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equations with discontinuous right hand side in the neighbourhood of the origin. Using B-
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1 Introduction

When we consider bifurcations of a given type in a neighborhood of the origin,
the center manifold theory appears as one of the most effective tools in the
investigation. The study of center manifolds can be traced back to the works
of Pliss [19] and Kelley [11]. When such manifolds exist, the investigation of
local behaviours can be reduced to the study of the systems on the center
manifolds. Any bifurcations which occur in the neighborhood of the origin
on the center manifold are guaranteed to occur in the full nonlinear system
as well. In particular, if a limit cycle exists on the center manifold, then it
will also appear in the full system.

Physical phenomena are often modeled by discontinuous dynamical sys-
tems which switch between different vector fields in different modes. Filippov
systems form a subclass of discontinuous systems described by differential
equations with a discontinuous right-hand side [9]. Bifurcations in smooth
systems are well understood, but little is known in discontinuous dynamical
systems. In the last several decades, existence of non-smooth dynamics in the
real world has stimulated the study of bifurcation of periodic solutions in dis-
continuous systems [8, 10], [12] − [18]. Furthermore, Bautin and Leontovich
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[7] and Küpper et al. [14, 15] have considered Hopf bifurcation for planar
Filippov systems with discontinuities on a single straight line. However, to
the best of our knowledge, there have been no results considering bifurcation
in three and more dimensions for equations with discontinuous vector fields.

In [2], Hopf bifurcation has been investigated for planar discontinuous dy-
namical systems. Based on the method ofB−equivalence [1]−[5] to impulsive
differential equations and by using the projection on the center manifold, we
extend the results in [2] to obtain qualitative properties for our three dimen-
sional system with discontinuous right-hand side. The present paper deals
with discontinuities on arbitrarily finite nonlinear surfaces. In fact, it is the
advantage of the B−equivalence method that we can consider a system with
nonlinear discontinuity sets.

The structure of the paper is as follows. Section 2 describes the nonper-
turbed system and studies its qualitative properties. Section 3 is dedicated
to the perturbed system and the notion of B−equivalent impulsive systems.
The center manifold theory is given in Section 4. Our main results concern-
ing the bifurcation of periodic solutions are formulated in Section 5. In the
last section, we present an appropriate example to illustrate our findings.

2 The nonperturbed system

Let N and R be the sets of natural and real numbers, respectively. Let
R

n, n ∈ N, be the n-dimensional real space and 〈x, y〉 denote the scalar
product for all vectors x, y ∈ R

n. The norm of a vector x ∈ R
n is given by

‖x‖ = 〈x, x〉
1

2 .
Also for the sake of brevity in the sequel, every angle for a point is con-

sidered with respect to the positive half-line of the first coordinate axis in
x1x2−plane. Moreover, it is important to note that we shall consider angle
values only in the interval [0, 2π] because of the periodicity.

Before introducing the nonperturbed system, we give the following as-
sumptions and notations which will be needed throughout the paper:

(A1) Let {Pi}p
i=1, p ≥ 2, p ∈ N, be a set of half-planes starting at the z−axis,

i.e., Pi = li×R, where li are half-lines which start at the origin and are
given by ϕi(x) = 0, ϕi(x) =

〈

ai, x
〉

, x ∈ R
2 and ai = (a1

i, a2
i) ∈ R

2

are constant vectors (see Fig. 1). Let γi denote the angle of the line li
for each i = 1, p such that

0 < γ1 < γ2 < · · · < γp < 2π ;

(A2) There exist constant, real-valued 2 × 2 matrices Ai defined by Ai =
[

αi −βi

βi αi

]

where βi > 0 and constants bi ∈ R, i = 1, p.

(N1) θ1 = (2π + γ1) − γp and θi = γi − γi−1, i = 2, p ;
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Figure 1: Half-planes Pi, i = 1, p, of discontinuities for the nonperturbed
system (1).

(N2) Let Di denote the region situated between the planes Pi−1 and Pi and
defined in cylindrical coordinates (r, φ, z), where x1 = r cosφ, x2 =
r sinφ and z = z, by

D1 = {(r, φ, z) | r ≥ 0, γp < φ ≤ γ1 + 2π, z ∈ R},

Di = {(r, φ, z) | r ≥ 0, γi−1 < φ ≤ γi, z ∈ R}, i = 2, p.

Under the assumptions made above, we study in R
3 the following non-

perturbed system,

dx

dt
= F (x),

dz

dt
= f(z),

(1)

where F (x) = Aix and f(z) = biz for (x, z) ∈ Di, i = 1, p.
We note that the functions F and f in system (1) are discontinuous on

the planes Pi, i = 1, p.

Remark 2.1 It follows from the assumptions (A1) and (A2) that

〈∂ϕi(x)

∂x
, F (x)〉 6= 0 for x ∈ li, i = 1, p.

That is, the vector field is transversal at every point on Pi for each i.

Since the results can be most conveniently stated in terms of cylindrical
coordinates, we use the transformation x1 = r cosφ, x2 = r sinφ, z = z so
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that system (1) reduces to

dr

dφ
= G(r),

dz

dφ
= g(z),

(2)

where G(r) = λir and g(z) = kiz if (r, φ, z) ∈ Di, with λi =
αi

βi

and ki =
bi

βi

,

i = 1, p. We see that the functions G and g given in (2) have discontinuities
when φ = γi, i = 1, p.

The solution (r(φ, r0), z(φ, z0)) of (2) starting at the point (0, r0, z0) is
given by

r(φ, r0) =







exp (λ1φ) r0, if 0 ≤ φ ≤ γ1,

exp{λ1γ1 + λ2θ2 + · · · + λi(φ − γi−1)}r0, if γi−1 < φ ≤ γi,

exp{λ1[φ− (γp − γ1)] +
∑p

i=2 λiθi}r0, if γp < φ ≤ 2π,

z(φ, z0) =







exp(k1φ)z0, if 0 ≤ φ ≤ γ1,

exp{k1γ1 + k2θ2 + · · · + ki(φ − γi−1)}z0, if γi−1 < φ ≤ γi,

exp{k1[φ− (γp − γ1)] +
∑p

i=2 kiθi}z0, if γp < φ ≤ 2π,

for i = 2, 3, . . . , p.

Now, we define a section P = {(x1, x2, z) | x2 = 0, x1 > 0, z ∈ R}. Con-
structing the Poincaré return map on P, we find that

(r(2π, r0), z(2π, z0)) = (exp(

p
∑

i=1

λiθi)r0, exp(

p
∑

i=1

kiθi)z0).

Let us denote

q1 = exp(

p
∑

i=1

λiθi), (3)

q2 = exp(

p
∑

i=1

kiθi). (4)

Since r(2π, r0) = q1r0, z(2π, z0) = q2z0, we can establish the following asser-
tions.

Lemma 2.1 Assume that q1 = 1. If

(i) q2 = 1, then all solutions are periodic with period T =
p
∑

i=1

θi

βi

, i.e., R
3

is a center manifold;
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(ii) q2 < 1, then a solution that starts to its motion on x1x2−plane is
T−periodic and all other solutions lie on the surface of a cylinder and
they move toward the x1x2−plane, i.e., x1x2−plane is a center manifold
and z−axis is a stable manifold;

(iii) q2 > 1, then a solution that starts to its motion on x1x2−plane is
T−periodic and all other solutions lie on the surface of a cylinder and
they move away from the origin, i.e., x1x2−plane is a center manifold
and z−axis is an unstable manifold.

Lemma 2.2 Assume that q1 < 1. If

(i) q2 = 1, then a solution that starts to its motion on z−axis is T−periodic
and all other solutions will approach to z−axis, i.e., x1x2−plane is a
stable manifold and z−axis is a center manifold;

(ii) q2 < 1, all solutions will spiral toward the origin, i.e., the origin is
asymptotically stable;

(iii) q2 > 1, a solution that starts to its motion on x1x2−plane spirals toward
the origin and a solution initiating on z−axis will move away from the
origin, i.e., x1x2−plane is a stable manifold and z−axis is a center
manifold.

Lemma 2.3 Assume that q1 > 1. If

(i) q2 = 1, then a solution that starts to its motion on z−axis is T−periodic
and all other solutions move away from the z−axis, i.e., x1x2−plane
is an unstable manifold and z−axis is a center manifold;

(ii) q2 < 1, a solution that starts to its motion on x1x2−plane moves away
from the origin and a solution initiating on z−axis spirals toward the
origin, i.e., x1x2−plane is an unstable manifold and z−axis is a stable
manifold;

(iii) q2 > 1, all solutions move away from the origin, i.e., the origin is
unstable.

Remark 2.2 From now on, we assume that q1 = 1 and q2 < 1. In other words,
x1x2−plane is a center manifold and z−axis is a stable manifold.

3 The perturbed system

Let Ω ⊂ R
3 be a domain in the neighborhood of the origin. The following

conditions are assumed to hold throughout the paper.
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(P1) Let {Si}p
i=1, p ≥ 2, be a set of cylindrical surfaces which start at the

z−axis, i.e., Si = ci ×R, where ci are curves starting at the origin and
determined by the equations ϕ̃i(x) = 0, ϕ̃ =

〈

ai, x
〉

+ τi(x), x ∈ R
2,

τi(x) = o(‖x‖) and the constant vectors ai are the same as described
in (A1).

Without loss of generality, we may assume that γi 6= π
2 j, j = 1, 3. Using

the transformation x1 = r cosφ, x2 = r sinφ, equation of the curve ci can be
written, for sufficiently small r, as follows [2]

ci : φ = γi + ψi(r, φ), i = 1, p, (5)

where ψi is a 2π−periodic function in φ, continuously differentiable and ψi =
O(r). Then, we can define the region situated between the surfaces Si−1 and
Si as follows:

D̃1 = {(r, φ, z) | r ≥ 0, γp + ψp(r, φ) < φ ≤ γ1 + 2π + ψ1(r, φ), z ∈ R},

D̃i = {(r, φ, z) | r ≥ 0, γi−1 + ψi−1(r, φ) < φ ≤ γi + ψi(r, φ), z ∈ R},
where i = 2, p.

Let ε be a positive number and Nε(D̃i) denote the ε−neighborhoods of
the regions D̃i, i = 1, p. In addition to (P1), we assume the following list of
conditions.

(P2) Let fi, hi, i = 1, p, be functions defined on Nε(D̃i) and satisfy fi, hi ∈
C(2)(Nε(D̃i));

(P3) τi ∈ C(2)(Nε(D̃i)), i = 1, p ;

(P4) fi(x, z) = o(‖x, z‖), hi(x, z) = o(‖x, z‖), and fi(0, z) = 0, hi(0, z) = 0
for all z ∈ R, i = 1, p.

We define for (x, z) ∈ D̃i, two functions by F̃ (x, z) = Aix + fi(x, z) and
f̃(x, z) = biz+hi(x, z), where the matrix Ai and the constant bi are as defined
in (A2) above. In the neighborhood Ω, we consider the following system

dx

dt
= F̃ (x, z),

dz

dt
= f̃(x, z).

(6)

Here, it can be easily seen that the functions F̃ (x, z) and f̃(x, z) have dis-
continuities on the surfaces Si, i = 1, p.

For sufficiently small neighborhood Ω, it follows from the conditions (A1)
and (P1) that the surfaces Si intersect each other only at z−axis, none of

them can intersect itself and 〈∂ϕ̃i(x)

∂x
, F̃ (x, 0)〉 6= 0 for x ∈ ci, i = 1, p.
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If a solution of system (6) starts at a point, which is sufficiently close
to the origin and on the surface Si with fixed i, then this solution can be
continued either to the surface Si+1 or Si−1 depending on the direction of
the time.

We make use of cylindrical coordinates and rewrite the system (6) in the
following equivalent form

dr

dφ
= G̃(r, φ, z),

dz

dφ
= g̃(r, φ, z),

(7)

where G̃(r, φ, z) = λir+Pi(r, φ, z) and g̃(r, φ, z) = kiz+Qi(r, φ, z) whenever
(r, φ, z) ∈ D̃i. The functions Pi and Qi are 2π-periodic in φ, continuously
differentiable and Pi = o(||(r, z)||), Qi = o(||(r, z)||), i = 1, p.

From the construction, we see that system (7) is a differential equation
with discontinuous right-hand side. For our needs, we redefine the functions
G̃ and g̃ in the neighborhoods of the planes Pi, which contain the surface Si.
In other words, we construct new functions GN and gN which are continuous
everywhere except possibly at the points (r, φ, z) ∈ Pi. The redefinition will
be made exceptionally at the points which lie between Pi and Si and belong
to the regionsDi or Di+1 for each i. Therefore, this construction is performed
with minimal possible changes corresponding to the B−equivalence method
[1], which is the main instrument of our investigation.

P

P
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S

S

1
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2

2

p
p

Figure 2: Surfaces Si, i = 1, p, of discontinuities for the perturbed system
(1).
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x2
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It is clear from the context that if i = p then Dp+1 = D1. Using the
argument above, we realize the following reconstruction of the domain. We
consider the subregions of Di and Di+1, which are placed between the plane
Pi and the surface Si. We refer to the subregions Di ∩ D̃i+1 (light coloured
closed regions in Fig. 2) and Di+1 ∩ D̃i (dark coloured closed regions in Fig.
2) for all i. We extend the functions G̃ and g̃ from the region Di ∩ D̃i+1

to Di and from Di+1 ∩ D̃i to Di+1 so that the new functions GN and gN

and their partial derivatives become continuous up to the angle φ = γi, i =
1, p. According to all these discussions for the definitions of GN and gN , we
conclude that GN (r, φ, z) = λir+Pi(r, φ, z) and gN (r, φ, z) = kiz+Qi(r, φ, z)
for (r, φ, z) ∈ Di. Now, we consider the following differential equation

dr

dφ
= GN (r, φ, z),

dz

dφ
= gN(r, φ, z).

(8)

Let us fix i ∈ {1, 2, . . . , p} and consider a neighborhood of Pi based on the
description above. We shall investigate the following three cases:

I. Assume that the point (r, γi, z) ∈ D̃i+1. Let (r0(φ), (z0(φ)) be a solu-
tion of (7) satisfying (r0(γi), (z

0(γi)) = (ρ, z) and ξi be the angle where this
solution crosses the surface Si. We denote a solution of (8) on the interval
[ξi, γi] by (r1(φ), z1(φ)) with (r1(ξi), z

1(ξi)) = (r0(ξi), z
0(ξi)). Then

r0(φ) = exp(λi+1(φ− γi))ρ+

∫ φ

γi

exp(λi+1(φ− s))Pi+1(r
0(s), s, z0(s))ds,

z0(φ) = exp(ki+1(φ− γi))z +

∫ φ

γi

exp(ki+1(φ− s))Qi+1(r
0(s), s, z0(s))ds,

and

r1(φ) = exp(λi(φ− ξi))r
0(ξi) +

∫ φ

ξi

exp(λi(φ− s))Pi(r
1(s), s, z1(s))ds.

z1(φ) = exp(ki(φ− ξi))r
0(ξi) +

∫ φ

ξi

exp(ki(φ − s))Qi(r
1(s), s, z1(s))ds.

Define a mapping Wi = (W 1
i ,W

2
i ) on the plane φ = γi into itself as follows

W 1
i (ρ, z) = r1(γi) − ρ = [exp((λi − λi+1)(γi − ξi)) − 1]ρ

+ exp(λi(γi − ξi))

∫ ξi

γi

exp(λi+1(ξi − s))Pi+1ds

+

∫ γi

ξi

exp(λi(γi − s))Pids,
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W 2
i (ρ, z) = z1(γi) − z = [exp((ki − ki+1)(γi − ξi)) − 1]z

+ exp(ki(γi − ξi))

∫ ξi

γi

exp(ki+1(ξi − s))Qi+1ds

+

∫ γi

ξi

exp(ki(γi − s))Qids.

II. If the point (r, γi, z) ∈ D̃i, we can evaluate Wi in the same way:

W 1
i (ρ, z) = [exp((λi − λi+1)(ξi − γi)) − 1]ρ

+ exp(λi+1(γi − ξi))

∫ ξi

γi

exp(λi(ξi − s))Pids

+

∫ γi

ξi

exp(λi+1(γi − s))Pi+1ds,

W 2
i (ρ, z) = [exp((ki − ki+1)(ξi − γi)) − 1]z

+ exp(ki+1(γi − ξi))

∫ ξi

γi

exp(ki(ξi − s))Qids

+

∫ γi

ξi

exp(λi+1(γi − s))Qi+1ds.

III. If (r, γi, z) ∈ Si, then Wi(ρ, z) = 0.

Results from [2] imply that the functions W 1
i and W 2

i , i = 1, p, are
continuously differentiable and we have W 1

i = o(||(ρ, z)||), W 2
i = o(||(ρ, z)||),

which follows from the equation (5). In addition, we note that there exists a
Lipschitz constant ℓ and a bounded function m(ℓ) [1, 2] such that

‖W j
i (ρ1, z1) −W

j
i (ρ2, z2)‖ ≤ ℓm(ℓ)(‖ρ1 − ρ2‖ + ‖z1 − z2‖), (9)

for all ρ1, ρ2, z1, z2 ∈ R, j = 1, 2.
Let (r(φ, r0), z(φ, z0)) be a solution of (7) with r(0, r0) = r0, z(0, z0) = z0

and ξi be the meeting angle of this solution with the surface Si, i = 1, p.
Denote by (ξi, .γi] the interval (ξi, γi] whenever ξi ≤ γi and [γi, ξi) if γi < ξi.
For sufficiently small Ω, the solution r(φ, r0), whose trajectory is in Ω for all
φ ∈ [0, 2π], takes the same values with the exception of the oriented intervals
(ξi, .γi] as the solution (ρ(φ, r0), z(φ, z0)) with ρ(0, r0) = r0, z(0, z0) = z0 of
the impulsive differential equation

dρ

dφ
= GN (ρ, φ, z),

dz

dφ
= gN(ρ, φ, z), φ 6= γi,

∆ρ|φ = γi
= W 1

i (ρ, z),

∆z|φ = γi
= W 2

i (ρ, z).

(10)
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That is, systems (7) and (10) are said to be B−equivalent in the sense
of the definition in [2]. From the discussion and the construction above, it
implies that solutions of (7) exist in the neighborhood Ω, they are continu-
ous and have discontinuities in the derivative on the surface Si for each i.

Accordingly, a solution of system (6) starting at any initial point is contin-
uous, continuously differentiable except possibly at the moments when the
trajectories intersect the surface Si and is unique.

4 Center manifold

We establish a center manifold theorem for sufficiently small solutions to
(10), that is, we show that these solutions can be captured on a 2-dimensional
invariant manifold and we explicitly describe the dynamics on this manifold.

The functions GN and gN in (10) have been defined as GN (r, φ, z) =
λir + Pi(r, φ, z) and gN(r, φ, z) = kiz + Qi(r, φ, z), where (r, φ, z) ∈ Di.

Functions Pi and Qi are 2π−periodic in φ, and satisfy in a neighborhood of
the origin

‖Pi(ρ, φ, z) − Pi(ρ
′, φ, z′)‖ ≤ L(‖ρ− ρ′‖ + ‖z − z′‖), (11)

‖Qi(ρ, φ, z) −Qi(ρ
′, φ, z′)‖ ≤ L(‖ρ− ρ′‖ + ‖z − z′‖), (12)

for sufficiently small positive constant L, i = 1, p. Applying the methods of
the paper [6], we can conclude that system (10) has two integral manifolds
whose equations are given by:

Φ0(φ, ρ) =

∫ φ

−∞
ek(φ−s)Q(ρ(s, φ, ρ), s, z(s, φ, ρ))ds

+
∑

γi<φ

eki(φ−γi)W 2
i (ρ(γi, φ, ρ), z(γi, φ, ρ)), (13)

and

Φ−(φ, z) = −
∫ ∞

φ

eλ(φ−s)P (ρ(s, φ, z), s, z(s, φ, z))ds

+
∑

γi<φ

eλi(φ−γi)W 1
i (ρ(γi, φ, z), z(γi, φ, z)), (14)

where k = ki, λ = λi, P = Pi and Q = Qi whenever (s, ·, ·) ∈ Di. The pair
(ρ(s, φ, ρ), z(s, φ, ρ)) in (13) denotes a solution of (10) satisfying ρ(φ, φ, ρ) = ρ

and (ρ(s, φ, z), z(s, φ, z)), in (14), is a solution of (10) with z(φ, φ, z) = z.

It is also shown in [6] that there exist positive constants K0,M0, σ0 such
that Φ0 satisfies:

Φ0(φ, 0) = 0, (15)

‖Φ0(φ, ρ1) − Φ0(φ, ρ2)‖ ≤ K0ℓ‖ρ1 − ρ2‖, (16)
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for all ρ1, ρ2 such that a solution w(φ) = (ρ(φ), z(φ)) of (10) with w(φ0) =
(ρ0,Φ0(φ0, ρ0)), ρ0 ≥ 0, is defined on R and has the following property:

‖w(φ)‖ ≤M0ρ0e
−σ0(φ−φ0), φ ≥ φ0. (17)

Furthermore, it is shown that there exist positive constants K−,M−, σ− such
that Φ− satisfies:

Φ−(φ, 0) = 0, (18)

‖Φ−(φ, z1) − Φ−(φ, z2)‖ ≤ K−ℓ‖z1 − z2‖, (19)

for all z1, z2 such that a solution w(φ) = (ρ(φ), z(φ)) of (10) with w(φ0) =
(Φ−(φ0, z0), z0), z0 ∈ R, is defined on R and satisfies

‖w(φ)‖ ≤M−‖z0‖e−σ
−

(φ−φ0), φ ≤ φ0. (20)

Denote S0 = {(ρ, φ, z) : z = Φ0(φ, ρ)} and S− = {(ρ, φ, z) : ρ =
Φ−(φ, z)}. Here, S0 is said to be the center manifold and S− is said to be
the stable manifold.

The following lemmas can be proven in a similar manner to the ones in
[6] with slight changes.

Lemma 4.1 If the Lipschitz constant ℓ is sufficiently small, then for every so-
lution w(φ) = (ρ(φ), z(φ)) of (10) there exists a solution µ(φ) = (u(φ), v(φ))
on the center manifold, S0, such that

‖ρ(φ) − u(φ)‖ ≤ 2M0‖ρ(φ0) − u(φ0)‖e−σ0(φ−φ0),

‖z(φ) − v(φ)‖ ≤M0‖z(φ0) − v(φ0)‖e−σ0(φ−φ0), φ ≥ φ0,
(21)

where M0 and σ0 are the constants used in (17).

Lemma 4.2 For sufficiently small Lipschitz constant ℓ, the surface S0 is sta-
ble in large.

The dynamics reduced to local the center manifold S0 is governed by an
impulsive differential equation that is satisfied by the first coordinate of the
solutions of (10) and has the form:

dρ

dφ
= GN (ρ, φ,Φ0(φ, ρ)), φ 6= γi,

∆ρ|φ=γi
= W 1

i (ρ,Φ0(φ, ρ)).
(22)

The following theorem follows from the reduction principle.

Theorem 4.1 Assume that the conditions assumed so far are fulfilled. Then
the trivial solution of (10) is stable, asymptotically stable or unstable if the
trivial solution of (22) is stable, asymptotically stable or unstable, respec-
tively.

Using B−equivalence, one can see that the following theorem holds:

Theorem 4.2 Assume that the conditions given above are fulfilled. Then the
trivial solution of (6) is stable, asymptotically stable or unstable if the trivial
solution of (22) is stable, asymptotically stable or unstable, respectively.
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5 Hopf bifurcation

The center manifold reduction in the previous section allows us to estab-
lish a Hopf bifurcation theorem, yielding a very powerful tool to perform a
bifurcation analysis on parameter dependent versions of the considered sys-
tems. During the last two decades, many authors have contributed towards
developing the general theory.

In order to state the Hopf bifurcation theorem, we include parameter
dependence into our framework. In particular, the bifurcation of periodic
solutions under the influence of a single parameter µ, µ ∈ (−µ0, µ0), µ0 a
positive constant, is considered for the system:

dx

dt
= F̂ (x, z, µ),

dz

dt
= f̂(x, z, µ),

(23)

where F̂ (x, z, µ) = Aix+fi(x, z)+µFi(x, z, µ) and f̂(x, z, µ) = biz+hi(x, z)+
µHi(x, z, µ) whenever (x, z) ∈ D̃i(µ) ⊂ R

3, which will be defined below. We
will need the following assumptions on the system (23):

(H1) Let {Si(µ)}p
i=1 be a collection of surfaces in Ω which start at the z-axis,

i.e., Si(µ) = ci(µ)×R, where ci(µ) are curves given by
〈

ai, x
〉

+ τi(x)+
µκi(x, µ) = 0, x ∈ R

2, i = 1, p;

(H2) Let {Pi(µ)}p
i=1 be a union of half-planes which start at the the z−axis,

i.e., Pi(µ) = li(µ)×R, where li(µ) is defined by 〈ai+µ
∂κi(0, µ)

∂x
, x〉 = 0,

i = 1, p. Denote by γi(µ) the angle of the line li(µ), i = 1, 2, . . . , p.

Like the construction of the regions Di and D̃i, we define for µ ∈ (−µ0, µ0),
i = 2, 3, . . . , p, the ones associated to the system (23):

D̃1(µ) = {(r, φ, z, µ) | r ≥ 0, γp(µ) + Ψp < φ ≤ γ1(µ) + 2π + Ψ1, z ∈ R},

D̃i(µ) = {(r, φ, z, µ) | r ≥ 0, γi−1(µ) + Ψi−1 < φ ≤ γi(µ) + Ψi, z ∈ R},

D1(µ) = {(r, φ, z, µ) | r ≥ 0, γp(µ) < φ ≤ γ1(µ) + 2π, z ∈ R},

Di(µ) = {(r, φ, z, µ) | r ≥ 0, γi−1(µ) < φ ≤ γi(µ), z ∈ R} .

Here the functions Ψi = Ψi(r, φ, µ) are 2π−periodic in φ, continuously
differentiable, Ψi = O(r), i = 1, p and can defined in a similar manner to ψi

in (5).
To establish the Hopf bifurcation theorem, we also need the following

assumptions:

(H3) The functions Fi : Nε(D̃i(µ)) → R
2 and κi are analytical functions in

x, z and µ in the ε−neighbourhood of their domains;
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(H4) Fi(0, 0, µ) = 0 and κi(0, µ) = 0 hold uniformly for µ ∈ (−µ0, µ0);

(H5) The matrices Ai, the constants bi, the functions fi gi, τi and the con-
stant vectors ai correspond to the ones described in systems (1) and
(6).

In cylindrical coordinates, system (23) reduces to

dr

dφ
= Ĝ(r, φ, z, µ),

dz

dφ
= ĝ(r, φ, z, µ),

(24)

Ĝ(r, φ, z, µ) = λi(µ)r + Pi(r, φ, z, µ) and ĝ(r, φ, z, µ) = ki(µ)z +Qi(r, φ, z, µ)
if (r, φ, z, µ) ∈ D̃i(µ).

Let the following impulse system

dρ

dφ
= ĜN (ρ, φ, z, µ),

dz

dφ
= ĝN (ρ, φ, z, µ), φ 6= γi(µ),

∆ρ|φ = γi(µ) = W 1
i (ρ, z, µ)

∆z|φ = γi(µ) = W 2
i (ρ, z, µ)

(25)

be B−equivalent to (24), where ĜN and ĝN stand, respectively, for the ex-
tensions of Ĝ and ĝ. That is, ĜN (ρ, φ, z, µ) = λi(µ)ρ + Pi(ρ, φ, z, µ) and
ĝN (ρ, φ, z, µ) = ki(µ)z+Qi(ρ, φ, z, µ) for (ρ, φ, z, µ) ∈ Di(µ). Then the func-
tions ĜN and ĝN and their partial derivatives become continuous up to the
angle φ = γi(µ) for i = 1, p. The functions W 1

i (ρ, z, µ) and W 2
i (ρ, z, µ) can

be defined in the same manner as in Section 3.
Following the same methods which are used to obtain (13) and (14), we

can say that system (25) has two integral manifolds whose equations are
given by:

Φ0(φ, ρ, µ) =

∫ φ

−∞
ek(µ)(φ−s)Q(ρ(s, φ, ρ, µ), s, z(s, φ, ρ, µ), µ)ds

+
∑

γi(µ)<φ

eki(µ)(φ−γi(µ))W 2
i (ρ(γi(µ), φ, ρ, µ), z(γi(µ), φ, ρ, µ), µ), (26)

and

Φ−(φ, z, µ) = −
∫ ∞

φ

eλ(µ)(φ−s)P (ρ(s, φ, z, µ), s, z(s, φ, z, µ), µ)ds

+
∑

γi(µ)<φ

eλi(µ)(φ−γi(µ))W 1
i (ρ(γi(µ), φ, z, µ), z(γi(µ), φ, z, µ), µ), (27)

where k(µ) = ki(µ), λ(µ) = λi(µ), P = Pi and Q = Qi whenever (s, ·, ·, ·) ∈
Di(µ). In (26), the pair (ρ(s, φ, ρ, µ), z(s, φ, ρ, µ)) denotes a solution of (25)
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satisfying ρ(φ, φ, ρ, µ) = ρ. Similarly, (ρ(s, φ, z, µ), z(s, φ, z, µ)), in (27), is a
solution of (25) with z(φ, φ, z, µ) = z.

Set S0(µ) = {(ρ, φ, z, µ) : z = Φ0(φ, ρ, µ)} and S−(µ) = {(ρ, φ, z, µ) : ρ =
Φ−(φ, z, µ)}.

The reduced system on the center manifold S0(µ) is given by

dρ

dφ
= ĜN (ρ, φ,Φ0(φ, ρ, µ), µ), φ 6= γi(µ),

∆ρ |φ=φi(µ)= W 1
i (ρ,Φ0(φ, ρ, µ), µ).

(28)

Similar to (3) and (4) we can define the functions

q1(µ) = exp(

p
∑

i=1

λi(µ)θi(µ)), (29)

q2(µ) = exp(

p
∑

i=1

ki(µ)θi(µ)). (30)

System (28) is a system of the type studied in [2] and there it is shown that
this system, for sufficiently small µ, has a periodic solution with period 2π.
For our needs, we shall show that if the first coordinate of a solution of (25)
is 2π−periodic, then so is the second one.

Now, since
ρ(s+ 2π, φ+ 2π, ρ, µ) = ρ(s, φ, ρ, µ),

z(s+ 2π, φ+ 2π, ρ, µ) = z(s, φ, ρ, µ),

and each Qi is 2π−periodic in φ, we have

Φ0(φ+ 2π, ρ, µ)

=

∫ φ+2π

−∞
ek(µ)(φ+2π−s)Q(ρ(s, φ+ 2π, ρ, µ), s, z(s, φ+ 2π, ρ, µ), µ)ds

+
∑

γi(µ)<φ+2π

eki(µ)(φ+2π−γi(µ)) ×

× W 2
i (ρ(γi(µ), φ+ 2π, ρ, µ), z(γi(µ), φ+ 2π, ρ, µ), µ)

=

∫ φ

−∞
ek(µ)(φ−t)Q(ρ(t, φ, ρ, µ), t, z(t, φ, ρ, µ), µ)dt

+
∑

γ̄i(µ)<φ

eki(µ)(φ−γ̄i(µ))W 2
i (ρ(γ̄i(µ), φ, ρ, µ), z(γ̄i(µ), φ, ρ, µ), µ)

= Φ0(φ, ρ, µ),

where the substitutions s = t + 2π and γi(µ) = γ̄i(µ) + 2π are used for the
integral and summation in the second equality.

Then, we obtain the following theorem whose proof for two dimensional
case can be found in [2] .
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Theorem 5.1 Assume that q1(0) = 1, q′1(0) 6= 0, q2(0) < 1, and the ori-
gin is a focus for (6). Then, for sufficiently small r0 and z0, there exists a
unique continuous function µ = δ(r0, z0), δ(0, 0) = 0 such that the solution
(r(φ, δ(r0 , z0)), z(φ, δ(r0, z0))) of (24), with the initial condition (r(0, δ(r0, z0),
z(0, δ(r0, z0)) = (r0, z0), is periodic with period 2π. The period of the corre-

sponding periodic solution of (23) is
p
∑

i=1

θi

βi

+ o(|µ|).

6 An example

For convenience in this section, we shall use the corresponding notations that
are adopted above.

Example 6.1 Let c1(µ) and c2(µ) denote the curves determined by x2 =
1√
3
x1 + (1 + µ)x3

1, x1 > 0 and x2 =
√

3x1 + x5
1 + µx2

1, x1 < 0 , respectively.

We choose

A1 =

[

−0.7 −2
2 −0.7

]

, f1(x, z) =

[

x1z
√

x2
1 + x2

2

x2z
2
√

x2
1 + x2

2

]

, F1(x, z, µ) =

[

x1(1 + z)
x2

]

,

b1 = 2, h1(x, z) = x2
1z, H1(x, z, µ) = z,

A2 =

[

0.5 −2
2 0.5

]

, f2(x, z) =

[

−2x1z
2
√

x2
1 + x2

2

−2x2

√

x2
1 + x2

2

]

, F2(x, z, µ) =

[

x1

x2(1 + x1z)

]

,

b2 = −1.5, h2(x, z) = x1z, H2(x, z, µ) = [1 − (x2
1 + x2

2)]z.

After these preparations, we consider the system

dx

dt
= F̂ (x, z, µ),

dz

dt
= f̂(x, z, µ),

(31)

where F̂ (x, z, µ) = Aix+fi(x, z)+µFi(x, z, µ) and f̂(x, z, µ) = biz+hi(x, z)+
µHi(x, z, µ) whenever (x, z) ∈ D̃i(µ).

Since l1(µ) (l2(µ)) coincides with l1 (l2), γ1 = γ1(µ) = π
6 and γ2 =

γ2(µ) = 4π
3 . Now, we can evaluate q1(µ) and q2(µ) as follows:

q1(µ) = exp(πµ), (32)

q2(µ) = exp(π(µ − 1

24
)). (33)

From (32) and (33), we can see that q1(0) = 1, q′1(0) > 0 and q2(0) < 1.
Therefore, by Theorem 5.1, system (31) has a periodic solution with period ≈
π. One can see from the Figures 3 and 4 below, which are obtained for different
initial conditions, that the trajectories approach to the periodic solution from
above and below. In other words, system (31) admits a limit cycle.
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Figure 3: Existence of a periodic solution for (31)
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Figure 4: Existence of another periodic solution for (31) with a different
initial value.
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