	Calculus a	and Analytical Geometry		
		Final		
	: Math 119	Last Name:		
Acad.Year	r: 2008-2009	Name : Student	No	
Semester	: Fall	Department: Section:		
Date	: 14.1.2009	Signature:		
Time	: 9:00	7 QUESTIONS ON 6 PAGES		
Duration	: 160 minutes	TOTAL 100 POINTS		
1 2	3 4 5 6	7		

- 1. (5+5+5=15 points) Find the following limits, if they exist
- (a) $\lim_{x \to \infty} (\sqrt{x^2 + 5x + 3} \sqrt{x^2 x + 1}).$

(b) $\lim_{x \to 0^+} (2x)^{x/2}$.

(c)
$$\lim_{x \to 0} \frac{\int_0^{x^3} \sin(t^2) dt}{x^9}$$

2. (10 points) Find the maximal area of a rectangle such that two of its vertices lie on the x-axis, and the other two on the part of the parabola $y = 4x - x^2$ above the x-axis.

3. (15 points) Use the guidelines for sketching a curve to graph the function $y = (1 + x)e^{-x}$.

4. (10+10=20 points) (a) Compute the volume of the solid obtained by rotating the region in the first quadrant enclosed by the coordinate axes, the curve $y = e^x$, and the line x = 1, about the y-axis.

(b) Compute the volume of the solid obtained by rotating the region enclosed by $y = \frac{\sqrt{1+x^2}}{x(x+1)}$, y = 0, x = 1 and $x = \sqrt{3}$ about the line x = -1.

5. (6+6+6=18 points) Evaluate the following integrals

(a)
$$\int \frac{x+3}{2x^3-8x} dx.$$

(b)
$$\int \frac{x}{\sqrt{3-2x-x^2}} dx.$$

(c)
$$\int_{1}^{\infty} \frac{\ln x}{x^3} dx$$

6. (6+6=12 points) Evaluate the following integrals

(a)
$$\int \frac{dx}{x^2\sqrt{x-4}}$$
.

(b)
$$\int \frac{x^7}{x^{12} - 1} dx$$
. (Hint: let $u = x^4$.)

7. (10 points) Find the arclength of the curve

$$x = \frac{y^6 + 8}{16y^2}$$

from y = 2 to y = 3.