	Calculus and Analytical Geometry						
	I. Midterm						
Code	: <i>Math 11</i>	9	Last Nan	ne:			
Acad.Yea	Acad.Year: 2008-2009		Name	:	Student No		
Semester	: Fall		Departm	ent:	Section:		
Date	: 4.11.200	08	Signature	: :			
Time	Time : 17:40			7 QUESTIONS ON 6 PAGES			
Duration : 120 minutes			TOTAL 100 POINTS				
1 2	3 4	5 6	7				

1. (6+6+6=18 points) Evaluate the following limits, if they exist. Show your work. Do not use L'Hospital's rule.

(a)
$$\lim_{x \to 4} \frac{\sqrt{2x+1} - 3}{x-4}$$

(b)
$$\lim_{x\to 0} x^3 \sin(\pi/x)$$

(c)
$$\lim_{x \to 0} \frac{\tan 2x}{\sin 3x}$$

2. (10 points) Prove that $\lim_{x\to 2} \sqrt{4x+1} = 3$ using the precise definition of a limit.

3. (15 points) Find the values of a and b which make the following function differentiable at each $x \in \mathbb{R}$:

$$f(x) = \begin{cases} \cos(\pi x), & x \le \frac{1}{2} \\ x^2 + ax + b, & x > \frac{1}{2} \end{cases}$$

4. (6+6+6=18 points) Find the indicated derivatives. Do not simplify your answers in parts (a) and (b).

(a)
$$f(x) = x \cos(\sin(x^2 + 1))$$
. Find $f'(x)$.

(b)
$$f(x) = \frac{x \tan x}{2x+1}$$
. Find $f'(x)$.

(c)
$$f(x) = \frac{1}{3x+1}$$
. Find $f^{(n)}(x)$ for each positive integer n .

5. (9 points) Suppose that f is a function that satisfies the following equation

$$f(x+h) = f(x) + f(h) + x^2h + xh^2$$

for all $x, h \in \mathbb{R}$. Suppose that $\lim_{h \to 0} \frac{f(h)}{h} = 1$.

(a) Find f(0).

(c) Find f'(x).

6. (15 points) Suppose that ABCD is a trapezoid with the sides AB and CD parallel. Suppose that |AB| is increasing at a rate of 1cm/min, |CD| is decreasing at a rate of 3cm/min and the height h of the trapezoid is increasing at a rate of 1cm/min. Find the rate at which the area of the trapezoid is changing at an instant when |AB| = 5cm, |CD| = 7cm and h = 3cm.

7. (15 points) Consider the curves $x^n + y^n = 2xy$ where $n \ge 3$ is an integer. Show that all of these curves have the same tangent line through the point (1,1). Find an equation of this line.