{j-1}\wedge\mathbf{b}\wedge\mathbf{a}_{j+1}\wedge...\wedge\mathbf{a}_{N}}{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{N}}.\]
As before, the {}``division'' of tensors\index{dividing by tensor}
means that the nonzero tensor $\omega$ is to be factored out of the
numerator and canceled with the denominator, leaving a number. 

This formula represents \textbf{Kramer's rule\index{Kramer's rule}},
which yields explicitly the coefficients $x_{j}$ necessary to represent
a vector $\mathbf{b}$ through vectors $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{N}\right\} $.
In its matrix formulation, Kramer's rule says that $x_{j}$ is equal
to the determinant of the modified matrix $A_{ij}$ where the $j$-th
column has been replaced by the column $(b_{1},...,b_{N})$, divided
by the determinant of the unmodified $A_{ij}$. 

It remains to consider the case where $\left\{ \mathbf{a}_{j}\right\} $
is \emph{not} a basis in $V$. We have seen in Statement~\ref{sub:Rank-of-a-set-of-vectors}
that there exists a maximal nonzero exterior product of some linearly
independent subset of $\left\{ \mathbf{a}_{j}\right\} $; this subset
can be found by trying various exterior products of the $\mathbf{a}_{j}$'s.
Let us now denote by $\omega$ this maximal exterior product. Without
loss of generality, we may renumber the $\mathbf{a}_{j}$'s so that
$\omega=\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{r}$, where $r$
is the rank of the set $\left\{ \mathbf{a}_{j}\right\} $. If the
equation $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$ has a solution
then $\mathbf{b}$ is expressible as a linear combination of the $\mathbf{a}_{j}$'s;
thus we must have $\omega\wedge\mathbf{b}=0$. We can check whether
$\omega\wedge\mathbf{b}=0$ since we have already computed $\omega$.
If we find that $\omega\wedge\mathbf{b}\neq0$ we know that the equation
$\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$ has \emph{no} \emph{solutions}. 

If we find that $\omega\wedge\mathbf{b}=0$ then we can conclude that
the vector $\mathbf{b}$ belongs to the subspace $\text{Span}\,\{\mathbf{a}_{1},...,\mathbf{a}_{r}\}$,
and so the equation $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$
\emph{has} solutions, --- in fact infinitely many of them. To determine
all solutions, we will note that the set $\left\{ \mathbf{a}_{1},...,\mathbf{a}_{r}\right\} $
is linearly independent, so $\mathbf{b}$ is uniquely represented
as a linear combination of the vectors $\mathbf{a}_{1},...,\mathbf{a}_{r}$.
In other words, there is a unique solution of the form\[
x_{i}^{(1)}=(x_{1}^{(1)},...,x_{r}^{(1)},0,...,0)\]
that may have nonzero coefficients $x_{1}^{(1)},...,x_{r}^{(1)}$
only up to the component number $r$, after which $x_{i}^{(1)}=0$
($r+1\leq i\leq n$). To obtain the coefficients $x_{i}^{(1)}$, we
use Kramer's rule for the subspace $\text{Span}\,\{\mathbf{a}_{1},...,\mathbf{a}_{r}\}$:\[
x_{i}^{(1)}=\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{j-1}\wedge\mathbf{b}\wedge\mathbf{a}_{j+1}\wedge...\wedge\mathbf{a}_{r}}{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{r}}.\]
We can now obtain the general solution of the equation $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$
by adding to the solution $x_{i}^{(1)}$ an arbitrary solution $x_{i}^{(0)}$
of the homogeneous equation, $\sum_{j=1}^{n}x_{j}^{(0)}\mathbf{a}_{j}=0$.
The solutions of the homogeneous equation build a subspace that can
be determined as an eigenspace of the operator $\hat{A}$ as considered
in the previous subsection. We can also determine the homogeneous
solutions using the method of this section, as follows.

We decompose the vectors $\mathbf{a}_{r+1},...,\mathbf{a}_{n}$ into
linear combinations of $\mathbf{a}_{1}$, ..., $\mathbf{a}_{r}$ again
by using Kramer's rule:\begin{align*}
\mathbf{a}_{k} & =\sum_{j=1}^{r}\alpha_{kj}\mathbf{a}_{j},\quad k=r+1,...,n,\\
\alpha_{kj} & \equiv\frac{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{j-1}\wedge\mathbf{a}_{k}\wedge\mathbf{a}_{j+1}\wedge...\wedge\mathbf{a}_{r}}{\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{r}}.\end{align*}
Having computed the coefficients $\alpha_{kj}$, we determine the
$\left(n-r\right)$-dimen\-sion\-al space of homogeneous solutions.
This space is spanned by the $\left(n-r\right)$ solutions that can
be chosen, for example, as follows:\begin{align*}
x_{i}^{(0)(r+1)} & =(\alpha_{(r+1)1},...,\alpha_{(r+1)r},-1,0,...,0),\\
x_{i}^{(0)(r+2)} & =(\alpha_{(r+2)1},...,\alpha_{(r+2)r},0,-1,...,0),\\
 & ...\\
x_{i}^{(0)(n)} & =(\alpha_{n1},...,\alpha_{nr},0,0,...,-1).\end{align*}
Finally, the solution of the equation $\sum_{j=1}^{n}x_{j}\mathbf{a}_{j}=\mathbf{b}$
can be written as\[
x_{i}=x_{i}^{(1)}+\sum_{k=r+1}^{n}\beta_{k}x_{i}^{(0)(k)},\quad i=1,...,n,\]
where $\left\{ \beta_{k}\,|\, k=r+1,...n\right\} $ are \emph{arbitrary}
coefficients. The formula above explicitly contains $\left(n-r\right)$
arbitrary constants and is called the general solution of $\sum_{i=1}^{n}x_{i}\mathbf{a}_{i}=\mathbf{b}$.
(The \textbf{general solution}\index{general solution} of something
is a formula with arbitrary constants that describes all solutions.) 


\paragraph{Example: }

Consider the linear system\begin{align*}
2x+y & =1\\
2x+2y+z & =4\\
y+z & =3\end{align*}
Let us apply the procedure above to this system. We interpret this
system as the vector equation $x\mathbf{a}+y\mathbf{b}+z\mathbf{c}=\mathbf{p}$
where $\mathbf{a}=\left(2,2,0\right)$, $\mathbf{b}=\left(1,2,1\right)$,
$\mathbf{c}=\left(0,1,1\right)$, and $\mathbf{p}=\left(1,4,3\right)$
are given vectors. Introducing an explicit basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $,
we compute (using elimination) \begin{align*}
\mathbf{a}\wedge\mathbf{b} & =\left(2\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{1}+2\mathbf{e}_{2}+\mathbf{e}_{3}\right)\\
 & =2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{1}+2\mathbf{e}_{2}+\mathbf{e}_{3}\right)\\
 & =2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)=\mathbf{a}\wedge\mathbf{c}.\end{align*}
Therefore $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=0$, and the
maximal nonzero exterior product can be chosen as $\omega\equiv\mathbf{a}\wedge\mathbf{b}$.
Now we check whether the vector $\mathbf{p}$ belongs to the subspace
$\text{Span}\,\left\{ \mathbf{a},\mathbf{b}\right\} $:\begin{align*}
\omega\wedge\mathbf{p} & =2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)\wedge\left(\mathbf{e}_{1}+4\mathbf{e}_{2}+3\mathbf{e}_{3}\right)\\
 & =2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)\wedge3(\mathbf{e}_{2}+\mathbf{e}_{3})=0.\end{align*}
Therefore, $\mathbf{p}$ can be represented as a linear combination
of $\mathbf{a}$ and $\mathbf{b}$. To determine the coefficients,
we use Kramer's rule: $\mathbf{p}=\alpha\mathbf{a}+\beta\mathbf{b}$
where\begin{align*}
\alpha & =\frac{\mathbf{p}\wedge\mathbf{b}}{\mathbf{a}\wedge\mathbf{b}}=\frac{\left(\mathbf{e}_{1}+4\mathbf{e}_{2}+3\mathbf{e}_{3}\right)\wedge\left(\mathbf{e}_{1}+2\mathbf{e}_{2}+\mathbf{e}_{3}\right)}{2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)}\\
 & =\frac{-2\mathbf{e}_{1}\wedge\mathbf{e}_{2}-2\mathbf{e}_{1}\wedge\mathbf{e}_{3}-2\mathbf{e}_{2}\wedge\mathbf{e}_{3}}{2\left(\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}+\mathbf{e}_{2}\wedge\mathbf{e}_{3}\right)}=-1;\\
\beta & =\frac{\mathbf{a}\wedge\mathbf{p}}{\mathbf{a}\wedge\mathbf{b}}=\frac{2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{1}+4\mathbf{e}_{2}+3\mathbf{e}_{3}\right)}{2\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)}\\
 & =\frac{3\mathbf{e}_{1}\wedge\mathbf{e}_{2}+3\mathbf{e}_{1}\wedge\mathbf{e}_{3}+3\mathbf{e}_{2}\wedge\mathbf{e}_{3}}{\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}+\mathbf{e}_{2}\wedge\mathbf{e}_{3}}=3.\end{align*}
Therefore, $\mathbf{p}=-\mathbf{a}+3\mathbf{b}$; thus the inhomogeneous
solution is $\mathbf{x}^{(1)}=\left(-1,3,0\right)$. 

To determine the space of homogeneous solutions, we decompose $\mathbf{c}$
into a linear combination of $\mathbf{a}$ and $\mathbf{b}$ by the
same method; the result is $\mathbf{c}=-\frac{1}{2}\mathbf{a}+\mathbf{b}$.
So the space of homogeneous solutions is spanned by the single solution
\[
x_{i}^{(0)(1)}=\left(-{\textstyle \frac{1}{2}},1,-1\right).\]
Finally, we write the general solution as\[
x_{i}=x_{i}^{(1)}+\beta x_{i}^{(0)(1)}=\left(-1-{\textstyle \frac{1}{2}}\beta,3+\beta,-\beta\right),\]
where $\beta$ is an arbitrary constant.\hfill{}$\blacksquare$


\paragraph{Remark:}

In the calculations of the coefficients according to Kramer's rule
the numerators and the denominators always contain the same tensor,
such as $\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}+\mathbf{e}_{2}\wedge\mathbf{e}_{3}$,
multiplied by a constant factor. We have seen this in the above examples.
This is guaranteed to happen in every case; it is impossible that
a numerator should contain $\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}+2\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
or some other tensor not proportional to $\omega$. Therefore, in
practical calculations it is sufficient to compute just one coefficient,
say at $\mathbf{e}_{1}\wedge\mathbf{e}_{2}$, in both the numerator
and the denominator.


\paragraph{Exercise:}

Techniques based on Kramer's rule can be applied also to non-square
systems. Consider the system\begin{align*}
x+y & =1\\
y+z & =1\end{align*}
This system has infinitely many solutions. Determine the general solution.


\subparagraph{Answer:}

For example, the general solution can be written as \[
x_{i}=\left(1,0,1\right)+\alpha\left(1,-1,1\right),\]
 where $\alpha$ is an arbitrary number.


\section{Vandermonde matrix\label{sub:The-Vandermonde-matrix}}

The \textbf{Vandermonde} \textbf{matrix}\index{Vandermonde matrix}
is defined by\[
\text{Vand}\,(x_{1},...,x_{N})\equiv\left(\begin{array}{cccc}
1 & 1 & \cdots & 1\\
x_{1} & x_{2} &  & x_{N}\\
x_{1}^{2} & x_{2}^{2} &  & x_{N}^{2}\\
\vdots & \vdots & \ddots\\
x_{1}^{N-1} & x_{2}^{N-1} & \cdots & x_{N}^{N-1}\end{array}\right).\]
It is a curious matrix that is useful in several ways. A classic result
is an explicit formula for the determinant of this matrix. Let us
first compute the determinant for a Vandermonde matrix of small size.


\paragraph{Exercise 1: }

Verify that the Vandermonde determinants for $N=2$ and $N=3$ are
as follows,\[
\left|\begin{array}{cc}
1 & 1\\
x & y\end{array}\right|=y-x;\quad\left|\begin{array}{ccc}
1 & 1 & 1\\
x & y & z\\
x^{2} & y^{2} & z^{2}\end{array}\right|=\left(y-x\right)\left(z-x\right)\left(z-y\right).\]


It now appears plausible from these examples that the determinant
that we denote by $\det\,(\text{Vand}(x_{1},...,x_{N}))$ is equal
to the product of the pairwise differences between all the $x_{i}$'s.


\paragraph{Statement 1:}

The determinant of the Vandermonde matrix is given by \begin{align}
 & \det\,(\text{Vand}\,(x_{1},...,x_{N}))\nonumber \\
 & =\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)...\left(x_{N}-x_{N-1}\right)\nonumber \\
 & =\prod_{1\leq i<j\leq N}(x_{j}-x_{i}).\label{eq:Vandermonde formula 1}\end{align}



\subparagraph{Proof:}

Let us represent the Vandermonde matrix as a table of the components
of a set of $N$ vectors $\left\{ \mathbf{v}_{j}\right\} $ with respect
to some basis $\left\{ \mathbf{e}_{j}\right\} $. Looking at the Vandermonde
matrix, we find that the components of the vector $\mathbf{v}_{1}$
are $\left(1,1,...,1\right)$, so\[
\mathbf{v}_{1}=\mathbf{e}_{1}+...+\mathbf{e}_{N}.\]
The components of the vector $\mathbf{v}_{2}$ are $\left(x_{1},x_{2},...,x_{N}\right)$;
the components of the vector $\mathbf{v}_{3}$ are $\left(x_{1}^{2},x_{2}^{2},...,x_{N}^{2}\right)$.
Generally, the vector $\mathbf{v}_{j}$ ($j=1,...,N$) has components
$(x_{1}^{j-1},...,x_{N}^{j-1})$. It is convenient to introduce a
linear operator $\hat{A}$ such that $\hat{A}\mathbf{e}_{1}=x_{1}\mathbf{e}_{1}$,
..., $\hat{A}\mathbf{e}_{N}=x_{N}\mathbf{e}_{N}$; in other words,
the operator $\hat{A}$ is diagonal in the basis $\left\{ \mathbf{e}_{j}\right\} $,
and $\mathbf{e}_{j}$ is an eigenvector of $\hat{A}$ with the eigenvalue
$x_{j}$. A tensor representation of $\hat{A}$ is\[
\hat{A}=\sum_{j=1}^{N}x_{j}\mathbf{e}_{j}\otimes\mathbf{e}_{j}^{*}.\]
Then we have a short formula for $\mathbf{v}_{j}$:\[
\mathbf{v}_{j}=\hat{A}^{j-1}\mathbf{u},\quad j=1,...,N;\quad\mathbf{u}\equiv\mathbf{v}_{1}=\mathbf{e}_{1}+...+\mathbf{e}_{N}.\]
According to Statement 1 of Sec.~\ref{sub:Determinants-of-square},
the determinant of the Vandermonde matrix is equal to the coefficient
$C$ in the equation\[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=C\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]
So our purpose now is to determine $C$. Let us use the formula for
$\mathbf{v}_{j}$ to rewrite\begin{equation}
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\mathbf{u}\wedge\hat{A}\mathbf{u}\wedge\hat{A}^{2}\mathbf{u}\wedge...\wedge\hat{A}^{N-1}\mathbf{u}.\label{eq:product 3}\end{equation}
Now we use the following trick: since $\mathbf{a}\wedge\mathbf{b}=\mathbf{a}\wedge\left(\mathbf{b}+\lambda\mathbf{a}\right)$
for any $\lambda$, we may replace \[
\mathbf{u}\wedge\hat{A}\mathbf{u}=\mathbf{u}\wedge(\hat{A}\mathbf{u}+\lambda\mathbf{u})=\mathbf{u}\wedge(\hat{A}+\lambda\hat{1})\mathbf{u}.\]
Similarly, we may replace the factor $\hat{A}^{2}\mathbf{u}$ by $(\hat{A}^{2}+\lambda_{1}\hat{A}+\lambda_{2})\mathbf{u}$,
with arbitrary coefficients $\lambda_{1}$ and $\lambda_{2}$. We
may pull this trick in every factor in the tensor product~(\ref{eq:product 3})
starting from the second factor. In effect, we may replace $\hat{A}^{k}$
by an arbitrary polynomial $p_{k}(\hat{A})$ of degree $k$ as long
as the coefficient at $\hat{A}^{k}$ remains 1. (Such polynomials
are called \textbf{monic} \textbf{polynomials}.)\index{monic polynomial}
So we obtain\begin{align*}
 & \mathbf{u}\wedge\hat{A}\mathbf{u}\wedge\hat{A}^{2}\mathbf{u}\wedge...\wedge\hat{A}^{N-1}\mathbf{u}\\
 & =\mathbf{u}\wedge p_{1}(\hat{A})\mathbf{u}\wedge p_{2}(\hat{A})\hat{A}\mathbf{u}\wedge...\wedge p_{N-1}(\hat{A})\mathbf{u}.\end{align*}
Since we may choose the monic polynomials $p_{j}(\hat{A})$ arbitrarily,
we would like to choose them such that the formula is simplified as
much as possible.

Let us first choose the polynomial $p_{N-1}$ because that polynomial
has the highest degree ($N-1$) and so affords us the most freedom.
Here comes another trick: If we choose \[
p_{N-1}(x)\equiv\left(x-x_{1}\right)\left(x-x_{2}\right)...\left(x-x_{N-1}\right),\]
then the operator $p_{N-1}(\hat{A})$ will be much simplified: \[
p_{N-1}(\hat{A})\mathbf{e}_{N}=p_{N-1}(x_{N})\mathbf{e}_{N};\; p_{N-1}(\hat{A})\mathbf{e}_{j}=0,\quad j=1,...,N-1.\]
Therefore $p_{N-1}(\hat{A})\mathbf{u}=p_{N-1}(x_{N})\mathbf{e}_{N}$.
Now we repeat this trick for the polynomial $p_{N-2}$, choosing\[
p_{N-2}(x)\equiv\left(x-x_{1}\right)...\left(x-x_{N-2}\right)\]
and finding \[
p_{N-2}(\hat{A})\mathbf{u}=p_{N-2}(x_{N-1})\mathbf{e}_{N-1}+p_{N-2}(x_{N})\mathbf{e}_{N}.\]
We need to compute the exterior product, which simplifies: \begin{align*}
 & p_{N-2}(\hat{A})\mathbf{u}\wedge p_{N-1}(\hat{A})\mathbf{u}\\
 & =\left(p_{N-2}(x_{N-1})\mathbf{e}_{N-1}+p_{N-2}(x_{N})\mathbf{e}_{N}\right)\wedge p_{N-1}(x_{N})\mathbf{e}_{N}\\
 & =p_{N-2}(x_{N-1})\mathbf{e}_{N-1}\wedge p_{N-1}(x_{N})\mathbf{e}_{N}.\end{align*}
Proceeding inductively in this fashion, we find\begin{align*}
 & \mathbf{u}\wedge p_{1}(\hat{A})\mathbf{u}\wedge...\wedge p_{N-1}(\hat{A})\mathbf{u}\\
 & =\mathbf{u}\wedge p_{1}(x_{2})\mathbf{e}_{2}\wedge...\wedge p_{N-1}(x_{N})\mathbf{e}_{N}\\
 & =p_{1}(x_{2})...p_{N-1}(x_{N})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\end{align*}
where we defined each monic polynomial $p_{j}(x)$ as\[
p_{j}(x)\equiv(x-x_{1})...(x-x_{j}),\quad j=1,...,N-1.\]
For instance, $p_{1}(x)=x-x_{1}$. The product of the polynomials,
\begin{align*}
 & p_{1}(x_{2})p_{2}(x_{3})...p_{N-1}(x_{N})\\
 & =\left(x_{2}-x_{1}\right)(x_{3}-x_{1})(x_{3}-x_{2})...(x_{N}-x_{N-1})\\
 & =\prod_{1\leq i<j\leq N}\left(x_{j}-x_{i}\right).\end{align*}
yields the required formula~(\ref{eq:Vandermonde formula 1}).\hfill{}$\blacksquare$


\paragraph{Remark:}

This somewhat long argument explains the procedure of subtracting
various rows of the Vandermonde matrix from each other in order to
simplify the determinant. (The calculation appears long because I
have motivated every step, rather than just go through the equations.)
One can observe that the determinant of the Vandermonde matrix is
nonzero if and only if all the values $x_{j}$ are different. This
property allows one to prove the Vandermonde formula in a much more
elegant way.%
\footnote{I picked this up from a paper by C. Krattenthaler (see online \texttt{\small arxiv.org/abs/math.co/9902004})
where many other special determinants are evaluated using similar
techniques.%
} Namely, one can notice that the expression $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$
is a polynomial in $x_{j}$ of degree not more than $\frac{1}{2}N(N-1)$;
that this polynomial is equal to zero unless every $x_{j}$ is different;
therefore this polynomial must be equal to Eq.~(\ref{eq:Vandermonde formula 1})
times a constant. To find that constant, one computes explicitly the
coefficient at the term $x_{2}x_{3}^{2}...x_{N}^{N-1}$, which is
equal to 1, hence the constant is 1.\hfill{}$\blacksquare$

In the next two subsections we will look at two interesting applications
of the Vandermonde matrix.


\subsection{Linear independence of eigenvectors\label{sub:Linear-independence-of-eigenvectors}}


\paragraph{Statement:}

Suppose that the vectors $\mathbf{e}_{1}$, ..., $\mathbf{e}_{n}$
are nonzero and are eigenvectors of an operator $\hat{A}$ with \emph{all}
\emph{different} eigenvalues $\lambda_{1}$, ..., $\lambda_{n}$.
Then the set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{n}\right\} $
is linearly independent. (The number $n$ may be less than the dimension
$N$ of the vector space $V$; the statement holds also for infinite-dimen\-sion\-al
spaces).


\subparagraph{Proof. }

Let us show that the set $\left\{ \mathbf{e}_{j}\,|\, j=1,...,n\right\} $
is linearly independent. By definition of linear independence, we
need to show that $\sum_{j=1}^{n}c_{j}\mathbf{e}_{j}=0$ is possible
only if all the coefficients $c_{j}$ are equal to zero. Let us denote
$\mathbf{u}=\sum_{j=1}^{n}c_{j}\mathbf{e}_{j}$ and assume that $\mathbf{u}=0$.
Consider the vectors $\mathbf{u}$, $\hat{A}\mathbf{u}$, ..., $\hat{A}^{n-1}\mathbf{u}$;
by assumption all these vectors are equal to zero. The condition that
these vectors are equal to zero is a system of vector equations that
looks like this,\begin{align*}
c_{1}\mathbf{e}_{1}+...+c_{n}\mathbf{e}_{n} & =0,\\
c_{1}\lambda_{1}\mathbf{e}_{1}+...+c_{n}\lambda_{n}\mathbf{e}_{n} & =0,\\
...\\
c_{1}\lambda_{1}^{n-1}\mathbf{e}_{1}+...+c_{n}\lambda_{n}^{n-1}\mathbf{e}_{n} & =0.\end{align*}
This system of equations can be written in a matrix form with the
Vandermonde matrix,\[
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1\\
\lambda_{1} & \lambda_{2} &  & \lambda_{n}\\
\vdots & \vdots & \ddots\\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}\end{array}\right)\left[\begin{array}{c}
c_{1}\mathbf{e}_{1}\\
c_{2}\mathbf{e}_{2}\\
\vdots\\
c_{n}\mathbf{e}_{n}\end{array}\right]=\left[\begin{array}{c}
0\\
0\\
\vdots\\
0\end{array}\right].\]
Since the eigenvalues $\lambda_{j}$ are (by assumption) all different,
the determinant of the Vandermonde matrix is nonzero. Therefore, this
system of equations has only the trivial solution, $c_{j}\mathbf{e}_{j}=0$
for all $j$. Since $\mathbf{e}_{j}\neq0$, it is necessary that all
$c_{j}=0$, $j=1,...n$.\hfill{}$\blacksquare$


\paragraph{Exercise:}

Show that we are justified in using the matrix method for solving
a system of equations with \emph{vector-valued} unknowns $c_{i}\mathbf{e}_{i}$.

\emph{Hint}: Act with an arbitrary covector $\mathbf{f}^{*}$ on all
the equations.


\subsection{Polynomial interpolation}

The task of \textbf{polynomial interpolation}\index{polynomial interpolation}
consists of finding a polynomial  that passes through specified points.


\paragraph{Statement:}

If the numbers $x_{1}$, ..., $x_{N}$ are all different and numbers
$y_{1}$, ..., $y_{N}$ are arbitrary then there exists a unique polynomial
$p(x)$ of degree at most $N-1$ that has values $y_{j}$ at the points
$x_{j}$ ($j=1,...,N$).


\subparagraph{Proof. }

Let us try to determine the coefficients of the polynomial $p(x)$.
We write a polynomial with unknown coefficients, \[
p(x)=p_{0}+p_{1}x+...+p_{N-1}x^{N-1},\]
and obtain a system of $N$ linear equations, $p(x_{j})=y_{j}$ ($j=1,...,N$),
for the $N$ unknowns $p_{j}$. The crucial observation is that this
system of equations has the Vandermonde matrix. For example, with
$N=3$ we have three equations,\begin{align*}
p(x_{1})=p_{0}+p_{1}x_{1}+p_{2}x_{1}^{2} & =y_{1},\\
p(x_{2})=p_{0}+p_{1}x_{2}+p_{2}x_{2}^{2} & =y_{2},\\
p(x_{3})=p_{0}+p_{1}x_{3}+p_{2}x_{3}^{2} & =y_{3},\end{align*}
which can be rewritten in the matrix form as\[
\left(\begin{array}{ccc}
1 & x_{1} & x_{1}^{2}\\
1 & x_{2} & x_{2}^{2}\\
1 & x_{3} & x_{3}^{2}\end{array}\right)\left[\begin{array}{c}
p_{0}\\
p_{1}\\
p_{2}\end{array}\right]=\left[\begin{array}{c}
y_{1}\\
y_{2}\\
y_{3}\end{array}\right].\]
Since the determinant of the Vandermonde matrix is nonzero as long
as all $x_{j}$ are different, these equations always have a unique
solution $\left\{ p_{j}\right\} $. Therefore the required polynomial
always exists and is unique.\hfill{}$\blacksquare$


\paragraph{Question:}

The polynomial $p(x)$ \emph{exists}, but how can I write it explicitly? 


\subparagraph{Answer:}

One possibility is the \textbf{Lagrange interpolating polynomial}\index{Lagrange polynomial};
let us illustrate the idea on an example with three points:\begin{align*}
p(x) & =y_{1}\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}+y_{2}\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}\\
 & \quad+y_{3}\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}.\end{align*}
It is easy to check directly that this polynomial indeed has values
$p(x_{i})=y_{i}$ for $i=1,2,3$. However, other (equivalent, but
computationally more efficient) formulas are used in numerical calculations. 


\section{Multilinear actions in exterior powers\label{sub:Extensions-of-an}}

As we have seen, the action of $\hat{A}$ on the exterior power $\wedge^{N}V$
by \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\mapsto\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}\]
has been very useful. However, this is not the only way $\hat{A}$
can act on an $N$-vector. Let us explore other possibilities; we
will later see that they have their uses as well. 

A straightforward generalization is to promote an operator $\hat{A}\in\textrm{End }V$
to a linear operator in the space $\wedge^{k}V$, $k<N$ (rather than
in the top exterior power $\wedge^{N}V$). We denote this by $\wedge^{k}\hat{A}^{k}$:\[
(\wedge^{k}\hat{A}^{k})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}=\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{k}.\]
This is, of course, a linear map of $\wedge^{k}\hat{A}^{k}$ to itself
(but not any more a mere multiplication by a scalar!). For instance,
in $\wedge^{2}V$ we have\[
(\wedge^{2}\hat{A}^{2})\mathbf{u}\wedge\mathbf{v}=\hat{A}\mathbf{u}\wedge\hat{A}\mathbf{v}.\]
However, this is not the only possibility. We could, for instance,
define another map of $\wedge^{2}V$ to itself like this, \[
\mathbf{u}\wedge\mathbf{v}\mapsto(\hat{A}\mathbf{u})\wedge\mathbf{v}+\mathbf{u}\wedge(\hat{A}\mathbf{v}).\]
This map is \emph{linear} \emph{in} $\hat{A}$ (as well as being a
linear map of $\wedge^{2}V$ to itself), so I denote this map by $\wedge^{2}\hat{A}^{1}$
to emphasize that it contains $\hat{A}$ only linearly. I call such
maps \textbf{extensions\index{extensions of operators to wedge^{k}V@extensions of operators to $\wedge^{k}V$}
of} $\hat{A}$ to the exterior power space $\wedge^{2}V$ (this is
not a standard terminology). 

It turns out that operators of this kind play an important role in
many results related to determinants. Let us now generalize the examples
given above. We denote by $\wedge^{m}\hat{A}^{k}$ a linear map $\wedge^{m}V\rightarrow\wedge^{m}V$
that acts on $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$ by producing
a sum of terms with $k$ copies of $\hat{A}$ in each term. For instance,\begin{align*}
\wedge^{2}\hat{A}^{1}\left(\mathbf{a}\wedge\mathbf{b}\right) & \equiv\hat{A}\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\hat{A}\mathbf{b};\\
\wedge^{3}\hat{A}^{3}\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right) & \equiv\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c};\\
\wedge^{3}\hat{A}^{2}\left(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\right) & \equiv\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}\\
 & \quad+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}.\end{align*}
More generally, we can write\begin{align*}
\wedge^{k}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right) & =\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{k};\\
\wedge^{k}\hat{A}^{1}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right) & =\sum_{j=1}^{k}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{k};\\
\wedge^{k}\hat{A}^{m}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right) & =\sum_{\begin{array}{c}
s_{1},...,s_{k}=0,1\\
\sum_{j}s_{j}=m\end{array}}\hat{A}^{s_{1}}\mathbf{v}_{1}\wedge...\wedge\hat{A}^{s_{k}}\mathbf{v}_{k}.\end{align*}
In the last line, the sum is over all integers $s_{j}$, each being
either 0 or 1, so that $\hat{A}^{s_{j}}$ is either $\hat{1}$ or
$\hat{A}$, and the total power of $\hat{A}$ is $m$.

So far we defined the action of $\wedge^{m}\hat{A}^{k}$ only on tensors
of the form $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\in\wedge^{m}V$.
Since an arbitrary element of $\wedge^{m}V$ is a linear combination
of such {}``elementary'' tensors, and since we intend $\wedge^{m}\hat{A}^{k}$
to be a linear map, we define the action of $\wedge^{m}\hat{A}^{k}$
on every element of $\wedge^{m}V$ using linearity. For example,\[
\wedge^{2}\hat{A}^{2}\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)\equiv\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}+\hat{A}\mathbf{c}\wedge\hat{A}\mathbf{d}.\]
By now it should be clear that the extension $\wedge^{m}\hat{A}^{k}$
is indeed a linear map $\wedge^{m}V\rightarrow\wedge^{m}V$. Here
is a formal definition. 


\paragraph{Definition:}

For a linear operator $\hat{A}$ in $V$, the \textbf{$k$-linear
extension\index{extensions of operators to wedge^{k}V@extensions of operators to $\wedge^{k}V$}}
of $\hat{A}$ \textbf{to the space} $\wedge^{m}V$ is a linear transformation
$\wedge^{m}V\rightarrow\wedge^{m}V$ denoted by $\wedge^{m}\hat{A}^{k}$
and defined by the formula\begin{equation}
\wedge^{m}\hat{A}^{k}\bigl(\bigwedge_{j=1}^{m}\mathbf{v}_{j}\bigr)=\negmedspace\sum_{\left(s_{1},...,s_{m}\right)}\negmedspace\bigwedge_{j=1}^{m}\hat{A}^{s_{j}}\mathbf{v}_{j},\; s_{j}=0\,\textrm{ or }1,\,\,\sum_{j=1}^{m}s_{j}=k.\label{eq:lambda m a k def}\end{equation}
In words: To describe the action of $\wedge^{m}\hat{A}^{k}$ on a
term $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\in\wedge^{m}V$,
we sum over all possible ways to act with $\hat{A}$ on the various
vectors $\mathbf{v}_{j}$ from the term $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$,
where $\hat{A}$ appears exactly $k$ times. The action of $\wedge^{m}\hat{A}^{k}$
on a linear combination of terms is by definition the linear combination
of the actions on each term. Also by definition we set $\wedge^{m}\hat{A}^{0}\equiv\hat{1}_{\wedge^{m}V}$
and $\wedge^{m}\hat{A}^{k}\equiv\hat{0}_{\wedge^{m}V}$ for $k<0$
or $k>m$ or $m>N$. The meaningful values of $m$ and $k$ for $\wedge^{m}\hat{A}^{k}$
are thus $0\leq k\leq m\leq N$.


\paragraph{Example:}

Let the operator $\hat{A}$ and the vectors $\mathbf{a},\mathbf{b},\mathbf{c}$
be such that $\hat{A}\mathbf{a}=0$, $\hat{A}\mathbf{b}=2\mathbf{b}$,
$\hat{A}\mathbf{c}=\mathbf{b}+\mathbf{c}$. We can then apply the
various extensions of the operator $\hat{A}$ to various tensors.
For instance,\begin{align*}
\wedge^{2}\hat{A}^{1}(\mathbf{a}\wedge\mathbf{b}) & =\hat{A}\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\hat{A}\mathbf{b}=2\mathbf{a}\wedge\mathbf{b},\\
\wedge^{2}\hat{A}^{2}(\mathbf{a}\wedge\mathbf{b}) & =\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}=0,\\
\wedge^{3}\hat{A}^{2}(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}) & =\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}=\mathbf{a}\wedge2\mathbf{b}\wedge\mathbf{c}=2(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\end{align*}
(in the last line, we dropped terms containing $\hat{A}\mathbf{a}$).

Before we move on to see why the operators $\wedge^{m}\hat{A}^{k}$
are useful, let us obtain some basic properties of these operators.


\paragraph{Statement 1:}

The $k$-linear extension of $\hat{A}$ is a linear operator in the
space $\wedge^{m}V$.


\subparagraph{Proof:}

To prove the linearity of the map, we need to demonstrate not only
that $\wedge^{m}\hat{A}^{k}$ maps linear combinations into linear
combinations (this is obvious), but also that the result of the action
of $\wedge^{m}\hat{A}^{k}$ on a tensor $\omega\in\wedge^{m}V$ does
not depend on the particular representation of $\omega$ through terms
of the form $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}$. Thus we
need to check that \[
\wedge^{m}\hat{A}^{k}\left(\omega\wedge\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\omega'\right)=-{\wedge^{m}\hat{A}^{k}}\left(\omega\wedge\mathbf{v}_{2}\wedge\mathbf{v}_{1}\wedge\omega'\right),\]
where $\omega$ and $\omega'$ are arbitrary tensors such that $\omega\wedge\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge\omega'\in\wedge^{m}V$.
But this property is a simple consequence of the definition of $\wedge^{m}\hat{A}^{k}$
which can be verified by explicit computation.\hfill{}$\blacksquare$


\paragraph{Statement 2:}

For any two operators $\hat{A},\hat{B}\in\textrm{End }V$, we have
\[
\wedge^{m}{(\hat{A}\hat{B})}^{m}=\bigl(\wedge^{m}\hat{A}^{m}\bigr)\bigl(\wedge^{m}\hat{B}^{m}\bigr).\]
 For example, \begin{align*}
 & \wedge^{2}{(\hat{A}\hat{B})}^{2}\left(\mathbf{u}\wedge\mathbf{v}\right)=\hat{A}\hat{B}\mathbf{u}\wedge\hat{A}\hat{B}\mathbf{v}\\
 & \quad=\wedge^{2}\hat{A}^{2}(\hat{B}\mathbf{u}\wedge\hat{B}\mathbf{v})=\wedge^{2}\hat{A}^{2}\bigl(\wedge^{2}\hat{B}^{2}\bigr)\left(\mathbf{u}\wedge\mathbf{v}\right).\end{align*}



\subparagraph{Proof:}

This property is a direct consequence of the definition of the operator
$\wedge^{k}\hat{A}^{k}$:\[
\wedge^{k}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right)=\hat{A}\mathbf{v}_{1}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{k}=\bigwedge_{j=1}^{k}\hat{A}\mathbf{v}_{j},\]
 therefore \begin{align*}
\wedge^{m}{(\hat{A}\hat{B})}^{m}\bigl(\bigwedge_{j=1}^{k}\mathbf{v}_{j}\bigr) & =\bigwedge_{j=1}^{k}\hat{A}\hat{B}\mathbf{v}_{j},\\
\wedge^{m}\hat{A}^{m}\wedge^{m}\hat{B}^{m}\bigl(\bigwedge_{j=1}^{k}\mathbf{v}_{j}\bigr) & =\wedge^{m}\hat{A}^{m}\bigl(\bigwedge_{j=1}^{k}\hat{B}\mathbf{v}_{j}\bigr)=\bigwedge_{j=1}^{k}\hat{A}\hat{B}\mathbf{v}_{j}.\end{align*}
\hfill{}$\blacksquare$


\paragraph{Statement 3:}

The operator $\wedge^{m}\hat{A}^{k}$ is $k$-linear in $\hat{A}$,
\[
\wedge^{m}(\lambda\hat{A})^{k}=\lambda^{k}(\wedge^{m}\hat{A}^{k}).\]
For this reason, $\wedge^{m}\hat{A}^{k}$ is called a $k$-linear
extension.


\subparagraph{Proof: }

This follows directly from the definition of the operator $\wedge^{m}\hat{A}^{k}$.\hfill{}$\blacksquare$

Finally, a formula that will be useful later (you can skip to Sec.~\ref{sub:The-trace}
if you would rather see how $\wedge^{m}\hat{A}^{k}$ is used).


\paragraph{Statement 4:}

The following identity holds for any $\hat{A}\in\textrm{End }V$ and
for any vectors $\left\{ \mathbf{v}_{j}\,|\,1\leq j\leq m\right\} $
and $\mathbf{u}$,\begin{align*}
\bigl[\wedge^{m}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\right)\bigr]\wedge\mathbf{u}+\bigl[\wedge^{m}\hat{A}^{k-1}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\right)\bigr]\wedge(\hat{A}\mathbf{u})\\
=\wedge^{m+1}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\wedge\mathbf{u}\right).\end{align*}
For example,\begin{equation}
\wedge^{2}\hat{A}^{2}\left(\mathbf{u}\wedge\mathbf{v}\right)\wedge\mathbf{w}+\wedge^{2}\hat{A}^{1}\left(\mathbf{u}\wedge\mathbf{v}\right)\wedge\hat{A}\mathbf{w}=\wedge^{3}\hat{A}^{2}\left(\mathbf{u}\wedge\mathbf{v}\wedge\mathbf{w}\right).\label{eq:example 223}\end{equation}



\subparagraph{Proof: }

By definition, $\wedge^{m+1}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\wedge\mathbf{u}\right)$
is a sum of terms where $\hat{A}$ acts $k$ times on the vectors
$\mathbf{v}_{j}$ and $\mathbf{u}$. We can gather all terms containing
$\hat{A}\mathbf{u}$ and separately all terms containing $\mathbf{u}$,
and we will get the required expressions. Here is an explicit calculation
for the given example:\begin{align*}
\wedge^{2}\hat{A}^{2}\left(\mathbf{u}\wedge\mathbf{v}\right)\wedge\mathbf{w} & =\hat{A}\mathbf{u}\wedge\hat{A}\mathbf{v}\wedge\mathbf{w};\\
\wedge^{2}\hat{A}^{1}\left(\mathbf{u}\wedge\mathbf{v}\right)\wedge\hat{A}\mathbf{w} & =\bigl(\hat{A}\mathbf{u}\wedge\mathbf{v}+\mathbf{u}\wedge\hat{A}\mathbf{v}\bigr)\wedge\hat{A}\mathbf{w}.\end{align*}
The formula~(\ref{eq:example 223}) follows. 

It should now be clear how the proof proceeds in the general case.
A formal proof using Eq.~(\ref{eq:lambda m a k def}) is as follows.
Applying Eq.~(\ref{eq:lambda m a k def}), we need to sum over $s_{1}$,
..., $s_{m+1}$. We can consider terms where $s_{m+1}=0$ separately
from terms where $s_{m+1}=1$:\begin{align*}
\wedge^{m+1}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\wedge\mathbf{u}\right) & =\sum_{\left(s_{1},...,s_{m}\right);\sum s_{j}=k}\bigl(\bigwedge_{j=1}^{m}\hat{A}^{s_{j}}\mathbf{v}_{j}\bigr)\wedge\mathbf{u}\\
+\sum_{\left(s_{1},...,s_{m}\right);\sum s_{j}=k-1} & \bigl(\bigwedge_{j=1}^{m}\hat{A}^{s_{j}}\mathbf{v}_{j}\bigr)\wedge\hat{A}\mathbf{u}\\
=\bigl[\wedge^{m}\hat{A}^{k}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\right)\bigr]\wedge\mathbf{u} & +\bigl[\wedge^{m}\hat{A}^{k-1}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{m}\right)\bigr]\wedge\hat{A}\mathbf{u}.\end{align*}
 \hfill{}$\blacksquare$


\subsection{{*} Index notation}

Let us briefly note how the multilinear action such as $\wedge^{m}\hat{A}^{k}$
can be expressed in the index notation.

Suppose that the operator $\hat{A}$ has the index representation
$A_{i}^{j}$ in a fixed basis. The operator $\wedge^{m}\hat{A}^{k}$
acts in the space $\wedge^{m}V$; tensors $\psi$ in that space are
represented in the index notation by totally antisymmetric arrays
with $m$ indices, such as $\psi^{i_{1}...i_{m}}$. An operator $\hat{B}\in\text{End}\left(\wedge^{m}V\right)$
must be therefore represented by an array with $2m$ indices, $B_{i_{1}...i_{m}}^{j_{1}...j_{m}}$,
which is totally antisymmetric with respect to the indices $\left\{ i_{s}\right\} $
and separately with respect to $\left\{ j_{s}\right\} $. 

Let us begin with $\wedge^{m}\hat{A}^{m}$ as the simplest case. The
action of $\wedge^{m}\hat{A}^{m}$ on $\psi$ is written in the index
notation as \[
[\wedge^{m}\hat{A}^{m}\psi]^{i_{1}...i_{m}}=\sum_{j_{1},...,j_{m}=1}^{N}A_{j_{1}}^{i_{1}}...A_{j_{m}}^{i_{m}}\psi^{j_{1}...j_{m}}.\]
This array is totally antisymmetric in $i_{1}$, ..., $i_{m}$ as
usual.

Another example is the action of $\wedge^{m}\hat{A}^{1}$ on $\psi$:\[
[\wedge^{m}\hat{A}^{1}\psi]^{i_{1}...i_{m}}=\sum_{s=1}^{m}\sum_{j=1}^{N}A_{j}^{i_{s}}\psi^{i_{1}...i_{s-1}ji_{s+1}...i_{m}}.\]
In other words, $\hat{A}$ acts only on the $s^{\text{th}}$ index
of $\psi$, and we sum over all $s$.

In this way, every $\wedge^{m}\hat{A}^{k}$ can be written in the
index notation, although the expressions become cumbersome.


\section{Trace\label{sub:The-trace}}

The \textbf{trace} \index{trace}of a square matrix $A_{jk}$ is defined
as the sum of its diagonal elements, $\textrm{Tr}A\equiv\sum_{j=1}^{n}A_{jj}$.
This definition is quite simple at first sight. However, if this definition
is taken as fundamental then one is left with many questions. Suppose
$A_{jk}$ is the representation of a linear transformation in a basis;
is the number $\textrm{Tr}A$ independent of the basis? Why is this
particular combination of the matrix elements useful? (Why not compute
the sum of the elements of $A_{jk}$ along the other diagonal of the
square, $\sum_{j=1}^{n}A_{(n+1-j)j}$?)

To clarify the significance of the trace, I will give two other definitions
of the trace: one through the canonical linear map $V\otimes V^{*}\rightarrow\mathbb{K}$,
and another using the exterior powers construction, quite similar
to the definition of the determinant in Sec.~\ref{sub:The-determinant-def}.


\paragraph{Definition Tr1:}

The trace $\textrm{Tr}A$ of a tensor $A\equiv\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}\in V\otimes V^{*}$
is the number canonically defined by the formula\begin{equation}
\textrm{Tr}A=\sum_{k}\mathbf{f}_{k}^{*}\left(\mathbf{v}_{k}\right).\label{eq:tr def 0}\end{equation}
If we represent the tensor $A$ through the basis tensors $\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*}$,
where $\left\{ \mathbf{e}_{j}\right\} $ is some basis and $\left\{ \mathbf{e}_{k}^{*}\right\} $
is its dual basis,\[
A=\sum_{j=1}^{N}\sum_{k=1}^{N}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*},\]
then $\mathbf{e}_{k}^{*}(\mathbf{e}_{j})=\delta_{ij}$, and it follows
that \[
\textrm{Tr}A=\sum_{j,k=1}^{N}A_{jk}\mathbf{e}_{k}^{*}(\mathbf{e}_{j})=\sum_{j,k=1}^{N}A_{jk}\delta_{kj}=\sum_{j=1}^{N}A_{jj},\]
 in agreement with the traditional definition.


\paragraph{Exercise 1:}

Show that the trace (according to Definition Tr1) does not depend
on the choice of the tensor decomposition $A=\sum_{k}\mathbf{v}_{k}\otimes\mathbf{f}_{k}^{*}$.\hfill{}$\blacksquare$

Here is another definition of the trace.


\paragraph{Definition Tr2:}

The \textbf{trace} $\textrm{Tr}\hat{A}$ of an operator $\hat{A}\in\textrm{End }V$
is the number by which any nonzero tensor $\omega\in\wedge^{N}V$
is multiplied when $\wedge^{N}\hat{A}^{1}$ acts on it:\begin{equation}
(\wedge^{N}\hat{A}^{1})\omega=(\textrm{Tr}\hat{A})\omega,\quad\forall\omega\in\wedge^{N}V.\label{eq:tr def}\end{equation}
Alternatively written, \[
\wedge^{N}\hat{A}^{1}=(\textrm{Tr}\hat{A})\hat{1}_{\wedge^{N}V}.\]


First we will show that the definition Tr2 is equivalent to the traditional
definition of the trace. Recall that, according to the definition
of $\wedge^{N}\hat{A}^{1}$,\begin{align*}
\wedge^{N}\hat{A}^{1}\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\right) & =\hat{A}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}+...\\
 & +\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N-1}\wedge\hat{A}\mathbf{v}_{N}.\end{align*}



\paragraph{Statement 1:}

If $\left\{ \mathbf{e}_{j}\right\} $ is any basis in $V$, $\left\{ \mathbf{e}_{j}^{*}\right\} $
is the dual basis, and a linear operator $\hat{A}$ is represented
by a tensor $\hat{A}=\sum_{j,k=1}^{N}A_{jk}\mathbf{e}_{j}\otimes\mathbf{e}_{k}^{*}$,
then the trace of $\hat{A}$ computed according to Eq.~(\ref{eq:tr def})
will agree with the formula $\textrm{Tr}\hat{A}=\sum_{j=1}^{N}A_{jj}$.


\subparagraph{Proof:}

The operator $\hat{A}$ acts on the basis vectors $\left\{ \mathbf{e}_{j}\right\} $
as follows,\[
\hat{A}\mathbf{e}_{k}=\sum_{j=1}^{N}A_{jk}\mathbf{e}_{j}.\]
Therefore $\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}=A_{jj}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$,
and definition~(\ref{eq:tr def}) gives \begin{align*}
(\textrm{Tr}\hat{A})\,\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N} & =\sum_{j=1}^{N}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}\\
 & =\big(\sum_{j=1}^{N}A_{jj}\big)\,\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\end{align*}
Thus $\textrm{Tr}\hat{A}=\sum_{j=1}^{N}A_{jj}$. \hfill{}$\blacksquare$

Now we prove some standard properties of the trace. 


\paragraph{Statement 2:}

For any operators $\hat{A},\hat{B}\in\textrm{End }V$:

\textbf{(1)} $\textrm{Tr}(\hat{A}+\hat{B})=\textrm{Tr}\hat{A}+\textrm{Tr}\hat{B}$.

\textbf{(2)} $\textrm{Tr}(\hat{A}\hat{B})=\textrm{Tr}(\hat{B}\hat{A})$.


\subparagraph{Proof: }

The formula~(\ref{eq:tr def 0}) allows one to derive these properties
more easily, but I will give proofs using the definition~(\ref{eq:tr def}).

\textbf{(1)} Since \begin{align*}
\mathbf{e}_{1}\wedge...\wedge(\hat{A}+\hat{B})\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N} & =\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}\\
 & \quad+\mathbf{e}_{1}\wedge...\wedge\hat{B}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N},\end{align*}
 from the definition of $\wedge^{N}\hat{A}^{1}$ we easily obtain
$\wedge^{N}(\hat{A}+\hat{B})^{1}=\wedge^{N}\hat{A}^{1}+\wedge^{N}\hat{B}^{1}$.

\textbf{(2)} Since $\wedge^{N}\hat{A}^{1}$ and $\wedge^{N}\hat{B}^{1}$
are operators in one-dimen\-sion\-al space $\wedge^{N}V$, they
commute, that is \[
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})=(\wedge^{N}\hat{B}^{1})(\wedge^{N}\hat{A}^{1})=(\textrm{Tr}\hat{A})(\textrm{Tr}\hat{B})\hat{1}_{\wedge^{N}V}.\]
 Now we explicitly compute the composition $(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})$
acting on $\mathbf{e}_{1}\wedge....\wedge\mathbf{e}_{N}$. First,
an example with $N=2$,\begin{align*}
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})\left(\mathbf{e}_{1}\wedge\mathbf{e}_{2}\right) & =\wedge^{N}\hat{A}^{1}(\hat{B}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\hat{B}\mathbf{e}_{2})\\
 & =\hat{A}\hat{B}\mathbf{e}_{1}\wedge\mathbf{e}_{2}+\hat{B}\mathbf{e}_{1}\wedge\hat{A}\mathbf{e}_{2}\\
 & +\hat{A}\mathbf{e}_{1}\wedge\hat{B}\mathbf{e}_{2}+\mathbf{e}_{1}\wedge\hat{A}\hat{B}\mathbf{e}_{2}\\
=\wedge^{N}(\hat{A}\hat{B})^{1}\mathbf{e}_{1}\wedge\mathbf{e}_{2} & +\hat{A}\mathbf{e}_{1}\wedge\hat{B}\mathbf{e}_{2}+\hat{B}\mathbf{e}_{1}\wedge\hat{A}\mathbf{e}_{2}.\end{align*}
 Now the general calculation:\begin{align*}
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})\mathbf{e}_{1}\wedge....\wedge\mathbf{e}_{N} & =\sum_{j=1}^{N}\mathbf{e}_{1}\wedge...\wedge\hat{A}\hat{B}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}\\
+\sum_{j=1}^{N}\sum_{\begin{array}{c}
k=1\\
(k\neq j)\end{array}}^{N} & \mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{j}\wedge...\wedge\hat{B}\mathbf{e}_{k}\wedge...\wedge\mathbf{e}_{N}.\end{align*}
The second sum is symmetric in $\hat{A}$ and $\hat{B}$, therefore
the identity\[
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{B}^{1})\mathbf{e}_{1}\wedge....\wedge\mathbf{e}_{N}=(\wedge^{N}\hat{B}^{1})(\wedge^{N}\hat{A}^{1})\mathbf{e}_{1}\wedge....\wedge\mathbf{e}_{N}\]
entails\[
\sum_{j=1}^{N}\mathbf{e}_{1}\wedge...\wedge\hat{A}\hat{B}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N}=\sum_{j=1}^{N}\mathbf{e}_{1}\wedge...\wedge\hat{B}\hat{A}\mathbf{e}_{j}\wedge...\wedge\mathbf{e}_{N},\]
that is $\textrm{Tr}(\hat{A}\hat{B})=\textrm{Tr}(\hat{B}\hat{A})$.\hfill{}$\blacksquare$


\paragraph{Exercise 2:}

The operator $\hat{L}_{\mathbf{b}}$ acts on the entire exterior algebra
$\wedge V$ and is defined by $\hat{L}_{\mathbf{b}}:\omega\mapsto\mathbf{b}\wedge\omega$,
where $\omega\in\wedge V$ and $\mathbf{b}\in V$. Compute the trace
of this operator. \emph{Hint:} Use Definition Tr1 of the trace.


\subparagraph{Answer: }

$\textrm{Tr}\hat{L}_{\mathbf{b}}=0$. 


\paragraph{Exercise 3:}

Suppose $\hat{A}\hat{A}=0$; show that $\textrm{Tr}\hat{A}=0$ and
$\det\hat{A}=0$.


\subparagraph{Solution: }

We see that $\det\hat{A}=0$ because $0=\det(\hat{A}\hat{A})=(\det\hat{A})^{2}$.
Now we apply the operator $\wedge^{N}\hat{A}^{1}$ to a nonzero tensor
$\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\in\wedge^{N}V$
twice in a row:\begin{align*}
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{A}^{1})\omega & =(\textrm{Tr}\hat{A})^{2}\omega\\
=(\wedge^{N}\hat{A}^{1}) & \sum_{j=1}^{N}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\\
=\sum_{i=1}^{N}\sum_{j=1}^{N} & \mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{i}\wedge...\wedge\hat{A}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\\
 & =2(\wedge^{N}\hat{A}^{2})\omega.\end{align*}
(In this calculation, we omitted the terms containing $\hat{A}\hat{A}\mathbf{v}_{i}$
since $\hat{A}\hat{A}=0$.) Using this trick, we can prove by induction
that for $1\leq k\leq N$\[
{(\textrm{Tr}\hat{A})}^{k}\omega=(\wedge^{N}\hat{A}^{1})^{k}\omega=k!(\wedge^{N}\hat{A}^{k})\omega.\]
Note that $\wedge^{N}\hat{A}^{N}$ multiplies by the determinant of
$\hat{A}$, which is zero. Therefore $(\textrm{Tr}\hat{A})^{N}=N!(\det\hat{A})=0$
and so $\textrm{Tr}\hat{A}=0$.\hfill{}$\blacksquare$


\section{Characteristic polynomial\label{sub:The-characteristic-polynomial}}


\paragraph{Definition:}

The \textbf{characteristic polynomial} $Q_{\hat{A}}\left(x\right)$
of an operator $\hat{A}\in\textrm{End }V$ is defined as\[
Q_{\hat{A}}\left(x\right)\equiv\det\bigl(\hat{A}-x\hat{1}_{V}\bigr).\]
This is a polynomial of degree $N$ in the variable $x$.


\paragraph{Example 1:}

The characteristic polynomial of the operator $a\hat{1}_{V}$, where
$a\in\mathbb{K}$, is\[
Q_{a\hat{1}_{V}}\left(x\right)=\left(a-x\right)^{N}.\]
Setting $a=0$, we find that the characteristic polynomial of the
zero operator $\hat{0}_{V}$ is simply $\left(-x\right)^{N}$.


\paragraph{Example 2:}

Consider a \textbf{diagonalizable}\index{diagonalizable operator}
operator $\hat{A}$, i.e.~an operator having a basis $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
of eigenvectors with eigenvalues $\lambda_{1},...,\lambda_{N}$ (the
eigenvalues are not necessarily all different). This operator can
be then written in a tensor form as\[
\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*},\]
where $\left\{ \mathbf{v}_{i}^{*}\right\} $ is the basis dual to
$\left\{ \mathbf{v}_{i}\right\} $. The characteristic polynomial
of this operator is found from\begin{align*}
\det(\hat{A}-x\hat{1})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N} & =(\hat{A}\mathbf{v}_{1}-x\mathbf{v}_{1})\wedge...\wedge(\hat{A}\mathbf{v}_{N}-x\mathbf{v}_{N})\\
 & =\left(\lambda_{1}-x\right)\mathbf{v}_{1}\wedge...\wedge\left(\lambda_{N}-x\right)\mathbf{v}_{N}.\end{align*}
Hence\[
Q_{\hat{A}}(x)=\left(\lambda_{1}-x\right)...\left(\lambda_{N}-x\right).\]
Note also that the trace of a diagonalizable operator is equal to
the sum of the eigenvalues, $\text{Tr}\,\hat{A}=\lambda_{1}+...+\lambda_{N}$,
and the determinant is equal to the product of the eigenvalues, $\det\hat{A}=\lambda_{1}\lambda_{2}...\lambda_{N}$.
This can be easily verified by direct calculations in the eigenbasis
of $\hat{A}$.


\paragraph{Exercise 1:}

If an operator $\hat{A}$ has the characteristic polynomial $Q_{\hat{A}}\left(x\right)$
then what is the characteristic polynomial of the operator $a\hat{A}$,
where $a\in\mathbb{K}$ is a scalar?


\subparagraph{Answer: }

\[
Q_{a\hat{A}}\left(x\right)=a^{N}Q_{\hat{A}}\left(a^{-1}x\right).\]
Note that the right side of the above formula does \emph{not} actually
contain $a$ in the denominator because of the prefactor $a^{N}$.\hfill{}$\blacksquare$

The principal use of the characteristic polynomial is to determine
the eigenvalues of linear operators. We remind the reader that a polynomial
$p(x)$ of degree $N$ has $N$ roots if we count each root with its
algebraic multiplicity; the number of different roots may be smaller
than $N$. A root $\lambda$ has \textbf{algebraic} \textbf{multiplicity\index{algebraic multiplicity}}
$k$ if $p(x)$ contains a factor $\left(x-\lambda\right)^{k}$ but
not a factor $\left(x-\lambda\right)^{k+1}$. For example, the polynomial
\[
p(x)=(x-3)^{2}(x-1)=x^{3}-7x^{2}+15x-9\]
has two distinct roots, $x=1$ and $x=3$, and the root $x=3$ has
multiplicity 2. If we count each root with its multiplicity, we will
find that the polynomial $p(x)$ has 3 roots ({}``not all of them
different'' as we would say in this case). 


\paragraph{Theorem 1:}

\textbf{a}) The set of all the roots of the characteristic polynomial
$Q_{\hat{A}}(x)$ is the same as the set of all the eigenvalues of
the operator $\hat{A}$.

\textbf{b}) The \textbf{geometric multiplicity}\index{geometric multiplicity}
of an eigenvalue $\lambda$ (i.e.~the dimension of the space of all
eigenvectors with the given eigenvalue $\lambda$) is at least 1 but
not larger than the algebraic multiplicity of a root $\lambda$ in
the characteristic polynomial.


\subparagraph{Proof:}

\textbf{a}) By definition, an eigenvalue of an operator $\hat{A}$
is such a number $\lambda\in\mathbb{K}$ that there exists at least
one vector $\mathbf{v}\in V$, $\mathbf{v}\neq0$, such that $\hat{A}\mathbf{v}=\lambda\mathbf{v}$.
This equation is equivalent to $(\hat{A}-\lambda\hat{1}_{V})\mathbf{v}=0$.
By Corollary~\ref{sub:Condition-for-solvability}, there would be
no solutions $\mathbf{v}\neq0$ unless $\det(\hat{A}-\lambda\hat{1}_{V})=0$.
It follows that all eigenvalues $\lambda$ must be roots of the characteristic
polynomial. Conversely, if $\lambda$ is a root then $\det(\hat{A}-\lambda\hat{1}_{V})=0$
and hence the vector equation $(\hat{A}-\lambda\hat{1}_{V})\mathbf{v}=0$
will have at least one nonzero solution $\mathbf{v}$ (see Theorem~2
in Sec.~\ref{sub:Condition-for-solvability}).

\textbf{b}) Suppose $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
is a basis in the eigenspace of eigenvalue $\lambda_{0}$. We need
to show that $\lambda_{0}$ is a root of $Q_{\hat{A}}(x)$ with multiplicity
at least $k$. We may obtain a basis in the space $V$ as $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k},\mathbf{e}_{k+1},...,\mathbf{e}_{N}\right\} $
by adding suitable new vectors $\left\{ \mathbf{e}_{j}\right\} $,
$j=k+1$, ..., $N$. Now compute the characteristic polynomial:\begin{align*}
 & Q_{\hat{A}}(x)(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N})\\
 & =(\hat{A}-x\hat{1})\mathbf{v}_{1}\wedge...\wedge(\hat{A}-x\hat{1})\mathbf{v}_{k}\\
 & \qquad\wedge(\hat{A}-x\hat{1})\mathbf{e}_{k+1}\wedge...\wedge(\hat{A}-x\hat{1})\mathbf{e}_{N}\\
 & =\left(\lambda_{0}-x\right)^{k}\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge(\hat{A}-x\hat{1})\mathbf{e}_{k+1}\wedge...\wedge(\hat{A}-x\hat{1})\mathbf{e}_{N}.\end{align*}
It follows that $Q_{\hat{A}}(x)$ contains the factor $\left(\lambda_{0}-x\right)^{k}$,
which means that $\lambda_{0}$ is a root of $Q_{\hat{A}}(x)$ of
multiplicity at least $k$.\hfill{}$\blacksquare$


\paragraph{Remark:}

If an operator's characteristic polynomial has a root $\lambda_{0}$
of algebraic multiplicity $k$, it may or may not have a $k$-dimen\-sion\-al
eigenspace for the eigenvalue $\lambda_{0}$. We only know that $\lambda_{0}$
is an eigenvalue, i.e.~that the eigenspace is at least one-dimen\-sion\-al.
\hfill{}$\blacksquare$

Theorem~1 shows that all the eigenvalues $\lambda$ of an operator
$\hat{A}$ can be computed as roots of the equation $Q_{\hat{A}}(\lambda)=0$,
which is called the \textbf{characteristic equation}\index{characteristic equation}
for the operator $\hat{A}$.

Now we will demonstrate that the coefficients of the characteristic
polynomial $Q_{\hat{A}}(x)$ are related in a simple way to the operators
$\wedge^{N}\hat{A}^{k}$. First we need an auxiliary calculation to
derive an explicit formula for determinants of operators of the form
$\hat{A}-\lambda\hat{1}_{V}$.


\paragraph{Lemma 1:}

For any $\hat{A}\in\textrm{End }V$, we have\[
\wedge^{N}(\hat{A}+\hat{1}_{V})^{N}=\sum_{r=0}^{N}(\wedge^{N}\hat{A}^{r}).\]
 More generally, for $0\leq q\leq p\leq N$, we have\begin{equation}
\wedge^{p}(\hat{A}+\hat{1}_{V})^{q}=\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r}).\label{eq:a+1 formula}\end{equation}



\subparagraph{Proof:}

I first give some examples, then prove the most useful case $p=q$,
and then show a proof of Eq.~(\ref{eq:a+1 formula}) for arbitrary
$p$ and $q$. 

For $p=q=2$, we compute\begin{align*}
\wedge^{2}(\hat{A}+\hat{1}_{V})^{2}\mathbf{a}\wedge\mathbf{b} & =(\hat{A}+\hat{1}_{V})\mathbf{a}\wedge(\hat{A}+\hat{1}_{V})\mathbf{b}\\
 & =\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}+\hat{A}\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\hat{A}\mathbf{b}+\mathbf{a}\wedge\mathbf{b}\\
 & =[\wedge^{2}\hat{A}^{2}+\wedge^{2}\hat{A}^{1}+\wedge^{2}\hat{A}^{0}]\left(\mathbf{a}\wedge\mathbf{b}\right).\end{align*}
This can be easily generalized to arbitrary $p=q$: The action of
the operator $\wedge^{p}(\hat{A}+\hat{1}_{V})^{p}$ on $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{p}$
is\[
\wedge^{p}(\hat{A}+\hat{1}_{V})^{p}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{p}=(\hat{A}+\hat{1}_{V})\mathbf{e}_{1}\wedge...\wedge(\hat{A}+\hat{1}_{V})\mathbf{e}_{p},\]
and we can expand the brackets to find first \emph{one} term with
$p$ operators $\hat{A}$, then $p$ terms with $\left(p-1\right)$
operators $\hat{A}$, etc., and finally one term with no operators
$\hat{A}$ acting on the vectors $\mathbf{e}_{j}$. All terms which
contain $r$ operators $\hat{A}$ (with $0\leq r\leq p$) are those
appearing in the definition of the operator $\wedge^{p}\hat{A}^{r}$.
Therefore \[
\wedge^{p}(\hat{A}+\hat{1}_{V})^{p}=\sum_{r=0}^{p}(\wedge^{p}\hat{A}^{r}).\]
This is precisely the formula~(\ref{eq:a+1 formula}) because in
the particular case $p=q$ the combinatorial coefficient is trivial,\[
{p-r \choose p-q}={p-r \choose 0}=1.\]


Now we consider the general case $0\leq q\leq p$. First an example:
for $p=2$ and $q=1$, we compute\begin{align*}
\wedge^{2}(\hat{A}+\hat{1}_{V})^{1}\mathbf{a}\wedge\mathbf{b} & =(\hat{A}+\hat{1}_{V})\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge(\hat{A}+\hat{1}_{V})\mathbf{b}\\
 & =2\mathbf{a}\wedge\mathbf{b}+\hat{A}\mathbf{a}\wedge\mathbf{b}+\mathbf{a}\wedge\hat{A}\mathbf{b}\\
 & =\left[{\textstyle {2 \choose 1}}(\wedge^{2}\hat{A}^{0})+{\textstyle {2 \choose 0}}(\wedge^{2}\hat{A}^{1})\right]\mathbf{a}\wedge\mathbf{b},\end{align*}
since ${2 \choose 1}=2$ and ${2 \choose 0}=1$.

To prove the formula~(\ref{eq:a+1 formula}) in the general case,
we use induction. The basis of induction consists of the trivial case
($p\geq0$, $q=0$) where all operators $\wedge^{0}\hat{A}^{p}$ with
$p\geq1$ are zero operators, and of the case $p=q$, which was already
proved. Now we will prove the induction step $\left(p,q\right)\&\left(p,q+1\right)\Rightarrow\left(p+1,q+1\right)$.
Figure~\ref{fig:Deriving-Lemma-1} indicates why this induction step
is sufficient to prove the statement for all $0\leq q\leq p\leq N$.

Let $\mathbf{v}\in V$ be an arbitrary vector and $\omega\in\wedge^{p}V$
be an arbitrary tensor. The induction step is proved by the following
chain of equations,\begin{align*}
 & \wedge^{p+1}(\hat{A}+\hat{1}_{V})^{q+1}\left(\mathbf{v}\wedge\omega\right)\\
 & ^{(1)}=(\hat{A}+\hat{1}_{V})\mathbf{v}\wedge\left[\wedge^{p}(\hat{A}+\hat{1}_{V})^{q}\omega\right]+\mathbf{v}\wedge\left[\wedge^{p}(\hat{A}+\hat{1}_{V})^{q+1}\omega\right]\\
 & ^{(2)}=\hat{A}\mathbf{v}\wedge\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r})\omega+\mathbf{v}\wedge\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r})\omega\\
 & \qquad+\mathbf{v}\wedge\sum_{r=0}^{q+1}{p-r \choose p-q-1}(\wedge^{p}\hat{A}^{r})\omega\\
 & ^{(3)}=\hat{A}\mathbf{v}\wedge\sum_{k=1}^{q+1}{p-k+1 \choose p-q}(\wedge^{p}\hat{A}^{k-1})\omega\\
 & \qquad+\mathbf{v}\wedge\sum_{r=0}^{q+1}\left[{p-r \choose p-q-1}+{p-r \choose p-q}\right](\wedge^{p}\hat{A}^{r})\omega\\
 & ^{(4)}=\sum_{k=0}^{q+1}{p-k+1 \choose p-q}\left\{ \hat{A}\mathbf{v}\wedge\left[\wedge^{p}\hat{A}^{k-1}\omega\right]+\mathbf{v}\wedge\left[\wedge^{p}\hat{A}^{k}\omega\right]\right\} \\
 & ^{(1)}=\sum_{k=0}^{q+1}{p-k+1 \choose p-q}(\wedge^{p+1}\hat{A}^{k})\left(\mathbf{v}\wedge\omega\right),\end{align*}
where $^{(1)}$ is Statement~4 of Sec.~\ref{sub:Extensions-of-an},
$^{(2)}$ uses the induction step assumptions for $\left(p,q\right)$
and $\left(p,q+1\right)$, $^{(3)}$ is the relabeling $r=k-1$ and
rearranging terms (note that the summation over $0\leq r\leq q$ was
formally extended to $0\leq r\leq q+1$ because the term with $r=q+1$
vanishes), and $^{(4)}$ is by the binomial identity\[
{n \choose m-1}+{n \choose m}={n+1 \choose m}\]
and a further relabeling $r\rightarrow k$ in the preceding summation.\hfill{}$\blacksquare$
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\caption{Deriving Lemma~1 by induction. White circles correspond to the basis
of induction. Black circles are reached by induction steps.\label{fig:Deriving-Lemma-1}}

\end{figure}



\paragraph{Corollary:}

For any $\hat{A}\in\textrm{End }V$ and $\alpha\in\mathbb{K}$,\[
\wedge^{p}(\hat{A}+\alpha\hat{1}_{V})^{q}=\sum_{r=0}^{q}\alpha^{q-r}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r}).\]



\subparagraph{Proof:}

By Statement~3 of Sec.~\ref{sub:Extensions-of-an}, $\wedge^{p}(\alpha\hat{A})^{q}=\alpha^{q}(\wedge^{p}\hat{A}^{q})$.
Set $\hat{A}=\alpha\hat{B}$, where $\hat{B}$ is an auxiliary operator,
and compute\begin{align*}
\wedge^{p}(\alpha\hat{B}+\alpha\hat{1}_{V})^{q} & =\alpha^{q}\wedge^{p}(\hat{B}+\hat{1}_{V})^{q}=\alpha^{q}\sum_{r=0}^{q}{p-r \choose p-q}(\wedge^{p}\hat{B}^{r})\\
 & =\sum_{r=0}^{q}\alpha^{q-r}{p-r \choose p-q}(\wedge^{p}(\alpha\hat{B})^{r})\\
 & =\sum_{r=0}^{q}\alpha^{q-r}{p-r \choose p-q}(\wedge^{p}\hat{A}^{r}).\end{align*}
\hfill{}$\blacksquare$


\paragraph{Theorem 2:}

The coefficients $q_{m}(\hat{A})$, $1\leq m\leq N$ of the characteristic
polynomial, defined by \[
Q_{\hat{A}}\left(\lambda\right)=\left(-\lambda\right)^{N}+\sum_{k=0}^{N-1}\left(-1\right)^{k}q_{N-k}(\hat{A})\lambda^{k},\]
are the numbers corresponding to the operators $\wedge^{N}\hat{A}^{m}\in\textrm{End}(\wedge^{N}V)$:\[
q_{m}(\hat{A})\hat{1}_{\wedge^{N}V}=\wedge^{N}\hat{A}^{m}.\]
In particular, $q_{N}(\hat{A})=\det\hat{A}$ and $q_{1}(\hat{A})=\textrm{Tr}\hat{A}$.
More compactly, the statement can be written as\[
Q_{\hat{A}}\left(\lambda\right)\hat{1}_{\wedge^{N}V}=\sum_{k=0}^{N}\left(-\lambda\right)^{N-k}(\wedge^{N}\hat{A}^{k}).\]



\subparagraph{Proof:}

This is now a consequence of Lemma~1 and its Corollary, where we
set $p=q=N$ and obtain\[
\wedge^{N}(\hat{A}-\lambda\hat{1}_{V})^{N}=\sum_{r=0}^{N}\left(-\lambda\right)^{N-r}(\wedge^{N}\hat{A}^{r}).\]
 \hfill{}$\blacksquare$


\paragraph{Exercise 1:}

\label{par:Trace relation1}Show that the characteristic polynomial
of an operator $\hat{A}$ in a \emph{three-dimen\-sion\-al} space
$V$ can be written as\[
Q_{\hat{A}}(\lambda)=\det\hat{A}-{\textstyle \frac{1}{2}}\big[(\text{Tr}\hat{A})^{2}-\text{Tr}(\hat{A}^{2})\big]\lambda+(\text{Tr}\hat{A})\lambda^{2}-\lambda^{3}.\]



\subparagraph{Solution:}

The first and the third coefficients of $Q_{\hat{A}}(\lambda)$ are,
as usual, the determinant and the trace of $\hat{A}$. The second
coefficient is equal to $-{\wedge^{3}\hat{A}^{2}}$, so we need to
show that\[
\wedge^{3}\hat{A}^{2}=\frac{1}{2}\big[(\text{Tr}\hat{A})^{2}-\text{Tr}(\hat{A}^{2})\big].\]
We apply the operator $\wedge^{3}\hat{A}^{1}$ twice to a tensor $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
and calculate:\begin{align*}
 & (\text{Tr}\hat{A})^{2}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=(\wedge^{3}\hat{A}^{1})(\wedge^{3}\hat{A}^{1})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\\
 & =(\wedge^{3}\hat{A}^{1})(\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c})\\
 & =\hat{A}^{2}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+2\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}^{2}\mathbf{b}\wedge\mathbf{c}\\
 & +2\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}+2\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}+\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}^{2}\mathbf{c}\\
 & =\big[\text{Tr}(\hat{A}^{2})+2\wedge^{3}\hat{A}^{2}\big]\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}.\end{align*}
Then the desired formula follows.\hfill{}$\blacksquare$


\paragraph{Exercise 2 (general trace relations):}

\index{trace relations}Generalize the result of Exercise~1 to $N$
dimensions:

a) Show that \[
\wedge^{N}\hat{A}^{2}={\textstyle \frac{1}{2}}\big[(\text{Tr}\hat{A})^{2}-\text{Tr}(\hat{A}^{2})\big].\]


b){*} Show that all coefficients $\wedge^{N}\hat{A}^{k}$ ($k=1,...,N$)
can be expressed as polynomials in $\text{Tr}\hat{A}$, $\text{Tr}(\hat{A}^{2})$,
..., $\text{Tr}(\hat{A}^{N})$.

\emph{Hint}: Define a {}``mixed'' operator $\wedge^{N}(\hat{A}^{n})^{j}\hat{A}^{k}$
as a sum of exterior products containing $j$ times $\hat{A}^{n}$
and $k$ times $\hat{A}$; for example,\begin{align*}
 & \big[{\wedge^{3}(\hat{A}^{2})^{1}\hat{A}^{1}}\big]\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\equiv\hat{A}^{2}\mathbf{a}\wedge(\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{b}\wedge\hat{A}\mathbf{c})\\
 & +\hat{A}\mathbf{a}\wedge(\hat{A}^{2}\mathbf{b}\wedge\mathbf{c}+\mathbf{b}\wedge\hat{A}^{2}\mathbf{c})+\mathbf{a}\wedge(\hat{A}^{2}\mathbf{b}\wedge\hat{A}\mathbf{c}+\hat{A}\mathbf{b}\wedge\hat{A}^{2}\mathbf{c}).\end{align*}
By applying several operators $\wedge^{N}\hat{A}^{k}$ and $\text{Tr}(\hat{A}^{k})$
to an exterior product, derive identities connecting these operators
and $\wedge^{N}\hat{A}^{k}$: \begin{align*}
(\wedge^{N}\hat{A}^{1})(\wedge^{N}\hat{A}^{k}) & =(k+1)\wedge^{N}\hat{A}^{k+1}+\wedge^{N}(\hat{A}^{2})^{1}\hat{A}^{k-1},\\
\text{Tr}(\hat{A}^{k})\text{Tr}(\hat{A}) & =\text{Tr}(\hat{A}^{k+1})+\wedge^{N}(\hat{A}^{k})^{1}\hat{A}^{1},\end{align*}
for $k=2,...,N-1$. Using these identities, show by induction that
operators of the form $\wedge^{N}\hat{A}^{k}$ ($k=1,...,N$) can
be all expressed through $\text{Tr}\hat{A}$, $\text{Tr}(\hat{A}^{2})$,
..., $\text{Tr}(\hat{A}^{N-1})$ as polynomials. 

As an example, here is the trace relation for $\wedge^{N}\hat{A}^{3}$:\[
\wedge^{N}\hat{A}^{3}={\textstyle \frac{1}{6}}(\text{Tr}\hat{A})^{3}-{\textstyle \frac{1}{2}}(\text{Tr}\hat{A})\text{Tr}(\hat{A}^{2})+{\textstyle \frac{1}{3}}\text{Tr}(\hat{A}^{3}).\]
Note that in three dimensions this formula directly yields the determinant
of $\hat{A}$ expressed through traces of powers of $\hat{A}$. Below
(Sec.~\ref{sub:General-trace-relations}) we will derive a formula
for the general trace relation.\hfill{}$\blacksquare$

Since operators in $\wedge^{N}V$ act as multiplication by a number,
it is convenient to omit $\hat{1}_{\wedge^{N}V}$ and regard expressions
such as $\wedge^{N}\hat{A}^{k}$ as simply numbers. More formally,
there is a canonical isomorphism between $\textrm{End}\left(\wedge^{N}V\right)$
and $\mathbb{K}$ (even though there is no canonical isomorphism between
$\wedge^{N}V$ and $\mathbb{K}$).


\paragraph{Exercise 3:}

Give an explicit formula for the canonical isomorphism: a) between
$\left(\wedge^{k}V\right)^{*}$ and $\wedge^{k}(V^{*})$; b) between
$\textrm{End}\left(\wedge^{N}V\right)$ and $\mathbb{K}$. 


\subparagraph{Answer:}

a) A tensor $\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{k}^{*}\in\wedge^{k}(V^{*})$
acts as a linear function on a tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$
by the formula\[
\left(\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{k}^{*}\right)\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right)\equiv\det(A_{jk}),\]
where $A_{jk}$ is the square matrix defined by $A_{jk}\equiv\mathbf{f}_{j}^{*}(\mathbf{v}_{k})$.

b) Since $(\wedge^{N}V)^{*}$ is canonically isomorphic to $\wedge^{N}(V^{*})$,
an operator $\hat{N}\in\textrm{End}\left(\wedge^{N}V\right)$ can
be represented by a tensor \[
\hat{N}=\left(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\right)\otimes\left(\mathbf{f}_{1}^{*}\wedge...\wedge\mathbf{f}_{N}^{*}\right)\in\left(\wedge^{N}V\right)\otimes\left(\wedge^{N}V^{*}\right).\]
The isomorphism maps $\hat{N}$ into the number $\det(A_{jk})$, where
$A_{jk}$ is the square matrix defined by $A_{jk}\equiv\mathbf{f}_{j}^{*}(\mathbf{v}_{k})$.\hfill{}$\blacksquare$


\paragraph{Exercise 4:}

Show that an operator $\hat{A}\in\textrm{End }V$ and its canonical
transpose operator $\hat{A}^{T}\in\textrm{End }V^{*}$ have the same
characteristic polynomials.

\emph{Hint}: Consider the operator $(\hat{A}-x\hat{1}_{V})^{T}$.\hfill{}$\blacksquare$


\paragraph{Exercise 5:}

Given an operator $\hat{A}$ of rank $r<N$, show that $\wedge^{N}\hat{A}^{k}=0$
for $k\geq r+1$ but $\wedge^{N}\hat{A}^{r}\neq0$.

\emph{Hint}: If $\hat{A}$ has rank $r<N$ then $\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{r+1}=0$
for any set of vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r+1}\right\} $. 


\subsection{Nilpotent operators}

There are many operators with the same characteristic polynomial.
In particular, there are many operators which have the simplest possible
characteristic polynomial, $Q_{0}(x)=\left(-x\right)^{N}$. Note that
the zero operator has this characteristic polynomial. We will now
see how to describe all such operators $\hat{A}$ that $Q_{\hat{A}}(x)=\left(-x\right)^{N}$.


\paragraph{Definition:}

An operator $\hat{A}\in\textrm{End }V$ is \textbf{nilpotent}\index{nilpotent}
if there exists an integer $p\geq1$ such that $(\hat{A})^{p}=\hat{0}$,
where $\hat{0}$ is the zero operator and $(\hat{A})^{p}$ is the
$p$-th power of the operator $\hat{A}$.


\paragraph{Examples:}

a) The operator defined by the matrix $\left(\begin{array}{cc}
0 & \alpha\\
0 & 0\end{array}\right)$ in some basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $ is
nilpotent for any number $\alpha$. This operator can be expressed
in tensor form as $\alpha\mathbf{e}_{1}\otimes\mathbf{e}_{2}^{*}$.

b) In the space of polynomials of degree at most $n$ in the variable
$x$, the linear operator $\frac{d}{dx}$ is nilpotent because the
$(n+1)$-th power of this operator will evaluate the $\left(n+1\right)$-th
derivative, which is zero on any polynomial of degree at most $n$.\hfill{}$\blacksquare$


\paragraph{Statement:}

If $\hat{A}$ is a nilpotent operator then $\hat{Q}_{\hat{A}}\left(x\right)=\left(-x\right)^{N}$.


\subparagraph{Proof:}

First an example: suppose that $N=2$ and that $\hat{A}^{3}=0$. By
Theorem~2, the coefficients of the characteristic polynomial of the
operator $\hat{A}$ correspond to the operators $\wedge^{N}\hat{A}^{k}$.
We need to show that all these operators are equal to zero.

Consider, for instance, $\wedge^{2}\hat{A}^{2}=q_{2}\hat{1}_{\wedge^{2}V}$.
This operator raised to the power $3$ acts on a tensor $\mathbf{a}\wedge\mathbf{b}\in\wedge^{2}V$
as\[
{\big({\wedge^{2}\hat{A}^{2}}\big)}^{3}\mathbf{a}\wedge\mathbf{b}=\hat{A}^{3}\mathbf{a}\wedge\hat{A}^{3}\mathbf{b}=0\]
since $\hat{A}^{3}=0$. On the other hand, \[
{\big({\wedge^{2}\hat{A}^{2}}\big)}^{3}\mathbf{a}\wedge\mathbf{b}=\left(q_{2}\right)^{3}\mathbf{a}\wedge\mathbf{b}.\]
 Therefore $q_{2}=0$. Now consider $\wedge^{2}\hat{A}^{1}$ to the
power $3$,\[
{\big({\wedge^{2}\hat{A}^{1}}\big)}^{3}\mathbf{a}\wedge\mathbf{b}=\hat{A}^{2}\mathbf{a}\wedge\hat{A}\mathbf{b}+\hat{A}\mathbf{a}\wedge\hat{A}^{2}\mathbf{b}\]
(all other terms vanish because $\hat{A}^{3}=0$). It is clear that
the operator $\wedge^{2}\hat{A}^{1}$ to the power $6$ vanishes because
there will be at least a third power of $\hat{A}$ acting on each
vector. Therefore $q_{1}=0$ as well.

Now a general argument. Let $p$ be a positive integer such that $\hat{A}^{p}=0$,
and consider the $(pN)$-th power of the operator $\wedge^{N}\hat{A}^{k}$
for some $k\geq1$. We will prove that $(\wedge^{N}\hat{A}^{k})^{pN}=\hat{0}$.
Since $\wedge^{N}\hat{A}^{k}$ is a multiplication by a number, from
$(\wedge^{N}\hat{A}^{k})^{pN}=0$ it will follow that $\wedge^{N}\hat{A}^{k}$
is a zero operator in $\wedge^{N}V$ for all $k\geq1$. If all the
coefficients $q_{k}$ of the characteristic polynomial vanish, we
will have $Q_{\hat{A}}\left(x\right)=\left(-x\right)^{N}$.

To prove that $(\wedge^{N}\hat{A}^{k})^{pN}=\hat{0}$, consider the
action of the operator $(\wedge^{N}\hat{A}^{k})^{pN}$ on a tensor
$\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\in\wedge^{N}V$. By definition
of $\wedge^{N}\hat{A}^{k}$, this operator is a sum of terms of the
form\[
\hat{A}^{s_{1}}\mathbf{e}_{1}\wedge...\wedge\hat{A}^{s_{N}}\mathbf{e}_{N},\]
where $s_{j}=0$ or $s_{j}=1$ are chosen such that $\sum_{j=1}^{N}s_{j}=k$.
Therefore, the same operator raised to the power $pN$ is expressed
as\begin{equation}
(\wedge^{N}\hat{A}^{k})^{pN}=\sum_{(s_{1},...,s_{n})}\hat{A}^{s_{1}}\mathbf{e}_{1}\wedge...\wedge\hat{A}^{s_{N}}\mathbf{e}_{N},\label{eq:sum pN}\end{equation}
where now $s_{j}$ are non-negative integers, $0\leq s_{j}\leq pN$,
such that $\sum_{j=1}^{N}s_{j}=kpN$. It is impossible that all $s_{j}$
in Eq.~(\ref{eq:sum pN}) are less than $p$, because then we would
have $\sum_{j=1}^{N}s_{j}<Np$, which would contradict the condition
$\sum_{j=1}^{N}s_{j}=kpN$ (since $k\geq1$ by construction). So each
term of the sum in Eq.~(\ref{eq:sum pN}) contains at least a $p$-th
power of $\hat{A}$. Since $(\hat{A})^{p}=0$, each term in the sum
in Eq.~(\ref{eq:sum pN}) vanishes. Hence $(\wedge^{N}\hat{A}^{k})^{pN}=0$
as required.\hfill{}$\blacksquare$


\paragraph{Remark:}

The converse statement is also true: If the characteristic polynomial
of an operator $\hat{A}$ is $Q_{\hat{A}}(x)=\left(-x\right)^{N}$
then $\hat{A}$ is nilpotent. This follows easily from the Cayley-Hamilton
theorem (see below), which states that $Q_{\hat{A}}(\hat{A})=0$,
so we obtain immediately $(\hat{A})^{N}=0$, i.e.~the operator $\hat{A}$
is nilpotent. We find that one cannot distinguish a nilpotent operator
from the zero operator by looking only at the characteristic polynomial.


\chapter{Advanced applications}

In this chapter we work in an $N$-dimen\-sion\-al vector space
over a number field $\mathbb{K}$. 


\section{The space $\wedge^{N-1}V$}

So far we have been using only the top exterior power, $\wedge^{N}V$.
The next-to-top exterior power space, $\wedge^{N-1}V$, has the same
dimension as $V$ and is therefore quite useful since it is a space,
in some special sense, associated with $V$. We will now find several
important uses of this space. 


\subsection{Exterior transposition of operators\label{sub:The-next-to-top-exterior}}

We have seen that a linear operator in the space $\wedge^{N}V$ is
equivalent to multiplication by a number. We can reformulate this
statement by saying that the space of linear operators in $\wedge^{N}V$
is canonically isomorphic to $\mathbb{K}$. Similarly, the space of
linear operators in $\wedge^{N-1}V$ is canonically isomorphic to
$\text{End}\, V$, the space of linear operators in $V$. The isomorphism
map will be denoted by the superscript $^{\wedge T}$. We will begin
by defining this map explicitly.


\paragraph{Question:}

What is a nontrivial example of a linear operator in $\wedge^{N-1}V$?


\subparagraph{Answer:}

Any operator of the form $\wedge^{N-1}\hat{A}^{p}$ with $1\leq p\leq N-1$
and $\hat{A}\in\text{End}\, V$. In this book, operators constructed
in this way will be the only instance of operators in $\wedge^{N-1}V$. 


\paragraph{Definition:}

If $\hat{X}\in\textrm{End}\, V$ is a given linear operator then the
\textbf{exterior} \textbf{transpose}\index{exterior transposition}
operator\[
\hat{X}^{\wedge T}\in\textrm{End}\left(\wedge^{N-1}V\right)\]
 is canonically defined by the formula \[
\big(\hat{X}^{\wedge T}\omega\big)\wedge\mathbf{v}\equiv\omega\wedge\hat{X}\mathbf{v},\]
which must hold for all $\omega\in\wedge^{N-1}V$ and all $\mathbf{v}\in V$.
If $\hat{Y}\in\text{End}(\wedge^{N-1}V)$ is a linear operator then
its exterior transpose $\hat{Y}^{\wedge T}\in\text{End}\, V$ is defined
by the formula\[
\omega\wedge\big(\hat{Y}^{\wedge T}\mathbf{v}\big)\equiv(\hat{Y}\omega)\wedge\mathbf{v},\quad\forall\omega\in\wedge^{N-1}V,\;\mathbf{v}\in V.\]


We need to check that the definition makes sense, i.e.~that the operators
defined by these formulas exist and are uniquely defined.


\paragraph{Statement 1:}

The exterior transpose operators are well-defined, i.e.~they exist,
are unique, and are linear operators in the respective spaces. The
exterior transposition has the linearity property\[
(\hat{A}+\lambda\hat{B})^{\wedge T}=\hat{A}^{\wedge T}+\lambda\hat{B}^{\wedge T}.\]
If $\hat{X}\in\textrm{End}\, V$ is an exterior transpose of $\hat{Y}\in\text{End}\left(\wedge^{N-1}V\right)$,
i.e.~$\hat{X}=\hat{Y}^{\wedge T}$, then also conversely $\hat{Y}=\hat{X}^{\wedge T}$.


\subparagraph{Proof:}

We need to show that the formula \[
\big(\hat{X}^{\wedge T}\omega\big)\wedge\mathbf{v}\equiv\omega\wedge\hat{X}\mathbf{v}\]
actually defines an operator $\hat{X}^{\wedge T}$ uniquely when $\hat{X}\in\textrm{End}\, V$
is a given operator. Let us fix a tensor $\omega\in\wedge^{N-1}V$;
to find $\hat{X}^{\wedge T}\omega$ we need to determine a tensor
$\psi\in\wedge^{N-1}V$ such that $\psi\wedge\mathbf{v}=\omega\wedge\hat{X}\mathbf{v}$
for all $\mathbf{v}\in V$. When we find such a $\psi$, we will also
show that it is unique; then we will have shown that $\hat{X}^{\wedge T}\omega\equiv\psi$
is well-defined.

An explicit computation of the tensor $\psi$ can be performed in
terms of a basis $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
in $V$. A basis in the space $\wedge^{N-1}V$ is formed by the set
of $N$ tensors of the form $\boldsymbol{\omega}_{i}\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{i-1}\wedge\mathbf{e}_{i+1}\wedge...\wedge\mathbf{e}_{N}$,
that is, $\boldsymbol{\omega}_{i}$ is the exterior product of the
basis vectors without the vector $\mathbf{e}_{i}$ ($1\leq i\leq N$).
In the notation of Sec.~\ref{sub:Computing-the-dual}, we have $\boldsymbol{\omega}_{i}=*(\mathbf{e}_{i})(-1)^{i-1}$.
It is sufficient to determine the components of $\psi$ in this basis,\[
\psi=\sum_{i=1}^{N}c_{i}\boldsymbol{\omega}_{i}.\]
 Taking the exterior product of $\psi$ with $\mathbf{e}_{i}$, we
find that only the term with $c_{i}$ survives,\[
\psi\wedge\mathbf{e}_{i}=(-1)^{N-i}c_{i}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]
Therefore, the coefficient $c_{i}$ is uniquely determined from the
condition \[
c_{i}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=(-1)^{N-i}\psi\wedge\mathbf{e}_{i}{\lyxbuildrel!\above=}(-1)^{N-i}\omega\wedge\hat{X}\mathbf{e}_{i}.\]
Since the operator $\hat{X}$ is given, we know all $\hat{X}\mathbf{e}_{i}$
and can compute $\omega\wedge\hat{X}\mathbf{e}_{i}\in\wedge^{N}V$.
So we find that every coefficient $c_{i}$ is uniquely determined.

It is seen from the above formula that each coefficient $c_{i}$ depends
linearly on the operator $\hat{X}$. Therefore the linearity property
holds,\[
(\hat{A}+\lambda\hat{B})^{\wedge T}=\hat{A}^{\wedge T}+\lambda\hat{B}^{\wedge T}.\]


The linearity of the operator $\hat{X}^{\wedge T}$ follows straightforwardly
from the identity\begin{align*}
\big(\hat{X}^{\wedge T}(\omega+\lambda\omega^{\prime})\big)\wedge\mathbf{v} & {\lyxbuildrel!\above=}\left(\omega+\lambda\omega^{\prime}\right)\wedge\hat{X}\mathbf{v}\\
 & =\omega\wedge\hat{X}\mathbf{v}+\lambda\omega^{\prime}\wedge\hat{X}\mathbf{v}\\
 & {\lyxbuildrel!\above=}(\hat{X}^{\wedge T}\omega)\wedge\mathbf{v}+\lambda(\hat{X}^{\wedge T}\omega^{\prime})\wedge\mathbf{v}.\end{align*}
In the same way we prove the existence, the uniqueness, and the linearity
of the exterior transpose of an operator from $\text{End}(\wedge^{N-1}V)$.
It is then clear that the transpose of the transpose is again the
original operator. Details left as exercise.\hfill{}$\blacksquare$


\paragraph{Remark:}

Note that the space $\wedge^{N-1}V$ is has the same dimension as
$V$ but is \emph{not} canonically isomorphic to $V$. Rather, an
element $\psi\in\wedge^{N-1}V$ naturally acts by exterior multiplication
on a vector $\mathbf{v}\in V$ and yields a tensor from $\wedge^{N}V$,
i.e.~$\psi$ is a linear map $V\rightarrow\wedge^{N}V$, and we may
express this as $\wedge^{N-1}V\cong V^{*}\otimes\wedge^{N}V$. Nevertheless,
as we will now show, the exterior transpose map allows us to establish
that the space of linear operators in $\wedge^{N-1}V$ is canonically
isomorphic to the space of linear operators in $V$. We will use this
isomorphism extensively in the following sections. A formal statement
follows.


\paragraph{Statement~2:}

The spaces $\textrm{End}(\wedge^{N-1}V)$ and $\textrm{End}\, V$
are canonically isomorphic. 


\subparagraph{Proof:}

The map $^{\wedge T}$ between these spaces is one-to-one since no
two different operators are mapped to the same operator. If two different
operators $\hat{A},\hat{B}$ had the same exterior transpose, we would
have $(\hat{A}-\hat{B})^{\wedge T}=0$ and yet $\hat{A}-\hat{B}\neq0$.
There exists at least one $\omega\in\wedge^{N-1}V$ and $\mathbf{v}\in V$
such that $\omega\wedge(\hat{A}-\hat{B})\mathbf{v}\neq0$, and then
\[
0=\big((\hat{A}-\hat{B})^{\wedge T}\omega\big)\wedge\mathbf{v}=\omega\wedge(\hat{A}-\hat{B})\mathbf{v}\neq0,\]
which is a contradiction. The map $^{\wedge T}$ is linear (Statement~1).
Therefore, it is an isomorphism between the vector spaces $\textrm{End}\left(\wedge^{N-1}V\right)$
and $\textrm{End}\, V$.\hfill{}$\blacksquare$

A generalization of Statement~1 is the following.


\paragraph{Exercise 1: }

Show that the spaces $\textrm{End}(\wedge^{k}V)$ and $\textrm{End}(\wedge^{N-k}V)$
are canonically isomorphic ($1\leq k<N$). Specifically, if $\hat{X}\in\textrm{End}(\wedge^{k}V)$
then the linear operator $\hat{X}^{\wedge T}\in\textrm{End}(\wedge^{N-k}V)$
is uniquely defined by the formula \[
\big(\hat{X}^{\wedge T}\omega_{N-k}\big)\wedge\omega_{k}\equiv\omega_{N-k}\wedge\hat{X}\omega_{k},\]
which must hold for arbitrary tensors $\omega_{k}\in\wedge^{k}V$,
$\omega_{N-k}\in\wedge^{N-k}V$.


\paragraph{Remark:}

It follows that the exterior transpose of $\wedge^{N}\hat{A}^{N}\in\text{End}\left(\wedge^{N}V\right)$
is mapped by the canonical isomorphism to an element of $\text{End}\,\mathbb{K}$,
that is, a multiplication by a number. This is precisely the map we
have been using in the previous section to define the determinant.
In this notation, we have\[
\det\hat{A}\equiv\big({\wedge^{N}\hat{A}^{N}}{\big)}^{\wedge T}.\]
Here we identify $\text{End}\,\mathbb{K}$ with $\mathbb{K}$.


\paragraph{Exercise 2:}

For any operators $\hat{A},\hat{B}\in\text{End}\left(\wedge^{k}V\right)$,
show that\[
(\hat{A}\hat{B})^{\wedge T}=\hat{B}^{\wedge T}\hat{A}^{\wedge T}.\]



\subsection{{*} Index notation\label{sub:-Index-notation for exterior transposition}}

Let us see how the exterior transposition\index{exterior transposition!in index notation}
is expressed in the index notation. (Below we will not use the resulting
formulas.)

If an operator $\hat{A}\in\text{End}\, V$ is given in the index notation
by a matrix $A_{i}^{j}$, the exterior transpose $\hat{A}^{\wedge T}\in\text{End}\left(\wedge^{N-1}V\right)$
is represented by an array $B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}$,
which is totally antisymmetric with respect to its $N-1$ lower and
upper indices separately. The action of the operator $\hat{B}\equiv\hat{A}^{\wedge T}$
on a tensor $\psi\in\wedge^{N-1}V$ is written in the index notation
as\[
\sum_{i_{s}}B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}\psi^{i_{1}...i_{N-1}}.\]
(Here we did not introduce any combinatorial factors; the factor $\left(N-1\right)!$
will therefore appear at the end of the calculation.)

By definition of the exterior transpose, for any vector $\mathbf{v}\in V$
and for any $\psi\in\wedge^{N-1}V$ we must have\[
(\hat{B}\psi)\wedge\mathbf{v}=\psi\wedge(\hat{A}\mathbf{v}).\]
Using the index representation of the exterior product through the
projection operators $\hat{E}$ (see Sec.~\ref{sub:Exterior-product-in-index}),
we represent the equation above in the the index notation as \begin{align*}
 & \sum_{i,i_{s},j_{s}}E_{j_{1}...j_{N-1}i}^{k_{1}...k_{N}}(B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}\psi^{i_{1}...i_{N-1}})v^{i}\\
 & \;=\sum_{j_{s},i,j}E_{j_{1}...j_{N-1}j}^{k_{1}...k_{N}}\psi^{j_{1}...j_{N-1}}(A_{i}^{j}v^{i}).\end{align*}
We may simplify this to \begin{align*}
 & \sum_{i,i_{s},j_{s}}\varepsilon_{j_{1}...j_{N-1}i}(B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}\psi^{i_{1}...i_{N-1}})v^{i}\\
 & \;=\sum_{i_{s},i,j}\varepsilon_{i_{1}...i_{N-1}j}\psi^{i_{1}...i_{N-1}}(A_{i}^{j}v^{i}),\end{align*}
because $E_{j_{1}...j_{N}}^{k_{1}...k_{N}}=\varepsilon_{j_{1}...j_{N}}\varepsilon^{k_{1}...k_{N}}$,
and we may cancel the common factor $\varepsilon^{k_{1}...k_{N}}$
whose indices are not being summed over. 

Since the equation above should hold for arbitrary $\psi^{i_{1}...i_{N-1}}$
and $v^{i}$, the equation with the corresponding \emph{free} indices
$i_{s}$ and $i$ should hold: \begin{equation}
\sum_{j_{s}}\varepsilon_{j_{1}...j_{N-1}i}B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}=\sum_{j}\varepsilon_{i_{1}...i_{N-1}j}A_{i}^{j}.\label{eq:B A connection}\end{equation}
This equation can be solved for $B$ as follows. We note that the
$\varepsilon$ symbol in the left-hand side of Eq.~(\ref{eq:B A connection})
has one free index, $i$. Let us therefore multiply with an additional
$\varepsilon$ and sum over that index; this will yield the projection
operator $\hat{E}$ (see Sec.~\ref{sub:Exterior-product-in-index}).
Namely, we multiply both sides of Eq.~(\ref{eq:B A connection})
with $\varepsilon^{k_{1}...k_{N-1}i}$ and sum over $i$:\begin{align*}
\sum_{j,i}\varepsilon^{k_{1}...k_{N-1}i}\varepsilon_{i_{1}...i_{N-1}j}A_{i}^{j} & =\sum_{j_{s},i}\varepsilon^{k_{1}...k_{N-1}i}\varepsilon_{j_{1}...j_{N-1}i}B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}}\\
 & =\sum_{j_{s}}E_{j_{1}...j_{N-1}}^{k_{1}...k_{N-1}}B_{i_{1}...i_{N-1}}^{j_{1}...j_{N-1}},\end{align*}
where in the last line we used the definition~(\ref{eq:E tilda def})--(\ref{eq:E def})
of the operator $\hat{E}$. Now we note that the right-hand side is
the index representation of the product of the operators $\hat{E}$
and $\hat{B}$ (both operators act in $\wedge^{N-1}V$). The left-hand
side is also an operator in $\wedge^{N-1}V$; denoting this operator
for brevity by $\hat{X}$, we rewrite the equation as\[
\hat{E}\hat{B}=\hat{X}\in\text{End}\left(\wedge^{N-1}V\right).\]
Using the property \[
\hat{E}=(N-1)!\hat{1}_{\wedge^{N-1}V}\]
(see Exercise in Sec.~\ref{sub:Exterior-product-in-index}), we may
solve the equation $\hat{E}\hat{B}=\hat{X}$ for $\hat{B}$ as \[
\hat{B}=\frac{1}{(N-1)!}\hat{X}.\]
Hence, the components of $\hat{B}\equiv\hat{A}^{\wedge T}$ are expressed
as\[
B_{i_{1}...i_{N-1}}^{k_{1}...k_{N-1}}=\frac{1}{(N-1)!}\sum_{j,i}\varepsilon^{k_{1}...k_{N-1}i}\varepsilon_{i_{1}...i_{N-1}j}A_{i}^{j}.\]


An analogous formula holds for the exterior transpose of an operator
in $\wedge^{n}V$, for any $n=2,...,N$. I give the formula without
proof and illustrate it by an example.


\paragraph{Statement:}

If $\hat{A}\in\text{End}\left(\wedge^{n}V\right)$ is given by its
components $A_{i_{1}...i_{n}}^{j_{1}...j_{n}}$ then the components
of $\hat{A}^{\wedge T}$ are\begin{align*}
 & \big(\hat{A}^{\wedge T}\big)_{l_{1}...l_{N-n}}^{k_{1}...k_{N-n}}\\
 & \;=\frac{1}{n!(N-n)!}\sum_{j_{s},i_{s}}\varepsilon^{k_{1}...k_{N-n}i_{1}...i_{n}}\varepsilon_{l_{1}...l_{N-n}j_{1}...j_{n}}A_{i_{1}...i_{n}}^{j_{1}...j_{n}}.\end{align*}



\paragraph{Example:}

Consider the exterior transposition $\hat{A}^{\wedge T}$ of the identity
operator $\hat{A}\equiv\hat{1}_{\wedge^{2}V}$. The components of
the identity operator are given by\[
A_{i_{1}i_{2}}^{j_{1}j_{2}}=\delta_{i_{1}}^{j_{1}}\delta_{i_{2}}^{j_{2}},\]
so the components of $\hat{A}^{\wedge T}$ are\begin{align*}
\big(\hat{A}^{\wedge T}\big)_{l_{1}...l_{N-2}}^{k_{1}...k_{N-2}} & =\frac{1}{2!(N-2)!}\sum_{j_{s},i_{s}}\varepsilon^{k_{1}...k_{N-2}i_{1}i_{2}}\varepsilon_{l_{1}...l_{N-2}j_{1}j_{2}}A_{i_{1}i_{2}}^{j_{1}j_{2}}\\
 & =\frac{1}{2!(N-2)!}\sum_{i_{1},i_{2}}\varepsilon^{k_{1}...k_{N-2}i_{1}i_{2}}\varepsilon_{l_{1}...l_{N-2}i_{1}i_{2}}.\end{align*}
Let us check that this array of components is the same as that representing
the operator $\hat{1}_{\wedge^{N-2}V}$. We note that the expression
above is the same as\[
\frac{1}{\left(N-2\right)!}E_{l_{1}...l_{N-2}}^{k_{1}...k_{N-2}},\]
where the numbers $E_{l_{1}...l_{n}}^{k_{1}...k_{n}}$ are defined
by Eqs.~(\ref{eq:E tilda def})--(\ref{eq:E def}). Since the operator
$\hat{E}$ in $\wedge^{N-2}V$ is equal to $\left(N-2\right)!\hat{1}_{\wedge^{N-2}V}$,
we obtain that\[
\hat{A}^{\wedge T}=\hat{1}_{\wedge^{N-2}V}\]
as required.


\section{Algebraic complement (adjoint) and beyond}

In Sec.~\ref{sub:The-determinant-def} we defined the determinant
and derived various useful properties by considering, essentially,
the exterior transpose of ${\wedge^{N}\hat{A}^{p}}$ with $1\leq p\leq N$
(although we did not introduce this terminology back then). We have
just seen that the exterior transposition can be defined more generally
--- as a map from $\text{End}(\wedge^{k}V)$ to $\text{End}(\wedge^{N-k}V)$.
We will see in this section that the exterior transposition of the
operators ${\wedge^{N-1}\hat{A}^{p}}$ with $1\leq p\leq N-1$ yields
operators acting in $V$ that are quite useful as well.


\subsection{Definition of algebraic complement\label{sub:The-algebraic-complement}}

While we proved that operators like $(\wedge^{N-1}\hat{A}^{p})^{\wedge T}$
are well-defined, we still have not obtained any explicit formulas
for these operators. We will now compute these operators explicitly
because they play an important role in the further development of
the theory. It will turn out that every operator of the form $(\wedge^{N-1}\hat{A}^{p})^{\wedge T}$
is a \emph{polynomial} in $\hat{A}$ with coefficients that are known
if we know the characteristic polynomial of $\hat{A}$. 


\paragraph{Example 1:}

Let us compute $(\wedge^{N-1}\hat{A}^{1})^{\wedge T}$. We consider,
as a first example, a three-dimen\-sion\-al ($N=3$) vector space
$V$ and a linear operator $\hat{A}\in\text{End}\, V$. We are interested
in the operator $(\wedge^{2}\hat{A}^{1})^{\wedge T}$. By definition
of the exterior transpose, \begin{align*}
\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{1})^{\wedge T}\mathbf{c} & =\big((\wedge^{2}\hat{A}^{1})(\mathbf{a}\wedge\mathbf{b})\big)\wedge\mathbf{c}\\
 & =\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}.\end{align*}
We recognize a fragment of the operator $\wedge^{3}\hat{A}^{1}$ and
write \begin{align*}
(\wedge^{3}\hat{A}^{1})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}) & =\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}\\
 & =(\text{Tr}\,\hat{A})\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c},\end{align*}
since this operator acts as multiplication by the trace of $\hat{A}$
(Section~\ref{sub:The-trace}). It follows that\begin{align*}
\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{1})^{\wedge T}\mathbf{c} & =(\text{Tr}\,\hat{A})\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}-\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}\\
 & =\mathbf{a}\wedge\mathbf{b}\wedge\big((\text{Tr}\,\hat{A})\mathbf{c}-\hat{A}\mathbf{c}\big).\end{align*}
Since this must hold for arbitrary $\mathbf{a},\mathbf{b},\mathbf{c}\in V$,
it follows that\[
(\wedge^{2}\hat{A}^{1})^{\wedge T}=(\text{Tr}\,\hat{A})\hat{1}_{V}-\hat{A}.\]
Thus we have computed the operator $(\wedge^{2}\hat{A}^{1})^{\wedge T}$
in terms of $\hat{A}$ and the trace of $\hat{A}$. 


\paragraph{Example 2:}

Let us now consider the operator $(\wedge^{2}\hat{A}^{2})^{\wedge T}$.
We have\[
\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{2})^{\wedge T}\mathbf{c}=\big((\wedge^{2}\hat{A}^{2})(\mathbf{a}\wedge\mathbf{b})\big)\wedge\mathbf{c}=\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}.\]
We recognize a fragment of the operator $\wedge^{3}\hat{A}^{2}$ and
write \[
(\wedge^{3}\hat{A}^{2})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})=\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\mathbf{c}+\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}+\hat{A}\mathbf{a}\wedge\mathbf{b}\wedge\hat{A}\mathbf{c}.\]
Therefore,\begin{align*}
\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{2})^{\wedge T}\mathbf{c} & =(\wedge^{3}\hat{A}^{2})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c})\\
 & -(\mathbf{a}\wedge\hat{A}\mathbf{b}+\hat{A}\mathbf{a}\wedge\mathbf{b})\wedge\hat{A}\mathbf{c}\\
^{(1)}=(\wedge^{3}\hat{A}^{2})(\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}) & -\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{1})^{\wedge T}\hat{A}\mathbf{c}\\
=\mathbf{a}\wedge\mathbf{b}\wedge & \big({\wedge^{3}\hat{A}^{2}}-(\wedge^{2}\hat{A}^{1})^{\wedge T}\hat{A}\big)\mathbf{c},\end{align*}
where $^{(1)}$ used the definition of the operator $(\wedge^{2}\hat{A}^{1})^{\wedge T}$.
It follows that \begin{align*}
(\wedge^{2}\hat{A}^{2})^{\wedge T} & =(\wedge^{3}\hat{A}^{2})\hat{1}_{V}-(\wedge^{2}\hat{A}^{1})^{\wedge T}\hat{A}\\
 & =(\wedge^{3}\hat{A}^{2})\hat{1}_{V}-(\text{Tr}\,\hat{A})\hat{A}+\hat{A}\hat{A}.\end{align*}
Thus we have expressed the operator $(\wedge^{2}\hat{A}^{2})^{\wedge T}$
as a \emph{polynomial} \emph{in} $\hat{A}$. Note that $\wedge^{3}\hat{A}^{2}$
is the second coefficient of the characteristic polynomial of $\hat{A}$.


\paragraph{Exercise~1:}

Consider a three-dimen\-sion\-al space $V$, a linear operator $\hat{A}$,
and show that\[
(\wedge^{2}\hat{A}^{2})^{\wedge T}\hat{A}\mathbf{v}=(\det\hat{A})\mathbf{v},\quad\forall\mathbf{v}\in V.\]


\emph{Hint}: Consider $\mathbf{a}\wedge\mathbf{b}\wedge(\wedge^{2}\hat{A}^{2})^{\wedge T}\hat{A}\mathbf{c}=\hat{A}\mathbf{a}\wedge\hat{A}\mathbf{b}\wedge\hat{A}\mathbf{c}$.\hfill{}$\blacksquare$

These examples are straightforwardly generalized. We will now express
every operator of the form $(\wedge^{N-1}\hat{A}^{p})^{\wedge T}$
as a polynomial in $\hat{A}$. For brevity, we introduce the notation\[
\hat{A}_{(k)}\equiv(\wedge^{N-1}\hat{A}^{N-k})^{\wedge T},\quad1\leq k\leq N-1.\]



\paragraph{Lemma~1:}

For any operator $\hat{A}\in\textrm{End }V$ and for an integer $p$,
$1\leq p\leq N$, the following formula holds as an identity of operators
in $V$:\[
{\big({\wedge^{N-1}\hat{A}^{p-1}}\big)}^{\wedge T}\hat{A}+{\big({\wedge^{N-1}\hat{A}^{p}}\big)}^{\wedge T}=(\wedge^{N}\hat{A}^{p})\hat{1}_{V}.\]
Here, in order to provide a meaning for this formula in cases $p=1$
and $p=N$, we define $\wedge^{N-1}\hat{A}^{N}\equiv\hat{0}$ and
$\wedge^{N-1}\hat{A}^{0}\equiv\hat{1}$. In the shorter notation,
this is\[
\hat{A}_{(k)}\hat{A}+\hat{A}_{(k-1)}=(\wedge^{N}\hat{A}^{N-k+1})\hat{1}_{V}.\]
Note that $\wedge^{N}\hat{A}^{N-k+1}\equiv q_{k-1}$, where $q_{j}$
are the coefficients of the characteristic polynomial of $\hat{A}$
(see Sec.~\ref{sub:The-characteristic-polynomial}).


\subparagraph{Proof:}

We use Statement~4 in Sec.~\ref{sub:Extensions-of-an} with $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N-1}$,
$m\equiv N-1$ and $k\equiv p$:\[
\bigl(\wedge^{N-1}\hat{A}^{p}\omega\bigr)\wedge\mathbf{u}+\bigl(\wedge^{N-1}\hat{A}^{p-1}\omega\bigr)\wedge(\hat{A}\mathbf{u})=\wedge^{N}\hat{A}^{p}\left(\omega\wedge\mathbf{u}\right).\]
This holds for $1\leq p\leq N-1$. Applying the definition of the
exterior transpose, we find\[
\omega\wedge\bigl(\wedge^{N-1}\hat{A}^{p}{\bigr)}^{\wedge T}\mathbf{u}+\omega\wedge\bigl(\wedge^{N-1}\hat{A}^{p-1}{\bigr)}^{\wedge T}\hat{A}\mathbf{u}=(\wedge^{N}\hat{A}^{p})\omega\wedge\mathbf{u}.\]
Since this holds for all $\omega\in\wedge^{N-1}V$ and $\mathbf{u}\in V$,
we obtain the required formula,\[
\bigl(\wedge^{N-1}\hat{A}^{p}\bigr)^{\wedge T}+\omega\wedge\bigl(\wedge^{N-1}\hat{A}^{p-1}\bigr)^{\wedge T}\hat{A}=(\wedge^{N}\hat{A}^{p})\hat{1}_{V}.\]
It remains to verify the case $p=N$. In that case we compute directly,\begin{align*}
\bigl(\wedge^{N-1}\hat{A}^{N-1}\omega\bigr)\wedge(\hat{A}\mathbf{u}) & =\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-1}\wedge\hat{A}\mathbf{u}\\
 & =\wedge^{N}\hat{A}^{N}\left(\omega\wedge\mathbf{u}\right).\end{align*}
Hence, \[
\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\hat{A}=(\wedge^{N}\hat{A}^{N})\hat{1}_{V}\equiv(\det\hat{A})\hat{1}_{V}.\]
\hfill{}$\blacksquare$


\paragraph{Remark:}

In these formulas we interpret the operators $\wedge^{N}\hat{A}^{p}\in\text{End}\left(\wedge^{N}V\right)$
as simply numbers multiplying some operators. This is justified since
$\wedge^{N}V$ is one-dimen\-sion\-al, and linear operators in it
act as multiplication by numbers. In other words, we implicitly use
the canonical isomorphism $\text{End}\left(\wedge^{N}V\right)\cong\mathbb{K}$.\hfill{}$\blacksquare$


\paragraph{Exercise 2:}

Use induction in $p$ (for $1\leq p\leq N-1$) and Lemma~1 to express
$\hat{A}_{(k)}$ explicitly as polynomials in $\hat{A}$: \[
\hat{A}_{(N-p)}\equiv{\big({\wedge^{N-1}\hat{A}^{p}}\big)}^{\wedge T}=\sum_{k=0}^{p}\left(-1\right)^{k}(\wedge^{N}\hat{A}^{p-k}){(\hat{A})}^{k}.\]
\emph{Hint}: Start applying Lemma~1 with $p=1$ and $\hat{A}_{(N)}\equiv\hat{1}$.\hfill{}$\blacksquare$

Using the coefficients $q_{k}\equiv\wedge^{N}\hat{A}^{N-k}$ of the
characteristic polynomial, the result of Exercise~2 can be rewritten
as\begin{align*}
{\big({\wedge^{N-1}\hat{A}^{1}}\big)}^{\wedge T}\equiv\hat{A}_{(N-1)} & =q_{N-1}\hat{1}_{V}-\hat{A},\\
{\big({\wedge^{N-1}\hat{A}^{2}}\big)}^{\wedge T}\equiv\hat{A}_{(N-2)} & =q_{N-2}\hat{1}_{V}-q_{N-1}\hat{A}+(\hat{A})^{2},\\
... & ...,\\
{\big({\wedge^{N-1}\hat{A}^{N-1}}\big)}^{\wedge T}\equiv\hat{A}_{(1)} & =q_{1}\hat{1}_{V}+q_{2}(-\hat{A})+...\\
 & +q_{N-1}(-\hat{A})^{N-2}+(-\hat{A})^{N-1}.\end{align*}
Note that the characteristic polynomial of $\hat{A}$ is \[
Q_{\hat{A}}(\lambda)=q_{0}+q_{1}(-\lambda)+...+q_{N-1}{(-\lambda)}^{N-1}+(-\lambda)^{N}.\]
Thus the operators denoted by $\hat{A}_{(k)}$ are computed as suitable
{}``fragments''' of the characteristic polynomial into which $\hat{A}$
is substituted instead of $\lambda$.


\paragraph{Exercise 3:{*}}

Using the definition of exterior transpose for general exterior powers
(Exercise~1 in Sec.~\ref{sub:The-next-to-top-exterior}), show that
for $1\leq k\leq N-1$ and $1\leq p\leq k$ the following identity
holds, \[
\sum_{q=0}^{p}{\big({\wedge^{N-k}\hat{A}^{p-q}}\big)}^{\wedge T}(\wedge^{k}\hat{A}^{q})=(\wedge^{N}\hat{A}^{p})\hat{1}_{\wedge^{k}V}.\]
Deduce that the operators ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
can be expressed as polynomials in the (mutually commuting) operators
$\wedge^{k}\hat{A}^{j}$ ($1\leq j\leq k$).

\emph{Hint}s: Follow the proof of Statement~4 in Sec.~\ref{sub:Extensions-of-an}.
The idea is to apply both sides to $\omega_{k}\wedge\omega_{N-k}$,
where $\omega_{k}\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
and $\omega_{N-k}=\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{N}$.
Since $\wedge^{N}\hat{A}^{p}$ acts on $\omega_{k}\wedge\omega_{N-k}$
by distributing $p$ copies of $\hat{A}$ among the $N$ vectors $\mathbf{v}_{j}$,
one needs to show that the same terms will occur when one first distributes
$q$ copies of $\hat{A}$ among the first $k$ vectors and $p-q$
copies of $\hat{A}$ among the last $N-k$ vectors, and then sums
over all $q$ from $0$ to $p$. Once the identity is proved, one
can use induction to express the operators ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$.
For instance, the identity with $k=2$ and $p=1$ yields\[
{\big({\wedge^{N-2}\hat{A}^{0}}\big)}^{\wedge T}(\wedge^{2}\hat{A}^{1})+{\big({\wedge^{N-2}\hat{A}^{1}}\big)}^{\wedge T}(\wedge^{2}\hat{A}^{0})=(\wedge^{N}\hat{A}^{1})\hat{1}_{\wedge^{k}V}.\]
Therefore\[
{\big({\wedge^{N-2}\hat{A}^{1}}\big)}^{\wedge T}=(\text{Tr}\hat{A})\hat{1}_{\wedge^{k}V}-\wedge^{2}\hat{A}^{1}.\]
Similarly, with $k=2$ and $p=2$ we find\begin{align*}
{\big({\wedge^{N-2}\hat{A}^{2}}\big)}^{\wedge T}\negmedspace & =(\wedge^{N}\hat{A}^{2})\hat{1}_{\wedge^{k}V}-{\big({\wedge^{N-2}\hat{A}^{1}}\big)}^{\wedge T}(\wedge^{2}\hat{A}^{1})-\wedge^{2}\hat{A}^{2}\\
 & =(\wedge^{N}\hat{A}^{2})\hat{1}_{\wedge^{k}V}-(\text{Tr}\hat{A})(\wedge^{2}\hat{A}^{1})+(\wedge^{2}\hat{A}^{1})^{2}-\wedge^{2}\hat{A}^{2}.\end{align*}
It follows by induction that all the operators ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
are expressed as polynomials in $\wedge^{k}\hat{A}^{j}$.\hfill{}$\blacksquare$

At the end of the proof of Lemma~1 we have obtained a curious relation,\[
\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\hat{A}=(\det\hat{A})\hat{1}_{V}.\]
If $\det\hat{A}\neq0$, we may divide by it and immediately find the
following result.


\paragraph{Lemma~2: }

If $\det\hat{A}\neq0$, the inverse operator satisfies \[
\hat{A}^{-1}=\frac{1}{\det\hat{A}}\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}.\]


Thus we are able to express the inverse operator $\hat{A}^{-1}$ as
a \emph{polynomial} in $\hat{A}$. If $\det\hat{A}=0$ then the operator
$\hat{A}$ has no inverse, but the operator $\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}$
is still well-defined and sufficiently useful to deserve a special
name.


\paragraph{Definition:}

The \textbf{algebraic complement\index{algebraic complement}} (also
called the \textbf{adjoint}\index{adjoint}) of $\hat{A}$ is the
operator\[
\tilde{\hat{A}}\equiv{\big({\wedge^{N-1}\hat{A}^{N-1}}\big)}^{\wedge T}\in\text{End}\, V.\]



\paragraph{Exercise 4:}

Compute the algebraic complement of the operator $\hat{A}=\mathbf{a}\otimes\mathbf{b}^{*}$,
where $\mathbf{a}\in V$ and $\mathbf{b}\in V^{*}$, and $V$ is an
$N$-dimen\-sion\-al space ($N\geq2$). 


\subparagraph{Answer: }

Zero if $N\geq3$. For $N=2$ we use Example~1 to compute \[
(\wedge^{1}\hat{A}^{1})^{\wedge T}=(\text{Tr}\,\hat{A})\hat{1}-\hat{A}=\mathbf{b}^{*}(\mathbf{a})\hat{1}-\mathbf{a}\otimes\mathbf{b}^{*}.\]



\paragraph{Exercise 5:}

For the operator $\hat{A}=\mathbf{a}\otimes\mathbf{b}^{*}$ in $N$-dimen\-sion\-al
space, as in Exercise~4, show that $\big({\wedge^{N-1}\hat{A}^{p}}\big)^{\wedge T}=0$
for $p\geq2$.


\subsection{Algebraic complement of a matrix}

The algebraic complement is usually introduced in terms of matrix
determinants. Namely, one takes a matrix $A_{ij}$ and deletes the
column number $k$ and the row number $l$. Then one computes the
determinant of the resulting matrix and multiplies by $(-1)^{k+l}$.
The result is the element $B_{kl}$ of the matrix that is the algebraic
complement of $A_{ij}$. I will now show that our definition is equivalent
to this one, if we interpret matrices as coefficients of linear operators
in a basis.


\paragraph{Statement:}

Let $\hat{A}\in\text{End}\, V$ and let $\left\{ \mathbf{e}_{j}\right\} $
be a basis in $V$. Let $A_{ij}$ be the matrix of the operator $\hat{A}$
in this basis. Let $\hat{B}=\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}$
and let $B_{kl}$ be the matrix of $\hat{B}$ in the same basis. Then
$B_{kl}$ is equal to $\left(-1\right)^{k+l}$ times the determinant
of the matrix obtained from $A_{ij}$ by deleting the column number
$k$ and the row number $l$.


\subparagraph{Proof:}

Given an operator $\hat{B}$, the matrix element $B_{kl}$ in the
basis $\left\{ \mathbf{e}_{j}\right\} $ can be computed as the coefficient
in the following relation (see Sec.~\ref{sub:Computing-the-dual}),\[
B_{kl}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k-1}\wedge(\hat{B}\mathbf{e}_{l})\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N}.\]
 Since $\hat{B}=\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}$,
we have\[
B_{kl}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\hat{A}\mathbf{e}_{1}\wedge...\wedge\hat{A}\mathbf{e}_{k-1}\wedge\mathbf{e}_{l}\wedge\hat{A}\mathbf{e}_{k+1}\wedge...\wedge\hat{A}\mathbf{e}_{N}.\]
Now the right side can be expressed as the determinant of another
operator, call it $\hat{X}$,\begin{align*}
B_{kl}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N} & =(\det\hat{X})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\\
=\hat{X}\mathbf{e}_{1}\wedge & ...\wedge\hat{X}\mathbf{e}_{k-1}\wedge\hat{X}\mathbf{e}_{k}\wedge\hat{X}\mathbf{e}_{k+1}\wedge...\wedge\hat{X}\mathbf{e}_{N},\end{align*}
if we define $\hat{X}$ as an operator such that $\hat{X}\mathbf{e}_{k}\equiv\mathbf{e}_{l}$
while on other basis vectors $\hat{X}\mathbf{e}_{j}\equiv\hat{A}\mathbf{e}_{j}$
($j\neq k$). Having defined $\hat{X}$ in this way, we have $B_{kl}=\det\hat{X}$. 

We can now determine the matrix $X_{ij}$ representing $\hat{X}$
in the basis $\left\{ \mathbf{e}_{j}\right\} $. By the definition
of the matrix representation of operators,\[
\hat{A}\mathbf{e}_{j}=\sum_{i=1}^{N}A_{ij}\mathbf{e}_{i},\quad\hat{X}\mathbf{e}_{j}=\sum_{i=1}^{N}X_{ij}\mathbf{e}_{i},\quad1\leq j\leq N.\]
It follows that $X_{ij}=A_{ij}$ for $j\neq k$ while $X_{ik}=\delta_{il}$
($1\leq i\leq N$), which means that the entire $k$-th column in
the matrix $A_{ij}$ has been replaced by a column containing zeros
except for a single nonzero element $X_{lk}=1$. 

It remains to show that the determinant of the matrix $X_{ij}$ is
equal to $\left(-1\right)^{k+l}$ times the determinant of the matrix
obtained from $A_{ij}$ by deleting column $k$ and row $l$. We may
move in the matrix $X_{ij}$ the $k$-th column to the first column
and the $l$-th row to the first row, without changing the order of
any other rows and columns. This produces the sign factor $\left(-1\right)^{k+l}$
but otherwise does not change the determinant. The result is\begin{align*}
B_{kl} & =\det\hat{X}=\left(-1\right)^{k+l}\det\left|\begin{array}{cccc}
1 & X_{12} & ... & X_{1N}\\
0 & * & * & *\\
\vdots & * & * & *\\
0 & * & * & *\end{array}\right|\\
 & =\left(-1\right)^{k+l}\det\left|\begin{array}{ccc}
* & * & *\\
* & * & *\\
* & * & *\end{array}\right|,\end{align*}
where the stars represent the matrix obtained from $A_{ij}$ by deleting
column $k$ and row $l$, and the numbers $X_{12}$, ..., $X_{1N}$
do not enter the determinant. This is the result we needed.\hfill{}$\blacksquare$


\paragraph{Exercise 5:{*}}

Show that the matrix representation of the algebraic complement can
be written through the Levi-Civita symbol\index{Levi-Civita symbol}
$\varepsilon$ as \[
\tilde{A}_{k}^{i}=\frac{1}{(N-1)!}\sum_{i_{2},...,i_{N}}\sum_{k_{2},...,k_{N}}\varepsilon_{kk_{2}...k_{N}}\varepsilon^{ii_{2}...i_{N}}A_{i_{2}}^{k_{2}}...A_{i_{N}}^{k_{N}}.\]
\emph{Hint}: See Sections~\ref{sub:Index-notation-for-determinants}
and \ref{sub:-Index-notation for exterior transposition}.


\subsection{Further properties and generalizations\label{sub:Properties-of-the-algebraic-complement}}

In our approach, the algebraic complement $\tilde{\hat{A}}$ of an
operator $\hat{A}$ comes from considering the set of $N-1$ operators\[
\hat{A}_{(k)}\equiv\big({\wedge^{N-1}\hat{A}^{N-k}}\big)^{\wedge T},\quad1\leq k\leq N-1.\]
(For convenience we might define $\hat{A}_{(N)}\equiv\hat{1}_{V}$.) 

The operators  $\hat{A}_{(k)}$ can be expressed as polynomials in
$\hat{A}$ through the identity (Lemma~1 in Sec.~\ref{sub:The-algebraic-complement})\[
\hat{A}_{(k)}\hat{A}+\hat{A}_{(k-1)}=q_{k-1}\hat{1},\quad q_{j}\equiv\wedge^{N}\hat{A}^{N-j}.\]
The numbers $q_{j}$ introduced here are the coefficients of the characteristic
polynomial of $\hat{A}$; for instance, $\det\hat{A}\equiv q_{0}$
and $\text{Tr}\hat{A}\equiv q_{N-1}$. It follows by induction (Exercise~2
in Sec.~\ref{sub:The-algebraic-complement}) that\begin{align*}
\hat{A}_{(N-k)} & =q_{N-k}\hat{1}-q_{N-k+1}\hat{A}+...\\
 & \quad+q_{N-1}(-\hat{A})^{k-1}+(-\hat{A})^{k}.\end{align*}
The algebraic complement is $\tilde{\hat{A}}\equiv\hat{A}_{1}$, but
it appears natural to study the properties of all the operators $\hat{A}_{(k)}$.
(The operators $\hat{A}_{(k)}$ do not seem to have an established
name for $k\geq2$.)


\paragraph{Statement~1:}

The coefficients of the characteristic polynomial of the algebraic
complement, $\tilde{\hat{A}}$, are\[
\wedge^{N}\tilde{\hat{A}}^{k}=(\det\hat{A})^{k-1}(\wedge^{N}\hat{A}^{N-k})\equiv q_{0}^{k-1}q_{k}.\]
For instance, \begin{align*}
\text{Tr}\,\tilde{\hat{A}} & =\wedge^{N}\tilde{\hat{A}}^{1}=q_{1}=\wedge^{N}\hat{A}^{N-1},\\
\det\tilde{\hat{A}} & =\wedge^{N}\tilde{\hat{A}}^{N}=q_{0}^{N-1}q_{N}=(\det\hat{A})^{N-1}.\end{align*}



\subparagraph{Proof:}

Let us first assume that $\det\hat{A}\equiv q_{0}\neq0$. We use the
property $\hat{A}\tilde{\hat{A}}=q_{0}\hat{1}$ (Lemma~2 in Sec.~\ref{sub:The-algebraic-complement})
and the multiplicativity of determinants to find\begin{align*}
\det(\tilde{\hat{A}}-\lambda\hat{1})q_{0} & =\det(q_{0}\hat{1}-\lambda\hat{A})=(-\lambda)^{N}\det(\hat{A}-\frac{q_{0}}{\lambda}\hat{1})\\
 & =(-\lambda^{N})Q_{\hat{A}}(\frac{q_{0}}{\lambda}),\end{align*}
hence the characteristic polynomial of $\tilde{\hat{A}}$ is \begin{align*}
Q_{\tilde{\hat{A}}}(\lambda) & \equiv\det(\tilde{\hat{A}}-\lambda\hat{1})=\frac{(-\lambda^{N})}{q_{0}}Q_{\hat{A}}(\frac{q_{0}}{\lambda})\\
 & =\frac{(-\lambda)^{N}}{q_{0}}\left[\left(-\frac{q_{0}}{\lambda}\right)^{N}+q_{N-1}\left(-\frac{q_{0}}{\lambda}\right)^{N-1}+...+q_{0}\right]\\
 & =(-\lambda)^{N}+q_{1}(-\lambda)^{N-1}+q_{2}q_{0}\left(-\lambda\right)^{N-2}+...+q_{0}^{N-1}.\end{align*}
This agrees with the required formula. 

It remains to prove the case $q_{0}\equiv\det\hat{A}=0$. Although
this result could be achieved as a limit of nonzero $q_{0}$ with
$q_{0}\rightarrow0$, it is instructive to see a direct proof without
using the assumption $q_{0}\neq0$ or taking limits.

Consider a basis $\left\{ \mathbf{v}_{j}\right\} $ in $V$ and the
expression\[
(\wedge^{N}\tilde{\hat{A}}^{k})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]
This expression contains ${N \choose k}$ terms of the form\[
\tilde{\hat{A}}\mathbf{v}_{1}\wedge...\wedge\tilde{\hat{A}}\mathbf{v}_{k}\wedge\mathbf{v}_{k+1}\wedge...\wedge\mathbf{v}_{N},\]
where $\tilde{\hat{A}}$ is applied only to $k$ vectors. Using the
definition of $\tilde{\hat{A}}$, we can rewrite such a term as follows.
First, we use the definition of $\tilde{\hat{A}}$ to write\[
\tilde{\hat{A}}\mathbf{v}_{1}\wedge\psi=\mathbf{v}_{1}\wedge\big({\wedge^{N-1}\hat{A}^{N-1}}\big)\psi,\]
for any $\psi\in\wedge^{N-1}V$. In our case, we use\[
\psi\equiv\tilde{\hat{A}}\mathbf{v}_{2}\wedge...\wedge\tilde{\hat{A}}\mathbf{v}_{k}\wedge\mathbf{v}_{k+1}\wedge...\wedge\mathbf{v}_{N}\]
and find\[
\tilde{\hat{A}}\mathbf{v}_{1}\wedge\psi=\mathbf{v}_{1}\wedge\hat{A}\tilde{\hat{A}}\mathbf{v}_{2}\wedge...\wedge\hat{A}\tilde{\hat{A}}\mathbf{v}_{k}\wedge\hat{A}\mathbf{v}_{k+1}\wedge...\wedge\hat{A}\mathbf{v}_{N}.\]
By assumption $q_{0}=0$, hence $\hat{A}\tilde{\hat{A}}=0=\tilde{\hat{A}}\hat{A}$
(since $\tilde{\hat{A}}$, being a polynomial in $\hat{A}$, commutes
with $\hat{A}$) and thus \[
(\wedge^{N}\tilde{\hat{A}}^{k})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=0,\quad k\geq2.\]
For $k=1$ we find\[
\tilde{\hat{A}}\mathbf{v}_{1}\wedge\psi=\mathbf{v}_{1}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N}.\]
Summing $N$ such terms, we obtain the same expression as that in
the definition of $\wedge^{N}\hat{A}^{N-1}$, hence\[
(\wedge^{N}\tilde{\hat{A}}^{1})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=\wedge^{N}\hat{A}^{N-1}\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]
This concludes the proof for the case $\det\hat{A}=0$.\hfill{}$\blacksquare$


\paragraph{Exercise:{*}}

Suppose that $\hat{A}$ has the \textbf{simple} eigenvalue $\lambda=0$
(i.e.~this eigenvalue has multiplicity 1). Show that the algebraic
complement, $\tilde{\hat{A}}$, has rank 1, and that the image of
$\tilde{\hat{A}}$ is the one-dimen\-sion\-al subspace $\text{Span}\left\{ \mathbf{v}\right\} $.

\emph{Hint}: An operator has rank 1 if its image is one-dimen\-sion\-al.
The eigenvalue $\lambda=0$ has multiplicity 1 if $\wedge^{N}\hat{A}^{N-1}\neq0$.
Choose a basis consisting of the eigenvector $\mathbf{v}$ and $N-1$
other vectors $\mathbf{u}_{2}$, ..., $\mathbf{u}_{N}$. Show that\[
\tilde{\hat{A}}\mathbf{v}\wedge\mathbf{u}_{2}\wedge...\wedge\mathbf{u}_{N}=\wedge^{N}\hat{A}^{N-1}(\mathbf{v}\wedge\mathbf{u}_{2}\wedge...\wedge\mathbf{u}_{N})\neq0,\]
while \[
\mathbf{v}\wedge\mathbf{u}_{2}\wedge...\wedge\tilde{\hat{A}}\mathbf{u}_{j}\wedge...\wedge\mathbf{u}_{N}=0,\quad2\leq j\leq N.\]
Consider other expressions, such as\[
\tilde{\hat{A}}\mathbf{v}\wedge\mathbf{v}\wedge\mathbf{u}_{3}\wedge...\wedge\mathbf{u}_{N}\;\text{or}\;\tilde{\hat{A}}\mathbf{u}_{j}\wedge\mathbf{v}\wedge\mathbf{u}_{3}\wedge...\wedge\mathbf{u}_{N},\]
and finally deduce that the image of $\tilde{\hat{A}}$ is precisely
the one-dimen\-sion\-al subspace $\text{Span}\left\{ \mathbf{v}\right\} $.\hfill{}$\blacksquare$

Now we will demonstrate a useful property of the operators $\hat{A}_{(k)}$.


\paragraph{Statement 2:}

The trace of $\hat{A}_{(k)}$ satisfies \[
\frac{\text{Tr}\hat{A}_{(k)}}{k}=\wedge^{N}\hat{A}^{N-k}\equiv q_{k}.\]



\subparagraph{Proof:}

Consider the action of $\wedge^{N}\hat{A}^{N-k}$ on a basis tensor
$\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$; the result
is a sum of ${N \choose N-k}$ terms,\begin{align*}
\wedge^{N}\hat{A}^{N-k}\omega & =\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{N}\\
 & \quad+(\text{permutations}).\end{align*}
 Consider now the action of $\text{Tr}\hat{A}_{(k)}$ on $\omega$,
\begin{align*}
\text{Tr}\hat{A}_{(k)}\omega & =\wedge^{N}[\hat{A}_{(k)}]^{1}\omega\\
 & =\sum_{j=1}^{N}\mathbf{v}_{1}\wedge...\wedge\hat{A}_{(k)}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}.\end{align*}
Using the definition of $\hat{A}_{(k)}$, we rewrite \begin{align*}
 & \mathbf{v}_{1}\wedge...\wedge\hat{A}_{(k)}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\\
 & =\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\\
 & \quad+(\text{permutations not including }\hat{A}\mathbf{v}_{j}).\end{align*}
After summing over $j$, we will obtain all the same terms as were
present in the expression for $\wedge^{N}\hat{A}^{N-k}\omega$, but
each term will occur several times. We can show that each term will
occur exactly $k$ times. For instance, the term\[
\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\]
 will occur $k$ times in the expression for $\text{Tr}\hat{A}_{(k)}\omega$
because it will be generated once by each of the terms\[
\mathbf{v}_{1}\wedge...\wedge\hat{A}_{(k)}\mathbf{v}_{j}\wedge...\wedge\mathbf{v}_{N}\]
 with $N-k+1\leq j\leq N$. The same argument holds for every other
term. Therefore\[
\text{Tr}\hat{A}_{(k)}\omega=k\,(\wedge^{N}\hat{A}^{N-k})\omega=kq_{k}\omega.\]
Since this holds for any $\omega\in\wedge^{N}V$, we obtain the required
statement.\hfill{}$\blacksquare$


\paragraph{Remark:}

We have thus computed the trace of every operator $\hat{A}_{(k)}$,
as well as the characteristic polynomial of $\hat{A}_{(1)}\equiv\tilde{\hat{A}}$.
Computing the entire characteristic polynomial of each $\hat{A}_{k}$
is certainly possible but will perhaps lead to cumbersome expressions.\hfill{}$\blacksquare$

An interesting application of Statement~2 is the following algorithm
for computing the characteristic polynomial of an operator.%
\footnote{I found this algorithm in an online note by W. Kahan, {}``\emph{Jordan's
normal form}'' (downloaded from \texttt{\footnotesize http://www.cs.berkeley.edu/\textasciitilde{}wkahan/MathH110/jordan.pdf}
on October 6, 2009). Kahan attributes this algorithm to Leverrier,
Souriau, Frame, and Faddeev.%
} This algorithm is more economical compared with the computation of
$\det(\hat{A}-\lambda\hat{1})$ via permutations, and requires only
operator (or matrix) multiplications and the computation of a trace.


\paragraph{Statement 3: (Leverrier's algorithm)}

\index{Leverrier's algorithm}The coefficients $\wedge^{N}\hat{A}^{k}\equiv q_{N-k}$
($1\leq k\leq N$) of the characteristic polynomial of an operator
$\hat{A}$ can be computed together with the operators $\hat{A}_{(j)}$
by starting with $\hat{A}_{(N)}\equiv\hat{1}_{V}$ and using the descending
recurrence relation for $j=N-1$, ..., $0$: \begin{align}
q_{j} & =\frac{1}{N-j}\text{Tr}\,[\hat{A}\hat{A}_{(j+1)}],\nonumber \\
\hat{A}_{(j)} & =q_{j}\hat{1}-\hat{A}\hat{A}_{(j+1)}.\label{eq:Aq Leverrier}\end{align}
At the end of the calculation, we will have\[
q_{0}=\det\hat{A},\quad\hat{A}_{(1)}=\tilde{\hat{A}},\quad\hat{A}_{(0)}=0.\]



\subparagraph{Proof:}

At the beginning of the recurrence, we have\[
j=N-1,\quad q_{N-1}=\frac{1}{N-j}\text{Tr}\,[\hat{A}\hat{A}_{(j+1)}]=\text{Tr}\hat{A},\]
which is correct. The recurrence relation~(\ref{eq:Aq Leverrier})
for $\hat{A}_{(j)}$ coincides with the result of Lemma~1 in Sec.~\ref{sub:The-algebraic-complement}
and thus yields at each step $j$ the correct operator $\hat{A}_{(j)}$
--- as long as $q_{j}$ was computed correctly at that step. So it
remains to verify that $q_{j}$ is computed correctly. Taking the
trace of Eq.~(\ref{eq:Aq Leverrier}) and using $\text{Tr}\,\hat{1}=N$,
we get\[
\text{Tr}\,[A\hat{A}_{(j+1)}]=Nq_{j}-\text{Tr}\hat{A}_{(j)}.\]
We now substitute for $\text{Tr}\hat{A}_{(j)}$ the result of Statement~2
and find\[
\text{Tr}\,[A\hat{A}_{(j+1)}]=Nq_{j}-jq_{j}=\left(N-j\right)q_{j}.\]
Thus $q_{j}$ is also computed correctly from the previously known
$\hat{A}_{(j+1)}$ at each step $j$.\hfill{}$\blacksquare$


\paragraph{Remark:}

This algorithm provides another illustration for the {}``trace relations\index{trace relations}''
(see Exercises 1 and 2 in Sec.~\ref{sub:The-characteristic-polynomial}),
i.e.~for the fact that the coefficients $q_{j}$ of the characteristic
polynomial of $\hat{A}$ can be expressed as polynomials in the traces
of $\hat{A}$ and its powers. These expressions will be obtained in
Sec.~\ref{sub:General-trace-relations}.


\section{Cayley-Hamilton theorem and beyond}

The characteristic polynomial of an operator $\hat{A}$ has roots
$\lambda$ that are eigenvalues of $\hat{A}$. It turns out that we
can substitute $\hat{A}$ as an operator into the characteristic polynomial,
and the result is the zero operator, as if $\hat{A}$ were one of
its eigenvalues. In other words, $\hat{A}$ satisfies (as an operator)
its own characteristic equation.


\paragraph{Theorem 1 (Cayley-Hamilton)\index{Cayley-Hamilton theorem}:}

If $Q_{\hat{A}}\left(\lambda\right)\equiv\det(\hat{A}-\lambda\hat{1}_{V})$
is the characteristic polynomial of the operator $\hat{A}$ then $Q_{\hat{A}}(\hat{A})=\hat{0}_{V}$.


\subparagraph{Proof:}

The coefficients of the characteristic polynomial are $\wedge^{N}\hat{A}^{m}$.
When we substitute the operator $\hat{A}$ into $Q_{\hat{A}}(\lambda)$,
we obtain the operator\[
Q_{\hat{A}}(\hat{A})=(\det\hat{A})\hat{1}_{V}+(\wedge^{N}\hat{A}^{N-1})(-\hat{A})+...+(-\hat{A})^{N}.\]
We note that this expression is similar to that for the algebraic
complement of $\hat{A}$ (see Exercise~2 in Sec.~\ref{sub:The-algebraic-complement}),
so \begin{align*}
Q_{\hat{A}}(\hat{A}) & =(\det\hat{A})\hat{1}_{V}+\big({\wedge^{N}\hat{A}^{N-1}}+...+(-\hat{A})^{N-1}\big)(-\hat{A})\\
 & =(\det\hat{A})\hat{1}_{V}-(\wedge^{N-1}\hat{A}^{N-1})^{\wedge T}\hat{A}=\hat{0}_{V}\end{align*}
by Lemma~1 in Sec.~\ref{sub:The-algebraic-complement}. Hence $Q_{\hat{A}}(\hat{A})=\hat{0}_{V}$
for any operator $\hat{A}$.\hfill{}$\blacksquare$


\paragraph{Remark:}

While it is true that the characteristic polynomial vanishes on $\hat{A}$,
it is not necessarily the simplest such polynomial. A polynomial of
a lower degree may vanish on $\hat{A}$. A trivial example of this
is given by an operator $\hat{A}=\alpha\hat{1}$, that is, the identity
operator times a constant $\alpha$. The characteristic polynomial
of $\hat{A}$ is $Q_{\hat{A}}(\lambda)=\left(\alpha-\lambda\right)^{N}$.
In agreement with the Cayley-Hamilton theorem, $(\alpha\hat{1}-\hat{A})^{N}=\hat{0}$.
However, the simpler polynomial $p(\lambda)=\lambda-\alpha$ also
has the property $p(\hat{A})=\hat{0}$. We will look into this at
the end of Sec.~\ref{sub:The-Jordan-canonical}.\hfill{}$\blacksquare$

We have derived the Cayley-Hamilton theorem by considering the exterior
transpose of $\wedge^{N-1}\hat{A}^{N-1}$. A generalization is found
if we similarly use the operators of the form ${\big({\wedge^{a}\hat{A}^{b}}\big)}^{\wedge T}$.


\paragraph{Theorem 2 (Cayley-Hamilton in $\wedge^{k}V$):}

\index{Cayley-Hamilton theorem!generalization}  For any operator
$\hat{A}$ in $V$ and for $1\leq k\leq N$, $1\leq p\leq N$, the
following identity holds,\begin{equation}
\sum_{q=0}^{p}{\big({\wedge^{N-k}\hat{A}^{p-q}}\big)}^{\wedge T}(\wedge^{k}\hat{A}^{q})=(\wedge^{N}\hat{A}^{p})\hat{1}_{\wedge^{k}V}.\label{eq:identity p q}\end{equation}
In this identity, we set $\wedge^{k}\hat{A}^{0}\equiv\hat{1}_{\wedge^{k}V}$
and $\wedge^{k}\hat{A}^{r}\equiv0$ for $r>k$. Explicit expressions
can be derived for all operators ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
as polynomials in the (mutually commuting) operators $\wedge^{k}\hat{A}^{j}$,
$1\leq j\leq k$. (See Exercise~3 in Sec.~\ref{sub:The-algebraic-complement}.)
Hence, there exist $k$ identically vanishing oper\-ator-val\-ued
polynomials involving $\wedge^{k}\hat{A}^{j}$. (In the ordinary Cay\-ley-Ham\-il\-ton
theorem, we have $k=1$ and a single polynomial $Q_{\hat{A}}(\hat{A})$
that identically vanishes as an operator in $V\equiv\wedge^{1}V$.)
The coefficients of those polynomials will be known functions of $\hat{A}$.
One can also obtain an identically vanishing polynomial in $\wedge^{k}\hat{A}^{1}$.


\subparagraph{Proof:}

Let us fix $k$ and first write Eq.~(\ref{eq:identity p q}) for
$1\leq p\leq N-k$. These $N-k$ equations are all of the form\[
{\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}+\left[...\right]=(\wedge^{N}\hat{A}^{p})\hat{1}_{\wedge^{k}V},\quad1\leq p\leq N-k.\]
In the $p$-th equation, the omitted terms in square brackets contain
only the operators ${\big({\wedge^{N-k}\hat{A}^{r}}\big)}^{\wedge T}$
with $r<p$ and $\wedge^{k}\hat{A}^{q}$ with $1\leq q\leq k$. Therefore,
these equations can be used to express ${\big({\wedge^{N-k}\hat{A}^{p}}\big)}^{\wedge T}$
for $1\leq p\leq N-k$ through the operators $\wedge^{k}\hat{A}^{q}$
explicitly as polynomials. Substituting these expressions into Eq.~(\ref{eq:identity p q}),
we obtain $k$ identically vanishing polynomials in the $k$ operators
$\wedge^{k}\hat{A}^{q}$ (with $1\leq q\leq k$). These polynomials
can be considered as a system of polynomial equations in the variables
$\hat{\alpha}_{q}\equiv\wedge^{k}\hat{A}^{q}$. (As an exercise, you
may verify that all the operators $\hat{\alpha}_{q}$ commute.) A
system of polynomial equations may be reduced to a single polynomial
equation in one of the variables, say $\hat{\alpha}_{1}$. (The technique
for doing this in practice, called the {}``Gröbner basis\index{Gröbner basis},''
is complicated and beyond the scope of this book.)\hfill{}$\blacksquare$

The following two examples illustrate Theorem~2 in three and four
dimensions.


\paragraph{Example 1:}

Suppose $V$ is a three-dimen\-sion\-al space ($N=3$) and an operator
$\hat{A}$ is given. The ordinary Cayley-Hamilton theorem is obtained
from Theorem~2 with $k=1$, \[
q_{0}-q_{1}\hat{A}+q_{2}\hat{A}^{2}-\hat{A}^{3}=0,\]
where $q_{j}\equiv\wedge^{N}\hat{A}^{N-j}$ are the coefficients of
the characteristic polynomial of $\hat{A}$. The generalization of
the Cayley-Hamilton theorem is obtained with $k=2$ (the only remaining
case $k=3$ will not yield interesting results). 

We write the identity~(\ref{eq:identity p q}) for $k=2$ and $p=1$,
2, 3. Using the properties $\wedge^{k}\hat{A}^{k+j}=0$ (with $j>0$)
and $\wedge^{k}\hat{A}^{0}=\hat{1}$, we get the following three identities
of operators in $\wedge^{2}V$:\begin{align*}
\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T} & +{\wedge^{2}\hat{A}^{1}}=q_{2}\hat{1}_{\wedge^{2}V},\\
\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T}(\wedge^{2}\hat{A}^{1}) & +{\wedge^{2}\hat{A}^{2}}=q_{1}\hat{1}_{\wedge^{2}V},\\
\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T}(\wedge^{2}\hat{A}^{2}) & =q_{0}\hat{1}_{\wedge^{2}V}.\end{align*}
Let us denote for brevity $\hat{\alpha}_{1}\equiv\wedge^{2}\hat{A}^{1}$
and $\hat{\alpha}_{2}\equiv\wedge^{2}\hat{A}^{2}$. Expressing $\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T}$
through $\hat{\alpha}_{1}$ from the first line above and substituting
into the last two lines, we find\begin{align*}
\hat{\alpha}_{2} & =q_{1}\hat{1}-q_{2}\hat{\alpha}_{1}+\hat{\alpha}_{1}^{2},\\
(q_{2}\hat{1}-\hat{\alpha}_{1})\hat{\alpha}_{2} & =q_{0}\hat{1}.\end{align*}
We can now express $\hat{\alpha}_{2}$ through $\hat{\alpha}_{1}$
and substitute into the last equation to find\[
\hat{\alpha}_{1}^{3}-2q_{2}\hat{\alpha}_{1}^{2}+(q_{1}+q_{2}^{2})\hat{\alpha}_{1}-(q_{1}q_{2}-q_{0})\hat{1}=0.\]
Thus, the generalization of the Cayley-Hamilton theorem in $\wedge^{2}V$
yields an identically vanishing polynomial in $\wedge^{2}\hat{A}^{1}\equiv\hat{\alpha}_{1}$
with coefficients that are expressed through $q_{j}$. 


\paragraph{Question: }

Is this the characteristic polynomial of $\hat{\alpha}_{1}$?


\subparagraph{Answer:}

I do not know! It could be since it has the correct degree. However,
not every polynomial $p(x)$ such that $p(\hat{\alpha})=0$ for some
operator $\hat{\alpha}$ is the characteristic polynomial of $\hat{\alpha}$.


\paragraph{Example 2:}

Let us now consider the case $N=4$ and $k=2$. We use Eq.~(\ref{eq:identity p q})
with $p=1,2,3,4$ and obtain the following four equations,\begin{align*}
(\wedge^{2}\hat{A}^{1})^{\wedge T}+{\wedge^{2}\hat{A}^{1}} & =(\wedge^{4}\hat{A}^{1})\hat{1}_{\wedge^{2}V},\\
(\wedge^{2}\hat{A}^{2})^{\wedge T}+(\wedge^{2}\hat{A}^{1})^{\wedge T}({\wedge^{2}\hat{A}^{1}})+{\wedge^{2}\hat{A}^{2}} & =(\wedge^{4}\hat{A}^{2})\hat{1}_{\wedge^{2}V},\\
(\wedge^{2}\hat{A}^{2})^{\wedge T}({\wedge^{2}\hat{A}^{1}})+(\wedge^{2}\hat{A}^{1})^{\wedge T}({\wedge^{2}\hat{A}^{2}}) & =(\wedge^{4}\hat{A}^{3})\hat{1}_{\wedge^{2}V},\\
(\wedge^{2}\hat{A}^{2})^{\wedge T}({\wedge^{2}\hat{A}^{2}}) & =(\wedge^{4}\hat{A}^{4})\hat{1}_{\wedge^{2}V}.\end{align*}
Let us denote, as before, $q_{j}={\wedge^{4}\hat{A}^{4-j}}$ (with
$0\leq j\leq3$) and $\hat{\alpha}_{r}\equiv{\wedge^{2}\hat{A}^{r}}$
(with $r=1,2$). Using the first two equations above, we can then
express $({\wedge^{2}\hat{A}^{r}})^{\wedge T}$ through $\hat{\alpha}_{r}$
and substitute into the last two equations. We obtain\begin{align*}
(\wedge^{2}\hat{A}^{1})^{\wedge T} & =q_{3}\hat{1}-\hat{\alpha}_{1},\\
(\wedge^{2}\hat{A}^{2})^{\wedge T} & =q_{2}\hat{1}+\hat{\alpha}_{1}^{2}-q_{3}\hat{\alpha}_{1}-\hat{\alpha}_{2},\end{align*}
and finally\begin{align*}
(q_{2}\hat{1}+\hat{\alpha}_{1}^{2}-q_{3}\hat{\alpha}_{1}-\hat{\alpha}_{2})\hat{\alpha}_{1}+(q_{3}\hat{1}-\hat{\alpha}_{1})\hat{\alpha}_{2} & =q_{1}\hat{1},\\
(q_{2}\hat{1}+\hat{\alpha}_{1}^{2}-q_{3}\hat{\alpha}_{1}-\hat{\alpha}_{2})\hat{\alpha}_{2} & =q_{0}\hat{1}.\end{align*}
One cannot express $\hat{\alpha}_{2}$ directly through $\hat{\alpha}_{1}$
using these last equations. However, one can show (for instance, using
a computer algebra program%
\footnote{This can be surely done by hand, but I have not yet learned the Gröbner
basis technique necessary to do this, so I cannot show the calculation
here.%
}) that there exists an identically vanishing polynomial of degree
6 in $\hat{\alpha}_{1}$, namely $p(\hat{\alpha}_{1})=0$ with\begin{align*}
p(x) & \equiv x^{6}-3q_{3}x^{5}+\left(2q_{2}+3q_{3}^{2}\right)x^{4}-\left(4q_{2}q_{3}+q_{3}^{3}\right)x^{3}\\
 & \;+\left(q_{2}^{2}-4q_{0}+q_{1}q_{3}+2q_{2}q_{3}^{2}\right)x^{2}-\left(q_{1}q_{3}^{2}+q_{2}^{2}q_{3}-4q_{0}q_{3}\right)x\\
 & \;+q_{1}q_{2}q_{3}-q_{0}q_{3}^{2}-q_{1}^{2}.\end{align*}
The coefficients of $p(x)$ are known functions of the coefficients
$q_{j}$ of the characteristic polynomial of $\hat{A}$. Note that
the space $\wedge^{2}V$ has dimension 6 in this example; the polynomial
$p(x)$ has the same degree.


\paragraph{Question:}

In both examples we found an identically vanishing polynomial in $\wedge^{k}\hat{A}^{1}$.
Is there a general formula for the coefficients of this polynomial?


\subparagraph{Answer: }

I do not know!


\section{Functions of operators\label{sub:Functions-of-operators}}

We will now consider some calculations with operators.

Let $\hat{A}\in\text{End}\, V$. Since linear operators can be multiplied,
it is straightforward to evaluate $\hat{A}\hat{A}\equiv\hat{A}^{2}$
and other powers of $\hat{A}$, as well as arbitrary polynomials in
$\hat{A}$. For example, the operator $\hat{A}$ can be substituted
instead of $x$ into the polynomial $p(x)=2+3x+4x^{2}$; the result
is the operator $\hat{2}+3\hat{A}+4\hat{A}^{2}\equiv p(\hat{A})$. 


\paragraph{Exercise:}

For a linear operator $\hat{A}$ and an arbitrary polynomial $p(x)$,
show that $p(\hat{A})$ has the same eigenvectors as $\hat{A}$ (although
perhaps with different eigenvalues). \hfill{}$\blacksquare$

Another familiar function of $\hat{A}$ is the inverse operator, $\hat{A}^{-1}$.
Clearly, we can evaluate a polynomial in $\hat{A}^{-1}$ as well (if
$\hat{A}^{-1}$ exists). It is interesting to ask whether we can evaluate
an arbitrary function of $\hat{A}$; for instance, whether we can
raise $\hat{A}$ to a non-integer power, or compute $\exp(\hat{A})$,
$\ln(\hat{A})$, $\cos(\hat{A})$. Generally, can we substitute $\hat{A}$
instead of $x$ in an arbitrary function $f(x)$ and evaluate an oper\-ator-valued
function $f(\hat{A})$? If so, how to do this in practice?


\subsection{Definitions. Formal power series}

The answer is that \emph{sometimes} we can. There are two situations
when $f(\hat{A})$ makes sense, i.e.~can be defined and has reasonable
properties. 

The first situation is when $\hat{A}$ is \textbf{diagonalizable}\index{diagonalizable operator},
i.e.~there exists a basis $\left\{ \mathbf{e}_{i}\right\} $ such
that every basis vector is an eigenvector of $\hat{A}$,\[
\hat{A}\mathbf{e}_{i}=\lambda_{i}\mathbf{e}_{i}.\]
In this case, we simply define $f(\hat{A})$ as the linear operator
that acts on the basis vectors as follows,\[
f(\hat{A})\mathbf{e}_{i}\equiv f(\lambda_{i})\mathbf{e}_{i}.\]



\paragraph{Definition 1:}

Given a function $f(x)$ and a diagonalizable linear operator\[
\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*},\]
the function $f(\hat{A})$ is the linear operator defined by \[
f(\hat{A})\equiv\sum_{i=1}^{N}f(\lambda_{i})\,\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*},\]
provided that $f(x)$ is well-defined at the points $x=\lambda_{i}$,
$i=1,...,N$.

This definition might appear to be {}``cheating'' since we simply
substituted the eigenvalues into $f(x)$, rather than evaluate the
operator $f(\hat{A})$ in some {}``natural'' way. However, the result
is reasonable since we, in effect, define $f(\hat{A})$ separately
in each eigenspace $\text{Span}\,\{\mathbf{e}_{i}\}$ where $\hat{A}$
acts as multiplication by $\lambda_{i}$. It is natural to define
$f(\hat{A})$ in each eigenspace as multiplication by $f(\lambda_{i})$. 

The second situation is when $f(x)$ is an \textbf{analytic} \textbf{function}\index{analytic function},
that is, a function represented by a power series \[
f(x)=\sum_{n=0}^{\infty}c_{n}x^{n},\]
such that the series converges to the value $f(x)$ for some $x$.
Further, we need this series to converge for a sufficiently wide range
of values of $x$ such that all eigenvalues of $\hat{A}$ are within
that range. Then one can show that the oper\-ator-valued series\[
f(\hat{A})=\sum_{n=0}^{\infty}c_{n}(\hat{A})^{n}\]
converges. The technical details of this proof are beyond the scope
of this book; one needs to define the limit of a sequence of operators
and other notions studied in functional analysis. Here is a simple
argument that gives a condition for convergence. Suppose that the
operator $\hat{A}$ is diagonalizable and has eigenvalues $\lambda_{i}$
and the corresponding eigenvectors $\mathbf{v}_{i}$ ($i=1,...,N$)
such that $\left\{ \mathbf{v}_{i}\right\} $ is a basis and $\hat{A}$
has a tensor representation\[
\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}.\]
Note that\[
\hat{A}^{n}=\left[\sum_{i=1}^{N}\lambda_{i}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}\right]^{n}=\sum_{i=1}^{N}\lambda_{i}^{n}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}\]
 due to the property of the dual basis, $\mathbf{v}_{i}^{*}(\mathbf{v}_{j})=\delta_{ij}$.
So if the series $\sum_{n=0}^{\infty}c_{n}x^{n}$ converges for every
eigenvalue $x=\lambda_{i}$ of the operator $\hat{A}$ then the tensor-valued
series also converges and yields a new tensor\begin{align*}
\sum_{n=0}^{\infty}c_{n}(\hat{A})^{n} & =\sum_{n=0}^{\infty}c_{n}\sum_{i=1}^{N}\lambda_{i}^{n}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}\\
 & =\sum_{i=1}^{N}\left[\sum_{n=0}^{\infty}c_{n}\lambda^{n}\right]\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}.\end{align*}
This argument indicates at least one case where the oper\-ator-valued
power series surely converges.

Instead of performing an in-depth study of oper\-ator-valued power
series, I will restrict myself to considering {}``formal power series''
containing a parameter $t$, that is, infinite power series in $t$
considered without regard for convergence. Let us discuss this idea
in more detail.

By definition, a \textbf{formal power series}\index{formal power series}
(FPS) is an infinite sequence of numbers $\left(c_{0},c_{1},c_{2},...\right)$.
This sequence, however, is written as if it were a power series in
a parameter $t$, \[
c_{0}+c_{1}t+c_{2}t^{2}+...=\sum_{n=0}^{\infty}c_{n}t^{n}.\]
It appears that we need to calculate the sum of the above series.
However, while we manipulate an FPS, we \emph{do not} assign any value
to $t$ and thus do not have to consider the issue of convergence
of the resulting infinite series. Hence, we work with an FPS as with
an algebraic expression containing a variable $t$, an expression
that we do not evaluate (although we may simplify it). These expressions
can be manipulated term by term, so that, for example, the sum and
the product of two FPS are always defined; the result is another FPS.
Thus, the notation for FPS should be understood as a convenient shorthand
that simplifies working with FPS, rather than an actual sum of an
infinite series. At the same time, the notation for FPS makes it easy
to evaluate the actual infinite series when the need arises. Therefore,
any results obtained using FPS will hold whenever the series converges.

Now I will use the formal power series to define $f(t\hat{A})$.


\paragraph{Definition 2:}

Given an analytic function $f(x)$ shown above and a linear operator
$\hat{A}$, the function $f(t\hat{A})$ denotes the oper\-ator-valued
formal power series\[
f(t\hat{A})\equiv\sum_{n=0}^{\infty}c_{n}(\hat{A})^{n}t^{n}.\]
(According to the definition of formal power series, the variable
$t$ is a parameter that does not have a value and serves only to
label the terms of the series.)

One can define the derivative of a formal power series, \emph{without}
using the notion of a limit (and without discussing convergence).


\paragraph{Definition 3:}

The \textbf{derivative} $\partial_{t}$ of a formal power series $\sum_{k}a_{k}t^{k}$
is another formal power series defined by\[
\partial_{t}\big(\sum_{k=0}^{\infty}a_{k}t^{k}\big)\equiv\sum_{k=0}^{\infty}\left(k+1\right)a_{k+1}t^{k}.\]


This definition gives us the usual properties of the derivative. For
instance, it is obvious that $\partial_{t}$ is a linear operator
in the space of formal power series. Further, we have the important
distributive property:


\paragraph{Statement 1:}

The Leibniz rule,\[
\partial_{t}\left[f(t)g(t)\right]=\left[\partial_{t}f(t)\right]g(t)+f(t)\left[\partial_{t}g(t)\right],\]
holds for formal power series.


\subparagraph{Proof:}

Since $\partial_{t}$ is a linear operation, it is sufficient to check
that the Leibniz rule holds for single terms, $f(t)=t^{a}$ and $g(t)=t^{b}$.
Details left as exercise.\hfill{}$\blacksquare$

This definition of $f(t\hat{A})$ has reasonable and expected properties,
such as:


\paragraph{Exercise:}

For an analytic function $f(x)$, show that \[
f(\hat{A})\hat{A}=\hat{A}f(\hat{A})\]
 and that\[
\frac{d}{dt}f(t\hat{A})=\hat{A}f^{\prime}(\hat{A})\]
for an analytic function $f(x)$. Here both sides are interpreted
as formal power series. Deduce that $f(\hat{A})g(\hat{A})=g(\hat{A})f(\hat{A})$
for any two analytic functions $f(x)$ and $g(x)$.

\emph{Hint}: Linear operations with formal power series must be performed
term by term (by definition). So it is sufficient to consider a single
term in $f(x)$, such as $f(x)=x^{a}$.\hfill{}$\blacksquare$

Now we can show that the two definitions of the oper\-ator-valued
function $f(\hat{A})$ agree when both are applicable. 


\paragraph{Statement 2: }

If $f(x)$ is an analytic function and $\hat{A}$ is a diagonalizable
operator then the two definitions agree, i.e.~for $f(x)=\sum_{n=0}^{\infty}c_{n}x^{n}$
and $\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}$
we have the equality of formal power series, \begin{equation}
\sum_{n=0}^{\infty}c_{n}(t\hat{A})^{n}=\sum_{i=1}^{N}f(t\lambda_{i})\,\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}.\label{eq:term identity}\end{equation}



\subparagraph{Proof:}

It is sufficient to prove that the terms multiplying $t^{n}$ coincide
for each $n$. We note that the square of $\hat{A}$ is\begin{align*}
\left(\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}\right)^{2} & =\left(\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}\right)\left(\sum_{j=1}^{N}\lambda_{j}\mathbf{e}_{j}\otimes\mathbf{e}_{j}^{*}\right)\\
 & =\sum_{i=1}^{N}\lambda_{i}^{2}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}\end{align*}
because $\mathbf{e}_{i}^{*}(\mathbf{e}_{j})=\delta_{ij}$. In this
way we can compute any power of $\hat{A}$. Therefore, the term in
the left side of Eq.~(\ref{eq:term identity}) is \[
c_{n}t^{n}(\hat{A})^{n}=c_{n}t^{n}\left(\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}\right)^{n}=c_{n}t^{n}\sum_{i=1}^{N}\lambda_{i}^{n}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*},\]
which coincides with the term at $t^{n}$ in the right side.\hfill{}$\blacksquare$


\subsection{Computations: Sylvester's method}

Now that we know when an oper\-ator-valued function $f(\hat{A})$
is defined, how can we actually compute the operator $f(\hat{A})$?
The first definition requires us to diagonalize $\hat{A}$ (this is
already a lot of work since we need to determine every eigenvector).
Moreover, Definition~1 does not apply when $\hat{A}$ is non-diagonalizable.
On the other hand, Definition~2 requires us to evaluate infinitely
many terms of a  power series. Is there a simpler way?

There is a situation when $f(\hat{A})$ can be computed without such
effort. Let us first consider a simple example where the operator
$\hat{A}$ happens to be a projector\index{projector}, $(\hat{A})^{2}=\hat{A}$.
In this case, any power of $\hat{A}$ is again equal to $\hat{A}$.
It is then easy to compute a power series in $\hat{A}$:\[
\sum_{n=0}^{\infty}c_{n}(\hat{A})^{n}=c_{0}\hat{1}+\bigl(\sum_{n=1}^{\infty}c_{n}\bigr)\hat{A}.\]
In this way we can compute any analytic function of $\hat{A}$ (as
long as the series $\sum_{n=1}^{\infty}c_{n}$ converges). For example,\begin{align*}
\cos\hat{A} & =\hat{1}-\frac{1}{2!}(\hat{A})^{2}+\frac{1}{4!}(\hat{A})^{4}-...=\hat{1}-\frac{1}{2!}\hat{A}+\frac{1}{4!}\hat{A}-...\\
 & =(1-\frac{1}{2!}+\frac{1}{4!}-...)\hat{A}+\hat{1}-\hat{A}\\
 & =\left[(\cos1)-1\right]\hat{A}+\hat{1}.\end{align*}



\paragraph{Remark:}

In the above computation, we obtained a formula that \emph{expresses}
\emph{the} \emph{end result} \emph{through} $\hat{A}$. We have that
formula even though we do not know an explicit form of the operator
$\hat{A}$ --- not even the dimension of the space where $\hat{A}$
acts or whether $\hat{A}$ is diagonalizable. We do not need to know
any eigenvectors of $\hat{A}$. We only use the given fact that $\hat{A}^{2}=\hat{A}$,
and we are still able to find a useful result. If such an operator
$\hat{A}$ is given explicitly, we can substitute it into the formula
\[
\cos\hat{A}=\left[(\cos1)-1\right]\hat{A}+\hat{1}\]
to obtain an explicit expression for $\cos\hat{A}$. Note also that
the result is a formula \emph{linear} in $\hat{A}$.


\paragraph{Exercise 1:}

a) Given that $(\hat{P})^{2}=\hat{P}$, express ($\lambda\hat{1}-\hat{P})^{-1}$
and $\exp\hat{P}$ through $\hat{P}$. Assume that $\left|\lambda\right|>1$
so that the Taylor series for $f(x)=(\lambda-x)^{-1}$ converges for
$x=1$. 

b) It is known only that $(\hat{A})^{2}=\hat{A}+2$. Determine the
possible eigenvalues of $\hat{A}$. Show that any analytic function
of $\hat{A}$ can be reduced to the form $\alpha\hat{1}+\beta\hat{A}$
with some suitable coefficients $\alpha$ and $\beta$. Express $(\hat{A})^{3}$,
$(\hat{A})^{4}$, and $\hat{A}^{-1}$ as linear functions of $\hat{A}$.

\emph{Hint}: Write $\hat{A}^{-1}=\alpha\hat{1}+\beta\hat{A}$ with
unknown $\alpha,\beta$. Write $\hat{A}\hat{A}^{-1}=\hat{1}$ and
simplify to determine $\alpha$ and $\beta$.


\paragraph{Exercise 2:}

The operator $\hat{A}$ is such that $\hat{A}^{3}+\hat{A}=0$. Compute
$\exp(\lambda\hat{A})$ as a quadratic polynomial of $\hat{A}$ (here
$\lambda$ is a fixed number).\hfill{}$\blacksquare$

Let us now consider a more general situation. Suppose we know the
characteristic polynomial $Q_{\hat{A}}(\lambda)$ of $\hat{A}$. The
characteristic polynomial has the form\[
Q_{\hat{A}}(\lambda)=\left(-\lambda\right)^{N}+\sum_{k=0}^{N-1}\left(-1\right)^{k}q_{N-k}\lambda^{k},\]
where $q_{i}$ ($i=1,...,N$) are known coefficients. The Cayley-Hamilton
theorem indicates that $\hat{A}$ satisfies the polynomial identity,\[
(\hat{A})^{N}=-\sum_{k=0}^{N-1}q_{N-k}\left(-1\right)^{N-k}(\hat{A})^{k}.\]
It follows that any power of $\hat{A}$ larger than $N-1$ can be
expressed as a linear combination of smaller powers of $\hat{A}$.
Therefore, a power series in $\hat{A}$ can be reduced to a polynomial
$p(\hat{A})$ of degree not larger than $N-1$. The task of computing
an arbitrary function $f(\hat{A})$ is then reduced to the task of
determining the $N$ coefficients of $p(x)\equiv p_{0}+...+p_{N-1}x^{n-1}$.
Once the coefficients of that polynomial are found, the function can
be evaluated as $f(\hat{A})=p(\hat{A})$ for any operator $\hat{A}$
that has the given characteristic polynomial.

Determining the coefficients of the polynomial $p(\hat{A})$ might
appear to be difficult because one can get rather complicated formulas
when one converts an arbitrary power of $\hat{A}$ to smaller powers.
This work can be avoided if the eigenvalues of $\hat{A}$ are known,
by using the \textbf{method of Sylvester}\index{Sylvester's method},
which I will now explain.

The present task is to calculate $f(\hat{A})$ --- equivalently, the
polynomial $p(\hat{A})$ --- when the characteristic polynomial $Q_{\hat{A}}(\lambda)$
is known. The characteristic polynomial has order $N$ and hence has
$N$ (complex) roots, counting each root with its multiplicity. The
eigenvalues $\lambda_{i}$ of the operator $\hat{A}$ are roots of
its characteristic polynomial, and there exists \emph{at least one}
eigenvector $\mathbf{v}_{i}$ for each $\lambda_{i}$ (Theorem~1
in Sec.~\ref{sub:The-characteristic-polynomial}). Knowing the characteristic
polynomial $Q_{\hat{A}}(\lambda)$, we may determine its roots $\lambda_{i}$. 

Let us first assume that the roots $\lambda_{i}$ ($i=1,...,N$) are
\emph{all} \emph{different}\textbf{.} Then we have $N$ different
eigenvectors $\mathbf{v}_{i}$. The set $\left\{ \mathbf{v}_{i}\,|\, i=1,...,N\right\} $
is linearly independent (Statement~1 in Sec.~\ref{sub:Linear-independence-of-eigenvectors})
and hence is a basis in $V$; that is, $\hat{A}$ is diagonalizable.
We will not actually need to determine the eigenvectors $\mathbf{v}_{i}$;
it will be sufficient that they exist. Let us now apply the function
$f(\hat{A})$ to each of these $N$ eigenvectors: we must have\[
f(\hat{A})\mathbf{v}_{i}=f(\lambda_{i})\mathbf{v}_{i}.\]
On the other hand, we may express \[
f(\hat{A})\mathbf{v}_{i}=p(\hat{A})\mathbf{v}_{i}=p(\lambda_{i})\mathbf{v}_{i}.\]
Since the set $\left\{ \mathbf{v}_{i}\right\} $ is linearly independent,
the vanishing linear combination \[
\sum_{i=1}^{N}\left[f(\lambda_{i})-p(\lambda_{i})\right]\mathbf{v}_{i}=0\]
must have all vanishing coefficients; hence we obtain a system of
$N$ equations for $N$ unknowns $\{p_{0},...,p_{N-1}\}$:\[
p_{0}+p_{1}\lambda_{i}+...+p_{N-1}\lambda_{i}^{N-1}=f(\lambda_{i}),\quad i=1,...,N.\]
Note that this system of equations has the Vandermonde matrix (Sec.~\ref{sub:The-Vandermonde-matrix}).
Since by assumption all $\lambda_{i}$'s are different, the determinant
of this matrix is nonzero, therefore the solution $\{p_{0},...,p_{N-1}\}$
exists and is unique. The polynomial $p(x)$ is the interpolating
polynomial for $f(x)$ at the points $x=\lambda_{i}$ ($i=1,...,N$). 

We have proved the following theorem:


\paragraph{Theorem 1:}

If the roots $\{\lambda_{1},...,\lambda_{N}\}$ of the characteristic
polynomial of $\hat{A}$ are all different, a function of $\hat{A}$
can be computed as $f(\hat{A})=p(\hat{A})$, where $p(x)$ is the
interpolating polynomial for $f(x)$ at the $N$ points $\left\{ \lambda_{1},...,\lambda_{N}\right\} $.


\paragraph{Exercise 3:}

It is given that the operator $\hat{A}$ has the characteristic polynomial
$Q_{\hat{A}}(\lambda)=\lambda^{2}-\lambda+6$. Determine the eigenvalues
of $\hat{A}$ and calculate $\exp(\hat{A})$ as a linear expression
in $\hat{A}$.

If we know that an operator $\hat{A}$ satisfies a certain operator
equation, say $(\hat{A})^{2}-\hat{A}+6=0$, then it is not necessary
to know the characteristic polynomial in order to compute functions
$f(\hat{A})$. It can be that the characteristic polynomial has a
high order due to many repeated eigenvalues; however, as far as analytic
functions are concerned, all that matters is the possibility to reduce
high powers of $\hat{A}$ to low powers. This possibility can be provided
by a polynomial of a lower degree than the characteristic polynomial. 

In the following theorem, we will determine $f(\hat{A})$ knowing
only \emph{some} polynomial $Q(x)$ for which $p(\hat{A})=0$.


\paragraph{Theorem 2:}

Suppose that a linear operator $\hat{A}$ and a polynomial $Q(x)$
are such that $Q(\hat{A})=0$, and assume that the equation $Q(\lambda)=0$
has all distinct roots $\lambda_{i}$ ($i=1,...,n$), where $n$ is
not necessarily equal to the dimension $N$ of the vector space. Then
an analytic function $f(\hat{A})$ can be computed as\[
f(\hat{A})=p(\hat{A}),\]
where $p(x)$ is the interpolating polynomial for the function $f(x)$
at the points $x=\lambda_{i}$ ($i=1,...,n$).


\subparagraph{Proof:}

The polynomial $p(x)$ is defined uniquely by substituting $x^{k}$
with $k\geq n$ through lower powers of $x$ in the series for $f(x)$,
using the equation $p(x)=0$. Consider the operator $\hat{A}_{1}$
that acts as multiplication by $\lambda_{1}$. This operator satisfies
$p(\hat{A}_{1})=0$, and so $f(\hat{A}_{1})$ is simplified to the
same polynomial $p(\hat{A}_{1})$. Hence we must have $f(\hat{A}_{1})=p(\hat{A}_{1})$.
However, $f(\hat{A}_{1})$ is simply the operator of multiplication
by $f(\lambda_{1})$. Hence, $p(x)$ must be equal to $f(x)$ when
evaluated at $x=\lambda_{1}$. Similarly, we find that $p(\lambda_{i})=f(\lambda_{i})$
for $i=1,...,n$. The interpolating polynomial for $f(x)$ at the
points $x=\lambda_{i}$ ($i=1,...,n$) is unique and has degree $n-1$.
Therefore, this polynomial must be equal to $p(x)$.\hfill{}$\blacksquare$

It remains to develop a procedure for the case when \emph{not} \emph{all}
roots $\lambda_{i}$ of the polynomial $Q(\lambda)$ are different.
To be specific, let us assume that $\lambda_{1}=\lambda_{2}$ and
that all other eigenvalues are different. In this case we will first
solve an auxiliary problem where $\lambda_{2}=\lambda_{1}+\varepsilon$
and then take the limit $\varepsilon\rightarrow0$. The equations
determining the coefficients of the polynomial $p(x)$ are\[
p(\lambda_{1})=f(\lambda_{1}),\quad p(\lambda_{1}+\varepsilon)=f(\lambda_{1}+\varepsilon),\; p(\lambda_{3})=f(\lambda_{3}),\;...\]
Subtracting the first equation from the second and dividing by $\varepsilon$,
we find\[
\frac{p(\lambda_{1}+\varepsilon)-p(\lambda_{1})}{\varepsilon}=\frac{f(\lambda_{1}+\varepsilon)-f(\lambda_{1})}{\varepsilon}.\]
In the limit $\varepsilon\rightarrow0$ this becomes\[
p^{\prime}(\lambda_{1})=f^{\prime}(\lambda_{1}).\]
 Therefore, the polynomial $p(x)$ is determined by the requirements
that \emph{\[
p(\lambda_{1})=f(\lambda_{1}),\; p^{\prime}(\lambda_{1})=f^{\prime}(\lambda_{1}),\; p(\lambda_{3})=f(\lambda_{3}),\;...\]
}If \emph{three} roots coincide, say $\lambda_{1}=\lambda_{2}=\lambda_{3}$,
we introduce two auxiliary parameters $\varepsilon_{2}$ and $\varepsilon_{3}$
and first obtain the three equations\begin{align*}
p(\lambda_{1}) & =f(\lambda_{1}),\; p(\lambda_{1}+\varepsilon_{2})=f(\lambda_{1}+\varepsilon_{2}),\\
 & p(\lambda_{1}+\varepsilon_{2}+\varepsilon_{3})=f(\lambda_{1}+\varepsilon_{2}+\varepsilon_{3}).\end{align*}
Subtracting the equations and taking the limit $\varepsilon_{2}\rightarrow0$
as before, we find\[
p(\lambda_{1})=f(\lambda_{1}),\; p^{\prime}(\lambda_{1})=f^{\prime}(\lambda_{1}),\; p^{\prime}(\lambda_{1}+\varepsilon_{3})=f^{\prime}(\lambda_{1}+\varepsilon_{3}).\]
Subtracting now the second equation from the third and taking the
limit $\varepsilon_{3}\rightarrow0$, we find $p^{\prime\prime}(\lambda_{1})=f^{\prime\prime}(\lambda_{1})$.
Thus we have proved the following.


\paragraph{Theorem 3:}

If a linear operator $\hat{A}$ satisfies a polynomial operator equation
$Q(\hat{A})=0$, such that the equation $Q(\lambda)=0$ has roots
$\lambda_{i}$ ($i=1,...,n$) with multiplicities $m_{i}$,\[
Q(\lambda)=\text{const}\cdot\left(\lambda-\lambda_{1}\right)^{m_{1}}...\left(\lambda-\lambda_{n}\right)^{m_{n}},\]
 an analytic function $f(\hat{A})$ can be computed as\[
f(\hat{A})=p(\hat{A}),\]
where $p(x)$ is the polynomial determined by the conditions \begin{align*}
p(\lambda_{i}) & =f(\lambda_{i}),\; p^{\prime}(\lambda_{i})=f^{\prime}(\lambda_{i}),\;...,\\
 & \left.\frac{d^{m_{i}-1}p(x)}{dx^{m_{i}-1}}\right|_{x=\lambda_{i}}=\left.\frac{d^{m_{i}-1}f(x)}{dx^{m_{i}-1}}\right|_{x=\lambda_{i}},\quad i=1,...,n.\end{align*}


Theorems 1 to 3, which comprise Sylvester's method\index{Sylvester's method},
allow us to compute functions of an operator when only the eigenvalues
are known, without determining any eigenvectors and without assuming
that the operator is diagonalizable.


\subsection{{*} Square roots of operators}

In the previous section we have seen that functions of operators can
be sometimes computed explicitly. However, our methods work either
for diagonalizable operators $\hat{A}$ or for functions $f(x)$ given
by a power series that converges for every eigenvalue of the operator
$\hat{A}$. If these conditions are not met, functions of operators
may not exist or may not be uniquely defined. As an example where
these problems arise, we will briefly consider the task of computing
the square root of a given operator.

Given an operator $\hat{A}$ we would like to define its square root
as an operator $\hat{B}$ such that $\hat{B}^{2}=\hat{A}$. For a
diagonalizable operator $\hat{A}=\sum_{i=1}^{N}\lambda_{i}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}$
(where $\left\{ \mathbf{e}_{i}\right\} $ is an eigenbasis and $\left\{ \mathbf{e}_{i}^{*}\right\} $
is the dual basis) we can easily find a suitable $\hat{B}$ by writing\[
\hat{B}\equiv\sum_{i=1}^{N}\sqrt{\lambda_{i}}\mathbf{e}_{i}\otimes\mathbf{e}_{i}^{*}.\]
 Note that the numeric square root $\sqrt{\lambda_{i}}$ has an ambiguous
sign; so with each possible choice of sign for each $\sqrt{\lambda_{i}}$,
we obtain a possible choice of $\hat{B}$. (Depending on the problem
at hand, there might be a natural way of fixing the signs; for instance,
if all $\lambda_{i}$ are positive then it might be useful to choose
also all $\sqrt{\lambda_{i}}$ as positive.) The ambiguity of signs
is expected; what is unexpected is that there could be many other
operators $\hat{B}$ satisfying $\hat{B}^{2}=\hat{A}$, as the following
example shows. 


\paragraph{Example~1:}

Let us compute the square root of the identity operator in a two-dimen\-sion\-al
space. We look for $\hat{B}$ such that $\hat{B}^{2}=\hat{1}$. Straightforward
solutions are $\hat{B}=\pm\hat{1}$. However, consider the following
operator,\[
\hat{B}\equiv\left(\begin{array}{cc}
a & b\\
c & -a\end{array}\right),\quad\hat{B}^{2}=\left(\begin{array}{cc}
a^{2}+bc & 0\\
0 & a^{2}+bc\end{array}\right)=\left(a^{2}+bc\right)\hat{1}.\]
 This $\hat{B}$ satisfies $\hat{B}^{2}=\hat{1}$ for any $a,b,c\in\mathbb{C}$
as long as $a^{2}+bc=1$. The square root is quite ambiguous for the
identity operator!\hfill{}$\blacksquare$

We will now perform a simple analysis of square roots of operators
in two- and three-dimen\-sion\-al spaces using the Cayley-Hamilton
theorem.

Let us assume that $\hat{B}^{2}=\hat{A}$, where $\hat{A}$ is a given
operator, and denote for brevity $a\equiv\text{Tr}\hat{A}$ and $b\equiv\text{Tr}\hat{B}$
(where $a$ is given but $b$ is still unknown). In two dimensions,
any operator $\hat{B}$ satisfies the characteristic equation\[
\hat{B}^{2}-(\text{Tr}\hat{B})\hat{B}+(\det\hat{B})\hat{1}=0.\]
Taking the trace of this equation, we can express the determinant
as\[
\det\hat{B}=\frac{1}{2}(\text{Tr}\hat{B})^{2}-\frac{1}{2}\text{Tr}(\hat{B}^{2})\]
and hence \begin{equation}
b\hat{B}=\hat{A}+\frac{b^{2}-a}{2}\hat{1}.\label{eq:B ans 2D}\end{equation}
This equation will yield an explicit formula for $\hat{B}$ through
$\hat{A}$ if we only determine the value of the constant $b$ such
that $b\neq0$. Squaring the above equation and taking the trace,
we find\[
b^{4}-2b^{2}a+c=0,\quad c\equiv2\text{Tr}(\hat{A}^{2})-a^{2}=a^{2}-4\det\hat{A}.\]
Hence, we obtain up to \emph{four} possible solutions for $b$,\begin{equation}
b=\pm\sqrt{a\pm\sqrt{a^{2}-c}}=\pm\sqrt{\text{Tr}\hat{A}\pm2\sqrt{\det\hat{A}}}.\label{eq:b equ}\end{equation}
Each value of $b$ such that $b\neq0$ yield possible operators $\hat{B}$
through Eq.~(\ref{eq:B ans 2D}). Denoting by $s_{1}=\pm1$ and $s_{2}=\pm1$
the two free choices of signs in Eq.~(\ref{eq:b equ}), we may write
the general solution (assuming $b\neq0$) as\begin{equation}
\hat{B}=s_{1}\frac{\hat{A}+s_{2}\sqrt{\det\hat{A}}\hat{1}}{\sqrt{\text{Tr}\hat{A}+2s_{2}\sqrt{\det\hat{A}}}}.\label{eq:B ans 2D new}\end{equation}
 It is straightforward to verify (using the Cayley-Hamilton theorem
for $\hat{A}$) that every such $\hat{B}$ indeed satisfies $\hat{B}^{2}=\hat{A}$.

Note also that $\hat{B}$ is expressed as a \emph{linear} polynomial
in $\hat{A}$. Due to the Cayley-Hamilton theorem, any analytic function
of $\hat{A}$ reduces to a linear polynomial in the two-dimen\-sion\-al
case. Hence, we can view Eq.~(\ref{eq:B ans 2D new}) as a formula
yielding the \emph{analytic} solutions of the equation $\hat{B}^{2}=\hat{A}$.

If $b=0$ is a solution of Eq.~(\ref{eq:b equ}) then we must consider
the possibility that solutions $\hat{B}$ with $b\equiv\text{Tr}\,\hat{B}=0$
may exist. In that case, Eq.~(\ref{eq:B ans 2D}) indicates that
$\hat{A}$ plus a multiple of $\hat{1}$ must be equal to the zero
operator. Note that Eq.~(\ref{eq:B ans 2D}) is a \emph{necessary}
consequence of $\hat{B}^{2}=\hat{A}$, obtained only by assuming that
$\hat{B}$ exists. Hence, when $\hat{A}$ is \emph{not} proportional
to the identity operator, no solutions $\hat{B}$ with $\text{Tr}\,\hat{B}=0$
can exist. On the other hand, if $\hat{A}$ \emph{is} proportional
to $\hat{1}$, solutions with $\text{Tr}\,\hat{B}=0$ exist but the
present method does not yield these solutions. (Note that this method
can only yield solutions $\hat{B}$ that are linear combinations of
the operator $\hat{A}$ and the identity operator!) It is easy to
see that the operators from Example~1 fall into this category, with
$\text{Tr}\hat{B}=0$. There are no other solutions except those shown
in Example~1 because in that example we have obtained all possible
traceless solutions.

Another interesting example is found when $\hat{A}$ is a nilpotent
(but nonzero).


\paragraph{Example 2:}

Consider a nilpotent operator $\hat{A}_{1}=\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)$. In that case, both the trace and the determinant of $\hat{A}_{1}$
are equal to zero; it follows that $b=0$ is the only solution of
Eq.~(\ref{eq:b equ}). However, $\hat{A}_{1}$ is not proportional
to the identity operator. Hence, a square root of $\hat{A}_{1}$ \emph{does}
\emph{not} \emph{exist}.


\paragraph{Remark:}

This problem with the nonexistence of the square root is not the same
as the nonexistence of $\sqrt{-1}$ within real numbers; the square
root of $\hat{A}_{1}$ does not exist even if we allow complex numbers!
The reason is that the existence of $\sqrt{\hat{A}_{1}}$ would be
\emph{algebraically} \emph{inconsistent} (because it would contradict
the Cayley-Hamilton theorem).\hfill{}$\blacksquare$

Let us summarize our results so far. In two dimensions, the general
calculation of a square root of a given operator $\hat{A}$ proceeds
as follows: If $\hat{A}$ is proportional to the identity operator,
we have various solutions of the form shown in Example~1. (Not every
one of these solutions may be relevant for the problem at hand, but
they exist.) If $\hat{A}$ is not proportional to the identity operator,
we solve Eq.~(\ref{eq:b equ}) and obtain up to four possible values
of $b$. If the only solution is $b=0$, the square root of $\hat{A}$
does not exist. Otherwise, every \emph{nonzero} value of $b$ yields
a solution $\hat{B}$ according to Eq.~(\ref{eq:B ans 2D}), and
there are no other solutions.


\paragraph{Example~3: }

We would like to determine a square root of the operator \[
\hat{A}=\left(\begin{array}{cc}
1 & 3\\
0 & 4\end{array}\right).\]
We compute $\det\hat{A}=4$ and $a=\text{Tr}\hat{A}=5$. Hence Eq.~(\ref{eq:b equ})
gives four nonzero values, \[
b=\pm\sqrt{5\pm4}=\left\{ \pm1,\pm3\right\} .\]
Substituting these values of $b$ into Eq.~(\ref{eq:B ans 2D}) and
solving for $\hat{B}$, we compute the four possible square roots\[
\hat{B}=\pm\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right),\quad\hat{B}=\pm\left(\begin{array}{cc}
-1 & 3\\
0 & 2\end{array}\right).\]
Since $b=0$ is not a solution, while $\hat{A}\neq\lambda\hat{1}$,
there are no other square roots.


\paragraph{Exercise 1:}

Consider a diagonalizable operator represented in a certain basis
by the matrix\[
\hat{A}=\left(\begin{array}{cc}
\lambda^{2} & 0\\
0 & \mu^{2}\end{array}\right),\]
where $\lambda$ and $\mu$ are any complex numbers, possibly zero,
such that $\lambda^{2}\neq\mu^{2}$. Use Eqs.~(\ref{eq:B ans 2D})--(\ref{eq:b equ})
to show that the possible square roots are \[
\hat{B}=\left(\begin{array}{cc}
\pm\lambda & 0\\
0 & \pm\mu\end{array}\right).\]
and that there are no other square roots.\hfill{}$\blacksquare$


\paragraph{Exercise 2:}

Obtain all possible square roots of the zero operator in two dimensions.\hfill{}$\blacksquare$

Let us now consider a given operator $\hat{A}$ in a \emph{three}-dimen\-sion\-al
space and assume that there exists $\hat{B}$ such that $\hat{B}^{2}=\hat{A}$.
We will be looking for a formula expressing $\hat{B}$ as a polynomial
in $\hat{A}$. As we have seen, this will certainly not give \emph{every}
possible solution $\hat{B}$, but we do expect to get the interesting
solutions that can be expressed as \emph{analytic} functions of $\hat{A}$. 

As before, we denote $a\equiv\text{Tr}\hat{A}$ and $b\equiv\text{Tr}\hat{B}$.
The Cayley-Hamilton theorem for $\hat{B}$ together with Exercise~1
in Sec.~\ref{par:Trace relation1} (page~\pageref{par:Trace relation1})
yields a simplified equation,\begin{align}
0 & =\hat{B}^{3}-b\hat{B}^{2}+s\hat{B}-(\det\hat{B})\hat{1}\nonumber \\
 & =(\hat{A}+s\hat{1})\hat{B}-b\hat{A}-(\det\hat{B})\hat{1},\label{eq:ABsb}\\
s & \equiv\frac{b^{2}-a}{2}.\nonumber \end{align}
Note that $\det\hat{B}=\pm\sqrt{\det\hat{A}}$ and hence can be considered
known. Moving $\hat{B}$ to another side in Eq.~(\ref{eq:ABsb})
and squaring the resulting equation, we find \[
(\hat{A}^{2}+2s\hat{A}+s^{2}\hat{1})\hat{A}=(b\hat{A}+(\det\hat{B})\hat{1})^{2}.\]
Expanding the brackets and using the Cayley-Hamilton theorem for $\hat{A}$
in the form\[
\hat{A}^{3}-a\hat{A}^{2}+p\hat{A}-(\det\hat{A})\hat{1}=0,\]
where the coefficient $p$ can be expressed as\[
p=\frac{1}{2}(a^{2}-\text{Tr}(\hat{A}^{2})),\]
we obtain after simplifications\[
(s^{2}-p-2b\det\hat{B})\hat{A}=0.\]
This yields a fourth-order polynomial equation for $b$,\[
\left(\frac{b^{2}-a}{2}\right)^{2}-p-2b\det\hat{B}=0.\]
This equation can be solved, in principle. Since $\det\hat{B}$ has
up to \emph{two} possible values, $\det\hat{B}=\pm\sqrt{\det\hat{A}}$,
we can then determine \emph{up to eight} possible values of $b$ (and
the corresponding values of $s$).

Now we use a trick to express $\hat{B}$ as a function of $\hat{A}$.
We rewrite Eq.~(\ref{eq:ABsb}) as\[
\hat{A}\hat{B}=-s\hat{B}+b\hat{A}+(\det\hat{B})\hat{1}\]
and multiply both sides by $\hat{B}$, substituting $\hat{A}\hat{B}$
back into the equation,\begin{align*}
\hat{A}^{2}+s\hat{A} & =b\hat{A}\hat{B}+(\det\hat{B})\hat{B}\\
 & =b[-s\hat{B}+b\hat{A}+(\det\hat{B})\hat{1}]+(\det\hat{B})\hat{B}.\end{align*}
The last line yields \[
\hat{B}=\frac{1}{(\det\hat{B})-sb}[\hat{A}^{2}+(s-b^{2})\hat{A}-b(\det\hat{B})\hat{1}].\]
This is the final result, provided that the denominator $(\det\hat{B}-sb)$
does not vanish. In case this denominator vanishes, the present method
cannot yield a formula for $\hat{B}$ in terms of $\hat{A}$.


\paragraph{Exercise 3:{*}}

Verify that the square root of a diagonalizable operator, \[
\hat{A}=\left(\begin{array}{ccc}
p^{2} & 0 & 0\\
0 & q^{2} & 0\\
0 & 0 & r^{2}\end{array}\right),\]
where $p^{2},q^{2},r^{2}\in\mathbb{C}$ are all different, can be
determined using this approach, which yields the eight possibilities
\[
\hat{B}=\left(\begin{array}{ccc}
\pm p & 0 & 0\\
0 & \pm q & 0\\
0 & 0 & \pm r\end{array}\right).\]


\emph{Hint}: Rather than trying to solve the fourth-order equation
for $b$ directly (a cumbersome task), one can just verify, by substituting
into the equation, that the eight values $b=\pm p\pm q\pm r$ (with
all the possible choices of signs) are roots of that equation.


\paragraph{Exercise 4:{*}%
\footnote{This is motivated by the article by R. Capovilla, J. Dell, and T.
Jacobson, \emph{Classical and Quantum Gravity} \textbf{8} (1991),
pp.~59--73; see p. 63 in that article.%
}}

It is given that a three-dimen\-sion\-al operator $\hat{A}$ satisfies\[
\text{Tr}\,(\hat{A}^{2})=\frac{1}{2}(\text{Tr}\,\hat{A})^{2},\quad\det\hat{A}\neq0.\]
Show that there exists $\hat{B}$, unique up to a sign, such that
$\text{Tr}\,\hat{B}=0$ and $\hat{B}^{2}=\hat{A}$.


\subparagraph{Answer:}

\[
\hat{B}=\pm\frac{1}{\sqrt{\det\hat{A}}}\big[\hat{A}^{2}-\frac{1}{2}(\text{Tr}\,\hat{A})\hat{A}\big].\]



\section{Formulas of Jacobi and Liouville\label{sec:Formulas-of-Jacobi-and-Liouville}}


\paragraph{Definition:}

The \textbf{Liouville formula}\index{Liouville formula} is the identity\begin{equation}
\det(\exp\hat{A})=\exp(\textrm{Tr}\hat{A}),\label{eq:Liouville}\end{equation}
where $\hat{A}$ is a linear operator and $\exp\hat{A}$ is defined
by the power series,\[
\exp\hat{A}\equiv\sum_{n=0}^{\infty}\frac{1}{n!}(\hat{A})^{n}.\]



\paragraph{Example:}

Consider a \textbf{diagonalizable}\index{diagonalizable operator}
operator $\hat{A}$ (an operator such that there exists an eigenbasis
$\left\{ \mathbf{e}_{i}\,|\, i=1,...,N\right\} $) and denote by $\lambda_{i}$
the eigenvalues, so that $\hat{A}\mathbf{e}_{i}=\lambda_{i}\mathbf{e}_{i}$.
(The eigenvalues $\lambda_{i}$ are not necessarily all different.)
Then we have $(\hat{A})^{n}\mathbf{e}_{i}=\lambda_{i}^{n}\mathbf{e}_{i}$
and therefore\[
(\exp\hat{A})\mathbf{e}_{i}=\sum_{n=0}^{\infty}\frac{1}{n!}(\hat{A})^{n}\mathbf{e}_{i}=\sum_{n=0}^{\infty}\frac{1}{n!}\lambda_{i}^{n}\mathbf{e}_{i}=e^{\lambda_{i}}\mathbf{e}_{i}.\]
The trace of $\hat{A}$ is $\text{Tr}\hat{A}=\sum_{i=1}^{N}\lambda_{i}$
and the determinant is $\det\hat{A}=\prod_{i=1}^{N}\lambda_{i}$.
Hence we can easily verify the Liouville formula,\[
\det(\exp\hat{A})=e^{\lambda_{1}}...e^{\lambda_{N}}=\exp(\lambda_{1}+...+\lambda_{n})=\exp(\text{Tr}\hat{A}).\]
However, the Liouville formula is valid also for non-diagonalizable
operators.\hfill{}$\blacksquare$

The formula~(\ref{eq:Liouville}) is useful in several areas of mathematics
and physics. A proof of Eq.~(\ref{eq:Liouville}) for matrices can
be given through the use of the Jordan canonical form\index{Jordan canonical form}
of the matrix, which is a powerful but complicated construction that
actually is not needed to derive the Liouville formula. We will derive
it using oper\-ator-valued differential equations for power series.
A useful by-product is a formula for the derivative of the determinant.


\paragraph{Theorem 1 (Liouville's formula\index{Liouville formula}):}

For an operator $\hat{A}$ in a finite-dimen\-sion\-al space $V$,
\begin{equation}
\det\exp(t\hat{A})=\exp(t\textrm{Tr}\hat{A}).\label{eq:Liouville t}\end{equation}
Here both sides are understood as \textbf{formal power series}\index{formal power series}
in the variable $t$, e.g.\[
\exp(t\hat{A})\equiv\sum_{n=0}^{\infty}\frac{t^{n}}{n!}(\hat{A})^{n},\]
i.e.~an infinite series considered without regard for convergence
(Sec.~\ref{sub:Functions-of-operators}). 


\paragraph{Remark:}

Although we establish Theorem~1 only in the sense of equality of
formal power series, the result is useful because both sides of Eq.~(\ref{eq:Liouville t})
will be equal whenever both series converge. Since the series for
$\exp(x)$ converges for all $x$, one expects that Eq.~(\ref{eq:Liouville t})
has a wide range of applicability. In particular, it holds for any
operator in finite dimensions.\hfill{}$\blacksquare$

The idea of the proof will be to represent both sides of Eq.~(\ref{eq:Liouville t})
as power series in $t$ satisfying some differential equation. First
we figure out how to solve differential equations for formal power
series. Then we will guess a suitable differential equation that will
enable us to prove the theorem.


\paragraph{Lemma 1:}

The operator-valued function $\hat{F}(t)\equiv\exp(t\hat{A})$ is
the unique solution of the differential equation\[
\partial_{t}\hat{F}(t)=\hat{F}(t)\,\hat{A},\quad\hat{F}\left(t=0\right)=\hat{1}_{V},\]
where both sides of the equation are understood as formal power series.


\subparagraph{Proof:}

The initial condition means that \[
\hat{F}(t)=\hat{1}+\hat{F}_{1}t+\hat{F}_{2}t^{2}+...,\]
where $\hat{F}_{1}$, $\hat{F}_{2}$, ..., are some operators. Then
we equate terms with equal powers of $t$ in the differential equation,
which yields $\hat{F}_{j+1}=\frac{1}{j}\hat{F}_{j}\hat{A}$, $j=1,2,...$,
and so we obtain the desired exponential series.\hfill{}$\blacksquare$


\paragraph{Lemma 2:}

If $\phi(t)$ and $\psi(t)$ are power series in $t$ with coefficients
from $\wedge^{m}V$ and $\wedge^{n}V$ respectively, then the Leibniz
rule holds,\[
\partial_{t}\left(\phi\wedge\psi\right)=\left(\partial_{t}\phi\right)\wedge\psi+\phi\wedge\left(\partial_{t}\psi\right).\]



\subparagraph{Proof:}

Since the derivative of formal power series, as defined above, is
a linear operation, it is sufficient to verify the statement in the
case when $\phi=t^{a}\omega_{1}$ and $\psi=t^{b}\omega_{2}$. Then
we find\begin{align*}
\partial_{t}\left(\phi\wedge\psi\right) & =\left(a+b\right)t^{a+b-1}\omega_{1}\wedge\omega_{2},\\
\left(\partial_{t}\phi\right)\wedge\psi+\phi\wedge\left(\partial_{t}\psi\right) & =at^{a-1}\omega_{1}\wedge t^{b}\omega_{2}+t^{a}\omega_{1}\wedge bt^{b-1}\omega_{2}.\end{align*}
\hfill{}$\blacksquare$


\paragraph{Lemma 3:}

The inverse to a formal power series $\phi(t)$ exists (as a formal
power series) if and only if $\phi(0)\neq0$.


\subparagraph{Proof:}

The condition $\phi(0)\neq0$ means that we can express $\phi(t)=\phi(0)+t\psi(t)$
where $\psi(t)$ is another power series. Then we can use the identity
of formal power series,\[
1=\left(1+x\right)\left[\sum_{n=0}^{\infty}\left(-1\right)^{n}x^{n}\right],\]
to express $1/\phi(t)$ as a formal power series, \[
\frac{1}{\phi(t)}=\frac{1}{\phi(0)+t\psi(t)}=\sum_{n=0}^{\infty}\left(-1\right)^{n}\left[\phi(0)\right]^{-n-1}\left[t\psi(t)\right]^{n}.\]
Since each term $\left[t\psi(t)\right]^{n}$ is expanded into a series
that starts with $t^{n}$, we can compute each term of $1/\phi(t)$
by adding finitely many other terms, i.e.~the above equation does
specify a well-defined formal power series.\hfill{}$\blacksquare$


\paragraph{Corollary:}

If $\hat{A}(t)$ is an operator-valued formal power series, the inverse
to $\hat{A}(t)$ exists (as a formal power series) if and only if
$\det\hat{A}(0)\neq0$.

The next step towards guessing the differential equation is to compute
the derivative of a determinant.


\paragraph{Lemma 4 (Jacobi's formula\index{Jacobi formula}):}

If $\hat{A}(t)$ is an oper\-ator-valued formal power series such
that the inverse $\hat{A}^{-1}(t)$ exists, we have \begin{equation}
\partial_{t}\det\hat{A}(t)=(\det\hat{A})\textrm{Tr}\,[\hat{A}^{-1}\partial_{t}\hat{A}]=\textrm{Tr}\,[(\det\hat{A})\hat{A}^{-1}\partial_{t}\hat{A}].\label{eq:pre Liouville 1}\end{equation}
If the inverse does not exist, we need to replace $\det\hat{A}\cdot\hat{A}^{-1}$
in Eq.~(\ref{eq:pre Liouville 1}) by the algebraic complement, \[
\tilde{\hat{A}}\equiv\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\]
 (see Sec.~\ref{sub:The-algebraic-complement}), so that we obtain
the formula of Jacobi,\[
\partial_{t}\det\hat{A}=\text{Tr}\,[\tilde{\hat{A}}\,\partial_{t}\hat{A}].\]



\subparagraph{Proof of Lemma~4:}

A straightforward calculation using Lemma~2 gives\begin{align*}
\big(\partial_{t}\det\hat{A}(t)\big)\mathbf{v}_{1}\wedge... & \wedge\mathbf{v}_{N}=\partial_{t}[\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N}]\\
 & =\sum_{k=1}^{N}\hat{A}\mathbf{v}_{1}\wedge...\wedge(\partial_{t}\hat{A})\mathbf{v}_{k}\wedge...\wedge\hat{A}\mathbf{v}_{N}.\end{align*}
Now we use the definition of the algebraic complement operator to
rewrite\[
\hat{A}\mathbf{v}_{1}\wedge...\wedge(\partial_{t}\hat{A})\mathbf{v}_{k}\wedge...\wedge\hat{A}\mathbf{v}_{N}=\mathbf{v}_{1}\wedge...\wedge(\tilde{\hat{A}}\,\partial_{t}\hat{A}\mathbf{v}_{k})\wedge...\wedge\mathbf{v}_{N}.\]
Hence\begin{align*}
(\partial_{t}\det\hat{A})\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N} & =\sum_{k=1}^{N}\mathbf{v}_{1}\wedge...\wedge(\tilde{\hat{A}}\,\partial_{t}\hat{A}\mathbf{v}_{k})\wedge...\wedge\mathbf{v}_{N}\\
 & =\wedge^{N}(\tilde{\hat{A}}\,\partial_{t}\hat{A})^{1}\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\\
 & =\text{Tr}\,[\tilde{\hat{A}}\,\partial_{t}\hat{A}]\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\end{align*}
Therefore $\partial_{t}\det\hat{A}=\text{Tr}\,[\tilde{\hat{A}}\,\partial_{t}\hat{A}]$.
When $\hat{A}^{-1}$ exists, we may express $\tilde{\hat{A}}$ through
the inverse matrix, $\tilde{\hat{A}}=(\det\hat{A})\hat{A}^{-1}$,
and obtain Eq.~(\ref{eq:pre Liouville 1}). 


\subparagraph{Proof of Theorem 1:}

It follows from Lemma~3 that $\hat{F}^{-1}(t)$ exists since $\hat{F}(0)=\hat{1}$,
and it follows from Lemma~4 that the oper\-ator-valued function
$\hat{F}(t)=\exp(t\hat{A})$ satisfies the differential equation\[
\partial_{t}\det\hat{F}(t)=\det\hat{F}(t)\cdot\textrm{Tr}[\hat{F}^{-1}\partial_{t}\hat{F}].\]
From Lemma~1, we have $\hat{F}^{-1}\partial_{t}\hat{F}=\hat{F}^{-1}\hat{F}\hat{A}=\hat{A}$,
therefore\[
\partial_{t}\det\hat{F}(t)=\det\hat{F}(t)\cdot\textrm{Tr}\hat{A}.\]
This is a differential equation for the number-valued formal power
series $f(t)\equiv\det\hat{F}(t)$, with the initial condition $f(0)=1$.
The solution (which we may still regard as a formal power series)
is\[
f(t)=\exp(t\textrm{Tr}\hat{A}).\]
Therefore\[
\det\hat{F}(t)\equiv\det\exp(t\hat{A})=\exp(t\textrm{Tr}\hat{A}).\]
\hfill{}$\blacksquare$


\paragraph{Exercise 1: (generalized Liouville's formula)}

If $\hat{A}\in\textrm{End }V$ and $p\leq N\equiv\dim V$, show that\[
\wedge^{p}(\exp t\hat{A})^{p}=\exp\big(t(\wedge^{p}\hat{A}^{1})\big),\]
where both sides are understood as formal power series of operators
in $\wedge^{p}V$. (The Liouville formula is a special case with $p=N$.)


\paragraph{Exercise 2:{*} (Sylvester's theorem)}

For any two linear maps $\hat{A}:V\rightarrow W$ and $\hat{B}:W\rightarrow V$,
we have well-defined composition maps $\hat{A}\hat{B}\in\text{End }W$
and $\hat{B}\hat{A}\in\text{End }V$. Then\[
\det(\hat{1}_{V}+\hat{B}\hat{A})=\det(\hat{1}_{W}+\hat{A}\hat{B}).\]
Note that the operators at both sides act in different spaces.

\emph{Hint}: Introduce a real parameter $t$ and consider the functions
$f(t)\equiv\det(1+t\hat{A}\hat{B})$, $g(t)\equiv\det(1+t\hat{B}\hat{A})$.
These functions are polynomials of finite degree in $t$. Consider
the differential equation for these functions; show that $f(t)$ satisfies\[
\frac{df}{dt}=f(t)\text{Tr}\,[\hat{A}\hat{B}(1+t\hat{A}\hat{B})^{-1}],\]
and similarly for $g$. Expand in series in $t$ and use the identities
$\text{Tr}\,(\hat{A}\hat{B})=\text{Tr}\,(\hat{B}\hat{A})$, $\text{Tr}\,(\hat{A}\hat{B}\hat{A}\hat{B})=\text{Tr}\,(\hat{B}\hat{A}\hat{B}\hat{A})$,
etc. Then show that $f$ and $g$ are solutions of the same differential
equation, with the same conditions at $t=0$. Therefore, show that
these functions are identical as formal power series. Since $f$ and
$g$ are actually polynomials in $t$, they must be equal.


\subsection{Derivative of characteristic polynomial}

Jacobi's formula expresses the derivative of the determinant, $\partial_{t}\det\hat{A}$,
in terms of the derivative $\partial_{t}\hat{A}$ of the operator
$\hat{A}$. The determinant is the last coefficient $q_{0}$ of the
characteristic polynomial of $\hat{A}$. It is possible to obtain
similar formulas for the derivatives of all other coefficients of
the characteristic polynomial.


\paragraph{Statement:}

The derivative of the coefficient\[
q_{k}\equiv\wedge^{N}\hat{A}^{N-k}\]
 of the characteristic polynomial of $\hat{A}$ is expressed (for
$0\leq k\leq N-1$) as \[
\partial_{t}q_{k}=\text{Tr}\,\big[(\wedge^{N-1}\hat{A}^{N-k-1})^{\wedge T}\partial_{t}\hat{A}\big].\]
Note that the first operator in the brackets is the one we denoted
by $\hat{A}_{(k+1)}$ in Sec.~\ref{sub:Properties-of-the-algebraic-complement},
so we can write\[
\partial_{t}q_{k}=\text{Tr}\,[\hat{A}_{(k+1)}\partial_{t}\hat{A}].\]



\subparagraph{Proof:}

We apply the operator $\partial_{t}(\wedge^{N}\hat{A}^{N-k})$ to
the tensor $\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$,
where $\left\{ \mathbf{v}_{j}\right\} $ is a basis. We assume that
the vectors $\mathbf{v}_{j}$ do not depend on $t$, so we can compute
\[
\big[\partial_{t}(\wedge^{N}\hat{A}^{N-k})\big]\omega=\partial_{t}\big[{\wedge^{N}\hat{A}^{N-k}}\omega\big].\]
 The result is a sum of terms such as\[
\hat{A}\mathbf{v}_{1}\wedge...\wedge\hat{A}\mathbf{v}_{N-k-1}\wedge\partial_{t}\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{N}\]
and other terms obtained by permuting the vectors $\mathbf{v}_{j}$
(without introducing any minus signs!). The total number of these
terms is equal to $N{N-1 \choose N-k-1}$, since we need to choose
a single vector to which $\partial_{t}\hat{A}$ will apply, and then
$\left(N-k-1\right)$ vectors to which $\hat{A}$ will apply, among
the $(N-1)$ remaining vectors. Now consider the expression\[
\text{Tr}\,\big[(\wedge^{N-1}\hat{A}^{N-k-1})^{\wedge T}\partial_{t}\hat{A}\big]\omega.\]
This expression is the sum of terms such as\[
\hat{A}_{(k+1)}\partial_{t}\hat{A}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}\]
and other terms with permuted vectors $\mathbf{v}_{j}$. There will
be $N$ such terms, since we choose one vector out of $N$ to apply
the operator $\hat{A}_{(k+1)}\partial_{t}\hat{A}$. Using the definition
of $\hat{A}_{(k+1)}$, we write\begin{align*}
 & \hat{A}_{(k+1)}\partial_{t}\hat{A}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}\\
 & \;=\partial_{t}\hat{A}\mathbf{v}_{1}\wedge\big[{\wedge^{N-1}\hat{A}^{N-k-1}}\big](\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N})\\
 & \;=\partial_{t}\hat{A}\mathbf{v}_{1}\wedge\hat{A}\mathbf{v}_{2}\wedge...\wedge\hat{A}\mathbf{v}_{N-k}\wedge\mathbf{v}_{N-k+1}\wedge...\wedge\mathbf{v}_{N}+...,\end{align*}
where in the last line we omitted all other permutations of the vectors.
(There will be ${N-1 \choose N-k-1}$ such permutations.) It follows
that the tensor expressions \[
\partial_{t}q_{k}\omega\equiv\partial_{t}(\wedge^{N}\hat{A}^{N-k})\omega\]
 and $\text{Tr}\,[\hat{A}_{(k+1)}\partial_{t}\hat{A}]\omega$ consist
of the same terms; thus they are equal,\[
\partial_{t}q_{k}\omega=\text{Tr}\,[\hat{A}_{(k+1)}\partial_{t}\hat{A}]\omega.\]
Since this holds for any $\omega\in\wedge^{N}V$, we obtain the required
statement.\hfill{}$\blacksquare$


\paragraph{Exercise:}

Assuming that $\hat{A}(t)$ is invertible, derive a formula for the
derivative of the algebraic complement, $\partial_{t}\tilde{\hat{A}}$.

\emph{Hint}: Compute $\partial_{t}$ of both sides of the identity
$\tilde{\hat{A}}\hat{A}=(\det\hat{A})\hat{1}$.


\subparagraph{Answer:}

\[
\partial_{t}\tilde{\hat{A}}=\frac{\text{Tr}\,[\tilde{\hat{A}}\partial_{t}\hat{A}]\tilde{\hat{A}}-\tilde{\hat{A}}(\partial_{t}\hat{A})\tilde{\hat{A}}}{\det\hat{A}}.\]



\paragraph{Remark:}

Since $\tilde{\hat{A}}$ is a polynomial in $\hat{A}$, \[
\tilde{\hat{A}}=q_{1}-q_{2}\hat{A}+...+q_{N-1}(-\hat{A})^{N-2}+(-\hat{A})^{N-1},\]
all derivatives of $\tilde{\hat{A}}$ may be expressed directly as
polynomials in $\hat{A}$ and derivatives of $\hat{A}$, even when
$\hat{A}$ is not invertible. Explicit expressions not involving $\hat{A}^{-1}$
are cumbersome --- for instance, the derivative of a polynomial in
$\hat{A}$ will contain expressions like \[
\partial_{t}(\hat{A}^{3})=(\partial_{t}\hat{A})\hat{A}^{2}+\hat{A}(\partial_{t}\hat{A})\hat{A}+\hat{A}^{2}\partial_{t}\hat{A}.\]
Nevertheless, these expressions can be derived using the known formulas
for $\partial_{t}q_{k}$ and $\hat{A}_{(k)}$.\hfill{}$\blacksquare$


\subsection{Derivative of a simple eigenvalue}

Suppose an operator $\hat{A}$ is a function of a parameter $t$;
we will consider $\hat{A}(t)$ as a formal power series (FPS). Then
the eigenvectors and the eigenvalues of $\hat{A}$ are also functions
of $t$. We can obtain a simple formula for the derivative of an eigenvalue
$\lambda$ if it is an eigenvalue of multiplicity 1. It will be sufficient
to know the eigenvalue $\lambda$ and the algebraic complement of
$\hat{A}-\lambda\hat{1}$; we do not need to know any eigenvectors
of $\hat{A}$ explicitly, nor the other eigenvalues. 


\paragraph{Statement:}

Suppose $\hat{A}(t)$ is an operator-valued formal power series and
$\lambda(0)$ is a simple eigenvalue, i.e.~an eigenvalue of $\hat{A}(0)$
having multiplicity 1. We also assume that there exists an FPS $\lambda(t)$
and a vector-val\-ued FPS $\mathbf{v}(t)$ such that $\hat{A}\mathbf{v}=\lambda\mathbf{v}$
in the sense of formal power series. Then the following identity of
FPS holds,\begin{align*}
\partial_{t}\lambda & =\frac{\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})}{\wedge^{N}\hat{B}^{N-1}}=\frac{\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})}{\text{Tr}\,\tilde{\hat{B}}},\\
\hat{B}(t) & \equiv\hat{A}(t)-\lambda(t)\hat{1}_{V}.\end{align*}
The number \[
\text{Tr}\tilde{\hat{B}}(0)\equiv\left.\wedge^{N}\hat{B}^{N-1}\right|_{t=0}\neq0\]
 if and only if $\lambda(0)$ is a simple eigenvalue.


\subparagraph{Proof:}

We consider the derivative $\partial_{t}$ of the identity $\det\hat{B}=0$:\begin{align*}
0 & =\partial_{t}\det\hat{B}=\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{B})=\text{Tr}\,[\tilde{\hat{B}}(\partial_{t}\hat{A}-\hat{1}\partial_{t}\lambda)]\\
 & =\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})-(\text{Tr}\,\tilde{\hat{B}})\partial_{t}\lambda.\end{align*}
We have from Statement~1 in Sec.~\ref{sub:Properties-of-the-algebraic-complement}
the relation \[
\text{Tr}\,\tilde{\hat{B}}=\wedge^{N}\hat{B}^{N-1}\]
for any operator $\hat{B}$. Since (by assumption) $\text{Tr}\tilde{\hat{B}}(t)\neq0$
at $t=0$, we may divide by $\text{Tr}\tilde{\hat{B}}(t)$ because
$1/\text{Tr}\tilde{\hat{B}}(t)$ is a well-defined FPS (Lemma~3 in
Sec.~\ref{sec:Formulas-of-Jacobi-and-Liouville}). Hence, we have
\[
\partial_{t}\lambda=\frac{\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})}{\text{Tr}\,\tilde{\hat{B}}}=\frac{\text{Tr}\,(\tilde{\hat{B}}\partial_{t}\hat{A})}{\wedge^{N}\hat{B}^{N-1}}.\]
The condition $\wedge^{N}\hat{B}^{N-1}\neq0$ is equivalent to\[
\frac{\partial}{\partial\mu}Q_{\hat{B}}(\mu)\neq0\quad\text{at}\,\mu=0,\]
which is the same as the condition that $\mu=0$ is a simple zero
of the characteristic polynomial of $\hat{B}\equiv\hat{A}-\lambda\hat{1}$.\hfill{}$\blacksquare$


\paragraph{Remark: }

If $\hat{A}(t)$, say, at $t=0$ has an eigenvalue $\lambda(0)$ of
multiplicity higher than 1, the formula derived in Statement~1 does
not apply, and the analysis requires knowledge of the eigenvectors.
For example, the eigenvalue $\lambda(0)$ could have multiplicity
2 because there are two eigenvalues $\lambda_{1}(t)$ and $\lambda_{2}(t)$,
corresponding to different eigenvectors, which are accidentally equal
at $t=0$. One cannot compute $\partial_{t}\lambda$ without specifying
which of the two eigenvalues, $\lambda_{1}(t)$ or $\lambda_{2}(t)$,
needs to be considered, i.e.~without specifying the corresponding
eigenvectors $\mathbf{v}_{1}(t)$ or $\mathbf{v}_{2}(t)$. Here I
do not consider these more complicated situations but restrict attention
to the case of a simple eigenvalue.


\subsection{General trace relations\index{trace relations}\label{sub:General-trace-relations}}

We have seen in Sec.~\ref{sub:The-characteristic-polynomial} (Exercises
1 and 2) that the coefficients of the characteristic polynomial of
an operator $\hat{A}$ can be expressed by algebraic formulas through
the $N$ traces $\text{Tr}\hat{A}$, ..., $\text{Tr}(\hat{A}^{N})$,
and we called these formulas {}``trace relations.'' We will now
compute the coefficients in the trace relations in the general case.

We are working with a given operator $\hat{A}$ in an $N$-dimensional
space.


\paragraph{Statement:}

We denote for brevity $q_{k}\equiv\wedge^{N}\hat{A}^{k}$ and $t_{k}\equiv\text{Tr}(\hat{A}^{k})$,
where $k=1,2,...$, and set $q_{k}\equiv0$ for $k>N$. Then all $q_{k}$
can be expressed as polynomials in $t_{k}$, and these polynomials
are equal to the coefficients at $x^{k}$ of the formal power series\[
G(x)=\exp\left[t_{1}x-t_{2}\frac{x^{2}}{2}+...+\left(-1\right)^{n-1}t_{n}\frac{x^{n}}{n}+...\right]\equiv\sum_{k=1}^{\infty}x^{k}q_{k}\]
by collecting the powers of the formal variable $x$ up to the desired
order.


\subparagraph{Proof:}

Consider the expression $\det(\hat{1}+x\hat{A})$ as a formal power
series in $x$. By the Liouville formula, we have the following identity
of formal power series,\begin{align*}
\ln\det(\hat{1}+x\hat{A}) & =\text{Tr}\left[\ln(\hat{1}+x\hat{A})\right]\\
 & =\text{Tr}\left[x\hat{A}-\frac{x^{2}}{2}\hat{A}^{2}+...+\left(-1\right)^{n-1}\frac{x^{n}}{n}\hat{A}^{n}+...\right]\\
 & =xt_{1}-\frac{x^{2}}{2}t_{2}+...+\left(-1\right)^{n-1}t_{n}\frac{x^{n}}{n}+...,\end{align*}
where we substituted the power series for the logarithm function and
used the notation $t_{k}\equiv\text{Tr}(\hat{A}^{k})$. Therefore,
we have \[
\det(\hat{1}+x\hat{A})=\exp G(x)\]
as the identity of  formal power series. On the other hand, $\det(\hat{1}+x\hat{A})$
is actually a \emph{polynomial} of degree $N$ in $x$, i.e.~a formal
power series that has all zero coefficients from $x^{N+1}$ onwards.
The coefficients of this polynomial are found by using $x\hat{A}$
instead of $\hat{A}$ in Lemma~1 of Sec.~\ref{sub:The-characteristic-polynomial}:\[
\det(\hat{1}+x\hat{A})=1+q_{1}x+...+q_{N}x^{N}.\]
Therefore, the coefficient at $x^{k}$ in the formal power series
$\exp G(x)$ is indeed equal to $q_{k}$ for $k=1,...,N$. (The coefficients
at $x^{k}$ for $k>N$ are all zero!)\hfill{}$\blacksquare$


\paragraph{Example:}

Expanding the given series up to terms of order $x^{4}$, we find
after some straightforward calculations\begin{align*}
G(x) & =t_{1}x+\frac{t_{1}^{2}-t_{2}}{2}x^{2}+\left[\frac{t_{1}^{3}}{6}-\frac{t_{1}t_{2}}{2}+\frac{t_{3}}{3}\right]x^{3}\\
 & +\left[\frac{t_{1}^{4}}{24}-\frac{t_{1}^{2}t_{2}}{4}+\frac{t_{2}^{2}}{8}+\frac{t_{1}t_{3}}{3}-\frac{t_{4}}{4}\right]x^{4}+O(x^{5}).\end{align*}
Replacing $t_{j}$ with $\text{Tr}(\hat{A}^{j})$ and collecting the
terms at the $k$-th power of $x$, we obtain the $k$-th trace relation.
For example, the trace relation for $k=4$ is\begin{align*}
\wedge^{N}\hat{A}^{4} & =\frac{1}{24}(\text{Tr}\hat{A})^{4}-\frac{1}{4}\text{Tr}(\hat{A}^{2})(\text{Tr}\hat{A})^{2}+\frac{1}{8}\left[\text{Tr}(\hat{A}^{2})\right]^{2}\\
 & +\frac{1}{3}\text{Tr}(\hat{A}^{3})\text{Tr}\hat{A}-\frac{1}{4}\text{Tr}(\hat{A}^{4}).\end{align*}
Note that this formula is valid for all $N$, even for $N<4$; in
the latter case, $\wedge^{N}\hat{A}^{4}=0$.


\section{Jordan canonical form\label{sub:The-Jordan-canonical}}

We have seen in Sec.~\ref{sub:The-characteristic-polynomial} that
the eigenvalues of a linear operator are the roots of the characteristic
polynomial, and that there exists \emph{at least one} eigenvector
corresponding to each eigenvalue. In this section we will assume that
the total number of roots of the characteristic polynomial, counting
the algebraic multiplicity, is equal to $N$ (the dimension of the
space). This is the case, for instance, when the field $\mathbb{K}$
is that of the complex numbers ($\mathbb{C}$); otherwise not all
polynomials will have roots belonging to $\mathbb{K}$. 

The dimension of the eigenspace corresponding to an eigenvalue $\lambda$
(the \textbf{geometric multiplicity}\index{geometric multiplicity})
is not larger than the algebraic multiplicity of the root $\lambda$
in the characteristic polynomial (Theorem~1 in Sec.~\ref{sub:The-characteristic-polynomial}).
The geometric multiplicity is in any case not less than 1 because
at least one eigenvector exists (Theorem~2 in Sec.~\ref{sub:Existence-of-solutions}).
However, it may happen that the algebraic multiplicity of an eigenvalue
$\lambda$ is larger than 1 but the geometric multiplicity is strictly
smaller than the algebraic multiplicity. For example, an operator
given in some basis by the matrix \[
\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)\]
has only one eigenvector corresponding to the eigenvalue $\lambda=0$
of algebraic multiplicity 2. Note that this has nothing to do with
missing real roots of algebraic equations; this operator has only
one eigenvector even if we allow complex eigenvectors. In this case,
the operator is not diagonalizable because there are insufficiently
many eigenvectors to build a basis. The theory of the Jordan canonical
form explains the structure of the operator in this case and finds
a suitable basis that contains all the eigenvectors and also some
additional vectors (called the \textbf{root} \textbf{vectors}), such
that the given operator has a particularly simple form when expressed
through that basis. This form is block-diag\-onal and consists of
\textbf{Jordan} \textbf{cells}\index{Jordan cell}, which are square
matrices such as\[
\left(\begin{array}{ccc}
\lambda & 1 & 0\\
0 & \lambda & 1\\
0 & 0 & \lambda\end{array}\right),\]
and similarly built matrices of higher dimension.

To perform the required analysis, it is convenient to consider each
eigenvalue of a given operator separately and build the required basis
gradually. Since the procedure is somewhat long, we will organize
it by steps. The result of the procedure will be a construction of
a basis (the \textbf{Jordan basis}\index{Jordan basis}) in which
the operator $\hat{A}$ has the Jordan canonical form.


\paragraph{Step 0: Set up the initial basis.}

Let $\hat{A}\in\text{End}\, V$ be a linear operator having the eigenvalues
$\lambda_{1}$,...,$\lambda_{n}$, and let us consider the first eigenvalue
$\lambda_{1}$; suppose $\lambda_{1}$ has algebraic multiplicity
$m$. If the geometric multiplicity of $\lambda_{1}$ is also equal
to $m$, we can choose a linearly independent set of $m$ basis eigenvectors
$\left\{ \mathbf{v}_{1},...,\mathbf{v}_{m}\right\} $ and continue
to work with the next eigenvalue $\lambda_{2}$. If the geometric
multiplicity of $\lambda_{1}$ is less than $m$, we can only choose
a set of $r<m$ basis eigenvectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r}\right\} $.

In either case, we have found a set of eigenvectors with eigenvalue
$\lambda_{1}$ that spans the entire eigenspace. We can repeat Step~0
for every eigenvalue $\lambda_{i}$ and obtain the spanning sets of
eigenvectors. The resulting set of eigenvectors can be completed to
a basis in $V$. At the end of Step~0, we have a basis $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k},\mathbf{u}_{k+1},...,\mathbf{u}_{N}\right\} $,
where the vectors $\mathbf{v}_{i}$ are eigenvectors of $\hat{A}$
and the vectors $\mathbf{u}_{i}$ are chosen arbitrarily --- as long
as the result is a basis in $V$. By construction, any eigenvector
of $\hat{A}$ is a linear combination of the $\mathbf{v}_{i}$'s.
If the eigenvectors $\mathbf{v}_{i}$ are sufficiently numerous as
to make a basis in $V$ without any $\mathbf{u}_{i}$'s, the operator
$\hat{A}$ is diagonalizable and its Jordan basis is the eigenbasis;
the procedure is finished. We need to proceed with the next steps
only in the case when the eigenvectors $\mathbf{v}_{i}$ do not yet
span the entire space $V$, so the Jordan basis is not yet determined.


\paragraph{Step 1: Determine a root vector.}

We will now concentrate on an eigenvalue $\lambda_{1}$ for which
the geometric multiplicity $r$ is less than the algebraic multiplicity
$m$. At the previous step, we have found a basis containing all the
eigenvectors needed to span every eigenspace. The basis presently
has the form $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{u}_{r+1},...,\mathbf{u}_{N}\right\} $,
where $\left\{ \mathbf{v}_{i}\,|\,1\leq i\leq r\right\} $ span the
eigenspace of the eigenvalue $\lambda_{1}$, and $\left\{ \mathbf{u}_{i}\,|\, r+1\leq i\leq N\right\} $
are either eigenvectors of $\hat{A}$ corresponding to other eigenvalues,
or other basis vectors. Without loss of generality, we may assume
that $\lambda_{1}=0$ (otherwise we need to consider temporarily the
operator $\hat{A}-\lambda_{1}\hat{1}_{V}$, which has all the same
eigenvectors as $\hat{A}$). Since the operator $\hat{A}$ has eigenvalue
0 with algebraic multiplicity $m$, the characteristic polynomial
has the form $Q_{\hat{A}}(\lambda)=\lambda^{m}\tilde{q}(\lambda)$,
where $\tilde{q}(\lambda)$ is some other polynomial. Since the coefficients
of the characteristic polynomial are proportional to the operators
$\wedge^{N}\hat{A}^{k}$ for $1\leq k\leq N$, we find that \[
\wedge^{N}\hat{A}^{N-m}\neq0,\;\text{while}\;\wedge^{N}\hat{A}^{N-k}=0,\quad0\leq k<m.\]
In other words, we have found that several operators of the form $\wedge^{N}\hat{A}^{N-k}$
vanish. Let us now try to obtain some information about the vectors
$\mathbf{u}_{i}$ by considering the action of these operators on
the $N$-vector \[
\omega\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{r}\wedge\mathbf{u}_{r+1}\wedge...\wedge\mathbf{u}_{N}.\]
The result must be zero; for instance, we have \[
(\wedge^{N}\hat{A}^{N})\omega=\hat{A}\mathbf{v}_{1}\wedge...=0\]
 since $\hat{A}\mathbf{v}_{1}=0$. We do not obtain any new information
by considering the operator $\wedge^{N}\hat{A}^{N}$ because the application
of $\wedge^{N}\hat{A}^{N}$ on $\omega$ acts with $\hat{A}$ on $\mathbf{v}_{i}$,
which immediately yields zero. A nontrivial result can be obtained
only if we do not act with $\hat{A}$ on \emph{any} of the $r$ eigenvectors
$\mathbf{v}_{i}$. Thus, we turn to considering the operators $\wedge^{N}\hat{A}^{N-k}$
with $k\geq r$; these operators involve sufficiently few powers of
$\hat{A}$ so that $\wedge^{N}\hat{A}^{N-k}\omega$ may avoid containing
any terms $\hat{A}\mathbf{v}_{i}$.

The first such operator is\[
0{\lyxbuildrel!\above=}(\wedge^{N}\hat{A}^{N-r})\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{r}\wedge\hat{A}\mathbf{u}_{r+1}\wedge...\wedge\hat{A}\mathbf{u}_{N}.\]
It follows that the set $\{\mathbf{v}_{1},...,\mathbf{v}_{r},\hat{A}\mathbf{u}_{r+1},...,\hat{A}\mathbf{u}_{N}\}$
is linearly dependent, so there exists a vanishing linear combination\begin{equation}
\sum_{i=1}^{r}c_{i}\mathbf{v}_{i}+\sum_{i=r+1}^{N}c_{i}\hat{A}\mathbf{u}_{i}=0\label{eq:vanishing linear combination}\end{equation}
with at least some $c_{i}\neq0$. Let us define the vectors \[
\tilde{\mathbf{v}}\equiv\sum_{i=1}^{r}c_{i}\mathbf{v}_{i},\quad\mathbf{x}\equiv-\sum_{i=r+1}^{N}c_{i}\mathbf{u}_{i},\]
so that Eq.~(\ref{eq:vanishing linear combination}) is rewritten
as $\hat{A}\mathbf{x}=\tilde{\mathbf{v}}$. Note that $\mathbf{x}\neq0$,
for otherwise we would have $\sum_{i=1}^{r}c_{i}\mathbf{v}_{i}=0$,
which contradicts the linear independence of the set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r}\right\} $.
Further, the vector $\tilde{\mathbf{v}}$ cannot be equal to zero,
for otherwise we would have $\hat{A}\mathbf{x}=0$, so there would
exist an additional eigenvector $\mathbf{x}\neq0$ that is not a linear
combination of $\mathbf{v}_{i}$, which is impossible since (by assumption)
the set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r}\right\} $ spans
the entire subspace of all eigenvectors with eigenvalue 0. Therefore,
$\tilde{\mathbf{v}}\neq0$, so at least one of the coefficients $\left\{ c_{i}\,|\,1\leq i\leq r\right\} $
is nonzero. Without loss of generality, we assume that $c_{1}\neq0$.
Then we can replace $\mathbf{v}_{1}$ by $\tilde{\mathbf{v}}$ in
the basis; the set $\left\{ \tilde{\mathbf{v}},\mathbf{v}_{2},...,\mathbf{v}_{r},\mathbf{u}_{r+1},...,\mathbf{u}_{N}\right\} $
is still a basis because\begin{align*}
\tilde{\mathbf{v}}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{r} & =(c_{1}\mathbf{v}_{1}+...)\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{r}\\
 & =c_{1}\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{r}\neq0.\end{align*}
 Similarly, at least one of the coefficients $\left\{ c_{i}\,|\, r+1\leq i\leq N\right\} $
is nonzero. We would like to replace one of the $\mathbf{u}_{i}$'s
in the basis by $\mathbf{x}$; it is possible to replace $\mathbf{u}_{i}$
by $\mathbf{x}$ as long as $c_{i}\neq0$. However, we do not wish
to remove from the basis any of the eigenvectors corresponding to
other eigenvalues; so we need to choose the index $i$ such that $\mathbf{u}_{i}$
is not one of the other eigenvectors and at the same time $c_{i}\neq0$.
This choice is possible; for were it impossible, the vector $\mathbf{x}$
were a linear combination of other eigenvectors of $\hat{A}$ (all
having nonzero eigenvalues), so $\hat{A}\mathbf{x}$ is again a linear
combination of those eigenvectors, which contradicts the equations
$\hat{A}\mathbf{x}=\tilde{\mathbf{v}}$ and $\hat{A}\tilde{\mathbf{v}}=0$
because $\tilde{\mathbf{v}}$ is linearly independent of all other
eigenvectors. Therefore, we can choose a vector $\mathbf{u}_{i}$
that is not an eigenvector and such that $\mathbf{x}$ can be replaced
by $\mathbf{u}_{i}$. Without loss of generality, we may assume that
this vector is $\mathbf{u}_{r+1}$. The new basis, $\left\{ \tilde{\mathbf{v}},\mathbf{v}_{2},...,\mathbf{v}_{r},\mathbf{x},\mathbf{u}_{r+2},...,\mathbf{u}_{N}\right\} $
is still linearly independent because\[
\tilde{\omega}\equiv\tilde{\mathbf{v}}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{r}\wedge\mathbf{x}\wedge\mathbf{u}_{r+2}...\wedge\mathbf{u}_{N}\neq0\]
due to $c_{r+1}\neq0$. Renaming now $\tilde{\mathbf{v}}\rightarrow\mathbf{v}_{1}$,
$\mathbf{x}\rightarrow\mathbf{x}_{1}$, and $\tilde{\omega}\rightarrow\omega$,
we obtain a new basis $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},\mathbf{u}_{r+2},...,\mathbf{u}_{N}\right\} $
such that $\mathbf{v}_{i}$ are eigenvectors ($\hat{A}\mathbf{v}_{i}=0$)
and $\hat{A}\mathbf{x}_{1}=\mathbf{v}_{1}$. The vector $\mathbf{x}_{1}$
is called a \textbf{root vector\index{root vector}} of order 1 corresponding
to the given eigenvalue $\lambda_{1}=0$. Eventually the Jordan basis\index{Jordan basis}
will contain all the root vectors as well as all the eigenvectors
for each eigenvalue. So our goal is to determine all the root vectors.


\paragraph{Example 1:}

The operator $\hat{A}=\mathbf{e}_{1}\otimes\mathbf{e}_{2}^{*}$ in
a two-dimen\-sion\-al space has an eigenvector $\mathbf{e}_{1}$
with eigenvalue 0 and a root vector $\mathbf{e}_{2}$ (of order 1)
so that $\hat{A}\mathbf{e}_{2}=\mathbf{e}_{1}$ and $\hat{A}\mathbf{e}_{1}=0$.
The matrix representation of $\hat{A}$ in the basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
is \[
\hat{A}=\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right).\]



\paragraph{Step 2: Determine other root vectors.}

If $r+1=m$ then we are finished with the eigenvalue $\lambda_{1}$;
there are no more operators $\wedge^{N}\hat{A}^{N-k}$ that vanish,
and we cannot extract any more information. Otherwise $r+1<m$, and
we will continue by considering the operator $\wedge^{N}\hat{A}^{N-r-1}$,
which vanishes as well:\[
0=(\wedge^{N}\hat{A}^{N-r-1})\omega=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{r}\wedge\mathbf{x}_{1}\wedge\hat{A}\mathbf{u}_{r+2}\wedge...\wedge\hat{A}\mathbf{u}_{N}.\]
(Note that $\mathbf{v}_{1}\wedge\hat{A}\mathbf{x}_{1}=0$, so in writing
$(\wedge^{N}\hat{A}^{N-r-1})\omega$ we omit the terms where $\hat{A}$
acts on $\mathbf{v}_{i}$ or on $\mathbf{x}_{1}$ and write only the
term where the operators $\hat{A}$ act on the $N-r-1$ vectors $\mathbf{u}_{i}$.)
As before, it follows that there exists a vanishing linear combination\begin{equation}
\sum_{i=1}^{r}c_{i}\mathbf{v}_{i}+c_{r+1}\mathbf{x}_{1}+\sum_{i=r+2}^{N}c_{i}\hat{A}\mathbf{u}_{i}=0.\label{eq:combination 2}\end{equation}
We introduce the auxiliary vectors \[
\tilde{\mathbf{v}}\equiv\sum_{i=1}^{r}c_{i}\mathbf{v}_{i},\quad\mathbf{x}\equiv-\sum_{i=r+2}^{N}c_{i}\mathbf{u}_{i},\]
and rewrite Eq.~(\ref{eq:combination 2}) as \begin{equation}
\hat{A}\mathbf{x}=c_{r+1}\mathbf{x}_{1}+\tilde{\mathbf{v}}.\label{eq:A tilde x v}\end{equation}
 As before, we find that $\mathbf{x}\neq0$. There are now two possibilities:
either $c_{r+1}=0$ or $c_{r+1}\neq0$. If $c_{r+1}=0$ then $\mathbf{x}$
is another root vector of order 1. As before, we show that one of
the vectors $\mathbf{v}_{i}$ (but not $\mathbf{v}_{1}$) may be replaced
by $\tilde{\mathbf{v}}$, and one of the vectors $\mathbf{u}_{i}$
(but not one of the other eigenvectors or root vectors) may be replaced
by $\mathbf{x}$. After renaming the vectors ($\tilde{\mathbf{v}}\rightarrow\mathbf{v}_{i}$
and $\mathbf{x}\rightarrow\mathbf{x}_{2}$), the result is a new basis\begin{equation}
\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{u}_{r+3},...,\mathbf{u}_{N}\right\} ,\label{eq:Jordan basis 0}\end{equation}
such that $\hat{A}\mathbf{x}_{1}=\mathbf{v}_{1}$ and $\hat{A}\mathbf{x}_{2}=\mathbf{v}_{2}$.
It is important to keep the information that $\mathbf{x}_{1}$ and
$\mathbf{x}_{2}$ are root vectors of order 1.

The other possibility is that $c_{r+1}\neq0$. Without loss of generality,
we may assume that $c_{r+1}=1$ (otherwise we divide Eq.~(\ref{eq:A tilde x v})
by $c_{r+1}$ and redefine $\mathbf{x}$ and $\tilde{\mathbf{v}}$).
In this case $\mathbf{x}$ is a root vector of order 2; according
to Eq.~(\ref{eq:A tilde x v}), acting with $\hat{A}$ on $\mathbf{x}$
yields a root vector of order $1$ and a linear combination of some
eigenvectors. We will modify the basis again in order to simplify
the action of $\hat{A}$; namely, we redefine $\tilde{\mathbf{x}}_{1}\equiv\mathbf{x}_{1}+\tilde{\mathbf{v}}$
so that $\hat{A}\mathbf{x}=\tilde{\mathbf{x}}_{1}$. The new vector
$\tilde{\mathbf{x}}_{1}$ is still a root vector of order 1 because
it satisfies $\hat{A}\tilde{\mathbf{x}}_{1}=\mathbf{v}_{1}$, and
the vector $\mathbf{x}_{1}$ in the basis may be replaced by $\tilde{\mathbf{x}}_{1}$.
As before, one of the $\mathbf{u}_{i}$'s can be replaced by $\mathbf{x}$.
Renaming $\tilde{\mathbf{x}}_{1}\rightarrow\mathbf{x}_{1}$ and $\mathbf{x}\rightarrow\mathbf{x}_{2}$,
we obtain the basis\[
\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{u}_{r+3},...,\mathbf{u}_{N}\right\} ,\]
 where now we record that $\mathbf{x}_{2}$ is a root vector of order
2.

The procedure of determining the root vectors can be continued in
this fashion until all the root vectors corresponding to the eigenvalue
0 are found. The end result will be a basis of the form\[
\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},...,\mathbf{x}_{m-r},\mathbf{u}_{m+1},...,\mathbf{u}_{N}\right\} ,\]
 where $\{\mathbf{v}_{i}\}$ are eigenvectors, $\{\mathbf{x}_{i}\}$
are root vectors of various orders, and $\{\mathbf{u}_{i}\}$ are
the vectors that do not belong to this eigenvalue.

Generally, a root vector of order $k$ for the eigenvalue $\lambda_{1}=0$
is a vector $\mathbf{x}$ such that $(\hat{A})^{k}\mathbf{x}=0$.
However, we have constructed the root vectors such that they come
in {}``chains,'' for example $\hat{A}\mathbf{x}_{2}=\mathbf{x}_{1}$,
$\hat{A}\mathbf{x}_{1}=\mathbf{v}_{1}$, $\hat{A}\mathbf{v}_{1}=0$.
Clearly, this is the simplest possible arrangement of basis vectors.
There are at most $r$ chains for a given eigenvalue because each
eigenvector $\mathbf{v}_{i}$ ($i=1,...,r$) may have an associated
chain of root vectors. Note that the root chains for an eigenvalue
$\lambda\neq0$ have the form $\hat{A}\mathbf{v}_{1}=\lambda\mathbf{v}_{1}$,
$\hat{A}\mathbf{x}_{1}=\lambda\mathbf{x}_{1}+\mathbf{v}_{1}$, $\hat{A}\mathbf{x}_{2}=\lambda\mathbf{x}_{2}+\mathbf{x}_{1}$,
etc.


\paragraph{Example 2:}

An operator given by the matrix\[
\hat{A}=\left(\begin{array}{ccc}
20 & 1 & 0\\
0 & 20 & 1\\
0 & 0 & 20\end{array}\right)\]
has an eigenvector $\mathbf{e}_{1}$ with eigenvalue $\lambda=20$
and the root vectors $\mathbf{e}_{2}$ (of order 1) and $\mathbf{e}_{3}$
(of order 2) since $\hat{A}\mathbf{e}_{1}=20\mathbf{e}_{1}$, $\hat{A}\mathbf{e}_{2}=20\mathbf{e}_{2}+\mathbf{e}_{1}$,
and $\hat{A}\mathbf{e}_{3}=20\mathbf{e}_{3}+\mathbf{e}_{2}$. A tensor
representation of $\hat{A}$ is \[
\hat{A}=\mathbf{e}_{1}\otimes\left(20\mathbf{e}_{1}^{*}+\mathbf{e}_{2}^{*}\right)+\mathbf{e}_{2}\otimes\left(20\mathbf{e}_{2}^{*}+\mathbf{e}_{3}^{*}\right)+20\mathbf{e}_{3}\otimes\mathbf{e}_{3}^{*}.\]



\paragraph{Step 3: Proceed to other eigenvalues.}

At Step 2, we determined all the root vectors for one eigenvalue $\lambda_{1}$.
The eigenvectors and the root vectors belonging to a given eigenvalue
$\lambda_{1}$ span a subspace called the \textbf{Jordan cell}\index{Jordan cell}
for that eigenvalue. We then repeat the same analysis (Steps~1 and
2) for another eigenvalue and determine the corresponding Jordan cell.
Note that it is impossible that a root vector for one eigenvalue is
at the same time an eigenvector or a root vector for another eigenvalue;
the Jordan cells have zero intersection. During the construction,
we guarantee that we are not replacing any root vectors or eigenvectors
found for the previous eigenvalues. Therefore, the final result is
a basis of the form \begin{equation}
\left\{ \mathbf{v}_{1},...,\mathbf{v}_{r},\mathbf{x}_{1},...,\mathbf{x}_{N-r}\right\} ,\label{eq:Jordan basis}\end{equation}
where $\{\mathbf{v}_{i}\}$ are the various eigenvectors and $\{\mathbf{x}_{i}\}$
are the corresponding root vectors of various orders.


\paragraph{Definition:}

The \textbf{Jordan basis}\index{Jordan basis} of an operator $\hat{A}$
is a basis of the form~(\ref{eq:Jordan basis}) such that $\mathbf{v}_{i}$
are eigenvectors and $\mathbf{x}_{i}$ are root vectors. For each
root vector $\mathbf{x}$ corresponding to an eigenvalue $\lambda$
we have $\hat{A}\mathbf{x}=\lambda\mathbf{x}+\mathbf{y}$, where $\mathbf{y}$
is either an eigenvector or a root vector belonging to the same eigenvalue.

The construction in this section constitutes a proof of the following
statement.


\paragraph{Theorem 1:}

Any linear operator $\hat{A}$ in a vector space over $\mathbb{C}$
admits a Jordan basis.


\paragraph{Remark:}

The assumption that the vector space is over \emph{complex} numbers
$\mathbb{C}$ is necessary in order to be sure that every polynomial
has as many roots (counting with the algebraic multiplicity) as its
degree. If we work in a vector space over $\mathbb{R}$, the construction
of the Jordan basis will be complete only for operators whose characteristic
polynomial has only real roots. Otherwise we will be able to construct
Jordan cells only for real eigenvalues.


\paragraph{Example 3:}

An operator $\hat{A}$ defined by the matrix\[
\hat{A}=\left(\begin{array}{ccc}
0 & 1 & 0\\
0 & 0 & 1\\
0 & 0 & 0\end{array}\right)\]
in a basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
can be also written in the tensor notation as\[
\hat{A}=\mathbf{e}_{1}\otimes\mathbf{e}_{2}^{*}+\mathbf{e}_{2}\otimes\mathbf{e}_{3}^{*}.\]
The characteristic polynomial of $\hat{A}$ is $Q_{\hat{A}}(\lambda)=\left(-\lambda\right)^{3}$,
so there is only one eigenvalue, $\lambda_{1}=0$. The algebraic multiplicity
of $\lambda_{1}$ is 3. However, there is only one eigenvector, namely
$\mathbf{e}_{1}$. The vectors $\mathbf{e}_{2}$ and $\mathbf{e}_{3}$
are root vectors since $\hat{A}\mathbf{e}_{3}=\mathbf{e}_{2}$ and
$\hat{A}\mathbf{e}_{2}=\mathbf{e}_{1}$. Note also that the operator
$\hat{A}$ is nilpotent, $\hat{A}^{3}=0$.


\paragraph{Example 4:}

An operator $\hat{A}$ defined by the matrix\[
\hat{A}=\left(\begin{array}{ccccc}
6 & 1 & 0 & 0 & 0\\
0 & 6 & 0 & 0 & 0\\
0 & 0 & 6 & 0 & 0\\
0 & 0 & 0 & 7 & 0\\
0 & 0 & 0 & 0 & 7\end{array}\right)\]
 has the characteristic polynomial $Q_{\hat{A}}(\lambda)=\left(6-\lambda\right)^{3}\left(7-\lambda\right)^{2}$
and two eigenvalues, $\lambda_{1}=6$ and $\lambda_{2}=7$. The algebraic
multiplicity of $\lambda_{1}$ is 3. However, there are only \emph{two}
eigenvectors for the eigenvalue $\lambda_{1}$, namely $\mathbf{e}_{1}$
and $\mathbf{e}_{3}$. The vector $\mathbf{e}_{2}$ is a root vector
of order 1 for the eigenvalue $\lambda_{1}$ since \[
\hat{A}\mathbf{e}_{2}=\left(\begin{array}{ccccc}
6 & 1 & 0 & 0 & 0\\
0 & 6 & 0 & 0 & 0\\
0 & 0 & 6 & 0 & 0\\
0 & 0 & 0 & 7 & 0\\
0 & 0 & 0 & 0 & 7\end{array}\right)\left[\begin{array}{c}
0\\
1\\
0\\
0\\
0\end{array}\right]=\left[\begin{array}{c}
1\\
6\\
0\\
0\\
0\end{array}\right]=6\mathbf{e}_{2}+\mathbf{e}_{1}.\]
The algebraic multiplicity of $\lambda_{2}$ is 2, and there are two
eigenvectors for $\lambda_{2}$, namely $\mathbf{e}_{4}$ and $\mathbf{e}_{5}$.
The vectors $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
span the Jordan cell for the eigenvalue $\lambda_{1}$, and the vectors
$\left\{ \mathbf{e}_{4},\mathbf{e}_{5}\right\} $ span the Jordan
cell for the eigenvalue $\lambda_{2}$.


\paragraph{Exercise 1:}

Show that root vectors of order $k$ (with $k\geq1$) belonging to
eigenvalue $\lambda$ are at the same time eigenvectors of the operator
($\hat{A}-\lambda\hat{1})^{k+1}$ with eigenvalue 0. (This gives another
constructive procedure for determining the root vectors.)


\subsection{Minimal polynomial}

Recalling the Cayley-Hamilton theorem, we note that the characteristic
polynomial for the operator $\hat{A}$ in Example~4 in the previous
subsection vanishes on $\hat{A}$:\[
(6-\hat{A})^{3}(7-\hat{A})^{2}=0.\]
However, there is a polynomial of a lower degree that also vanishes
on $\hat{A}$, namely $p(x)=\left(6-x\right)^{2}(7-x)$. 

Let us consider the operator $\hat{A}$ in Example~3 in the previous
subsection. Its characteristic polynomial is $\left(-\lambda\right)^{3}$,
and it is clear that $(\hat{A})^{2}\neq0$ but ($\hat{A})^{3}=0$.
Hence there is no lower-degree polynomial $p(x)$ that makes $\hat{A}$
vanish; the minimal polynomial is $\lambda^{3}$. 

Let us also consider the operator\[
\hat{B}=\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0\\
0 & 2 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 0\\
0 & 0 & 0 & 0 & 1\end{array}\right).\]
The characteristic polynomial of this operator is $\left(2-\lambda\right)^{2}\left(1-\lambda\right)^{3}$,
but it is clear that the following simpler polynomial, $p(x)=\left(2-x\right)\left(1-x\right)$,
also vanishes on $\hat{B}$. If we are interested in the lowest-degree
polynomial that vanishes on $\hat{B}$, we do not need to keep higher
powers of the factors $\left(2-\lambda\right)$ and $\left(1-\lambda\right)$
that appear in the characteristic polynomial. 

We may ask: what is the polynomial $p(x)$ of a smallest degree such
that $p(\hat{A})=0$? Is this polynomial unique?


\paragraph{Definition:}

The \textbf{minimal polynomial\index{minimal polynomial}} for an
operator $\hat{A}$ is a monic polynomial $p(x)$ such that $p(\hat{A})=0$
and that no polynomial $\tilde{p}(x)$ of lower degree satisfies $\tilde{p}(\hat{A})=0$.


\paragraph{Exercise 1:}

Suppose that the characteristic polynomial of $\hat{A}$ is given
as \[
Q_{\hat{A}}(\lambda)=\left(\lambda_{1}-\lambda\right)^{n_{1}}(\lambda_{2}-\lambda)^{n_{2}}...(\lambda_{s}-\lambda)^{n_{s}}.\]
Suppose that the Jordan canonical form of $\hat{A}$ includes Jordan
cells for eigenvalues $\lambda_{1},...,\lambda_{s}$ such that the
largest-order root vector for $\lambda_{i}$ has order $r_{i}$ ($i=1,...,s$).
Show that the polynomial of degree $r_{1}+...+r_{s}$ defined by\[
p(x)\equiv(-1)^{r_{1}+...+r_{s}}\left(\lambda_{1}-\lambda\right)^{r_{1}}...\left(\lambda_{s}-\lambda\right)^{r_{s}}\]
is monic and satisfies $p(\hat{A})=0$. If $\tilde{p}(x)$ is another
polynomial of the same degree as $p(x)$ such that $\tilde{p}(\hat{A})=0$,
show that $\tilde{p}(x)$ is proportional to $p(x)$. Show that no
polynomial $q(x)$ of lower degree can satisfy $q(\hat{A})=0$. Hence,
$p(x)$ is the minimal polynomial for $\hat{A}$.

\emph{Hint}: It suffices to prove these statements for a single Jordan
cell.\hfill{}$\blacksquare$

We now formulate a criterion that shows whether a given operator $\hat{A}$
is diagonalizable.


\paragraph{Definition:}

A polynomial $p(x)$ of degree $n$ is \textbf{square-free}\index{square-free polynomial}
if all $n$ roots of $p(x)$ have algebraic multiplicity 1, in other
words, \[
p(x)=c\left(x-x_{1}\right)...\left(x-x_{n}\right)\]
 where all $x_{i}$ ($i=1,...,n$) are different. If a polynomial
\[
q(x)=c\left(x-x_{1}\right)^{s_{1}}...\left(x-x_{m}\right)^{s_{m}}\]
 is not square-free (i.e.~some $s_{i}\neq1$), its \textbf{square-free
reduction} is the polynomial\[
\tilde{q}(x)=c\left(x-x_{1}\right)...\left(x-x_{m}\right).\]



\paragraph{Remark: }

In order to compute the square-free reduction of a given polynomial
$q(x)$, one does \emph{not} need to obtain the roots $x_{i}$ of
$q(x)$. Instead, it suffices to consider the derivative $q^{\prime}(x)$
and to note that $q^{\prime}(x)$ and $q(x)$ have common factors
only if $q(x)$ is not square-free, and moreover, the common factors
are exactly the factors that we need to remove from $q(x)$ to make
it square-free. Therefore, one computes the greatest common divisor
of $q(x)$ and $q^{\prime}(x)$ using the Euclidean algorithm and
then divides $q(x)$ by $\text{gcd}\left(q,q^{\prime}\right)$ to
obtain the square-free reduction $\tilde{q}(x)$.


\paragraph{Theorem~2:}

An operator $\hat{A}$ is diagonalizable\index{diagonalizable operator}
if and only if $p(\hat{A})=0$ where $p(\lambda)$ is the square-free
reduction of the characteristic polynomial $Q_{\hat{A}}(\lambda)$.


\paragraph{Proof:}

The Jordan canonical form of $\hat{A}$ may contain several Jordan
cells corresponding to different eigenvalues. Suppose that the set
of the eigenvalues of $\hat{A}$ is $\left\{ \lambda_{i}\,|\, i=1,...,n\right\} $,
where $\lambda_{i}$ are all different and have algebraic multiplicities
$s_{i}$; then the characteristic polynomial of $\hat{A}$ is\[
Q_{\hat{A}}(x)=\left(\lambda_{1}-x\right)^{s_{1}}...\left(\lambda_{n}-x\right)^{s_{n}},\]
and its square-free reduction is the polynomial\[
p(x)=\left(\lambda_{1}-x\right)...\left(\lambda_{n}-x\right).\]
If the operator $\hat{A}$ is diagonalizable, its eigenvectors $\left\{ \mathbf{v}_{j}\,|\, j=1,...,N\right\} $
are a basis in $V$. Then $p(\hat{A})\mathbf{v}_{j}=0$ for all $j=1,...,N$.
It follows that $p(\hat{A})=\hat{0}$ as an operator. If the operator
$\hat{A}$ is not diagonalizable, there exists at least one nontrivial
Jordan cell with root vectors. Without loss of generality, let us
assume that this Jordan cell corresponds to $\lambda_{1}$. Then there
exists a root vector $\mathbf{x}$ such that $\hat{A}\mathbf{x}=\lambda_{1}\mathbf{x}+\mathbf{v}_{1}$
while $\hat{A}\mathbf{v}_{1}=\lambda_{1}\mathbf{v}_{1}$. Then we
can compute $(\lambda_{1}-\hat{A})\mathbf{x}=-\mathbf{v}_{1}$ and
\begin{align*}
p(\hat{A})\mathbf{x} & =(\lambda_{1}-\hat{A})...(\lambda_{n}-\hat{A})\mathbf{x}\\
 & \,{\lyxbuildrel(1)\above=}\,(\lambda_{n}-\hat{A})...(\lambda_{2}-\hat{A})(\lambda_{1}-\hat{A})\mathbf{x}\\
 & \,{\lyxbuildrel(2)\above=}\,-\left(\lambda_{n}-\lambda_{1}\right)...\left(\lambda_{2}-\lambda_{1}\right)\mathbf{v}_{1}\neq0,\end{align*}
where in ${\lyxbuildrel(1)\above=}$ we used the fact that operators
$(\lambda_{i}-\hat{A})$ all commute with each other, and in ${\lyxbuildrel(2)\above=}$
we used the property of an eigenvector, $q(\hat{A})\mathbf{v}_{1}=q(\lambda_{1})\mathbf{v}_{1}$
for any polynomial $q(x)$. Thus we have shown that $p(\hat{A})$
gives a nonzero vector on $\mathbf{x}$, which means that $p(\hat{A})$
is a nonzero operator.\hfill{}$\blacksquare$


\paragraph{Exercise 2:}

a) It is given that the characteristic polynomial of an operator $\hat{A}$
(in a complex vector space) is $\lambda^{3}+1$. Prove that the operator
$\hat{A}$ is invertible and diagonalizable. 

b) It is given that the operator $\hat{A}$ satisfies the equation
$\hat{A}^{3}=\hat{A}^{2}$. Is $\hat{A}$ invertible? Is $\hat{A}$
diagonalizable? (If not, give explicit counterexamples, e.g., in a
2-dimen\-sion\-al space.) 


\paragraph{Exercise 3:}

A given operator $\hat{A}$ has a Jordan cell $\text{Span}\,\{\mathbf{v}_{1},...,\mathbf{v}_{k}\}$
with eigenvalue $\lambda$. Let \[
p(x)=p_{0}+p_{1}x+...+p_{s}x^{s}\]
 be an arbitrary, fixed polynomial, and consider the operator $\hat{B}\equiv p(\hat{A})$.
Show that $\text{Span}\,\{\mathbf{v}_{1},...,\mathbf{v}_{k}\}$ is
a subspace of \emph{some} Jordan cell of the operator $\hat{B}$ (although
the eigenvalue of that cell may be different). Show that the orders
of the root vectors of $\hat{B}$ are not larger than those of $\hat{A}$.

\emph{Hint}: Consider for simplicity $\lambda=0$. The vectors $\mathbf{v}_{j}$
belong to the eigenvalue $p_{0}\equiv p(0)$ of the operator $\hat{B}$.
The statement that $\left\{ \mathbf{v}_{j}\right\} $ are within a
Jordan cell for $\hat{B}$ is equivalent to \[
\mathbf{v}_{1}\wedge...\wedge(\hat{B}-p_{0}\hat{1})\mathbf{v}_{i}\wedge...\wedge\mathbf{v}_{k}=0\quad\text{for}\: i=1,...,k.\]
If $\mathbf{v}_{1}$ is an eigenvector of $\hat{A}$ with eigenvalue
$\lambda=0$ then it is also an eigenvector of $\hat{B}$ with eigenvalue
$p_{0}$. If $\mathbf{x}$ is a root vector of order 1 such that $\hat{A}\mathbf{x}=\mathbf{v}_{1}$
then $\hat{B}\mathbf{x}=p_{0}\mathbf{x}+p_{1}\mathbf{v}$, which means
that $\mathbf{x}$ could be a root vector of order 1 or an eigenvector
of $\hat{B}$ depending on whether $p_{1}=0$. Similarly, one can
show that the root chains of $\hat{B}$ are sub-chains of the root
chains $\hat{A}$ (i.e.~the root chains can only get shorter).


\paragraph{Example 5:}

A nonzero nilpotent operator $\hat{A}$ such that $\hat{A}^{1000}=0$
may have root vectors of orders up to 999. The operator $\hat{B}\equiv\hat{A}^{500}$
satisfies $\hat{B}^{2}=0$ and thus can have root vectors only up
to order 1. More precisely, the root vectors of $\hat{A}$ of orders
1 through 499 are eigenvectors of $\hat{B}$, while root vectors of
$\hat{A}$ of orders 500 through 999 are root vectors of $\hat{B}$
of order 1. However, the Jordan cells of these operators are the same
(the entire space $V$ is a Jordan cell with eigenvalue 0). Also,
$\hat{A}$ is not expressible as a polynomial in $\hat{B}$.\hfill{}$\blacksquare$

Exercise~3 gives a \emph{necessary} condition for being able to express
an operator $\hat{B}$ as a polynomial in $\hat{A}$: It is necessary
to determine whether the Jordan cells of $\hat{A}$ and $\hat{B}$
are {}``compatible'' in the sense of Exercise~3. If $\hat{A}$'s
Jordan cells cannot be embedded as subspaces within $\hat{B}$'s Jordan
cells, or if $\hat{B}$ has a root chain that is not a sub-chain of
some root chain of $\hat{A}$, then $\hat{B}$ cannot be a polynomial
in $\hat{A}$. 

Determining a \emph{sufficient} condition for the existence of $p(x)$
for arbitrary $\hat{A}$ and $\hat{B}$ is a complicated task, and
I do not consider it here. The following exercise shows how to do
this in a particularly simple case.


\paragraph{Exercise 4:}

Two operators $\hat{A}$ and $\hat{B}$ are diagonalizable in the
same eigenbasis $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
with eigenvalues $\lambda_{1}$, ..., $\lambda_{n}$ and $\mu_{1}$,
..., $\mu_{n}$ that all have multiplicity 1. Show that $\hat{B}=p(\hat{A})$
for some polynomial $p(x)$ of degree at most $N-1$.

\emph{Hint}: We need to map the eigenvalues $\left\{ \lambda_{j}\right\} $
into $\left\{ \mu_{j}\right\} $. Choose the polynomial $p(x)$ that
maps $p(\lambda_{j})=\mu_{j}$ for $j=1,...,N$. Such a polynomial
surely exists and is unique if we restrict to polynomials of degree
not more than $N-1$.\hfill{}$\blacksquare$


\section{{*} Construction of projectors onto Jordan cells}

We now consider the problem of determining the Jordan cells. It turns
out that we can write a general expression for a projector onto a
single Jordan cell of an operator $\hat{A}$. The projector is expressed
as a polynomial in $\hat{A}$ with known coefficients. (Note that
$\hat{A}$ may or may not be diagonalizable.) 

The required projector $\hat{P}$ can be viewed as an operator that
has the same Jordan cells as $\hat{A}$ but the eigenvalues are $1$
for a single chosen Jordan cell and $0$ for all other Jordan cells.
One way to construct the projector $\hat{P}$ is to look for a polynomial
in $\hat{A}$ such that the eigenvalues and the Jordan cells are mapped
as desired. Some examples of this were discussed at the end of the
previous subsection; however, the construction required a complete
knowledge of the Jordan canonical form of $\hat{A}$ with all eigenvectors
and root vectors. We will consider a different method of computing
the projector $\hat{P}$. With this method, we only need to know the
characteristic polynomial of $\hat{A}$, a single eigenvalue, and
the \emph{algebraic} multiplicity of the chosen eigenvalue. We will
develop this method beginning with the simplest case.


\paragraph{Statement 1:}

If the characteristic polynomial $Q\left(\lambda\right)$ of an operator
$\hat{A}$ has a zero $\lambda=\lambda_{0}$ of multiplicity 1, i.e.~if
$Q(\lambda_{0})=0$ and $Q'(\lambda_{0})\neq0$, then the operator
$\hat{P}_{\lambda_{0}}$ defined by\[
\hat{P}_{\lambda_{0}}\equiv-\frac{1}{Q^{\prime}(\lambda_{0})}{\big[{\wedge^{N-1}(\hat{A}-\lambda_{0}\hat{1}_{V})^{N-1}}\big]}^{\wedge T}\]
is a projector\index{projector} onto the one-dimen\-sion\-al eigenspace
of the eigenvalue $\lambda_{0}$. The prefactor can be computed also
as $-Q^{\prime}(\lambda_{0})=\wedge^{N}(\hat{A}-\lambda_{0}\hat{1}_{V})^{N-1}$.


\subparagraph{Proof:}

We denote $\hat{P}\equiv\hat{P}_{\lambda_{0}}$ for brevity. We will
first show that for any vector $\mathbf{x}$, the vector $\hat{P}\mathbf{x}$
is an eigenvector of $\hat{A}$ with eigenvalue $\lambda_{0}$, i.e.~that
the image of $\hat{P}$ is a subspace of the $\lambda_{0}$-eigenspace.
Then it will be sufficient to show that $\hat{P}\mathbf{v}_{0}=\mathbf{v}_{0}$
for an eigenvector $\mathbf{v}_{0}$; it will follow that $\hat{P}\hat{P}=\hat{P}$
and so it will be proved that $\hat{P}$ is a projector onto the eigenspace.

Without loss of generality, we may set $\lambda_{0}=0$ (or else we
consider the operator $\hat{A}-\lambda_{0}\hat{1}_{V}$ instead of
$\hat{A}$). Then we have $\det\hat{A}=0$, while the number $\wedge^{N}\hat{A}^{N-1}$
is equal to the last-but-one coefficient in the characteristic polynomial,
which is the same as $-Q^{\prime}(\lambda_{0})$ and is nonzero. Thus
we set\[
\hat{P}=\frac{1}{\wedge^{N}\hat{A}^{N-1}}\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}=\frac{1}{\wedge^{N}\hat{A}^{N-1}}\tilde{\hat{A}}\]
and note that by Lemma~1 in Sec.~\ref{sub:The-algebraic-complement}\[
\hat{P}\hat{A}=\frac{1}{\wedge^{N}\hat{A}^{N-1}}(\det\hat{A})\hat{1}_{V}=\hat{0}_{V}.\]
Since $\hat{P}$ is a polynomial in $\hat{A}$, we have $\hat{P}\hat{A}=\hat{A}\hat{P}=0$.
Therefore $\hat{A}(\hat{P}\mathbf{x})=0$ for all $\mathbf{x}\in V$,
so $\textrm{im}\hat{P}$ is indeed a subspace of the eigenspace of
the eigenvalue $\lambda_{0}=0$. 

It remains to show that $\hat{P}\mathbf{v}_{0}=\mathbf{v}_{0}$ for
an eigenvector $\mathbf{v}_{0}$ such that $\hat{A}\mathbf{v}_{0}=0$.
This is verified by a calculation: We use Lemma~1 in Sec.~~\ref{sub:The-algebraic-complement},
which is the identity\[
\big({\wedge^{N-1}\hat{A}^{N-n}}\big)^{\wedge T}\hat{A}+\big({\wedge^{N-1}\hat{A}^{N-n+1}}\big)^{\wedge T}=(\wedge^{N}\hat{A}^{N-n+1})\hat{1}_{V}\]
valid for all $n=1$, ..., $N$, and apply both sides to the vector
$\mathbf{v}_{0}$ with $n=2$:\[
\big({\wedge^{N-1}\hat{A}^{N-2}}\big)^{\wedge T}\hat{A}\mathbf{v}_{0}+\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\mathbf{v}_{0}=(\wedge^{N}\hat{A}^{N-1})\mathbf{v}_{0},\]
which yields the required formula, \[
\frac{\big({\wedge^{N-1}\hat{A}^{N-1}}\big)^{\wedge T}\mathbf{v}_{0}}{\wedge^{N}\hat{A}^{N-1}}=\mathbf{v}_{0},\]
since $\hat{A}\mathbf{v}_{0}=0$. Therefore, $\hat{P}\mathbf{v}_{0}=\mathbf{v}_{0}$
as required.\hfill{}$\blacksquare$


\paragraph{Remark:}

The projector $\hat{P}_{\lambda_{0}}$ is a polynomial in $\hat{A}$
with coefficients that are known if the characteristic polynomial
$Q(\lambda)$ is known. The quantity $Q'(\lambda_{0})$ is also an
algebraically constructed object that can be calculated without taking
derivatives. More precisely, the following formula holds.


\paragraph{Exercise 1:}

If $\hat{A}$ is any operator in $V$, prove that\begin{align}
\left(-1\right)^{k}\frac{\partial^{k}}{\partial\lambda^{k}}Q_{\hat{A}}\left(\lambda\right) & \equiv\left(-1\right)^{k}\frac{\partial^{k}}{\partial\lambda^{k}}\wedge^{N}(\hat{A}-\lambda\hat{1}_{V})^{N}\nonumber \\
 & =k!\wedge^{N}(\hat{A}-\lambda\hat{1}_{V})^{N-k}.\label{eq:Q prime formula}\end{align}



\subparagraph{Solution:}

An easy calculation. For example, with $k=2$ and $N=2$,\begin{align*}
\frac{\partial^{2}}{\partial\lambda^{2}}\wedge^{2}(\hat{A}-\lambda\hat{1}_{V})^{2}\mathbf{u}\wedge\mathbf{v} & =\frac{\partial^{2}}{\partial\lambda^{2}}\left[(\hat{A}-\lambda\hat{1}_{V})\mathbf{u}\wedge(\hat{A}-\lambda\hat{1}_{V})\mathbf{v}\right]\\
 & =2\mathbf{u}\wedge\mathbf{v}.\end{align*}
The formula~(\ref{eq:Q prime formula}) shows that the derivatives
of the characteristic polynomial are algebraically defined quantities
with a polynomial dependence on the operator $\hat{A}$.\hfill{}$\blacksquare$


\paragraph{Example 1:}

We illustrate this construction of the projector in a two-dimen\-sion\-al
space for simplicity. Let $V$ be a space of polynomials in $x$ of
degree at most 1, i.e.~polynomials of the form $\alpha+\beta x$
with $\alpha,\beta\in\mathbb{C}$, and consider the linear operator
$\hat{A}=x\frac{d}{dx}$ in this space. The basis in $V$ is $\{\underbar{1},\underbar{x}\}$,
where we use an underbar to distinguish the \emph{polynomials} $\underbar{1}$
and $\underbar{x}$ from \emph{numbers} such as 1. We first determine
the characteristic polynomial,\[
Q_{\hat{A}}(\lambda)=\det(\hat{A}-\lambda\hat{1})=\frac{(\hat{A}-\lambda)\underbar{1}\wedge(\hat{A}-\lambda)\underbar{x}}{\underbar{1}\wedge\underbar{x}}=-\lambda(1-\lambda).\]
Let us determine the projector onto the eigenspace of $\lambda=0$.
We have $\wedge^{2}\hat{A}^{1}=-Q^{\prime}(0)=1$ and \[
\hat{P}_{0}=-\frac{1}{Q^{\prime}(0)}\big({\wedge^{1}\hat{A}^{1}}\big)^{\wedge T}=(\wedge^{2}\hat{A}^{1})\hat{1}-\hat{A}=\hat{1}-x\frac{d}{dx}.\]
Since $\hat{P}_{0}\underbar{1}=\underbar{1}$ while $\hat{P}_{0}\underbar{x}=0$,
the image of $\hat{P}$ is the subspace spanned by $\underbar{1}$.
Hence, the eigenspace of $\lambda=0$ is $\text{Span}\{\underbar{1}\}$.\hfill{}$\blacksquare$

What if the eigenvalue $\lambda_{0}$ has an algebraic multiplicity
larger than 1? Let us first consider the easier case when the geometric
multiplicity is equal to the algebraic multiplicity.


\paragraph{Statement 2:}

If $\lambda_{0}$ is an eigenvalue of both geometric and algebraic
multiplicity $n$ then the operator $\hat{P}_{\lambda_{0}}^{(n)}$
defined by\begin{equation}
\hat{P}_{\lambda_{0}}^{(n)}\equiv{\big[{\wedge^{N}\hat{A}^{N-n}}\big]}^{-1}{\big[{\wedge^{N-1}(\hat{A}-\lambda_{0}\hat{1}_{V})^{N-n}}\big]}^{\wedge T}\label{eq:P lambda n}\end{equation}
is a projector onto the subspace of eigenvectors with eigenvalue $\lambda_{0}$.


\subparagraph{Proof:}

As in the proof of Statement~1, we first show that the image $(\text{im}\,\hat{P}_{\lambda_{0}}^{(n)})$
is a subspace of the $\lambda_{0}$-eigenspace of $\hat{A}$, and
then show that any eigenvector $\mathbf{v}_{0}$ of $\hat{A}$ with
eigenvalue $\lambda_{0}$ satisfies $\hat{P}_{\lambda_{0}}^{(n)}\mathbf{v}_{0}=\mathbf{v}_{0}$.
Let us write $\hat{P}\equiv\hat{P}_{\lambda_{0}}^{(n)}$ for brevity.

We first need to show that $(\hat{A}-\lambda_{0}\hat{1})\hat{P}=0$.
Since by assumption $\lambda_{0}$ has algebraic multiplicity $n$,
the characteristic polynomial is of the form $Q_{\hat{A}}(\lambda)=\left(\lambda_{0}-\lambda\right)^{n}p(\lambda)$,
where $p(\lambda)$ is another polynomial such that $p(\lambda_{0})\neq0$.
Without loss of generality we set $\lambda_{0}=0$. With $\lambda_{0}=0$,
the factor $\left(-\lambda^{n}\right)$ in the characteristic polynomial
means that many of its coefficients $q_{k}\equiv\wedge^{N}\hat{A}^{N-k}$
are equal to zero: $q_{k}=0$ for $k=0$, ..., $n-1$ but $q_{n}\neq0$.
(Thus the denominator in Eq.~(\ref{eq:P lambda n}) is nonzero.) 

By Lemma~1 in Sec.~\ref{sub:The-algebraic-complement}, for every
$k=1$, ..., $N$ we have the identity\[
\big({\wedge^{N-1}\hat{A}^{N-k}}\big)^{\wedge T}\hat{A}+\big({\wedge^{N-1}\hat{A}^{N-k+1}}\big)^{\wedge T}=(\wedge^{N}\hat{A}^{N-k+1})\hat{1}_{V}.\]
We can rewrite this as\begin{equation}
\hat{A}_{(k)}\hat{A}+\hat{A}_{(k-1)}=q_{k-1}\hat{1},\label{eq:A identity}\end{equation}
where we denoted, as before,\[
\hat{A}_{(k)}\equiv\big({\wedge^{N-1}\hat{A}^{N-k}}\big)^{\wedge T}.\]
Setting $k=n$, we find\[
\hat{A}_{(n)}\hat{A}=q_{n}\hat{P}^{(n)}\hat{A}=0.\]
Since $q_{n}\neq0$, we find $\hat{P}\hat{A}=0$. Since $\hat{P}$
is a polynomial in $\hat{A}$, it commutes with $\hat{A}$, so $\hat{P}\hat{A}=\hat{A}\hat{P}=0$.
Hence the image of $\hat{P}$ is a subspace of the eigenspace of $\hat{A}$
with $\lambda_{0}=0$.

Now it remains to show that all $\mathbf{v}_{i}$'s are eigenvectors
of $\hat{P}$ with eigenvalue 1. We set $k=n+1$ in Eq.~(\ref{eq:A identity})
and obtain\[
\hat{A}_{(n+1)}\hat{A}\mathbf{v}_{i}+\hat{A}_{(n)}\mathbf{v}_{i}=q_{n}\mathbf{v}_{i}.\]
Since $\hat{A}\mathbf{v}_{i}=0$, it follows that $\hat{A}_{(n)}\mathbf{v}_{i}=q_{n}\mathbf{v}_{i}$.
Therefore $\hat{P}\mathbf{v}_{1}=\mathbf{v}_{1}$.\hfill{}$\blacksquare$

It remains to consider the case when the geometric multiplicity of
$\lambda_{0}$ is less than the algebraic multiplicity, i.e.~if there
exist some root vectors.


\paragraph{Statement 3:}

We work with an operator $\hat{A}$ whose characteristic polynomial
is known,\[
Q_{\hat{A}}(\lambda)=q_{0}+\left(-\lambda\right)q_{1}+...+\left(-\lambda\right)^{N-1}q_{N-1}+\left(-\lambda\right)^{N}.\]
Without loss of generality, we assume that $\hat{A}$ has an eigenvalue
$\lambda_{0}=0$ of algebraic multiplicity $n\geq1$. The geometric
multiplicity of $\lambda_{0}$ may be less than or equal to $n$.
(For nonzero eigenvalues $\lambda_{0}$, we consider the operator
$\hat{A}-\lambda_{0}\hat{1}$ instead of $\hat{A}$.)

\textbf{(1)} A projector onto the Jordan cell of dimension $n$ belonging
to eigenvalue $\lambda_{0}$ is given by the operator \begin{equation}
\hat{P}_{\lambda_{0}}\equiv\sum_{k=1}^{n}c_{k}\hat{A}_{(k)}=\hat{1}+\sum_{k=1}^{n}\sum_{i=n}^{N-k}c_{k}q_{i+k}(-\hat{A})^{i},\label{eq:projector jordan cell general}\end{equation}
where \[
\hat{A}_{(k)}\equiv(\wedge^{N-1}\hat{A}^{N-k})^{\wedge T},\quad1\leq k\leq N-1,\]
and $c_{1}$, ..., $c_{n}$ are the numbers that solve the system
of equations \[
\left(\begin{array}{ccccc}
q_{n} & q_{n+1} & q_{n+2} & \cdots & q_{2n-1}\\
0 & q_{n} & q_{n+1} & \cdots & q_{2n-2}\\
\vdots & 0 & \ddots & \ddots & \vdots\\
0 & \vdots & \ddots & q_{n} & q_{n+1}\\
0 & 0 & \cdots & 0 & q_{n}\end{array}\right)\left[\begin{array}{c}
c_{1}\\
c_{2}\\
\vdots\\
c_{n-1}\\
c_{n}\end{array}\right]=\left[\begin{array}{c}
0_{\,}\\
0_{\,}\\
\vdots\\
0_{\,}\\
1_{\,}\end{array}\right].\]
For convenience, we have set $q_{N}\equiv1$ and $q_{i}\equiv0$ for
$i>N$.

\textbf{(2)} No polynomial in $\hat{A}$ can be a projector onto the
subspace of \emph{eigenvectors} within the Jordan cell (rather than
a projector onto the entire Jordan cell) when the geometric multiplicity
is strictly less than the algebraic.


\subparagraph{Proof:}

\textbf{(1)} The Jordan cell consists of all vectors $\mathbf{x}$
such that $\hat{A}^{n}\mathbf{x}=0$. We proceed as in the proof of
Statement~2, starting from Eq.~(\ref{eq:A identity}). By induction
in $k$, starting from $k=1$ until $k=n$, we obtain\begin{align*}
\hat{A}\hat{A}_{(1)} & =q_{0}\hat{1}=0,\\
\hat{A}^{2}\hat{A}_{(2)}+\hat{A}\hat{A}_{(1)} & =\hat{A}q_{1}\hat{1}=0\;\Rightarrow\;\hat{A}^{2}\hat{A}_{(2)}=0,\\
...,\quad & \Rightarrow\;\hat{A}^{n}\hat{A}_{(n)}=0.\end{align*}
So we find $\hat{A}^{n}\hat{A}_{(k)}=0$ for all $k$ ($1\leq k\leq n$).
Since $\hat{P}_{\lambda_{0}}$ is by construction equal to a linear
combination of these $\hat{A}_{(k)}$, we have $\hat{A}^{n}\hat{P}_{\lambda_{0}}=0$,
i.e.~the image of $\hat{P}_{\lambda_{0}}$ is contained in the Jordan
cell. 

It remains to prove that the Jordan cell is also \emph{contained}
in the image of $\hat{P}_{\lambda_{0}}$, that is, to show that $\hat{A}^{n}\mathbf{x}=0$
implies $\hat{P}_{\lambda_{0}}\mathbf{x}=\mathbf{x}$. We use the
explicit formulas for $\hat{A}_{(k)}$ that can be obtained by induction
from Eq.~(\ref{eq:A identity}) starting with $k=N$: we have $\hat{A}_{(N)}=0$,
$\hat{A}_{(N-1)}=q_{N-1}\hat{1}-\hat{A}$, and finally\begin{equation}
\hat{A}_{(k)}=q_{k}\hat{1}-q_{k+1}\hat{A}+...+q_{N}{(-\hat{A})}^{N-k}=\sum_{i=0}^{N-k}q_{k+i}(-\hat{A})^{i},\quad k\geq1.\label{eq:Ak explicit}\end{equation}
The operator $\hat{P}_{\lambda_{0}}$ is a linear combination of $\hat{A}_{(k)}$
with $1\leq k\leq n$. The Jordan cell of dimension $n$ consists
of all $\mathbf{x}\in V$ such that $\hat{A}^{n}\mathbf{x}=0$. Therefore,
while computing $\hat{P}_{\lambda_{0}}\mathbf{x}$ for any $\mathbf{x}$
such that $\hat{A}^{n}\mathbf{x}=0$, we can restrict the summation
over $i$ to $0\leq i\leq n-1$,\[
\hat{P}_{\lambda_{0}}\mathbf{x}=\sum_{k=1}^{n}c_{k}\sum_{i=0}^{N-k}q_{k+i}(-\hat{A})^{i}\mathbf{x}=\sum_{k=1}^{n}\sum_{i=0}^{n-1}c_{k}q_{k+i}(-\hat{A})^{i}\mathbf{x}.\]
We would like to choose the coefficients $c_{k}$ such that the sum
above contains only the term $(-\hat{A})^{0}\mathbf{x}=\mathbf{x}$
with coefficient 1, while all other powers of $\hat{A}$ will enter
with zero coefficient. In other words, we require that\begin{equation}
\sum_{k=1}^{n}\sum_{i=0}^{n-1}c_{k}q_{k+i}(-\hat{A})^{i}=\hat{1}\label{eq:ck condition}\end{equation}
identically as polynomial in $\hat{A}$. This will happen if the coefficients
$c_{k}$ satisfy \begin{align*}
\sum_{k=1}^{n}c_{k}q_{k} & =1,\\
\sum_{k=1}^{n}c_{k}q_{k+i} & =0,\quad i=1,...,n-1.\end{align*}
This system of equations for the unknown coefficients $c_{k}$ can
be rewritten in matrix form as \[
\left(\begin{array}{ccccc}
q_{n} & q_{n+1} & q_{n+2} & \cdots & q_{2n-1}\\
q_{n-1} & q_{n} & q_{n+1} & \cdots & q_{2n-2}\\
\vdots & q_{n-1} & \ddots & \ddots & \vdots\\
q_{2} & \vdots & \ddots & q_{n} & q_{n+1}\\
q_{1} & q_{2} & \cdots & q_{n-1} & q_{n}\end{array}\right)\left[\begin{array}{c}
c_{1}\\
c_{2}\\
\vdots\\
c_{n-1}\\
c_{n}\end{array}\right]=\left[\begin{array}{c}
0_{\,}\\
0_{\,}\\
\vdots\\
0_{\,}\\
1_{\,}\end{array}\right].\]
However, it is given that $\lambda_{0}=0$ is a root of multiplicity
$n$, therefore $q_{0}=...=q_{n-1}=0$ while $q_{n}\neq0$. Therefore,
the system of equations has the triangular form as given in Statement~3.
Its solution is unique since $q_{n}\neq0$. Thus, we are able to choose
$c_{k}$ such that $\hat{P}_{\lambda_{0}}\mathbf{x}=\mathbf{x}$ for
any $\mathbf{x}$ within the Jordan cell.

The formula for $\hat{P}_{\lambda_{0}}$ can be simplified by writing\[
\hat{P}_{\lambda_{0}}=\sum_{k=1}^{n}\left[\sum_{i=0}^{n-1}c_{k}q_{k+i}(-\hat{A})^{i}+\sum_{i=n}^{N-k}c_{k}q_{k+i}(-\hat{A})^{i}\right].\]
The first sum yields $\hat{1}$ by Eq.~(\ref{eq:ck condition}),
and so we obtain Eq.~(\ref{eq:projector jordan cell general}).

\textbf{(2)} A simple counterexample is the (non-diagonalizable) operator
\[
\hat{A}=\left(\begin{array}{cc}
0 & 1\\
0 & 0\end{array}\right)=\mathbf{e}_{1}\otimes\mathbf{e}_{2}^{*}.\]
This operator has a Jordan cell with eigenvalue 0 spanned by the basis
vectors $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$. The eigenvector with
eigenvalue $0$ is $\mathbf{e}_{1}$, and a possible projector onto
this eigenvector is $\hat{P}=\mathbf{e}_{1}\otimes\mathbf{e}_{1}^{*}$.
However, no polynomial in $\hat{A}$ can yield $\hat{P}$ or any other
projector only onto $\mathbf{e}_{1}$. This can be seen as follows.
We note that $\hat{A}\hat{A}=0$, and thus any polynomial in $\hat{A}$
can be rewritten as $a_{0}\hat{1}_{V}+a_{1}\hat{A}$. However, if
an operator of the form $a_{0}\hat{1}_{V}+a_{1}\hat{A}$ is a projector,
and $\hat{A}\hat{A}=0$, then we can derive that $a_{0}^{2}=a_{0}$
and $a_{1}=2a_{0}a_{1}$, which forces $a_{0}=1$ and $a_{1}=0$.
Therefore the only result of a polynomial formula can be the projector
$\mathbf{e}_{1}\otimes\mathbf{e}_{1}^{*}+\mathbf{e}_{2}\otimes\mathbf{e}_{2}^{*}$
onto the entire Jordan cell.\hfill{}$\blacksquare$


\paragraph{Example 2:}

Consider the space of polynomials in $x$ and $y$ of degree at most
1, i.e.~the space spanned by $\{\underbar{1},\underbar{x},\underbar{y}\}$,
and the operator\[
\hat{A}=x\frac{\partial}{\partial x}+\frac{\partial}{\partial y}.\]
The characteristic polynomial of $\hat{A}$ is found as\begin{align*}
Q_{\hat{A}}(\lambda) & =\frac{(\hat{A}-\lambda)\underbar{1}\wedge(\hat{A}-\lambda)\underbar{x}\wedge(\hat{A}-\lambda)\underbar{y}}{\underbar{1}\wedge\underbar{x}\wedge\underbar{y}}\\
 & =\lambda^{2}-\lambda^{3}\equiv q_{0}-q_{1}\lambda+q_{2}\lambda^{2}-q_{3}\lambda^{3}.\end{align*}
Hence $\lambda=0$ is an eigenvalue of algebraic multiplicity 2. It
is easy to guess the eigenvectors, $\mathbf{v}_{1}=\underbar{1}$
($\lambda=0$) and $\mathbf{v}_{2}=\underbar{x}$ ($\lambda=1)$,
as well as the root vector $\mathbf{v}_{3}=\underbar{y}$ ($\lambda=0$).
However, let us pretend that we do not know the Jordan basis, and
instead determine the projector $\hat{P}_{0}$ onto the Jordan cell
belonging to the eigenvalue $\lambda_{0}=0$ using Statement~3 with
$n=2$ and $N=3$. 

We have $q_{0}=q_{1}=0$, $q_{2}=q_{3}=1$. The system of equations
for the coefficients $c_{k}$ is\begin{align*}
q_{2}c_{1}+q_{3}c_{2} & =0,\\
q_{2}c_{2} & =1,\end{align*}
and the solution is $c_{1}=-1$ and $c_{2}=1$. We note that in our
example,\[
\hat{A}^{2}=x\frac{\partial}{\partial x}.\]
So we can compute the projector $\hat{P}_{0}$ by using Eq.~(\ref{eq:projector jordan cell general}):
\begin{align*}
\hat{P}_{0} & =\hat{1}+\sum_{k=1}^{2}\sum_{i=2}^{3-k}c_{k}q_{i+k}(-\hat{A})^{i}\\
 & =\hat{1}+c_{1}q_{3}\hat{A}^{2}=\hat{1}-x\frac{\partial}{\partial x}.\end{align*}
(The summation over $k$ and $i$ collapses to a single term $k=1$,
$i=2$.) The image of $\hat{P}_{0}$ is $\text{Span}\left\{ \underbar{1},\underbar{y}\right\} $,
and we have $\hat{P}_{0}\hat{P}_{0}=\hat{P}_{0}$. Hence $\hat{P}_{0}$
is indeed a projector onto the Jordan cell $\text{Span}\,\{\underbar{1},\underbar{y}\}$
that belongs to the eigenvalue $\lambda=0$.


\paragraph{Exercise 2:}

Suppose the operator $\hat{A}$ has eigenvalue $\lambda_{0}$ with
algebraic multiplicity $n$. Show that one can choose a basis $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
such that $\mathbf{v}_{i}$ are eigenvalues or root vectors belonging
to the eigenvalue $\lambda_{0}$, and $\mathbf{e}_{j}$ are such that
the vectors $(\hat{A}-\lambda_{0}\hat{1})\mathbf{e}_{j}$ (with $j=n+1$,...,$N$)
belong to the subspace $\text{Span}\left\{ \mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $.
Deduce that the subspace $\text{Span}\left\{ \mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
is mapped one-to-one onto itself by the operator $\hat{A}-\lambda_{0}\hat{1}$.

\emph{Hint}: Assume that the Jordan canonical form of $\hat{A}$ is
known. Show that\[
\wedge^{N-n}(\hat{A}-\lambda_{0}\hat{1})^{N-n}(\mathbf{e}_{n+1}\wedge...\wedge\mathbf{e}_{N})\neq0.\]
(Otherwise, a linear combination of $\mathbf{e}_{j}$ is an eigenvector
with eigenvalue $\lambda_{0}$.)


\paragraph{Remark:}

Operators of the form \begin{equation}
\hat{R}_{k}\equiv{\big[{\wedge^{N-1}(\hat{A}-\lambda_{0}\hat{1}_{V})^{N-k}}\big]}^{\wedge T}\label{eq:general op k}\end{equation}
with $k\leq n$ are used in the construction of projectors onto the
Jordan cell. What if we use Eq.~(\ref{eq:general op k}) with other
values of $k$? It turns out that the resulting operators are not
projectors. If $k\geq n$, the operator $\hat{R}_{k}$ does not map
into the Jordan cell. If $k<n$, the operator $\hat{R}_{k}$ does
not map onto the \emph{entire} Jordan cell but rather onto a subspace
of the Jordan cell; the image of $\hat{R}_{k}$ contains eigenvectors
or root vectors of a certain order. An example of this property will
be shown in Exercise~3.


\paragraph{Exercise 3:}

Suppose an operator $\hat{A}$ has an eigenvalue $\lambda_{0}$ with
algebraic multiplicity $n$ and geometric multiplicity $n-1$. This
means (according to the theory of the Jordan canonical form) that
there exist $n-1$ eigenvectors and \emph{one} root vector of order
1. Let us denote that root vector by $\mathbf{x}_{1}$ and let $\mathbf{v}_{2},...,\mathbf{v}_{n}$
be the $\left(n-1\right)$ eigenvectors with eigenvalue $\lambda_{0}$.
Moreover, let us choose $\mathbf{v}_{2}$ such that $\hat{A}\mathbf{v}_{1}=\lambda_{0}\mathbf{x}_{1}+\mathbf{v}_{2}$
(i.e.~the vectors $\mathbf{x}_{1},\mathbf{v}_{2}$ are a root chain).
Show that the operator $\hat{R}_{k}$ given by the formula~(\ref{eq:general op k}),
with $k=n-1$, satisfies\begin{align*}
\hat{R}_{n-1}\mathbf{x}_{1} & =\text{const}\cdot\mathbf{v}_{2};\quad\hat{R}_{n-1}\mathbf{v}_{j}=0,\quad j=2,...,n;\\
\hat{R}_{n-1}\mathbf{e}_{j} & =0,\quad j=n+1,...,N.\end{align*}
In other words, the image of the operator $\hat{R}_{n-1}$ contains
only the eigenvector $\mathbf{v}_{2}$; that is, the image contains
the eigenvector related to a root vector of order 1.

\emph{Hint}: Use a basis of the form $\left\{ \mathbf{x}_{1},\mathbf{v}_{2},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
as in Exercise~2. 


\chapter{Scalar product }

Until now we did not use any scalar product in our vector spaces.
In this chapter we explore the properties of spaces with a scalar
product. The exterior product techniques  are especially powerful
when used together with a scalar product. 


\section{Vector spaces with scalar product\label{sub:Vector-spaces-with-scalar-product}}

As you already know, the scalar product of vectors is related to the
geometric notions of angle and length. These notions are most useful
in vector spaces over \emph{real} numbers, so in most of this chapter
I will assume that $\mathbb{K}$ is a field where it makes sense to
compare numbers (i.e.~the comparison $x>y$ is defined and has the
usual properties) and where statements such as $\lambda^{2}\geq0$
($\forall\lambda\in\mathbb{K}$) hold. (Scalar products in complex
spaces are defined in a different way and will be considered in Sec.~\ref{sub:Scalar-product-for-complex}.)

In order to understand the properties of spaces with a scalar product,
it is helpful to define the scalar product in a purely algebraic way,
without any geometric constructions. The geometric interpretation
will be developed subsequently.

The scalar product of two vectors is a \emph{number}, i.e.~the scalar
product maps a pair of vectors into a number. We will denote the scalar
product by $\left\langle \mathbf{u},\mathbf{v}\right\rangle $, or
sometimes by writing it in a functional form, $S\left(\mathbf{u},\mathbf{v}\right)$.


A scalar product must be compatible with the linear structure of the
vector space, so it cannot be an arbitrary map. The precise definition
is the following.


\paragraph{Definition:}

A map $B:V\times V\rightarrow\mathbb{K}$ is a \textbf{bilinear form}
in a vector space $V$ if for any vectors $\mathbf{u},\mathbf{v},\mathbf{w}\in V$
and for any $\lambda\in\mathbb{K}$,\begin{align*}
B\left(\mathbf{u},\mathbf{v}+\lambda\mathbf{w}\right) & =B\left(\mathbf{u},\mathbf{v}\right)+\lambda B\left(\mathbf{u},\mathbf{w}\right),\\
B\left(\mathbf{v}+\lambda\mathbf{w},\mathbf{u}\right) & =B\left(\mathbf{v},\mathbf{u}\right)+\lambda B\left(\mathbf{w},\mathbf{u}\right).\end{align*}
A bilinear form $B$ is \textbf{symmetric} if $B\left(\mathbf{v},\mathbf{w}\right)=B\left(\mathbf{w},\mathbf{v}\right)$
for any \textbf{$\mathbf{v}$}, $\mathbf{w}$. A bilinear form is
\textbf{nondegenerate} if for any nonzero vector $\mathbf{v}\neq0$
there exists another vector $\mathbf{w}$ such that $B\left(\mathbf{v},\mathbf{w}\right)\neq0$.
A bilinear form is \textbf{positive-definite} if $B\left(\mathbf{v},\mathbf{v}\right)>0$
for all nonzero vectors $\mathbf{v}\neq0$. 

A \textbf{scalar product} in $V$ is a nondegenerate, positive-definite,
symmetric bilinear form $S:V\times V\rightarrow\mathbb{K}$. The action
of the scalar product on pairs of vectors is also denoted by $\left\langle \mathbf{v},\mathbf{w}\right\rangle \equiv S\left(\mathbf{v},\mathbf{w}\right)$.
A finite-dimen\-sion\-al vector space over $\mathbb{R}$ with a
scalar product is called a \textbf{Euclidean} \textbf{space}\index{Euclidean space}.
The \textbf{length}\index{length of a vector} of a vector $\mathbf{v}$
is the non-neg\-at\-i\-ve number $\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$.
(This number is also called the \textbf{norm} of $\mathbf{v}$.)\hfill{}$\blacksquare$

Verifying that a map $S:V\times V\rightarrow\mathbb{K}$ is a scalar
product in $V$ requires proving that $S$ is a bilinear form satisfying
certain properties. For instance, the zero function $B\left(\mathbf{v},\mathbf{w}\right)=0$
is symmetric but is not a scalar product because it is degenerate. 


\paragraph{Remark:}

The above definition of the scalar product is an {}``abstract definition''
because it does not specify any particular scalar product in a given
vector space. To specify a scalar product, one usually gives an explicit
formula for computing $\left\langle \mathbf{a},\mathbf{b}\right\rangle $.
In the same space $V$, one could consider different scalar products.


\paragraph{Example 1:}

In the space $\mathbb{R}^{n}$, the standard scalar product is\begin{equation}
\left\langle \left(x_{1},...,x_{N}\right),\left(y_{1},...,y_{N}\right)\right\rangle \equiv\sum_{j=1}^{N}x_{j}y_{j}.\label{eq:standard scalar product}\end{equation}
Let us verify that this defines a symmetric, nondegenerate, and positive-definite
bilinear form. This is a bilinear form because it depends linearly
on each $x_{j}$ and on each $y_{j}$. This form is symmetric because
it is invariant under the interchange of $x_{j}$ with $y_{j}$. This
form is nondegenerate because for any $\mathbf{x}\neq0$ at least
one of $x_{j}$, say $x_{1}$, is nonzero; then the scalar product
of $\mathbf{x}$ with the vector $\mathbf{w}\equiv\left(1,0,0,...,0\right)$
is nonzero. So for any $\mathbf{x}\neq0$ there exists $\mathbf{w}$
such that $\left\langle \mathbf{x},\mathbf{w}\right\rangle \neq0$,
which is the nondegeneracy property. Finally, the scalar product is
positive-definite because for any nonzero $\mathbf{x}$ there is at
least one nonzero $x_{j}$ and thus \[
\left\langle \mathbf{x},\mathbf{x}\right\rangle =\left\langle \left(x_{1},...,x_{N}\right),\left(x_{1},...,x_{N}\right)\right\rangle \equiv\sum_{j=1}^{N}x_{j}^{2}>0.\]



\paragraph{Remark:}

The fact that a bilinear form is nondegenerate does not mean that
it must always be nonzero on any two vectors. It is perfectly possible
that $\left\langle \mathbf{a},\mathbf{b}\right\rangle =0$ while $\mathbf{a}\neq0$
and $\mathbf{b}\neq0$. In the usual Euclidean space, this would mean
that $\mathbf{a}$ and $\mathbf{b}$ are orthogonal to each other.
Nondegeneracy means that no vector is orthogonal to \emph{every} other
vector. It is also \emph{impossible} that $\left\langle \mathbf{a},\mathbf{a}\right\rangle =0$
while $\mathbf{a}\neq0$ (this contradicts the positive-definiteness).


\paragraph{Example 2:}

Consider the space $\text{End}\, V$ of linear operators in $V$.
We can define a bilinear form in the space $\text{End}\, V$ as follows:
For any two operators $\hat{A},\hat{B}\in\text{End}\, V$ we set $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}(\hat{A}\hat{B})$.
This bilinear form is \emph{not} posit\-ive-def\-in\-ite. For example,
if there is an operator $\hat{J}$ such that $\hat{J}^{2}=-\hat{1}_{V}$
then $\text{Tr}(\hat{J}\hat{J})=-N<0$ while $\text{Tr}(\hat{1}\hat{1})=N>0$,
so neither $\text{Tr}(\hat{A}\hat{B})$ nor $-\text{Tr}(\hat{A}\hat{B})$
can be posit\-ive-def\-in\-ite. (See Exercise~4 in Sec.~\ref{sub:Correspondence-between-vectors}
below for more information.)


\paragraph{Remark:}

Bilinear forms that are not positive-def\-in\-ite (or even degenerate)
are sometimes useful as {}``pseudo-scalar products.'' We will not
discuss these cases here.


\paragraph{Exercise 1:}

Prove that two vectors are equal, $\mathbf{u}=\mathbf{v}$, if and
only if $\left\langle \mathbf{u},\mathbf{x}\right\rangle =\left\langle \mathbf{v},\mathbf{x}\right\rangle $
for all vectors $\mathbf{x}\in V$. 

\emph{Hint}: Consider the vector $\mathbf{u}-\mathbf{v}$ and the
definition of nondegeneracy of the scalar product.


\subparagraph{Solution:}

If $\mathbf{u}-\mathbf{v}=0$ then by the linearity of the scalar
product $\left\langle \mathbf{u}-\mathbf{v},\mathbf{x}\right\rangle =0=\left\langle \mathbf{u},\mathbf{x}\right\rangle -\left\langle \mathbf{v},\mathbf{x}\right\rangle $.
Conversely, suppose that $\mathbf{u}\neq\mathbf{v}$; then $\mathbf{u}-\mathbf{v}\neq0$,
and (by definition of nondegeneracy of the scalar product) there exists
a vector $\mathbf{x}$ such that $\left\langle \mathbf{u}-\mathbf{v},\mathbf{x}\right\rangle \neq0$.
\hfill{}$\blacksquare$


\paragraph{Exercise 2:}

Prove that two linear operators $\hat{A}$ and $\hat{B}$ are equal
as operators, $\hat{A}=\hat{B}$, if and only if $\langle\hat{A}\mathbf{x},\mathbf{y}\rangle=\langle\hat{B}\mathbf{x},\mathbf{y}\rangle$
for all vectors $\mathbf{x},\mathbf{y}\in V$. 

\emph{Hint}: Consider the vector $\hat{A}\mathbf{x}-\hat{B}\mathbf{x}$.\hfill{}$\blacksquare$


\subsection{Orthonormal bases\label{sub:Orthonormal-bases}}

A scalar product defines an important property of a basis in $V$.


\paragraph{Definition: }

A set of vectors $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
in a space $V$ is \textbf{orthonormal} with respect to the scalar
product if\[
\left\langle \mathbf{e}_{i},\mathbf{e}_{j}\right\rangle =\delta_{ij},\quad1\leq i,j\leq k.\]
 If an orthonormal set $\left\{ \mathbf{e}_{j}\right\} $ is a basis
in $V$, it is called an \textbf{orthonormal basis}\index{orthonormal basis}.


\paragraph{Example 2:}

In the space $\mathbb{R}^{N}$ of $N$-tuples of real numbers $\left(x_{1},...,x_{N}\right)$,
the natural scalar product is defined by the formula~(\ref{eq:standard scalar product}).
Then the standard basis in $\mathbb{R}^{N}$, i.e.~the basis consisting
of vectors $\left(1,0,...,0\right)$, $\left(0,1,0,...,0\right)$,
..., $\left(0,...,0,1\right)$, is orthonormal with respect to this
scalar product.\hfill{}$\blacksquare$

The standard properties of orthonormal bases are summarized in the
following theorems.


\paragraph{Statement: }

Any orthonormal set of vectors is linearly independent.


\subparagraph{Proof:}

If an orthonormal set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
is linearly dependent, there exist numbers $\lambda_{j}$, not all
equal to zero, such that\[
\sum_{j=1}^{k}\lambda_{j}\mathbf{e}_{j}=0.\]
By assumption, there exists an index $s$ such that $\lambda_{s}\neq0$;
then the scalar product of the above sum with $\mathbf{e}_{s}$ yields
a contradiction, \[
0=\left\langle 0,\mathbf{e}_{s}\right\rangle =\left\langle \sum_{j=1}^{k}\lambda_{j}\mathbf{e}_{j}\,,\,\mathbf{e}_{s}\right\rangle =\sum_{j=1}^{k}\delta_{js}\lambda_{j}=\lambda_{s}\neq0.\]
Hence, any orthonormal set is linearly independent (although it is
not necessarily a basis).\hfill{}$\blacksquare$


\paragraph{Theorem 1:}

Assume that $V$ is a finite-dimen\-sion\-al vector space with a
scalar product and $\mathbb{K}$ is a field where one can compute
square roots (i.e.~for any $\lambda\in\mathbb{K}$, $\lambda>0$
there exists another number $\mu\equiv\sqrt{\lambda}\in\mathbb{K}$
such that $\lambda=\mu^{2}$). Then there exists an orthonormal basis
in $V$.


\subparagraph{Proof:}

We can build a basis by the standard orthogonalization procedure (the
\textbf{Gram-Schmidt} \textbf{procedure}\index{Gram-Schmidt procedure}).
This procedure uses induction to determine a sequence of orthonormal
sets $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $ for $k=1,$
..., $N$. 

Basis of induction: Choose any nonzero vector $\mathbf{v}\in V$ and
compute $\left\langle \mathbf{v},\mathbf{v}\right\rangle $; since
$\mathbf{v}\neq0$, we have $\left\langle \mathbf{v},\mathbf{v}\right\rangle >0$,
so $\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$ exists,
and we can define $\mathbf{e}_{1}$ by \[
\mathbf{e}_{1}\equiv\frac{\mathbf{v}}{\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }}.\]
It follows that $\left\langle \mathbf{e}_{1},\mathbf{e}_{1}\right\rangle =1$.

Induction step: If $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
is an orthonormal set, we need to find a vector $\mathbf{e}_{k+1}$
such that $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{e}_{k+1}\right\} $
is again an orthonormal set. To find a suitable vector $\mathbf{e}_{k+1}$,
we first take any vector $\mathbf{v}$ such that the set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{v}\right\} $
is linearly independent; such $\mathbf{v}$ exists if $k<N$, while
for $k=N$ there is nothing left to prove. Then we define a new vector\[
\mathbf{w}\equiv\mathbf{v}-\sum_{j=1}^{k}\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle \mathbf{e}_{j}.\]
This vector has the property $\left\langle \mathbf{e}_{j},\mathbf{w}\right\rangle =0$
for $1\leq j\leq k$. We have $\mathbf{w}\neq0$ because (by construction)
$\mathbf{v}$ is not a linear combination of $\mathbf{e}_{1}$, ...,
$\mathbf{e}_{k}$; therefore $\left\langle \mathbf{w},\mathbf{w}\right\rangle >0$.
Finally, we define \[
\mathbf{e}_{k+1}\equiv\frac{\mathbf{w}}{\sqrt{\left\langle \mathbf{w},\mathbf{w}\right\rangle }},\]
so that $\left\langle \mathbf{e}_{k+1},\mathbf{e}_{k+1}\right\rangle =1$;
then the set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k},\mathbf{e}_{k+1}\right\} $
is orthonormal. So the required set $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k+1}\right\} $
is now constructed.\hfill{}$\blacksquare$


\paragraph{Question:}

What about number fields $\mathbb{K}$ where the square root does
not exist, for example the field of rational numbers $\mathbb{Q}$?


\subparagraph{Answer:}

In that case, an orthonormal basis may or may not exist. For example,
suppose that we consider vectors in $\mathbb{Q}^{2}$ and the scalar
product \[
\left\langle (x_{1},x_{2}),(y_{1},y_{2})\right\rangle =x_{1}y_{1}+5x_{2}y_{2}.\]
Then we cannot normalize the vectors: there exists no vector $\mathbf{x}\equiv\left(x_{1},x_{2}\right)\in\mathbb{Q}^{2}$
such that $\left\langle \mathbf{x},\mathbf{x}\right\rangle =x_{1}^{2}+5x_{2}^{2}=1$.
The proof of this is similar to the ancient proof of the irrationality
of $\sqrt{2}$. Thus, there exists no orthonormal basis in this space
with this scalar product.


\paragraph{Theorem 2:}

If $\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal basis then
any vector $\mathbf{v}\in V$ is expanded according to the formula\[
\mathbf{v}=\sum_{j=1}^{N}v_{j}\mathbf{e}_{j},\quad v_{j}\equiv\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle .\]
In other words, the $j$-th component of the vector $\mathbf{v}$
in the basis $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
is equal to the scalar product $\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle $.


\subparagraph{Proof:}

Compute the scalar product $\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle $
and obtain $v_{j}\equiv\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle $.\hfill{}$\blacksquare$


\paragraph{Remark:}

Theorem~2 shows that the components of a vector in an orthonormal
basis can be computed quickly. As we have seen before, the component
$v_{j}$ of a vector $\mathbf{v}$ in the basis $\left\{ \mathbf{e}_{j}\right\} $
is given by the covector $\mathbf{e}_{j}^{*}$ from the dual basis,
$v_{j}=\mathbf{e}_{j}^{*}(\mathbf{v})$. Hence, the dual basis $\left\{ \mathbf{e}_{j}^{*}\right\} $
consists of linear functions \begin{equation}
\mathbf{e}_{j}^{*}:\mathbf{x}\mapsto\left\langle \mathbf{e}_{j},\mathbf{x}\right\rangle .\end{equation}
 In contrast, determining the dual basis for a general (non-orthonormal)
basis requires a complicated construction, such as that given in Sec.~\ref{sub:Computing-the-dual}. 


\paragraph{Corollary:}

If $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $ is an arbitrary
basis in $V$, there exists a scalar product with respect to which
$\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal basis. 


\subparagraph{Proof:}

Let $\left\{ \mathbf{e}_{1}^{*},...,\mathbf{e}_{N}^{*}\right\} $
be the dual basis in $V^{*}$. The required scalar product is defined
by the bilinear form\[
S\left(\mathbf{u},\mathbf{v}\right)=\sum_{j=1}^{N}\mathbf{e}_{j}^{*}\left(\mathbf{u}\right)\,\mathbf{e}_{j}^{*}\left(\mathbf{v}\right).\]
 It is easy to show that the basis $\left\{ \mathbf{e}_{j}\right\} $
is orthonormal with respect to the bilinear form $S$, namely $S(\mathbf{e}_{i},\mathbf{e}_{j})=\delta_{ij}$
(where $\delta_{ij}$ is the Kronecker symbol\index{Kronecker symbol}).
It remains to prove that $S$ is nondegenerate and positive-definite.
To prove the nondegeneracy: Suppose that $\mathbf{u}\neq0$; then
we can decompose $\mathbf{u}$ in the basis $\left\{ \mathbf{e}_{j}\right\} $,
\[
\mathbf{u}=\sum_{j=1}^{N}u_{j}\mathbf{e}_{j}.\]
There will be at least one nonzero coefficient $u_{s}$, thus $S\left(\mathbf{e}_{s},\mathbf{u}\right)=u_{s}\neq0$.
To prove that $S$ is positive-definite, compute \[
S\left(\mathbf{u},\mathbf{u}\right)=\sum_{j=1}^{N}u_{j}^{2}>0\]
as long as at least one coefficient $u_{j}$ is nonzero.\hfill{}$\blacksquare$


\paragraph{Exercise 1:}

Let $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ be a basis
in $V$, and let $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $
be an orthonormal basis. Show that the linear operator\[
\hat{A}\mathbf{x}\equiv\sum_{i=1}^{N}\left\langle \mathbf{e}_{i},\mathbf{x}\right\rangle \mathbf{v}_{i}\]
maps the basis $\left\{ \mathbf{e}_{i}\right\} $ into the basis $\left\{ \mathbf{v}_{i}\right\} $.


\paragraph{Exercise 2:}

Let $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $ with $n<N$
be a linearly independent set (not necessarily orthonormal). Show
that this set can be completed to a basis $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
in $V$, such that every vector $\mathbf{e}_{j}$ ($j=n+1,...,N$)
is orthogonal to every vector $\mathbf{v}_{i}$ ($i=1,...,n$).

\emph{Hint}: Follow the proof of Theorem~1 but begin the Gram-Schmidt
procedure at step $n$, without orthogonalizing the vectors $\mathbf{v}_{i}$.


\paragraph{Exercise 3:}

Let $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $ be an orthonormal
basis, and let $v_{i}\equiv\left\langle \mathbf{v},\mathbf{e}_{i}\right\rangle $.
Show that\[
\left\langle \mathbf{v},\mathbf{v}\right\rangle =\sum_{i=1}^{N}\left|v_{i}\right|^{2}.\]



\paragraph{Exercise 4:}

Consider the space of polynomials of degree at most 2 in the variable
$x$. Let us define the scalar product of two polynomials $p_{1}(x)$
and $p_{2}(x)$ by the formula\[
\left\langle p_{1},p_{2}\right\rangle =\frac{1}{2}\int_{-1}^{1}p_{1}(x)p_{2}(x)dx.\]
Find a linear polynomial $q_{1}(x)$ and a quadratic polynomial $q_{2}(x)$
such that $\left\{ \underbar{1},q_{1},q_{2}\right\} $ is an orthonormal
basis in this space.


\paragraph{Remark:}

Some of the properties of the scalar product are related in an essential
way to the assumption that we are working with real numbers. As an
example of what could go wrong if we naively extended the same results
to complex vector spaces, let us consider a vector $\mathbf{x}=\left(1,\text{i}\right)\in\mathbb{C}^{2}$
and compute its scalar product with itself by the formula\[
\left\langle \mathbf{x},\mathbf{x}\right\rangle =x_{1}^{2}+x_{2}^{2}=1^{2}+\text{i}^{2}=0.\]
Hence we have a nonzero vector whose {}``length'' is zero. To correct
this problem when working with complex numbers, one usually considers
a different kind of scalar product designed for complex vector spaces.
For instance, the scalar product in $\mathbb{C}^{n}$ is defined by
the formula\[
\left\langle (x_{1},...,x_{n}),\,(y_{1},...,y_{n})\right\rangle =\sum_{j=1}^{n}x_{j}^{*}y_{j},\]
 where $x_{j}^{*}$ is the complex conjugate of the component $x_{j}$.
This scalar product is called \textbf{Hermitian}\index{Hermitian scalar product}
and has the property\[
\left\langle \mathbf{x},\mathbf{y}\right\rangle =\left\langle \mathbf{y},\mathbf{x}\right\rangle ^{*},\]
that is, it is not symmetric but becomes complex-conjugated when the
order of vectors is interchanged. According to this scalar product,
we have for the vector $\mathbf{x}=\left(1,\text{i}\right)\in\mathbb{C}^{2}$
a sensible result, \[
\left\langle \mathbf{x},\mathbf{x}\right\rangle =x_{1}^{*}x_{1}+x_{2}^{*}x_{2}=\left|1\right|^{2}+\left|\text{i}\right|^{2}=2.\]
 More generally, for $\mathbf{x}\neq0$\[
\left\langle \mathbf{x},\mathbf{x}\right\rangle =\sum_{i=1}^{N}\left|x_{i}\right|^{2}>0.\]
 In this text, I will use this kind of scalar product only once (Sec.~\ref{sub:Scalar-product-for-complex}). 


\subsection{Correspondence between vectors and covectors \label{sub:Correspondence-between-vectors}}

Let us temporarily consider the scalar product $\left\langle \mathbf{v},\mathbf{x}\right\rangle $
as a function of $\mathbf{x}$ for a \emph{fixed} $\mathbf{v}$. We
may denote this function by $\mathbf{f}^{*}$. So $\mathbf{f}^{*}:\mathbf{x}\mapsto\left\langle \mathbf{v},\mathbf{x}\right\rangle $
is a linear map $V\rightarrow\mathbb{K}$, i.e.~(by definition) an
element of $V^{*}$. Thus, a covector $\mathbf{f}^{*}\in V^{*}$ is
determined for every $\mathbf{v}$. Therefore we have defined a map
$V\rightarrow V^{*}$ whereby a vector $\mathbf{v}$ is mapped to
the covector $\mathbf{f}^{*}$, which is defined by its action on
vectors $\mathbf{x}$ as follows,\begin{equation}
\mathbf{v}\mapsto\mathbf{f}^{*};\quad\mathbf{f}^{*}\left(\mathbf{x}\right)\equiv\left\langle \mathbf{v},\mathbf{x}\right\rangle ,\quad\forall\mathbf{x}\in V.\label{eq:v vstar iso}\end{equation}
This map is an isomorphism between $V$ and $V^{*}$ (not a canonical
one, since it depends on the choice of the scalar product), as the
following statement shows.


\paragraph{Statement 1:}

A nondegenerate bilinear form $B:V\otimes V\rightarrow\mathbb{K}$
defines an isomorphism $V\rightarrow V^{*}$ by the formula $\mathbf{v}\mapsto\mathbf{f}^{*}$,
$\mathbf{f}^{*}(\mathbf{x})\equiv B(\mathbf{v},\mathbf{x})$.


\subparagraph{Proof:}

We need to show that the map $\hat{B}:V\rightarrow V^{*}$ is a linear
one-to-one (bijective) map. Linearity easily follows from the bilinearity
of $B$. Bijectivity requires that no two different vectors are mapped
into one and the same covector, and that any covector is an image
of some vector. If two vectors $\mathbf{u}\neq\mathbf{v}$ are mapped
into one covector $\mathbf{f}^{*}$ then $\hat{B}\left(\mathbf{u}-\mathbf{v}\right)=\mathbf{f}^{*}-\mathbf{f}^{*}=0\in V^{*}$,
in other words, $B\left(\mathbf{u}-\mathbf{v},\mathbf{x}\right)=0$
for all $\mathbf{x}$. However, from the nondegeneracy of $B$ it
follows that there exists $\mathbf{x}\in V$ such that $B\left(\mathbf{u}-\mathbf{v},\mathbf{x}\right)\neq0$,
which gives a contradiction. Finally, consider a basis $\left\{ \mathbf{v}_{j}\right\} $
in $V$. Its image $\{\hat{B}\mathbf{v}_{1},...,\hat{B}\mathbf{v}_{N}\}$
must be a linearly independent set in $V^{*}$ because a vanishing
linear combination \[
\sum_{k}\lambda_{k}\hat{B}\mathbf{v}_{k}=0=\hat{B}\big(\sum_{k}\lambda_{k}\mathbf{v}_{k}\big)\]
 entails $\sum_{k}\lambda_{k}\mathbf{v}_{k}=0$ (we just proved that
a nonzero vector cannot be mapped into the zero covector). Therefore
$\{\hat{B}\mathbf{v}_{1},...,\hat{B}\mathbf{v}_{N}\}$ is a basis
in $V^{*}$, and any covector $\mathbf{f}^{*}$ is a linear combination
\[
\mathbf{f}^{*}=\sum_{k}f_{k}^{*}\hat{B}\mathbf{v}_{k}=\hat{B}\big(\sum_{k}f_{k}^{*}\mathbf{v}_{k}\big).\]
 It follows that any vector $\mathbf{f}^{*}$ is an image of some
vector from $V$. Thus $\hat{B}$ is a one-to-one map.\hfill{}$\blacksquare$

Let us show explicitly how to use the scalar product in order to map
vectors to covectors and vice versa.


\paragraph{Example:}

We use the scalar product as the bilinear form $B$, so $B(\mathbf{x},\mathbf{y})\equiv\left\langle \mathbf{x},\mathbf{y}\right\rangle $.
Suppose $\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal basis.
What is the covector $\hat{B}\mathbf{e}_{1}$? By Eq.~(\ref{eq:v vstar iso}),
this covector acts on an arbitrary vector $\mathbf{x}$ as \[
\hat{B}\mathbf{e}_{1}(\mathbf{x})=\left\langle \mathbf{e}_{1},\mathbf{x}\right\rangle \equiv x_{1},\]
where $x_{1}$ is the first component of the vector $\mathbf{x}$
in the basis $\left\{ \mathbf{e}_{j}\right\} $, i.e.~$\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{e}_{i}$.
We find that $\hat{B}\mathbf{e}_{1}$ is the same as the covector
$\mathbf{e}_{1}^{*}$ from the basis $\left\{ \mathbf{e}_{j}^{*}\right\} $
dual to $\left\{ \mathbf{e}_{j}\right\} $.

Suppose $\mathbf{f}^{*}\in V^{*}$ is a given covector. What is its
pre-image $\hat{B}^{-1}\mathbf{f}^{*}\in V$? It is a vector $\mathbf{v}$
such that $\mathbf{f}^{*}(\mathbf{x})=\left\langle \mathbf{v},\mathbf{x}\right\rangle $
for any $\mathbf{x}\in V$. In order to determine $\mathbf{v}$, let
us substitute the basis vectors $\mathbf{e}_{j}$ instead of $\mathbf{x}$;
we then obtain\[
\mathbf{f}^{*}(\mathbf{e}_{j})=\left\langle \mathbf{v},\mathbf{e}_{j}\right\rangle .\]
Since the covector $\mathbf{f}^{*}$ is given, the numbers $\mathbf{f}^{*}(\mathbf{e}_{j})$
are known, and hence \[
\mathbf{v}=\sum_{i=1}^{n}\mathbf{e}_{j}\left\langle \mathbf{v},\mathbf{e}_{j}\right\rangle =\sum_{i=1}^{N}\mathbf{e}_{j}\,\mathbf{f}^{*}(\mathbf{e}_{j}).\]
\hfill{}$\blacksquare$

Bilinear forms can be viewed as elements of the space $V^{*}\otimes V^{*}$.


\paragraph{Statement 2:}

All bilinear forms in $V$ constitute a vector space  canonically
isomorphic to $V^{*}\otimes V^{*}$. A basis $\left\{ \mathbf{e}_{j}\right\} $
is orthonormal with respect to the bilinear form \[
B\equiv\sum_{j=1}^{N}\mathbf{e}_{j}^{*}\otimes\mathbf{e}_{j}^{*}.\]



\subparagraph{Proof:}

Left as exercise.\hfill{}$\blacksquare$


\paragraph{Exercise 1:}

Let $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ be a basis
in $V$ (not necessarily orthonormal), and denote by $\left\{ \mathbf{v}_{i}^{*}\right\} $
the dual basis to $\left\{ \mathbf{v}_{i}\right\} $. The dual basis
is a basis in $V^{*}$. Now, we can map $\left\{ \mathbf{v}_{i}^{*}\right\} $
into a basis $\left\{ \mathbf{u}_{i}\right\} $ in $V$ using the
covector-vector correspondence. Show that $\left\langle \mathbf{v}_{i},\mathbf{u}_{j}\right\rangle =\delta_{ij}$.
Use this formula to show that this construction, applied to an orthonormal
basis $\left\{ \mathbf{e}_{i}\right\} $, yields again the same basis
$\left\{ \mathbf{e}_{i}\right\} $.

\emph{Hint}: If vectors $\mathbf{x}$ and $\mathbf{y}$ have the same
scalar products $\left\langle \mathbf{v}_{i},\mathbf{x}\right\rangle =\left\langle \mathbf{v}_{i},\mathbf{y}\right\rangle $
(for $i=1,...,N$) then $\mathbf{x}=\mathbf{y}$.


\paragraph{Exercise 2:}

Let $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ be a given
(not necessarily orthonormal) basis in $V$, and denote by $\left\{ \mathbf{v}_{i}^{*}\right\} $
the dual basis to $\left\{ \mathbf{v}_{i}\right\} $. Due to the vector-covector
correspondence, $\left\{ \mathbf{v}_{i}^{*}\right\} $ is mapped into
a basis $\left\{ \mathbf{u}_{j}\right\} $ in $V$, so the tensor
\[
\hat{1}_{V}\equiv\sum_{i=1}^{N}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}\]
is mapped into a bilinear form $B$ acting as\[
B(\mathbf{x},\mathbf{y})=\sum_{i=1}^{N}\left\langle \mathbf{v}_{i},\mathbf{x}\right\rangle \left\langle \mathbf{u}_{i},\mathbf{y}\right\rangle .\]
 Show that this bilinear form coincides with the scalar product, i.e.
\[
B(\mathbf{x},\mathbf{y})=\left\langle \mathbf{x},\mathbf{y}\right\rangle ,\quad\forall\mathbf{x},\mathbf{y}\in V.\]


\emph{Hint}: Since $\sum_{i=1}^{N}\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}=\hat{1}_{V}$,
we have $\sum_{i=1}^{N}\mathbf{v}_{i}\left\langle \mathbf{u}_{i},\mathbf{y}\right\rangle =\mathbf{y}$.


\paragraph{Exercise 3:}

If a scalar product $\left\langle \cdot,\cdot\right\rangle $ is given
in $V$, a scalar product $\left\langle \cdot,\cdot\right\rangle _{*}$
can be constructed also in $V^{*}$ as follows: Given any two covectors
$\mathbf{f}^{*},\mathbf{g}^{*}\in V^{*}$, we map them into vectors
$\mathbf{u},\mathbf{v}\in V$ and then define \[
\left\langle \mathbf{f}^{*},\mathbf{g}^{*}\right\rangle _{*}\equiv\left\langle \mathbf{u},\mathbf{v}\right\rangle .\]
Show that this scalar product is bilinear and positive-definite if
$\left\langle \cdot,\cdot\right\rangle $ is. For an orthonormal basis
$\left\{ \mathbf{e}_{j}\right\} $, show that the dual basis $\left\{ \mathbf{e}_{j}^{*}\right\} $
in $V^{*}$ is also orthonormal with respect to this scalar product.


\paragraph{Exercise 4:{*}}

Consider the space $\text{End}\, V$ of linear operators in a vector
space $V$ with $\dim V\geq2$. A bilinear form in the space $\text{End}\, V$
is defined as follows: for any two operators $\hat{A},\hat{B}\in\text{End}\, V$
we set $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}(\hat{A}\hat{B})$.
Show that $\langle\hat{A},\hat{B}\rangle$ is bilinear, symmetric,
and nondegenerate, but \emph{not} positive-def\-in\-ite.

\emph{Hint}: To show nondegeneracy, consider a nonzero operator $\hat{A}$;
there exists $\mathbf{v}\in V$ such that $\hat{A}\mathbf{v}\neq0$,
and then one can choose $\mathbf{f}^{*}\in V^{*}$ such that $\mathbf{f}^{*}(\hat{A}\mathbf{v})\neq0$;
then define $\hat{B}\equiv\mathbf{v}\otimes\mathbf{f}^{*}$ and verify
that $\langle\hat{A},\hat{B}\rangle$ is nonzero. To show that the
scalar product is not positive-definite, consider $\hat{C}=\mathbf{v}\otimes\mathbf{f}^{*}+\mathbf{w}\otimes\mathbf{g}^{*}$
and choose the vectors and the covectors appropriately so that $\text{Tr}(\hat{C}^{2})<0$. 


\subsection{{*} Example: bilinear forms on $V\oplus V^{*}$}

If $V$ is a vector space then the space $V\oplus V^{*}$ has \emph{two}
canonically defined bilinear forms that could be useful under certain
circumstances (when positive-definiteness is not required). This construction
is used in abstract algebra, and I mention it here as an example of
a purely algebraic and basis-free definition of a bilinear form.

If $\left(\mathbf{u},\mathbf{f}^{*}\right)$ and $\left(\mathbf{v},\mathbf{g}^{*}\right)$
are two elements of $V\oplus V^{*}$, a canonical bilinear form is
defined by the formula\begin{equation}
\left\langle \left(\mathbf{u},\mathbf{f}^{*}\right),\left(\mathbf{v},\mathbf{g}^{*}\right)\right\rangle =\mathbf{f}^{*}\left(\mathbf{v}\right)+\mathbf{g}^{*}\left(\mathbf{u}\right).\label{eq:scalar product vv}\end{equation}


This formula does \emph{not} define a positive-definite bilinear form
because \[
\left\langle \left(\mathbf{u},\mathbf{f}^{*}\right),\left(\mathbf{u},\mathbf{f}^{*}\right)\right\rangle =2\mathbf{f}^{*}\left(\mathbf{u}\right),\]
which can be positive, negative, or zero for some $\left(\mathbf{u},\mathbf{f}^{*}\right)\in V\oplus V^{*}$.


\paragraph{Statement: }

The bilinear form defined by Eq.~(\ref{eq:scalar product vv}) is
symmetric and nondegenerate.


\subparagraph{Proof:}

The symmetry is obvious from Eq.~(\ref{eq:scalar product vv}). Then
for any nonzero vector $\left(\mathbf{u},\mathbf{f}^{*}\right)$ we
need to find a vector $\left(\mathbf{v},\mathbf{g}^{*}\right)$ such
that $\left\langle \left(\mathbf{u},\mathbf{f}^{*}\right),\left(\mathbf{v},\mathbf{g}^{*}\right)\right\rangle \neq0$.
By assumption, either $\mathbf{u}\neq0$ or $\mathbf{f}^{*}\neq0$
or both. If $\mathbf{u}\neq0$, there exists a covector $\mathbf{g}^{*}$
such that $\mathbf{g}^{*}\left(\mathbf{u}\right)\neq0$; then we choose
$\mathbf{v}=0$. If $\mathbf{f}^{*}\neq0$, there exists a vector
$\mathbf{v}$ such that $\mathbf{f}^{*}\left(\mathbf{v}\right)\neq0$,
and then we choose $\mathbf{g}^{*}=0$. Thus the nondegeneracy is
proved. \hfill{}$\blacksquare$

Alternatively, there is a canonically defined \emph{antisymmetric}
bilinear form (or 2-form),\[
\left\langle \left(\mathbf{u},\mathbf{f}^{*}\right),\left(\mathbf{v},\mathbf{g}^{*}\right)\right\rangle =\mathbf{f}^{*}\left(\mathbf{v}\right)-\mathbf{g}^{*}\left(\mathbf{u}\right).\]
This bilinear form is also nondegenerate (the same proof goes through
as for the symmetric bilinear form above). Nevertheless, none of the
two bilinear forms can serve as a scalar product: the former lacks
positive-definiteness, the latter is antisymmetric rather than symmetric. 


\subsection{Scalar product in index notation}

In the index notation, the scalar product tensor $S\in V^{*}\otimes V^{*}$
is represented by a matrix $S_{ij}$ (with lower indices), and so
the scalar product of two vectors is written as\[
\left\langle \mathbf{u},\mathbf{v}\right\rangle =u^{i}v^{j}S_{ij}.\]
Alternatively, one uses the vector-to-covector map $\hat{S}:V\rightarrow V^{*}$
and writes\[
\left\langle \mathbf{u},\mathbf{v}\right\rangle =\mathbf{u}^{*}\left(\mathbf{v}\right)=u_{i}v^{i},\]
where the covector $\mathbf{u}^{*}$ is defined by\[
\mathbf{u}^{*}\equiv\hat{S}\mathbf{u}\,\,\Rightarrow\,\, u_{i}\equiv S_{ij}u^{j}.\]
Typically, in the index notation one uses the same symbol to denote
a vector, $u^{i}$, and the corresponding covector, $u_{i}$. This
is unambiguous as long as the scalar product is fixed.


\section{Orthogonal subspaces}

From now on, we work in a real, $N$-dimen\-sion\-al vector space
$V$ equipped with a scalar product.

We call two subspaces $V_{1}\subset V$ and $V_{2}\subset V$ \textbf{orthogonal}
if every vector from $V_{1}$ is orthogonal to every vector from $V_{2}$.
An important example of orthogonal subspaces is given by the construction
of the orthogonal complement.


\paragraph{Definition:}

The set of vectors orthogonal to a given vector $\mathbf{v}$ is denoted
by $\mathbf{v}^{\perp}$ and is called the \textbf{orthogonal} \textbf{complement}\index{orthogonal complement}
of the vector $\mathbf{v}$. Written as a formula:\[
\mathbf{v}^{\perp}=\left\{ \mathbf{x}\,|\,\mathbf{x}\in V,\,\left\langle \mathbf{x},\mathbf{v}\right\rangle =0\right\} .\]
 Similarly, the set of vectors orthogonal to each of the vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
is denoted by $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$.


\paragraph{Examples:}

If $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3},\mathbf{e}_{4}\right\} $
is an orthonormal basis in $V$ then the subspace $\text{Span}\left\{ \mathbf{e}_{1},\mathbf{e}_{3}\right\} $
is orthogonal to the subspace $\text{Span}\left\{ \mathbf{e}_{2},\mathbf{e}_{4}\right\} $
because any linear combination of $\mathbf{e}_{1}$ and $\mathbf{e}_{3}$
is orthogonal to any linear combination of $\mathbf{e}_{2}$ and $\mathbf{e}_{4}$.
The orthogonal complement of $\mathbf{e}_{1}$ is \[
\mathbf{e}_{1}^{\perp}=\text{Span}\left\{ \mathbf{e}_{2},\mathbf{e}_{3},\mathbf{e}_{4}\right\} .\]



\paragraph{Statement 1:}

\textbf{(1)} The orthogonal complement $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
is a subspace of $V$.

\textbf{(2)} Every vector from the subspace $\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
is orthogonal to every vector from $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$.


\subparagraph{Proof:}

\textbf{(1)} If two vectors $\mathbf{x},\mathbf{y}$ belong to $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$,
it means that $\left\langle \mathbf{v}_{i},\mathbf{x}\right\rangle =0$
and $\left\langle \mathbf{v}_{i},\mathbf{y}\right\rangle =0$ for
$i=1,...,n$. Since the scalar product is linear, it follows that
\[
\left\langle \mathbf{v}_{i},\,\mathbf{x}+\lambda\mathbf{y}\right\rangle =0,\quad i=1,...,n.\]
Therefore, any linear combination of $\mathbf{x}$ and $\mathbf{y}$
also belongs to $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$.
This is the same as to say that $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$
is a subspace of $V$.

\textbf{(2)} Suppose $\mathbf{x}\in\text{Span}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} $
and $\mathbf{y}\in\left\{ \mathbf{v}_{1},...,\mathbf{v}_{n}\right\} ^{\perp}$;
then we may express $\mathbf{x}=\sum_{i=1}^{n}\lambda_{i}\mathbf{v}_{i}$
with some coefficients $\lambda_{i}$, while $\left\langle \mathbf{v}_{i},\mathbf{y}\right\rangle =0$
for $i=1,...,n$. It follows from the linearity of the scalar product
that \[
\left\langle \mathbf{x},\mathbf{y}\right\rangle =\sum_{i=1}^{n}\left\langle \lambda_{i}\mathbf{v}_{i},\mathbf{y}\right\rangle =0.\]
Hence, every such $\mathbf{x}$ is orthogonal to every such $\mathbf{y}$.\hfill{}$\blacksquare$


\paragraph{Definition:}

If $U\subset V$ is a given subspace, the \textbf{orthogonal} \textbf{complement}
$U^{\perp}$ is defined as the subspace of vectors that are orthogonal
to every vector from $U$. (It is easy to see that all these vectors
form a subspace.)


\paragraph{Exercise 1: }

Given a subspace $U\subset V$, we may choose a basis $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
in $U$ and then construct the orthogonal complement $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} ^{\perp}$
as defined above. Show that the subspace $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} ^{\perp}$
is the same as $U^{\perp}$ independently of the choice of the basis
$\left\{ \mathbf{u}_{j}\right\} $ in $U$.\hfill{}$\blacksquare$

The space $V$ can be decomposed into a direct sum of orthogonal subspaces.




\paragraph{Statement 2:}

Given a subspace $U\subset V$, we can construct its orthogonal complement
$U^{\perp}\subset V$. Then $V=U\oplus U^{\perp}$; in other words,
every vector $\mathbf{x}\in V$ can be uniquely decomposed as $\mathbf{x}=\mathbf{u}+\mathbf{w}$
where $\mathbf{u}\in U$ and $\mathbf{w}\in U^{\perp}$.


\subparagraph{Proof:}

Choose a basis $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
of $U$. If $n=N$, the orthogonal complement $U^{\perp}$ is the
zero-dimen\-sion\-al subspace, so there is nothing left to prove.
If $n<N$, we may choose some additional vectors $\mathbf{e}_{n+1}$,
..., $\mathbf{e}_{N}$ such that the set $\{\mathbf{u}_{1},...,\mathbf{u}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\}$
is a basis in $V$ and \emph{every} vector $\mathbf{e}_{j}$ is orthogonal
to \emph{every} vector $\mathbf{u}_{i}$. Such a basis exists (see
Exercise~2 in Sec.~\ref{sub:Orthonormal-bases}). Then every vector
$\mathbf{x}\in V$ can be decomposed as\[
\mathbf{x}=\sum_{i=1}^{n}\lambda_{i}\mathbf{u}_{i}+\sum_{i=n+1}^{N}\mu_{i}\mathbf{e}_{i}\equiv\mathbf{u}+\mathbf{w}.\]
This decomposition provides the required decomposition of $\mathbf{x}$
into two vectors. 

It remains to show that this decomposition is unique (in particular,
independent of the choice of bases). If there were two different such
decompositions, say $\mathbf{x}=\mathbf{u}+\mathbf{w}=\mathbf{u}^{\prime}+\mathbf{w}^{\prime}$,
we would have \[
0\,{\lyxbuildrel!\above=}\left\langle \mathbf{u}-\mathbf{u}^{\prime}+\mathbf{w}-\mathbf{w}^{\prime},\mathbf{y}\right\rangle ,\quad\forall\mathbf{y}\in V.\]
Let us now show that $\mathbf{u}=\mathbf{u}^{\prime}$ and $\mathbf{w}=\mathbf{w}^{\prime}$:
Taking an arbitrary $\mathbf{y}\in U$, we have $\left\langle \mathbf{w}-\mathbf{w}^{\prime},\mathbf{y}=0\right\rangle $
and hence find that $\mathbf{u}-\mathbf{u}^{\prime}$ is orthogonal
to $\mathbf{y}$. It means that the vector $\mathbf{u}-\mathbf{u}^{\prime}\in U$
is orthogonal to \emph{every} vector $\mathbf{y}\in U$, e.g.~to
$\mathbf{y}\equiv\mathbf{u}-\mathbf{u}^{\prime}$; since the scalar
product of a nonzero vector with itself cannot be equal to zero, we
must have $\mathbf{u}-\mathbf{u}^{\prime}=0$. Similarly, by taking
an arbitrary $\mathbf{z}\in U^{\perp}$, we find that $\mathbf{w}-\mathbf{w}^{\prime}$
is orthogonal to $\mathbf{z}$, hence we must have $\mathbf{w}-\mathbf{w}^{\prime}=0$.\hfill{}$\blacksquare$

An important operation is the orthogonal projection onto a subspace.


\paragraph{Statement 3:}

There are many projectors onto a given subspace $U\subset V$, but
only one projector $\hat{P}_{U}$ that preserves the scalar product
with vectors from $U$. Namely, there exists a unique linear operator
$\hat{P}_{U}$, called the \textbf{orthogonal} \textbf{projector}\index{orthogonal projection}
onto the subspace $U$, such that\begin{align*}
\hat{P}_{U}\hat{P}_{U}=\hat{P}_{U};\quad(\hat{P}_{U}\mathbf{x})\in U\:\text{for}\,\forall\mathbf{x}\in V & \quad\text{--- projection property};\\
\langle\hat{P}_{U}\mathbf{x},\mathbf{a}\rangle=\left\langle \mathbf{x},\mathbf{a}\right\rangle ,\;\forall\mathbf{x}\in V,\:\mathbf{a}\in U & \quad\text{--- preserves }\left\langle \cdot,\cdot\right\rangle .\end{align*}



\paragraph{Remark: }

The name {}``orthogonal projections'' (this is quite different from
{}``orthogonal transformations'' defined in the next section!) comes
from a geometric analogy: Projecting a three-dimen\-sion\-al vector
orthogonally onto a plane means that the projection does not add to
the vector any components parallel to the plane. The vector is {}``cast
down'' in the direction normal to the plane. The projection modifies
a vector $\mathbf{x}$ by adding to it some vector orthogonal to the
plane; this modification preserves the scalar products of $\mathbf{x}$
with vectors in the plane. Perhaps a better word would be {}``normal
projection\index{normal projection}.''


\paragraph{Proof:}

Suppose $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $ is a
basis in the subspace $U$, and assume that $n<N$ (or else $U=V$
and there exists only one projector onto $U$, namely the identity
operator, which preserves the scalar product, so there is nothing
left to prove). We may complete the basis $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n}\right\} $
of $U$ to a basis $\left\{ \mathbf{u}_{1},...,\mathbf{u}_{n},\mathbf{e}_{n+1},...,\mathbf{e}_{N}\right\} $
in the entire space $V$. Let $\left\{ \mathbf{u}_{1}^{*},...,\mathbf{u}_{n}^{*},\mathbf{e}_{n+1}^{*},...,\mathbf{e}_{N}^{*}\right\} $
be the corresponding dual basis. Then a projector onto $U$ can be
defined by\[
\hat{P}=\sum_{i=1}^{n}\mathbf{u}_{i}\otimes\mathbf{u}_{i}^{*},\]
that is, $\hat{P}\mathbf{x}$ simply omits the components of the vector
$\mathbf{x}$ parallel to any $\mathbf{e}_{j}$ ($j=n+1,...,N$).
For example, the operator $\hat{P}$ maps the linear combination $\lambda\mathbf{u}_{1}+\mu\mathbf{e}_{n+1}$
to $\lambda\mathbf{u}_{1}$, omitting the component parallel to $\mathbf{e}_{n+1}$.
There are infinitely many ways of choosing $\left\{ \mathbf{e}_{j}\,|\, j=n+1,...,N\right\} $;
for instance, one can add to $\mathbf{e}_{n+1}$ an arbitrary linear
combination of $\left\{ \mathbf{u}_{j}\right\} $ and obtain another
possible choice of $\mathbf{e}_{n+1}$. Hence there are infinitely
many possible projectors onto $U$. 

While all these projectors satisfy the projection property, not all
of them preserve the scalar product. The orthogonal projector is the
one obtained from a particular completion of the basis, namely such
that every vector $\mathbf{e}_{j}$ is orthogonal to every vector
$\mathbf{u}_{i}$. Such a basis exists (see Exercise~2 in Sec.~\ref{sub:Orthonormal-bases}).
Using the construction shown above, we obtain a projector that we
will denote $\hat{P}_{U}$. We will now show that this projector is
unique and satisfies the scalar product preservation property.

The scalar product is preserved for the following reason. For any
$\mathbf{x}\in V$, we have a unique decomposition $\mathbf{x}=\mathbf{u}+\mathbf{w}$,
where $\mathbf{u}\in U$ and $\mathbf{w}\in U^{\perp}$. The definition
of $\hat{P}_{U}$ guarantees that $\hat{P}_{U}\mathbf{x}=\mathbf{u}$.
Hence \[
\left\langle \mathbf{x},\mathbf{a}\right\rangle =\left\langle \mathbf{u}+\mathbf{w},\mathbf{a}\right\rangle =\left\langle \mathbf{u},\mathbf{a}\right\rangle =\langle\hat{P}_{U}\mathbf{x},\mathbf{a}\rangle,\quad\forall\mathbf{x}\in V,\:\mathbf{a}\in U.\]


Now the uniqueness: If there were two projectors $\hat{P}_{U}$ and
$\hat{P}_{U}^{\prime}$, both satisfying the scalar product preservation
property, then \[
\langle(\hat{P}_{U}-\hat{P}_{U}^{\prime})\mathbf{x},\mathbf{u}\rangle=0\quad\forall\mathbf{x}\in V,\:\mathbf{u}\in U.\]
For a given $\mathbf{x}\in V$, the vector $\mathbf{y}\equiv(\hat{P}_{U}-\hat{P}_{U}^{\prime})\mathbf{x}$
belongs to $U$ and is orthogonal to every vector in $U$. Therefore
$\mathbf{y}=0$. It follows that $(\hat{P}_{U}-\hat{P}_{U}^{\prime})\mathbf{x}=0$
for any $\mathbf{x}\in V$, i.e.~the operator $(\hat{P}_{U}-\hat{P}_{U}^{\prime})$
is equal to zero.\hfill{}$\blacksquare$


\paragraph{Example:}

Given a nonzero vector $\mathbf{v}\in V$, let us construct the orthogonal
projector onto the subspace $\mathbf{v}^{\perp}$. It seems (judging
from the proof of Statement~3) that we need to chose a basis in $\mathbf{v}^{\perp}$.
However, the projector (as we know) is in fact independent of the
choice of the basis and can be constructed as follows:\[
\hat{P}_{\mathbf{v}^{\perp}}\mathbf{x}\equiv\mathbf{x}-\mathbf{v}\frac{\left\langle \mathbf{v},\mathbf{x}\right\rangle }{\left\langle \mathbf{v},\mathbf{v}\right\rangle }.\]
It is easy to check that this is indeed a projector onto $\mathbf{v}^{\perp}$,
namely we can check that $\langle\hat{P}_{\mathbf{v}^{\perp}}\mathbf{x},\mathbf{v}\rangle=0$
for all $\mathbf{x}\in V$, and that $\mathbf{v}^{\perp}$ is an invariant
subspace under $\hat{P}_{\mathbf{v}^{\perp}}$.


\paragraph{Exercise 2:}

Construct an orthogonal projector $\hat{P}_{\mathbf{v}}$ onto the
space spanned by the vector $\mathbf{v}$.

\emph{Answer}: $\hat{P}_{\mathbf{v}}\mathbf{x}=\mathbf{v}\frac{\left\langle \mathbf{v},\mathbf{x}\right\rangle }{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$.


\subsection{Affine hyperplanes}

Suppose $\mathbf{n}\in V$ is a given vector and $\alpha$ a given
number. The set of vectors $\mathbf{x}$ satisfying the equation\[
\left\langle \mathbf{n},\mathbf{x}\right\rangle =\alpha\]
 is called an \textbf{affine} \textbf{hyperplane}\index{affine hyperplane}.
Note that an affine hyperplane is not necessarily a subspace of $V$
because $\mathbf{x}=0$ does not belong to the hyperplane when $\alpha\neq0$.

The geometric interpretation of a hyperplane follows from the fact
that the difference of any two vectors $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$,
both belonging to the hyperplane, satisfies\[
\left\langle \mathbf{n},\mathbf{x}_{1}-\mathbf{x}_{2}\right\rangle =0.\]
Hence, all vectors in the hyperplane can be represented as a sum of
one such vector, say $\mathbf{x}_{0}$, and an arbitrary vector orthogonal
to $\mathbf{n}$. Geometrically, this means that the hyperplane is
orthogonal to the vector $\mathbf{n}$ and may be shifted from the
origin.


\paragraph{Example:}

Let us consider an affine hyperplane given by the equation $\left\langle \mathbf{n},\mathbf{x}\right\rangle =1$,
and let us compute the shortest vector belonging to the hyperplane.
Any vector $\mathbf{x}\in V$ can be written as\[
\mathbf{x}=\lambda\mathbf{n}+\mathbf{b},\]
where $\mathbf{b}$ is some vector such that $\left\langle \mathbf{n},\mathbf{b}\right\rangle =0$.
If $\mathbf{x}$ belongs to the hyperplane, we have\[
1=\left\langle \mathbf{n},\mathbf{x}\right\rangle =\left\langle \mathbf{n},\lambda\mathbf{n}+\mathbf{b}\right\rangle =\lambda\left\langle \mathbf{n},\mathbf{n}\right\rangle .\]
Hence, we must have\[
\lambda=\frac{1}{\left\langle \mathbf{n},\mathbf{n}\right\rangle }.\]
The squared length of $\mathbf{x}$ is then computed as\begin{align*}
\left\langle \mathbf{x},\mathbf{x}\right\rangle  & =\lambda^{2}\left\langle \mathbf{n},\mathbf{n}\right\rangle +\left\langle \mathbf{b},\mathbf{b}\right\rangle \\
 & =\frac{1}{\left\langle \mathbf{n},\mathbf{n}\right\rangle }+\left\langle \mathbf{b},\mathbf{b}\right\rangle \geq\frac{1}{\left\langle \mathbf{n},\mathbf{n}\right\rangle }.\end{align*}
The inequality becomes an equality when $\mathbf{b}=0$, i.e.~when
$\mathbf{x}=\lambda\mathbf{n}$. Therefore, the smallest possible
length of $\mathbf{x}$ is equal to $\sqrt{\lambda}$, which is equal
to the inverse length of $\mathbf{n}$.


\paragraph{Exercise:}

Compute the shortest distance between two parallel hyperplanes defined
by equations $\left\langle \mathbf{n},\mathbf{x}\right\rangle =\alpha$
and $\left\langle \mathbf{n},\mathbf{x}\right\rangle =\beta$.


\subparagraph{Answer:}

\[
\frac{\left|\alpha-\beta\right|}{\sqrt{\left\langle \mathbf{n},\mathbf{n}\right\rangle }}.\]



\section{Orthogonal transformations}


\paragraph{Definition:}

An operator $\hat{A}$ is called an \textbf{orthogonal transformation}
with respect to the scalar product $\left\langle ,\right\rangle $
if \[
\langle\hat{A}\mathbf{v},\hat{A}\mathbf{w}\rangle=\left\langle \mathbf{v},\mathbf{w}\right\rangle ,\quad\forall\mathbf{v},\mathbf{w}\in V.\]
(We use the words {}``transformation'' and {}``operator'' interchangeably
since we are always working within the same vector space $V$.)


\subsection{Examples and properties\label{sub:examples-Orthogonal-transformations}}


\paragraph{Example 1: }

Rotation by a fixed angle is an orthogonal transformation in a Euclidean
plane. It is easy to see that such a rotation preserves scalar products
(angles and lengths are preserved by a rotation). Let us define this
transformation by a formula. If $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
is a positively oriented orthonormal basis in the Euclidean plane,
then we define the \textbf{rotation}\index{rotation} $\hat{R}_{\alpha}$
of the plane by angle $\alpha$ in the counter-clockwise direction
by \begin{align*}
\hat{R}_{\alpha}\mathbf{e}_{1} & \equiv\mathbf{e}_{1}\cos\alpha-\mathbf{e}_{2}\sin\alpha,\\
\hat{R}_{\alpha}\mathbf{e}_{2} & \equiv\mathbf{e}_{1}\sin\alpha+\mathbf{e}_{2}\cos\alpha.\end{align*}
One can quickly verify that the transformed basis $\{\hat{R}_{\alpha}\mathbf{e}_{1},\hat{R}_{\alpha}\mathbf{e}_{2}\}$
is also an orthonormal basis; for example, \[
\langle\hat{R}_{\alpha}\mathbf{e}_{1},\hat{R}_{\alpha}\mathbf{e}_{1}\rangle=\left\langle \mathbf{e}_{1},\mathbf{e}_{1}\right\rangle \cos^{2}\alpha+\left\langle \mathbf{e}_{2},\mathbf{e}_{2}\right\rangle \sin^{2}\alpha=1.\]



\paragraph{Example 2:}

Mirror reflections are also orthogonal transformations. A mirror reflection
with respect to the basis vector $\mathbf{e}_{1}$ maps a vector $\mathbf{x}=\lambda_{1}\mathbf{e}_{1}+\lambda_{2}\mathbf{e}_{2}+...+\lambda_{N}\mathbf{e}_{N}$
into $\hat{M}_{\mathbf{e}_{1}}\mathbf{x}=-\lambda_{1}\mathbf{e}_{1}+\lambda_{2}\mathbf{e}_{2}+...+\lambda_{N}\mathbf{e}_{N}$,
i.e.~only the first coefficient changes sign. A mirror reflection
with respect to an arbitrary axis $\mathbf{n}$ (where $\mathbf{n}$
is a \textbf{unit} vector, i.e.~$\left\langle \mathbf{n},\mathbf{n}\right\rangle =1$)
can be defined as the transformation\[
\hat{M}_{\mathbf{n}}\mathbf{x}\equiv\mathbf{x}-2\left\langle \mathbf{n},\mathbf{x}\right\rangle \mathbf{n}.\]
This transformation is interpreted geometrically as mirror reflection
with respect to the hyperplane $\mathbf{n}^{\perp}$.\hfill{}$\blacksquare$

An interesting fact is that orthogonality \emph{entails} linearity.


\paragraph{Statement 1:}

If a map $\hat{A}:V\rightarrow V$ is orthogonal then it is a linear
map, $\hat{A}\left(\mathbf{u}+\lambda\mathbf{v}\right)=\hat{A}\mathbf{u}+\lambda\hat{A}\mathbf{v}$.


\subparagraph{Proof:}

Consider an orthonormal basis $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $.
The set $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{N}\}$ is
orthonormal because \[
\langle\hat{A}\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle=\left\langle \mathbf{e}_{i},\mathbf{e}_{j}\right\rangle =\delta_{ij}.\]
By Theorem~1 of Sec.~\ref{sub:Vector-spaces-with-scalar-product}
the set $\{\hat{A}\mathbf{e}_{1},...,\hat{A}\mathbf{e}_{N}\}$ is
linearly independent and is therefore an \emph{orthonormal} \emph{basis}
in $V$. Consider an arbitrary vector $\mathbf{v}\in V$ and its image
$\hat{A}\mathbf{v}$ after the transformation $\hat{A}$. By Theorem~2
of Sec.~\ref{sub:Orthonormal-bases}, we can decompose $\mathbf{v}$
in the basis $\left\{ \mathbf{e}_{j}\right\} $ and $\hat{A}\mathbf{v}$
in the basis $\{\hat{A}\mathbf{e}_{j}\}$ as follows, \begin{align*}
\mathbf{v} & =\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle \mathbf{e}_{j},\\
\hat{A}\mathbf{v} & =\sum_{j=1}^{N}\langle\hat{A}\mathbf{e}_{j},\hat{A}\mathbf{v}\rangle\,\hat{A}\mathbf{e}_{j}=\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle \hat{A}\mathbf{e}_{j}.\end{align*}
Any other vector $\mathbf{u}\in V$ can be similarly decomposed, and
so we obtain\begin{align*}
\hat{A}\left(\mathbf{u}+\lambda\mathbf{v}\right) & =\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{u}+\lambda\mathbf{v}\right\rangle \,\hat{A}\mathbf{e}_{j}\\
 & =\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{u}\right\rangle \hat{A}\mathbf{e}_{j}+\lambda\sum_{j=1}^{N}\left\langle \mathbf{e}_{j},\mathbf{v}\right\rangle \hat{A}\mathbf{e}_{j}\\
 & =\hat{A}\mathbf{u}+\lambda\hat{A}\mathbf{v},\quad\forall\mathbf{u},\mathbf{v}\in V,\:\lambda\in\mathbb{K},\end{align*}
showing that the map $\hat{A}$ is linear.\hfill{}$\blacksquare$

An orthogonal operator always maps an orthonormal basis into another
orthonormal basis (this was shown in the proof of Statement~1). The
following exercise shows that the converse is also true.


\paragraph{Exercise 1:}

Prove that a transformation is orthogonal if and only if it maps \emph{some}
orthonormal basis into another orthonormal basis. Deduce that any
orthogonal transformation is invertible.


\paragraph{Exercise 2:}

If a linear transformation $\hat{A}$ satisfies $\langle\hat{A}\mathbf{x},\hat{A}\mathbf{x}\rangle=\left\langle \mathbf{x},\mathbf{x}\right\rangle $
for all $\mathbf{x}\in V$, show that $\hat{A}$ is an orthogonal
transformation. (This shows how to check more easily whether a given
linear transformation is orthogonal.) 

\emph{Hint}: Substitute $\mathbf{x}=\mathbf{y}+\mathbf{z}$.


\paragraph{Exercise 3:}

Show that for any two orthonormal bases $\left\{ \mathbf{e}_{j}\,|\, j=1,...,N\right\} $
and $\left\{ \mathbf{f}_{j}\,|\, j=1,...,N\right\} $, there exists
an orthogonal operator $\hat{R}$ that maps the basis $\left\{ \mathbf{e}_{j}\right\} $
into the basis $\left\{ \mathbf{f}_{j}\right\} $, i.e.~$\hat{R}\mathbf{e}_{j}=\mathbf{f}_{j}$
for $j=1,...,N$. 

\emph{Hint}: A linear operator mapping $\left\{ \mathbf{e}_{j}\right\} $
into $\left\{ \mathbf{f}_{j}\right\} $ exists; show that this operator
is orthogonal.


\paragraph{Exercise 4:}

Prove that $\hat{M}_{\mathbf{n}}$ (as defined in Example~2) is an
orthogonal transformation by showing that $\langle\hat{M}_{\mathbf{n}}\mathbf{x},\hat{M}_{\mathbf{n}}\mathbf{x}\rangle=\left\langle \mathbf{x},\mathbf{x}\right\rangle $
for any $\mathbf{x}$.


\paragraph{Exercise 5:}

Consider the orthogonal transformations $\hat{R}_{\alpha}$ and $\hat{M}_{\mathbf{n}}$
and an orthonormal basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2}\right\} $
as defined in Examples~1 and 2. Show by a direct calculation that
\[
(\hat{R}_{\alpha}\mathbf{e}_{1})\wedge(\hat{R}_{\alpha}\mathbf{e}_{2})=\mathbf{e}_{1}\wedge\mathbf{e}_{2}\]
 and that \[
(\hat{M}_{\mathbf{n}}\mathbf{e}_{1})\wedge(\hat{M}_{\mathbf{n}}\mathbf{e}_{2})=-\mathbf{e}_{1}\wedge\mathbf{e}_{2}.\]
This is the same as to say that $\det\hat{R}_{\alpha}=1$ and $\det\hat{M}_{\mathbf{n}}=-1$.
This indicates that rotations preserve orientation while mirror reflections
reverse orientation.\hfill{}$\blacksquare$


\subsection{Transposition}

Another way to characterize orthogonal transformations is by using
transposed operators\index{transposed operator}. Recall that the
canonically defined transpose to $\hat{A}$ is $\hat{A}^{T}:V^{*}\rightarrow V^{*}$
(see Sec.~\ref{par:Definition:transpose}, p.~\pageref{par:Definition:transpose}
for a definition). In a (finite-dimen\-sion\-al) space with a scalar
product, the one-to-one correspondence between $V$ and $V^{*}$ means
that $\hat{A}^{T}$ can be identified with some operator acting in
$V$ (rather than in $V^{*}$). Let us also denote that operator by
$\hat{A}^{T}$ and call it the \textbf{transposed\index{transposed operator}}
to $\hat{A}$. (This transposition is not canonical but depends on
the scalar product.) We can formulate the definition of $\hat{A}^{T}$
as follows. 


\paragraph{Definition 1:}

In a finite-dimen\-sion\-al space with a scalar product, the \textbf{transposed}
operator $\hat{A}^{T}:V\rightarrow V$ is defined by\[
\langle\hat{A}^{T}\mathbf{x},\mathbf{y}\rangle\equiv\langle\mathbf{x},\hat{A}\mathbf{y}\rangle,\quad\forall\mathbf{x},\mathbf{y}\in V.\]



\paragraph{Exercise 1:}

Show that $(\hat{A}\hat{B})^{T}=\hat{B}^{T}\hat{A}^{T}$.


\paragraph{Statement 1:}

If $\hat{A}$ is orthogonal then $\hat{A}^{T}\hat{A}=\hat{1}_{V}$.


\paragraph{Proof: }

By definition of orthogonal transformation, $\langle\hat{A}\mathbf{x},\hat{A}\mathbf{y}\rangle=\langle\mathbf{x},\mathbf{y}\rangle$
for all $\mathbf{x},\mathbf{y}\in V$. Then we use the definition
of $\hat{A}^{T}$ and obtain \[
\langle\mathbf{x},\mathbf{y}\rangle=\langle\hat{A}\mathbf{x},\hat{A}\mathbf{y}\rangle=\langle\hat{A}^{T}\hat{A}\mathbf{x},\mathbf{y}\rangle.\]
Since this holds for all $\mathbf{x},\mathbf{y}\in V$, we conclude
that $\hat{A}^{T}\hat{A}=\hat{1}_{V}$ (see Exercise~2 in Sec.~\ref{sub:Vector-spaces-with-scalar-product}).\hfill{}$\blacksquare$

Let us now see how transposed operators appear in matrix form. Suppose
$\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal basis in $V$;
then the operator $\hat{A}$ can be represented by some matrix $A_{ij}$
in this basis. Then the operator $\hat{A}^{T}$ is represented by
the matrix $A_{ji}$ in the same basis (i.e.~by the matrix transpose
of $A_{ij}$), as shown in the following exercise. (Note that the
operator $\hat{A}^{T}$ is \emph{not} represented by the transposed
matrix when the basis is not orthonormal.)


\paragraph{Exercise 2:}

Show that the operator $\hat{A}^{T}$ is represented by the transposed
matrix $A_{ji}$ in the same (orthonormal) basis in which the operator
$\hat{A}$ has the matrix $A_{ij}$. Deduce that $\det\hat{A}=\det\,(\hat{A}^{T})$. 


\subparagraph{Solution:}

The matrix element $A_{ij}$ with respect to an orthonormal basis
$\left\{ \mathbf{e}_{j}\right\} $ is the coefficient in the tensor
decomposition $\hat{A}=\sum_{i,j=1}^{N}A_{ij}\mathbf{e}_{i}\otimes\mathbf{e}_{j}^{*}$
and can be computed using the scalar product as\[
A_{ij}=\langle\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle.\]
The transposed operator satisfies \[
\langle\mathbf{e}_{i},\hat{A}^{T}\mathbf{e}_{j}\rangle=\langle\hat{A}\mathbf{e}_{i},\mathbf{e}_{j}\rangle=A_{ji}.\]
 Hence, the matrix elements of $\hat{A}^{T}$ are $A_{ji}$, i.e.~the
matrix elements of the transposed matrix. We know that $\det(A_{ji})=\det(A_{ij})$.
If the basis $\left\{ \mathbf{e}_{j}\right\} $ is not orthonormal,
the property $A_{ij}=\langle\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle$
does not hold and the argument fails.\hfill{}$\blacksquare$

We have seen in Exercise~5 (Sec.~\ref{sub:examples-Orthogonal-transformations})
that the determinants of some orthogonal transformations were equal
to $+1$ or $-1$. This is, in fact, a general property.


\paragraph{Statement~2:}

The determinant of an orthogonal transformation is equal to $1$ or
to $-1$.


\subparagraph{Proof:}

An orthogonal transformation $\hat{A}$ satisfies $\hat{A}^{T}\hat{A}=\hat{1}_{V}$.
Compute the determinant of both sides; since the determinant of the
transposed operator is equal to that of the original operator, we
have $(\det\hat{A})^{2}=1$.\hfill{}$\blacksquare$


\section{Applications of exterior product}

We will now apply the exterior product techniques to spaces with a
scalar product and obtain several important results. 


\subsection{Orthonormal bases, volume, and $\wedge^{N}V$ }

If an orthonormal basis $\left\{ \mathbf{e}_{j}\right\} $ is chosen,
we can consider a special tensor in $\wedge^{N}V$, namely\[
\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]
Since $\omega\neq0$, the tensor $\omega$ can be considered a basis
tensor in the one-dimen\-sion\-al space $\wedge^{N}V$. This choice
allows one to identify the space $\wedge^{N}V$ with scalars (the
one-dimen\-sion\-al space of numbers, $\mathbb{K}$). Namely, any
tensor $\tau\in\wedge^{N}V$ must be proportional to $\omega$ (since
$\wedge^{N}V$ is one-dimen\-sion\-al), so $\tau=t\omega$ where
$t\in\mathbb{K}$ is some number. The number $t$ corresponds uniquely
to each $\tau\in\wedge^{N}V$.

As we have seen before, tensors from $\wedge^{N}V$ have the interpretation
of oriented volumes. In this interpretation, $\omega$ represents
the volume of a parallelepiped spanned by the unit basis vectors $\left\{ \mathbf{e}_{j}\right\} $.
Since the vectors $\left\{ \mathbf{e}_{j}\right\} $ are orthonormal
and have unit length, it is reasonable to assume that they span a
\emph{unit} volume. Hence, the oriented volume represented by $\omega$
is equal to $\pm1$ depending on the orientation of the basis $\left\{ \mathbf{e}_{j}\right\} $.
The tensor $\omega$ is called the \textbf{unit volume tensor}.\index{unit volume tensor}

Once $\omega$ is fixed, the (oriented) volume of a parallelepiped
spanned by arbitrary vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $
is equal to the constant $C$ in the equality\begin{equation}
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=C\omega.\label{eq:v basis equ C}\end{equation}
In our notation of {}``tensor division,'' we can also write\[
\text{Vol}\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} \equiv C=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\omega}.\]


It might appear that $\omega$ is arbitrarily chosen and will change
when we select another orthonormal basis. However, it turns out that
the basis tensor $\omega$ does not actually depend on the choice
of the orthonormal basis, \emph{up to a sign}. (The sign of $\omega$
is necessarily ambiguous because one can always interchange, say,
$\mathbf{e}_{1}$ and $\mathbf{e}_{2}$ in the orthonormal basis,
and then the sign of $\omega$ will be flipped.) We will now prove
that a different orthonormal basis yields again either $\omega$ or
$-\omega$, depending on the order of vectors. In other words, $\omega$
depends on the choice of the scalar product but not on the choice
of an orthonormal basis, \emph{up} \emph{to} \emph{a sign}. 




\paragraph{Statement:}

Given two orthonormal bases $\left\{ \mathbf{e}_{j}\right\} $ and
$\left\{ \mathbf{f}_{j}\right\} $, let us define two tensors $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
and $\omega'\equiv\mathbf{f}_{1}\wedge...\wedge\mathbf{f}_{N}$. Then
$\omega'=\pm\omega$. 


\subparagraph{Proof:}

There exists an orthogonal transformation $\hat{R}$ that maps the
basis $\left\{ \mathbf{e}_{j}\right\} $ into the basis $\left\{ \mathbf{f}_{j}\right\} $,
i.e.~$\hat{R}\mathbf{e}_{j}=\mathbf{f}_{j}$ for $j=1,...,N$. Then
$\det\hat{R}=\pm1$ and thus \[
\omega'=\hat{R}\mathbf{e}_{1}\wedge...\wedge\hat{R}\mathbf{e}_{N}=(\det\hat{R})\omega=\pm\omega.\]
 \hfill{}$\blacksquare$

The sign factor $\pm1$ in the definition of the unit-volume tensor
$\omega$ is an essential ambiguity that cannot be avoided; instead,
one simply chooses some orthonormal basis $\left\{ \mathbf{e}_{j}\right\} $,
computes $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$,
and declares this $\omega$ to be {}``positively oriented.'' Any
other nonzero $N$-vector $\psi\in\wedge^{N}V$ can then be compared
with $\omega$ as $\psi=C\omega$, yielding a constant $C\neq0$.
If $C>0$ then $\psi$ is also {}``positively oriented,'' otherwise
$\psi$ is {}``negatively oriented.'' Similarly, any given basis
$\left\{ \mathbf{v}_{j}\right\} $ is then deemed to be {}``positively
oriented'' if Eq.~(\ref{eq:v basis equ C}) holds with $C>0$. Choosing
$\omega$ is therefore called {}``fixing the \textbf{orientation
of space}.''\index{orientation of space} 


\paragraph{Remark: right-hand rule\index{right-hand rule}.}

To fix the orientation of the basis in the 3-dimen\-sion\-al space,
frequently the {}``right-hand rule'' is used: The thumb, the index
finger, and the middle finger of a relaxed \emph{right} \emph{hand}
are considered the {}``positively oriented'' basis vectors $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $.
However, this is not really a definition in the mathematical sense
because the concept of {}``fingers of a right hand'' is undefined
and actually \emph{cannot} be defined in geometric terms. In other
words, it is impossible to give a purely algebraic or geometric definition
of a {}``positively oriented'' basis in terms of any properties
of the vectors $\left\{ \mathbf{e}_{j}\right\} $ alone! (Not to mention
that there is no human hand in $N$ dimensions.) However, once an
\emph{arbitrary} basis $\left\{ \mathbf{e}_{j}\right\} $ is selected
and declared to be {}``positively oriented\index{positively orientated basis},''
we may look at any other basis $\left\{ \mathbf{v}_{j}\right\} $,
compute \[
C\equiv\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\omega},\]
and examine the sign of $C$. We will have $C\neq0$ since $\left\{ \mathbf{v}_{j}\right\} $
is a basis. If $C>0$, the basis $\left\{ \mathbf{v}_{j}\right\} $
is positively oriented. If $C<0$, we need to change the ordering
of vectors in $\left\{ \mathbf{v}_{j}\right\} $; for instance, we
may swap the first two vectors and use $\{\mathbf{v}_{2},\mathbf{v}_{1},\mathbf{v}_{3},...,\mathbf{v}_{N}\}$
as the positively oriented basis. In other words, {}``a positive
orientation of space\index{orientation of space}'' simply means
choosing a certain ordering of vectors in each basis. As we have seen,
it suffices to choose the unit volume tensor $\omega$ (rather than
a basis) to fix the orientation of space. The choice of sign of $\omega$
is quite arbitrary and does not influence the results of any calculations
because the tensor $\omega$ always appears on both sides of equations
or in a quadratic combination.\hfill{}$\blacksquare$


\subsection{Vector product in $\mathbb{R}^{3}$ and Levi-Civita symbol $\varepsilon$\label{sub:The-vector-product}}

In the familiar three-dimen\-sion\-al Euclidean space, $V=\mathbb{R}^{3}$,
there is a vector product $\mathbf{a}\times\mathbf{b}$ and a scalar
product $\mathbf{a}\cdot\mathbf{b}$. We will now show how the vector
product can be expressed through the exterior product.

A positively oriented orthonormal basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $
defines the unit volume tensor $\omega\equiv\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$
in $\wedge^{3}V$. Due to the presence of the scalar product, $V$
can be identified with $V^{*}$, as we have seen. 

Further, the space $\wedge^{2}V$ can be identified with $V$ by the
following construction. A 2-vector $A\in\wedge^{2}V$ generates a
covector $\mathbf{f}^{*}$ by the formula\[
\mathbf{f}^{*}(\mathbf{x})\equiv\frac{\mathbf{x}\wedge A}{\omega},\quad\forall\mathbf{x}\in V.\]
Now the identification of vectors and covectors shows that $\mathbf{f}^{*}$
corresponds to a certain vector $\mathbf{c}$. Thus, a 2-vector $A\in\wedge^{2}V$
is mapped to a vector $\mathbf{c}\in V$. Let us denote this map by
the {}``star'' symbol and write $\mathbf{c}=*A$. This map is called
the \textbf{Hodge star}\index{Hodge star}; it is a linear map $\wedge^{2}V\rightarrow V$.


\paragraph{Example 1:}

Let us compute $*(\mathbf{e}_{2}\wedge\mathbf{e}_{3})$. The 2-vector
$\mathbf{e}_{2}\wedge\mathbf{e}_{3}$ is mapped to the covector $\mathbf{f}^{*}$
defined by\[
\mathbf{f}^{*}(\mathbf{x})\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}\equiv\mathbf{x}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}=x_{1}\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3},\]
where $\mathbf{x}$ is an arbitrary vector and $x_{1}\equiv\mathbf{e}_{1}^{*}(\mathbf{x})$
is the first component of $\mathbf{x}$ in the basis. Therefore $\mathbf{f}^{*}=\mathbf{e}_{1}^{*}$.
By the vector-covector correspondence, $\mathbf{f}^{*}$ is mapped
to the vector $\mathbf{e}_{1}$ since \[
x_{1}=\mathbf{e}_{1}^{*}(\mathbf{x})=\left\langle \mathbf{e}_{1},\mathbf{x}\right\rangle .\]
 Therefore $*(\mathbf{e}_{2}\wedge\mathbf{e}_{3})=\mathbf{e}_{1}$. 

Similarly we compute $*(\mathbf{e}_{1}\wedge\mathbf{e}_{3})=-\mathbf{e}_{2}$
and $*(\mathbf{e}_{1}\wedge\mathbf{e}_{2})=\mathbf{e}_{3}$.\hfill{}$\blacksquare$

Generalizing Example~1 to a single-term product $\mathbf{a}\wedge\mathbf{b}$,
where $\mathbf{a}$ and $\mathbf{b}$ are vectors from $V$, we find
that the vector $\mathbf{c}=*(\mathbf{a}\wedge\mathbf{b})$ is equal
to the usually defined \textbf{vector} \textbf{product}\index{vector product}
or {}``cross product'' $\mathbf{c}=\mathbf{a}\times\mathbf{b}$.
We note that the vector product depends on the choice of the \emph{orientation}
of the basis; exchanging the order of any two basis vectors will change
the sign of the tensor $\omega$ and hence will change the sign of
the vector product.


\paragraph{Exercise 1:}

The vector product in $\mathbb{R}^{3}$ is usually defined through
the components of vectors in an orthogonal basis, as in Eq.~(\ref{eq:3d vector product}).
Show that the definition \[
\mathbf{a}\times\mathbf{b}\equiv*(\mathbf{a}\wedge\mathbf{b})\]
is equivalent to that.

\emph{Hint}: Since the vector product is bilinear, it is sufficient
to show that $*(\mathbf{a}\wedge\mathbf{b})$ is linear in both $\mathbf{a}$
and $\mathbf{b}$, and then to consider the pairwise vector products
$\mathbf{e}_{1}\times\mathbf{e}_{2}$, $\mathbf{e}_{2}\times\mathbf{e}_{3},$
$\mathbf{e}_{3}\times\mathbf{e}_{1}$ for an orthonormal basis $\left\{ \mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}\right\} $.
Some of these calculations were performed in Example~1.\hfill{}$\blacksquare$

The Hodge star is a one-to-one map because $*(\mathbf{a}\wedge\mathbf{b})=0$
if and only if $\mathbf{a}\wedge\mathbf{b}=0$. Hence, the inverse
map $V\rightarrow\wedge^{2}V$ exists. It is convenient to denote
the inverse map also by the same {}``star'' symbol, so that we have
the map $*:V\rightarrow\wedge^{2}V$. For example, \begin{align*}
*(\mathbf{e}_{1}) & =\mathbf{e}_{2}\wedge\mathbf{e}_{3},\quad*(\mathbf{e}_{2})=-\mathbf{e}_{1}\wedge\mathbf{e}_{3},\\
**(\mathbf{e}_{1}) & =*(\mathbf{e}_{2}\wedge\mathbf{e}_{3})=\mathbf{e}_{1}.\end{align*}
We may then write symbolically $**=\hat{1}$; here one of the stars
stands for the map $V\rightarrow\wedge^{2}V$, and the other star
is the map $\wedge^{2}V\rightarrow V$. 

The \textbf{triple product}\index{triple product} is defined by the
formula\[
\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)\equiv\left\langle \mathbf{a},\mathbf{b}\times\mathbf{c}\right\rangle .\]
The triple product is fully antisymmetric,\[
\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)=-\left(\mathbf{b},\mathbf{a},\mathbf{c}\right)=-\left(\mathbf{a},\mathbf{c},\mathbf{b}\right)=+\left(\mathbf{c},\mathbf{a},\mathbf{b}\right)=...\]
The geometric interpretation of the triple product is that of the
oriented volume of the parallelepiped spanned by the vectors $\mathbf{a}$,
$\mathbf{b}$, $\mathbf{c}$. This suggests a connection with the
exterior power $\wedge^{3}(\mathbb{R}^{3})$. 

Indeed, the triple product can be expressed through the exterior product.
We again use the tensor $\omega=\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$.
Since $\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal basis,
the volume of the parallelepiped spanned by $\mathbf{e}_{1}$, $\mathbf{e}_{2}$,
\textbf{$\mathbf{e}_{3}$} is equal to $1$. Then we can express $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
as \[
\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}=\left\langle \mathbf{a},*(\mathbf{b}\wedge\mathbf{c})\right\rangle \omega=\left\langle \mathbf{a},\mathbf{b}\times\mathbf{c}\right\rangle \omega=\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)\omega.\]
Therefore we may write\[
\left(\mathbf{a},\mathbf{b,}\mathbf{c}\right)=\frac{\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}}{\omega}.\]


In the index notation, the triple product is written as\[
\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)\equiv\varepsilon_{jkl}a^{j}b^{k}c^{l}.\]
Here the symbol $\varepsilon_{jkl}$ (the \textbf{Levi-Civita symbol}\index{Levi-Civita symbol})
is by definition $\varepsilon_{123}=1$ and $\varepsilon_{ijk}=-\varepsilon_{jik}=-\varepsilon_{ikj}$.
This antisymmetric array of numbers, $\varepsilon_{ijk}$, can be
also thought of as the index representation of the unit volume tensor
$\omega=\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}$ because\[
\omega=\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}=\frac{1}{3!}\sum_{i,j,k=1}^{3}\varepsilon_{ijk}\mathbf{e}_{i}\wedge\mathbf{e}_{j}\wedge\mathbf{e}_{k}.\]



\paragraph{Remark: Geometric interpretation. }

The Hodge star is useful in conjunction with the interpretation of
bivectors as oriented areas. If a bivector $\mathbf{a}\wedge\mathbf{b}$
represents the oriented area of a parallelogram spanned by the vectors
$\mathbf{a}$ and $\mathbf{b}$, then $*(\mathbf{a}\wedge\mathbf{b})$
is the vector $\mathbf{a}\times\mathbf{b}$, i.e.~the vector orthogonal
to the plane of the parallelogram whose length is numerically equal
to the area of the parallelogram. Conversely, if $\mathbf{n}$ is
a vector then $*(\mathbf{n})$ is a bivector that may represent some
parallelogram orthogonal to $\mathbf{n}$ with the appropriate area. 

Another geometric example is the computation of the intersection of
two planes: If $\mathbf{a}\wedge\mathbf{b}$ and $\mathbf{c}\wedge\mathbf{d}$
represent two parallelograms in space then \[
*\big([*(\mathbf{a}\wedge\mathbf{b})]\wedge[*(\mathbf{c}\wedge\mathbf{d})]\big)=(\mathbf{a}\times\mathbf{b})\times(\mathbf{c}\times\mathbf{d})\]
is a vector parallel to the line of intersection of the two planes
containing the two parallelograms. While in three dimensions the Hodge
star yields the same results as the cross product, the advantage of
the Hodge star is that it is defined in any dimensions, as the next
section shows.\hfill{}$\blacksquare$


\subsection{Hodge star and Levi-Civita symbol in $N$ dimensions}

We would like to generalize our results to an $N$-dimen\-sion\-al
space. We begin by defining the unit volume tensor\index{unit volume tensor}
$\omega=\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$, where $\left\{ \mathbf{e}_{j}\right\} $
is a positively oriented orthonormal basis. As we have seen, the tensor
$\omega$ is independent of the choice of the orthonormal basis $\left\{ \mathbf{e}_{j}\right\} $
and depends only on the scalar product and on the choice of the orientation
of space. (Alternatively, the choice of $\omega$ rather than $-\omega$
as the unit volume tensor defines the fact that the basis $\left\{ \mathbf{e}_{j}\right\} $
is positively oriented.) Below we will always assume that the orthonormal
basis $\left\{ \mathbf{e}_{j}\right\} $ is chosen to be positively
oriented.

The \textbf{Hodge star} is now defined as a linear map $V\rightarrow\wedge^{N-1}V$
through its action on the basis vectors,\[
*(\mathbf{e}_{j})\equiv(-1)^{j-1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{j-1}\wedge\mathbf{e}_{j+1}\wedge...\wedge\mathbf{e}_{N},\]
where we write the exterior product of all the basis vectors except
$\mathbf{e}_{j}$. To check the sign, we note the identity\[
\mathbf{e}_{j}\wedge*(\mathbf{e}_{j})=\omega,\quad1\leq j\leq N.\]



\paragraph{Remark:}

The Hodge star map depends on the scalar product and on the choice
of the orientation of the space $V$, i.e.~on the choice of the \emph{sign}
in the basis tensor $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$,
but not on the choice of the vectors $\left\{ \mathbf{e}_{j}\right\} $
in a positively oriented orthonormal basis. This is in contrast with
the {}``complement'' operation defined in Sec.~\ref{sub:Computing-the-dual},
where the scalar product was not available: the {}``complement''
operation depends on the choice of \emph{every} vector in the basis.
The {}``complement'' operation is equivalent to the Hodge star only
if we use an orthonormal basis. 

Alternatively, given some basis $\left\{ \mathbf{v}_{j}\right\} $,
we may temporarily introduce a new scalar product such that $\left\{ \mathbf{v}_{j}\right\} $
is orthonormal. The {}``complement'' operation\index{Grassmann's complement}
is then the same as the Hodge star defined with respect to the new
scalar product. The {}``complement'' operation was introduced by
H. Grassmann (1844) long before the now standard definitions of vector
space and scalar product were developed.\hfill{}$\blacksquare$

The Hodge star\index{Hodge star!general definition} can be also defined
more generally as a map of $\wedge^{k}V$ to $\wedge^{N-k}V$. The
construction of the Hodge star map is as follows. We require that
it be a linear map. So it suffices to define the Hodge star on single-term
products of the form $\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k}$.
The vectors $\left\{ \mathbf{a}_{i}\,|\, i=1,...,k\right\} $ define
a subspace of $V$, which we temporarily denote by $U\equiv\text{Span}\left\{ \mathbf{a}_{i}\right\} $.
Through the scalar product, we can construct the orthogonal complement
subspace $U^{\perp}$; this subspace consists of all vectors that
are orthogonal to every $\mathbf{a}_{i}$. Thus, $U$ is an $\left(N-k\right)$-dimen\-sion\-al
subspace of $V$. We can find a basis $\left\{ \mathbf{b}_{i}\,|\, i=k+1,...,N\right\} $
in $U^{\perp}$ such that \begin{equation}
\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k}\wedge\mathbf{b}_{k+1}\wedge...\wedge\mathbf{b}_{N}=\omega.\label{eq:hodge star def}\end{equation}
Then we define \[
*(\mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k})\equiv\mathbf{b}_{k+1}\wedge...\wedge\mathbf{b}_{N}\in\wedge^{N-k}V.\]



\paragraph{Examples:}

\begin{align*}
*(\mathbf{e}_{1}\wedge\mathbf{e}_{3}) & =-\mathbf{e}_{2}\wedge\mathbf{e}_{4}\wedge...\wedge\mathbf{e}_{N};\\
*(1) & =\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N};\quad*(\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N})=1.\end{align*}
The fact that we denote different maps by the same star symbol will
not cause confusion because in each case we will write the tensor
to which the Hodge star is applied.\hfill{}$\blacksquare$

Even though (by definition) $\mathbf{e}_{j}\wedge*(\mathbf{e}_{j})=\omega$
for the basis vectors $\mathbf{e}_{j}$, it is \emph{not} true that
$\mathbf{x}\wedge*(\mathbf{x})=\omega$ for any $\mathbf{x}\in V$.


\paragraph{Exercise 1:}

Show that $\mathbf{x}\wedge(*\mathbf{x})=\left\langle \mathbf{x},\mathbf{x}\right\rangle \omega$
for any $\mathbf{x}\in V$. Then set $\mathbf{x}=\mathbf{a}+\mathbf{b}$
and show (using $*\omega=1$) that \[
\left\langle \mathbf{a},\mathbf{b}\right\rangle =*(\mathbf{a}\wedge*\mathbf{b})=*(\mathbf{b}\wedge*\mathbf{a}),\quad\forall\mathbf{a},\mathbf{b}\in V.\]



\paragraph{Statement:}

The Hodge star map $*:\wedge^{k}V\rightarrow\wedge^{N-k}V$, as defined
above, is independent of the choice of the basis in $U^{\perp}$.


\subparagraph{Proof:}

A different choice of basis in $U^{\perp}$, say $\left\{ \mathbf{b}_{i}^{\prime}\right\} $
instead of $\left\{ \mathbf{b}_{i}\right\} $, will yield a tensor
$\mathbf{b}_{k+1}^{\prime}\wedge...\wedge\mathbf{b}_{N}^{\prime}$
that is proportional to $\mathbf{b}_{k+1}\wedge...\wedge\mathbf{b}_{N}$.
The coefficient of proportionality is fixed by Eq.~(\ref{eq:hodge star def}).
Therefore, no ambiguity remains.\hfill{}$\blacksquare$

The insertion map\index{insertion map} $\iota_{\mathbf{a}^{*}}$
was defined in Sec.~\ref{sub:Linear-maps-between-spaces} for covectors
$\mathbf{a}^{*}$. Due to the correspondence between vectors and covectors,
we may now use the insertion map with vectors. Namely, we define \[
\iota_{\mathbf{x}}\psi\equiv\iota_{\mathbf{x}^{*}}\psi,\]
where the covector $\mathbf{x}^{*}$ is defined by \[
\mathbf{x}^{*}(\mathbf{v})\equiv\left\langle \mathbf{x},\mathbf{v}\right\rangle ,\quad\forall\mathbf{v}\in V.\]
For example, we then have\[
\iota_{\mathbf{x}}(\mathbf{a}\wedge\mathbf{b})=\left\langle \mathbf{x},\mathbf{a}\right\rangle \mathbf{b}-\left\langle \mathbf{x},\mathbf{b}\right\rangle \mathbf{a}.\]



\paragraph{Exercise 2:}

Show that $*(\mathbf{e}_{i})=\iota_{\mathbf{e}_{i}}\omega$ for basis
vectors $\mathbf{e}_{i}$. Deduce that $*\mathbf{x}=\iota_{\mathbf{x}}\omega$
for any $\mathbf{x}\in V$. 


\paragraph{Exercise 3:}

Show that\[
*\mathbf{x}=\sum_{i=1}^{N}\left\langle \mathbf{x},\mathbf{e}_{i}\right\rangle \iota_{\mathbf{e}_{i}}\omega=\sum_{i=1}^{N}(\iota_{\mathbf{e}_{i}}\mathbf{x})(\iota_{\mathbf{e}_{i}}\omega).\]
Here $\iota_{\mathbf{a}}\mathbf{b}\equiv\left\langle \mathbf{a},\mathbf{b}\right\rangle $.\hfill{}$\blacksquare$

In the previous section, we saw that $**\mathbf{e}_{1}=\mathbf{e}_{1}$
(in three dimensions). The following exercise shows what happens in
$N$ dimensions: we may get a minus sign.


\paragraph{Exercise 4:}

a) Given a vector $\mathbf{x}\in V$, define $\psi\in\wedge^{N-1}V$
as $\psi\equiv*\mathbf{x}$. Then show that \[
*\psi\equiv*(*\mathbf{x})=(-1)^{N-1}\mathbf{x}.\]


b) Show that $**=(-1)^{k(N-k)}\hat{1}$ when applied to the space
$\wedge^{k}V$ or $\wedge^{N-k}V$.

\emph{Hint}: Since $*$ is a linear map, it is sufficient to consider
its action on a basis vector, say $\mathbf{e}_{1}$, or a basis tensor
$\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k}\in\wedge^{k}V$, where
$\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal basis.


\paragraph{Exercise 5:}

Suppose that $\mathbf{a}_{1}$, ..., $\mathbf{a}_{k}$, $\mathbf{x}\in V$
are such that $\left\langle \mathbf{x},\mathbf{a}_{i}\right\rangle =0$
for all $i=1,...,k$ while $\left\langle \mathbf{x},\mathbf{x}\right\rangle =1$.
The $k$-vector $\psi\in\wedge^{k}V$ is then defined as a function
of $t$ by\[
\psi(t)\equiv\left(\mathbf{a}_{1}+t\mathbf{x}\right)\wedge...\wedge\left(\mathbf{a}_{k}+t\mathbf{x}\right).\]
 Show that $t\partial_{t}\psi=\mathbf{x}\wedge\iota_{\mathbf{x}}\psi$.


\paragraph{Exercise 6:}

For $\mathbf{x}\in V$ and $\psi\in\wedge^{k}V$ ($1\leq k\leq N$),
the tensor $\iota_{\mathbf{x}}\psi\in\wedge^{k-1}V$ is called the
\textbf{interior product}\index{interior product} of $\mathbf{x}$
and $\psi$. Show that\[
\iota_{\mathbf{x}}\psi=*(\mathbf{x}\wedge*\psi).\]
(Note however that $\psi\wedge*\mathbf{x}=0$ for $k\geq2$.)


\paragraph{Exercise 7:}

a) Suppose $\mathbf{x}\in V$ and $\psi\in\wedge^{k}V$ are such that
$\mathbf{x}\wedge\psi=0$ while $\left\langle \mathbf{x},\mathbf{x}\right\rangle =1$.
Show that\[
\psi=\mathbf{x}\wedge\iota_{\mathbf{x}}\psi.\]
\emph{Hint}: Use Exercise 2 in Sec.~\ref{sub:Properties-of-the-ext-powers}
with a suitable $\mathbf{f}^{*}$. 

b) For any $\psi\in\wedge^{k}V$, show that \[
\psi=\frac{1}{k}\sum_{j=1}^{N}\mathbf{e}_{j}\wedge\iota_{\mathbf{e}_{j}}\psi,\]
where $\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal basis.

\emph{Hint}: It suffices to consider $\psi=\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}$.\hfill{}$\blacksquare$

The Levi-Civita symbol\index{Levi-Civita symbol} $\varepsilon_{i_{1}...i_{N}}$
is defined in an $N$-dimen\-sion\-al space as the coordinate representation
of the unit volume tensor $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\in\wedge^{N}V$
(see also Sections~\ref{sub:Exterior-product-in-index} and \ref{sub:Index-notation-for-determinants}).
When a scalar product is fixed, the tensor $\omega$ is unique up
to a sign; if we assume that $\omega$ corresponds to a positively
oriented basis, the Levi-Civita symbol is the index representation
of $\omega$ in \emph{any} positively oriented orthonormal basis.
It is  instructive to see how one writes the Hodge star in the index
notation using the Levi-Civita symbol. (I will write the summations
explicitly here, but keep in mind that in the physics literature the
summations are implicit.) 

Given an orthonormal basis $\left\{ \mathbf{e}_{j}\right\} $, the
natural basis in $\wedge^{k}V$ is the set of tensors $\left\{ \mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}\right\} $
where all indices $i_{1},...,i_{k}$ are different (or else the exterior
product vanishes). Therefore, an arbitrary tensor $\psi\in\wedge^{k}V$
can be expanded in this basis as\[
\psi=\frac{1}{k!}\sum_{i_{1},...,i_{k}=1}^{N}A^{i_{1}...i_{k}}\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}},\]
where $A^{i_{1}...i_{k}}$ are some scalar coefficients. I have included
the prefactor $1/k!$ in order to cancel the combinatorial factor
$k!$ that appears due to the summation over all the indices $i_{1},...,i_{k}$. 

Let us write the tensor $\psi\equiv*(\mathbf{e}_{1})$ in this way.
The corresponding coefficients $A^{i_{1}...i_{N-1}}$ are zero unless
the set of indices $(i_{1},...,i_{N-1})$ is a permutation of the
set $(2,3,...,N)$. This statement can be written more concisely as\[
(*\mathbf{e}_{1})^{i_{1}...i_{N-1}}\equiv A^{i_{1}...i_{N-1}}=\varepsilon^{1i_{1}...i_{N-1}}.\]
Generalizing to an arbitrary vector $\mathbf{x}=\sum_{j=1}^{N}x_{j}\mathbf{e}_{j}$,
we find\[
(*\mathbf{x})^{i_{1}...i_{N-1}}\equiv\sum_{j=1}^{N}x^{j}(*\mathbf{e}_{j})^{i_{1}...i_{N-1}}=\sum_{i,j=1}^{N}x^{j}\delta_{ji}\varepsilon^{ii_{1}...i_{N-1}}.\]



\paragraph{Remark:}

The extra Kronecker symbol above is introduced for consistency of
the notation (summing only over a pair of opposite indices). However,
this Kronecker symbol can be interpreted as the coordinate representation
of the scalar product in the orthonormal basis. This formula then
shows how to write the Hodge star in another basis: replace $\delta_{ji}$
with the matrix representation of the scalar product.\hfill{}$\blacksquare$

Similarly, we can write the Hodge star of an arbitrary $k$-vector
in the index notation through the $\varepsilon$ symbol. For example,
in a four-dimen\-sion\-al space one maps a 2-vector $\sum_{i,j}A^{ij}\mathbf{e}_{i}\wedge\mathbf{e}_{j}$
into\[
*\big(\sum_{i,j}A^{ij}\mathbf{e}_{i}\wedge\mathbf{e}_{j}\big)=\sum_{k,l}B^{kl}\mathbf{e}_{k}\wedge\mathbf{e}_{l},\]
where \[
B^{kl}\equiv\frac{1}{2!}\sum_{i,j,m,n}\delta^{km}\delta^{ln}\varepsilon_{ijmn}A^{ij}.\]
A vector $\mathbf{v}=\sum_{i}v^{i}\mathbf{e}_{i}$ is mapped into\[
*(\mathbf{v})=*\big(\sum_{i}v^{i}\mathbf{e}_{i}\big)=\frac{1}{3!}\sum_{i,j,k,l}\varepsilon_{ijkl}v^{i}\mathbf{e}_{j}\wedge\mathbf{e}_{k}\wedge\mathbf{e}_{l}.\]
Note the combinatorial factors $2!$ and $3!$ appearing in these
formulas, according to the number of indices in $\varepsilon$ that
are being summed over.


\subsection{Reciprocal basis\label{sub:Reciprocal-basis}}

Suppose $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ is a
basis in $V$, not necessarily orthonormal. For any $\mathbf{x}\in V$,
we can compute the components of $\mathbf{x}$ in the basis $\left\{ \mathbf{v}_{j}\right\} $
by first computing the dual basis, $\left\{ \mathbf{v}_{j}^{*}\right\} $,
as in Sec.~\ref{sub:Computing-the-dual}, and then writing\[
\mathbf{x}=\sum_{i=1}^{N}x_{i}\mathbf{v}_{i},\quad x_{i}\equiv\mathbf{v}_{i}^{*}(\mathbf{x}).\]
The scalar product in $V$ provides a vector-covector correspondence.
Hence, each $\mathbf{v}_{i}^{*}$ has a corresponding vector; let
us denote that vector temporarily by $\mathbf{u}_{i}$. We then obtain
a set of $N$ vectors, $\{\mathbf{u}_{1},...,\mathbf{u}_{N}\}$. By
definition of the vector-covector correspondence, the vector $\mathbf{u}_{i}$
is such that\[
\left\langle \mathbf{u}_{i},\mathbf{x}\right\rangle =\mathbf{v}_{i}^{*}(\mathbf{x})\equiv x_{i},\quad\forall\mathbf{x}\in V.\]
We will now show that the set $\{\mathbf{u}_{1},...,\mathbf{u}_{N}\}$
is a basis in $V$. It is called the \textbf{reciprocal basis}\index{reciprocal basis}
for the basis $\left\{ \mathbf{v}_{j}\right\} $. The reciprocal basis
is useful, in particular, because the components of a vector $\mathbf{x}$
in the basis $\left\{ \mathbf{v}_{j}\right\} $ are computed conveniently
through scalar products with the vectors $\left\{ \mathbf{u}_{j}\right\} $,
as shown by the formula above.


\paragraph{Statement 1:}

The set $\{\mathbf{u}_{1},...,\mathbf{u}_{N}\}$ is a basis in $V$. 


\subparagraph{Proof:}

We first note that\[
\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle \equiv\mathbf{v}_{i}^{*}(\mathbf{v}_{j})=\delta_{ij}.\]


We need to show that the set $\{\mathbf{u}_{1},...,\mathbf{u}_{N}\}$
is linearly independent. Suppose a vanishing linear combination exists,\[
\sum_{i=1}^{N}\lambda_{i}\mathbf{u}_{i}=0,\]
and take its scalar product with the vector $\mathbf{v}_{1}$,\[
0=\big\langle\mathbf{v}_{1},\sum_{i=1}^{N}\lambda_{i}\mathbf{u}_{i}\big\rangle=\sum_{i=1}^{N}\lambda_{i}\delta_{1i}=\lambda_{1}.\]
In the same way we show that all $\lambda_{i}$ are zero. A linearly
independent set of $N$ vectors in an $N$-dimen\-sion\-al space
is always a basis, hence $\left\{ \mathbf{u}_{j}\right\} $ is a basis.\hfill{}$\blacksquare$


\paragraph{Exercise 1:}

Show that computing the reciprocal basis to an \emph{orthonormal}
basis $\left\{ \mathbf{e}_{j}\right\} $ gives again the same basis
$\left\{ \mathbf{e}_{j}\right\} $.\hfill{}$\blacksquare$

The following statement shows that, in some sense, the reciprocal
basis is the {}``inverse'' of the basis $\left\{ \mathbf{v}_{j}\right\} $.


\paragraph{Statement 2:}

The oriented volume of the parallelepiped spanned by $\left\{ \mathbf{u}_{j}\right\} $
is the inverse of that spanned by $\left\{ \mathbf{v}_{j}\right\} $.


\subparagraph{Proof:}

The volume of the parallelepiped spanned by $\left\{ \mathbf{u}_{j}\right\} $
is found as\[
\text{Vol}\left\{ \mathbf{u}_{j}\right\} =\frac{\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}},\]
where $\left\{ \mathbf{e}_{j}\right\} $ is a positively oriented
orthonormal basis. Let us introduce an auxiliary transformation $\hat{M}$
that maps $\left\{ \mathbf{e}_{j}\right\} $ into $\left\{ \mathbf{v}_{j}\right\} $;
such a transformation surely exists and is invertible. Since $\hat{M}\mathbf{e}_{j}=\mathbf{v}_{j}$
($j=1,...,N$), we have\[
\det\hat{M}=\frac{\hat{M}\mathbf{e}_{1}\wedge...\wedge\hat{M}\mathbf{e}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\text{Vol}\left\{ \mathbf{v}_{j}\right\} .\]
Consider the transposed operator $\hat{M}^{T}$ (the transposition
is performed using the scalar product, see Definition~1 in Sec.~\ref{sub:examples-Orthogonal-transformations}).
We can now show that $\hat{M}^{T}$ maps the dual basis $\left\{ \mathbf{u}_{j}\right\} $
into $\left\{ \mathbf{e}_{j}\right\} $. To show this, we consider
the scalar products \[
\langle\mathbf{e}_{i},\hat{M}^{T}\mathbf{u}_{j}\rangle=\langle\hat{M}\mathbf{e}_{i},\mathbf{u}_{j}\rangle=\left\langle \mathbf{v}_{i},\mathbf{u}_{j}\right\rangle =\delta_{ij}.\]
Since the above is true for any $i,j=1,...,N$, it follows that $\hat{M}^{T}\mathbf{u}_{j}=\mathbf{e}_{j}$
as desired. 

Since $\det\hat{M}^{T}=\det\hat{M}$, we have \[
\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\hat{M}^{T}\mathbf{u}_{1}\wedge...\wedge\hat{M}^{T}\mathbf{u}_{N}=(\det\hat{M})\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}.\]
It follows that \[
\text{Vol}\left\{ \mathbf{u}_{j}\right\} =\frac{\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\frac{1}{\det\hat{M}}=\frac{1}{\text{Vol}\left\{ \mathbf{v}_{j}\right\} }.\]
\hfill{}$\blacksquare$

The vectors of the reciprocal basis can be also computed using the
Hodge star, as follows.


\paragraph{Exercise~2:}

Suppose that $\left\{ \mathbf{v}_{j}\right\} $ is a basis (not necessarily
orthonormal) and $\left\{ \mathbf{u}_{j}\right\} $ is its reciprocal
basis. Show that \[
\mathbf{u}_{1}=*(\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N})\frac{\omega}{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}},\]
where $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$,
$\left\{ \mathbf{e}_{j}\right\} $ is a positively oriented orthonormal
basis, and we use the Hodge star as a map from $\wedge^{N-1}V$ to
$V$.

\emph{Hint}: Use the formula for the dual basis (Sec.~\ref{sub:Computing-the-dual}),\[
\mathbf{v}_{1}^{*}(\mathbf{x})=\frac{\mathbf{x}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}},\]
 and the property\[
\left\langle \mathbf{x},\mathbf{u}\right\rangle \omega=\mathbf{x}\wedge*\mathbf{u}.\]



\section{Scalar product in $\wedge^{k}V$}

In this section we will apply the techniques developed until now to
the problem of computing $k$-dimensional volumes. 

If a scalar product is given in $V$, one can naturally define a scalar
product also in each of the spaces $\wedge^{k}V$ ($k=2,...,N$).
We will show that this scalar product allows one to compute the ordinary
(number-valued) volumes represented by tensors from $\wedge^{k}V$.
This is fully analogous to computing the lengths of vectors through
the scalar product in $V$. A vector $\mathbf{v}$ in a Euclidean
space represents at once the orientation and the length of a straight
line segment between two points; the length is found as $\sqrt{\left\langle \mathbf{v},\mathbf{v}\right\rangle }$
using the scalar product in $V$. Similarly, a tensor $\psi=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$
represents at once the orientation and the volume of a parallelepiped
spanned by the vectors $\left\{ \mathbf{v}_{j}\right\} $; the unoriented
volume of the parallelepiped will be found as $\sqrt{\left\langle \psi,\psi\right\rangle }$
using the scalar product in $\wedge^{k}V$.

We begin by considering the space $\wedge^{N}V$.


\subsection{Scalar product in $\wedge^{N}V$\label{sub:Scalar-product-in-lambdaNv}}

Suppose $\left\{ \mathbf{u}_{j}\right\} $ and $\left\{ \mathbf{v}_{j}\right\} $
are two bases in $V$, not necessarily orthonormal, and consider the
pairwise scalar products\[
G_{jk}\equiv\left\langle \mathbf{u}_{j},\mathbf{v}_{k}\right\rangle ,\quad j,k=1,...,N.\]
The coefficients $G_{jk}$ can be arranged into a square-shaped table,
i.e.~into a \textbf{matrix}. The determinant of this matrix, $\det(G_{jk})$,
can be computed using Eq.~(\ref{eq:detA bad}). Now consider two
tensors $\omega_{1},\omega_{2}\in\wedge^{N}V$ defined as \[
\omega_{1}\equiv\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N},\quad\omega_{2}\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}.\]
 Then $\det(G_{jk})$, understood as a \emph{function} of the tensors
$\omega_{1}$ and $\omega_{2}$, is bilinear and symmetric, and thus
can be interpreted as the \textbf{scalar product} of $\omega_{1}$
and $\omega_{2}$. After some work proving the necessary properties,
we obtain a scalar product in the space $\wedge^{N}V$, given a scalar
product in $V$. 


\paragraph{Exercise 1:}

We try to define the scalar product\index{scalar product in wedge^{N}V@scalar product in $\wedge^{N}V$}
in the space $\wedge^{N}V$ as follows: Given a scalar product $\left\langle \cdot,\cdot\right\rangle $
in $V$ and given two tensors $\omega_{1},\omega_{2}\in\wedge^{N}V$,
we first represent these tensors \emph{in} \emph{some} \emph{way}
as products\[
\omega_{1}\equiv\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N},\quad\omega_{2}\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N},\]
where $\left\{ \mathbf{u}_{i}\right\} $ and $\left\{ \mathbf{v}_{i}\right\} $
are \emph{some} suitable sets of vectors, then consider the matrix
of pairwise scalar products $\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle $,
and finally define the scalar product $\left\langle \omega_{1},\omega_{2}\right\rangle $
as the determinant of that matrix: \[
\left\langle \omega_{1},\omega_{2}\right\rangle \equiv\det\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle .\]
Prove that this definition really yields a symmetric bilinear form
in $\wedge^{N}V$, independently of the particular representation
of $\omega_{1},\omega_{2}$ through vectors.

\emph{Hint}: The known properties of the determinant show that $\left\langle \omega_{1},\omega_{2}\right\rangle $
is an antisymmetric and multilinear function of every $\mathbf{u}_{i}$
and $\mathbf{v}_{j}$. A linear transformation of the vectors $\left\{ \mathbf{u}_{i}\right\} $
that leaves $\omega_{1}$ constant will also leave $\left\langle \omega_{1},\omega_{2}\right\rangle $
constant. Therefore, it can be considered as a linear function of
the tensors $\omega_{1}$ and $\omega_{2}$. Symmetry follows from
$\det(G_{ij})=\det(G_{ji})$.


\paragraph{Exercise 2:}

Given an orthonormal basis $\left\{ \mathbf{e}_{j}\,|\, j=1,...,N\right\} $,
let us consider the unit volume tensor $\omega\equiv\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\in\wedge^{N}V$.

a) Show that $\left\langle \omega,\omega\right\rangle =1$, where
the scalar product in $\wedge^{N}V$ is chosen according to the definition
in Exercise~1. 

b) Given a linear operator $\hat{A}$, show that $\det\hat{A}=\langle\omega,\wedge^{N}\hat{A}^{N}\omega\rangle$.


\paragraph{Exercise 3:}

For any $\phi,\psi\in\wedge^{N}V$, show that\[
\left\langle \phi,\psi\right\rangle =\frac{\phi}{\omega}\,\frac{\psi}{\omega},\]
where $\omega$ is the unit volume tensor. Deduce that $\left\langle \phi,\psi\right\rangle $
is a positive-definite bilinear form.


\paragraph{Statement:}

The volume of a parallelepiped spanned by vectors $\mathbf{v}_{1}$,
..., $\mathbf{v}_{N}$ is equal to $\sqrt{\det(G_{ij})}$, where $G_{ij}\equiv\left\langle \mathbf{v}_{i},\mathbf{v}_{j}\right\rangle $
is the matrix of the pairwise scalar products.


\subparagraph{Proof:}

If $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}\neq0$, the set of
vectors $\left\{ \mathbf{v}_{j}\,|\, j=1,...,N\right\} $ is a basis
in $V$. Let us also choose some orthonormal basis $\left\{ \mathbf{e}_{j}\,|\, j=1,...,N\right\} $.
There exists a linear transformation $\hat{A}$ that maps the basis
$\left\{ \mathbf{e}_{j}\right\} $ into the basis $\left\{ \mathbf{v}_{j}\right\} $.
Then we have $\hat{A}\mathbf{e}_{j}=\mathbf{v}_{j}$ and hence\[
G_{ij}=\left\langle \mathbf{v}_{i},\mathbf{v}_{j}\right\rangle =\langle\hat{A}\mathbf{e}_{i},\hat{A}\mathbf{e}_{j}\rangle=\langle\hat{A}^{T}\hat{A}\mathbf{e}_{i},\mathbf{e}_{j}\rangle.\]
It follows that the matrix $G_{ij}$ is equal to the matrix representation
of the operator $\hat{A}^{T}\hat{A}$ in the basis $\left\{ \mathbf{e}_{j}\right\} $.
Therefore,\[
\det(G_{ij})=\det(\hat{A}^{T}\hat{A})=(\det\hat{A})^{2}.\]
Finally, we note that the volume $v$ of the parallelepiped spanned
by $\left\{ \mathbf{v}_{j}\right\} $ is the coefficient in the tensor
equality \[
v\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}=(\det\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}.\]
 Hence $v^{2}=(\det\hat{A})^{2}=\det(G_{ij})$.\hfill{}$\blacksquare$

We have found that the (unoriented, i.e.~number-valued) $N$-dimensional
volume of a parallelepiped spanned by a set of $N$ vectors $\left\{ \mathbf{v}_{j}\right\} $
is expressed as $v=\sqrt{\left\langle \psi,\psi\right\rangle }$,
where $\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}$ is
the tensor representing the oriented volume of the parallelepiped,
and $\left\langle \psi,\psi\right\rangle $ is the scalar product
in the space $\wedge^{N}V$. The expression $\left|\psi\right|\equiv\sqrt{\left\langle \psi,\psi\right\rangle }$
is naturally interpreted as the {}``length'' of the tensor $\psi$.
In this way, we obtain a geometric interpretation of tensors $\psi\in\wedge^{N}V$
as oriented volumes of parallelepipeds: The tensor $\psi$ represents
at once the orientation of the parallelepiped and the magnitude of
the volume.


\subsection{Volumes of $k$-dimensional parallelepipeds\label{sub:Volumes-of-k-dimensional}}

In a similar way we treat $k$-dimensional volumes. 

We begin by defining a scalar product in the spaces $\wedge^{k}V$
for $2\leq k\leq N$.\index{scalar product in wedge^{k}V@scalar product in $\wedge^{k}V$}
Let us choose an orthonormal basis $\left\{ \mathbf{e}_{j}\right\} $
in $V$ and consider the set of ${N \choose k}$ tensors \[
\omega_{i_{1}...i_{k}}\equiv\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}\in\wedge^{k}V.\]
Since the set of these tensors (for all admissible sets of indices)
is a basis in $\wedge^{k}V$, it is sufficient to define the scalar
product of any two tensors $\omega_{i_{1}...i_{k}}$. It is natural
to define the scalar product such that $\omega_{i_{1}...i_{k}}$ are
\emph{orthonormal}: \begin{align*}
\left\langle \omega_{i_{1}...i_{k}},\:\omega_{i_{1}...i_{k}}\right\rangle  & =1,\\
\left\langle \omega_{i_{1}...i_{k}},\:\omega_{j_{1}...j_{k}}\right\rangle  & =0\quad\text{if}\quad\omega_{i_{1}...i_{k}}\neq\pm\omega_{j_{1}...j_{k}}.\end{align*}
 For any two tensors $\psi_{1},\psi_{2}\in\wedge^{k}V$, we then define
$\left\langle \psi_{1},\psi_{2}\right\rangle $ by expressing $\psi_{1},\psi_{2}$
through the basis tensors $\omega_{i_{1}...i_{k}}$ and requiring
the bilinearity of the scalar product.

In the following exercise, we derive an explicit formula for the scalar
product $\left\langle \psi_{1},\psi_{2}\right\rangle $ through scalar
products of the constituent vectors.


\paragraph{Exercise 1:}

Use the definition above to prove that \begin{equation}
\left\langle \mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k},\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\right\rangle =\det\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle .\label{eq:scalar product lkv}\end{equation}
\emph{Hint}s: The right side of Eq.~(\ref{eq:scalar product lkv})
is a totally antisymmetric, linear function of every $\mathbf{u}_{i}$
due to the known properties of the determinant. Also, the function
is invariant under the interchange of $\mathbf{u}_{j}$ with $\mathbf{v}_{j}$.
The left side of Eq.~(\ref{eq:scalar product lkv}) has the same
symmetry and linearity properties. Therefore, it is sufficient to
verify Eq.~(\ref{eq:scalar product lkv}) when vectors $\mathbf{u}_{i}$
and $\mathbf{v}_{j}$ are chosen from the set of orthonormal basis
vectors $\left\{ \mathbf{e}_{j}\right\} $. Then $\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}$
and $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$ are among the basis
tensors $\omega_{i_{1}...i_{k}}$. Show that the matrix $\left\langle \mathbf{u}_{i},\mathbf{v}_{j}\right\rangle $
has at least one row or one column of zeros unless the sets $\left\{ \mathbf{u}_{i}\right\} $
and $\left\{ \mathbf{v}_{j}\right\} $ \emph{coincide} as unordered
sets of vectors, i.e.~unless\[
\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{k}=\pm\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}.\]
If the above does not hold, both sides of Eq.~(\ref{eq:scalar product lkv})
are zero. It remains to verify that both sides of Eq.~(\ref{eq:scalar product lkv})
are equal to 1 when we choose identical vectors $\mathbf{u}_{i}=\mathbf{v}_{i}$
from the orthonormal basis, for instance if $\mathbf{u}_{j}=\mathbf{v}_{j}=\mathbf{e}_{j}$
for $j=1,...,k$.\hfill{}$\blacksquare$

We now come back to the problem of computing the volume of a $k$-dimen\-sion\-al
parallelepiped spanned by vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
in an $n$-dimen\-sion\-al Euclidean space $\mathbb{R}^{n}$. In
Sec.~\ref{sub:Area-of-two-dimensional-parallelograms} we considered
a parallelogram (i.e.~we had $k=2$), and we projected the parallelogram
onto the ${N \choose 2}$ coordinate planes to define a {}``vector-valued''
area. We now generalize that construction to $k$-dimensional parallelepipeds.
We project the given parallelepiped onto each of the $k$-dimen\-sion\-al
coordinate hyperplanes in the space, which are the subspaces $\text{Span}\left\{ \mathbf{e}_{i_{1}},...,\mathbf{e}_{i_{k}}\right\} $
(with $1\leq i_{1}<...<i_{k}\leq n$). There will be ${N \choose k}$
such coordinate hyperplanes and, accordingly, we may determine the
${N \choose k}$ oriented $k$-dimen\-sion\-al volumes of these
projections. It is natural to view these numbers as the components
of the \emph{oriented volume} of the $k$-dimen\-sion\-al parallelepiped
in some basis in the ${N \choose k}$-dimen\-sion\-al {}``space
of oriented volumes.'' As we have shown before, oriented volumes
are antisymmetric in the vectors $\mathbf{v}_{j}$. The space of all
antisymmetric combinations of $k$ vectors is, in our present notation,
$\wedge^{k}V$. Thus the oriented volume of the $k$-dimen\-sion\-al
parallelepiped is represented by the tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\in\wedge^{k}V$.
The unoriented volume is computed as the {}``length'' of the oriented
volume, defined via the scalar product in $\wedge^{k}V$.


\paragraph{Statement:}

The unoriented $k$-dimen\-sion\-al volume $v$ of a parallelepiped
span\-ned by $k$ vectors $\{\mathbf{v}_{1},...,\mathbf{v}_{k}\}$
is equal to $\sqrt{\left\langle \psi,\psi\right\rangle }$, where
$\psi\equiv\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$ and $\left\langle \psi,\psi\right\rangle $
is the scalar product defined above.


\subparagraph{Proof:}

Consider the orthogonal projection of the given $k$-dimen\-sion\-al
parallelepiped onto some $k$-dimensional coordinate hyperplane, e.g.~onto
the hyperplane $\text{Span}\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $.
Each vector $\mathbf{v}_{i}$ is projected orthogonally, i.e.~by
omitting the components of $\mathbf{v}_{i}$ at $\mathbf{e}_{k+1}$,
..., $\mathbf{e}_{N}$. Let us denote the projected vectors by $\tilde{\mathbf{v}}_{i}$
($i=1,...,k$). The projection is a $k$-dimensional parallelepiped
spanned by $\left\{ \tilde{\mathbf{v}}_{i}\right\} $ in the coordinate
hyperplane. Let us now restrict attention to the subspace $\text{Span}\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $.
In this subspace, the oriented $k$-dimensional volume of the projected
parallelepiped is represented by the tensor $\tilde{\psi}\equiv\tilde{\mathbf{v}}_{1}\wedge...\wedge\tilde{\mathbf{v}}_{k}$.
By construction, $\tilde{\psi}$ is proportional to the unit volume
tensor in the subspace, $\tilde{\psi}=\lambda\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k}$
for some $\lambda$. Therefore, the oriented $k$-dimen\-sion\-al
volume of the projected parallelepiped is equal to $\lambda$.

Let us now decompose the tensor $\psi$ into the basis tensors in
$\wedge^{k}V$,\begin{align*}
\psi & =\sum_{1\leq i_{1}<...<i_{k}\leq N}c_{i_{1}...i_{k}}\omega_{i_{1}...i_{k}}\\
 & =c_{1...k}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k}+c_{13...(k+1)}\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge...\wedge\mathbf{e}_{k+1}+...,\end{align*}
where we have only written down the first two of the ${N \choose k}$
possible terms of the expansion. The projection of $\left\{ \mathbf{v}_{i}\right\} $
onto the hyperplane $\text{Span}\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $
removes the components proportional to $\mathbf{e}_{k+1}$, ..., $\mathbf{e}_{N}$,
hence $\tilde{\psi}$ is equal to the first term $c_{1...k}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{k}$.
Therefore, the oriented volume of the projection onto the hyperplane
$\text{Span}\left\{ \mathbf{e}_{1},...,\mathbf{e}_{k}\right\} $ is
equal to $c_{1...k}$.

By definition of the scalar product in $\wedge^{k}V$, all the basis
tensors $\omega_{i_{1}...i_{k}}$ are orthonormal. Hence, the coefficients
$c_{i_{1}...i_{k}}$ can be computed as\[
c_{i_{1}...i_{k}}=\left\langle \psi,\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}\right\rangle \equiv\left\langle \psi,\omega_{i_{1}...i_{k}}\right\rangle .\]
For brevity, we may introduce the \textbf{multi}-\textbf{index}\index{multi-index}
$I\equiv\left\{ i_{1},...,i_{k}\right\} $ and rewrite the above as\[
c_{I}=\left\langle \psi,\omega_{I}\right\rangle .\]
 Then the value $\left\langle \psi,\psi\right\rangle $ can be computed
as \begin{align*}
\left\langle \psi,\psi\right\rangle  & =\big\langle\sum_{I}c_{I}\omega_{I},\sum_{J}c_{J}\omega_{J}\big\rangle=\sum_{I,J}c_{I}c_{J}\left\langle \omega_{I},\omega_{J}\right\rangle \\
 & =\sum_{I,J}c_{I}c_{J}\delta_{IJ}=\sum_{I}\left|c_{I}\right|^{2}.\end{align*}
 In other words, we have shown that $\left\langle \psi,\psi\right\rangle $
is equal to the sum of all ${N \choose k}$ squared projected volumes,\[
\left\langle \psi,\psi\right\rangle =\sum_{1\leq i_{1}<...<i_{k}\leq N}\left|c_{i_{1}...i_{k}}\right|^{2}.\]


It remains to show that $\sqrt{\left\langle \psi,\psi\right\rangle }$
is actually equal to the unoriented volume $v$ of the parallelepiped.
To this end, let us choose a new orthonormal basis $\left\{ \tilde{\mathbf{e}}_{j}\right\} $
($j=1,...,N$) such that every vector $\mathbf{v}_{i}$ ($i=1,...,k$)
lies entirely within the hyperplane spanned by the first $k$ basis
vectors. (This choice of basis is certainly possible, for instance,
by choosing an orthonormal basis in $\text{Span}\left\{ \mathbf{v}_{i}\right\} $
and then completing it to an orthonormal basis in $V$.) Then we will
have $\psi=\tilde{\lambda}\tilde{\mathbf{e}}_{1}\wedge...\wedge\tilde{\mathbf{e}}_{k}$,
i.e.~with zero coefficients for all other basis tensors. Restricting
attention to the subspace $\text{Span}\left\{ \tilde{\mathbf{e}}_{1},...,\tilde{\mathbf{e}}_{k}\right\} $,
we can use the results of Sec.~\ref{sub:Scalar-product-in-lambdaNv}
to find that the volume $v$ is equal to $|\tilde{\lambda}|$. It
remains to show that $\sqrt{\left\langle \psi,\psi\right\rangle }=|\tilde{\lambda}|$.

The transformation from the old basis $\left\{ \mathbf{e}_{j}\right\} $
to $\left\{ \tilde{\mathbf{e}}_{j}\right\} $ can be performed using
a certain orthogonal transformation $\hat{R}$ such that $\hat{R}\mathbf{e}_{j}=\tilde{\mathbf{e}}_{j}$
($j=1,...,N)$. Since the scalar product in $\wedge^{k}V$ is defined
directly through scalar products of vectors in $V$ (Exercise~1)
and since $\hat{R}$ is orthogonal, we have for any $\left\{ \mathbf{a}_{i}\right\} $
and $\left\{ \mathbf{b}_{i}\right\} $ that \begin{align*}
 & \langle\hat{R}\mathbf{a}_{1}\wedge...\wedge\hat{R}\mathbf{a}_{k},\hat{R}\mathbf{b}_{1}\wedge...\wedge\hat{R}\mathbf{b}_{k}\rangle=\det\langle\hat{R}\mathbf{a}_{i},\hat{R}\mathbf{b}_{j}\rangle\\
 & \quad=\det\left\langle \mathbf{a}_{i},\mathbf{b}_{j}\right\rangle =\left\langle \mathbf{a}_{1}\wedge...\wedge\mathbf{a}_{k},\mathbf{b}_{1}\wedge...\wedge\mathbf{b}_{k}\right\rangle .\end{align*}
 In other words, the operator $\wedge^{k}\hat{R}^{k}$ is an \emph{orthogonal}
\emph{transformation} in $\wedge^{k}V$. Therefore,\begin{align*}
\psi & =\tilde{\lambda}\tilde{\mathbf{e}}_{1}\wedge...\wedge\tilde{\mathbf{e}}_{k}=\tilde{\lambda}\hat{R}\mathbf{e}_{1}\wedge...\wedge\hat{R}\mathbf{e}_{k}=\tilde{\lambda}\big({\wedge^{k}\hat{R}^{k}}\omega_{1...k}\big);\\
\left\langle \psi,\psi\right\rangle  & =\tilde{\lambda}^{2}\langle\wedge^{k}\hat{R}^{k}\omega_{1...k},\wedge^{k}\hat{R}^{k}\omega_{1...k}\rangle=\tilde{\lambda}^{2}\left\langle \omega_{1...k},\omega_{1...k}\right\rangle =\tilde{\lambda}^{2}.\end{align*}
Therefore, $\sqrt{\left\langle \psi,\psi\right\rangle }=|\tilde{\lambda}|=v$
as required.\label{proof-of-pythagoras}\hfill{}$\blacksquare$


\paragraph{Remark:}

The scalar product in the space $\wedge^{k}V$ is related the $k$-dimen\-sion\-al
volume of a body embedded in the space $V$, in the same way as the
scalar product in $V$ is related to the length of a straight line
segment embedded in $V$. The tensor $\psi=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}$
fully represents the orientation of the $k$-dimen\-sion\-al parallelepiped
spanned by the vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $,
while the {}``length'' $\sqrt{\left\langle \psi,\psi\right\rangle }$
of this tensor gives the numerical value of the volume of the parallelepiped.
This is a multidimensional generalization of the Pythagoras theorem
that is not easy to visualize! The techniques of exterior algebra
enables us to calculate these quantities without visualizing them.


\paragraph{Example 1:}

In a Euclidean space $\mathbb{R}^{4}$ with a standard orthonormal
basis $\left\{ \mathbf{e}_{j}\right\} $, a three-dimen\-sion\-al
parallelepiped is spanned by the given vectors \[
\mathbf{a}=\mathbf{e}_{1}+2\mathbf{e}_{2},\;\mathbf{b}=\mathbf{e}_{3}-\mathbf{e}_{1},\;\mathbf{c}=\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}.\]
We would like to determine the volume of the parallelepiped. We compute
the wedge product $\psi\equiv\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}$
using Gaussian elimination,\begin{align*}
\psi & =\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{3}-\mathbf{e}_{1}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right)\\
 & =\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{3}+2\mathbf{e}_{2}\right)\wedge\left(\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right)\\
 & =\left[\left(\mathbf{e}_{1}+2\mathbf{e}_{2}\right)\wedge\mathbf{e}_{3}+2\mathbf{e}_{1}\wedge\mathbf{e}_{2}\right]\wedge\left({\textstyle \frac{1}{2}}\mathbf{e}_{3}+\mathbf{e}_{4}\right)\\
 & =\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}+\mathbf{e}_{1}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}\\
 & \quad+2\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}+2\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{4}.\end{align*}
We see that the volumes of the projections onto the four coordinate
hyperplanes are 1, 1, 2, 2. Therefore the numerical value of the volume
is\[
v=\sqrt{\left\langle \psi,\psi\right\rangle }=\sqrt{1+1+4+4}=\sqrt{10}.\]



\paragraph{Exercise 2:}

Show that the scalar product of two tensors $\psi_{1},\psi_{2}\in\wedge^{k}V$
can be expressed through the Hodge\index{Hodge star} star as \[
\left\langle \psi_{1},\psi_{2}\right\rangle =*\big(\psi_{1}\wedge*\psi_{2}\big)\quad\text{or as}\quad\left\langle \psi_{1},\psi_{2}\right\rangle =*\big(\psi_{2}\wedge*\psi_{1}\big),\]
depending on whether $2k\leq N$ or $2k\geq N$.

\emph{Hint}: Since both sides are linear in $\psi_{1}$ and $\psi_{2}$,
it is sufficient to show that the relationship holds for basis tensors
$\omega_{i_{1}...i_{k}}\equiv\mathbf{e}_{i_{1}}\wedge...\wedge\mathbf{e}_{i_{k}}$.


\paragraph{Exercise 3: Intersection of hyperplanes\index{hyperplane}.}

Suppose $U_{1}$, ..., $U_{N-1}\subset V$ are some ($N-1$)-dimen\-sion\-al
subspaces (hyperplanes) in $V$. Each $U_{i}$ can be represented
by a tensor $\psi_{i}\in\wedge^{N-1}V$, e.g.~by choosing $\psi_{i}$
as the exterior product of all vectors in a basis in $U$. Define
the vector\[
\mathbf{v}\equiv*\big[(*\psi_{1})\wedge...\wedge(*\psi_{N-1})\big].\]
If $\mathbf{v}\neq0$, show that $\mathbf{v}$ belongs to the intersection
of all the ($N-1$)-dimen\-sion\-al hyperplanes.

\emph{Hint}: Show that $\mathbf{v}\wedge\psi_{i}=0$ for each $i=1,...,N-1$.
Use Exercise~2.


\paragraph{Exercise 4:}

Show that $\left\langle \mathbf{v},\mathbf{v}\right\rangle =\left\langle *\mathbf{v},*\mathbf{v}\right\rangle $
for $\mathbf{v}\in V$ (noting that $*\mathbf{v}\in\wedge^{N-1}V$
and using the scalar product in that space). Show more generally that\[
\left\langle \psi_{1},\psi_{2}\right\rangle =\left\langle *\psi_{1},*\psi_{2}\right\rangle ,\]
where $\psi_{1},\psi_{2}\in\wedge^{k}V$ and thus $*\psi_{1}$ and
$*\psi_{2}$ belong to $\wedge^{N-k}V$. Deduce that the Hodge star
is an orthogonal transformation in $\wedge^{N/2}V$ (if $N$ is even).

\emph{Hint}: Use Exercise 2.


\section{Scalar product for complex spaces\label{sub:Scalar-product-for-complex}}

In complex spaces, one can get useful results if one defines the scalar
product in a different way. In this section we work in a complex vector
space $V$.

A \textbf{Hermitian}\index{Hermitian scalar product} \textbf{scalar}
\textbf{product} is a complex function of two vectors $\mathbf{a},\mathbf{b}\in V$
with the properties\begin{align*}
\left\langle \mathbf{a},\lambda\mathbf{b}\right\rangle  & =\lambda\left\langle \mathbf{a},\mathbf{b}\right\rangle ,\quad\left\langle \lambda\mathbf{a},\mathbf{b}\right\rangle =\lambda^{*}\left\langle \mathbf{a},\mathbf{b}\right\rangle ,\\
\left\langle \mathbf{a}+\mathbf{b},\mathbf{c}\right\rangle  & =\left\langle \mathbf{a},\mathbf{c}\right\rangle +\left\langle \mathbf{b},\mathbf{c}\right\rangle ,\quad\left\langle \mathbf{b},\mathbf{a}\right\rangle =\left\langle \mathbf{a},\mathbf{b}\right\rangle ^{*},\end{align*}
and nondegeneracy ($\forall\mathbf{a}\in V$, $\exists\mathbf{b}\in V$
such that $\left\langle \mathbf{a},\mathbf{b}\neq0\right\rangle $).
(Note that $\lambda^{*}$ in the formula above means the complex conjugate
to $\lambda$.) It follows that $\left\langle \mathbf{x},\mathbf{x}\right\rangle $
is real-valued. One usually also imposes the property $\left\langle \mathbf{x},\mathbf{x}\right\rangle >0$
for $\mathbf{x}\neq0$, which is positive-definiteness.


\paragraph{Remark:}

Note that the scalar product is not linear in the first argument because
we have the factor $\lambda^{*}$ instead of $\lambda$; one says
that it is \textbf{antilinear}. One can also define a Hermitian scalar
product that is linear in the \emph{first} argument but antilinear
in the second argument, i.e.~$\left\langle \mathbf{a},\lambda\mathbf{b}\right\rangle =\lambda^{*}\left\langle \mathbf{a},\mathbf{b}\right\rangle $
and $\left\langle \lambda\mathbf{a},\mathbf{b}\right\rangle =\lambda\left\langle \mathbf{a},\mathbf{b}\right\rangle $.
Here we follow the definition used in the physics literature. This
definition is designed to be compatible with the Dirac notation for
complex spaces (see Example 3 below).


\paragraph{Example 1:}

In the vector space $\mathbb{C}^{n}$, vectors are $n$-tuples of
complex numbers, $\mathbf{x}=\left(x_{1},...,x_{n}\right)$. A Hermitian
scalar product is defined by the formula\[
\left\langle \mathbf{x},\mathbf{y}\right\rangle =\sum_{i=1}^{n}x_{i}^{*}y_{i}.\]
This scalar product is nondegenerate and positive-definite. 


\paragraph{Example 2:}

Suppose we have a real, $N$-dimen\-sion\-al vector space $V$ with
an ordinary (real) scalar product $\left\langle \cdot,\cdot\right\rangle $.
We can construct a \emph{complex} vector space out of $V$ by the
following construction (called the \textbf{complexification}\index{complexification}
of $V$). First we consider the space $\mathbb{C}$ as a real, two-dimen\-sion\-al
vector space over $\mathbb{R}$. Then we consider the tensor product
$V\otimes\mathbb{C}$, still a vector space over $\mathbb{R}$. Elements
of $V\otimes\mathbb{C}$ are linear combinations of terms of the form
$\mathbf{v}\otimes\lambda$, where $\mathbf{v}\in V$ and $\lambda\in\mathbb{C}$.
However, the ($2N$-dimen\-sion\-al, real) vector space $V\otimes\mathbb{C}$
can be also viewed as a vector space over $\mathbb{C}$: the multiplication
of $\mathbf{v}\otimes\lambda$ by a complex number $z$ yields $\mathbf{v}\otimes(\lambda z)$.
Then $V\otimes\mathbb{C}$ is interpreted as an $N$-dimen\-sion\-al,
complex vector space. A Hermitian scalar product in this space is
defined by\[
\left\langle \mathbf{a}\otimes\lambda,\mathbf{b}\otimes\mu\right\rangle \equiv\left\langle \mathbf{a},\mathbf{b}\right\rangle \lambda^{*}\mu.\]
Here $\left\langle \mathbf{a},\mathbf{b}\right\rangle $ is the ordinary
(real) scalar product in $V$. It is easy to verify that the properties
of a Hermitian scalar product are satisfied by the above definition.\hfill{}$\blacksquare$

Using the Hermitian scalar product, one defines an orthonormal basis
and other constructions analogous to those defined using the ordinary
(real) scalar product. For instance, the Hermitian scalar product
allows one to identify vectors and covectors. 


\paragraph{Example 3:}

The vector-covector correspondence in complex spaces is slightly different
from that in real spaces. Consider a vector $\mathbf{v}\in V$; the
corresponding covector $\mathbf{f}^{*}:V\rightarrow\mathbb{C}$ may
be defined as\[
\mathbf{f}^{*}(\mathbf{x})\equiv\left\langle \mathbf{v},\mathbf{x}\right\rangle \in\mathbb{C}.\]
We denote the map $\mathbf{v}\mapsto\mathbf{f}^{*}$ by a dagger symbol,
called \textbf{Hermitian} \textbf{conjugation}\index{Hermitian conjugate},
so that $\left(\mathbf{v}\right)^{\dagger}=\mathbf{f}^{*}$. Due to
the antilinearity of the scalar product, we have the property\[
\left(\lambda\mathbf{v}\right)^{\dagger}=\lambda^{*}\left(\mathbf{v}\right)^{\dagger}.\]
In the Dirac notation, one denotes covectors by the {}``bra'' symbols
such as $\left\langle v\right|$. One then may write\[
\left(\left|v\right\rangle \right)^{\dagger}=\left\langle v\right|,\]
i.e.~one uses the same label {}``$v$'' inside the special brackets.
We then have \[
\left(\lambda\left|v\right\rangle \right)^{\dagger}=\lambda^{*}\left\langle v\right|.\]
The Hermitian scalar product of vectors $\left|a\right\rangle $ and
$\left|b\right\rangle $ is equal to the action of $\left(\left|a\right\rangle \right)^{\dagger}$
on $\left|b\right\rangle $ and denoted $\left\langle a|b\right\rangle $.
Thus, the scalar product of $\left|a\right\rangle $ and $\lambda\left|b\right\rangle $
is equal to $\left\langle a\right|\lambda\left|b\right\rangle =\lambda\left\langle a|b\right\rangle $,
while the scalar product of $\lambda\left|a\right\rangle $ and $\left|b\right\rangle $
is equal to $\lambda^{*}\left\langle a|b\right\rangle $.\hfill{}$\blacksquare$

Similarly to the transposed operator $\hat{A}^{T}$, the \textbf{Hermitian}
\textbf{conjugate} operator\index{Hermitian conjugate} $\hat{A}^{\dagger}$
is defined by\[
\langle\hat{A}^{\dagger}\mathbf{x},\mathbf{y}\rangle\equiv\langle\mathbf{x},\hat{A}\mathbf{y}\rangle,\quad\forall\mathbf{x},\mathbf{y}\in V.\]
In an orthonormal basis, the matrix describing the Hermitian conjugate
operator $\hat{A}^{\dagger}$ is obtained from the matrix of $\hat{A}$
by transposing and complex conjugating each matrix element.


\paragraph{Example 4:}

In the space of linear operators $\text{End}\, V$, a bilinear form
can be defined by\[
\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}\,(\hat{A}^{\dagger}\hat{B}).\]
As we will see in the next section (Exercise~2), this bilinear form
is a positive-definite scalar product in the space $\text{End}\, V$.\hfill{}$\blacksquare$

In the following sections, we consider some applications of the Hermitian
scalar product.


\subsection{Symmetric and Hermitian operators}

An operator $\hat{A}$ is \textbf{symmetric}\index{symmetric operator}
with respect to the scalar product if \[
\langle\mathbf{u},\hat{A}\mathbf{v}\rangle=\langle\hat{A}\mathbf{u},\mathbf{v}\rangle,\quad\forall\mathbf{u},\mathbf{v}\in V.\]
 According to the definition of the transposed operator, the above
property is the same as $\hat{A}^{T}=\hat{A}$. 

The notion of a symmetric operator is suitable for a real vector space.
In a complex vector space, one uses Hermitian conjugation instead
of transposition: An operator $\hat{A}$ is called \textbf{Hermitian}\index{Hermitian operator}
if $\hat{A}^{\dagger}=\hat{A}$.

Symmetric as well as Hermitian operators often occur in applications
and have useful properties.


\paragraph{Statement 1:}

\textbf{a)} All eigenvalues of a Hermitian operator are real (have
zero imaginary part).

\textbf{b)} If $\hat{A}$ is a symmetric or Hermitian operator and
$\mathbf{v}_{1}$, $\mathbf{v}_{2}$ are eigenvectors of $\hat{A}$
corresponding to different eigenvalues $\lambda_{1}\neq\lambda_{2}$,
then $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are orthogonal to each
other: $\left\langle \mathbf{v}_{1},\mathbf{v}_{2}\right\rangle =0$.


\subparagraph{Proof:}

\textbf{a)} If $\mathbf{v}$ is an eigenvector of a Hermitian operator
$\hat{A}$ with eigenvalue $\lambda$, we have\begin{align*}
 & \langle\mathbf{v},\hat{A}\mathbf{v}\rangle=\left\langle \mathbf{v},\lambda\mathbf{v}\right\rangle =\lambda\left\langle \mathbf{v},\mathbf{v}\right\rangle \\
 & =\langle\hat{A}\mathbf{v},\mathbf{v}\rangle=\left\langle \lambda\mathbf{v},\mathbf{v}\right\rangle =\lambda^{*}\left\langle \mathbf{v},\mathbf{v}\right\rangle .\end{align*}
Since $\left\langle \mathbf{v},\mathbf{v}\right\rangle \neq0$, we
have $\lambda=\lambda^{*}$, i.e.~$\lambda$ is purely real.

\textbf{b)} We compute\begin{align*}
\langle\mathbf{v}_{1},\hat{A}\mathbf{v}_{2}\rangle & =\lambda_{2}\left\langle \mathbf{v}_{1},\mathbf{v}_{2}\right\rangle \\
 & \,{\lyxbuildrel!\above=}\,\langle\hat{A}\mathbf{v}_{1},\mathbf{v}_{2}\rangle=\lambda_{1}\left\langle \mathbf{v}_{1},\mathbf{v}_{2}\right\rangle .\end{align*}
(In the case of Hermitian operators, we have used the fact that $\lambda_{1}$
is real.) Hence, either $\lambda_{1}=\lambda_{2}$ or $\left\langle \mathbf{v}_{1},\mathbf{v}_{2}\right\rangle =0$.\hfill{}$\blacksquare$


\paragraph{Statement 2: }

If $\hat{A}$ is either symmetric or Hermitian and has an eigenvector
$\mathbf{v}$, the subspace orthogonal to $\mathbf{v}$ is invariant
under $\hat{A}$.


\subparagraph{Proof:}

We need to show that $\left\langle \mathbf{x},\mathbf{v}\right\rangle =0$
entails $\langle\hat{A}\mathbf{x},\mathbf{v}\rangle=0$. We compute
\[
\langle\hat{A}\mathbf{x},\mathbf{v}\rangle=\langle\mathbf{x},\hat{A}\mathbf{v}\rangle=\lambda\left\langle \mathbf{x},\mathbf{v}\right\rangle =0.\]
Hence, $\hat{A}\mathbf{x}$ also belongs to the subspace orthogonal
to $\mathbf{v}$.\hfill{}$\blacksquare$


\paragraph{Statement 3:}

A Hermitian operator is diagonalizable.


\subparagraph{Proof:}

We work in an $N$-dimen\-sion\-al space $V$. The characteristic
polynomial of an operator $\hat{A}$ has at least one (perhaps complex-valued)
root $\lambda$, which is an eigenvalue of $\hat{A}$, and thus there
exists at least one eigenvector $\mathbf{v}$ corresponding to $\lambda$.
By Statement~2, the subspace $\mathbf{v}^{\perp}$ (the orthogonal
complement of $\mathbf{v}$) is invariant under $\hat{A}$. The space
$V$ splits into a direct sum of $\text{Span}\left\{ \mathbf{v}\right\} $
and the subspace $\mathbf{v}^{\perp}$. We may consider the operator
$\hat{A}$ in that subspace; again we find that there exists at least
one eigenvector in $\mathbf{v}^{\perp}$. Continuing this argument,
we split the entire space into a direct sum of $N$ orthogonal eigenspaces.
Hence, there exist $N$ eigenvectors of $\hat{A}$.\hfill{}$\blacksquare$


\paragraph{Statement 4:}

A symmetric operator in a real $N$-dimen\-sion\-al vector space
is diagonalizable, i.e.~it has $N$ real eigenvectors with real eigenvalues.


\subparagraph{Proof:}

We cannot repeat the proof of Statement~3 literally, since we do
not know \emph{a priori} that the characteristic polynomial of a symmetric
operator has all real roots; this is something we need to prove. Therefore
we complexify the space $V$, i.e.~we consider the space $V\otimes\mathbb{C}$
as a vector space over $\mathbb{C}$. In this space, we introduce
a Hermitian scalar product as in Example~2 in Sec.~\ref{sub:Scalar-product-for-complex}.
In the space $V\otimes\mathbb{C}$ there is a special notion of {}``real''
vectors; these are vectors of the form $\mathbf{v}\otimes c$ with
real $c$.

The operator $\hat{A}$ is extended to the space $V\otimes\mathbb{C}$
by\[
\hat{A}(\mathbf{v}\otimes c)\equiv(\hat{A}\mathbf{v})\otimes c.\]
It is important to observe that the operator $\hat{A}$ transforms
real vectors into real vectors, and moreover that $\hat{A}$ is Hermitian
in $V\otimes\mathbb{C}$ if $\hat{A}$ is symmetric in $V$. Therefore,
$\hat{A}$ is diagonalizable in $V\otimes\mathbb{C}$ with real eigenvalues.

It remains to show that all the eigenvectors of $\hat{A}$ can be
chosen \emph{real}; this will prove that $\hat{A}$ is also diagonalizable
in the original space $V$. So far we only know that $\hat{A}$ has
$N$ eigenvectors in $V\otimes\mathbb{C}$. Any vector from $V\otimes\mathbb{C}$
can be transformed into the expression $\mathbf{u}\otimes1+\mathbf{v}\otimes\text{i}$
with $\mathbf{u},\mathbf{v}\in V$. Let us assume that $\mathbf{u}\otimes1+\mathbf{v}\otimes\text{i}$
is an eigenvector of $\hat{A}$ with eigenvalue $\lambda$. If $\mathbf{v}=0$,
the eigenvector is real, and there is nothing left to prove; so we
assume $\mathbf{v}\neq0$. Since $\lambda$ is real, we have\begin{align*}
\hat{A}(\mathbf{u}\otimes1+\mathbf{v}\otimes\text{i}) & =(\hat{A}\mathbf{u})\otimes1+(\hat{A}\mathbf{v})\otimes\text{i}\\
 & \,{\lyxbuildrel!\above=}\,\lambda\mathbf{u}\otimes1+\lambda\mathbf{v}\otimes\text{i}.\end{align*}
If both $\mathbf{u}\neq0$ and $\mathbf{v}\neq0$, it follows that
$\mathbf{u}$ and $\mathbf{v}$ are both eigenvectors of $\hat{A}$
with eigenvalue $\lambda$. Hence, the operator $\hat{A}$ in $V\otimes\mathbb{C}$
can be diagonalized by choosing the real eigenvectors as $\mathbf{u}\otimes1$
and $\mathbf{v}\otimes1$ instead of the complex eigenvector $\mathbf{u}\otimes1+\mathbf{v}\otimes\text{i}$.
If $\mathbf{u}=0$, we only need to replace the complex eigenvector
$\mathbf{v}\otimes\text{i}$ by the equivalent real eigenvector $\mathbf{v}\otimes1$.
We have thus shown that the eigenvectors of $\hat{A}$ in $V\otimes\mathbb{C}$
can be chosen real. \hfill{}$\blacksquare$


\paragraph{Exercise 1:}

If an operator $\hat{A}$ satisfies $\hat{A}^{\dagger}=-\hat{A}$,
it is called \textbf{anti-Her\-mit\-ian}\index{anti-Hermitian operator}.
Show that all eigenvalues of $\hat{A}$ are pure imaginary or zero,
that eigenvectors of $\hat{A}$ are orthogonal to each other, and
that $\hat{A}$ is diagonalizable.

\emph{Hint}: The operator $\hat{B}\equiv\text{i}\hat{A}$ is Hermitian;
use the properties of Hermitian operators (Statements~1,2,3).


\paragraph{Exercise 2:}

 Show that $\text{Tr}(\hat{A}^{T}\hat{A})>0$ for operators in a real
space with a scalar product, and $\text{Tr}(\hat{A}^{\dagger}\hat{A})>0$
for operators in a complex space with a Hermitian scalar product.
Deduce that $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}\,(\hat{A}^{T}\hat{B})$
and $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}\,(\hat{A}^{\dagger}\hat{B})$
are positive-definite scalar products in the spaces of operators (assuming
real or, respectively, complex space $V$ with a scalar product).

\emph{Hint}: Compute $\text{Tr}(\hat{A}^{T}\hat{A})$ or $\text{Tr}(\hat{A}^{\dagger}\hat{A})$
directly through components of $\hat{A}$ in an orthonormal basis.


\paragraph{Exercise 3:}

Show that the set of all Hermitian operators is a subspace of $\text{End}\, V$,
and the same for anti-Her\-mit\-ian operators. Then show that these
two subspaces are orthogonal to each other with respect to the scalar
product of Exercise~2.


\paragraph{Exercise 4:}

Consider the space $\text{End}\, V$ of linear operators and two of
its subspaces: the subspace of \textbf{traceless}\index{traceless operator}
operators (i.e.~operators $\hat{A}$ with $\text{Tr}\hat{A}=0$)
and the subspace of operators proportional to the identity (i.e.~operators
$\lambda\hat{1}_{V}$ for $\lambda\in\mathbb{R}$). Show that these
two subspaces are orthogonal with respect to the scalar products $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}(\hat{A}^{T}\hat{B})$
or $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}\,(\hat{A}^{\dagger}\hat{B})$. 


\subsection{Unitary transformations}

In complex spaces, the notion analogous to orthogonal transformations
is unitary transformations.


\paragraph{Definition:}

An operator is called \textbf{unitary}\index{unitary operator} if
it preserves the Hermitian scalar product:\[
\langle\hat{A}\mathbf{x},\hat{A}\mathbf{y}\rangle=\left\langle \mathbf{x},\mathbf{y}\right\rangle ,\quad\forall\mathbf{x},\mathbf{y}\in V.\]


It follows that a unitary operator $\hat{A}$ satisfies $\hat{A}^{\dagger}\hat{A}=\hat{1}$.


\paragraph{Exercise 2:}

If $\hat{A}$ is Hermitian, show that the operators $(1+\text{i}\hat{A})^{-1}(1-\text{i}\hat{A})$
and $\exp\,(\text{i}\hat{A})$ are unitary.

\emph{Hint}: The Hermitian conjugate of $f(\text{i}\hat{A})$ is $f(-\text{i}\hat{A}^{\dagger})$
if $f(z)$ is an analytic function. This can be shown by considering
each term in the power series for $f(z)$.


\paragraph{Exercise 3:}

Show that the determinant of a unitary operator is a complex number
$c$ such that $\left|c\right|=1$.

\emph{Hint}: First show that $\det(\hat{A}^{\dagger})$ is the complex
conjugate of $\det\hat{A}$.


\section{Antisymmetric operators \label{sub:Antisymmetric-operators-and}}

In this and the following sections we work in a real vector space
$V$ in which a scalar product $\left\langle \cdot,\cdot\right\rangle $
is defined. The dimension of $V$ is $N\equiv\dim V$. 

An operator $\hat{A}$ is \textbf{antisymmetric}\index{antisymmetric operator}
with respect to the scalar product if\[
\langle\mathbf{u},\hat{A}\mathbf{v}\rangle+\langle\hat{A}\mathbf{u},\mathbf{v}\rangle=0,\quad\forall\mathbf{u},\mathbf{v}\in V.\]



\paragraph{Exercise 1:}

Show that the set of all antisymmetric operators is a subspace of
$V\otimes V^{*}$.


\paragraph{Exercise 2:}

Show that $\hat{A}^{T}+\hat{A}=0$ if and only if the operator $\hat{A}$
is antisymmetric.


\paragraph{Remark:}

Exercise 2 shows that antisymmetric operators are represented by antisymmetric
matrices --- in an \emph{orthonormal} \emph{basis}. However, the matrix
of an operator in some other basis does not have to be antisymmetric.
An operator can be antisymmetric with respect to one scalar product
and not antisymmetric with respect to another.


\paragraph{Question:}

Surely an antisymmetric matrix has rather special properties. Why
is it that the corresponding operator is only antisymmetric \emph{with
respect to} \emph{some} scalar product? Is it not true that the corresponding
operator has by itself special properties, regardless of any scalar
product?


\subparagraph{Answer:}

Yes, it is true. It is a special property of an operator that there
exists a scalar product \emph{with respect to which} the operator
is antisymmetric. If we know that this is true, we can derive some
useful properties of the given operator by using that scalar product.\hfill{}$\blacksquare$


\paragraph{Statement 1:}

A 2-vector $\mathbf{a}\wedge\mathbf{b}\in\wedge^{2}V$ can be mapped
to an operator in $V$ by\[
\mathbf{a}\wedge\mathbf{b}\mapsto\hat{A};\quad\hat{A}\mathbf{x}\equiv\mathbf{a}\left\langle \mathbf{b},\mathbf{x}\right\rangle -\mathbf{b}\left\langle \mathbf{a},\mathbf{x}\right\rangle ,\quad\forall\mathbf{x}\in V.\]
This formula defines a canonical isomorphism between the space of
antisymmetric operators (with respect to the given scalar product)
and $\wedge^{2}V$. In other words, any antisymmetric operator $\hat{A}$
can be represented by a 2-vector $A\in\wedge^{2}V$ and vice versa. 


\subparagraph{Proof: }

Left as exercise.


\paragraph{Statement 2:}

Any 2-vector $A\in\wedge^{2}V$ can be written as a sum $\sum_{j=1}^{n}\mathbf{a}_{k}\wedge\mathbf{b}_{k}$
using $n$ terms, where $n$ is some number such that $n\leq\frac{1}{2}N$
(here $N\equiv\dim V$), and the set of vectors $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
is linearly independent.


\subparagraph{Proof:}

By definition, a 2-vector $A$ is representable as a linear combination
of the form \[
A=\sum_{j=1}^{n}\mathbf{a}_{j}\wedge\mathbf{b}_{j},\]
with \emph{some} vectors $\mathbf{a}_{j},\mathbf{b}_{j}\in V$ and
\emph{some} value of $n$. We will begin with this representation
and transform it in order to minimize the number of terms. 

The idea is to make sure that the set of vectors $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
is linearly independent. If this is not so, there exists a linear
relation, say \[
\mathbf{a}_{1}=\beta_{1}\mathbf{b}_{1}+\sum_{j=2}^{n}\left(\alpha_{j}\mathbf{a}_{j}+\beta_{j}\mathbf{b}_{j}\right),\]
with some coefficients $\alpha_{j}$ and $\beta_{j}$. Using this
relation, the term $\mathbf{a}_{1}\wedge\mathbf{b}_{1}$ can be rewritten
as \[
\mathbf{a}_{1}\wedge\mathbf{b}_{1}=\sum_{j=2}^{n}\left(\alpha_{j}\mathbf{a}_{j}+\beta_{j}\mathbf{b}_{j}\right)\wedge\mathbf{b}_{1}.\]
These terms can be absorbed by other terms $\mathbf{a}_{j}\wedge\mathbf{b}_{j}$
($j=2,...,N$). For example, by rewriting\begin{align*}
 & \mathbf{a}_{2}\wedge\mathbf{b}_{2}+\alpha_{2}\mathbf{a}_{2}\wedge\mathbf{b}_{1}+\beta_{2}\mathbf{b}_{2}\wedge\mathbf{b}_{1}\\
 & \quad=(\mathbf{a}_{2}-\beta_{2}\mathbf{b}_{1})\wedge\left(\mathbf{b}_{2}+\alpha_{2}\mathbf{b}_{1}\right)\\
 & \quad\equiv\tilde{\mathbf{a}}_{2}\wedge\tilde{\mathbf{b}}_{2}\end{align*}
we can absorb the term $\left(\alpha_{j}\mathbf{a}_{j}+\beta_{j}\mathbf{b}_{j}\right)\wedge\mathbf{b}_{1}$
with $j=2$ into $\mathbf{a}_{2}\wedge\mathbf{b}_{2}$, replacing
the vectors $\mathbf{a}_{2}$ and $\mathbf{b}_{2}$ by new vectors
$\tilde{\mathbf{a}}_{2}$ and $\tilde{\mathbf{b}}_{2}$. In this way,
we can redefine the vectors $\mathbf{a}_{j},\mathbf{b}_{j}$ ($j=2,...,N$)
so that the term $\mathbf{a}_{1}\wedge\mathbf{b}_{1}$ is eliminated
from the expression for $A$. We continue this procedure until the
set of all the vectors $\mathbf{a}_{j},\mathbf{b}_{j}$ is linearly
independent. We now denote again by $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
the resulting linearly independent set of vectors such that the representation
$A=\sum_{j=1}^{n}\mathbf{a}_{j}\wedge\mathbf{b}_{j}$ still holds.
Note that the final number $n$ may be smaller than the initial number.
Since the number of vectors ($2n$) in the final, linearly independent
set $\{\mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\}$
cannot be greater than $N$, the dimension of the space $V$, we have
$2n\leq N$ and so $n\leq\frac{1}{2}N$.\hfill{}$\blacksquare$


\paragraph{Exercise 3:}

A 2-vector $A\in\wedge^{2}V$ satisfies $A\wedge A=0$. Show that
$A$ can be expressed as a single-term exterior product, $A=\mathbf{a}\wedge\mathbf{b}$.

\emph{Hint}: Express $A$ as a sum of smallest number of single-term
products, $A=\sum_{j=1}^{n}\mathbf{a}_{k}\wedge\mathbf{b}_{k}$, and
show that $A\wedge A=0$ implies $n=1$: By Statement~2, the set
$\left\{ \mathbf{a}_{i},\mathbf{b}_{i}\right\} $ is linearly independent.
If $n>1$, the expression $A\wedge A$ will contain terms such as
$\mathbf{a}_{1}\wedge\mathbf{b}_{1}\wedge\mathbf{a}_{2}\wedge\mathbf{b}_{2}$;
a linear combination of these terms cannot vanish, since they are
all linearly independent of each other. To show that rigorously, apply
suitably chosen covectors $\mathbf{a}_{i}^{*}$ and $\mathbf{b}_{i}^{*}$.\hfill{}$\blacksquare$

Antisymmetric operators have the following properties. 


\paragraph{Exercise 4:}

Show that the trace of an antisymmetric operator is equal to zero.

\emph{Hint}: Use the property $\text{Tr}(\hat{A}^{T})=\text{Tr}(\hat{A})$.


\paragraph{Exercise 5:}

Show that the determinant of the antisymmetric operator is equal to
zero in an odd-dimen\-sion\-al space.


\paragraph{Remark:}

Note that the property of being antisymmetric is defined only with
respect to a chosen scalar product. (An operator may be represented
by an antisymmetric matrix in some basis, but not in another basis.
An antisymmetric operator is represented by an antisymmetric matrix
only in an orthonormal basis.) The properties shown in Exercises~3
and 4 will hold for any operator $\hat{A}$ such that \emph{some}
\emph{scalar} \emph{product} \emph{exists} with respect to which $\hat{A}$
is antisymmetric. If $\hat{A}$ is represented by an antisymmetric
matrix in a given basis $\left\{ \mathbf{e}_{j}\right\} $, we may
\emph{define} the scalar product by requiring that $\left\{ \mathbf{e}_{j}\right\} $
be an orthonormal basis; then $\hat{A}$ will be antisymmetric with
respect to that scalar product. 


\paragraph{Exercise 6:}

Show that the canonical scalar product $\left\langle A,B\right\rangle $
in the space $\wedge^{2}V$ (see Sec.~\ref{sub:Volumes-of-k-dimensional})
coincides with the scalar product $\langle\hat{A},\hat{B}\rangle\equiv\text{Tr}(\hat{A}^{T}\hat{B})$
when the 2-vectors $A$ and $B$ are mapped into antisymmetric operators
$\hat{A}$ and $\hat{B}$.

\emph{Hint}: It is sufficient to consider the basis tensors $\mathbf{e}_{i}\wedge\mathbf{e}_{j}$
as operators $\hat{A}$ and $\hat{B}$.


\paragraph{Exercise 7:{*}}

Show that any 2-vector $A$ can be written as $A=\sum_{i=1}^{n}\lambda_{i}\mathbf{a}_{i}\wedge\mathbf{b}_{i}$,
where the set $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
is orthonormal.

\emph{Outline of solution}: Consider the complexified vector space
$V\otimes\mathbb{C}$ in which a Hermitian scalar product is defined;
extend $\hat{A}$ into that space, and show that $\hat{A}$ is anti-Hermitian.
Then $\hat{A}$ is diagonalizable and has all imaginary eigenvalues.
However, the operator $\hat{A}$ is real; therefore, its eigenvalues
come in pairs of complex conjugate imaginary values $\left\{ \text{i}\lambda_{1},-\text{i}\lambda_{1},...,\text{i}\lambda_{n},-\text{i}\lambda_{n}\right\} $.
The corresponding eigenvectors $\left\{ \mathbf{v}_{1},\bar{\mathbf{v}}_{1},...,\mathbf{v}_{n},\bar{\mathbf{v}}_{n}\right\} $
are orthogonal and can be rescaled so that they are orthonormal. Further,
we may choose these vectors such that $\bar{\mathbf{v}}_{i}$ is the
vector complex conjugate to $\mathbf{v}_{i}$. The tensor representation
of $\hat{A}$ is \[
\hat{A}=\sum_{i=1}^{n}\text{i}\lambda_{i}\left(\mathbf{v}_{i}\otimes\mathbf{v}_{i}^{*}-\bar{\mathbf{v}}_{i}\otimes\bar{\mathbf{v}}_{i}^{*}\right),\]
where $\left\{ \mathbf{v}_{i}^{*},\bar{\mathbf{v}}_{i}^{*}\right\} $
is the basis dual to $\left\{ \mathbf{v}_{i},\bar{\mathbf{v}}_{i}\right\} $.
We now define the vectors\[
\mathbf{a}_{i}\equiv\frac{\mathbf{v}_{i}+\bar{\mathbf{v}}_{i}}{\sqrt{2}},\quad\mathbf{b}_{i}\equiv\frac{\mathbf{v}_{i}-\bar{\mathbf{v}}_{i}}{\text{i}\sqrt{2}},\]
and verify that \[
\hat{A}\mathbf{a}_{i}=-\lambda_{i}\mathbf{b}_{i},\quad\hat{A}\mathbf{b}_{i}=\lambda_{i}\mathbf{a}_{i}\quad(i=1,...,n).\]
Furthermore, the set of vectors $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
is orthonormal, and all the vectors $\mathbf{a}_{i}$, $\mathbf{b}_{i}$
are real. Therefore, we can represent $\hat{A}$ in the original space
$V$ by the 2-vector\[
A\equiv\sum_{i=1}^{n}\lambda_{i}\left(\mathbf{a}_{i}\wedge\mathbf{b}_{i}\right).\]
 The set $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
yields the solution to the problem.


\section{{*} Pfaffians }

The Pfaffian is a construction analogous to the determinant, except
that it applies only to antisymmetric operators in even-dimen\-sion\-al
spaces with a scalar product.


\paragraph{Definition:}

If $\hat{A}$ is an antisymmetric operator in $V$ and $N\equiv\dim V$
is even, the \textbf{Pfaffian}\index{Pfaffian} of $\hat{A}$ is the
number $\textrm{Pf }\hat{A}$ defined (up to a sign) as the constant
factor in the tensor equality\[
(\textrm{Pf }\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}=\frac{1}{(N/2)!}\underbrace{A\wedge...\wedge A}_{N/2}=\frac{1}{(N/2)!}\bigwedge_{k=1}^{N/2}A,\]
where $\left\{ \mathbf{e}_{1},...,\mathbf{e}_{N}\right\} $ is an
\emph{orthonormal} basis in $V$ and $A\in\wedge^{2}V$ is the tensor
corresponding to the operator $\hat{A}$. (Note that both sides in
the equation above are tensors from $\wedge^{N}V$.)


\paragraph{Remark:}

The sign of the Pfaffian depends on the orientation of the orthonormal
basis. Other than that, the Pfaffian does not depend on the choice
of the orthonormal basis $\left\{ \mathbf{e}_{j}\right\} $. If this
ambiguity is not desired, one could consider a \emph{tensor-valued}
Pfaffian, $A\wedge...\wedge A\in\wedge^{N}V$; this tensor does not
depend on the choice of the orientation of the orthonormal basis.
This is quite similar to the ambiguity of the definition of volume
and to the possibility of defining an unambiguous but tensor-valued
{}``oriented volume.'' However, it is important to note that $\left\{ \mathbf{e}_{j}\right\} $
must be a positively oriented \emph{orthonormal} basis; if we change
to an arbitrary basis, the tensor $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$
will be multiplied by some number not equal to $\pm1$, which will
make the definition of $\text{Pf}\,\hat{A}$ impossible. 


\paragraph{Question:}

Can we define the Pfaffian of an operator if we do not have a scalar
product in $V$? Can we define the Pfaffian of an antisymmetric matrix?


\subparagraph{Answer:}

We need a scalar product in order to map an operator $\hat{A}\in\text{End}V$
to a bivector $A\in\wedge^{2}V$; this is central in the construction
of the Pfaffian. If we know that an operator $\hat{A}$ is antisymmetric
with respect to \emph{some} scalar product (i.e.~if we know that
such a scalar product \emph{exists}) then we can use that scalar product
in order to define the Pfaffian of $\hat{A}$. In the language of
matrices: If an antisymmetric matrix is given, we can postulate that
this matrix represents an operator in some basis; then we can introduce
a scalar product such that this basis is orthonormal, so that this
operator is an antisymmetric operator with respect to this scalar
product; and then the Pfaffian can be defined.\hfill{}$\blacksquare$

To make the correspondence between operators and bivectors more visual,
let us represent operators by their matrices in an orthonormal basis.
Antisymmetric operators are then represented by antisymmetric matrices. 


\paragraph{Examples:}

First we consider a \emph{two}-dimen\-sion\-al space $V$. Any $2\times2$
antisymmetric matrix $\hat{A}$ is necessarily of the form $\hat{A}=\left(\begin{array}{cc}
0 & a\\
-a & 0\end{array}\right)$, where $a$ is some number; the determinant of $\hat{A}$ is then
$a^{2}$. Let us compute the Pfaffian of $\hat{A}$. We find the representation
of $\hat{A}$ as an element of $\wedge^{2}V$ as follows, $\hat{A}=a\mathbf{e}_{1}\wedge\mathbf{e}_{2}$,
and hence $\text{Pf }\hat{A}=a$. We note that the determinant is
equal to the square of the Pfaffian.

Let us now consider a four-dimen\-sion\-al space $V$ and a $4\times4$
antisymmetric matrix; such a matrix must be of the form\[
\hat{B}=\left(\begin{array}{cccc}
0 & a & b & c\\
-a & 0 & x & y\\
-b & -x & 0 & z\\
-c & -y & -z & 0\end{array}\right),\]
where the numbers $a,b,c,x,y,z$ are arbitrary. Let us compute the
Pfaffian and the determinant of the operator represented by this matrix.
We find the representation of $\hat{B}$ as an element of $\wedge^{2}V$
as follows, \begin{align*}
\hat{B} & =a\mathbf{e}_{1}\wedge\mathbf{e}_{2}+b\mathbf{e}_{1}\wedge\mathbf{e}_{3}+c\mathbf{e}_{1}\wedge\mathbf{e}_{4}\\
 & \;+x\mathbf{e}_{2}\wedge\mathbf{e}_{3}+y\mathbf{e}_{2}\wedge\mathbf{e}_{4}+z\mathbf{e}_{3}\wedge\mathbf{e}_{4}.\end{align*}
Therefore,\[
\frac{1}{2!}\hat{B}\wedge\hat{B}=\left(az-by+cx\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{4}.\]
(Note that the factor $\frac{1}{2!}$ cancels the combinatorial factor\index{combinatorial factor}
2 resulting from the antisymmetry of the exterior product.) Hence,
$\text{Pf }\hat{B}=az-by+cx$.


\paragraph{Exercise:}

Compute the determinant of $\hat{B}$ in the example above; show that
\begin{align*}
\det\hat{B} & =a^{2}z^{2}-2abyz+b^{2}y^{2}-2bcxy+c^{2}x^{2}+2acxz.\end{align*}
We see that, again, the determinant is equal to the square of the
Pfaffian (which is easier to compute).


\paragraph{Remark:}

The factor $1/(N/2)!$ used in the definition of the Pfaffian is a
combinatorial factor\index{combinatorial factor}. This factor could
be inconvenient if we were calculating in a finite number field where
one cannot divide by $(N/2)!$. This inconvenience can be avoided
if we define the Pfaffian of a tensor $A=\mathbf{v}_{1}\wedge\mathbf{v}_{2}+...+\mathbf{v}_{n-1}\wedge\mathbf{v}_{n}$
as zero if $n<N$ and as the coefficient in the tensor equality \[
\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}{\lyxbuildrel!\above=}(\text{Pf }\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\]
 if $n=N$. For example, consider the tensor \[
A=\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\]
in a four-dimen\-sion\-al space ($N=4$). We compute \begin{align*}
A\wedge A & =\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)\wedge\left(\mathbf{a}\wedge\mathbf{b}+\mathbf{c}\wedge\mathbf{d}\right)\\
 & =0+\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}+\mathbf{c}\wedge\mathbf{d}\wedge\mathbf{a}\wedge\mathbf{b}+0\\
 & =2\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}.\end{align*}
It is clear that the factor $2=\left(N/2\right)!$ arises due to the
presence of 2 possible permutations of the two tensors $\mathbf{a}\wedge\mathbf{b}$
and $\mathbf{c}\wedge\mathbf{d}$ and is therefore a \emph{combinatorial}
\emph{factor}\index{combinatorial factor}. We can avoid the division
by 2 in the definition of the Pfaffian if we consider the tensor $\mathbf{a}\wedge\mathbf{b}\wedge\mathbf{c}\wedge\mathbf{d}$
right away, instead of dividing $A\wedge A$ by 2.\hfill{}$\blacksquare$


\subsection{Determinants are Pfaffians squared\label{sub:Determinants-are-Pfaffians}}

In the examples in the previous section, we have seen that the determinant
turned out to be equal to the square of the Pfaffian of the same operator.
We will now prove this correspondence in the general case.


\paragraph{Theorem:}

Given a linear operator $\hat{A}$ in an even-dimen\-sion\-al space
$V$ where a scalar product is defined, and given that the operator
$\hat{A}$ is antisymmetric with respect to that scalar product, we
have \[
(\textrm{Pf }\hat{A})^{2}=\det\hat{A}.\]



\subparagraph{Proof:}

We know that the tensor $A\in\wedge^{2}V$ corresponding to the operator
$\hat{A}$ can be written in the form\[
A=\mathbf{v}_{1}\wedge\mathbf{v}_{2}+...+\mathbf{v}_{n-1}\wedge\mathbf{v}_{k},\]
where the set of vectors $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
is linearly independent (Statement~2 in Sec.~\ref{sub:Antisymmetric-operators-and})
and $k\leq N$ is an even number. 

We begin by considering the case $k<N$. In this case the exterior
product $A\wedge...\wedge A$ (where $A$ is taken $N/2$ times) will
be equal to zero because there are only $k$ different vectors in
that exterior product, while the total number of vectors is $N$,
so at least two vectors $\mathbf{v}_{i}$ must be repeated. Also $\det\hat{A}=0$
in this case; this can be shown explicitly by completing $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
to a basis $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k},\mathbf{e}_{k+1},...,\mathbf{e}_{N}\right\} $
such that all $\mathbf{e}_{j}$ are orthogonal to all $\mathbf{v}_{i}$.
(This can be done by first completing $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{k}\right\} $
to a basis and then applying the Gram-Schmidt orthogonalization procedure
to the vectors $\mathbf{e}_{j}$, $j=k+1,...,N$.) Then we will have
$\hat{A}\mathbf{e}_{j}=0$ ($j=k+1,...,N$). Acting with $\wedge^{N}\hat{A}^{N}$
on the tensor $\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N}$,
we find \[
(\wedge^{N}\hat{A}^{N})(\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{k}\wedge\mathbf{e}_{k+1}\wedge...\wedge\mathbf{e}_{N})=...\wedge\hat{A}\mathbf{e}_{N}=0\]
and hence $\det\hat{A}=0$. Thus $(\text{Pf }\hat{A})^{2}=0=\det\hat{A}$,
and there is nothing left to prove in case $k<N$.

It remains to consider the interesting case $k=N$. In this case,
the set $\left\{ \mathbf{v}_{1},...,\mathbf{v}_{N}\right\} $ is a
basis in $V$. The Pfaffian $\text{Pf }\hat{A}$ is the coefficient
in the tensor equality\[
\frac{1}{(N/2)!}\bigwedge_{k=1}^{N/2}A=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}{\lyxbuildrel!\above=}(\text{Pf }\hat{A})\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N},\]
where $\left\{ \mathbf{e}_{j}\right\} $ is an orthonormal basis.
In other words, $\text{Pf }\hat{A}$ is the (oriented) volume of the
parallelepiped spanned by the vectors $\left\{ \mathbf{v}_{j}\,|\, j=1,...,N\right\} $,
if we assume that the vectors $\left\{ \mathbf{e}_{j}\right\} $ span
a unit volume. Now it is clear that $\text{Pf }\hat{A}\neq0$.

Let us denote by $\left\{ \mathbf{v}_{j}^{*}\right\} $ the dual basis
to $\left\{ \mathbf{v}_{j}\right\} $. Due to the one-to-one correspondence
between vectors and covectors, we map $\left\{ \mathbf{v}_{j}^{*}\right\} $
into the reciprocal basis $\left\{ \mathbf{u}_{j}\right\} $. We now
apply the operator $\hat{A}$ to the reciprocal basis $\left\{ \mathbf{u}_{j}\right\} $
and find by a direct calculation (using the property $\left\langle \mathbf{v}_{i},\mathbf{u}_{j}\right\rangle =\delta_{ij}$)
that $\hat{A}\mathbf{u}_{1}=-\mathbf{v}_{2}$, $\hat{A}\mathbf{u}_{2}=\mathbf{v}_{1}$,
and so on. Hence\begin{align*}
\hat{A}\mathbf{u}_{1}\wedge...\wedge\hat{A}\mathbf{u}_{N} & =(-\mathbf{v}_{2})\wedge\mathbf{v}_{1}\wedge...\wedge(-\mathbf{v}_{N})\wedge\mathbf{v}_{N-1}\\
 & =\mathbf{v}_{1}\wedge\mathbf{v}_{2}\wedge...\wedge\mathbf{v}_{N}.\end{align*}
 It follows that $\det\hat{A}$ is the coefficient in the tensor equality
\begin{equation}
\hat{A}\mathbf{u}_{1}\wedge...\wedge\hat{A}\mathbf{u}_{N}=\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}{\lyxbuildrel!\above=}(\det\hat{A})\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}.\label{eq:pfaff1}\end{equation}
In particular, $\det\hat{A}\neq0$.

In order to prove the desired relationship between the determinant
and the Pfaffian, it remains to compute the volume spanned by the
dual basis $\left\{ \mathbf{u}_{j}\right\} $, so that the tensor
$\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}$ can be related to $\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}$.
By Statement~2 in Sec.~\ref{sub:Reciprocal-basis}, the volume spanned
by $\left\{ \mathbf{u}_{j}\right\} $ is the inverse of the volume
spanned by $\left\{ \mathbf{v}_{j}\right\} $. Therefore the volume
spanned by $\left\{ \mathbf{u}_{j}\right\} $ is equal to $1/\text{Pf }\hat{A}$.
Now we can compute the Pfaffian of $\hat{A}$ using \[
\mathbf{u}_{1}\wedge...\wedge\mathbf{u}_{N}=(\text{Pf }\hat{A})^{-1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}\]
 together with Eq.~(\ref{eq:pfaff1}):\begin{align*}
\text{Pf }\hat{A} & =\frac{\mathbf{v}_{1}\wedge...\wedge\mathbf{v}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}=\frac{(\det\hat{A})(\text{Pf }\hat{A})^{-1}\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{N}}\\
 & =(\det\hat{A})(\text{Pf }\hat{A})^{-1}.\end{align*}
Hence $\det\hat{A}=(\text{Pf }\hat{A})^{2}$.\hfill{}$\blacksquare$


\subsection{Further properties}

Having demonstrated the techniques of working with antisymmetric operators
and Pfaffians, I propose to you the following exercises that demonstrate
some other properties of Pfaffians. These exercises conclude this
book.


\paragraph{Exercise 1:}

Let $\hat{A}$ be an antisymmetric operator; let $\hat{B}$ be an
arbitrary operator. Prove that $\text{Pf }(\hat{B}\hat{A}\hat{B}^{T})=\det(\hat{B})\text{Pf }\hat{A}$.

\emph{Hint}: If $\hat{A}$ corresponds to the bivector $A=\mathbf{v}_{1}\wedge\mathbf{v}_{2}+...+\mathbf{v}_{k-1}\wedge\mathbf{v}_{k}$,
show that $\hat{B}\hat{A}\hat{B}^{T}$ corresponds to the bivector
$\hat{B}\mathbf{v}_{1}\wedge\hat{B}\mathbf{v}_{2}+...+\hat{B}\mathbf{v}_{k-1}\wedge\hat{B}\mathbf{v}_{k}$.


\paragraph{Exercise 2:}

Let $\hat{A}$ be an antisymmetric operator such that $\det\hat{A}\neq0$;
let $\left\{ \mathbf{e}_{i}\,|\, i=1,...,2n\right\} $ be a given
orthonormal basis. Prove that there exists an operator $\hat{B}$
such that the operator $\hat{B}\hat{A}\hat{B}^{T}$ is represented
by the bivector $\mathbf{e}_{1}\wedge\mathbf{e}_{2}+...+\mathbf{e}_{2n-1}\wedge\mathbf{e}_{2n}$.
Deduce that $\det\hat{A}=(\text{Pf }\hat{A})^{2}$.

\emph{Hint}: This is a paraphrase of the proof of Theorem~\ref{sub:Determinants-are-Pfaffians}.
Use the previous exercise and represent $\hat{A}$ by the bivector
$\mathbf{v}_{1}\wedge\mathbf{v}_{2}+...+\mathbf{v}_{2n-1}\wedge\mathbf{v}_{2n}$,
where the set $\left\{ \mathbf{v}_{i}\right\} $ is a basis. Define
$\hat{B}$ as a map $\mathbf{e}_{i}\mapsto\mathbf{v}_{i}$; then $\hat{B}^{-1}$
exists and maps $\mathbf{v}_{i}\mapsto\mathbf{e}_{i}$. Show that
$\text{Pf}\,\hat{A}=1/(\det\hat{B})$.


\paragraph{Exercise 3:}

Use the result of Exercise~5 in Sec.~\ref{sub:Antisymmetric-operators-and}
to prove that $\det\hat{A}=(\text{Pf }\hat{A})^{2}$.

\emph{Hint}: For an operator $\hat{A}=\sum_{i=1}^{n}\lambda_{i}\mathbf{a}_{i}\wedge\mathbf{b}_{i}$,
where $\left\{ \mathbf{a}_{1},\mathbf{b}_{1},...,\mathbf{a}_{n},\mathbf{b}_{n}\right\} $
is a positively oriented \emph{orthonormal} basis and $2n\equiv N$,
show that $\text{Pf }\hat{A}=\lambda_{1}...\lambda_{n}$ and $\det\hat{A}=\lambda_{1}^{2}...\lambda_{n}^{2}$.


\paragraph{Exercise 4:{*}}

An operator $\hat{A}$ is antisymmetric and is represented in some
orthonormal basis by a block matrix of the form\[
\hat{A}=\left(\begin{array}{cc}
0 & \hat{M}\\
-\hat{M}^{T} & 0\end{array}\right),\]
where $\hat{M}$ is an arbitrary $n$-dimen\-sion\-al matrix. Show
that \[
\text{Pf }\hat{A}=(-1)^{\frac{1}{2}n(n-1)}\det\hat{M}.\]


\emph{Solution}: We need to represent $\hat{A}$ by a bivector from
$\wedge^{2}V$. The given form of the matrix $\hat{A}$ suggests that
we consider the splitting of the space $V$ into a direct sum of two
orthogonal $n$-dimen\-sion\-al subspaces, $V=U_{1}\oplus U_{2}$,
where $U_{1}$ and $U_{2}$ are two copies of the same $n$-dimen\-sion\-al
space $U$. A scalar product in $U$ is defined naturally (by restriction),
given the scalar product in $V$. We will denote by $\left\langle \cdot,\cdot\right\rangle $
the scalar product in $U$. The given matrix form of $\hat{A}$ means
that we have a given operator $\hat{M}\in\text{End}\, U$ such that
$\hat{A}$ acts on vectors from $V$ as\begin{equation}
\hat{A}\left(\mathbf{v}_{1}\oplus\mathbf{v}_{2}\right)=(\hat{M}\mathbf{v}_{2})\oplus(-\hat{M}^{T}\mathbf{v}_{1}),\quad\mathbf{v}_{1},\mathbf{v}_{2}\in U.\label{eq:A action v1v2}\end{equation}
We can choose an orthonormal basis $\left\{ \mathbf{c}_{i}\,|\, i=1,...,n\right\} $
in $U$ and represent the operator $\hat{M}$ through some suitable
vectors $\left\{ \mathbf{m}_{i}|\, i=1,...,n\right\} $ (not necessarily
orthogonal) such that \[
\hat{M}\mathbf{u}=\sum_{i=1}^{n}\mathbf{m}_{i}\left\langle \mathbf{c}_{i},\mathbf{u}\right\rangle ,\quad\mathbf{u}\in U.\]
Note that the vectors $\mathbf{m}_{i}$ are found from $\hat{M}\mathbf{c}_{i}=\mathbf{m}_{i}$.
It follows that $\hat{M}^{T}\mathbf{u}=\sum_{i=1}^{n}\mathbf{c}_{i}\left\langle \mathbf{m}_{i},\mathbf{u}\right\rangle $.
Using Eq.~(\ref{eq:A action v1v2}), we can then write the tensor
representation of $\hat{A}$ as\[
\hat{A}=\sum_{i=1}^{n}\left[(\mathbf{m}_{i}\oplus0)\otimes(0\oplus\mathbf{c}_{i})^{*}-(0\oplus\mathbf{c}_{i})\otimes(\mathbf{m}_{i}\oplus0)^{*}\right].\]
 Hence, $\hat{A}$ can be represented by the 2-vector \[
A=\sum_{i=1}^{n}(\mathbf{m}_{i}\oplus0)\wedge(0\oplus\mathbf{c}_{i})\in\wedge^{2}V.\]
The Pfaffian of $\hat{A}$ is then found from \[
\text{Pf }\hat{A}=\frac{(\mathbf{m}_{1}\oplus0)\wedge(0\oplus\mathbf{c}_{1})\wedge...\wedge(\mathbf{m}_{n}\oplus0)\wedge(0\oplus\mathbf{c}_{n})}{\mathbf{e}_{1}\wedge...\wedge\mathbf{e}_{2n}},\]
where $\left\{ \mathbf{e}_{i}\,|\, i=1,...,2n\right\} $ is an orthonormal
basis in $V$. We can choose this basis as $\mathbf{e}_{i}=\mathbf{c}_{i}\oplus0$,
$\mathbf{e}_{n+i}=0\oplus\mathbf{c}_{i}$ (for $i=1,...,n$). By introducing
the sign factor $(-1)^{\frac{1}{2}n(n-1)}$, we may rearrange the
exterior products so that all $\mathbf{m}_{i}$ are together. Hence\begin{align*}
 & \text{Pf }\hat{A}=(-1)^{\frac{1}{2}n(n-1)}\\
 & \quad\times\frac{(\mathbf{m}_{1}\oplus0)\wedge...\wedge(\mathbf{m}_{n}\oplus0)\wedge(0\oplus\mathbf{c}_{1})\wedge...\wedge(0\oplus\mathbf{c}_{n})}{\left(\mathbf{c}_{1}\oplus0\right)\wedge...\wedge(\mathbf{c}_{n}\oplus0)\wedge\left(0\oplus\mathbf{c}_{1}\right)\wedge...\wedge(0\oplus\mathbf{c}_{n})}.\end{align*}
Vectors corresponding to different subspaces can be factorized, and
then the factors containing $0\oplus\mathbf{c}_{i}$ can be canceled:\begin{align*}
\text{Pf }\hat{A} & =(-1)^{\frac{1}{2}n(n-1)}\frac{\mathbf{m}_{1}\wedge...\wedge\mathbf{m}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}\frac{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}\\
 & =(-1)^{\frac{1}{2}n(n-1)}\frac{\mathbf{m}_{1}\wedge...\wedge\mathbf{m}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}.\end{align*}
Finally, we have \[
\frac{\mathbf{m}_{1}\wedge...\wedge\mathbf{m}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}=\frac{\hat{M}\mathbf{c}_{1}\wedge...\wedge\hat{M}\mathbf{c}_{n}}{\mathbf{c}_{1}\wedge...\wedge\mathbf{c}_{n}}=\det\hat{M}.\]
This concludes the calculation.\hfill{}$\blacksquare$

\appendix

\chapter{Complex numbers\label{sec:Complex-numbers}}

This appendix is a crash course on complex numbers.


\section{Basic definitions}

A \textbf{complex number} is a formal expression $a+\text{i}b$, where
$a,b$ are real numbers. In other words, a complex number is simply
a pair $\left(a,b\right)$ of real numbers, written in a more convenient
notation as $a+\text{i}b$. One writes, for example, $2+\text{i}3$
or $2+3\text{i}$ or $3+\text{i}$ or $-5\text{i}-8$, etc. The \textbf{imaginary}
\textbf{unit}, denoted {}``$\text{i}$'', is not a real number;
it is a symbol which has the property $\text{i}^{2}=-1$. Using this
property, we can apply the usual algebraic rules to complex numbers;
this is emphasized by the algebraic notation $a+\text{i}b$. For instance,
we can add and multiply complex numbers,\begin{align*}
\left(1+\text{i}\right)+5\text{i} & =1+6\text{i};\\
\left(1-\text{i}\right)\left(2+\text{i}\right) & =2-2\text{i}+\text{i}-\text{i}^{2}\\
 & =3-\text{i};\\
\text{i}^{3} & =\text{i}\text{i}^{2}=-\text{i}.\end{align*}
It is straightforward to see that the result of any arithmetic operation
on complex numbers turns out to be again a complex number. In other
words, one can multiply, divide, add, subtract complex numbers just
as directly as real numbers. 

The set of all complex numbers is denoted by $\mathbb{C}$. The set
of all real numbers is $\mathbb{R}$.


\paragraph{Exercise:}

Using directly the definition of the imaginary unit, compute the following
complex numbers. \[
\frac{1}{\text{i}}=?\quad\text{i}^{4}=?\quad\text{i}^{5}=?\quad\left(\frac{1}{2}+\frac{\text{i}\sqrt{3}}{2}\right)^{3}=?\]


The complex number $a-\text{i}b$ is called \textbf{complex} \textbf{conjugate}
to $a+\text{i}b$. Conjugation is denoted either with an overbar or
with a star superscript, \[
z=a+\text{i}b,\quad\bar{z}=z^{*}=a-\text{i}b,\]
according to convenience. Note that\[
zz^{*}=\left(a+\text{i}b\right)\left(a-\text{i}b\right)=a^{2}+b^{2}\in\mathbb{R}.\]


In order to divide by a complex number more easily, one multiplies
the numerator and the denominator by the complex conjugate number,
e.g. \[
\frac{1}{3+\text{i}}=?=\frac{1}{3+\text{i}}\cdot\frac{3-\text{i}}{3-\text{i}}=\frac{3-\text{i}}{9-\text{i}^{2}}=\frac{3-\text{i}}{10}=\frac{3}{10}-\frac{1}{10}\text{i}.\]
 


\paragraph{Exercise:}

Compute the following complex numbers, \[
\frac{1-\text{i}}{1+\text{i}}=?\quad\frac{1-\text{i}}{4+\text{i}}-\frac{1+\text{i}}{4-\text{i}}=?\quad\frac{1}{a+\text{i}b}=?\]
where $a,b\in\mathbb{R}$.\hfill{}$\blacksquare$

Another view of complex numbers is that they are linear polynomials
in the formal variable {}``i.'' Since we may replace $\text{i}^{2}$
by $-1$ and $\text{i}^{-1}$ by $-\text{i}$ wherever any power of
{}``i'' appears, we can reduce any power series in i and/or in $\text{i}^{-1}$
to a linear combination of 1 and i.

If $z=a+\text{i}b$ where $a,b\in\mathbb{R}$ then $a$ is called
the \textbf{real part}, $\text{Re}\, z$, and $b$ is the \textbf{imaginary
part}, $\text{Im}\, z$. In other words, \[
\text{Re}\,\left(a+\text{i}b\right)=a,\quad\text{Im}\,\left(a+\text{i}b\right)=b.\]
 The \textbf{absolute} \textbf{value} or \textbf{modulus} of $z=a+\text{i}b$
is the real number $\left|z\right|\equiv\sqrt{a^{2}+b^{2}}$. 


\paragraph{Exercise:}

Compute \[
\text{Re}\left[\left(2+\text{i}\right)^{2}\right]=?\quad\left|3+4\text{i}\right|=?\]
Prove that \begin{align*}
\text{Re}\, z & =\frac{z+\bar{z}}{2};\quad\text{Im}\, z=\frac{z-\bar{z}}{2\text{i}};\quad\left|z\right|^{2}=z\bar{z};\\
\left|z\right| & =\left|\bar{z}\right|;\quad\left|z_{1}z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|;\quad\left(z_{1}z_{2}\right)^{*}=z_{1}^{*}z_{2}^{*}\end{align*}
for any complex numbers $z$, $z_{1}$, $z_{2}\in\mathbb{C}$. 


\section{Geometric representation }

Let us draw a complex number $z=x+\text{i}y$ as a point with coordinates
$\left(x,y\right)$ in the Euclidean plane, or a vector with real
components $\left(x,y\right)$. You can check that the sum $z_{1}+z_{2}$
and the product of $z$ with a real number $\lambda$, that is $z\mapsto z\lambda$,
correspond to the familiar operations of adding two vectors and multiplying
a vector by a scalar. Also, the absolute value $\left|z\right|$ is
equal to the \emph{length} of the two-dimen\-sion\-al vector $\left(x,y\right)$
as computed in the usual Euclidean space. 


\paragraph{Exercise:}

Show that the multiplication of $z=x+\text{i}y$ by a complex number
$r\equiv\cos\phi+\text{i}\sin\phi$ corresponds to rotating the vector
$\left(x,y\right)$ by angle $\phi$ counterclockwise (assuming that
the $x$ axis is horizontal and points to the right, and the $y$
axis points vertically upwards). Show that $\left|rz\right|=\left|z\right|$,
which corresponds to the fact that the length of a vector does not
change after a rotation.


\section{Analytic functions}

\textbf{Analytic} functions are such functions $f(x)$ that can be
represented by a power series $f(x)=\sum_{n=0}^{\infty}c_{n}x^{n}$
with some coefficients $c_{n}$ such that the series converges at
least for some real $x$. In that case, the series will converge also
for some complex $x$. In this sense, analytic functions are naturally
extended from real to complex numbers. For example, $f(x)=x^{2}+1$
is an analytic function; it can be computed just as well for any complex
$x$ as for real $x$. 

An example of a non-analytic function is the \textbf{Heaviside step
function}\index{Heaviside step function}\[
\theta(x)=\begin{cases}
0, & x<0;\\
1, & x\geq0.\end{cases}\]
This function cannot be represented by a power series and thus cannot
be naturally extended to complex numbers. In other words, there is
no useful way to define the value of, say, $\theta(2\text{i})$. On
the other hand, functions such as $\cos x$, $\sqrt{x}$, $x/\ln x$,
$\int_{0}^{x}e^{-t^{2}}dt$, and so on, are analytic and can be evaluated
for complex $x$. 


\paragraph{Exercise:}

Compute $\left(1+2\text{i}\right)\left(1+3\text{i}\right)$ and $\left(1-2\text{i}\right)\left(1-3\text{i}\right)$.
What did you notice? Prove that $f(z^{*})=\left[f(z)\right]^{*}$
for any analytic function $f(z)$. 


\paragraph{Remark:}

Although $\sqrt{x}$ has no power series expansion at $x=0$, it has
a Taylor expansion at $x=1$, which is sufficient for analyticity;
one can also define $\sqrt{z}$ for complex $z$ through the property
$\left(\sqrt{z}\right)^{2}=z$.


\paragraph{Exercise:}

Derive an explicit formula for the square root of a complex number,
$\sqrt{a+\text{i}b}$, where $a,b\in\mathbb{R}$.

\emph{Hint}: Write $\sqrt{a+\text{i}b}=x+\text{i}y$, square both
sides, and solve for $x$ and $y$.


\subparagraph{Answer:}

\[
\sqrt{a+\text{i}b}=\pm\left[\sqrt{\frac{\sqrt{a^{2}+b^{2}}+a}{2}}+\text{i}\,\text{sign}(b)\sqrt{\frac{\sqrt{a^{2}+b^{2}}-a}{2}}\right],\]
where $\text{sign}(b)=1,0,-1$ when $b$ is positive, zero, or negative.
Note that this formula may be rewritten for quicker calculation as\[
\sqrt{a+\text{i}b}=\pm\left(r+\text{i}\frac{b}{2r}\right),\quad r\equiv\sqrt{\frac{\sqrt{a^{2}+b^{2}}+a}{2}}.\]
(In this formula, the square roots in the definition of $r$ are purely
real and positive.)




\section{Exponent and logarithm}

The exponential function and the logarithmic function are analytic
functions.

The \textbf{exponential} function is defined through the power series\[
e^{z}\equiv\exp z\equiv1+\frac{1}{1!}z+\frac{1}{2!}z^{2}+...=\sum_{n=0}^{\infty}\frac{z^{n}}{n!}.\]
This series converges for all complex $z$.


\paragraph{Exercise:}

Verify the \textbf{Euler} \textbf{formula}\index{Euler formula},
\[
e^{\text{i}\phi}=\cos\phi+\text{i}\sin\phi,\quad\phi\in\mathbb{R},\]
by using the known Taylor series for $\sin x$ and $\cos x$. Calculate:
\[
e^{2\text{i}}=?\quad e^{\pi\text{i}}=?\quad e^{\frac{1}{2}\pi\text{i}}=?\quad e^{2\pi\text{i}}=?\]



\paragraph{Exercise:}

Use the identity $e^{a+b}=e^{a}e^{b}$, which holds also for complex
numbers $a,b$, to show that\[
e^{a+\text{i}b}=e^{a}\left(\cos b+\text{i}\sin b\right),\quad a,b\in\mathbb{R}.\]
Calculate:\[
\exp\left[\ln2+\frac{\pi}{2}\text{i}\right]=?\quad\exp\left[1+\pi\text{i}\right]=?\quad\cos\left(\frac{1}{2}\pi\text{i}\right)=?\]


The \textbf{logarithm} of a complex number $z$ is a complex number
denoted $\ln z$ such that $e^{\ln z}=z$. It is easy to see that
\[
\exp\left[z+2\pi\text{i}\right]=\exp z,\quad z\in\mathbb{C},\]
in other words, the logarithm is defined only up to adding $2\pi\text{i}$.
So the logarithm (at least in our simple-minded approach here) is
not a single-valued function. For example, we have $\ln\left(-1\right)=\pi\text{i}$
or $3\pi\text{i}$ or $-\pi\text{i}$, so one can write \[
\ln\left(-1\right)=\left\{ \pi\text{i}+2\pi n\text{i}\,|\, n\in\mathbb{Z}\right\} .\]



\paragraph{Exercise:}

a) Calculate:\[
\ln\text{i}=?\quad\ln\left(-8\text{i}\right)=?\]


b) Show that the geometric or \textbf{polar} representation of a complex
number $z=x+\text{i}y=\rho e^{\text{i}\phi}$ can be computed using
the logarithm:\[
\rho=\exp\left(\text{Re}\,\ln z\right)=\left|z\right|,\quad\phi=\text{Im}\,\ln z=\arctan\frac{y}{x}.\]
Determine the polar representation of the following complex numbers:
$z_{1}=2+2\text{i},\quad z_{2}=\sqrt{3}+\text{i}$. Calculate also
$\ln z_{1}$ and $\ln z_{2}$.

c) \textbf{Powers} of a complex number can be defined by $z^{x}\equiv\exp\left[x\ln z\right]$.
Here $x$ can be also a complex number! As a rule, $z^{x}$ is not
uniquely defined (unless $x$ is a real integer). Calculate: \[
\sqrt{\text{i}}=?\quad\sqrt{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\text{i}\right)}=?\quad\sqrt[6]{-1}=?\quad\text{i}^{\text{i}}=?\quad3^{2\pi\text{i}}=?\]



\chapter{Permutations\label{sub:Properties-of-permutations}}

In this appendix I briefly review some basic properties of permutations.

We consider the ordered set $(1,...,N)$ of integers. A \textbf{permutation}\index{permutation}
of the set $(1,...,N)$ is a map $\sigma:(1,...,N)\mapsto(k_{1},...,k_{N})$
where the $k_{j}$ are all different and again range from 1 to $N$.
In other words, a permutation $\sigma$ is a one-to-one map of the
set $(1,...,N)$ to itself. For example,\[
\sigma:\left(1,2,3,4,5\right)\mapsto\left(4,1,5,3,2\right)\]
 is a permutation of the set of five elements.

We call a permutation \textbf{elementary}\index{elementary permutation}
if it exchanges only two adjacent numbers, for example $\left(1,2,3,4\right)\mapsto\left(1,3,2,4\right)$.
The \textbf{identity} permutation, denoted by $\text{id}$, does not
permute anything. Two permutations $\sigma_{1}$ and $\sigma_{2}$
can be executed one after another; the result is also a permutation
called the \textbf{product} (composition) of the elementary permutations
$\sigma_{1}$ and $\sigma_{2}$ and denoted $\sigma_{2}\sigma_{1}$
(where $\sigma_{1}$ is executed first, and then $\sigma_{2}$). For
example, the product of $\left(1,2,3\right)\mapsto\left(1,3,2\right)$
and $\left(1,2,3\right)\mapsto\left(2,1,3\right)$ is $\left(1,2,3\right)\mapsto\left(3,1,2\right)$.
The effect of this (non-elementary) permutation is to move 3 through
1 and 2 into the first place. Note that in this way we can move any
number into any other place; for that, we need to use as many elementary
permutations as places we are passing through.

The set of all permutations of $N$ elements is a group with respect
to the product of permutations. This group is not commutative. 

For brevity, let us write EP for {}``elementary permutation.'' Note
that $\sigma\sigma=\text{id}$ when $\sigma$ is an EP. Now we will
prove that the permutation group is generated by EPs.


\paragraph{Statement 1:}

Any permutation can be represented as a product of some finite number
of EPs. 


\subparagraph{Proof: }

Suppose $\sigma:\left(1,...,N\right)\mapsto\left(k_{1},...,k_{N}\right)$
is a given permutation. Let us try to reduce it to EPs. If $k_{1}\neq1$
then 1 is somewhere among the $k_{i}$, say at the place $i_{1}$.
We can move 1 from the $i_{1}$-th place to the first place by executing
a product of $i_{1}-1$ EPs (since we pass through $i_{1}-1$ places).
Then we repeat the same operation with 2, moving it to the second
place, and so on. The result will be that we obtain some (perhaps
a large number of) EPs $\sigma_{1}$, ..., $\sigma_{n}$, such that
$\sigma_{1}...\sigma_{n}\sigma=\text{id}$. Using the property $\sigma_{i}^{2}=\text{id}$,
we move $\sigma_{i}$'s to the right and obtain $\sigma=\sigma_{n}...\sigma_{1}$.\hfill{}$\blacksquare$

Any given permutation $\sigma$ is thus equal to a product of EPs
$\sigma_{1}$ to $\sigma_{n}$, but this representation is in any
case not unique because, say, we may insert $\sigma_{1}\sigma_{1}=\text{id}$
in any place of the product $\sigma_{n}...\sigma_{1}$ without changing
the result. So the \emph{number} of required EPs can be changed. However,
it is very important (and we will prove this now) that the number
of required EPs can only be changed by 2, never by 1.

In other words, we are going to prove the following statement: When
a given permutation $\sigma$ is represented as a product of EPs,
$\sigma=\sigma_{n}...\sigma_{1}$, the number $n$ of these EPs is
always either even or odd, depending on $\sigma$ but independent
of the choice of the representation $\sigma_{n}...\sigma_{1}$. Since
the parity of $n$ (\textbf{parity}\index{parity} is whether $n$
is even or odd) is a property of the permutation $\sigma$ rather
than of the representation of $\sigma$ through EPs, it will make
sense to say that the permutation $\sigma$ is itself \textbf{even}
or \textbf{odd}. 


\paragraph{Statement 2:}

If $\sigma$ is represented as a product of EPs in two different ways,
namely by a product of $n_{1}$ EPs and also by a product of $n_{2}$
EPs, then the integers $n_{1}$ and $n_{2}$ are both even or both
odd.


\subparagraph{Proof:}

Let us denote by $\left|\sigma\right|$ the \emph{smallest} number
of EPs required to represent a given permutation $\sigma$.%
\footnote{In Definition D0 we used the notation $\left|\sigma\right|$ to mean
0 or 1 for even or odd permutations. However, the formula uses only
$\left(-1\right)^{\left|\sigma\right|}$, so the present definition
of $\left|\sigma\right|$ is still consistent with Definition~D0.%
} We will now show that $\left|\sigma\right|$ is equal to the number
of \textbf{order violations}\index{permutation!order violations}
in $\sigma$, i.e.~the number of instances when some larger number
is situated to the left of some smaller number. For example, in the
permutation $\left(1,2,3,4\right)\mapsto\left(4,1,3,2\right)$ there
are \emph{four} order violations: the pairs $\left(4,1\right)$, $\left(4,3\right)$,
$\left(4,2\right)$, and $\left(3,2\right)$. It is clear that the
correct order can be restored only when each order violation is resolved,
which requires \emph{one} EP for each order violation.

The construction in the proof of Statement~1 shows that there exists
a choice of exactly $\left|\sigma\right|$ EPs whose product equals
$\sigma$. Therefore, $\left|\sigma\right|$ (the smallest number
of EPs required to represent $\sigma$) is indeed equal to the number
of order violations in $\sigma$. 

Now consider multiplying $\sigma$ by some EP $\sigma_{0}$; it is
clear that the number of order violations changes by 1, that is, $\left|\sigma_{0}\sigma\right|=\left|\sigma\right|\pm1$,
depending on whether $\sigma_{0}$ violates the order existing in
$\sigma$ at the two adjacent places affected by $\sigma_{0}$. For
example, the permutation $\sigma=\left(4,1,3,2\right)$ has four order
violations, $\left|\sigma\right|=4$; when we multiply $\sigma$ by
$\sigma_{0}=\left(1,3,2,4\right)$, which is an EP exchanging 2 and
3, we remove the order violation in $\sigma$ in the pair $\left(1,3\right)$
since $\sigma_{0}\sigma=\left(4,3,1,2\right)$; hence $\left|\sigma_{0}\sigma\right|=3$.
Since $\left|\sigma\right|$ is changed by $\pm1$, we have $\left(-1\right)^{\left|\sigma_{0}\sigma\right|}=-\left(-1\right)^{\left|\sigma\right|}$
in any case. Now we consider two representations of $\sigma$ through
$n_{1}$ and through $n_{2}$ EPs. If $\sigma=\sigma_{n_{1}}...\sigma_{1}$,
where $\sigma_{j}$ are EPs, we find by induction \[
\left(-1\right)^{\left|\sigma\right|}=\left(-1\right)^{\left|\sigma_{n_{1}}...\sigma_{1}\right|}=\left(-1\right)^{n_{1}}.\]
Similarly for the second representation. So it follows that \[
\left(-1\right)^{\left|\sigma\right|}=\left(-1\right)^{n_{1}}=\left(-1\right)^{n_{2}}.\]
 Hence, the numbers $n_{1}$ and $n_{2}$ are either both even or
both odd.\hfill{}$\blacksquare$

It follows from the proof of Statement~2 that the number $\left(-1\right)^{\left|\sigma\right|}$
is independent of the representation of $\sigma$ through EPs. This
number is called the \textbf{parity}\index{permutation!parity of}
of a permutation $\sigma$. For example, the permutation \[
\sigma:\left(1,2,3,4\right)\mapsto\left(1,4,3,2\right)\]
 has four order violations, $\left|\sigma\right|=4$, and is therefore
an even permutation with parity $+1$.


\paragraph{Definition: }

For a permutation $\sigma$, the \textbf{inverse} \textbf{permutation}\index{inverse permutation}
$\sigma^{-1}$ is defined by $\sigma^{-1}\sigma=\sigma\sigma^{-1}=\text{id}$.


\paragraph{Statement~3:}

The inverse permutation $\sigma^{-1}$ exists for every permutation
$\sigma$, is unique, and the parity of $\sigma^{-1}$ is the same
as the parity of $\sigma$.


\paragraph{Proof:}

By Statement~1, we have $\sigma=\sigma_{1}...\sigma_{n}$ where $\sigma_{i}$
are EPs. Since $\sigma_{i}\sigma_{i}=\text{id}$, we can define explicitly
the inverse permutation as\[
\sigma^{-1}\equiv\sigma_{n}\sigma_{n-1}...\sigma_{1}.\]
It is obvious that $\sigma\sigma^{-1}=\sigma^{-1}\sigma=1$, and so
$\sigma^{-1}$ exists. If there were two different inverse permutations,
say $\sigma^{-1}$ and $\sigma^{\prime}$, we would have \[
\sigma^{-1}=\sigma^{-1}\sigma\sigma^{\prime}=\sigma^{\prime}.\]
Therefore, the inverse is unique. Finally, by Statement~2, the parity
of $\sigma^{-1}$ is equal to the parity of the number $n$, and thus
equal to the parity of $\sigma$. (Alternatively, we may show that
$|\sigma^{-1}|=\left|\sigma\right|$.)\hfill{}$\blacksquare$


\chapter{Matrices\label{sec:Matrices}}

This appendix is a crash course on vector and matrix algebra.


\section{Definitions}

Matrices are rectangular tables of numbers; here is an example of
a $4\times4$ matrix:\[
\left(\begin{array}{cccc}
1 & 0 & 0 & -\sqrt{2}\\
2 & 1 & 0 & 0\\
3 & 2 & 1 & 0\\
4 & 3 & 2 & 1\end{array}\right).\]
 Matrices are used whenever it is convenient to arrange some numbers
in a rectangular table.

To write matrices symbolically, one uses two indices, for example
$A_{ij}$ is the matrix element in the $i$-th row and the $j$-th
column. In this convention, the indices are integers ranging from
1 to each dimension of the matrix. For example, a $3\times2$ rectangular
matrix can be written as a set of coefficients $\left\{ B_{ij}\,|\,1\leq i\leq3,\:1\leq j\leq2\right\} $
and is displayed as\[
\left(\begin{array}{cc}
B_{11} & B_{12}\\
B_{21} & B_{22}\\
B_{31} & B_{32}\end{array}\right).\]
A matrix with dimensions $n\times1$ is called a \textbf{column} since
it has the shape\[
\left[\begin{array}{c}
A_{11}\\
\vdots\\
A_{n1}\end{array}\right].\]
 A matrix with dimensions $1\times n$ is called a row since it has
the shape\[
\left[\begin{array}{ccc}
A_{11} & \dots & A_{1n}\end{array}\right].\]
Rows and columns are sometimes distinguished from other matrices by
using square brackets.


\section{Matrix multiplication}

Matrices can be multiplied by a number  just like vectors: each matrix
element is multiplied by the number. For example,\[
2\left(\begin{array}{cc}
u & v\\
w & x\\
y & z\end{array}\right)=\left(\begin{array}{cc}
2u & 2v\\
2w & 2x\\
2y & 2z\end{array}\right).\]
Now we will see how to multiply a matrix with another matrix.

The easiest is to define the multiplication of a row with a column:
\[
\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3}\end{array}\right]\left[\begin{array}{c}
x_{1}\\
x_{2}\\
x_{3}\end{array}\right]=a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}.\]
So the result of a multiplication of a $1\times n$ matrix with an
$n\times1$ matrix is simply a number. The general definition is\[
\left[\begin{array}{ccc}
a_{1} & \dots & a_{n}\end{array}\right]\left[\begin{array}{c}
x_{1}\\
\vdots\\
x_{n}\end{array}\right]=\sum_{i=1}^{n}a_{i}x_{i}.\]


Let us try to guess how to define the multiplication of a column with
a matrix consisting of \emph{several} rows. Start with just two rows:\[
\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3}\\
b_{1} & b_{2} & b_{3}\end{array}\right)\left[\begin{array}{c}
x_{1}\\
x_{2}\\
x_{3}\end{array}\right]=?\]
We can multiply each of the two rows with the column $\left[x_{i}\right]$
as before. Then we obtain two numbers, and it is natural to put them
into a column:\[
\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3}\\
b_{1} & b_{2} & b_{3}\end{array}\right)\left[\begin{array}{c}
x_{1}\\
x_{2}\\
x_{3}\end{array}\right]=\left[\begin{array}{c}
a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}\\
b_{1}x_{1}+b_{2}x_{2}+b_{3}x_{3}\end{array}\right].\]
In general, we define the product of an $m\times n$ matrix with an
$n\times1$ matrix (a column); the result is an $m\times1$ matrix
(again a column):\[
\left(\begin{array}{ccc}
a_{11} & ... & a_{1n}\\
\vdots & \vdots & \vdots\\
a_{m1} & \dots & a_{mn}\end{array}\right)\left[\begin{array}{c}
x_{1}\\
\vdots\\
x_{n}\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{n}a_{1i}x_{i}\\
\vdots\\
\sum_{i=1}^{n}a_{mi}x_{i}\end{array}\right].\]



\paragraph{Exercise:}

Calculate the following products of matrices and columns:\begin{align*}
\left(\begin{array}{cc}
-1 & 3\\
4 & 1\end{array}\right)\left[\begin{array}{c}
-2\\
-1\end{array}\right] & =?\\
\left(\begin{array}{cc}
\sqrt{5}-1 & 2\\
2 & \sqrt{5}+1\end{array}\right)\left[\begin{array}{c}
\sqrt{5}+1\\
\sqrt{5}-1\end{array}\right] & =?\\
\left(\begin{array}{ccc}
1 & 9 & -2\\
3 & 0 & 3\\
-6 & 4 & 3\end{array}\right)\left[\begin{array}{c}
-2\\
0\\
4\end{array}\right] & =?\\
\left(\begin{array}{cccc}
1 & 0 & 0 & 0\\
2 & 1 & 0 & 0\\
0 & 2 & 1 & 0\\
0 & 0 & 2 & 1\end{array}\right)\left[\begin{array}{c}
a\\
b\\
c\\
d\end{array}\right] & =?\end{align*}
\[
\left(\begin{array}{cccccc}
2 & 1 & 0 & 0 & \cdots & 0\\
1 & 2 & 1 & 0 & \cdots & 0\\
0 & 1 & 2 & 1 &  & \vdots\\
0 & 0 & 1 & 2 &  & 0\\
\vdots & \vdots &  &  & \ddots & 1\\
0 & 0 &  & \cdots & 1 & 2\end{array}\right)\left[\begin{array}{c}
1\\
-1\\
1\\
\vdots\\
-1\\
1\end{array}\right]=?\]


Finally, we can extend this definition to products of two matrices
of sizes $m\times n$ and $n\times p$. We first multiply the $m\times n$
matrix by each of the $n\times1$ columns in the $n\times p$ matrix,
yielding $p$ columns of size $m\times1$, and then arrange these
$p$ columns into an $m\times p$ matrix. The resulting general definition
can be written as a formula for matrix multiplication: if $A$ is
an $m\times n$ matrix and $B$ is an $n\times p$ matrix then the
product of $A$ and $B$ is an $m\times p$ matrix $C$ whose coefficients
are given by\[
C_{ik}=\sum_{j=1}^{n}A_{ij}B_{jk},\quad1\leq i\leq m,\quad1\leq k\leq p.\]



\paragraph{Exercise:}

Calculate the following matrix products: \begin{align*}
\left[\begin{array}{cc}
2 & 3\end{array}\right]\left(\begin{array}{cc}
-3 & 9\\
2 & -6\end{array}\right) & =?\\
\left(\begin{array}{cc}
-5 & 6\\
-6 & 5\end{array}\right)\left(\begin{array}{cc}
-5 & 5\\
-6 & 6\end{array}\right) & =?\\
\left(\begin{array}{cc}
\frac{\sqrt{1}+\sqrt{2}}{\sqrt{3}} & 0\\
0 & \frac{\sqrt{1}-\sqrt{2}}{\sqrt{3}}\end{array}\right)\left(\begin{array}{cc}
\frac{\sqrt{1}-\sqrt{2}}{\sqrt{3}} & 0\\
0 & \frac{\sqrt{1}+\sqrt{2}}{\sqrt{3}}\end{array}\right) & =?\end{align*}
\[
\left[\begin{array}{ccc}
0 & 1 & 2\end{array}\right]\left(\begin{array}{ccc}
3 & 2 & 1\\
2 & 1 & 0\\
1 & 0 & 0\end{array}\right)\left[\begin{array}{c}
-2\\
0\\
0\end{array}\right]=?\]
\[
\left[\begin{array}{cccc}
w & x & y & z\end{array}\right]\left(\begin{array}{cccc}
2 & 0 & 0 & 0\\
0 & 2 & 0 & 0\\
0 & 0 & 2 & 0\\
0 & 0 & 0 & 2\end{array}\right)\left(\begin{array}{cccc}
3 & 0 & 0 & 0\\
0 & 3 & 0 & 0\\
0 & 0 & 3 & 0\\
0 & 0 & 0 & 3\end{array}\right)\left[\begin{array}{c}
a\\
b\\
c\\
d\end{array}\right]=?\]


Matrices of size $n\times n$ are called \textbf{square} matrices.
They can be multiplied with each other and, according to the rules
of matrix multiplication, again give square matrices of the same size.


\paragraph{Exercise 1:}

If $A$ and $B$ are two square matrices such that $AB=BA$ then one
says that the matrices $A$ and $B$ \textbf{commute} with each other.
Determine whether the following pairs of matrices commute:

a) $A=\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}
3 & 0\\
1 & -2\end{array}\right)$. 

b) $A=\left(\begin{array}{ccc}
2 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}
3 & 1 & -1\\
0 & -1 & 2\\
2 & 8 & -7\end{array}\right)$.

c) $A=\left(\begin{array}{ccc}
\sqrt{3} & 0 & 0\\
0 & \sqrt{3} & 0\\
0 & 0 & \sqrt{3}\end{array}\right)$ and $B=\left(\begin{array}{ccc}
97 & 12 & -55\\
-8 & 54 & 26\\
31 & 53 & -78\end{array}\right)$. What have you noticed?

d) Determine \emph{all} possible matrices $B=\left(\begin{array}{cc}
w & x\\
y & z\end{array}\right)$ that commute with the given matrix $A=\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right)$.\hfill{}$\blacksquare$

Note that a square matrix having the elements 1 at the diagonal and
zeros elsewhere, for example\[
\left(\begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1\end{array}\right),\]
has the property that it does not modify anything it multiplies. Therefore
such matrices are called the \textbf{identity matrices}\index{identity matrix}
and denoted by $\hat{1}$. One has $\hat{1}A=A$ and $A\hat{1}=A$
for any matrix $A$ (for which the product is defined).


\paragraph{Exercise 2:}

We consider real-valued $2\times2$ matrices.

a) The \emph{matrix}-valued function $A(\phi)$ is defined by \[
A(\phi)=\left(\begin{array}{cc}
\cos\phi & -\sin\phi\\
\sin\phi & \cos\phi\end{array}\right).\]
Show that $A(\phi_{1})A(\phi_{2})=A(\phi_{1}+\phi_{2})$. Deduce that
$A(\phi_{1})$ commutes with $A(\phi_{2})$ for arbitrary $\phi_{1},\phi_{2}$. 

b) For every complex number $z=x+\text{i}y=re^{\text{i}\phi}$, let
us now define a matrix \[
C(z)=\left(\begin{array}{cc}
r\cos\phi & -r\sin\phi\\
r\sin\phi & r\cos\phi\end{array}\right)=\left(\begin{array}{cc}
x & -y\\
y & x\end{array}\right).\]
Show that $C(z_{1})$ commutes with $C(z_{2})$ for arbitrary complex
$z_{1},z_{2}$, and that $C(z_{1})+C(z_{2})=C(z_{1}+z_{2})$ and $C(z_{1})C(z_{2})=C(z_{1}z_{2})$.
In this way, complex numbers could be replaced by matrices of the
form $C(z)$. The addition and the multiplication of matrices of this
form corresponds exactly to the addition and the multiplication of
complex numbers. 


\paragraph{Exercise 3:}

The \textbf{Pauli matrices}\index{Pauli matrices} $\sigma_{1}$,
$\sigma_{2}$, $\sigma_{3}$ are defined as follows, \[
\sigma_{1}=\left(\begin{array}{cc}
0 & 1\\
1 & 0\end{array}\right),\quad\sigma_{2}=\left(\begin{array}{cc}
0 & -\text{i}\\
\text{i} & 0\end{array}\right),\quad\sigma_{3}=\left(\begin{array}{cc}
1 & 0\\
0 & -1\end{array}\right).\]
Verify that $\sigma_{1}^{2}=\hat{1}$ (the $2\times2$ identity matrix),
$\sigma_{1}\sigma_{2}=\text{i}\sigma_{3}$, $\sigma_{2}\sigma_{3}=\text{i}\sigma_{1}$,
and in general\[
\sigma_{a}\sigma_{b}=\delta_{ab}\hat{1}+\text{i}\sum_{c}\varepsilon_{abc}\sigma_{c}.\]


b) The expression $AB-BA$ where $A,B$ are two matrices is called
the \textbf{commutator}\index{commutator} of $A$ and $B$ and is
denoted by \[
\left[A,B\right]=AB-BA.\]
 Using the result of part a), compute $\left[\sigma_{a},\sigma_{b}\right]$.


\section{Linear equations }

A system of linear algebraic equations, for example, \begin{align*}
2x+y & =-11\\
3x-y & =6\end{align*}
can be formulated in the matrix language as follows. One introduces
the column vectors $\mathbf{x}\equiv{x \choose y}$ and $\mathbf{b}\equiv{-11 \choose 6}$
and the matrix \[
A\equiv\left(\begin{array}{cc}
2 & 1\\
3 & -1\end{array}\right).\]
Then the above system of equations is equivalent to the single matrix
equation, \[
A\mathbf{x}=\mathbf{b},\]
where $\mathbf{x}$ is understood as the unknown vector.


\paragraph{Exercise:}

Rewrite the following system of equations in matrix form:\begin{align*}
x+y-z & =0\\
y-x+2z & =0\\
3y & =2\end{align*}



\paragraph{Remark:}

In a system of equations, the number of unknowns may differ from the
number of equations. In that case we need to use a rectangular (non-square)
matrix to rewrite the system in a matrix form.


\section{Inverse matrix\label{sub:Inverse-matrix}}

We consider square matrices $A$ and $B$. If $AB=1$ and $BA=1$
then $B$ is called the \textbf{inverse matrix}\index{inverse matrix}
to $A$ (and vice versa). The inverse matrix to $A$ is denoted by
$A^{-1}$, so that one has $AA^{-1}=A^{-1}A=1$.


\paragraph{Remark:}

The inverse matrix does not always exist; for instance, the matrix\[
\left(\begin{array}{cc}
1 & 1\\
2 & 2\end{array}\right)\]
does not have an inverse. For \emph{finite}-\emph{dimen\-sion\-al}
square matrices $A$ and $B$, one can derive from $AB=1$ that also
$BA=1$.\hfill{}$\blacksquare$

The inverse matrix is useful for solving linear equations. For instance,
if a matrix $A$ has an inverse, $A^{-1}$, then any equation $A\mathbf{x}=\mathbf{b}$
can be solved immediately as~ $\mathbf{x}=A^{-1}\mathbf{b}$.


\paragraph{Exercise 1:}

a) Show that the inverse to a $2\times2$ matrix $A=\left(\begin{array}{cc}
w & x\\
y & z\end{array}\right)$ exists when $wz-xy\neq0$ and is given explicitly by the formula\[
A^{-1}=\frac{1}{wz-xy}\left(\begin{array}{cc}
z & -x\\
-y & w\end{array}\right).\]
b) Compute the inverse matrices $A^{-1}$ and $B^{-1}$ for $A=\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}
3 & 0\\
1 & -2\end{array}\right)$. Then compute the solutions of the linear systems \[
\left(\begin{array}{cc}
1 & 1\\
0 & 2\end{array}\right)\left[\begin{array}{c}
x\\
y\end{array}\right]=\left[\begin{array}{c}
-3\\
5\end{array}\right];\qquad\left(\begin{array}{cc}
3 & 0\\
1 & -2\end{array}\right)\left[\begin{array}{c}
x\\
y\end{array}\right]=\left[\begin{array}{c}
-6\\
0\end{array}\right].\]



\paragraph{Exercise 2:}

Show that $(AB)^{-1}=B^{-1}A^{-1}$, assuming that the inverse matrices
to $A$ and $B$ exist. 

\emph{Hint}: Simplify the expression $(AB)(B^{-1}A^{-1})$.


\paragraph{Exercise 3:}

Show that \[
(\hat{1}+BA)^{-1}=A^{-1}(\hat{1}+AB)^{-1}A,\]
assuming that all the needed inverse matrices exist.

\emph{Hint}: Use the property $A(\hat{1}+BA)=A+ABA=(\hat{1}+AB)A$.\hfill{}$\blacksquare$

The inverse matrix to a given $n\times n$ matrix $A$ can be computed
by solving $n$ systems of equations,\[
A\mathbf{x}_{1}=\mathbf{e}_{1},\,...,\, A\mathbf{x}_{n}=\mathbf{e}_{n},\]
where the vectors $\mathbf{e}_{i}$ are the standard basis vectors,
\begin{align*}
\mathbf{e}_{1} & =\left(1,0,...,0\right),\;\mathbf{e}_{2}=\left(0,1,0,...,0\right),\\
 & ...,\;\mathbf{e}_{n}=\left(0,...,0,1\right),\end{align*}
while the vectors $\mathbf{x}_{1},...,\mathbf{x}_{n}$ are unknown.
When $\left\{ \mathbf{x}_{i}\right\} $ are determined, their components
$x_{ij}$ form the inverse matrix.


\section{Determinants}

In the construction of the inverse matrix for a given matrix $A_{ij}$,
one finds a formula of a peculiar type: Each element of the inverse
matrix $A^{-1}$ is equal to some polynomial in $A_{ij}$, divided
by a certain function of $A_{ij}$. For example, Exercise~1a in Sec.~\ref{sub:Inverse-matrix}
gives such a formula for $2\times2$ matrices; that formula contains
the expression $wz-xy$ in every denominator.

The expression in the denominator is \emph{the} \emph{same} for every
element of $A^{-1}$. This expression needs to be nonzero in that
formula, or else we cannot divide by it (and then the inverse matrix
does not exist). In other words, this expression (which is a function
of the matrix $A_{ij}$) {}``determines'' whether the inverse matrix
exists. Essentially, this function (after fixing a numerical prefactor)
is called the \textbf{determinant}\index{determinant} of the matrix
$A_{ij}$.

The determinant for a $2\times2$ or $3\times3$ matrix is given%
\footnote{I do not derive this result here; a derivation is given in the main
text.%
} by the formulas\begin{align*}
\det\left(\begin{array}{cc}
a & b\\
x & y\end{array}\right) & =ay-bx,\\
\det\left(\begin{array}{ccc}
a & b & c\\
p & q & r\\
x & y & z\end{array}\right) & =aqz+brx+cpy-bpz-cqx-ary.\end{align*}
Determinants are also sometimes written as matrices with straight
vertical lines at both sides, e.g.\[
\det\left(\begin{array}{cc}
1 & 2\\
0 & 3\end{array}\right)\equiv\left|\begin{array}{cc}
1 & 2\\
0 & 3\end{array}\right|=3.\]
In this notation, a determinant resembles a matrix, so it requires
that we clearly distinguish between a matrix (a table of numbers)
and a determinant (which is a \emph{single number} computed from a
matrix). 

To compute the determinant of an arbitrary $n\times n$ matrix $A$,
one can use the procedure called the \textbf{Laplace expansion}\index{Laplace expansion}.%
\footnote{Here I will only present the Laplace expansion as a computational
procedure without derivation. A derivation is given as an exercise
in Sec.~\ref{sub:Determinants-of-square}.%
} First one defines the notion of a \textbf{minor}\index{minor} $M_{ij}$
corresponding to some element $A_{ij}$: By definition, $M_{ij}$
is the determinant of a matrix obtained from $A$ by deleting row
$i$ and column $j$. For example, the minor corresponding to the
element $b$ of the matrix \[
A=\left(\begin{array}{ccc}
a & b & c\\
p & q & r\\
x & y & z\end{array}\right)\]
is the minor corresponding to $A_{12}$, hence we delete row 1 and
column 2 from $A$ and obtain\[
M_{12}=\left|\begin{array}{cc}
p & r\\
x & z\end{array}\right|=pz-rx.\]
 Then, one sums over all the elements $A_{1i}$ ($i=1,...,n$) in
the first row of $A$, multiplied by the corresponding minors and
the sign factor $\left(-1\right)^{i-1}$. In other words, the Laplace
expansion is the formula\[
\det(A)=\sum_{i=1}^{n}\left(-1\right)^{i-1}A_{1i}M_{1i}.\]
A similar formula holds for any other row $j$ instead of the first
row; one needs an additional sign factor $\left(-1\right)^{j-1}$
in that case.


\paragraph{Example:}

We compute the determinant of the matrix\[
A=\left(\begin{array}{ccc}
a & b & c\\
p & q & r\\
x & y & z\end{array}\right)\]
 using the Laplace expansion in the first row. The minors are\begin{align*}
M_{11} & =\left|\begin{array}{cc}
q & r\\
y & z\end{array}\right|=qz-ry,\\
M_{12} & =\left|\begin{array}{cc}
p & r\\
x & z\end{array}\right|=pz-rx,\\
M_{13} & =\left|\begin{array}{cc}
p & q\\
x & y\end{array}\right|=py-qx.\end{align*}
Hence\begin{align*}
\det A & =aM_{11}-bM_{12}+bM_{13}\\
 & =a(qx-ry)-b(pz-rx)+c(py-qx).\end{align*}
This agrees with the formula given previously.


\paragraph{Exercise:}

Compute the following determinants.

a)\begin{align*}
\left|\begin{array}{cc}
15 & -12\\
-\frac{1}{2} & \frac{2}{5}\end{array}\right|=? & \qquad\left|\begin{array}{cc}
1+x^{2} & 1+x^{2}\\
1+x^{2} & 1+x^{4}\end{array}\right|=?\\
\left|\begin{array}{cccc}
1 & -99 & -99 & -99\\
0 & 2 & -99 & -99\\
0 & 0 & 3 & -99\\
0 & 0 & 0 & 4\end{array}\right| & =?\qquad\left|\begin{array}{ccc}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9\end{array}\right|=?\end{align*}
 

b) \begin{align*}
A_{2}=\left|\begin{array}{cc}
2 & -1\\
-1 & 2\end{array}\right| & =?\qquad A_{3}=\left|\begin{array}{ccc}
2 & -1 & 0\\
-1 & 2 & -1\\
0 & -1 & 2\end{array}\right|=?\\
 & A_{4}=\left|\begin{array}{cccc}
2 & -1 & 0 & 0\\
-1 & 2 & -1 & 0\\
0 & -1 & 2 & -1\\
0 & 0 & -1 & 2\end{array}\right|=?\end{align*}
Guess and then prove (using the Laplace expansion) the general formula
for determinants $A_{n}$ of this form for arbitrary $n$, \[
A_{n}=\left|\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0\\
-1 & 2 & -1 & \cdots & \vdots\\
0 & -1 & 2 & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & -1\\
0 & \cdots & 0 & -1 & 2\end{array}\right|=?\]
\emph{Hint}: Use the Laplace expansion to prove the recurrence relation
$A_{n+1}=2A_{n}-A_{n-1}$.


\section{Tensor product}

A matrix with rows and columns reversed is called the \textbf{transposed}\index{transposed matrix}
matrix. For example, if\[
A=\left(\begin{array}{ccc}
a & b & c\\
x & y & z\end{array}\right)\]
 is a given $2\times3$ matrix then the transposed matrix, denoted
by $A^{T}$, is the following $3\times2$ matrix:\[
A^{T}=\left(\begin{array}{cc}
a & x\\
b & y\\
c & z\end{array}\right).\]
Note that a row vector becomes a column vector when transposed, and
vice versa. In general, an $m\times n$ matrix becomes an $n\times m$
matrix when transposed.

The scalar product of vectors, $\mathbf{q}\cdot\mathbf{r}$, can be
represented as a matrix product $\mathbf{q}^{T}\mathbf{r}$. For example,
if $\mathbf{q}=\left(a,b,c\right)$ and $\mathbf{r}=\left(x,y,z\right)$
then \[
\mathbf{q}\cdot\mathbf{r}=ax+by+cz=\left[\begin{array}{ccc}
x & y & z\end{array}\right]\left[\begin{array}{c}
a\\
b\\
c\end{array}\right]=\mathbf{q}^{T}\mathbf{r}=\mathbf{r}^{T}\mathbf{q}.\]
A matrix product taken in the opposite order (i.e.~a column vector
times a row vector) gives a \emph{matrix} as a result, \[
\mathbf{q}\mathbf{r}^{T}=\left[\begin{array}{c}
a\\
b\\
c\end{array}\right]\left[\begin{array}{ccc}
x & y & z\end{array}\right]=\left[\begin{array}{ccc}
ax & ay & az\\
bx & by & bz\\
cx & cy & cz\end{array}\right].\]
This is known as the \textbf{tensor product}\index{tensor product}
of two vectors. An alternative notation is $\mathbf{q}\otimes\mathbf{r}^{T}$.
Note that the result of the tensor product is not a vector but a matrix,
i.e.~an object of a different kind. (The space of $n\times n$ matrices
is also denoted by $\mathbb{R}^{n}\otimes\mathbb{R}^{n}$.)


\paragraph{Exercise:}

Does the tensor product commute? In a three-dimen\-sion\-al space,
compute the matrix $\mathbf{q}\otimes\mathbf{r}^{T}-\mathbf{r}\otimes\mathbf{q}^{T}$.
Compare that matrix with the vector product $\mathbf{q}\times\mathbf{r}$. 


\chapter{Distribution of this text}


\section{Motivation}

A scientist receives financial support from the society and the freedom
to do research in any field. I believe it is a duty of scientists
to make the results of their science freely available to the interested
public in the form of understandable, clearly written textbooks. This
task has been significantly alleviated by modern technology. Especially
in theoretical sciences where no experimentally obtained photographs
or other such significant third-party material need to be displayed,
authors are able (if not always willing) to prepare the entire book
on a personal computer, typing the text and drawing the diagrams using
freely available software. Ubiquitous access to the Internet makes
it possible to create texts of high typographic quality in ready-to-print
form, such as a PDF file, and to distribute these texts essentially
at no cost. 

The distribution of texts in today's society is inextricably connected
with the problem of intellectual property. One could simply upload
PDF files to a Web site and declare these texts to be in public domain,
so that everyone would be entitled to download them for free, print
them, or distribute further. However, malicious persons might then
prepare a slightly modified version and inhibit further distribution
of the text by imposing a non-free license on the modified version
and by threatening to sue anyone who wants to distribute \emph{any}
version of the text, including the old public-domain version. Merely
a threat of a lawsuit suffices for an Internet service provider to
take down any web page allegedly violating copyright, even if the
actual lawsuit may be unsuccessful.

To protect the freedom of the readers, one thus needs to release the
text under a \emph{copyright} rather than into public domain, and
at the same time one needs to make sure that the text, as well as
any future revisions thereof, remains freely distributable. I believe
that a free license, such as GNU FDL (see the next subsection), is
an appropriate way of copyrighting a science textbook. 

The present book is released under GNU FDL. According to the license,
everyone is allowed to print this book or distribute it in any other
way. In particular, any commercial publisher may offer professionally
printed and bound copies of the book for sale; the permission to do
so is \emph{already} \emph{granted}. Since the FDL disallows granting
exclusive distribution rights, I (or anybody else) will not be able
to sign a standard exclusive-rights contract with a publisher for
printing this book (or any further revision of this book). I am happy
that \textbf{lulu.com} offers commercial printing of the book at low
cost and at the same time adheres to the conditions of a free license
(the GNU FDL). The full text of the license follows.

{\small \input{gfdl.tex}}{\small \par}

\printindex{}

\begin{center}
{\large \bigskip{}
Notes}
\par\end{center}
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\section{GNU Free Documentation License\label{sec:GFDL} }

Version 1.2, November 2002

Copyright (c) 2000,2001,2002 Free Software Foundation, Inc. 

59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

%\setcounter{subsection}{-1}%this made Preamble the subsection 0, not sure why I did it before


\subsection{Preamble}

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of ``copyleft'', which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether
it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.


\subsection{Applicability and definitions\label{sub:1Applicability-and-definitions}}

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use
that work under the conditions stated herein. The ``Document'', below,
refers to any such manual or work. Any member of the public is a licensee,
and is addressed as ``you''. You accept the license if you copy, modify
or distribute the work in a way requiring permission under copyright
law.

A ``Modified Version'' of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ``Secondary Section'' is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The ``Invariant Sections'' are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections
then there are none.

The ``Cover Texts'' are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says
that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A ``Transparent'' copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that
is not ``Transparent'' is called ``Opaque''.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, \LaTeX{} input format,
SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, Post\-Script or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, Post\-Script or PDF produced by some word processors for output
purposes only.

The ``Title Page'' means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in formats
which do not have any title page as such, ``Title Page'' means the
text near the most prominent appearance of the work's title, preceding
the beginning of the body of the text.

A section ``Entitled XYZ'' means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as ``Acknowledgements'',
``Dedications'', ``Endorsements'', or ``History''.) To ``Preserve
the Title'' of such a section when you modify the Document means that
it remains a section ``Entitled XYZ'' according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only
as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning
of this License.


\subsection{Verbatim copying\label{sub:2Verbatim-copying}}

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you
must also follow the conditions in section~\ref{sub:3Copying-in-quantity}.

You may also lend copies, under the same conditions stated above,
and you may publicly display copies.


\subsection{Copying in quantity\label{sub:3Copying-in-quantity}}

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on
the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a mach\-ine-read\-able Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a com\-put\-er-net\-work location from which the general net\-work-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of copies,
to give them a chance to provide you with an updated version of the
Document.


\subsection{Modifications\label{sub:4Modifications}}

You may copy and distribute a Modified Version of the Document under
the conditions of sections~\ref{sub:2Verbatim-copying} and \ref{sub:3Copying-in-quantity}
above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless
they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ``History'', Preserve its Title,
and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page.
If there is no section Entitled ``History'' in the Document, create
one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the ``History'' section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled ``Acknowledgements'' or ``Dedications'',
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equivalent
are not considered part of the section titles.

M. Delete any section Entitled ``Endorsements''. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled ``Endorsements''
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list
of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled ``Endorsements'', provided it contains
nothing but endorsements of your Modified Version by various parties---for
example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the
list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert
or imply endorsement of any Modified Version.


\subsection{Combining documents}

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ``History''
in the various original documents, forming one section Entitled ``History'';
likewise combine any sections Entitled ``Acknowledgements'', and any
sections Entitled ``Dedications''. You must delete all sections Entitled
``Endorsements.''


\subsection{Collections of documents}

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of
this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.


\subsection{Aggregation with independent works}

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage
or distribution medium, is called an ``aggregate'' if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section~\ref{sub:3Copying-in-quantity}
is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document
is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.


\subsection{Translation}

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section~\ref{sub:4Modifications}.
Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warrany
Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled ``Acknowledgements'', ``Dedications'',
or ``History'', the requirement (section~\ref{sub:4Modifications})
to Preserve its Title (section~\ref{sub:1Applicability-and-definitions})
will typically require changing the actual title.


\subsection{Termination}

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain
in full compliance.


\subsection{Future revisions of this license}

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See \texttt{\small http://www.gnu.org/copyleft/}.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License ``or any later version'' applies to it, you have the option
of following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation.


\subsection{Addendum: How to use this License for your documents}

To use this License in a document you have written, include a copy
of the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) <year> <your name>. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section
entitled ``GNU Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ``with...Texts.'' line with this:

with the Invariant Sections being <list their titles>, with the Front-Cover
Texts being <list>, and with the Back-Cover Texts being <list>.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to
permit their use in free software.


\subsection{Copyright }

Copyright (c) 2000, 2001, 2002 Free Software Foundation, Inc. 59 Temple
Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.\selectlanguage{english}











v1v2-vol.fig


#FIG 3.2  Produced by xfig version 3.2.5-alpha5
Landscape
Center
Metric
A4      
100.00
Single
-2
1200 2
5 1 0 1 0 7 50 -1 -1 0.000 0 1 1 0 4462.500 6656.250 4050 6525 4095 6885 4320 7065
	0 0 1.00 60.00 120.00
2 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 75.00 135.00
	 3825 7650 5400 6525
2 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3825 7650 2700 7200
2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
	0 0 1.00 30.00 135.00
	 3825 7650 4935 6334
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 5400 6524 4275 6074
2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
	 3847 5891 4305 6078
2 1 2 1 0 7 50 -1 -1 3.000 0 0 -1 0 0 2
	 2707 7204 3840 5891
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 2707 7204 4282 6079
2 1 0 0 0 7 60 -1 -1 0.000 0 0 -1 0 0 5
	 3825 7650 5400 6525 4275 6075 2700 7200 3825 7650
4 0 0 50 -1 0 12 0.0000 4 150 135 5445 6525 B\001
4 0 0 50 -1 0 12 0.0000 4 150 150 4365 6075 C\001
4 0 0 50 -1 0 12 0.0000 4 150 150 3825 5850 D\001
4 0 0 50 -1 0 12 0.0000 4 150 210 4995 7020 v1\001
4 0 0 50 -1 0 12 0.0000 4 150 135 4995 6300 E\001
4 0 0 50 -1 0 12 0.0000 4 150 165 2565 7335 A\001
4 0 0 50 -1 28 18 0.0000 4 210 180 3825 7830 0\001
4 0 0 50 -1 0 12 0.0000 4 150 210 3105 7560 v2\001
4 0 0 50 -1 0 12 0.0000 4 150 840 3960 6480 v1lambda\001










3dparallelepiped_1.fig


#FIG 3.2  Produced by xfig version 3.2.5
Landscape
Center
Metric
A4      
100.00
Single
-2
1200 2
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 2160 6435 2160 3150
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 2160 6435 3285 5175
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 2159 3144 4049 2604
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 2161 3151 3286 1891
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 4057 2616 5171 1355
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 4050 5895 4050 2610
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 5175 4635 5175 1350
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 3690 6300 3690 3015
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 2160 3147 3690 3012
2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
	 4815 5040 4815 1755
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 4050 5895 3690 6300
2 3 0 0 0 0 55 -1 10 0.000 2 0 -1 0 0 4
	 2160 3139 4035 2616 3690 3015 2160 3139
2 3 0 0 0 0 55 -1 10 0.000 2 0 -1 0 0 4
	 3285 1877 5160 1354 4815 1755 3285 1877
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 4048 2616 3688 3021
2 3 0 0 29 29 53 -1 16 0.000 0 0 -1 0 0 5
	 5175 1350 4815 1755 4815 4995 5175 4635 5175 1350
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 4046 5891 5171 4631
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 2165 6431 3695 6296
2 3 0 0 0 0 55 -1 10 0.000 2 0 -1 0 0 4
	 2170 6429 4045 5906 3690 6300 2170 6429
2 3 0 0 29 29 53 -1 16 0.000 0 0 -1 0 0 5
	 4050 2610 3690 3015 3690 6255 4050 5895 4050 2610
2 3 0 0 7 29 60 -1 20 0.000 0 0 -1 0 0 5
	 2160 6435 2160 3150 3690 3015 3690 6300 2160 6435
2 1 1 1 0 7 54 -1 -1 4.000 0 0 -1 0 0 2
	 3284 5168 4814 5033
2 3 0 0 7 29 60 -1 20 0.000 0 0 -1 0 0 5
	 3285 5175 3285 1890 4815 1755 4815 5040 3285 5175
2 1 0 1 0 7 53 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 2160 6435 4050 5895
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 3283 1884 5173 1344
2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
	 3285 1885 4815 1750
2 3 1 0 0 0 55 -1 10 2.000 2 0 -1 0 0 4
	 3285 5157 5160 4634 4815 5040 3285 5157
2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
	 3285 5175 3285 1890
2 1 0 1 0 7 55 -1 -1 0.000 0 0 -1 0 0 2
	 3282 5163 5172 4623
4 0 0 50 -1 0 12 0.0000 4 135 105 3015 5265 b\001
4 0 0 50 -1 0 12 0.0000 4 180 600 3645 6525 apluslb\001
4 0 0 50 -1 0 12 0.0000 4 90 90 4095 5985 a\001
4 0 0 50 -1 0 12 0.0000 4 90 90 2250 3375 c\001










2darea.fig


#FIG 3.2  Produced by xfig version 3.2.5-alpha5
Landscape
Center
Metric
A4      
100.00
Single
-2
1200 2
5 1 0 1 0 7 52 -1 -1 0.000 0 1 1 0 3384.474 4886.053 2835 4770 2970 5265 3330 5445
	2 1 1.00 30.00 60.00
2 1 0 1 0 7 50 -1 -1 0.000 0 1 -1 1 0 2
	0 0 1.00 30.00 135.00
	 2205 6975 4275 6975
2 1 0 1 0 7 50 -1 -1 0.000 0 1 -1 1 0 2
	0 0 1.00 30.00 135.00
	 2205 6975 3555 5940
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 3555 5940 5625 5940
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 30.00 135.00
	 4050 4500 6120 4500
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 4283 6978 4778 5538
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 2700 5535 4770 5535
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 4279 6981 5629 5946
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 30.00 135.00
	 4770 5535 6120 4500
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 30.00 135.00
	 2205 6975 2700 5535
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
	 2700 5535 4050 4500
2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
	0 0 1.00 30.00 135.00
	 2205 6975 4050 4500
2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 0 0 2
	 4270 6971 6115 4496
4 0 0 50 -1 0 12 0.0000 4 150 105 3420 6255 b\001
4 0 0 50 -1 0 12 0.0000 4 105 105 2430 5670 c\001
4 0 0 50 -1 0 12 0.0000 4 150 330 2700 4725 b+c\001
4 0 0 50 -1 0 12 0.0000 4 150 105 5310 4995 b\001
4 0 0 50 -1 0 12 0.0000 4 105 105 4950 4410 a\001
4 0 0 50 -1 0 12 0.0000 4 105 105 3915 7155 a\001
4 0 0 50 -1 0 12 0.0000 4 150 165 2160 7200 A\001
4 0 0 50 -1 0 12 0.0000 4 150 135 4275 7200 B\001
4 0 0 50 -1 0 12 0.0000 4 150 150 2610 5445 C\001
4 0 0 50 -1 0 12 0.0000 4 150 150 4680 5445 D\001
4 0 0 50 -1 0 12 0.0000 4 150 135 4005 4410 E\001
4 0 0 50 -1 0 12 0.0000 4 150 120 6120 4410 F\001
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#FIG 3.2  Produced by xfig version 3.2.5
Landscape
Center
Metric
A4      
100.00
Single
-2
1200 2
6 2835 5355 3285 5895
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 2880 5400 3195 5400
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 2835 5895 3285 5445
-6
6 3915 4770 4365 5310
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3960 4815 4275 4815
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3915 5310 4365 4860
-6
6 3915 5355 4365 5895
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3960 5400 4275 5400
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3915 5895 4365 5445
-6
6 3375 4815 3825 5355
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3420 4860 3735 4860
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3375 5355 3825 4905
-6
6 3375 5355 3825 5895
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3420 5400 3735 5400
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3375 5895 3825 5445
-6
6 3915 4230 4365 4770
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3960 4275 4275 4275
2 1 0 1 0 0 49 -1 20 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 3915 4770 4365 4320
-6
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 2231 5950 82 82 2149 5950 2313 5950
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 2773 5950 82 82 2691 5950 2855 5950
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 2773 5392 82 82 2691 5392 2855 5392
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 3315 5950 82 82 3233 5950 3397 5950
1 4 0 1 0 0 49 -1 20 0.000 1 0.0000 3315 5392 82 82 3233 5392 3397 5392
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 3315 4834 82 82 3233 4834 3397 4834
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 3857 5950 82 82 3775 5950 3939 5950
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 3857 4276 82 82 3775 4276 3939 4276
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 4399 5950 82 82 4317 5950 4481 5950
1 4 0 1 0 7 49 -1 20 0.000 1 0.0000 4399 3718 82 82 4317 3718 4481 3718
1 4 0 1 0 0 49 -1 20 0.000 1 0.0000 3857 5392 82 82 3775 5392 3939 5392
1 4 0 1 0 0 49 -1 20 0.000 1 0.0000 3857 4834 82 82 3775 4834 3939 4834
1 4 0 1 0 0 49 -1 20 0.000 1 0.0000 4399 4834 82 82 4317 4834 4481 4834
1 4 0 1 0 0 49 -1 20 0.000 1 0.0000 4399 5392 82 82 4317 5392 4481 5392
1 4 0 1 0 0 49 -1 20 0.000 1 0.0000 4399 4276 82 82 4317 4276 4481 4276
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 60.00 120.00
	 1845 5940 5220 5940
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 2
	0 0 1.00 60.00 120.00
	 2227 2970 2227 6345
4 0 0 50 -1 0 12 0.0000 4 135 105 2340 3195 q\001
4 0 0 50 -1 0 12 0.0000 4 135 105 5040 6165 p\001
4 0 0 50 -1 0 12 0.0000 4 135 105 2025 5445 1\001
4 0 0 50 -1 0 12 0.0000 4 135 105 2025 4905 2\001
4 0 0 50 -1 0 12 0.0000 4 135 105 2025 4365 3\001
4 0 0 50 -1 0 12 0.0000 4 135 105 2025 3780 4\001
4 0 0 50 -1 0 12 0.0000 4 135 105 2700 6210 1\001
4 0 0 50 -1 0 12 0.0000 4 135 105 2250 6210 0\001
4 0 0 50 -1 0 12 0.0000 4 135 105 3285 6210 2\001
4 0 0 50 -1 0 12 0.0000 4 135 105 3780 6210 3\001
4 0 0 50 -1 0 12 0.0000 4 135 105 4320 6210 4\001
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Makefile


# Makefile for the Linear Algebra book by Sergei Winitzki

# xfig source files
FIGSRC=v1v2-vol.fig 3dparallelepiped_1.fig 2darea.fig indstep.fig
# lyx source files
LYXSRC=linalg.lyx gfdl.lyx
# final PDF file with source included
PDFWITHSRC=Linear_algebra_exterior.pdf

.SUFFIXES : .fig .eps

# extra files
EXTRAFILES=Makefile README.txt Sergei_Winitzki_blackboard_2008.eps

FIGEPS=$(FIGSRC:.fig=.eps)
TEXSRC=$(LYXSRC:.lyx=.tex)

# run latex until no references are changed
define runlatex
latex $(firstword $^)
while grep -q 'LaTeX Warning.*Rerun' $(addsuffix .log,$(basename $(firstword $^))); do latex $(firstword $^); done
endef

# run latex and makeindex together
define runlatexidx
$(runlatex)
makeindex $(addsuffix .idx,$(basename $(firstword $^)))
$(runlatex)
endef

$(PDFWITHSRC): linalg.pdf linalg.tar.gz
	pdftk linalg.pdf attach_files linalg.tar.gz output $@
linalg.tar.gz: $(LYXSRC) $(TEXSRC) $(FIGSRC) $(FIGEPS) $(EXTRAFILES)
	tar zcvf linalg.tar.gz $(LYXSRC) $(TEXSRC) $(FIGSRC) $(FIGEPS) $(EXTRAFILES)
.fig.eps:
	fig2dev -L eps $< $@
#3dparallelepiped_1.eps: 3dparallelepiped_1.fig
#	fig2dev -L eps 3dparallelepiped_1.fig 3dparallelepiped_1.eps
linalg.tex: linalg.lyx
	lyx --export latex linalg.lyx
	mv linalg.tex 1linalg.tex
	cat 1linalg.tex | sed -e 's,usepackage{mathpazo},usepackage{palatino},' > linalg.tex
	rm 1linalg.tex
gfdl.tex: gfdl.lyx
	lyx --export latex gfdl.lyx
linalg.dvi: $(TEXSRC) $(FIGEPS)
	$(runlatexidx)
linalg.pdf: linalg.dvi
	dvips linalg.dvi
	ps2pdf linalg.ps

# replace paper sizes and document style options here
linalg-book-print.tex: linalg.tex Makefile
	sed -e 's|geometry{.*[bt]margin=.*,.*}|geometry{paperwidth=6.2in,paperheight=9.3in}|; s|documentclass\[[a-z0-9,]*\]{.*}|documentclass[10pt,twoside,english,american,pointlessnumbers,openright,idxtotoc,cleardoubleempty]{scrbook}|; s,wanthyperlinkstrue,wanthyperlinksfalse,;  s,wantphotoblurbtrue,wantphotoblurbfalse,; s,thisispdffiletrue,thisispdffilefalse,; s,thisisminitrue,thisisminifalse,; s|begin{document}|begin{document}\n \\special{papersize=6in,9in}\\typearea[13mm]{1}|' < linalg.tex > $@
# note: paperwidth=6in,paperheight=8in in geometry but \\special{papersize=6in,9in}\\typearea[12mm]{20}| reproduces the same width but wrong height

linalg-book.tex: linalg.tex Makefile
	sed -e 's|geometry{.*[bt]margin=.*,.*}|geometry{paperwidth=6in,paperheight=9in,tmargin=15mm,bmargin=12mm,lmargin=20mm,rmargin=17mm}|; s|documentclass\[[a-z0-9,]*\]{.*}|documentclass[10pt,english,american,pointlessnumbers,openright,idxtotoc,cleardoubleempty]{scrbook}|; s,thisisminitrue,thisisminifalse,;s|begin{document}|begin{document}\n \\special{papersize=6in,9in}\\typearea[6mm]{1}|;' < linalg.tex > $@

# pdf file for online distribution: book formatting, hyperlinks, embedded source
linalg-book.dvi: linalg-book.tex $(TEXSRC) $(FIGEPS) linalg.tar.gz
	$(runlatexidx)
linalg-book.pdf: linalg-book.dvi
	dvips -Ppdf -G0 linalg-book.dvi -o
	ps2pdf13 -dEmbedAllFonts=true -dSubsetFonts=false -dPDFSETTINGS=/printer linalg-book.ps

linalg-ebook.pdf: linalg-book.pdf
	cp linalg-book.pdf linalg-book1.pdf
	pdftk linalg-book1.pdf attach_files linalg.tar.gz output $@
	rm -f linalg-book1.pdf

# pdf file only for printing: no hyperlinks, no embedded source
linalg-book-print.pdf: linalg-book-print.tex $(TEXSRC) $(FIGEPS) Makefile linalg-book.pdf
	$(runlatexidx)
	dvips -Ppdf -G0 linalg-book-print.dvi -o
	ps2pdf13 -dEmbedAllFonts=true -dSubsetFonts=false -dPDFSETTINGS=/printer linalg-book-print.ps
	mv linalg-book-print.pdf linalg-book-print1.pdf
	pdftk linalg-book-print1.pdf attach_files linalg.tar.gz linalg-book.pdf output $@
	rm -f linalg-book-print1.pdf
clean:
	rm -f *.pdf *.aux *.dvi *.ind *.ps *.ilg  *.log *.tar.gz *.idx *.out *.toc  linalg-book.tex linalg-book-print.tex #linalg.tex gfdl.tex

all:	$(PDFWITHSRC) linalg-ebook.pdf linalg-book-print.pdf

help:
	@echo "Possible targets:"
	@echo " make     (default target, $(PDFWITHSRC) - formatted in small print, with hyperlinks)"
	@echo " make linalg-book.pdf            formatted for normal size, with hyperlinks"
	@echo " make linalg-book-print.pdf      formatted for normal size, without hyperlinks"
	@echo " make all                        make all pdf files"











README.txt


		README for the source distribution of "Linear algebra via exterior products"
		 by Sergei Winitzki

The text is distributed under GNU Free Documentation License. This license permits you to copy
the entire text, to make changes, and to distribute either original or modified versions, as
long as you distribute them under the same license and with full human-editable source.

	Obtaining the source files

The source is given as a set of LaTeX and other files. The main document is linalg.lyx, which is
a document for the LyX editor. The LaTeX files are generated from the LyX files. Finally, a PDF
file is generated, and the complete source package is attached to the PDF file as a tar.gz file
attachment (i.e. inside the PDF file). You can extract the attachment, for example, in Adobe
Acrobat Reader by clicking on the attachment icon and selecting "Save". Alternatively, you can
use the free "pdftk" program to extract the attachment using a command such as

pdftk "Linear_algebra_exterior.pdf" unpack_files output ~/temp/

This command will extract the file "linalg.tar.gz" into the directory ~/temp/ 

Then you need to unpack the source files:

tar zxf linalg.tar.gz

	Compiling from source

If you make changes to the document, e.g. to reformat the pages, you need to recompile from
the source.

A Makefile is provided, so all you need to do is to type "make" and have a working installed
LaTeX, Ghostscript, and pdftk. 

The result is first, the file "linalg.pdf" containing the text, then "linalg.tar.gz"
containing the updated source, and finally the file "Linear_algebra_exterior.pdf" containing
the text and the source embedded as attachment. You should then distribute this last file.

Without the Makefile, the full compilation procedure can be performed using the commands:

latex linalg.tex
latex linalg.tex
makeindex linalg.idx
latex linalg.tex
latex linalg.tex
dvips linalg.dvi
ps2pdf linalg.ps
tar zcvf linalg.tar.gz linalg.lyx linalg.tex v1v2-vol.fig v1v2-vol.eps Makefile gfdl.lyx gfdl.tex README.txt
pdftk linalg.pdf attach_files linalg.tar.gz output Linear_algebra_exterior.pdf
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