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a b s t r a c t

We discuss the appearance of cyclic and toroidal chaos in Hopfield neural networks. The theoretical
results may strongly relate to investigations of brain activities performed by neurobiologists. As new
phenomena, extension of chaos by entrainment of several limit cycles as well as the attraction of cyclic
chaos by an equilibrium are discussed. Appropriate simulations that support the theoretical results are
depicted. Stabilization of tori in a chaotic attractor is realized not only for neural networks, but also
for differential equations theory, and this phenomenon has never been reported before in the literature.
It is demonstrated that the proposed chaos generation technique cannot be considered as generalized
synchronization.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

There is a certain adequacy for the real world and its reflection
by brain activities. The presence of chaos in neural networks is
useful for separating image segments [1], information processing
[2,3] and synchronization [4–7]. Either the chaos can be generated
by a neural network itself (endogenous chaos), or a chaotic
influence outside of the neural network can be realized in its
output (exogenous chaos). The endogenous chaos in neural net-
works has been widely investigated in the literature [8–24], but
the latter has not been effectively discussed yet. This is not
because the problem is not natural, but the absence of a rigorously
developed input/output mechanism for the phenomenon seems
to be the reason. This is why we were attracted by the problem of
chaos generation.

In their experiments, Skarda and Freeman [25] obtained differ-
ent kinds of electroencephalogram (EEG) signals when known and
unknown odorants were given to a rabbit. For known odorants, the
signals were in the form of a limit cycle, but for unknown ones, they
were chaotic. According to the experimental results, it was pro-
posed that deterministic chaos is utilized in neural activities for
learning new sensory patterns as well as ensuring continual access
to previously learned sensory patterns. The roles of chaos for brain
behavior have been investigated in many papers. For example,
Watanabe et al. [26] demonstrated that the chaotic dynamics

works as means to learn new patterns and increases the memory
capacity of neural networks. The group of theorists, Guevara et al.
[27], suggested that chaotic behavior may be responsible for
dynamical diseases such as schizophrenia, insomnia, epilepsy and
dyskinesia. It was shown in the paper [27] that the periodic forcing
of neural oscillator models can lead to chaos. This is similar to the
case that was primarily observed in electrical devices through Van
der Pol and Duffing oscillators in pioneer papers [28–32]. Actually,
this is not surprising since brain activities can be mostly considered
as electrical processes.

A sensory cortex is conceived in [33] as a global attractor with
many “wings”. When the cortex is at rest, the wings are shut.
When a known stimulus arrives, the system moves to an appro-
priate wing and a burst of oscillation is observed. In paper [34], it
was revealed that “each of the wings are either a near-limit cycle
(a narrow band chaos) or a broad band chaos.” One should
emphasize that the near-limit cycle chaos can result from the
entrainment of limit cycles by chaos, which is theoretically proved
in [35] and considered as one of the main ways of chaos genera-
tion in the present research.

Discussing wings as neural networks, one can suppose that
there is the opportunity of chaos production by a wing itself and
extension of chaos from one wing to another. The latter case has
not been considered in the literature yet, at least mathematically.
That is why we decided to investigate the problem in the present
study. More precisely, for the first time in the literature,
we consider the extension of chaos in the following ways: (i)
entrainment of a limit cycle by chaos, (ii) attraction of a cyclic
chaos by an equilibrium, (iii) entrainment of two and more limit
cycles by chaos, and (iv) attractions of chaotic cycles by an
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equilibrium. These chaos extension types provide us with the
mathematical support for Freeman's “wings” of a sensory cortex.
The extension of chaos has not been considered in the previous
investigations, and we hope that the rigorous mathematical back-
ground of the phenomenon may give a positive effect for the
researches of neurobiologists. This is also true for our results
concerning quasi-periodic and almost periodic motions in the
basis of chaotic attractors. Since the appearances of limit cycle
and near-limit cycle chaos were experimentally observed in the
studies [25,34], one can hypothesize that both limit tori and near-
torus chaos can be dynamical representatives of brain processes.

The present study is suggested as an application of our
investigations about chaos extension developed in the papers
[35–37] to give an additional mathematical light on the ideas
developed by neurobiologists, primarily, Freeman and his colla-
borators [11,33,34,38–40]. The main dynamical result considered
in the present study is the entrainment by chaos, which is
understood as the deformation of limit cycles to chaotic cycles. Our
results are useful for analyzing chaos extension among collectives
of neural networks based on generation of chaos by input/output
mechanisms built through differential equations. According to
Skarda and Freeman [25], limit cycles and chaotic dynamics
are of prime importance in odor recognition. Moreover, it was
observed in [25] that the brain's EEG activity changes from limit
cyclical to near-cycle chaotic if a familiar odor was replaced by an
unknown one. This can be interpreted through our paper [35] as
the chaotification of limit cycles. Additionally, if we accept that
complexity of chaos is important for the memory capacity, then
one can suppose that to increase a memory we need to do the
same with the complexity of chaos. From this point of view, it is
interesting to say about regular unstable motions which constitute
a basis (skeleton) of chaotic attractors. These are usually assumed
to be periodic motions [41–43]. Beside the periodic motions,
quasi-periodic, almost periodic and recurrent motions can also
be considered as a basis of chaos [44–46]. As chaos increases the
capacity of memorizing [25,26], one can suppose that chaos with
the basis of quasi-periodic motions provides a memory with a
larger capacity than that with periodic motions. This is true if we
compare chaos with quasi-periodic unstable motions with one
having a skeleton of almost periodic motions. That is why the
problem of chaos generation by neural networks which is based
on unstable quasi-periodic or almost periodic solutions is of strong
importance. In our paper, it is shown that one can create quasi-
periodic motions in chaotic attractors as well as join different
quasi-periodic motions to obtain quasi-periodic motions with a
larger number of incommensurate frequencies. Moreover, we
discuss the problem of chaos control, which can also be considered
as theoretical basis of learning and recognition, if one accepts the
ideas in the papers [25,34,38–40]. We suggest that the appearance
of limit cycles in experiments with brain behavior [25,26,34]
results from the stabilization of one of the unstable periodic
solutions, which are already present in a wing. This stabilization
can be done either by external perturbation or by control (of
Pyragas type [47]), which is triggered by stimuli.

To have a unity and uniform delivering in the paper, the
discussions are developed by using Hopfield neural networks
(HNNs) [48–51], but they can also be realized for other types of
neural networks [52–59].

HNNs [48–51] are continuous-time dynamical systems described
by the following nonlinear ordinary differential equations:

Ci
dpi
dt

¼ �pi
Ri
þ ∑

N

j ¼ 1
wijf jðpjÞþ Ii; i¼ 1;2;…;N; ð1:1Þ

where N is the number of neurons, pi is the total input to neuron i,
the bounded monotonic differentiable function fj is the activation

function acted on neuron j, Ci and Ri are the parameters correspond-
ing to a capacitance and a resistance, Ii is the external input of neuron
i and wij is the synaptic connection value between neuron i and
neuron j.

In an equivalent form, the HNN (1.1) can be represented as

_p ¼ �CpþWf ðpÞþ I;

where p¼ ðp1; p2;…; pNÞT , the diagonal matrix C ¼ diagfc1; c2;…; cNg,
which is associated with Ci and Ri, has positive diagonal entries,
f ðpÞ ¼ ðf 1ðp1Þ; f 2ðp2Þ;…; f NðpNÞÞT , W ¼ ðwijÞN�N is the connection
matrix and I ¼ ðI1; I2;…; INÞT is the external input vector.

Weak synaptic connections between neurons are observable in
the dynamics of brain, and a method to characterize the weakness of
synaptic connections is to consider amplitudes of postsynaptic
potentials measured in the soma of neurons while the neuron
membrane potential is far below the threshold value [60].
The brain units such as neurons, cortical columns and neuronal
modules are supposed to be weakly connected and modeled as
autonomous quasi-periodic oscillators in the paper [61]. McNaughton
et al. [62] revealed weak synaptic connections in the hippocampal
cells by means of the investigation of excitatory postsynaptic
potentials. Moreover, weak interactions between neurons in the
cortex are observed by Abeles [63] as a result of the analysis of cross
correlograms obtained from pairs of neurons. On the other hand,
according to Pasemann et al. [64], periodic and quasi-periodic
solutions in biological and artificial systems are of fundamental
importance as they are associated with central pattern generators.
Therefore, the investigations of coupled neural networks that possess
periodic or quasi-periodic solutions with weak connections are of
prime importance.

In the present study, we establish weak connections between
two HNNs, one with a chaotic attractor and the other one with an
attracting limit cycle or attracting torus. As a result we obtain a
chaotic cycle/torus, that is, motions that behave chaotically around
the limit cycle or torus.

Stability is one of the main properties which are suggested to
be started with pioneer papers [48]. It attracts the attention of
other authors nowadays [65–72]. However, starting with results
on chaos, the role of papers on unstable motions and their
stabilization has been increased significantly.

In the literature, the generation of chaos has been considered
within the scope of synchronization theory [73–79]. For two
coupled systems to be synchronized, the chaos of the response
system has to be asymptotically close to that of the driver. We do
not use this proximity in our results, and we demonstrate that
chaos generation around limit cycles and tori are not reducible to
synchronization, in general.

2. Entrainment of limit cycles and tori by chaos in HNNs

Let us consider the HNN

_x ¼ �CxþWf ðxÞþ I; ð2:1Þ

where xARm, C ¼ diagfc1; c2;…; cmg, ci40 for each i¼ 1;2;…;m,
W ¼ ðwijÞm�m is the connection matrix and I is the external input
vector.

Next, we take into account the HNN

_y ¼ �DyþWgðyÞþεhðxðtÞÞ; ð2:2Þ

where yARn, x(t) are solutions of (2.1), ε is a nonzero constant,
h : Rm-Rn is a continuous function, D¼ diagfd1; d2;…; dng, di40
for each i¼ 1;2;…;n and W ¼ ðwijÞn�n is the connection matrix. It
is worth noting that the unidirectionally coupled networks (2.1)
and (2.2) have a skew product structure.
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We mainly assume that the HNN

_u ¼ �DuþWgðuÞ ð2:3Þ
possesses an orbitally stable limit cycle.

On the other hand, we also assume that the network (2.1)
admits a chaotic attractor, let us say a set in Rm. Fix x0 from the
attractor and take a solution x(t) of (2.1) with xð0Þ ¼ x0. Since we
use the solution x(t) as an external input in the network (2.2), we
call it as chaotic function. The chaotic functions may be irregular as
well as regular (periodic and unstable) [42,43,80,81].

The network (2.1) is called sensitive if there exist positive
numbers ϵ0 and Δ such that for an arbitrary positive number δ0
and for each chaotic solution x(t) of (2.1), there exist a chaotic
solution xðtÞ of the same network and an interval J � ½0;1Þ,
with a length no less than Δ, such that Jxð0Þ�xð0ÞJoδ0 and
JxðtÞ�xðtÞJ4ϵ0 for all tA J.

For a given chaotic solution x(t) of (2.1), let us denote by
ϕxðtÞðt; y0Þ, y0ARn, the solution of (2.2) with ϕxðtÞð0; y0Þ ¼ y0. The
network (2.2) replicates the sensitivity of (2.1) if there exist
positive numbers ϵ1 and Δ such that for an arbitrary positive
number δ1 and for each solution ϕxðtÞðt; y0Þ, there exist an interval
J1 � ½0;1Þ, with a length no less than Δ, and a solution ϕxðtÞðt; y1Þ
such that Jy0�y1 Joδ1 and JϕxðtÞðt; y0Þ�ϕxðtÞðt; y1ÞJ4ϵ1 for all
tA J1. Moreover, we say that the network (2.2) is chaotic if it
replicates the sensitivity of (2.1) and the coupled system (2.1)þ
(2.2) possesses infinitely many unstable periodic solutions in a
bounded region.

The following theorem is based on the entrainment of limit
cycles by chaos considered in the paper [35], where the replication
of sensitivity and the existence of infinitely many unstable
periodic solutions were rigorously proved.

Theorem 2.1. If there exists a positive number L such that
Jhðs1Þ�hðs2ÞJZLJs1�s2 J for all s1; s2ARm and the number jεj is
sufficiently small, then there exists a neighborhood N of the orbitally
stable limit cycle of (2.3) such that solutions of (2.2) which start
inside N behave chaotically around the limit cycle. That is, the
solutions are sensitive and there are infinitely many unstable periodic
solutions.

To illustrate the result of Theorem 2.1, let us consider the
HNN [22]

_u1 ¼ �u1þ3:4 tanhðu1Þ�1:6 tanhðu2Þþ0:7 tanhðu3Þ
_u2 ¼ �u2þ2:5 tanhðu1Þþ0:95 tanhðu3Þ
_u3 ¼ �u3�3:5 tanhðu1Þþ0:5 tanhðu2Þ; ð2:4Þ
which is in the form of (2.3). It is mentioned in [22] that the
network (2.4) possesses a limit cycle with the Lyapunov exponents
0, �0.1356 and �0.1466. Therefore, 1 is a simple characteristic
multiplier of the corresponding variational system, and the
remaining characteristic multipliers are in modulus less than 1.

According to the Andronov–Witt Theorem [82], the limit cycle
of (2.4) is orbitally stable.

Next, we take into account the following HNN:

_x1 ¼ �x1þ2 tanhðx1Þ�1:2 tanhðx2Þ
_x2 ¼ �x2þ2 tanhðx1Þþ1:71 tanhðx2Þþ1:15 tanhðx3Þ
_x3 ¼ �x3�4:75 tanhðx1Þþ1:1 tanhðx3Þ: ð2:5Þ
In the paper [21], it is shown that the network (2.5) admits a
positive Lyapunov exponent and possesses chaotic motions. We
will use it as a system of the form (2.1), which entrains the limit
cycle of (2.4) by the chaos.

Making use of the solutions of (2.5) as external inputs for (2.4),
we set up the following HNN:

_y1 ¼ �y1þ3:4 tanhðy1Þ�1:6 tanhðy2Þþ0:7 tanhðy3Þ
þ0:0136 tanhðx1ðtÞÞ�0:0015 tanhðx2ðtÞÞþ0:0025 tanhðx3ðtÞÞ

_y2 ¼ �y2þ2:5 tanhðy1Þþ0:95 tanhðy3Þ
þ0:0004 tanhðx1ðtÞÞþ0:0212 tanhðx2ðtÞÞ�0:0005 tanhðx3ðtÞÞ

_y3 ¼ �y3�3:5 tanhðy1Þþ0:5 tanhðy2Þ
þ0:0012 tanhðx1ðtÞÞþ0:0023 tanhðx2ðtÞÞþ0:0145 tanhðx3ðtÞÞ:

ð2:6Þ
The network (2.6) is in the form of (2.2), and according to Theorem

2.1, it possesses chaotic motions around the limit cycle of (2.4).
To simulate the results, let us use in HNN (2.6) the chaotic

solution x(t) of (2.5) with x1ð0Þ ¼ �0:109, x2ð0Þ ¼ �0:832 and
x3ð0Þ ¼ 1:721, and represent the trajectory of (2.6) with y1ð0Þ ¼
0:645, y2ð0Þ ¼ 0:243 and y3ð0Þ ¼ �0:628 in Fig. 1. The figure
supports the result of Theorem 2.1 such that the limit cycle of
(2.4) is entrained by the chaos. Moreover, the irregular behavior of
the y3 coordinate over time is illustrated in Fig. 2.

2.1. Sensitivity analysis

The replication of sensitivity in more general coupled systems
is rigorously proved in the paper [35]. Here, we will show through
simulations the replication of sensitivity by HNNs.

Li et al. [17] theoretically verified the existence of horseshoe
chaos in the HNN:

_x1 ¼ �x1þ2 tanhðx1Þ�tanhðx2Þ
_x2 ¼ �x2þ1:7 tanhðx1Þþ1:71 tanhðx2Þþ1:1 tanhðx3Þ
_x3 ¼ �2x3�2:5 tanhðx1Þ�2:9 tanhðx2Þþ0:56 tanhðx3Þ: ð2:7Þ
Additionally, we consider the HNN

_y1 ¼ �y1þ3:4 tanhðy1Þ�1:6 tanhðy2Þþ0:7 tanhðy3Þ
þ0:02 tanhðx1ðtÞÞþ0:035 tanhðx3ðtÞÞ

_y2 ¼ �y2þ2:5 tanhðy1Þþ0:95 tanhðy3Þþ0:025 tanhðx2ðtÞÞ
_y3 ¼ �y3�3:5 tanhðy1Þþ0:5 tanhðy2Þþ0:004 tanhðx1ðtÞÞ

�0:01 tanhðx2ðtÞÞþ0:05 tanhðx3ðtÞÞ; ð2:8Þ
which is obtained by using of the solutions of (2.7) as external
inputs in (2.4).

To demonstrate numerically the replication of sensitivity, we
illustrate in Fig. 3 two initially nearby trajectories of the coupled
network (2.7)þ(2.8), one with the initial data x1ð0Þ ¼ 0:236,
x2ð0Þ ¼ 0:543, x3ð0Þ ¼ �0:745, y1ð0Þ ¼ �0:751, y2ð0Þ ¼ �0:672
and y3ð0Þ ¼ 1:641, represented in blue, and the other one with
the initial data x1ð0Þ ¼ 0:237, x2ð0Þ ¼ 0:541, x3ð0Þ ¼ �0:752,
y1ð0Þ ¼ �0:749, y2ð0Þ ¼ �0:674 and y3ð0Þ ¼ 1:643, pictured in red.
Fig. 3(a) and (b) show the projections of these trajectories on the
x1�x2�x3 and y1�y2�y3 spaces, respectively. It is seen in Fig. 3
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Fig. 1. The chaotic trajectory of HNN (2.6). The figure supports Theorem 2.1 such
that the trajectory behaves chaotically around the limit cycle of HNN (2.4).
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(a) that the sensitivity feature is present in the HNN (2.7) such that
the initially nearby solutions eventually diverge. On the other
hand, it is seen in Fig. 3(b) that the trajectories are initially close to
each other and are then separated, that is, the sensitivity is
replicated by the network (2.8). The simulations are performed
for tA ½0;21�.

2.2. Chaos around tori

Verification of the entrainment of limit tori by chaos is a
theoretically difficult task. Nevertheless, in this part of the paper,
let us show that near-torus chaos is possible for HNNs. For these
needs, similar to the near-limit cycle chaos, we will use the
following neural networks.

According to the simulation results of the study [23], the HNN

_x1 ¼ �x1þtanhðx1Þþ0:5 tanhðx2Þ�3 tanhðx3Þ�tanhðx4Þ
_x2 ¼ �x2þ2:3 tanhðx2Þþ3 tanhðx3Þ
_x3 ¼ �x3þ3 tanhðx1Þ�3 tanhðx2Þþtanhðx3Þ
_x4 ¼ �100x4þ100 tanhðx1Þþ170 tanhðx4Þ ð2:9Þ
is hyperchaotic such that it possesses two positive Lyapunov
exponents. The chaos will be applied as an input for the following
Hopfield neural network:

_u1 ¼ �u1þtanhðu1Þþ0:5 tanhðu2Þ�3 tanhðu3Þ�tanhðu4Þ
_u2 ¼ �u2�0:1 tanhðu1Þþ2 tanhðu2Þþ3 tanhðu3Þ
_u3 ¼ �u3þ3 tanhðu1Þ�3 tanhðu2Þþtanhðu3Þ
_u4 ¼ �100u4þ100 tanhðu1Þþ170 tanhðu4Þ: ð2:10Þ
It is shown in paper [24] that the HNN (2.10) admits the Lyapunov
exponents 0, 0, �0.2092 and �46.8691 such that the network
possesses a regular torus, which attracts near solutions.

Now, let us perturb the last HNN by solutions of (2.9) as
external inputs to obtain

_y1 ¼ �y1þtanhðy1Þþ0:5 tanhðy2Þ�3 tanhðy3Þ
�tanhðy4Þþ0:0257 tanhðx1ðtÞÞ

_y2 ¼ �y2�0:1 tanhðy1Þþ2 tanhðy2Þþ3 tanhðy3Þ
þ0:0223 tanhðx2ðtÞÞ

_y3 ¼ �y3þ3 tanhðy1Þ�3 tanhðy2Þþtanhðy3Þþ0:0159 tanhðx3ðtÞÞ
_y4 ¼ �100y4þ100 tanhðy1Þþ170 tanhðy4Þþ0:0334 tanhðx4ðtÞÞ:

ð2:11Þ
Fig. 4 shows the trajectory of (2.11) with x1ð0Þ ¼ �0:1321,

x2ð0Þ ¼ �0:3589, x3ð0Þ ¼ 0:3914, x4ð0Þ ¼ �1:7219, y1ð0Þ ¼ 0:0259,
y2ð0Þ ¼ �0:0096, y3ð0Þ ¼ �0:2383, and y4ð0Þ ¼ �1:5493. One can
see that the motion is chaotic and surrounds the torus. Further-
more, the y2 coordinate of the solution is represented in Fig. 5. The
simulation results reveal that the HNN (2.11) possesses motions
that behave chaotically around the torus of (2.10).

2.3. Comparison with synchronization of chaos

The main role of synchronization [73–75] is to predict the
properties of the response system or the drive system. Thus, our
results may be considered as an indicative of a type of synchro-
nization, if one accepts the following properties to be predicted:
the existence of infinitely many unstable periodic solutions with
the same periods as those for the drive system, ingredients of
chaos, strange attractors, the possibility of controlling chaos, etc.

To analyze our results for generalized synchronization [75–79],
we will consider the chaos produced by the networks (2.9)
and (2.11). The auxiliary system approach [78,79] as well as the
method of conditional Lyapunov exponents [73,76] will be applied
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Fig. 2. The chaotic behavior of the y3 coordinate of HNN (2.6).
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Fig. 3. Extension of sensitivity in the coupled HNNs (2.7) and (2.8). (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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to indicate the presence or absence of generalized synchronization
in the couple (2.9)þ(2.11) considered this time as drive-response
systems (as it is accepted in the synchronization theory).

Let us take into account the auxiliary system:

_z1 ¼ �z1þtanhðz1Þþ0:5 tanhðz2Þ�3 tanhðz3Þ
�tanhðz4Þþ0:0257 tanhðx1ðtÞÞ

_z2 ¼ �z2�0:1 tanhðz1Þþ2tanhðz2Þþ3 tanhðz3Þþ0:0223 tanhðx2ðtÞÞ
_z3 ¼ �z3þ3 tanhðz1Þ�3 tanhðz2Þþtanhðz3Þþ0:0159 tanhðx3ðtÞÞ
_z4 ¼ �100z4þ100 tanhðz1Þþ170 tanhðz4Þþ0:0334 tanhðx4ðtÞÞ:

ð2:12Þ
Making use of the initial data x1ð0Þ ¼ �0:1321, x2ð0Þ ¼ �0:3589,

x3ð0Þ ¼ 0:3914, x4ð0Þ ¼ �1:7219, y1ð0Þ ¼ 0:0259, y2ð0Þ ¼ �0:0096,
y3ð0Þ ¼ �0:2383, y4ð0Þ ¼ �1:5493, z1ð0Þ ¼ 0:1376, z2ð0Þ ¼ �0:0469,
z3ð0Þ ¼ 0:2524, and z4ð0Þ ¼ 1:7589 and omitting the first 1000
iterations, we obtain the stroboscopic plot of system (2.9)þ
(2.11)þ(2.12) whose projection on the y2–z2 plane is shown in
Fig. 6. Since the plot is not on the line z2 ¼ y2, we conclude that
generalized synchronization does not occur.

Next, to determine the conditional Lyapunov exponents, we
consider the following variational equations for the HNN (2.11):

_η1 ¼ ½�1þsech2ðy1ðtÞÞ�η1þ0:5 sech2ðy2ðtÞÞη2�3 sech2ðy3ðtÞÞη3�sech2ðy4ðtÞÞη4

_η2 ¼ �0:1 sech2ðy1ðtÞÞη1þ½�1þ2 sech2ðy2ðtÞÞ�η2þ3 sech2ðy3ðtÞÞη3
_η3 ¼ 3 sech2ðy1ðtÞÞη1�3 sech2ðy2ðtÞÞη2þ½�1þsech2ðy3ðtÞÞ�η3
_η4 ¼ 100 sech2ðy1ðtÞÞη1þ½�100þ170 sech2ðy4ðtÞÞ�η4: ð2:13Þ

Taking into account the solution y(t) of (2.11) corresponding to
the initial data x1ð0Þ ¼ �0:1321, x2ð0Þ ¼ �0:3589, x3ð0Þ ¼ 0:3914,
x4ð0Þ ¼ �1:7219, y1ð0Þ ¼ 0:0259, y2ð0Þ ¼ �0:0096, y3ð0Þ ¼ �0:2383,
and y4ð0Þ ¼ �1:5493, we evaluated the largest Lyapunov exponent
of system (2.13) as 0.105747. That is, the network (2.11) admits a
positive conditional Lyapunov exponent, and this result reveals

one more time the absence of generalized synchronization in the
coupled HNNs (2.9) and (2.11).

We have shown that the method of extension of chaos by
entrainment of tori is not generalized synchronization. This was
also affirmed in several other simulations for limit cycles and tori
in the paper [35].

3. Extension and control of cyclic/toroidal chaos
in neural networks

In the present section, we will apply the instrument of chaos
extension to obtain and control chaos in collectives of neural
networks. New phenomena of the entrainment of two limit cycles
by chaos and attraction of two chaotic cycles by an equilibrium
will be demonstrated. Moreover, we will exhibit that the OGY (Ott,
Grebogi, Yorke) control method [84] can be applied to stabilize not
only periodic motions, but also tori. The control applied to the
chaos generating HNNs also affects chaos of the perturbed HNNs.
The results of the section may provide new ideas on brain
activities, if one takes into account the experimental results in
[25,26,33].

3.1. Entrainment of two limit cycles by chaos

We will use one more time the HNN (2.5) as the source of
chaotic inputs, but this time the following HNN is to be perturbed
by the inputs:

_u1 ¼ �u1þ1:5 tanhðu1Þþ2:9 tanhðu2Þþ0:8 tanhðu3Þ
_u2 ¼ �u2�3:5 tanhðu1Þþ1:18 tanhðu2Þ
_u3 ¼ �u3þ2:977 tanhðu1Þ�22 tanhðu2Þþ0:47 tanhðu3Þ: ð3:1Þ

According to the results of the study [18], the network (3.1) admits
two limit cycles with the Lyapunov exponents 0, �0.1792 and
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�0.7083 such that the cycles are orbitally stable by the Andronov–
Witt Theorem [82].

Beside the last equations, consider the following HNN:

_y1 ¼ �y1þ1:5 tanhðy1Þþ2:9 tanhðy2Þþ0:8 tanhðy3Þ
þ0:04 tanhðx1ðtÞÞþ0:03 tanhðx2ðtÞÞ þ0:006 tanhðx3ðtÞÞ

_y2 ¼ �y2�3:5 tanhðy1Þþ1:18 tanhðy2Þ�0:002 tanhðx1ðtÞÞ
þ0:06 tanhðx2ðtÞÞ

_y3 ¼ �y3þ2:977 tanhðy1Þ�22 tanhðy2Þþ0:47 tanhðy3Þ
�0:001 tanhðx2ðtÞÞþ0:04 tanhðx3ðtÞÞ: ð3:2Þ

By localizing the result of Theorem 2.1 near the two limit
cycles, one can conclude that (3.2) admits two chaotic cycles. Fig. 7
represents the trajectories of (3.2) corresponding to the initial data
x1ð0Þ ¼ 1:903, x2ð0Þ ¼ 0:221, x3ð0Þ ¼ �4:011, y1ð0Þ ¼ 0:713, y2ð0Þ ¼
0:273, and y3ð0Þ ¼ �10:001 and x1ð0Þ ¼ �0:532, x2ð0Þ ¼ �1:647,
x3ð0Þ ¼ 2:607, y1ð0Þ ¼ 0:571, y2ð0Þ ¼ 0:117, and y3ð0Þ ¼ �0:079
shown in blue and red colors, respectively. One can see in Fig. 7
that two chaotic cycles appear in the dynamics of the network
(3.2). We call this phenomenon as the entrainment of two limit
cycles by chaos.

One can predict that the appearance of cyclic chaos can be
implemented for HNNs with not only two cycles, but also several

ones. Moreover, the chaos extension by the entrainment proce-
dure can be realized for different types of neural networks.

3.2. Attraction of two chaotic cycles by an equilibrium

In our paper [36], we considered extension of chaos in
neighborhoods of attracting equilibria. From the simple observa-
tion for a dynamical system that a periodic solution used as a
perturbation may cause a new cycle under certain conditions,
one can conclude that near-limit cycle chaotic inputs can lead to
similar outputs for systems with stable equilibria. To verify this
hypothesis numerically, let us apply the double cyclic chaos
obtained for system (3.2) as an input to the HNN

_u1 ¼ �u1þ0:005 tanhðu1ÞÞþ0:009 tanhðu2Þ�0:008tanhðu3Þ
_u2 ¼ �u2�0:001 tanhðu1Þþ0:007 tanhðu2Þ�0:003 tanhðu3Þ
_u3 ¼ �u3þ0:009 tanhðu1Þ�0:002 tanhðu2Þþ0:004 tanhðu3Þ; ð3:3Þ

which admits the primitive asymptotically stable solution, to set
up the HNN

_z1 ¼ �z1þ0:005 tanhðz1ÞÞþ0:009 tanhðz2Þ�0:008 tanhðz3Þ
þ4 tanhðy1ðtÞÞþtanhðy2ðtÞÞ

_z2 ¼ �z2�0:001 tanhðz1Þþ0:007 tanhðz2Þ�0:003 tanhðz3Þ
þ0:5 tanhðy1ðtÞÞþ2 tanhðy2ðtÞÞ þ0:5 tanhðy3ðtÞÞ

_z3 ¼ �z3þ0:009 tanhðz1Þ�0:002 tanhðz2Þþ0:004 tanhðz3Þ
þ2 tanhðy1ðtÞÞ�tanhðy3ðtÞÞ: ð3:4Þ

Fig. 8 shows the simulation results such that two chaotic cycles
appear in the dynamics of the network (3.4). In the simulation, we
used the solutions of (3.2) represented in Fig. 7, and depicted with
the corresponding same colors in Fig. 8 the trajectories of (3.4)
with the initial data z1ð0Þ ¼ 0:705, z2ð0Þ ¼ 0:487, z3ð0Þ ¼ 0:997 and
z1ð0Þ ¼ �0:142, z2ð0Þ ¼ 0:408, z3ð0Þ ¼ �0:873 in blue and red,
respectively.

3.3. OGY control of a torus

The control of chaos in neural networks is supposed to be the
reason for the appearance of limit cycles in the experiments of
neurobiologists [25,26]. We showed in [35] how the Pyragas
control method [47] stabilizes entrained limit cycles. It is easy to
see that the simulations can be adapted for neural networks in the
form of (2.5)þ(2.6). In this subsection, we will demonstrate a
novel application of the OGY control [83,84] to stabilize tori. Since
the OGY control is for discrete equations, we will start with the
description of piecewise constant perturbations, which will be
controlled by the method.

Consider the function

Pðt;θÞ ¼
1:6 if θ2iotrθ2iþ1;

0:2 if θ2iþ1otrθ2iþ2;

(
ð3:5Þ

where i is a nonnegative integer, the sequence θ¼ fθig is defined
through the equation θi ¼ iþζi with ζiþ1 ¼ FλðζiÞ, ζ0A ½0;1�, and
FλðuÞ ¼ λuð1�uÞ is the logistic map. The map FλðuÞ is chaotic
through period-doubling cascade for λ¼ 3:8, and the interval
½0;1� is invariant under its iterations [83].

Let us describe the OGY control method for the logistic map
[83]. Suppose that the parameter λ in the map FλðuÞ is allowed to
vary in the range ½3:8�ε;3:8þε�, where ε is a given small positive
number. Consider an arbitrary solution fζig, ζ0A ½0;1�, of the map
and denote by ζðjÞ, j¼ 1;2;…; p, the target p� periodic orbit to be
stabilized. In the control procedure [83,84], at each iteration step i
after the control mechanism is switched on, we consider the
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logistic map with the parameter value λ¼ λi, where

λi ¼ 3:8 1þð2ζðjÞ �1Þðζi�ζðjÞÞ
ζðjÞð1�ζðjÞÞ

 !
; ð3:6Þ

provided that the number on the right-hand side of the formula
(3.6) belongs to the interval ½3:8�ε;3:8þε�. In other words,
formula (3.6) is valid if the trajectory fζig is sufficiently close to
the target periodic orbit. Otherwise, we take λi ¼ 3:8 so that the
system evolves at its original parameter value, and wait until
the trajectory fζig enters in a sufficiently small neighborhood of
the periodic orbit ζðjÞ, j¼ 1;2;…; p, such that the inequality
�εr3:8ð2ζðjÞ �1Þðζi�ζðjÞÞ=½ζðjÞð1�ζðjÞÞ�rε holds. If this is the
case, the chaos control is not achieved immediately after switching
on the control mechanism. Instead, there is a transition time
before the desired periodic orbit is stabilized. The transition time
increases if the number ε decreases [79].

Let us introduce the Hopfield neural network

_x1 ¼ �7x1þ0:012 tanhðx1Þ�0:016 tanhðx2Þþ0:003 tanhðx3Þ
_x2 ¼ �4x2�0:004 tanhðx1Þþ0:013 tanhðx2Þ

þ0:005 tanhðx3ÞþPðt;θÞ
_x3 ¼ �6x3þ0:008 tanhðx1Þþ0:005 tanhðx2Þ

þ0:009 tanhðx3Þþ sin ð4tÞþPðt;θÞ; ð3:7Þ
where the piecewise constant function Pðt;θÞ described by (3.5) is
used as a chaotic input. Since the functions Pðt;θÞ and sin ð4tÞ lead
to the presence of infinitely many quasi-periodic inputs with
incommensurate periods, multiples of 2 and π=2, respectively,
one can use the results of [85–88] to conclude that the HNN (3.7)
with λ¼ 3:8 possesses a chaotic attractor with infinitely many
unstable quasi-periodic solutions.

Using the solutions of (3.7) as inputs for the HNN

_u1 ¼ �3u1þ0:003 tanhðu1Þ�0:005 tanhðu2Þ�0:013 tanhðu3Þ
_u2 ¼ �8u2þ0:007 tanhðu1Þþ0:008 tanhðu2Þþ0:007 tanhðu3Þ
_u3 ¼ �6u3�0:004 tanhðu1Þ�0:006 tanhðu2Þþ0:002 tanhðu3Þ;

ð3:8Þ
we set up the network

_y1 ¼ �3y1þ0:003 tanhðy1Þ�0:005 tanhðy2Þ�0:013 tanhðy3Þþ1:5x1ðtÞ
_y2 ¼ �8y2þ0:007 tanhðy1Þþ0:008 tanhðy2Þþ0:007 tanhðy3Þþ1:8x2ðtÞ

_y3 ¼ �6y3�0:004 tanhðy1Þ�0:006 tanhðy2Þþ0:002 tanhðy3Þþ1:2x3ðtÞ:
ð3:9Þ

It is worth noting that the origin is the asymptotically stable
equilibrium point of (3.8). According to the results of the study
[36], the network (3.9) possesses a chaotic attractor with infinitely

many unstable quasi-periodic solutions, provided that the value
λ¼ 3:8 is used in (3.7).

The trajectories of (3.7) and (3.9) with λ¼ 3:8 corresponding to
the initial data x1ðt0Þ ¼ �0:0007, x2ðt0Þ ¼ 0:3983, x3ðt0Þ ¼ 0:2061,
y1ðt0Þ ¼ �0:0004, y2ðt0Þ ¼ 0:0801, and y3ðt0Þ ¼ 0:0487, where
t0 ¼ 0:281, are represented in Fig. 9(a) and (b), respectively.
Moreover, the graphs of the x3 and y3 coordinates of the same
trajectories are depicted in Fig. 10. The simulations reveal that both
of the HNNs (3.7) and (3.9) exhibit chaotic motions.

Next, we consider the solution of the coupled network (3.7)þ
(3.9) with the same initial data as considered in Figs. 9 and 10, and
apply the OGY control method around the fixed point 2.8/3.8 of the
logistic map F3:8ðuÞ. Fig. 11 shows the simulation results for the x3
and y3 coordinates. The value ε¼ 0:06 is used in the simulation. The
control mechanism is switched on at t ¼ θ30 and switched off at
t ¼ θ60. The control becomes dominant approximately at t¼45 and
its effect lasts approximately until t ¼ 115, after which the instability
becomes dominant and irregular behavior develops again. It is seen
that a quasi-periodic solution of the HNN (3.7) is stabilized, and
accordingly, the chaos of the HNN (3.9) is controlled by the
stabilization of the corresponding quasi-periodic solution. On the
other hand, Fig. 12(a) and (b) represent the stabilized tori of the
networks (3.7) and (3.9), respectively.

4. Conclusions

We have provided theoretical arguments for the entrainment of
limit cycles and tori by chaos in neural networks by applying basic
Hopfield neural networks. In Section 3, several opportunities of
the chaos extension are considered when the number of limit
cycles varies, and we performed the attraction of chaotic cycles by
equilibria. All these demonstrate the potentials of our approach,
which can be realized in the theory of neural networks.

It is natural to suppose that instead of a unique limit cycle or
near-limit cycle chaos as it was the case in the experiments
[33,34,38–40], one and the same stimulus may cause the presence
of several such behaviors if the experiments are performed
intentionally. Our dynamical results support this idea, and they
can be developed easily in the mathematical sense (and hopefully
in brain behavior researches) for various numbers and types of
stimuli as well as chaotic and regular outputs. We suggest that not
only limit cycles and near-limit cycle chaos but also limit tori and
near-limit tori chaos can be investigated in experiments. Another
possible experimental program concerning our results is to follow
the papers [2,3,25,26], where it was claimed that the memory
capacity depends strongly on chaos. Loosely speaking, complexity
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Fig. 9. The chaotic trajectories of (3.7) and (3.9) are represented in (a) and (b), respectively.
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of behavior, its degree of irregularity, is proportional to the
memory capacity. It is obvious that to have a larger memory, we
have to make chaos more “complex”. For example, it is known
that periodic solutions (unstable) are in the basis of Li-Yorke and
Devaney chaos [41,42]. By replacing the periodic motions with
quasi-periodic or even almost periodic ones [44], we have more
complex chaos.

In papers [25,26,34], the limit cycle appearance in the chaotic
set of motions was mentioned without an explicit indication of the
reason for the phenomenon. One can suspect that this is because

of the chaos control [47,84], that is, the stabilization of periodic
solutions. However, the control procedure uses a special mechan-
ism in which the solutions are involved [47,84]. One can suggest
that external stimuli are not controlling the cycle, but just trigger
the control mechanism in neural networks. From this point of
view, we have to say that our results extend the comprehension of
the mechanism from limit cycles to tori. Moreover, we develop the
idea that the control of chaos applied to a certain neural network
can be extended to those which are adjoint with the controlled
one. The extension of chaos control may give some positive
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information for the synchronized behavior in large society of
neural networks to govern a motion of human body.

Another process in brain behavior that our results concern with
is the synchronization of neural networks. Since chaos is an
attribute of neural networks and synchronization is necessary for
the effective brain work, one should say about synchronization of
chaos in neural networks. For the moment, the most developed
one is the generalized synchronization [75–79], which requests
asymptotic closeness of drive and response systems. In Section 2.3,
it is proved by the method of auxiliary system approach and
conditional Lyapunov exponents applied to coupled (2.9)þ(2.11)
that the presented method is not generalized synchronization. In
other words, there are not necessarily asymptotic relations
between the two networks. Moreover, our method reveals that
the systems participating in the extension of chaos are synchro-
nized in the sense that chaos may admit similar properties such as
the presence of motions with the same periods, similarity of
chaotic attractors and bifurcation diagrams, property to be con-
trolled simultaneously, Shilnikov orbits, and intermittency [35–
37,85–88]. Thus, the present results may be useful for neurobiol-
ogists to give more directions as well as mathematical apparatus
for the future joint investigations.

Chaotic itinerancy [89] is a universal dynamics in high-
dimensional systems, showing itinerant motion among varieties
of low-dimensional ordered states through high-dimensional
chaos. This phenomenon occurs in non-equilibrium neural net-
works [10] and analysis of brain activities [33]. In its degenerated
form, chaotic itinerancy is related to intermittency [90] since both
of them represent dynamical interchange of irregularity and
regularity. Likewise the itinerant chaos observed in brain activities,
low-dimensional chaos occurs in our results, and high-
dimensional chaos takes place when all subsystems are considered
as a whole. The main difference between our technique and
chaotic itinerancy is in the elapsed time for the occurrence of
the processes. No itinerant motion is observable in our discussions
and all resultant chaotic subsystems process simultaneously,
whereas the low-dimensional chaotic motions take place as time
elapses in the case of chaotic itinerancy. The knowledge of the
chaos type is another difference between chaotic itinerancy and
our approach [36,37,85–87].
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