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1. HOMEWORK SOLUTIONS

1.1. Assume that a set G with an operation satisfying the associa-

tive law satisfies the following two conditions (a) and (b):

(a) There exists an element e of G such that ge = g for all g ∈ G.

(b) For any element a of G, there exists an element a′ such that

aa′ = e.

Then, show that G is a group with respect to the given operation.

Solution We need to show that there exists a left identity and

each element has a left inverse. Apply (b) to the element a′. So there

exists a′′ ∈ G with a′a′′ = e. By the associative law;

ea′′ = (aa′)a′′ = a(a′a′′) = ae = a by part (a). So we have ea′′ = a

On the other hand; ea = (ea)e = (ea)(a′a′′) = e(aa′)a′′ = (ee)a′′ =

ea′′ = a by the above paragraph.

Therefore for any element a ∈ G we have ea = a = ae for all a ∈ G.

So, e is the identity element of G.

Since we have ea′′ = a and e is the identity element, we get a′′ = a. So

we have aa′ = e and a′a′′ = a′a = e = aa′. So a′ is the inverse of a.

Therefore, G is a group with the given conditions.

1.2. For a given subset X of a group G, let H be the set of sub-

groups H satisfying H ∩ X = ∅ (the empty set). The set H becomes

a partially ordered set by defining H ≤ K if and only if H and K are

members of H and H is a subgroup of K. Show that, if H is not

empty, H is inductively ordered, so H has at least one maximal ele-

ment by Zorn’s lemma.

Pick a subgroup H0 satisfying H0∩X = ∅, and let H0 denote the subset

of H consisting of the members which contain H0. Show that H0 is

also inductively ordered, and has a maximal element.
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Solution Assume H is non-empty. It is clear that H is a partially

ordered set as being a subgroup is a partially ordered set on the set of

all subgroups of G. This is the restriction of this relation to H . Since

H 6= ∅, there exists a subgroup H0 ∈H such that H0 ∩X = ∅. Let

H0 = {H ∈H | H0 ≤ H }

Let Hi, i ∈ I be a chain of subgroups in H0. Then T =
⋃
i∈I Hi is a

subgroup of G and T ∈H0 as T ∩X = ∅. Hence every ascending chain

of members in H0 has an upper bound in H0. Then by Zorn’s lemma

there exists a maximal element in H0. i.e. There exists a subgroup

M of G M is a maximal element in H0. Therefore every subgroup

containing M will have a non-empty intersection.

1.3. Find the number of left cosets of K which are contained in

the double coset HxK, also show that G is the disjoint union of its

(H,K)-double cosets.

Solution

1.4. Let H be a proper subgroup of a finite group G. Show that

there exists an element of G which is not conjugate to any element of

H.

Solution Assume for any x ∈ G, there exists g ∈ G such that

x ∈ Hg. Then G =
⋃
Hg. Let |G| = n and |H| = k.

The number of distinct conjugates of H is [G : NG(H)].

Then we have |G| = [G : NG(H)]|NG(H)| ≥ [G : NG(H)]|H| as

NG(H) ≥ H. Let |G : NG(H)| = m. Then H has m distinct conjugates

in G. Say H = H1, Hg2 , . . . , Hgm As each Hgi contain |H| − 1 non-

identity element we have at most |Hgi |−1 non-identity element in Hgi .

If G =
⋃m
i=1H

gi . Then |G| =
∑m

i=1 |Hgi | ≤
∑m

i=1(|(Hgi − id)| ≤ (k −
1)m+1 as H ≤ NG(H) we have mk−m+1 ≥ |G| = m(|NG(H)| ≥ mk.
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So we have −m + 1 ≥ 0 and m ≤ 1. But m = 1 implies that H � G

and in this case Hg = H for all g ∈ G. This implies that H = G. This

contradicts to the assumption that H is a proper subgroup of G. So G

cannot be a union of conjugates of a proper subgroup H.

1.5. (a) Prove that any subgroup of index 2 is normal.

(b) Let G be a finite group, and let p be the smallest prime divisor of

the order |G|. Show that any subgroup of index p is normal.

Solution (a) Let H ≤ G with [G : H] = 2.

Then H has two distinct right cosets, and also two distinct left cosets

in G. For any h ∈ H, we have hH = Hh = H and for any a ∈ G with

a /∈ H, we have aH 6= H and Ha 6= H. Since there are exactly two

cosets of H in G, we have Ha = aH = G \H for all a ∈ G.

Therefore H E G.

(b) Let H be a subgroup of G of index p. Then we need to show

that H is a normal subgroup of G. Indeed G acts from right on the

set of right cosets of H in G. Then there exists a homomorphism

from G into Sym(p). Then G/Ker(φ) is isomorphic to a subgroup

of Sym(p). Recall that Ker(φ) =
⋂
x∈GH

x. So Ker(φ) ≤ H. If H

is not normal in G then Ker(φ) will be a proper subgroup of H and

hence 1 6= H/Ker(φ) < G/Ker(φ). i.e a prime divisor of |H/Ker(φ)|
divides |G|/|Ker(φ)| which divides p!

|Ker(φ)| . Hence it divides |G| which

is impossible as any prime dividing p! is less than p and p is the smallest

prime dividing |G|.

1.6. For any proper subgroup H of a group G, HHx 6= G for any

x ∈ G.

Solution Assume that HHx = G for some x ∈ G. Since H is a

proper subgroup, clearly x 6= 1. Then x = h1h
x
2 for some h1, h2 ∈ H.

Then x = h1x
−1h2x. It follows that 1 = h1x

−1h2 and so h−1
1 h−1

2 = x−1.

Since H is a subgroup and h1, h2 ∈ H we have h−1
1 h−1

2 ∈ H i.e. x ∈ H.

But then, G = HHx = H. This contradicts to H is proper. Hence

HHx 6= G.
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2. HOMEWORK SOLUTIONS

Definition 2.1. An endomorphism σ of a group G is said to be

normal if σ commutes with all inner automorphisms of G.

2.1. Let σ be a normal endomorphism of a group G. Set σ(G) = H

and σ(g) = z(g)−1g for any g ∈ G.

(a) Show that z is a homomorphism from G into CG(H).

(b) Show that H is a normal subgroup of G such that G = HCG(H),

and H ∩ CG(H) = Z(H) ⊂ Z(G).

(c) Show that both H and CG(H) are invariant by σ. Prove that

the restriction ρ of σ on CG(H) is a homomorphism from CG(H) into

Z(H), and that for any element x of Z(H), we have x = ζ(x)ρ(x)

where ζ is the restriction of z on H.

(d) Conversely, suppose that G = HCG(H), and that a homomor-

phism ζ : H → Z(H) and a homomorphism ρ : CG(H) → Z(H) are

given so that, for any element x of Z(H), the formula x = ζ(x)ρ(x) is

satisfied. Prove that, for an element g of G, the formula

σ(g) = ρ(c)ζ(h)−1h,

where g = hc, h ∈ H and c ∈ CG(H), defines a normal endomor-

phism from G into H.

Solution

(a) Let σ be a normal endomorphism of a group G. Then σ is

an endomorphism of G, commuting with all the inner automorphisms

of G. Let σ(G) = H and σ(g) = z(g)−1g. We may view this as

z(g) = gσ(g)−1.

First observe that z(g) = gσ(g)−1 ∈ CG(H). Indeed;

igσ = σig implies for any x ∈ G ((x)ig)σ = ((x)σ)ig. Then

(g−1xg)σ = g−1((x)σ)g. It follows that

((g−1)σ)((x)σ)((g)σ) = g−1((x)σ)g. Multiply from left by g and

from right by (g−1) we have [g((g−1)σ)]((x)σ)(g)σ)g−1 = (x)σ for any

x ∈ G. So for any (x)σ ∈ H we have z(g) = g(g−1)σ ∈ CG((G)σ) =

CG(H)

Now for any g and h in G;

(gh)z = gh((gh)σ)−1 = gh((g)σ(h)σ)−1 = gh((h)σ)−1((g)σ)−1

By first paragraph h(h−1)σ ∈ CG((G)σ) so h(h−1)σ commutes with

(g−1)σ and we obtain
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(gh)z = g((g−1)σ)h((h−1)σ) = (g)z(h)z Hence z is a homomor-

phism from G into CG(H).

(b) H = (G)σ. For any g ∈ G and (x)σ ∈ H
g−1(x)σg = g−1(x)σg((g)σ)−1(g)σ as g((g)σ)−1 ∈ CG(H) we have

= g−1g((g)σ)−1(x)σ(g)σ

= ((g)σ)−1(x)σ(g)σ = (g−1xg)σ ∈ H
So H is a normal subgroup of G.

Now for any g ∈ G
g = (g)σg((g)σ)−1 as g((g)σ)−1 ∈ CG(H) and (g)σ ∈ H we have

G = HCG(H) and H ∩ CG(H) = Z(H).

If x ∈ H ∩ CG(H), then for any g ∈ G
gx = (g)σg((g−1)σ)x

= (g)σxg((g−1)σ) as x ∈ H and g((g−1)σ) ∈ CG(H)

= x(g)σg((g−1)σ) as x ∈ CG(H) and (g)σ ∈ H.

= xg. So x ∈ Z(G) and Z(H) = H ∩ CG(H) ≤ Z(G).

(c) (i) H is invariant as (H)σ = ((G)σ)σ ⊆ (G)σ = H

Let x ∈ CG(H). Then for any h ∈ H, xh = hx.

i.e. x(g)σ = (g)σx for any g ∈ G. x(g)σx−1 = (g)σ for all g ∈ G.

Consider (x)σ(g)σ = (g)σ(x)σ?

(x)σx−1x(g)σ = (x)σx−1(g)σx

= (g)σ(x)σx−1x as (x)σx−1 = (x(x−1)σ)−1 ∈ CG(H) and (g)σ ∈ H
= (g)σ(x)σ

Hence (x)σ ∈ CG(H).

(ii) The restriction ρ:

Let x, y ∈ CG(H). Then (x)ρ = (x)σ = ((x)z)−1x. ((x)z)−1x ∈
Z(H) as for any (g)σ ∈ H, we have ((x)z)−1x(g)σ = ((x)z)−1(g)σx as

x ∈ CG(H) and (g)σ ∈ H.

as (x)z ∈ CG(H) we have ((x)z)−1x(g)σ = (g)σ((x)z)−1x.

It follows that ((x)z)−1x ∈ Z(H) and (x)ρ ∈ Z(H).

Moreover (xy)ρ = (xy)σ = (x)σ(y)σ = (x)ρ(y)ρ

(iii) Let x ∈ Z(H). Then x = x((x)σ)−1(x)σ.

Now x((x)σ)−1 = (x)z = (x)ζ where ζ is the restriction of z on H.

And (x)σ = (x)ρ where ρ is the restriction of σ on CG(H).
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55.1 Let G be a group with Z(G)=1. Show that the centralizer in

Aut(G) of Inn(G) is {1} and in particular, Z(Aut(G))={1}.

Solution: Let φ ∈ CAut(G)(Inn(G)). Then

φ−1igφ = ig for any ig ∈ Inn(G). For any element x ∈ G, φ−1igφ(x) =

ig(x) and so φ−1ig(φ(x)) = g−1xg. It follows that φ−1(g−1φ(x)g) =

g−1xg iff φ−1(g−1)xφ−1(g) = g−1xg. Then we have

gφ−1(g−1)xφ−1(g)g−1 = x. Hence

(g−1)−1(φ−1(g))−1xφ−1(g)g−1 = x for all x ∈ G.

Hence, φ−1(g)g−1 ∈ Z(G) = 1. It follows that φ−1(g) = g for all

g ∈ G. Then the automorphism fixes all the elements of G. i.e. φ is

the identity automorphism of G.

As Z(Aut(G)) = CAut(G)(Aut(G)) ≤ CAut(G)(Inn(G))=1, we have

Z(Aut(G))=1.

56.3 Let G be a nonabelian simple group. Show that any automor-

phism of Aut(G) is inner.

Solution: As G is nonabelian simple group, Z(G)=1. Then by

55.1, Z(Aut(G))=1. Then by 55.2, any automorphism of A = Aut(G)

is an inner automorphism.

Question: If two subgroups H and K of a group G satisfy the

conditions H ∩ K= {1} , H ≤ NG(K) and K ≤ NG(H), then every

element of H commutes with every element of K.

Solution: Consider the element h−1k−1hk. Since K ≤ NG(H),

k−1hk ∈ H. So h−1k−1hk ∈ H. Similarly, H ≤ NG(K) implies

k−1hk ∈ K. So h−1k−1hk ∈ K. Hence, h−1k−1hk ∈ H ∩K = {1}. It

follows that h−1k−1hk = 1 and hk = kh for any h ∈ H and k ∈ K.

45.1 Let G be a group with a composition series and let N be a

normal subgroup of G. Show that there is a composition series of G
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having N as a term.

Solution: Let G be a group with a composition series G = G0 .

G1 . .. . Gn = {1}.

Take the intersection of each subgroup in the series with the normal

subgroup N . We have G0∩N = N .G1∩N .G2∩N ....Gn∩N = {1}.

Now, we need to show Gi+1∩N E Gi∩N . Indeed, let x ∈ Gi+1∩N
and g ∈ Gi∩N . Then g−1xg ∈ N as x ∈ N an N is a normal subgroup

of G.

Moreover, x ∈ Gi+1 and g ∈ Gi and Gi+1 is normal in Gi implies

g−1xg ∈ Gi+1. Hence, x ∈ Gi+1 ∩N and so Gi+1 ∩N E Gi ∩N .

(Gi ∩N)/(Gi+1 ∩N) ' (Gi ∩N)Gi+1/Gi+1 E Gi/Gi+1.

But Gi/Gi+1 is a composition factor of the group G. So (Gi ∩
N)/(Gi+1 ∩N) is either equal to Gi/Gi+1 or {1}.

So it is simple or (Gi ∩N)Gi+1/Gi+1 is the trivial group.

So N has a series where each factor is either simple and the simple

factor is isomorphic to a simple factor of G or it is trivial group. By

deleting the trivial terms from the series, we obtain a composition series

of N .

Now we may look at the series G � G1N � G2N . . .N this series

also give a series from G to N with factors are either trivial or simple

apply the same procedure above and obtain a series of G.


