MATH 371: Differential Geometry

Course Syllabus

Course information

Instructor:	Yıldıray Ozan	
Classes:	Monday 08:40-10:30, Wednesday 10:40-12:30	
Office-Hours:	Tu 15:40-17:30 and also by appoiontment	
Teaching Assistant: Özgür Karabayır, Room: Z-42		
Textbook	Barrett O'neill "Elementary Differential Geometry" 2nd Ed.	

Course Content

Curves in 3 space: Local Theory of curves. Frenet formulas and Fundamental Theorem.Regular surfaces, definition and examples. Inverse image of regular values. Change of parameters, differentiable functions on surfaces The tangent plane; The differential of a map, vector fields, the first fundamental form. Gauss map, second fundamental form, normal curvature,principal curvature and principal directions, asymptotic directions. Gauss map in local coordinates. Covariant derivative, geodesics, Some Global Theorems including Gauss-Bonnet Theorem.

Grading

Midterm 1	30% April 20th, Wednesday at 17:40
Midterm 2	30% May 25th, Wednesday at 17:40
Final	40%

Schedule

Weeks	Topics	Problems
1	1.1 Euclidean Space1.2 Tangent Vectors1.3 Directional Derivatives1.4 Curves in R^3	1.1: 3,4 1.2: 3(d,e), 5(b) 1.3. 1(a),3(c,f)4,5
2	1.5 1-Forms1.6 Differential Forms1.7 Mappings	1.5: 1(c),3,4(b,c),6(c),7,10 1.6: 1-9 1.7: 3,4,6,7,9,10

	2.1 Dot Product	
3	2.2 Curves2.3 The Frenet Formulas2.4 Arbitrary Speed Curves	1.4: 4,6,7,9 2.1: 5,11,12 2.2: 3,5,6,8,10,11 2.3: 1,2,6,7,10,11
4	Planar Curves (4.7 of E. Bloch) 2.5 Covariant Derivatives 2.6 Frame Fields	2.4: 1,2,3,5,7,12,16,17,18 2.5: 1(b),2(c,d,e),3,5 2.6: 1,2(c)
5	3.1 Isometries of R^33.2 The Tangent Map of an Isometry3.3 Orientation3.4 Euclidean Geometry	3.1: 4,6,9 3.2: 3,4 3.3: 3,4,5 3.4: 1(b),2,4,5
6	3.5 Conguence of Curves + Fundamental Theorem of Curves (4.6 of E. Bloch)	3.5: 1,3,6,7
7	4.1 Surfaces in R^34.2 Patch Computations	4.1: 1,4,5,8,9,10,11 4.2: 1,2,3,5,7,8,9(a,b),10(b),11(c)
8	4.3 Differentiable Functions and Tangent Vectors5.1 The Shape Operator of M in R^3 + Gauss map	4.3: 1(b),2,3,4,5,6(b),7,12 5.1: 3(c,d),4,5,7,9
9	5.2 Normal Curvature5.3 Gaussian Curvature5.4 Computational Techniques	5.2: 1 5.3: 1-4,7 5.4: 1-3,5,7-15
10	5.5 The Implicit Case	
11	Isometries and Theorema Egregium	6.4:1,8,9,14
12	5.6 Special Curves in Surface: Geodesics	5.6:3,17a,19
13	6.3 Some Global Theorems	6.3: 1,3
14	Gauss-Bonnet Theorem*	

Additional Sources

A First Course in Geometric Topology and Differential Geometry, Ethan D. Bloch