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Generation of chaos in response systems is discovered numerically through specially designed

unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary

system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53,

4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations

demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic

control is through the external circuit equation and governs the electrical potential on the boundary.

The expandability of the theory to collectives of glow discharge systems is discussed, and this

increases the potential of applications of the results. Moreover, the research completes the previous

discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. �Sijačić U.

Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).]. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4902077]

Spatiotemporal chaos is one of the complicated structures

observed in spatially extended dynamical systems and it is

characterized by chaotic properties both in time and space

coordinates. The existence of a positive Lyapunov expo-

nent can be used to detect spatiotemporal complexity,

which can be observed, for example, in liquid crystal light

valves, electroconvection, cardiac fibrillation, chemical

reaction-diffusion systems, and fluidized granular matter.

Spatially extended dynamical systems often serve as stand-

ard models for the investigation of complex phenomena in

electronics. A special interest is directed towards pattern-

formation phenomena in electronic media, mainly the non-

linear gas discharge systems. It is clear that chaos can

appear as an intrinsic property of systems as well as

through couplings. The interaction of spatially extended

systems is important for neural networks, reentry initia-

tion in coupled parallel fibers, thermal convection in multi-

layered media and for systems consisting of several weakly

coupled spatially extended systems such as the electrohy-

drodynamical convection in liquid crystals. In the present

study, we numerically verify the appearance of cyclic cha-

otic behavior in unidirectionally coupled glow discharge-

semiconductor systems. The chaos in the response system

is obtained through period-doubling cascade of the drive

system such that it admits infinitely many unstable peri-

odic solutions and sensitivity is present. Previously, the

extension of chaos through couplings has been considered

by synchronization.1,3–8 The task is difficult for partial dif-

ferential equations because of the choice of connecting pa-

rameters.9–11 Kocarev et al.9 suggested a useful time-

discontinuous monitoring for synchronization, but our

choice is based on a finite dimensional connection. It is

demonstrated that the present results cannot be reduced

to any one in the theory of synchronization of chaos.

The technique of chaos extension suggested in the present

study can be related to technical problems,
12,13

where col-

lectives of microdischarge systems are considered and in

models which appear in neural networks, hydrodynamics,

optics, chemical reactions, and electrical oscillators.

Stabilization of multidimensional periodical regimes can

be useful in applications of the glow discharge systems in

conventional and energy saving lamps, beamers, flat TV

screens, etc.

I. INTRODUCTION

The investigations of chaos theory for continuous-time dy-

namics started due to the needs of real world applications, espe-

cially with the studies of Poincar�e,14 Cartwright and

Littlewood,15 Levinson,16 Lorenz,17 and Ueda.18 Chaotic dynam-

ics has high effectiveness in the analysis of electrical processes

of neural networks19,20 and can be used for optimization and

self-organization problems in robotics.21 The reason for that is

the opportunities provided by the dynamical structure of chaos.

Starting from the primary investigations,15–18 chaos has

been found as an internal property of systems, and studies in

this sense have prolonged until today, for example, by the

construction of discrete maps.22–25 At the very beginning of

the chaos analysis, one has to mention the Smale Horseshoes

technique26 and symbolic dynamics.27 Another opportunity to

reveal chaotic dynamics is the usage of bifurcation diagrams.28,29

If one considers a mechanical or electrical system and

perturb it by an external force which is bounded, periodic or

almost periodic, then the forced system can produce a behav-

ior with a similar property, boundedness/periodicity/almost

periodicity.30–34 A reasonable question appears whether it is

possible to use a chaotic force to obtain the same type of

complexity in physical systems.

To meet the challenge, we introduced rigorous descrip-

tion of chaotic force as a function or a set of functions and
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described the input-output mechanism for ordinary differen-

tial equations in the studies.35–48 It was rigorously proved

that an irregular behavior can follow the chaotic force very

likely as regular motions do. We have applied the machinery

to mechanical and electrical systems with a finite number of

freedom35–46 as well as to neural networks.47,48 In the pres-

ent study, we apply the theory to unidirectionally coupled

glow discharge-semiconductor (GDS) systems.

A. Preliminaries of the chaos extension

Chaotic dynamics can appear in systems as an intrinsic

property and it can be extended through interactions. In the

literature, an effective and unique way of the chaos extension

from one system to another has been suggested within the

scope of generalized synchronization,1,3–7 which character-

izes the dynamics of a response system that is driven by the

output of a chaotic driving system. Suppose that the dynam-

ics of the drive and response systems are governed by the

following systems with a skew product structure

x0 ¼ FðxÞ (1.1)

and

y0 ¼ Gðy;HðxÞÞ; (1.2)

respectively, where x 2 Rm; y 2 Rn. Generalized synchroni-

zation is said to occur if there exist sets Ix, Iy of initial condi-

tions and a transformation /, defined on the chaotic attractor

of (1.1), such that for all x(0) � Ix and y(0) � Iy the relation

limt!1 kyðtÞ � /ðxðtÞÞk ¼ 0 holds. In that case, a motion

which starts on Ix� Iy collapses onto a manifold M � Ix� Iy

of synchronized motions. The transformation / is not

required to exist for the transient trajectories. When / is the

identity, the identical synchronization takes place.7,8

The synchronization of a large class of unidirectionally

coupled chaotic partial differential equations was deeply

investigated in Refs. 9 and 10, where the synchronization

was achieved by applying the driving signals only at a finite

number of space points. The synchronization of spatiotempo-

ral chaos in a pair of complex Ginzburg-Landau equations

was performed in Ref. 11 for the case when all space points

are continuously driven. In the present study, we use pertur-

bations to a single coordinate of an infinite dimensional

response system, which is non-chaotic in the absence of driv-

ing, to obtain chaotic motions in the system.

It has not been investigated whether the response system

admits the same type of chaos with the drive system in the

theory of chaos synchronization yet. The replication of chaos

with specific types such as Devaney,49 Li-Yorke22 and

period-doubling cascade50–52 was investigated for drive-

response couples for the first time in our papers.35–48

In the study,35 we considered a system of the form

u0 ¼ KðuÞ; (1.3)

where K : Rn ! Rn is a continuously differentiable func-

tion. We supposed that system (1.3) possesses an orbitally

stable limit cycle and perturbed it with solutions of a chaos

generating system, in the form of (1.1), and set up the

system

y0 ¼ KðyÞ þ lMðxÞ; (1.4)

where l is a nonzero number and M : Rm ! Rn is a contin-

uous function. The extension of sensitivity and chaos

through period-doubling cascade for the coupled system

(1.1)–(1.4) were rigorously proved in Ref. 35. As a result,

we achieved chaotic cycles, that is, motions which behave

cyclically and chaotically, simultaneously.

The rich experience of chaos expansion in finite dimen-

sional spaces provides a confidence that our approach men-

tioned in Ref. 35 has to work also in infinite dimensional

spaces. In this paper, we numerically observe the presence of

orbitally stable limit cycles in the 2–dimensional projections

of the infinite dimensional space as well as their deformation

to chaotic cycles under chaotic perturbations. By using the

technique presented in Ref. 35, one can elaborate the results

of the present study from the theoretical point of view.

Although couplings of GDS systems have not been per-

formed in the literature yet, our results reveal the opportunity

of chaos extension in such systems.

Summarizing, electronic systems are important tools for

synchronization and chaos extension. In this paper, we make

use of our previous approach35 to extend chaos in unidirec-

tionally coupled GDS systems.

B. Description of the GDS system model

Our GDS was previously studied both theoretically and

experimentally in Refs. 2, 53–67. It represents a planar

plasma layer coupled to a planar semiconductor layer, which

are sandwiched between two planar electrodes to which a

DC voltage is applied (see Fig. 1). We used a one-

dimensional fluid model for this system, where any pattern

formation in the transversal direction is excluded and only

the single dimension normal to the layers is resolved. For the

FIG. 1. A cross section of a planar discharge cell: it consist of a metal anode,

a gas layer, a high-ohmic cathode, and another metal contact. The subscripts

g and s refer to the gas and semiconductor regions.

043127-2 Akhmet, Rafatov, and Fen Chaos 24, 043127 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

144.122.36.44 On: Wed, 11 Mar 2015 10:39:45



gas discharge, the model takes into account electron and ion

drift in the electric field, bulk impact ionization and second-

ary emission from the cathode as well as space charge

effects. The semiconductor is approximated with a constant

conductivity.

The gas-discharge part of the model consists of continu-

ity equations for two charged species, namely, electrons and

positive ions with particle densities ne and ni

@tne þr � Ce ¼ Se; (1.5)

@tni þr � Ci ¼ Si; (1.6)

which are coupled to Poisson’s equation for the electric field

in electrostatic approximation

r � E ¼ e

e0

ni � neð Þ; E ¼ �rU: (1.7)

Here, U is the electric potential, E is the electric field in the

gas discharge, e is the elementary charge, and e0 is the

dielectric constant. The vector fields Ce and Ci are the parti-

cle flux densities, that in simplest approximation are

described by drift only. (In general, particle diffusion

De,irne,i could be included.) The drift velocities are assumed

to depend linearly on the local electric field with mobilities

le� li

Ce ¼ �lene E; Ci ¼ lini E; (1.8)

hence the total electric current in the discharge is

J ¼ �0@tEþ e ðCi � CeÞ ¼ �0@tEþ e ðlini þ leneÞE: (1.9)

Two types of ionization processes are taken into account: the

a process of electron impact ionization in the bulk of the gas,

and the c process of electron emission by ion impact onto the

cathode. In a local field approximation, the a process deter-

mines the source terms in the continuity Eqs. (1.5) and (1.6)

Se ¼ Si ¼ jCej a0 aðjEj=E0Þ; (1.10)

where we use the classical Townsend approximation

aðjEj=E0Þ ¼ expð�E0=jEjÞ: (1.11)

The effect of the semiconductor layer with thickness ds, con-

ductivity rs, dielectric constant es is described by the external

circuit equation

@tU ¼
Utot � U � RsJ

Ts
; (1.12)

where Utot is the applied voltage, U ¼
Ð dg

0
E dZ is the voltage

over the gas discharge which is the electric field E integrated

over the height dg of the discharge, Rs¼ ds/rs is the resist-

ance of the semiconductor layer, where rs is its conductivity,

and Ts¼ �s�0/rs is the Maxwell relaxation time of the semi-

conductor with dielectric constant es.

Following the traditions of the synchronization of cha-

otic systems, we will call the coupled GDS systems as the

drive and response systems.

The goal of our investigation is to extend the spatiotemporal

chaos of a drive GDS system to a response GDS system by

means of a special connection mechanism between the systems.

In order to make our present study self-sufficient, we complete

the chaos analysis of the GDS system, which was initiated in

Refs. 2 and 53. The method of the analysis, as well as the con-

nection mechanism are our theoretical suggestions.35–48

The chaos obtained through period-doubling cas-

cade50–52 is under investigation in the present study. In other

words, the existence of infinitely many unstable periodic sol-

utions and the presence of sensitivity49 are considered. One

of the advantages of our approach is the controllability of the

extended chaos.7,35,43,44,68 It is possible to stabilize an unsta-

ble periodic solution of the response GDS system by control-

ling the chaos of the drive system. The presented technique

is applicable to large number interconnected GDS systems

and the control of the global chaos can also be achieved.

This approach can be useful for applications of the gas dis-

charge systems in conventional and energy saving lamps,

beamers, flat TV screens, etc.12,13

C. Formulation of the model in dimensionless form

The dimensional analysis is performed essentially as in

Refs. 2 and 53. In dimensional units, Z parametrizes the

direction normal to the layers. The anode of the gas dis-

charge is at Z¼ 0, the cathode end of the discharge is at

Z¼ dg, and the semiconductor extends up to Z¼ dgþ ds.

When diffusion is neglected, the ion current and the ion

density at the anode vanish. This is described by the bound-

ary condition on the anode Z¼ 0

Cið0; tÞ ¼ 0) nið0; tÞ ¼ 0: (1.13)

The boundary condition at the cathode, Z¼ dg, describes the

c-process of secondary electron emission

jCeðdg; tÞj ¼ cjCiðdg; tÞj ) leneðdg; tÞ ¼ cliniðdg; tÞ:
(1.14)

Finally, a DC voltage Utot is applied to the system determin-

ing the electric potential on the boundaries

Uð0; tÞ ¼ 0; Uðdg þ ds; tÞ ¼ �Utot: (1.15)

Here, the first potential vanishes due to gauge freedom. We

denote the potential at the interface between the semiconduc-

tor and the gas discharge by �U so that U(dg, t)¼�U.

Let us introduce the intrinsic parameters of the system

as t0 ¼ 1
a0leE0

; Z0 ¼ 1
a0
; n0 ¼ e0a0E0

e . In Refs. 2 and 53 the

problem was reduced to one spatial dimension z such that the

GDS system takes the following dimensionless form

@sr� @zðErÞ ¼ rEaðEÞ;
@sqþ l@zðEqÞ ¼ rEaðEÞ;
@zE ¼ q� r; E ¼ �@z/;

(1.16)

where the dimensionless time, coordinates and fields are

z¼ Z
Z0
; s¼ t

t0
; rðz; sÞ ¼ ne Z;tð Þ

n0
; qðz; sÞ ¼ ni Z;tð Þ

n0
; Eðz; sÞ ¼ E Z;tð Þ

E0
;

/ðz; sÞ ¼ U Z;tð Þ
E0Z0

and aðEÞ ¼ e�1=jEj.
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The intrinsic dimensionless parameters of the gas dis-

charge are the mobility ratio l of electrons and ions and the

length ratio L of discharge gap width and impact ionization

length. That is, l ¼ li

le
and L ¼ dg

Z0
. The boundary conditions

become

qð0; sÞ ¼ 0;

rðL; sÞ ¼ clqðL; sÞ;
/ð0; sÞ ¼ 0; /ðL; sÞ ¼ �U;

(1.17)

and the external circuit is described by

@sU ¼
U tot � U �Rsj

ss
; (1.18)

where the total applied voltage is rescaled as U tot ¼ Utot=
ðE0Z0Þ, dimensionless voltage UðsÞ ¼

Ð L
0
E dz, time scale

ss¼ Ts/t0, resistance Rs ¼ Rs elen0=Z0, and spatially con-

served total current jðsÞ ¼ @sE þ lqE þ rE.

We consider a regime corresponding to a transition

between Townsend and glow discharge. The parameters are

taken as in the experiments63 and in our previous work.2 The

discharge is in nitrogen at 40 mbar, in a gap of 1.4 mm. We

used the ion mobility li¼ 23.33 cm2/(V s) and electron mo-

bility le¼ 6666.6 cm2/V s), therefore, the mobility ratio is

l¼ li/le¼ 0.0035. The secondary emission coefficient was

taken as c¼ 0.08. The applied voltages Utot are in the range

of 513–570 V. For a0¼Ap¼ [27.8 lm]�1 and for E0¼Bp
¼ 10.3 kV/cm, we used values from Ref. 58. The semicon-

ductor layer consists of 1.5 mm of GaAs with dielectric

constant es¼ 13.1 and conductivity rs¼ (2.6� 105 X cm)�1.

Corresponding dimensionless parameters are L¼ 50,

Rs ¼ 30597, ss¼ 7435, and a total voltage range U tot

between 17.67 and 20.03.

II. COUPLED CHAOTIC GDS SYSTEMS

In the present section, we will extend the spatiotemporal

chaos of a drive GDS system through utilizing its voltage

over the gas discharge as a chaotic control applied to the

electric circuit of a response GDS system. In the coupling,

the voltage over the discharge of the drive system is applied

as a perturbation to the circuit equation of the response sys-

tem. The presence of chaos in the response system will be

shown numerically. Moreover, we will compare our results

with generalized synchronization.

The full analysis of the spatiotemporal chaos in the GDS

system (1.16)–(1.18) is provided in the Appendix, where the

bifurcation diagram as well as the chaotic behaviors in the volt-

age, electric field, electron density and ion density of the system

are represented. According to these results, the GDS system

@sr� @z Erð Þ ¼ rEa Eð Þ;
@sqþ l@z Eqð Þ ¼ rEa Eð Þ;
@zE ¼ q� r; E ¼ �@z/;

@sU ¼
20� U �Rsj

ss
;

(2.1)

is chaotic, and it will be accompanied by the boundary

conditions

qð0; sÞ ¼ 0;

rðL; sÞ ¼ clqðL; sÞ;
/ð0; sÞ ¼ 0; /ðL; sÞ ¼ �U:

We will take into account (2.1) as the drive system.

The solutions of (2.1) will be used as a perturbation for

the response GDS system in the form

@s~r � @z
~E~rð Þ ¼ ~r~Ea ~Eð Þ;

@s~q þ l@z
~E~q
� �

¼ ~r~Ea ~Eð Þ;
@z

~E ¼ ~q � ~r; ~E ¼ �@z
~/;

@sV ¼
V tot � V �Rs

~j þ dU sð Þ
ss

;

(2.2)

with the boundary conditions

~qð0; sÞ ¼ 0;

~rðL; sÞ ¼ cl~qðL; sÞ;
~/ð0; sÞ ¼ 0; ~/ðL; sÞ ¼ �V:

In system (2.2), d is a nonzero number and the term

dUðsÞ=ss is the perturbation from the drive system (2.1).

It is shown in the Appendix for the parameter value

U tot ¼ 17:7 that the projection of the attractor of system

(1.16)–(1.18) on the domain of Eq. (1.18) is a stable limit

cycle (see Fig. 7). That is, in the absence of driving, the

response system (2.2) with V tot ¼ 17:7 does not possess

chaos. We will numerically show that the response GDS sys-

tem possesses chaotic motions near the limit cycle, provided

that the driving effect is included. Our results are theoretically

based on the study,35 where we have proved that if the drive

system admits infinitely many unstable periodic solutions and

sensitivity, then the response system does the same. Since the

attractor exists in system (1.16)–(1.18) with U tot ¼ 17:7, one

can conclude by the extension of our results presented in

Ref. 35 that if the number jdj in Eq. (2.2) is sufficiently small,

then system (2.2) possesses cyclic chaos on the V � ~j plane.

Let us take V tot ¼ 17:7 and d¼ 0.047 in the response

GDS system (2.2). Using the solution of the drive system

shown in Figures 8–10, we depict in Figure 2 the projection of

FIG. 2. The trajectory of the response system (2.2) in the V � ~j plane mani-

fests the chaotic cycle.
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a chaotic solution of (2.2) on the V � ~j plane. The figure

reveals that the response GDS system possesses motions that

behave chaotically around the limit cycle of system

(1.16)–(1.18) with U tot ¼ 17:7. Moreover, to support the pres-

ence of chaos in the response system, we depict in Figure 3

the time series of the V coordinate. The amplitude ranges

15–16.6 and 7.4–8.6 are used in Figures 3(b) and 3(c), respec-

tively, to increase the visibility of chaotic behavior.

Figures 4(a)–4(c) depict, respectively, the chaotic

behaviors in the electric field, electron density and ion den-

sity of system (2.2). The figure supports the presence of

chaos in the response GDS system such that it is the expan-

sion of the one which takes place on the V � ~j plane.

Now, let us compare our results with generalized syn-

chronization (GS).1,3–7 According to Kocarev and Parlitz

(1996), GS occurs for the coupled systems (1.1) and (1.2) if

and only if for all x0 � Ix, y10, y20 � Iy, the asymptotic stabil-

ity criterion limt!1 kyðt; x0; y10Þ � yðt; x0; y20Þk ¼ 0 holds,

where y(t, x0, y10) and y(t, x0, y20) denote the solutions of

(1.2) with the initial data y(0, x0, y10)¼ y10, y(0, x0, y20)

¼ y20 and the same x(t), x(0)¼ x0. This criterion is a mathe-

matical formulation of the auxiliary system approach.1,7 We

shall make use of the auxiliary system approach to demon-

strate the absence of generalized synchronization in the

coupled system (2.1)–(2.2).

We introduce the auxiliary system

@s�r � @z
�E�rð Þ ¼ �r�Ea �Eð Þ;

@s�q þ l@z
�E�q
� �

¼ �r�Ea �Eð Þ;
@z

�E ¼ ~q � �r; �E ¼ �@z
�/;

@sW ¼
17:7�W �Rs

�j þ 0:047U sð Þ
ss

;

(2.3)

with the boundary conditions

�qð0; sÞ ¼ 0;

�rðL; sÞ ¼ cl�qðL; sÞ;
�/ð0; sÞ ¼ 0; �/ðL; sÞ ¼ �W:

FIG. 3. The behavior of the V coordinate of system (2.2) is shown in (a). In

(b) and (c), where the chaotic behavior is observable, the amplitudes are re-

stricted to the ranges 15–16.6 and 7.4–8.6, respectively.

FIG. 4. Time evolution of profiles of the (a) electric field ~E, (b) electron

density ~ne, and (c) ion density ~ni support the existence of chaotic motions

around the periodic solution.

FIG. 5. Application of the auxiliary system approach reveals that the

coupled systems (2.1) and (2.2) are not synchronized.
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Making use of the solution UðsÞ whose graph is repre-

sented in Figure 9 in both of the systems (2.2) and (2.3), we

depict in Figure 5 the projection of the stroboscopic plot of

system (2.2) and (2.3) on the V �W plane. The first 500 iter-

ations are omitted in the simulation. The time interval [0,

80� 106] is used and the time step is taken as Ds¼ 5000.

Since the plot does not take place on the line W ¼ V, we

conclude that generalized synchronization is not achieved in

the dynamics of the coupled system (2.1)–(2.2).

III. CONCLUSIONS

In the studies,35–48 we applied the input-output mecha-

nism to systems that admit stable equilibrium points as well

as limit cycles. It is theoretically proved in Ref. 35 that weak

forcing of systems with stable limit cycles leads to the defor-

mation of limit cycles to chaotic cycles, that is motions that

behave chaotically around the limit cycle. This phenomenon

cannot be explained by the theory of generalized synchroni-

zation,1,3–7 and it is also used in the present study. In the

electrical sense, the chaotification of limit cycles is much

more preferable than that procedure for asymptotic equili-

bria, because of the role of oscillations for electronics.

In this paper, we utilize GDS systems as drive and

response electrical models. GDS systems were analyzed for a

chaos presence in Ref. 2. We complete the analysis by con-

structing the full period-doubling bifurcation diagram to dem-

onstrate that the drive system admits infinitely many unstable

periodic solutions as well as sensitivity. However, this is only

an auxiliary result. The main novelty of the present paper with

respect to the previous studies2,53,54 is that we consider these

systems which are coupled in a unidirectional way and prove

that the chaos can be extended through couplings of GDS sys-

tems as well as in their arbitrary large collectives. This type of

chaos extension may give benefits in further applications, for

example, in economic lamps and flat TV screens.12,13 We sug-

gest that our way of numerical analysis and special design of

complexity can be further verified experimentally. It is worth

noting that our approach is not generalized synchronization of

chaos at all. This is demonstrated through the special method

of auxiliary system approach.1,7
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APPENDIX: THE CHAOS IN THE DRIVE GDS SYSTEM

In this part, we will extend the results of Ref. 2 about

the presence of chaos in GDS systems. In Ref. 2, only a finite

number of period-doubling bifurcations were indicated.

However, in the present study, we represent the occurrence

of infinitely many period-doubling bifurcations by means of

a bifurcation diagram and we definitely reveal the regions of

regularity and chaoticity.

The bifurcation diagram corresponding to the U coordi-

nate of system (1.16)–(1.18) with the boundary conditions

(1.17) is pictured in Figure 6. Here, U tot is the bifurcation pa-

rameter. Supporting the results of Ref. 2, it is observable in

the figure that the system displays period-doubling bifurca-

tions and leads to chaos. The period-doubling bifurcations

occur approximately at the U tot values 18.315, 18.782,

18.902, 18.939, etc., and a period-six window appears near

U tot ¼ 19:073 in the bifurcation diagram.

FIG. 6. The bifurcation diagram of system (1.16)–(1.18) for the values of

the parameter U tot between 17.67 and 20.03.

FIG. 7. The figure reveals a limit cycle, the projection of the attractor of the

global system on the domain of Eq. (1.18) with U tot ¼ 17:7.

FIG. 8. The projection of the chaotic solution of the drive GDS system (2.1)

on the U � j plane.
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One can conclude from the bifurcation diagram that the

system (1.16)–(1.18) possesses a stable periodic solution for

U tot ¼ 17:7. The projection of a solution that approaches to

the stable limit cycle, which is the projection of the attractor

of the global system (1.16)–(1.18) on the domain of (1.18)

with U tot ¼ 17:7, is depicted in Figure 7. This result confirms

the existence of an attractor as a periodic solution in the spa-

tiotemporal equation.

The bifurcation diagram shown in Figure 6 confirms that

the drive GDS system (2.1) is chaotic. The projection of a

chaotic solution of (2.1) on the U � j plane is represented in

Figure 8. Moreover, the time series of the U coordinate of

the same solution is shown Figure 9, where one can see the

chaotic behavior.

The profiles of the electric field E, electron density ne,

and ion density ni of (2.1) are pictured in Figures

10(a)–10(c), respectively. Figure 10 also confirms the pres-

ence of chaos in the drive system.
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