	Mat	h 219) D	ifferen	tial Equat	tions	I. Exam	20	.03.2009		
Last Name Name Student No	: :):				Dept./Sec Time Duration	: : : 17: : 110	40 minutes		Signature		
5 QUESTIONS ON 5 PAGES]	TOTAL 100 POINTS		
1 2	3	4	5								

M E T U Northern Cyprus Campus

EACH PROBLEM - 20 POINTS.

Question 1. Consider the first order linear homogeneous differential equation y' + p(t) y = 0, where p(t) is a continuous function on the interval (-1, 1). Is it possible that the function $y(t) = te^{2t}$ is a solution of this equation? Explain your answer.

Question 2. Solve the differential equation $x^2\sqrt{y}dx + e^{x^3}dy = 0$.

Question 3. Consider the differential equation $(y^4 + 2y) dx + (xy^3 + 2y^4 - 4x) dy = 0.$

(a) Find an integration factor which depends upon only x or y?

(b) Solve the differential equation based on the obtained integrating factor.

Question 4. Consider the differential equation $t^2y'' - 2t(t+1)y' + 2(1+t)y = 0$, t > 0. Show that it has a nontrivial solution like $y = t^{\alpha}$, $\alpha > 0$, and using this solution find its fundamental solution set. Check your answer involving the Wronskian argument.

Question 5. Solve the initial value problem

$$\begin{cases} y'' + y = 5\sin(t) \\ y(0) = 0 \\ y'(0) = -3/2 \end{cases}$$

using the method of undetermined coefficients.