	Difl	ferential Equations	
		II. Midterm	
Code Acad.Year	: Math 219 : 2007-2008	Last Name: Name : Student No	
Semester	: Fall	Department: Section:	
Date	: 9.12.2007	Signature:	
Time	: 14:00	5 QUESTIONS ON 5 PAGES	
Duration	: 120 minutes	TOTAL 100 POINTS	
1 2	3 4 5		

1. (20 points) Solve

 $y^{(6)} - y'' = 0$

- **2.** (5+15=20 points) Consider the differential equation y' + 2xy = x.
- (a) What is the radius of convergence of a power series solution of this equation?

(b) Find all solutions using a power series expansion about $x_0 = 0$. Express your answer in closed form.

3. (8+8+8=24 points) Find the inverse Laplace transforms of each of the following functions.

(a)
$$F(s) = \frac{e^{-s} - e^{-3s}}{s^2}$$

(b)
$$F(s) = \frac{s}{(s+1)(s+2)(s+3)}$$

(c)
$$F(s) = \frac{s}{(s+1)(s^2+s+1)}$$

4. (20 points) Use the Laplace transform to solve the initial value problem

$$y'' + 4y' + 3y = 1 + u_2(t),$$
 $y(0) = y'(0) = 0$

5. (8+4+4=16 points) Let a variable y(t) in an undamped forced mechanical system obey the equation $y'' + w_0^2 y = f(t)$, where $w_0 > 0$ and y(0) = y'(0) = 0.

(a) Show that
$$y(t) = -\cos w_0 t \int_0^t \frac{\sin w_0 x f(x)}{w_0} dx + \sin w_0 t \int_0^t \frac{\cos w_0 x f(x)}{w_0} dx = \int_0^t \frac{\sin w_0 (t-x) f(x)}{w_0} dx$$

(Hint: use variation of parameters or the Laplace transform)

(b) If $|f(t)| \le w_0$ for all $t \ge 0$, show that $|y(t)| \le t$ for all $t \ge 0$.

(c) Give an example for f(t) which shows that $\lim_{t\to\infty} \frac{y(t)}{t}$ does not have to be 0 even though $|f(t)| \le w_0$ for all $t \ge 0$. (Hint: use a function f(t) which causes resonance.)