	Calculus and Analytical Geometry					
	Final					
	: Math 119 r: 2007-200		Last Nar Name		Student 1	No:
Semester	: Fall		Departm	ent:	Section:	10
Date	: 9.1.2008		Signatur	e:		
Time : 9:00 Duration : 150 minutes			6 QUESTIONS ON 6 PAGES TOTAL 103 POINTS			
1 2	3 4	5 6				

1. (5+5+5=15 points) Compute the following integrals

$$(a) \int \frac{x^3 + 1}{x^2 - x} dx$$

(b)
$$\int \sin^4 x \cos^3 x \, dx$$

(c)
$$\int_0^1 \frac{1}{2x-1} dx$$

 ${\bf 2.}\ (7+7+7+7=28\ {\rm points})$ Compute the following indefinite integrals

(a)
$$\int 3x^2 \sin x \, dx$$

(b)
$$\int \frac{dx}{\sqrt{x} - \sqrt[3]{x}}$$

(c)
$$\int \frac{x}{\sqrt{3 - 2x - x^2}} \, dx$$

(d)
$$\int \sin 4x \cos 5x \, dx$$

3. (10 points) Find the volume of the infinite solid obtained by rotating the area between $y = \frac{1}{x^3}$ and y = 0 for $x \ge 1$ around the x-axis.

4. (10 points) Find an approximation to the area of the region bounded by $y=2^{-x^2}$, y=0, $x=-\frac{1}{2}$, and $x=\frac{7}{2}$ using the Midpoint rule with n=4.

- **5.** (10+10=20pts.) Let $f(x) = e^{-x^2}$
- (a) Graph the function f by finding its domain, asymptotes, local extremum(s), concavity and inflection points. Note: For full credit, show all the necessary work to obtain the graph of f.

(b) Suppose that a rectangle has its base on the x-axis and two vertices on the graph of the function $y = e^{-x^2}$. Show that the rectangle has maximum area when the two vertices are the points of inflection of the curve.

6. (5+5+5+5=20pts.) Compute the following:

(a)
$$\frac{d}{dx} \left[\ln \left(\sqrt[4]{\frac{x \tan x}{(x^2 + 1) e^x}} \right) \right]$$

(b)
$$\frac{d}{dx} \left[\cos \left(\tan^{-1} \left(\sqrt{x} \right) \right) \right]$$

(c)
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^x$$

(d)
$$\lim_{x \to 0} \frac{e^x - 1 - x - \frac{x^2}{2}}{x^3}$$