P1. ANCHORED SHEET PILE WALL

Ouestion:

An anchored sheet-pile wall is constructed as shown in the figure below. By using Rankine's Earth Pressure Theory and free earth support method, determine:

- a. Depth of penetration.
- b. Axial anchor force if center to center spacing of two successive anchors is <u>2 meters.</u>
- c. Maximum bending moment in the sheet pile.

Solution:

$$K_a = \tan^2(45 - \frac{\phi}{2}) = \tan^2(45 - \frac{35}{2}) = 0.27$$

$$K_p = \frac{1}{K_a} = 3.69$$

Active Pressure:

$$P_a = (\gamma z + q).K_a - 2.c.\sqrt{K_a}$$

$$\begin{array}{ll} z = 0 \ m & p_a = 10 \ x \ 0.27 = 2.7 \ \ kPa \\ z = 10 \ m & p_a = (10 \ x \ 18 + 10) \ x \ 0.27 = 51.3 \ \ kPa \\ z = 10 + D & p_a = [\ (10 + D) \ x \ 18 + 10 \] \ x \ 0.27 = 51.3 + 4.86 \ D \ \ kPa \end{array}$$

Passive Pressure:

$$P_{p} = (\gamma z + q).K_{p} + 2.c.\sqrt{K_{p}}$$

$$z' = 0 m \qquad p_{p} = 0 \text{ kPa}$$

$$z' = D m \qquad p_{p} = 18 \text{ x } D \text{ x } 3.69 = 66.42 \text{ D} \text{ kPa}$$

Force (kN/m)	Moment arm about point A (m)	Moment, $\mathbf{M}_{\mathbf{A}}$ (kN.m / m)
$F_1 = 2.7 \text{ x} 10 = 27$	2	54
$F_2 = (51.3-2.7) \times 10 \times 0.5 = 243$	3.67	889.38
$F_3 = 51.3 \text{ x } D = 51.3 \text{ D}$	7 + D/2	$359.1 \text{ D} + 25.6 \text{ D}^2$
$F_4 = 4.86 D x D x 0.5 = 2.43 D^2$	7 + 2D/3	$17.01 \text{ D}^2 + 1.62 \text{ D}^3$
$-F_5 = 66.42 \text{ D x D x } 0.5 = -33.21 \text{ D}^2$	7 + 2D/3	$-232.47 \text{ D}^2 - 22.14 \text{ D}^3$

 $\Sigma F_{H} = 270 + 51.3 \text{ D} - 30.78 \text{ D}^{2}$

 $\Sigma \; M_A = 0$

$$\Sigma M_{\rm A} = 943.38 + 359.1 \text{ D} - 189.86 \text{ D}^2 - 20.52 \text{ D}^3 = 0$$
 $\Rightarrow D = 2.80 \text{ m}.$

a) Depth of penetration : $1.2 \times 2.80 = 3.36 \text{ m}$.

b) Anchor Force : $\Sigma H = 0$ (force equilibrium)

$$\Sigma H = 270 + 51.3 (2.80) - 30.78 (2.80)^2 - A = 0$$
 $\Rightarrow A = 172 \text{ kN / m}$

 $R_A = (A / \cos 10) \times 2 = 350 \text{ kN}$ (2 m is the lateral spacing of anchors)

c) Max. Bending Moment : (when shear, V=0)

To find the location of M_{max} , determine the point at which shear force is equal to 0 2.7 (x) + [18.(x).(0.27)].(x).0.5 - 172 = 0 2.7 x + 2.43 x² - 172 = 0 x = 7.88 m (distance from top)

 $M_{max} = 2.7 (7.88) (7.88 / 2) + 18 (7.88)(0.27) (7.88 / 2) (7.88 / 3) - 172 (7.88 - 3)$ $M_{max} = 359.24 \text{ kN.m} / \text{m}$

P2. BRACED CUTS

Ouestion:

For the very long braced systems shown in the figures (a) and (b), when $c_u=40 \text{ kN/m}^2$, $\phi_u=0$, $\gamma=19 \text{ kN/m}^3$, and there is no water, what is the factor of safety of the bottom against heave?

Solution:

(a)

Depth of tension crack;

$$P_{active} = (\gamma z + q)K_a - 2C_u\sqrt{K_a}$$

$$\phi = 0^\circ \longrightarrow K_a = 1$$

$$p_{active} = (\gamma z + q) - 2C_u = 0$$

$$(\gamma z + q) = 2C_u$$

r

$$z_{cr} = \frac{2C_u - q}{\gamma}$$

For ; $C_u = 40 \text{ kPa}$; q=10 kPa $\gamma = 19 \text{ kN/m}^3$

$$z_{cr} = \frac{2C_u - q}{\gamma} = \frac{2x40 - 10}{19} = \frac{70}{19} = 3.68m$$

For ;
$$B_1 = D_1 = 2m$$

 $q_u = 2 C_u = 2x40 = 80 \text{ kPa}$
 $H = 8m$; $\gamma = 19 \text{ kN/m}^3$

taking moment about b;

Force (kN/m)	Moment arm (m), about point b	Moment, $\mathbf{M}_{\mathbf{A}}$ (kN.m / m)
$S_1 = (0.5x\pi x B_1)xCu = (0.5x\pi x^2)x40 = 125.60$	$B_1 = 2$	251.20
$S_2 = (H-z_{cr})xC_u = (8-3.68)x40 = 172.80$	$B_1 = 2$	345.60
$P_1 = q_u x B_1 = 2x C_u x B_1 = 2x40x2 = 160$	$0.5 x B_1 = 1$	160
$W_1 = \gamma x H x B_1 = 19 x 8 x 2 = 304$	$0.5 x B_1 = 1$	-304
$W_2 = qxB_1 = 10x2 = 20$	$0.5 x B_1 = 1$	-20

$$FS = \frac{251.20 + 345.60 + 160}{304 + 20} = 2.34$$

very deep clay; $B_1 = 0.707 B$ $B_1 = 0.707 x 5 = 3.5 m$

For ; $B_1 = D_1 = 3.5 \text{ m}$ $q_u = 2 \text{ } C_u = 2x40 = 80 \text{ kPa}$ H = 8m; $\gamma = 19 \text{ kN/m}^3$

taking moment about b;

Force (kN/m)	Moment arm (m), about point b	Moment, $\mathbf{M}_{\mathbf{A}}$ (kN.m / m)
$S_1 = (0.5x\pi x B_1)xCu = (0.5x\pi x 3.5)x40 = 219.80$	B ₁ =3.5	769.30
$S_2 = (H-z_{cr})xC_u = (8-3.68)x40 = 172.80$	B ₁ =3.5	604.80
$P_1 = q_u x B_1 = 2x C_u x B_1 = 2x40x3.5 = 280$	$0.5 x B_1 = 1.75$	490
$W_1 = \gamma x H x B_1 = 19 x 8 x 3.5 = 532$	$0.5 x B_1 = 1.75$	-931
$W_2 = qxB_1 = 10x3.5 = 35$	$0.5 x B_1 = 1.75$	-61.25

 $FS = \frac{769.30 + 604.80 + 490}{931 + 61.25} = 1.88$

P3. BRACED CUTS

Ouestion:

Determine the factor of safety of the bottom against heave for the very long braced system shown below (hint: make reasonable assumptions).

Solution:

For sand, consider active earth pressure, not earth pressure at rest, because of some lateral displacement during excavation.

$$K_{a} = \tan^{2}(45 - \phi/2) = \tan^{2}(45 - 33/2)$$

$$K_{a} = 0.29$$

$$B_{1} = 0.707 \text{ x5} = 3.5\text{ m}$$

$$H_{2} \qquad H_{1} \qquad S_{1} \qquad H_{2} \qquad 10 \text{ kN/m}^{2} = q$$

$$K_{a} = 0.29$$

$$S_{1} \qquad I_{a} = 0.29$$

$$S_{2} \qquad I_{a} = 0.29$$

$$S_{1} \qquad I_{a} = 0.29$$

$$S_{2} \qquad I_{a} = 0.29$$

$$S_{1} \qquad I_{a} = 0.29$$

$$S_{2} \qquad I_{a} = 0.29$$

$$S_{1} \qquad I_{a} = 0.29$$

$$S_{2} \qquad I_{a} = 0.29$$

$$S_{1} \qquad I_{a} = 0.29$$

 $z = 0 p_a = 10 \ x \ 0.29 = 2.9 \ kPa$

 $z = 4 \qquad \qquad p_a = (10 + 4x18) \ x \ 0.29 = 23.8 \ kPa$

$$H_1 = 2.9 \text{ x } 4 = 11.6 \text{ kN/m}$$

$$H_2 = (23.8 - 2.9) \text{ x } 4 \text{ x } (1/2) = 41.8 \text{ kN/m}$$

$$\Sigma = 53.4 \text{ kN/m}$$

Force (kN/m)	Moment arm about point A (m)	Moment, $\mathbf{M}_{\mathbf{A}}$ (kN.m / m)
$S_1 = \sigma_n \tan \phi = 53.4 \text{ x} \tan 33 = 35$	3.5	122.5
$S_2 = 4 C_u = 4 x 40 = 160$	3.5	560
$S_3 = 0.5x\pi x B_1 x C_u = 0.5x\pi x 3.5x40 = 220$	3.5	770
$P_1 = 80x3.5 = 280$	1.75	490
$W_1 = 4x18x3.5 = 252$	1.75	-441
$W_2 = 4x19x3.5 = 266$	1.75	-465.5
$W_3 = 10x3.5 = 35$	1.75	-61.25

$$FS = \frac{122.5 + 560 + 770 + 490}{441 + 465.5 + 61.25} = 2.0$$

P4. BRACED CUTS

<u>Ouestion:</u>

Find the strut loads for each level for the long braced system given below.

Horizontal struts are spaced at every 5 m. No ground water.

Solution:

• for strut loads, the earth pressure distribution is

 $0.3\gamma_t$ H =0.3x20x8=48 kN/m² per linear meter

area 1 \rightarrow 2.0x48x(1/2) + 2.0x48 = 144 kN/m area 2 \rightarrow 2.0x48 + 2.0x48x(1/2) = 144 kN/m

taking moment wrt. point a;

→ 3.0 A = 2.0 x 48 x (2.0 / 2) + 2.0 x 48 x (1/2) x (2.0 / 3 + 2.0)A = 74.7 kN/m B₁ = 144 - 74.7 = 69.3 kN/m

3.0 C = 2.0 x 48 x (2.0 / 2) + 2.0 x 48 x (1/2) x (2.0 / 3 + 2.0)C = 74.7 kN/m $\text{B}_2 = 144 - 74.7 = 69.3 \text{ kN/m}$

Strut loads;
$$A = 74.7x 5 = 373.5 \text{ kN}$$

 $B = (69.3 + 69.3) x 5 = 693 \text{ kN}$
 $C = 74.7 x 5 = 373.5 \text{ kN}$

P5. BRACED CUTS

<u>Question:</u>

For a braced system constructed in a 10 m deep rectangular excavation in a clay, when length L= 45m; width B= 10m; surcharge q= $10kN/m^2$; unit weight $\gamma = 19 kN/m^2$ and unconfined compressive strength $q_u = 80 kN/m^2$; and there is no water, what is the factor of safety at the bottom against heave?

Solution:

If the excavation is not very long $(L/B \le 10)$ \longrightarrow square, rectangular or circular exc. Assumption \longrightarrow braced cut is a deep footing

F.S. = $\frac{N_c C_u}{(\gamma H + q)} = \frac{N_c q_u}{2(\gamma H + q)} = \frac{\text{ultimate bearing capacity}}{\text{applied load}}$

N_c : bearing capacity factor

(from Fig 4.6, pp 73 of Lecture Notes)

H/B= 10 / 10 = 1 $N_c (square) = 7.7$

 $N_{c (rect)} = (0.84 + 0.16 \text{ B/ L}) N_c (square)$

$$= (0.84 + 0.16 \times 10 / 45) \times 7.7$$

 $FS = \frac{6.8x40}{(19x10+10)} = 1.36$