MATH 463

October 29, 2014

1. HOMEWORK SOLUTIONS

1.1. Assume that a set G with an operation satisfying the associative law satisfies the following two conditions (a) and (b):

(a) There exists an element e of G such that ge = g for all $g \in G$.

(b) For any element a of G, there exists an element a' such that aa' = e.

Then, show that G is a group with respect to the given operation.

Solution We need to show that there exists a left identity and each element has a left inverse. Apply (b) to the element a'. So there exists $a'' \in G$ with a'a'' = e. By the associative law;

ea'' = (aa')a'' = a(a'a'') = ae = a by part (a). So we have ea'' = aOn the other hand; ea = (ea)e = (ea)(a'a'') = e(aa')a'' = (ee)a'' = ea'' = a by the above paragraph.

Therefore for any element $a \in G$ we have ea = a = ae for all $a \in G$. So, e is the identity element of G.

Since we have ea'' = a and e is the identity element, we get a'' = a. So we have aa' = e and a'a'' = a'a = e = aa'. So a' is the inverse of a. Therefore, G is a group with the given conditions.

1.2. For a given subset X of a group G, let \mathscr{H} be the set of subgroups H satisfying $H \cap X = \emptyset$ (the empty set). The set \mathscr{H} becomes a partially ordered set by defining $H \leq K$ if and only if H and K are members of \mathscr{H} and H is a subgroup of K. Show that, if \mathscr{H} is not empty, \mathscr{H} is inductively ordered, so \mathscr{H} has at least one maximal element by Zorn's lemma.

Pick a subgroup H_0 satisfying $H_0 \cap X = \emptyset$, and let \mathscr{H}_0 denote the subset of \mathscr{H} consisting of the members which contain H_0 . Show that \mathscr{H}_0 is also inductively ordered, and has a maximal element. **Solution** Assume \mathscr{H} is non-empty. It is clear that \mathscr{H} is a partially ordered set as being a subgroup is a partially ordered set on the set of all subgroups of G. This is the restriction of this relation to \mathscr{H} . Since $\mathscr{H} \neq \emptyset$, there exists a subgroup $H_0 \in \mathscr{H}$ such that $H_0 \cap X = \emptyset$. Let

$$\mathscr{H}_0 = \{ H \in \mathscr{H} \mid H_0 \le H \}$$

Let $H_i, i \in I$ be a chain of subgroups in \mathscr{H}_0 . Then $T = \bigcup_{i \in I} H_i$ is a subgroup of G and $T \in \mathscr{H}_0$ as $T \cap X = \emptyset$. Hence every ascending chain of members in \mathscr{H}_0 has an upper bound in \mathscr{H}_0 . Then by Zorn's lemma there exists a maximal element in \mathscr{H}_0 . i.e. There exists a subgroup M of G M is a maximal element in \mathscr{H}_0 . Therefore every subgroup containing M will have a non-empty intersection.

1.3. Find the number of left cosets of K which are contained in the double coset HxK, also show that G is the disjoint union of its (H, K)-double cosets.

Solution

1.4. Let H be a proper subgroup of a finite group G. Show that there exists an element of G which is not conjugate to any element of H.

Solution Assume for any $x \in G$, there exists $g \in G$ such that $x \in H^g$. Then $G = \bigcup H^g$. Let |G| = n and |H| = k. The number of distinct conjugates of H is $[G : N_G(H)]$.

Then we have $|G| = [G : N_G(H)]|N_G(H)| \ge [G : N_G(H)]|H|$ as $N_G(H) \ge H$. Let $|G : N_G(H)| = m$. Then H has m distinct conjugates in G. Say $H = H^1, H^{g_2}, \ldots, H^{g_m}$ As each H^{g_i} contain |H| - 1 non-identity element we have at most $|H^{g_i}| - 1$ non-identity element in H^{g_i} . If $G = \bigcup_{i=1}^m H^{g_i}$. Then $|G| = \sum_{i=1}^m |H^{g_i}| \le \sum_{i=1}^m (|(H^{g_i} - id)| \le (k - 1)m + 1$ as $H \le N_G(H)$ we have $mk - m + 1 \ge |G| = m(|N_G(H)| \ge mk$.

So we have $-m + 1 \ge 0$ and $m \le 1$. But m = 1 implies that $H \triangleleft G$ and in this case $H^g = H$ for all $g \in G$. This implies that H = G. This contradicts to the assumption that H is a proper subgroup of G. So Gcannot be a union of conjugates of a proper subgroup H.

1.5. (a) Prove that any subgroup of index 2 is normal.
(b) Let G be a finite group, and let p be the smallest prime divisor of the order |G|. Show that any subgroup of index p is normal.

Solution (a) Let $H \leq G$ with [G:H] = 2.

Then H has two distinct right cosets, and also two distinct left cosets in G. For any $h \in H$, we have hH = Hh = H and for any $a \in G$ with $a \notin H$, we have $aH \neq H$ and $Ha \neq H$. Since there are exactly two cosets of H in G, we have $Ha = aH = G \setminus H$ for all $a \in G$. Therefore $H \leq G$.

(b) Let H be a subgroup of G of index p. Then we need to show that H is a normal subgroup of G. Indeed G acts from right on the set of right cosets of H in G. Then there exists a homomorphism from G into Sym(p). Then $G/Ker(\phi)$ is isomorphic to a subgroup of Sym(p). Recall that $Ker(\phi) = \bigcap_{x \in G} H^x$. So $Ker(\phi) \leq H$. If His not normal in G then $Ker(\phi)$ will be a proper subgroup of H and hence $1 \neq H/Ker(\phi) < G/Ker(\phi)$. i.e a prime divisor of $|H/Ker(\phi)|$ divides $|G|/|Ker(\phi)|$ which divides $\frac{p!}{|Ker(\phi)|}$. Hence it divides |G| which is impossible as any prime dividing p! is less than p and p is the smallest prime dividing |G|.

1.6. For any proper subgroup H of a group G, $HH^x \neq G$ for any $x \in G$.

Solution Assume that $HH^x = G$ for some $x \in G$. Since H is a proper subgroup, clearly $x \neq 1$. Then $x = h_1 h_2^x$ for some $h_1, h_2 \in H$. Then $x = h_1 x^{-1} h_2 x$. It follows that $1 = h_1 x^{-1} h_2$ and so $h_1^{-1} h_2^{-1} = x^{-1}$. Since H is a subgroup and $h_1, h_2 \in H$ we have $h_1^{-1} h_2^{-1} \in H$ i.e. $x \in H$. But then, $G = HH^x = H$. This contradicts to H is proper. Hence $HH^x \neq G$.

2. HOMEWORK SOLUTIONS

DEFINITION 2.1. An endomorphism σ of a group G is said to be normal if σ commutes with all inner automorphisms of G.

2.1. Let σ be a normal endomorphism of a group G. Set $\sigma(G) = H$ and $\sigma(g) = z(g)^{-1}g$ for any $g \in G$.

(a) Show that z is a homomorphism from G into $C_G(H)$.

(b) Show that H is a normal subgroup of G such that $G = HC_G(H)$, and $H \cap C_G(H) = Z(H) \subset Z(G)$.

(c) Show that both H and $C_G(H)$ are invariant by σ . Prove that the restriction ρ of σ on $C_G(H)$ is a homomorphism from $C_G(H)$ into Z(H), and that for any element x of Z(H), we have $x = \zeta(x)\rho(x)$ where ζ is the restriction of z on H.

(d) Conversely, suppose that $G = HC_G(H)$, and that a homomorphism $\zeta : H \to Z(H)$ and a homomorphism $\rho : C_G(H) \to Z(H)$ are given so that, for any element x of Z(H), the formula $x = \zeta(x)\rho(x)$ is satisfied. Prove that, for an element g of G, the formula

$$\sigma(g) = \rho(c)\zeta(h)^{-1}h,$$

where $g = hc, h \in H$ and $c \in C_G(H)$, defines a normal endomorphism from G into H.

Solution

(a) Let σ be a normal endomorphism of a group G. Then σ is an endomorphism of G, commuting with all the inner automorphisms of G. Let $\sigma(G) = H$ and $\sigma(g) = z(g)^{-1}g$. We may view this as $z(g) = g\sigma(g)^{-1}$.

First observe that $z(g) = g\sigma(g)^{-1} \in C_G(H)$. Indeed;

 $i_g\sigma = \sigma i_g$ implies for any $x \in G$ $((x)i_g)\sigma = ((x)\sigma)i_g$. Then $(g^{-1}xg)\sigma = g^{-1}((x)\sigma)g$. It follows that

 $((g^{-1})\sigma)((x)\sigma)((g)\sigma) = g^{-1}((x)\sigma)g$. Multiply from left by g and from right by (g^{-1}) we have $[g((g^{-1})\sigma)]((x)\sigma)(g)\sigma)g^{-1} = (x)\sigma$ for any $x \in G$. So for any $(x)\sigma \in H$ we have $z(g) = g(g^{-1})\sigma \in C_G((G)\sigma) = C_G(H)$

Now for any g and h in G;

 $(gh)z = gh((gh)\sigma)^{-1} = gh((g)\sigma(h)\sigma)^{-1} = gh((h)\sigma)^{-1}((g)\sigma)^{-1}$

By first paragraph $h(h^{-1})\sigma \in C_G((G)\sigma)$ so $h(h^{-1})\sigma$ commutes with $(g^{-1})\sigma$ and we obtain

 $(gh)z = g((g^{-1})\sigma)h((h^{-1})\sigma) = (g)z(h)z$ Hence z is a homomorphism from G into $C_G(H)$.

(b)
$$H = (G)\sigma$$
. For any $g \in G$ and $(x)\sigma \in H$
 $g^{-1}(x)\sigma g = g^{-1}(x)\sigma g((g)\sigma)^{-1}(g)\sigma$ as $g((g)\sigma)^{-1} \in C_G(H)$ we have
 $= g^{-1}g((g)\sigma)^{-1}(x)\sigma(g)\sigma$
 $= ((g)\sigma)^{-1}(x)\sigma(g)\sigma = (g^{-1}xg)\sigma \in H$
So H is a normal subgroup of G .
Now for any $g \in G$
 $g = (g)\sigma g((g)\sigma)^{-1}$ as $g((g)\sigma)^{-1} \in C_G(H)$ and $(g)\sigma \in H$ we have
 $G = HC_G(H)$ and $H \cap C_G(H) = Z(H)$.
If $x \in H \cap C_G(H)$, then for any $g \in G$
 $gx = (g)\sigma g((g^{-1})\sigma)x$
 $= (g)\sigma xg((g^{-1})\sigma)$ as $x \in H$ and $g((g^{-1})\sigma) \in C_G(H)$
 $= x(g)\sigma g((g^{-1})\sigma)$ as $x \in C_G(H)$ and $(g)\sigma \in H$.
 $= xg$. So $x \in Z(G)$ and $Z(H) = H \cap C_G(H) \leq Z(G)$.

(c) (i) *H* is invariant as $(H)\sigma = ((G)\sigma)\sigma \subseteq (G)\sigma = H$ Let $x \in C_G(H)$. Then for any $h \in H, xh = hx$. i.e. $x(g)\sigma = (g)\sigma x$ for any $g \in G$. $x(g)\sigma x^{-1} = (g)\sigma$ for all $g \in G$. Consider $(x)\sigma(g)\sigma = (g)\sigma(x)\sigma$? $(x)\sigma x^{-1}x(g)\sigma = (x)\sigma x^{-1}(g)\sigma x$ $= (g)\sigma(x)\sigma x^{-1}x$ as $(x)\sigma x^{-1} = (x(x^{-1})\sigma)^{-1} \in C_G(H)$ and $(g)\sigma \in H$ $= (g)\sigma(x)\sigma$ Hence $(x)\sigma \in C_G(H)$.

(ii) The restriction ρ :

Let $x, y \in C_G(H)$. Then $(x)\rho = (x)\sigma = ((x)z)^{-1}x$. $((x)z)^{-1}x \in Z(H)$ as for any $(g)\sigma \in H$, we have $((x)z)^{-1}x(g)\sigma = ((x)z)^{-1}(g)\sigma x$ as $x \in C_G(H)$ and $(g)\sigma \in H$.

as $(x)z \in C_G(H)$ we have $((x)z)^{-1}x(g)\sigma = (g)\sigma((x)z)^{-1}x$. It follows that $((x)z)^{-1}x \in Z(H)$ and $(x)\rho \in Z(H)$. Moreover $(xy)\rho = (xy)\sigma = (x)\sigma(y)\sigma = (x)\rho(y)\rho$

(iii) Let $x \in Z(H)$. Then $x = x((x)\sigma)^{-1}(x)\sigma$.

Now $x((x)\sigma)^{-1} = (x)z = (x)\zeta$ where ζ is the restriction of z on H. And $(x)\sigma = (x)\rho$ where ρ is the restriction of σ on $C_G(H)$. **55.1** Let G be a group with Z(G)=1. Show that the centralizer in Aut(G) of Inn(G) is $\{1\}$ and in particular, $Z(Aut(G))=\{1\}$.

Solution: Let $\phi \in C_{Aut(G)}(Inn(G))$. Then

$$\begin{split} \phi^{-1}i_g \phi &= i_g \text{ for any } i_g \in Inn(G). \text{ For any element } x \in G, \, \phi^{-1}i_g \phi(x) = \\ i_g(x) \text{ and so } \phi^{-1}i_g(\phi(x)) &= g^{-1}xg. \text{ It follows that } \phi^{-1}(g^{-1}\phi(x)g) = \\ g^{-1}xg \text{ iff } \phi^{-1}(g^{-1})x\phi^{-1}(g) = g^{-1}xg. \text{ Then we have} \\ g\phi^{-1}(g^{-1})x\phi^{-1}(g)g^{-1} = x. \text{ Hence} \\ (g^{-1})^{-1}(\phi^{-1}(g))^{-1}x\phi^{-1}(g)g^{-1} = x \text{ for all } x \in G. \end{split}$$

Hence, $\phi^{-1}(g)g^{-1} \in Z(G) = 1$. It follows that $\phi^{-1}(g) = g$ for all $g \in G$. Then the automorphism fixes all the elements of G. i.e. ϕ is the identity automorphism of G.

As $Z(Aut(G)) = C_{Aut(G)}(Aut(G)) \leq C_{Aut(G)}(Inn(G)) = 1$, we have Z(Aut(G)) = 1.

56.3 Let G be a nonabelian simple group. Show that any automorphism of Aut(G) is inner.

Solution: As G is nonabelian simple group, Z(G)=1. Then by 55.1, Z(Aut(G))=1. Then by 55.2, any automorphism of A = Aut(G) is an inner automorphism.

Question: If two subgroups H and K of a group G satisfy the conditions $H \cap K = \{1\}$, $H \leq N_G(K)$ and $K \leq N_G(H)$, then every element of H commutes with every element of K.

Solution: Consider the element $h^{-1}k^{-1}hk$. Since $K \leq N_G(H)$, $k^{-1}hk \in H$. So $h^{-1}k^{-1}hk \in H$. Similarly, $H \leq N_G(K)$ implies $k^{-1}hk \in K$. So $h^{-1}k^{-1}hk \in K$. Hence, $h^{-1}k^{-1}hk \in H \cap K = \{1\}$. It follows that $h^{-1}k^{-1}hk = 1$ and hk = kh for any $h \in H$ and $k \in K$.

45.1 Let G be a group with a composition series and let N be a normal subgroup of G. Show that there is a composition series of G

6

having N as a term.

Solution: Let G be a group with a composition series $G = G_0 \triangleright G_1 \triangleright ... \triangleright G_n = \{1\}.$

Take the intersection of each subgroup in the series with the normal subgroup N. We have $G_0 \cap N = N \triangleright G_1 \cap N \triangleright G_2 \cap N \triangleright ... \triangleright G_n \cap N = \{1\}.$

Now, we need to show $G_{i+1} \cap N \leq G_i \cap N$. Indeed, let $x \in G_{i+1} \cap N$ and $g \in G_i \cap N$. Then $g^{-1}xg \in N$ as $x \in N$ an N is a normal subgroup of G.

Moreover, $x \in G_{i+1}$ and $g \in G_i$ and G_{i+1} is normal in G_i implies $g^{-1}xg \in G_{i+1}$. Hence, $x \in G_{i+1} \cap N$ and so $G_{i+1} \cap N \trianglelefteq G_i \cap N$.

$$(G_i \cap N)/(G_{i+1} \cap N) \simeq (G_i \cap N)G_{i+1}/G_{i+1} \trianglelefteq G_i/G_{i+1}$$

But G_i/G_{i+1} is a composition factor of the group G. So $(G_i \cap N)/(G_{i+1} \cap N)$ is either equal to G_i/G_{i+1} or $\{1\}$.

So it is simple or $(G_i \cap N)G_{i+1}/G_{i+1}$ is the trivial group.

So N has a series where each factor is either simple and the simple factor is isomorphic to a simple factor of G or it is trivial group. By deleting the trivial terms from the series, we obtain a composition series of N.

Now we may look at the series $G \triangleright G_1 N \triangleleft G_2 N \dots N$ this series also give a series from G to N with factors are either trivial or simple apply the same procedure above and obtain a series of G.