	Calculus a	and Analytical Geometry	
		II. Midterm	
Code	: Math 119	Last Name:	
Acad.Year	c∶ <i>2008-2009</i>	Name : Student No	;
Semester	: Fall	Department: Section:	
Date	: 1.12.2008	Signature:	
Time	: 17:40	7 QUESTIONS ON 6 PAGES	5
Duration	: 120 minutes	TOTAL 100 POINTS	
1 2	3 4 5 6	7	

1.(15 points) Find the absolute maximum and absolute minimum values of f on the given interval

$$f(x) = x + 2x^{\frac{2}{3}}, \quad [-1,1]$$

2.(10 points) Use the Mean value theorem to prove the inequality

$$\frac{|\sin(\cos(a)) - \sin(\cos(b))|}{|a - b|} \le 1$$

for all a and b such that $a \neq b$.

3.(15 points) A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. How should the wire be cut so that the total area enclosed is

(a) a maximum

(b) a minimum

4.(20 points) Use the guidlines for sketching a curve to graph the function $f(x) = \frac{x^2}{3x+6}$

5.(12 points) Evaluate

$$\frac{d}{dx}\left(\int_{x}^{x^{2}}\tan t \ dt + \int_{1}^{\sin\pi}\sqrt{1-t^{3}} \ dt\right)$$

6.(18 points) Evaluate the integrals (a) $\int \sqrt{x^3 + 1} x^8 dx$

(b)
$$\int_{-2}^{2} \frac{x^2 \sin x}{x^4 - 9} dx$$

(c)
$$\int_{-2}^{5} |4x - x^2| dx$$

7. (10 points) Prove that

$$\int_0^2 \sqrt{1+x^3} \, dx \leq 4$$

<u>Hint</u>: Show that $\sqrt{1+x^3}$ is concave upward on [0,2]